WO2014030727A1 - Taper-land bearing - Google Patents

Taper-land bearing Download PDF

Info

Publication number
WO2014030727A1
WO2014030727A1 PCT/JP2013/072503 JP2013072503W WO2014030727A1 WO 2014030727 A1 WO2014030727 A1 WO 2014030727A1 JP 2013072503 W JP2013072503 W JP 2013072503W WO 2014030727 A1 WO2014030727 A1 WO 2014030727A1
Authority
WO
WIPO (PCT)
Prior art keywords
taper
bearing
land
load capacity
taper land
Prior art date
Application number
PCT/JP2013/072503
Other languages
French (fr)
Japanese (ja)
Inventor
拓宏 山下
周 神谷
Original Assignee
大豊工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大豊工業株式会社 filed Critical 大豊工業株式会社
Publication of WO2014030727A1 publication Critical patent/WO2014030727A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/047Sliding-contact bearings for exclusively rotary movement for axial load only with fixed wedges to generate hydrodynamic pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/1075Wedges, e.g. ramps or lobes, for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/02General use or purpose, i.e. no use, purpose, special adaptation or modification indicated or a wide variety of uses mentioned

Definitions

  • the present invention relates to a taper land bearing, and more particularly to a taper land bearing in which taper lands are formed at a plurality of locations in the circumferential direction of a bearing surface serving as a sliding surface.
  • Patent Documents 1 to 3 propose a structure in which tapered lands are provided at a plurality of locations in the circumferential direction of the bearing surface to increase the oil film pressure of the lubricating oil on the bearing surface.
  • the tapered land bearing of Patent Document 1 discloses a configuration in which a tapered surface is inclined in the radial direction in addition to the circumferential direction, and an oil hole is formed on the inner peripheral side of each tapered surface.
  • the tapered land thrust bearing of Patent Document 2 discloses a configuration in which edges at each corner portion of the tapered land thrust bearing are removed.
  • the tapered land type thrust bearing of Patent Document 3 is provided with a foreign matter discharge groove on the inner peripheral edge of the bearing surface, and discloses a configuration in which foreign matter in the lubricating oil is discharged to the outside of the bearing surface through the foreign matter discharge groove. Yes.
  • Patent Documents 1 to 3 described above the setting for increasing the load capacity of the bearing surface in the sliding part is insufficient, and measures for reducing the friction of the impulsive part are insufficient.
  • JP 58-17214 A Japanese Unexamined Patent Publication No. 60-18614 Japanese Utility Model Publication No. 5-73315
  • This invention is made in view of the said subject, and it aims at providing the taper land bearing which reduces the friction of a bearing surface.
  • the present inventors have found a combination in which the optimum taper land shape, for example, the depth of the taper portion, the ratio of the length of the entire taper land and the length of the taper portion, maximizes the load capacity.
  • a taper land bearing includes a taper land including a taper surface that increases in a circumferential direction of a bearing surface that supports a rotating shaft, and the depth of the taper surface is 50 ⁇ m or less,
  • the taper ratio obtained by dividing the length of the taper surface in the circumferential direction by the length of the taper land in the circumferential direction is 0.5 or more and 0.9 or less.
  • FIG. 1 It is a top view which shows the taper land bearing which concerns on one Example of this invention. It is a side view which shows the principal part of the taper land bearing seen from the arrow II direction of FIG.
  • A is a figure which shows the relationship between taper ratio and load capacity
  • (b) is a figure which shows the relationship between taper depth and load capacity
  • (c) is the number of taper lands, and load capacity. It is a figure which shows the relationship.
  • It is a schematic sectional drawing which shows the testing machine which measured the friction torque about each taper land bearing shown in FIG. It is a figure which shows the test pattern by the testing machine of FIG.
  • FIG. 5 is a diagram showing the number of bearing characteristics when a torque peak occurs for the taper land bearing of each test sample in FIG. 4.
  • FIG. 1 is a plan view showing a taper land bearing 1 according to an embodiment of the present invention.
  • FIG. 2 is a side view showing the main part of the taper land bearing 1 as seen from the direction of arrow II in FIG.
  • the taper land bearing 1 is composed of an annular metal plate member.
  • the taper land bearing 1 includes a bearing surface 1A of the taper land bearing 1 that supports the end surface 2A of the rotating shaft 2 that is the counterpart shaft and slides with the end surface 2A of the rotating shaft 2.
  • the taper land 1B has six taper lands 1B formed at an equal pitch on the bearing surface 1A in the circumferential direction. As long as the load capacity of 1A can be set so as to reduce the friction of the bearing surface, the pitch may not be equal at a plurality of locations in the circumferential direction and may not be limited to six locations.
  • each tapered land 1B of the tapered land bearing 1 is formed with a tapered surface 1C on the rotational direction side of the rotary shaft 2, and a flat flat surface 1D is formed adjacent to the tapered surface 1C.
  • the taper surface 1C of each taper land 1B is a taper surface where the rotation direction side of the rotary shaft 2 is deepest in the circumferential direction, and the depth h (maximum depth) of the taper surface 1C is 50 ⁇ m or less. Is set. If the depth h of the taper surface 1C exceeds 50 ⁇ m, the load capacity of the taper land bearing 1 becomes small, and the taper land bearing 1 comes into contact with the mating shaft and seizure occurs, which is not preferable.
  • the taper ratio (L2 / L1) obtained by dividing L2 by L1 is It is set to 0.5 or more and 0.9 or less. If the taper ratio is out of the range of 0.5 or more and 0.9 or less, the load capacity of the taper land bearing 1 is reduced, and the taper land bearing 1 comes into contact with the mating shaft and seizure occurs. It is not preferable.
  • the depth h of the tapered surface 1C is set to 50 ⁇ m or less, and the taper ratio is set to 0.5 or more and 0.9 or less. If the friction capacity of the bearing surface can be reduced by setting the load capacity of the bearing surface 1A of the taper land bearing 1 in the sliding component to be increased, the shape of the taper land 1B can be changed.
  • the taper land bearing 1 When the taper land bearing 1 according to the embodiment of the present invention is mounted at a required location of the rotating device, the end surface 2A of the rotating shaft 2 that is the counterpart shaft is supported by the bearing surface 1A, and in a supported state.
  • the rotating shaft 2 is rotated in the direction of the arrow.
  • the bearing surface 1A from the inner peripheral portion of the taper land bearing 1 is obtained.
  • Is supplied with lubricating oil Therefore, an oil film of lubricating oil is formed on the bearing surface 1A, and the end surface 2A of the rotating shaft 2 is supported by the bearing surface 1A via this oil film. Therefore, the distance between the flat surface 1D of the bearing surface 1A and the end surface 2A of the rotating shaft 2 is the thickness t of the lubricating oil film.
