WO2014030685A1 - Dye-sensitive solar cell paste, porous insulation layer, and die-sensitive solar cell - Google Patents

Dye-sensitive solar cell paste, porous insulation layer, and die-sensitive solar cell Download PDF

Info

Publication number
WO2014030685A1
WO2014030685A1 PCT/JP2013/072337 JP2013072337W WO2014030685A1 WO 2014030685 A1 WO2014030685 A1 WO 2014030685A1 JP 2013072337 W JP2013072337 W JP 2013072337W WO 2014030685 A1 WO2014030685 A1 WO 2014030685A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
solar cell
particles
sensitized solar
semiconductor layer
Prior art date
Application number
PCT/JP2013/072337
Other languages
French (fr)
Japanese (ja)
Inventor
高野 真悟
鉄平 八久保
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to JP2014531659A priority Critical patent/JP6102926B2/en
Publication of WO2014030685A1 publication Critical patent/WO2014030685A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a dye-sensitized solar cell paste, a porous insulating layer obtained by firing the paste, and a dye-sensitized solar cell.
  • Patent Document 1 discloses that a porous semiconductor layer containing titanium oxide particles and a porous insulating layer containing zirconium oxide are sequentially laminated on a transparent electrode. A method of immersing this laminate in a dye solution is disclosed.
  • Patent Document 2 a porous semiconductor layer containing titanium oxide particles is formed on a transparent electrode, and porous insulation is formed on the layer using a paste containing silica polymer having an alkyl group and inorganic particles. A method of immersing this laminate in a dye solution after forming a layer is disclosed.
  • Patent Documents 1 and 2 since a porous semiconductor layer and a porous insulating layer are formed on a transparent electrode and then immersed in a dye solution, not only the titanium oxide particles constituting the porous semiconductor layer In addition, since the dye adheres to the porous insulating layer that does not contribute to photoelectric conversion, it may be disadvantageous in terms of manufacturing cost.
  • the silica polymer (alkoxysilane condensate) used as the binder component penetrates into the pores of the porous semiconductor layer and adheres to the particle surface such as titanium oxide, thereby adsorbing the dye. May interfere.
  • the present invention has been made in view of the above-described conventional problems, and is a dye-sensitized solar that can efficiently and selectively adsorb a dye to the surface of particles forming a porous semiconductor layer. It aims at providing the paste for batteries, the porous insulating layer formed by baking it, and a dye-sensitized solar cell.
  • a porous insulating layer is formed by using a paste that is hydrophobized and contains particles having a specific particle size. It has been found that the adsorption of the dye to the surface of the particles forming the porous semiconductor layer can be selectively increased while suppressing the amount of the dye adsorbed on the insulating layer.
  • the core particle is one or more oxides or composite oxides selected from silicon, zirconium, aluminum, magnesium, and titanium.
  • Binder particles having an average particle size smaller than that of the hydrophobic particles are contained, and the content of the binder particles with respect to the total content of the hydrophobic particles and the binder particles is 1% by mass or more and less than 50% by mass.
  • the dye-sensitized solar cell paste according to any one of [1] to [5].
  • the present invention relates to a dye-sensitized solar cell paste capable of efficiently and selectively adsorbing a dye to the surface of particles forming a porous semiconductor layer, and a porous insulating layer obtained by firing the paste. And a dye-sensitized solar cell.
  • the paste for dye-sensitized solar cell of the present invention is a paste for dye-sensitized solar cell that contains hydrophobic particles and is coated on a porous semiconductor layer, and the average particle size of the hydrophobic particles is the above-mentioned It is larger than the average pore diameter of the porous semiconductor layer.
  • hydrophobic means that the sedimentation amount when 10 g of the hydrophobic particles are added to 100 g of ion-exchanged water at 25 ° C. is less than 1 g.
  • hydrophobic particles Since the hydrophobic particles have an average particle size larger than the average pore size of the porous semiconductor layer, the hydrophobic particles themselves do not easily enter the pores of the porous semiconductor layer and constitute the porous semiconductor layer. It becomes difficult to inhibit the adsorption of the dye to the particles.