  • each taper land 1B in the taper land bearing 1 of a present Example is the dimension setting mentioned above, the load capacity of the bearing surface 1A can be maximized, and it also becomes clear also from the test result mentioned later.
  • the friction of the bearing surface 1A when sliding with the end surface 2A of the rotating shaft 2 can be reduced as compared with the bearings of other configurations.
  • the six taper lands 1B are formed on the bearing surface 1A at equal pitches in the circumferential direction, and the depth h of the taper surface 1C is 50 ⁇ m or less.
  • the taper ratio (L2 / L1) is set to 0.5 or more and 0.9 or less.
  • the dimension of the taper land bearing 1 is set by paying attention to the depth h of the taper surface 1C of the taper land 1B and the taper ratio r, and the load having the depth h of the taper surface 1C of the taper land 1B and the load of the taper ratio r. A value that maximizes the capacity Y was calculated.
  • a taper land bearing 1 is manufactured in which the load capacity Y is set to a maximum value in these two calculated elements, and the taper land bearing 1 is subjected to friction together with a plurality of bearings having other configurations. A test was conducted on the difference in torque.
  • the taper land bearing 1 having the above-described dimension setting has the maximum load capacity Y. Therefore, in this embodiment, the taper land bearing 1 has the above-described dimension setting.
  • the calculation method of the taper surface 1C of the taper land 1B and the taper ratio r, the calculated number x of the taper lands 1B, the depth h of the taper surface 1C of the taper land 1B, and the taper is manufactured, and the taper land bearing 1 is tested together with a plurality of taper land bearings of other configurations, and details of tests regarding the difference in friction torque and The test results will be described.
  • the taper land bearing dimensions and calculation conditions for calculating the maximum load capacity Y with respect to the depth h of the taper surface 1C of the taper land 1B and the taper ratio r are set as follows.
  • the inner diameter of the taper land bearing is 61.1 mm
  • the outer diameter of the taper land bearing is 82.6 mm
  • the rotational speed is 500 rpm
  • the viscosity of the lubricating oil is 3.74 cP
  • the density of the lubricating oil is 850 kg / m 3
  • the oil film thickness t is It was 1 ⁇ m.
  • the internal diameter of the taper land bearing was set to 61.1 mm and the outer diameter of the taper land bearing was set to 82.6 mm, the present invention is not limited to this.
  • the inner diameter and outer diameter of the taper land bearing are not limited as long as the taper ratio r of the taper land 1B and the load capacity Y of the depth h of the taper surface 1C are maximized.
  • the outer diameter of the tapered land bearing may be 40 mm to 110 mm.
  • the oil film pressure per taper land when the oil film thickness t is 1 ⁇ m is calculated by fluid lubrication analysis using the taper land bearing 1 based on the Reynolds equation in consideration of centrifugal force.
  • the product of the oil film pressure and the number of taper lands 1B is defined as the load capacity Y of the entire taper land bearing.
  • the load capacity by the fluid lubrication analysis was set to Y
  • the taper ratio was set to r
  • the depth of the taper surface was set to h
  • the number of taper lands was set to x, and it approximated by multiple regression analysis.
  • the taper ratio that maximizes the load capacity Y, r, the depth of the taper surface, h, and the number x of taper lands were obtained.
  • FIG. 3A is a calculation result regarding the taper ratio r and the load capacity Y
  • FIG. 3B is a calculation result regarding the taper depth h and the load capacity Y
  • FIG. 3C is the number x of the taper lands. It is the calculation result regarding the load capacity Y.
  • the calculated load capacity Y is maximized because the taper ratio r is 0.5 or more and 0.9 or less.
  • the depth h was 50 ⁇ m or less.
  • the taper land bearing 1 is manufactured with the taper ratio r, the depth h of the taper surface 1C of the taper land 1B and the number x of the taper lands 1B with the maximum load capacity Y, and Tests on friction torque were performed on tapered land bearings manufactured with other dimensions.
  • FIG. 4 is a diagram showing the taper land shape of the five taper land bearings that were tested.
  • the first test sample is a taper land bearing of the present embodiment
  • the fifth test sample is a bearing in which the entire bearing surface is a flat surface.
  • FIG. 5 is a schematic cross-sectional view showing a testing machine that measures the friction torque for each tapered land bearing shown in FIG.
  • a taper land bearing which is the sample S to be tested, is mounted on the pedestal 11 of the testing machine, and ATF heated to 120 ° C. is supplied from the axis of the pedestal 11 at 1 liter per minute.
  • a torsion bar 12 is connected to the pedestal 11 holding the test sample S, and a strain gauge 13 is built in the torsion bar 12. The friction torque detected by the torsion bar 12 was continuously recorded.
  • FIG. 6 is a diagram showing a test pattern by a testing machine.
  • the rotation speed of the rotating counterpart shaft 14 is kept constant at 5000 rpm, and the load is increased to 6000 N at 500 N / 15 min.
  • the rotation speed is decreased at 50 rpm / 5 min while the load is kept constant.
  • the number of bearing characteristics is reduced stepwise.
  • the number of bearing characteristics means a numerical value obtained as a calculation result of rotational speed ⁇ lubricating oil viscosity / bearing surface pressure.
  • FIG. 7 is a diagram showing the transition of the friction torque regarding the first taper land bearing (taper land bearing of this embodiment) and the fifth flat bearing in FIG. As shown in FIG. 7, it can be seen that the first tapered land bearing is suppressed from generating torque peaks, and the friction torque is lower by 30% or more than the other flat bearing.
  • FIG. 8 is a diagram showing the number of bearing characteristics when a torque peak occurs in the taper land bearing of each test sample of FIG.
  • the first taper land bearing has the lowest number of bearing characteristics. In other words, the load capacity of the first taper land bearing is the highest.
  • the second taper land bearing to the fourth taper land bearing have a lower load capacity than the first taper land bearing.
  • the fifth flat bearing has the highest number of bearing characteristics, in other words, the load capacity of the bearing is the lowest.
  • the contribution ratio of each design parameter obtained from the calculation result increases in the order of the depth h of the tapered surface and the taper ratio. In accordance with the height, it was confirmed that the number of bearing characteristics at which a friction torque peak occurs greatly decreases.
  • the contribution rate of each design parameter obtained from the calculation result of this time to the load capacity has a correlation with the test result, and it has been found that the influence of the taper surface depth h on the load capacity is the largest.
  • the taper land bearing 1 can maximize the load capacity of the bearing surface 1A, as compared with bearings of other configurations.
  • the friction of the bearing surface 1A when sliding with the end surface 2A of the rotating shaft 2 can be reduced. Therefore, it is possible to provide the taper land bearing 1 that can reduce friction and contribute to lower fuel consumption of the rotating device.