  • particles composed of hydrophobic materials those obtained by hydrophobizing core particles such as metal oxide particles and metal composite oxide particles can be used. From the viewpoint of availability, Those obtained by hydrophobizing core particles such as metal oxide particles and metal composite oxide particles are preferred, and those obtained by introducing a hydrophobic functional group on the surface of the core particles are more preferred.
  • the hydrophobic functional group is preferably an alkylsilyl group from the viewpoint of ease of introduction of the functional group, and among them, a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, and a triisopropylsilyl group are preferable.
  • the hydrophobic functional group may be one kind selected from these, or two or more kinds. Among these, a trimethylsilyl group is preferable from the viewpoint of easy introduction of a functional group and a viewpoint of improving hydrophobicity.
  • Examples of the method for hydrophobizing the core particles described below include a method of spraying the above-described hydrophobizing agent having a hydrophobic functional group onto the core particles stirred with a mixer or the like.
  • the core particle is not particularly limited as long as it has an insulating property, and the insulating particle may be used as it is, or a particle having an insulating coating on the surface of the conductive particle is used. May be.
  • metal oxide particles and metal composite oxide particles are preferable, and among them, one kind selected from silicon, zirconium, aluminum, magnesium, titanium, tin, zinc, tantalum, niobium, indium, aluminum, and calcium.
  • oxides or composite oxides can be given. Among these, oxides or composite oxides of silicon, zirconium, aluminum, magnesium, and titanium are preferable, and particles made of silicon oxide (silica) are more preferable.
  • the insulating coating provided on the surface of the core particles contains one or more selected from silicon compounds, aluminum compounds, zirconium compounds, magnesium compounds, and calcium compounds. A coating is preferred.
  • the film containing a silicon compound is preferable, and the film formed with tetraethoxysilane is more preferable.
  • the treatment method for forming a film containing a silicon compound on the surface of the core particles for example, the particles, ethanol, and tetraethoxysilane are stirred, and a mixed liquid of water and aqueous ammonia is added to this solution. Examples of the treatment method include dropping at a rate of 1 to 100 ml / min and heating at 50 to 70 ° C.
  • the thickness of the coating is preferably 3 to 25 nm, more preferably 5 to 20 nm, and still more preferably 8 to 15 nm from the viewpoint of ensuring insulation.
  • the coating preferably has a hydrophobic property in addition to the insulating property, and if it is not hydrophobic, it is preferable to perform a treatment for forming the insulating coating followed by a hydrophobic treatment. .
  • the average particle size of the hydrophobic particles is preferably from 50 to 120 nm, more preferably from 52 to 115 nm, more preferably from 75 to 115 nm, more preferably from 82 to 115 nm, from the viewpoint of improving the diffusion and insulation of the electrolyte. 110 nm is more preferable.
  • the average particle size of the hydrophobic particles is determined by dispersing the hydrophobic particles in ethanol using a laser diffraction type particle size measuring device (manufactured by Horiba, Ltd., model number “LA-750”) as a measuring device. It is a measured value.
  • the content of hydrophobic particles in the dye-sensitized solar cell paste is preferably 5 to 30% by mass, more preferably 10 to 27% by mass, and more preferably 15 to 24% by mass from the viewpoint of improving film formability. Is more preferable.
  • the dye-sensitized solar cell paste preferably contains binder particles having an average particle size smaller than that of the hydrophobic particles from the viewpoint of improving film strength.
  • the average particle size of the binder particles is preferably larger than the average pore size of the porous semiconductor layer with respect to dye adsorption.
  • the average particle size of the binder particles is small. Therefore, in order to obtain the desired dye adsorption property and binder property, the average particle size of the binder particles and the amount added to the paste may be appropriately adjusted.
  • the binder particles include silica, aluminum oxide, zirconium oxide, magnesium oxide, and calcium oxide.