Abstract

Provided is a taper-land bearing for reducing friction in a bearing surface of a sliding component by using a configuration that increases the load capacity of the bearing surface. This taper-land bearing is characterized in comprising a taper land including a tapered surface that rises in the circumferential direction of a bearing surface supporting a rotating shaft, the depth of the tapered surface being 50 µm or less, and the taper ratio, which is the length of the tapered surface in the circumferential direction divided by the length of the taper land in the circumferential direction, being 0.5 to 0.9.

Description

テーパランド軸受Tapered land bearing
 本発明はテーパランド軸受に関し、より詳しくは、摺動面となる軸受面の円周方向複数箇所にテーパランドが形成されたテーパランド軸受に関する。 The present invention relates to a taper land bearing, and more particularly to a taper land bearing in which taper lands are formed at a plurality of locations in the circumferential direction of a bearing surface serving as a sliding surface.
 近年、地球温暖化対応や省エネルギーの観点から摺動部品の摩耗低減が求められるようになっている。そのため、摺動部品の摩擦低減に関して様々な研究が行われている。 In recent years, reduction of wear of sliding parts has been demanded from the viewpoint of global warming and energy saving. For this reason, various studies have been conducted on friction reduction of sliding parts.
 一方、従来のテーパランド軸受は、以下の特許文献1~3に開示されている。特許文献1~3には、軸受面の円周方向複数箇所にテーパランドを備え、軸受面における潤滑油の油膜圧力を増大させるようにしたものが提案されている。 On the other hand, conventional tapered land bearings are disclosed in Patent Documents 1 to 3 below. Patent Documents 1 to 3 propose a structure in which tapered lands are provided at a plurality of locations in the circumferential direction of the bearing surface to increase the oil film pressure of the lubricating oil on the bearing surface.
 特許文献1のテーパドランド軸受は、テーパ面を円周方向に加えて半径方向に傾斜させ、各テーパ面における内周側に油穴を形成した構成を開示している。特許文献2のテーパードランドスラスト軸受は、テーパードランドスラスト軸受の各隅角部におけるエッジを除去した構成を開示している。特許文献3のテーパランド型スラスト軸受は、軸受面の内周縁に異物排出溝を備えており、潤滑油中の異物は異物排出溝を介して軸受面の外部に排出される構成を開示している。 The tapered land bearing of Patent Document 1 discloses a configuration in which a tapered surface is inclined in the radial direction in addition to the circumferential direction, and an oil hole is formed on the inner peripheral side of each tapered surface. The tapered land thrust bearing of Patent Document 2 discloses a configuration in which edges at each corner portion of the tapered land thrust bearing are removed. The tapered land type thrust bearing of Patent Document 3 is provided with a foreign matter discharge groove on the inner peripheral edge of the bearing surface, and discloses a configuration in which foreign matter in the lubricating oil is discharged to the outside of the bearing surface through the foreign matter discharge groove. Yes.
 しかしながら、上述した特許文献1~3では、摺動部品における軸受面の負荷容量を増大させる設定が不十分であるとともに、衝動部品の摩擦低減に対する対策が不十分であった。 However, in Patent Documents 1 to 3 described above, the setting for increasing the load capacity of the bearing surface in the sliding part is insufficient, and measures for reducing the friction of the impulsive part are insufficient.
特開昭58-17214号公報JP 58-17214 A 特開昭60-18614号公報Japanese Unexamined Patent Publication No. 60-18614 実開平5-73315号公報Japanese Utility Model Publication No. 5-73315
 本発明は上記課題に鑑みてなされたものであり、軸受面の摩擦を低減させるテーパランド軸受を提供することを目的とする。 This invention is made in view of the said subject, and it aims at providing the taper land bearing which reduces the friction of a bearing surface.
 本発明者らは、最適なテーパランド形状、例えば、テーパ部分の深さ、テーパランド全体の長さとテーパ部分の長さとの比が負荷容量を最大となるような組み合わせを見出した。 The present inventors have found a combination in which the optimum taper land shape, for example, the depth of the taper portion, the ratio of the length of the entire taper land and the length of the taper portion, maximizes the load capacity.
 本発明の一実施例に係るテーパランド軸受は、回転軸を支承する軸受面の円周方向に高くなるテーパ面を含むテーパランドと、を備え、上記テーパ面の深さが50μm以下であり、上記テーパ面の円周方向の長さを前記テーパランドの円周方向の長さで除したテーパ比が0.5以上0.9以下であることを特徴とするものである。 A taper land bearing according to an embodiment of the present invention includes a taper land including a taper surface that increases in a circumferential direction of a bearing surface that supports a rotating shaft, and the depth of the taper surface is 50 μm or less, The taper ratio obtained by dividing the length of the taper surface in the circumferential direction by the length of the taper land in the circumferential direction is 0.5 or more and 0.9 or less.
 本発明によれば、摺動部品における軸受面の負荷容量を増大させるように設定することで、軸受面の摩擦を低減させるテーパランド軸受を提供することができる。 According to the present invention, it is possible to provide a taper land bearing that reduces the friction of the bearing surface by setting so as to increase the load capacity of the bearing surface in the sliding component.