  • the content of the binder particles relative to the total of the hydrophobic particles and the binder particles is preferably 1% by mass or more and less than 50% by mass, more preferably 5 to 30% by mass, from the viewpoint of improving the film strength. More preferred is mass%.
  • the target paste can be obtained by mixing hydrophobic particles, binder particles, high-boiling organic solvents such as hexylene glycol and terpineol, and cellulose resins and acrylic resins.
  • the porous insulating layer of the present invention is obtained by firing the paste for dye-sensitized solar cells of the present invention.
  • a porous semiconductor layer by a well-known method.
  • the method for applying the dye-sensitized solar cell paste on the porous semiconductor layer include a screen printing method and an ink jet method. Among these, the screen printing method is preferable from the viewpoint of easy film thickening and manufacturing cost reduction.
  • Firing is preferably performed in the air or in an inert gas atmosphere at 50 to 800 ° C. for 10 seconds to 4 hours. Firing may be performed only once at a single temperature, or may be performed twice or more by changing the temperature.
  • coating the paste for dye-sensitized solar cells drying is preferable after baking.
  • the thickness of the porous insulating layer after firing is preferably from 3 to 50 ⁇ m, more preferably from 4 to 40 ⁇ m, and even more preferably from 5 to 30 ⁇ m in order to achieve both electrolyte diffusion and insulating properties.
  • the resistance value of the porous insulating layer is preferably 1 k ⁇ or more, more preferably 100 k ⁇ or more, and further preferably 10 M ⁇ or more.
  • the porous insulating layer of the present invention is preferably provided on the porous semiconductor layer because it hardly absorbs the dye. By providing on a porous semiconductor layer, a pigment
  • the dye-sensitized solar cell of the present invention is a dye-sensitized solar cell having the porous insulating layer between a porous semiconductor layer formed by adsorbing a dye and a conductive layer.
  • the dye-sensitized solar cell (series module type) 10 includes a transparent substrate 1 having a transparent conductive film 2, and a conductive layer (counter electrode) 5 provided to face the transparent conductive film 2. Between the transparent conductive film 2 and the conductive layer 5, a porous semiconductor layer 7 and a porous insulating layer 6 are provided in this order from the transparent conductive film 2 side. Further, the electrolyte 4 is sealed in the module by the sealant 3, and one end of the conductive layer 5 is in contact with the transparent conductive film 2. A catalyst layer (not shown) may be provided between the porous insulating layer 6 and the conductive layer 5.
  • the porous semiconductor layer 7 is composed of a semiconductor, and the form thereof may be a particulate form or a film form, but is preferably a film form.
  • a semiconductor particle which comprises the porous semiconductor layer 7 well-known semiconductor particles, such as a titanium oxide and a zinc oxide, can be used 1 type or in combination of 2 or more types. Among these, titanium oxide is preferable from the viewpoint of photoelectric conversion efficiency, stability, and safety.
  • a method for forming the film-like porous semiconductor layer 7 on the substrate a known method can be employed.
  • the average pore diameter of the porous semiconductor layer in the dye-sensitized solar cell is preferably 1 to 100 nm, more preferably 10 to 80 nm, and still more preferably 15 to 50 nm.
  • the membrane-like porous semiconductor layer 7 preferably has a large specific surface area, and preferably 10 to 200 m 2 / g.
  • the specific surface area shown in this specification is a value measured by the BET adsorption method.
  • the semiconductor particles include single or compound semiconductor particles having an appropriate average particle size, for example, an average particle size of 1 nm to 500 nm, among commercially available particles.
  • the porous semiconductor layer 7 is dried and fired by appropriately adjusting conditions such as temperature, time, atmosphere, and the like according to the type of substrate and semiconductor particles used. Such conditions include, for example, about 10 seconds to 4 hours in the range of 50 to 800 ° C. in the air or in an inert gas atmosphere.
  • Examples of the dye that is adsorbed on the porous semiconductor layer 7 and functions as a photosensitizer include those having absorption in various visible light regions and / or infrared light regions.
  • interlocking groups such as a carboxylic acid group, a carboxylic anhydride group, and a sulfonic acid group, in a pigment
  • the interlock group (adsorbing functional group) provides an electrical bond that facilitates electron transfer between the excited dye and the conduction band of the porous semiconductor layer.
  • dyes containing these interlock groups include, for example, ruthenium bipyridine dyes, azo dyes, quinone dyes, quinone imine dyes, squarylium dyes, cyanine dyes, merocyanine dyes, porphyrin dyes, And phthalocyanine dyes, indigo dyes, naphthalocyanine dyes, and the like.
  • a laminate in which the porous semiconductor layer 7 is formed on a conductive substrate (transparent conductive film 2) is used as a solution (dye adsorption solution) in which the dye is dissolved.
  • a typical example is a dipping method.
  • the solvent for dissolving the dye may be any solvent that dissolves the dye. Specifically, alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether and tetrahydrofuran, nitrogen compounds such as acetonitrile, chloroform, etc.
  • halogenated aliphatic hydrocarbons examples thereof include halogenated aliphatic hydrocarbons, aliphatic hydrocarbons such as hexane, aromatic hydrocarbons such as benzene, esters such as ethyl acetate and butyl acetate, and water. Two or more of these solvents can be used in combination.
  • the concentration of the dye in the solution can be appropriately adjusted depending on the kind of the dye and the solvent to be used, but is preferably as high as possible in order to improve the adsorption function, for example, 1 ⁇ 10 ⁇ 5 mol / L. The above is preferable.
  • the conductive layer 5 is not particularly limited as long as it has the ability to reduce the oxidant of the electrolyte and conductivity.
  • a transparent conductive metal oxide such as titanium oxide (TiO 2 ).
  • the conductive layer 5 can also be formed by the above-described coating method.
  • Electrolyte As specific examples of the electrolyte 4, various electrolytes such as an iodine-based electrolyte, a bromine-based electrolyte, a selenium-based electrolyte, and a sulfur-based electrolyte can be used, and such an electrolyte 4 is used as I 2 , LiI, dimethylpropylimidazo.
  • An electrolytic solution obtained by dissolving lithium iodide or the like in an organic solvent such as acetonitrile, methoxyacetonitrile, propylene carbonate, or ethylene carbonate is preferably used.
  • the dye-sensitized solar cell 10 of the present invention there are no particular limitations on the components other than the porous insulating layer of the present invention, and the components used for general dye-sensitized solar cells are appropriately used. can do.
  • -Titanium oxide particles (II) manufactured by Sumitomo Osaka Cement Co., Ltd., average particle diameter of 400 nm
  • 10 g of titanium oxide particles (II) were added to 100 g of ion exchanged water at 25 ° C., it was visually confirmed that the total amount had settled.
  • Hydrophobized silica particles Silica particles in which methyl groups have been introduced as surface functional groups by surface treatment with hexamethyldisilazane (hydrophobization treatment, average particle size 100 nm, manufactured by Denki Kagaku Kogyo Co., Ltd.)
  • hydrophobization treatment average particle size 100 nm, manufactured by Denki Kagaku Kogyo Co., Ltd.
  • a part of the silica particles had settled.
  • the cock was opened, 50 g of water and the sediment were collected, the moisture was evaporated on a hot plate, and the mass of the sediment was measured. . 2g.
  • Untreated silica particles (I) Silica particles that have not been hydrophobized (Electrochemical Industry Co., Ltd., average particle size 100 nm) When 10 g of untreated silica particles (I) were added to 100 g of ion exchanged water at 25 ° C., it was visually confirmed that the entire amount had settled. Untreated silica particles (II): Silica particles not subjected to hydrophobic treatment Untreated silica particles (II) were used in the form of an alcohol dispersion having a silica content of 12% by mass.
  • ⁇ Preparation of porous semiconductor layer forming paste 72 parts by weight of ⁇ -terpineol and 8 parts by weight of ethylcellulose were added to and mixed with an aqueous dispersion of titanium oxide particles (I) (20 parts by weight as titanium oxide) substituted with ethanol by an evaporator. Next, ethanol was removed from the mixture by an evaporator to prepare a porous semiconductor layer forming paste.