本発明の一実施例に係るテーパランド軸受を示す平面図である。It is a top view which shows the taper land bearing which concerns on one Example of this invention. 図1の矢印II方向から見たテーパランド軸受の要部を示す側面図である。It is a side view which shows the principal part of the taper land bearing seen from the arrow II direction of FIG. (a)は、テーパ比と負荷容量との関係を示す図であり、(b)は、テーパ深さと負荷容量との関係を示す図であり、(c)は、テーパランドの数と負荷容量との関係を示す図である。(A) is a figure which shows the relationship between taper ratio and load capacity, (b) is a figure which shows the relationship between taper depth and load capacity, (c) is the number of taper lands, and load capacity. It is a figure which shows the relationship. 試験対象となったテーパランド軸受のテーパランド形状を示す図である。It is a figure which shows the taper land shape of the taper land bearing used as the test object. 図4に示す各テーパランド軸受について摩擦トルクを計測した試験機を示す概略断面図である。It is a schematic sectional drawing which shows the testing machine which measured the friction torque about each taper land bearing shown in FIG. 図5の試験機による試験パターンを示す図である。It is a figure which shows the test pattern by the testing machine of FIG. 図5における第1のテーパランド軸受と第5の平面軸受に関する摩擦トルクの推移を示す図である。It is a figure which shows transition of the friction torque regarding the 1st taper land bearing in FIG. 5, and a 5th plane bearing. 図4の各供試サンプルのテーパランド軸受について、トルクピークが発生した時の軸受特性数を示す図である。FIG. 5 is a diagram showing the number of bearing characteristics when a torque peak occurs for the taper land bearing of each test sample in FIG. 4.
 以下、図面を参照して、本発明の実施例を詳細に説明する。なお、本実施例では、テーパランド軸受について説明するが、本発明に係るテーパランド軸受はこれに限定されない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, although a taper land bearing is demonstrated in a present Example, the taper land bearing which concerns on this invention is not limited to this.
 図1は、本発明の一実施例に係るテーパランド軸受1を示す平面図である。図2は、図1の矢印II方向から見たテーパランド軸受1の要部を示す側面図である。 FIG. 1 is a plan view showing a taper land bearing 1 according to an embodiment of the present invention. FIG. 2 is a side view showing the main part of the taper land bearing 1 as seen from the direction of arrow II in FIG.
 図1及び図2に示すように、テーパランド軸受1は環状をした金属の板状部材によって構成されている。テーパランド軸受1は、相手軸である回転軸2の端面2Aを支承し、かつ、回転軸2の端面2Aと摺動するテーパランド軸受1の軸受面1Aを備えている。図1及び図2に示すように、テーパランド軸受1の軸受面1Aには、円周方向複数箇所に等ピッチで6箇所のテーパランド1Bが形成されているが、テーパランド1Bは、軸受面1Aの負荷容量を増大させるように設定して、軸受面の摩擦を低減させることができれば、円周方向複数箇所に等ピッチでなくてもよく、6箇所に限定しなくてもよい。 As shown in FIG. 1 and FIG. 2, the taper land bearing 1 is composed of an annular metal plate member. The taper land bearing 1 includes a bearing surface 1A of the taper land bearing 1 that supports the end surface 2A of the rotating shaft 2 that is the counterpart shaft and slides with the end surface 2A of the rotating shaft 2. As shown in FIGS. 1 and 2, the taper land 1B has six taper lands 1B formed at an equal pitch on the bearing surface 1A in the circumferential direction. As long as the load capacity of 1A can be set so as to reduce the friction of the bearing surface, the pitch may not be equal at a plurality of locations in the circumferential direction and may not be limited to six locations.
 ここで、図1及び図2に示すように、テーパランド軸受1の相手軸となる回転軸2は矢印方向に回転されるようになっている。そして、テーパランド軸受1の各テーパランド1Bには、回転軸2の回転方向側にテーパ面1Cが形成され、このテーパ面1Cに隣接して平坦な平坦面1Dが形成されている。 Here, as shown in FIG. 1 and FIG. 2, the rotating shaft 2 which is the counterpart shaft of the taper land bearing 1 is rotated in the direction of the arrow. Each tapered land 1B of the tapered land bearing 1 is formed with a tapered surface 1C on the rotational direction side of the rotary shaft 2, and a flat flat surface 1D is formed adjacent to the tapered surface 1C.
 本実施例においては、各テーパランド1Bのテーパ面1Cは、円周方向において回転軸2の回転方向側が最も深くなるテーパ面となり、テーパ面1Cの深さh(最大深さ)は50μm以下に設定されている。テーパ面1Cの深さhが50μmを超えると、テーパランド軸受1の負荷容量が小さくなり、テーパランド軸受1が相手軸の接触が発生して、焼付きが発生してしまうため好ましくない。また、テーパランド1Bの円周方向の長さをL1とし、テーパ面1Cの円周方向の長さをL2としたときに、L2をL1で除して得られるテーパ比(L2/L1)は0.5以上0.9以下に設定されている。テーパ比が0.5以上0.9以下の範囲を外れると、テーパランド軸受1の負荷容量が小さくなり、テーパランド軸受1が相手軸の接触が発生して、焼付きが発生してしまうため好ましくない。 In the present embodiment, the taper surface 1C of each taper land 1B is a taper surface where the rotation direction side of the rotary shaft 2 is deepest in the circumferential direction, and the depth h (maximum depth) of the taper surface 1C is 50 μm or less. Is set. If the depth h of the taper surface 1C exceeds 50 μm, the load capacity of the taper land bearing 1 becomes small, and the taper land bearing 1 comes into contact with the mating shaft and seizure occurs, which is not preferable. When the length of the taper land 1B in the circumferential direction is L1, and the length of the taper surface 1C in the circumferential direction is L2, the taper ratio (L2 / L1) obtained by dividing L2 by L1 is It is set to 0.5 or more and 0.9 or less. If the taper ratio is out of the range of 0.5 or more and 0.9 or less, the load capacity of the taper land bearing 1 is reduced, and the taper land bearing 1 comes into contact with the mating shaft and seizure occurs. It is not preferable.
 なお、本発明の実施例では、最適なテーパランド1B形状として、テーパ面1Cの深さhを50μm以下、テーパ比を0.5以上0.9以下に設定しているが、この設定に限定されず、摺動部品におけるテーパランド軸受1の軸受面1Aの負荷容量を増大させるように設定して、軸受面の摩擦を低減させることができれば、テーパランド1B形状はそれぞれ変更することができる。 In the embodiment of the present invention, as the optimum tapered land 1B shape, the depth h of the tapered surface 1C is set to 50 μm or less, and the taper ratio is set to 0.5 or more and 0.9 or less. If the friction capacity of the bearing surface can be reduced by setting the load capacity of the bearing surface 1A of the taper land bearing 1 in the sliding component to be increased, the shape of the taper land 1B can be changed.
 本発明の実施例に係るテーパランド軸受1が回転装置の所要箇所に装着されると、相手軸となる回転軸2の端面2Aが軸受面1Aにより支承されるようになり、支承された状態で回転軸2が矢印方向に回転されるようになっている。このように回転軸2が矢印方向に回転されて、回転軸2の端面2Aとテーパランド軸受1の軸受面1Aとが摺動する際には、テーパランド軸受1の内周部から軸受面1Aに潤滑油が供給される。そのため、軸受面1Aには潤滑油の油膜が形成されて、この油膜を介して回転軸2の端面2Aは軸受面1Aに支承されるようになっている。そのため、軸受面1Aの平坦面1Dと回転軸2の端面2Aとが隔てた間隔が潤滑油の油膜の厚さtとなる。 When the taper land bearing 1 according to the embodiment of the present invention is mounted at a required location of the rotating device, the end surface 2A of the rotating shaft 2 that is the counterpart shaft is supported by the bearing surface 1A, and in a supported state. The rotating shaft 2 is rotated in the direction of the arrow. Thus, when the rotating shaft 2 is rotated in the direction of the arrow and the end surface 2A of the rotating shaft 2 and the bearing surface 1A of the taper land bearing 1 slide, the bearing surface 1A from the inner peripheral portion of the taper land bearing 1 is obtained. Is supplied with lubricating oil. Therefore, an oil film of lubricating oil is formed on the bearing surface 1A, and the end surface 2A of the rotating shaft 2 is supported by the bearing surface 1A via this oil film. Therefore, the distance between the flat surface 1D of the bearing surface 1A and the end surface 2A of the rotating shaft 2 is the thickness t of the lubricating oil film.
 そして、本実施例のテーパランド軸受1における各テーパランド1Bは上述した寸法設定となっているので、軸受面1Aの負荷容量を最大にすることができ、後述する試験結果からも明らかなように、その他の構成の軸受と比較して回転軸2の端面2Aと摺動する際の軸受面1Aの摩擦を低減させることができるようになっている。 And since each taper land 1B in the taper land bearing 1 of a present Example is the dimension setting mentioned above, the load capacity of the bearing surface 1A can be maximized, and it also becomes clear also from the test result mentioned later. The friction of the bearing surface 1A when sliding with the end surface 2A of the rotating shaft 2 can be reduced as compared with the bearings of other configurations.
 前述したように、本実施例に係るテーパランド軸受1は、軸受面1Aに円周方向に等ピッチで6箇所のテーパランド1Bが形成されており、テーパ面1Cの深さhは50μm以下に設定され、さらにテーパ比(L2/L1)は0.5以上0.9以下に設定されている。このようなテーパランド軸受1の寸法設定は、テーパランド1Bのテーパ面1Cの深さh、及びテーパ比rに着目し、テーパランド1Bのテーパ面1Cの深さh、及びテーパ比rの負荷容量Yが最大となる値を算出した。その上で、算出したこれらの2つの要素において、負荷容量Yが最大となる値に設定されたテーパランド軸受1を製作し、そのテーパランド軸受1をその他の構成からなる複数の軸受とともに、摩擦トルクの違いに関して試験を行った。 As described above, in the taper land bearing 1 according to the present embodiment, the six taper lands 1B are formed on the bearing surface 1A at equal pitches in the circumferential direction, and the depth h of the taper surface 1C is 50 μm or less. Further, the taper ratio (L2 / L1) is set to 0.5 or more and 0.9 or less. The dimension of the taper land bearing 1 is set by paying attention to the depth h of the taper surface 1C of the taper land 1B and the taper ratio r, and the load having the depth h of the taper surface 1C of the taper land 1B and the load of the taper ratio r. A value that maximizes the capacity Y was calculated. In addition, a taper land bearing 1 is manufactured in which the load capacity Y is set to a maximum value in these two calculated elements, and the taper land bearing 1 is subjected to friction together with a plurality of bearings having other configurations. A test was conducted on the difference in torque.
 その試験結果において、上述した寸法設定のテーパランド軸受1が負荷容量Yが最大となったので、本実施例においては、テーパランド軸受1を上述した寸法設定にしたものである。 In the test results, the taper land bearing 1 having the above-described dimension setting has the maximum load capacity Y. Therefore, in this embodiment, the taper land bearing 1 has the above-described dimension setting.
 以下、テーパランド軸受1のテーパランド1Bのテーパ面1Cの深さh、及びテーパ比rの算出方法及び算出したテーパランド1Bの数x、テーパランド1Bのテーパ面1Cの深さh、及びテーパ比rの負荷容量Yが最大となる値に設定されたテーパランド軸受1を製作し、そのテーパランド軸受1をその他の構成からなる複数のテーパランド軸受とともに、摩擦トルクの違いに関する試験の詳細と試験結果について説明する。 Hereinafter, the calculation method of the taper surface 1C of the taper land 1B and the taper ratio r, the calculated number x of the taper lands 1B, the depth h of the taper surface 1C of the taper land 1B, and the taper. The taper land bearing 1 having a load capacity Y of the ratio r set to a maximum value is manufactured, and the taper land bearing 1 is tested together with a plurality of taper land bearings of other configurations, and details of tests regarding the difference in friction torque and The test results will be described.