  • a porous semiconductor layer-containing paste containing titanium oxide particles was applied to a glass substrate so as to have a size of 1 cm ⁇ 1 cm, and baked at 500 ° C. for 1 hour to obtain a substrate with a porous semiconductor layer.
  • the porous body layer forming paste 5 g was heated and dried at 100 ° C. in a magnetic crucible and then fired in an electric furnace (500 ° C., 1 hour).
  • the average pore diameter of the porous semiconductor layer was 20 nm as measured by a nitrogen gas adsorption method.
  • the thickness of the porous semiconductor layer was 20 ⁇ m when measured by the method described later.
  • Example 1 (1) Preparation of dye-sensitized solar cell paste (porous insulating layer forming paste) Hydrophobized silica particles 18 parts by mass, untreated silica particles (II) 17 parts by mass (silica content 2 parts by mass) in a flask, After blending and mixing 8 parts by mass of ethyl cellulose and 72 parts by mass of ⁇ -terpineol, the alcohol content was removed by an evaporator to obtain a porous insulating layer forming paste (P1).
  • the thickness of the film formed on the substrate with a porous insulating layer (S1) and the laminated substrate (D1) was measured using a stylus type surface profile measuring instrument (manufactured by KLA-Tencor Corporation, model number). As measured by “P-10”), the thickness of the porous insulating layer was 7 ⁇ m, and the total thickness of each layer of the laminated substrate was 27 ⁇ m. From these values, it can be seen that the thickness of the porous semiconductor layer is 20 ⁇ m.
  • ⁇ Comparative Example 1> Other than blending 18 parts by mass of untreated silica particles (I), 17 parts by mass of an alcohol dispersion of untreated silica particles (II) (2 parts by mass of silica), 8 parts by mass of ethyl cellulose, and 72 parts by mass of ⁇ -terpineol. Obtained a substrate (S2) with a porous insulating layer and a laminated substrate (D2) in the same manner as in Example 1. For each of these substrates, the dye adsorption amount was measured in the same manner as in Example 1. The results are shown in Table 1. The thickness of the porous insulating layer and the thickness of the porous semiconductor layer were 7 ⁇ m and 20 ⁇ m, respectively, which were the same as those in Example 1.
  • the silica polymer Since the silica polymer has a size of 10 nm or less and is smaller than the average pore diameter of the porous semiconductor layer, it penetrates into the pores of the porous semiconductor layer.
  • 8.67% by mass of trimethylmethoxysilane was added to the solution in which the polymer was dissolved, and the mixture was heated and stirred for 10 minutes to introduce trimethylsilyl groups on the surface of the silica polymer. Since the function as a binder is impaired when it is excessively substituted, it is allowed to cool to room temperature and reacted for 12 hours under low temperature conditions to obtain a silica polymer in which a trimethylsilyl group is partially introduced.
  • the porous insulating layer of Example 1 has much less dye adsorption than the comparative example. Further, it can be seen that, when laminated on the porous semiconductor layer, the adsorption of the dye to the porous semiconductor layer is not hindered.
  • Example 1 Using the multilayer substrates D1, D2, D3, and D4 produced in Example 1, Comparative Example 1, Comparative Example 2, and Comparative Example 3, an electrode film having a two-series electrode structure shown in FIG. 1 was obtained. Dye adsorption was performed on the obtained electrode film, and a cell in which a glass plate having an electrolyte injection hole was bonded using a thermoplastic resin film (manufactured by DuPont, High Milan) was produced.
  • a thermoplastic resin film manufactured by DuPont, High Milan
  • an iodine-based electrolytic solution iodine, lithium iodide, dimethylpropylimidazolium iodide, t-butylpyridine, and acetonitrile mixed solution
  • iodine, lithium iodide, dimethylpropylimidazolium iodide, t-butylpyridine, and acetonitrile mixed solution generally used in dye-sensitized solar cells is injected, and the battery cell is inserted.