 テーパランド1Bのテーパ面1Cの深さh、及びテーパ比rに関して負荷容量Yが最大となる値を算出するためのテーパランド軸受寸法と算出条件は以下のように設定する。 The taper land bearing dimensions and calculation conditions for calculating the maximum load capacity Y with respect to the depth h of the taper surface 1C of the taper land 1B and the taper ratio r are set as follows.
 テーパランド軸受の内径を61.1mm、テーパランド軸受の外径を82.6mm、回転速度を500rpm、潤滑油の粘度を3.74cP、潤滑油の密度を850kg/m、油膜厚さtを1μmとした。なお、テーパランド軸受の内径を61.1mm、テーパランド軸受の外径を82.6mmに設定したが、本発明は、これに限定されない。例えば、テーパランド軸受の内径及び外径は、テーパランド1Bのテーパ比r及びテーパ面1Cの深さhの負荷容量Yが最大となれば範囲は限定されないが、テーパランド軸受の内径を30mm~70mm、テーパランド軸受の外径を40mm~110mmとしてもよい。 The inner diameter of the taper land bearing is 61.1 mm, the outer diameter of the taper land bearing is 82.6 mm, the rotational speed is 500 rpm, the viscosity of the lubricating oil is 3.74 cP, the density of the lubricating oil is 850 kg / m 3 , and the oil film thickness t is It was 1 μm. In addition, although the internal diameter of the taper land bearing was set to 61.1 mm and the outer diameter of the taper land bearing was set to 82.6 mm, the present invention is not limited to this. For example, the inner diameter and outer diameter of the taper land bearing are not limited as long as the taper ratio r of the taper land 1B and the load capacity Y of the depth h of the taper surface 1C are maximized. The outer diameter of the tapered land bearing may be 40 mm to 110 mm.
 上記のテーパランド軸受1を用いて、遠心力を考慮したレイノルズ方程式を基に流体潤滑解析により、先ず、油膜厚さtを1μmとした時のテーパランド1つ当たりの油膜圧力を算出する。そして、この油膜圧力とテーパランド1Bの数の積をテーパランド軸受全体の負荷容量Yと定義した。このように、流体潤滑解析による負荷容量をYとし、テーパ比をr、テーパ面の深さをh及びテーパランドの数をxとして重回帰分析で近似式化した。そして、この近似式から負荷容量Yが最大となるテーパ比をr、テーパ面の深さをh及びテーパランドの数xを求めた。 First, the oil film pressure per taper land when the oil film thickness t is 1 μm is calculated by fluid lubrication analysis using the taper land bearing 1 based on the Reynolds equation in consideration of centrifugal force. The product of the oil film pressure and the number of taper lands 1B is defined as the load capacity Y of the entire taper land bearing. In this way, the load capacity by the fluid lubrication analysis was set to Y, the taper ratio was set to r, the depth of the taper surface was set to h, and the number of taper lands was set to x, and it approximated by multiple regression analysis. Then, from this approximate expression, the taper ratio that maximizes the load capacity Y, r, the depth of the taper surface, h, and the number x of taper lands were obtained.
 図3(a)は、テーパ比rと負荷容量Yに関する算出結果であり、(b)は、テーパ深さhと負荷容量Yに関する算出結果であり、(c)は、テーパランドの数xと負荷容量Yに関する算出結果である。図3(a)に示すように、算出した結果として負荷容量Yが最大となるのは、テーパ比rは0.5以上0.9以下となり、図3(b)に示すように、テーパ面の深さhは50μm以下となった。図3(c)に示すテーパランドの数xは、 3A is a calculation result regarding the taper ratio r and the load capacity Y, FIG. 3B is a calculation result regarding the taper depth h and the load capacity Y, and FIG. 3C is the number x of the taper lands. It is the calculation result regarding the load capacity Y. As shown in FIG. 3A, the calculated load capacity Y is maximized because the taper ratio r is 0.5 or more and 0.9 or less. As shown in FIG. The depth h was 50 μm or less. The number x of taper lands shown in FIG.
 以上の算出結果を踏まえて、テーパ比r、テーパランド1Bのテーパ面1Cの深さh及びテーパランド1Bの数xにおいて負荷容量Yが最大となった寸法でテーパランド軸受1を製作し、それと他の寸法で製作したテーパランド軸受とについて、摩擦トルクに関する試験を行った。 Based on the above calculation results, the taper land bearing 1 is manufactured with the taper ratio r, the depth h of the taper surface 1C of the taper land 1B and the number x of the taper lands 1B with the maximum load capacity Y, and Tests on friction torque were performed on tapered land bearings manufactured with other dimensions.
 図4は、試験対象となった5個のテーパランド軸受のテーパランド形状を示す図である。この図4において、第1の供試サンプルが本実施例のテーパランド軸受であり、第5の供試サンプルは、軸受面全域が平坦面となった軸受である。 FIG. 4 is a diagram showing the taper land shape of the five taper land bearings that were tested. In FIG. 4, the first test sample is a taper land bearing of the present embodiment, and the fifth test sample is a bearing in which the entire bearing surface is a flat surface.
 次に、図5は、上記図4に示す各テーパランド軸受について摩擦トルクを計測した試験機を示す概略断面図である。供試サンプルSであるテーパランド軸受を試験機の台座11に装着し、120℃に加熱したATFを台座11の軸心から毎分1リットル供給する。供試サンプルSを保持した台座11にはトーションバ12が連結されており、このトーションバ12には歪みゲージ13が内蔵されている。そして、このトーションバ12で検知した摩擦トルクを連続的に記録した。 Next, FIG. 5 is a schematic cross-sectional view showing a testing machine that measures the friction torque for each tapered land bearing shown in FIG. A taper land bearing, which is the sample S to be tested, is mounted on the pedestal 11 of the testing machine, and ATF heated to 120 ° C. is supplied from the axis of the pedestal 11 at 1 liter per minute. A torsion bar 12 is connected to the pedestal 11 holding the test sample S, and a strain gauge 13 is built in the torsion bar 12. The friction torque detected by the torsion bar 12 was continuously recorded.
 ここで、図6は、試験機による試験パターンを示す図である。図6に示す試験機の試験パターンは、回転される相手軸14の回転速度を5000rpmの一定にし、500N/15minで荷重を6000Nまで増加させている。そして、荷重が6000Nに達したら、荷重を一定のままで回転速度を50rpm/5minで減少させる。この試験パターンにおいては、軸受特性数を段階的に小さくしている。ここで、軸受特性数とは、回転速度×潤滑油粘度/軸受面圧の計算結果として得られる数値を意味している。そして、この試験において、相手軸14とテーパランド軸受の軸受面の接触が生じると、つまり、潤滑油切れが生じると摩擦トルクのピークが発生する。この摩擦ピークが発生する時の軸受特性数が小さいほど負荷容量が高いことを示し、この値を用いて各供試サンプルSのテーパランド軸受を比較評価した。 Here, FIG. 6 is a diagram showing a test pattern by a testing machine. In the test pattern of the testing machine shown in FIG. 6, the rotation speed of the rotating counterpart shaft 14 is kept constant at 5000 rpm, and the load is increased to 6000 N at 500 N / 15 min. When the load reaches 6000 N, the rotation speed is decreased at 50 rpm / 5 min while the load is kept constant. In this test pattern, the number of bearing characteristics is reduced stepwise. Here, the number of bearing characteristics means a numerical value obtained as a calculation result of rotational speed × lubricating oil viscosity / bearing surface pressure. In this test, when contact between the mating shaft 14 and the bearing surface of the taper land bearing occurs, that is, when lubricating oil runs out, a friction torque peak occurs. The smaller the number of bearing characteristics when this friction peak occurs, the higher the load capacity, and the taper land bearing of each test sample S was compared and evaluated using this value.
 図7は、図4における第1のテーパランド軸受(本実施例のテーパランド軸受)、第5の平面軸受に関する摩擦トルクの推移を示す図である。図7に示すように、第1のテーパランド軸受はトルクピークの発生が抑制されており、他方の平面軸受と比較すると30%以上も摩擦トルクが低くなっていることがわかる。 FIG. 7 is a diagram showing the transition of the friction torque regarding the first taper land bearing (taper land bearing of this embodiment) and the fifth flat bearing in FIG. As shown in FIG. 7, it can be seen that the first tapered land bearing is suppressed from generating torque peaks, and the friction torque is lower by 30% or more than the other flat bearing.
 図8は、図4の各供試サンプルのテーパランド軸受について、トルクピークが発生した時の軸受特性数を示す図である。この図8に示すように、第1のテーパランド軸受の軸受特性数が最も低くなっている。換言すると、第1のテーパランド軸受の負荷容量が最も高くなっている。これに対して、第2のテーパランド軸受~第4のテーパランド軸受は、第1のテーパランド軸受よりも負荷容量が低いことが明らかである。また、第5の平面軸受は軸受特性数が最も高くなっており、換言すると、軸受の負荷容量が最も低くなる。 FIG. 8 is a diagram showing the number of bearing characteristics when a torque peak occurs in the taper land bearing of each test sample of FIG. As shown in FIG. 8, the first taper land bearing has the lowest number of bearing characteristics. In other words, the load capacity of the first taper land bearing is the highest. On the other hand, it is clear that the second taper land bearing to the fourth taper land bearing have a lower load capacity than the first taper land bearing. The fifth flat bearing has the highest number of bearing characteristics, in other words, the load capacity of the bearing is the lowest.
 なお、図3(a)~(c)に示したように、算出結果で得られた各設計パラメータの寄与率は、テーパ面の深さh、テーパ比の順で高くなり、この寄与率の高さに準じて、摩擦トルクピークが発生する軸受特性数が大きく低下することを確認した。そして、今回の算出結果で求めた各設計パラメータの負荷容量への寄与率は試験結果と相関関係があり、テーパ面の深さhによる負荷容量への影響が最も大きいことが判明した。 As shown in FIGS. 3A to 3C, the contribution ratio of each design parameter obtained from the calculation result increases in the order of the depth h of the tapered surface and the taper ratio. In accordance with the height, it was confirmed that the number of bearing characteristics at which a friction torque peak occurs greatly decreases. The contribution rate of each design parameter obtained from the calculation result of this time to the load capacity has a correlation with the test result, and it has been found that the influence of the taper surface depth h on the load capacity is the largest.
 以上のように、上述した試験結果からも明らかなように、本実施例に係るテーパランド軸受1は、軸受面1Aの負荷容量を最大にすることができ、他の構成の軸受と比較して回転軸2の端面2Aと摺動する際の軸受面1Aの摩擦を低減させることができる。そのため、摩擦を低減して回転装置の低燃費化に寄与することが可能なテーパランド軸受1を提供することができる。 As described above, as is apparent from the test results described above, the taper land bearing 1 according to the present embodiment can maximize the load capacity of the bearing surface 1A, as compared with bearings of other configurations. The friction of the bearing surface 1A when sliding with the end surface 2A of the rotating shaft 2 can be reduced. Therefore, it is possible to provide the taper land bearing 1 that can reduce friction and contribute to lower fuel consumption of the rotating device.
 1…テーパランド軸受、1A…軸受面、1B…テーパランド、1C…テーパ面、2…回転軸、2A…端面。 DESCRIPTION OF SYMBOLS 1 ... Tapered land bearing, 1A ... Bearing surface, 1B ... Tapered land, 1C ... Tapered surface, 2 ... Rotating shaft, 2A ... End surface.

Claims (1)

  1.  回転軸を支承する軸受面の円周方向に高くなるテーパ面を含むテーパランドと、を備え、
     上記テーパ面の深さが50μm以下であり、
     上記テーパ面の円周方向の長さを前記テーパランドの円周方向の長さで除したテーパ比が0.5以上0.9以下であることを特徴とするテーパランド軸受。
    A taper land including a taper surface that increases in the circumferential direction of the bearing surface that supports the rotating shaft, and
    The taper surface has a depth of 50 μm or less;
    A taper land bearing, wherein a taper ratio obtained by dividing a circumferential length of the tapered surface by a circumferential length of the taper land is 0.5 or more and 0.9 or less.
PCT/JP2013/072503 2012-08-23 2013-08-23 Taper-land bearing WO2014030727A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012184646A JP2014040899A (en) 2012-08-23 2012-08-23 Taper land bearing
JP2012-184646 2012-08-23

Publications (1)

Publication Number Publication Date
WO2014030727A1 true WO2014030727A1 (en) 2014-02-27

Family

ID=50150030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072503 WO2014030727A1 (en) 2012-08-23 2013-08-23 Taper-land bearing

Country Status (2)

Country Link
JP (1) JP2014040899A (en)
WO (1) WO2014030727A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016090203A1 (en) * 2014-12-05 2016-06-09 Energy Recovery Inc. Hydrodynamic bearing features
CN107532642A (en) * 2015-04-28 2018-01-02 奥依列斯工业株式会社 Sliding bearing
WO2018091629A1 (en) * 2016-11-17 2018-05-24 Turbo Energy Private Limited Journal thrust bearing bush for supporting the shaft of an exhaust turbocharger

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6799773B2 (en) 2017-03-21 2020-12-16 トヨタ自動車株式会社 Crankshaft bearing device
JP6767349B2 (en) 2017-11-30 2020-10-14 大豊工業株式会社 Thrust washer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794125A (en) * 1980-12-01 1982-06-11 Taiho Kogyo Co Ltd Tapered land bearing
JPS6018614A (en) * 1984-05-31 1985-01-30 Taiho Kogyo Co Ltd Tapered land thrust bearing
JPH0647725U (en) * 1992-12-02 1994-06-28 三菱重工業株式会社 Taper land type thrust bearing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794125A (en) * 1980-12-01 1982-06-11 Taiho Kogyo Co Ltd Tapered land bearing
JPS6018614A (en) * 1984-05-31 1985-01-30 Taiho Kogyo Co Ltd Tapered land thrust bearing
JPH0647725U (en) * 1992-12-02 1994-06-28 三菱重工業株式会社 Taper land type thrust bearing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016090203A1 (en) * 2014-12-05 2016-06-09 Energy Recovery Inc. Hydrodynamic bearing features
US10473159B2 (en) 2014-12-05 2019-11-12 Energy Recovery, Inc. Hydrodynamic bearing features
CN107532642A (en) * 2015-04-28 2018-01-02 奥依列斯工业株式会社 Sliding bearing
US10344799B2 (en) 2015-04-28 2019-07-09 Oiles Corporation Sliding bearing
WO2018091629A1 (en) * 2016-11-17 2018-05-24 Turbo Energy Private Limited Journal thrust bearing bush for supporting the shaft of an exhaust turbocharger

Also Published As

Publication number Publication date
JP2014040899A (en) 2014-03-06

Similar Documents

Publication Publication Date Title
WO2014030727A1 (en) Taper-land bearing
US8123413B2 (en) Surface textured rollers
EP2562437B1 (en) Method of lubricating an angular contact ball bearing and ball bearing cage
CN103429914A (en) Angular contact roller bearing, notably used in a wind turbine
EP2751436A1 (en) Spacer for rolling bearing, notably used in a wind turbine
CN103534496A (en) Spacer for rolling bearing, notably used in a wind turbine
JP5831131B2 (en) Roller bearing and manufacturing method thereof
JP2018028328A (en) Ball bearing, spindle device and machine tool
CN101793290B (en) Combined bearing of radial roller and axially thrust conical roller
CN101403411A (en) Thrust bearing
JP6028377B2 (en) Tapered roller bearing
CN111946736B (en) Tapered roller bearing
US9188157B2 (en) Axial sliding bearing
CN202326705U (en) Double-row cylindrical roller bearing with long-and-short roller alternate integrated cage
JP5128216B2 (en) Cage for needle roller with cage and needle roller with cage
EP1903230B2 (en) Rolling bearing apparatus
CN201301890Y (en) Thrust bearing
US20160178001A1 (en) Double-row spherical roller bearing, manufacturing method and wind turbine bearing arrangement
US10197094B2 (en) Double-row spherical roller bearing
CN105275980A (en) Conical roller bearing
JP2016200243A (en) Ball bearing
CN206290578U (en) A kind of novel bearing
CN105626693A (en) Spiral groove radial sliding bearing lubricated by grease
CN104300725A (en) Oil baffle disk of motor bearing housing and machining technology thereof
CN109989998A (en) Rolling bearing and rotating device including rolling bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13831330

Country of ref document: EP

Kind code of ref document: A1