  • the photoelectric conversion characteristics of each battery cell prepared were measured using a solar battery characteristic measuring device (Yamashita Denso Co., Ltd .: YSS-100AAH). The results are shown in Table 2.
  • the porous insulating layer of the present invention when applied to a dye-sensitized solar cell, the amount of the dye used can be suppressed to the minimum necessary, and it can contribute to the improvement of photoelectric conversion efficiency. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided are: a dye-sensitive solar cell paste in which a dye can be efficiently adsorbed on the surface of particles forming a porous semiconductor layer; a porous insulation layer obtained by firing the dye-sensitive solar cell paste; and a dye-sensitive solar cell. A dye-sensitive solar cell paste, containing hydrophobic particles, which is applied on a porous semiconductor layer, the average particle diameter of the hydrophobic particles being greater than the average micropore diameter of the porous semiconductor layer; a porous insulation layer obtained by firing the dye-sensitive solar cell paste; and a dye-sensitive solar cell.

Description

色素増感型太陽電池用ペースト、多孔質絶縁層、及び色素増感型太陽電池Dye-sensitized solar cell paste, porous insulating layer, and dye-sensitized solar cell
 本発明は、色素増感型太陽電池用ペースト、それを焼成してなる多孔質絶縁層、及び色素増感型太陽電池に関する。 The present invention relates to a dye-sensitized solar cell paste, a porous insulating layer obtained by firing the paste, and a dye-sensitized solar cell.
 色素増感型太陽電池としては、透明電極上に多孔質半導体層(光電変換層)、多孔質絶縁層、触媒層及び導電層を順に積層したものが知られており、前記多孔質半導体層は色素を吸着させた酸化チタン粒子等で構成されている(例えば特許文献1,2)。
 前記多孔質半導体層に色素を吸着させる方法として、特許文献1には、透明電極上に酸化チタン粒子を含有する多孔質半導体層と、酸化ジルコニウムを含有する多孔質絶縁層とを順に積層した後、この積層体を色素溶液に浸漬させる方法が開示されている。
 また、特許文献2には、透明電極上に酸化チタン粒子を含む多孔質半導体層を形成し、この層上に、アルキル基を有するシリカ重合体と無機粒子とを含むペーストを用いて多孔質絶縁層を形成した後、この積層体を色素溶液に浸漬させる方法が開示されている。
As a dye-sensitized solar cell, one in which a porous semiconductor layer (photoelectric conversion layer), a porous insulating layer, a catalyst layer, and a conductive layer are sequentially laminated on a transparent electrode is known. It is comprised by the titanium oxide particle etc. which adsorb | sucked the pigment | dye (for example, patent document 1, 2).
As a method for adsorbing a dye to the porous semiconductor layer, Patent Document 1 discloses that a porous semiconductor layer containing titanium oxide particles and a porous insulating layer containing zirconium oxide are sequentially laminated on a transparent electrode. A method of immersing this laminate in a dye solution is disclosed.
In Patent Document 2, a porous semiconductor layer containing titanium oxide particles is formed on a transparent electrode, and porous insulation is formed on the layer using a paste containing silica polymer having an alkyl group and inorganic particles. A method of immersing this laminate in a dye solution after forming a layer is disclosed.
特開2008-016351号公報JP 2008-016351 A 特開2009-016304号公報JP 2009-016304 A
 特許文献1,2では、透明電極上に多孔質半導体層と多孔質絶縁層とを形成した後、これを色素溶液に浸漬させているため、多孔質半導体層を構成する酸化チタン粒子だけでなく、光電変換に寄与しない多孔質絶縁層にも色素が付着することから製造コストの面で不利になる場合がある。
 また、特許文献2においては、バインダー成分として使用しているシリカ重合体(アルコキシシラン縮合物)が多孔質半導体層の細孔に浸透して酸化チタン等の粒子表面に付着し、色素の吸着を妨げる場合がある。
In Patent Documents 1 and 2, since a porous semiconductor layer and a porous insulating layer are formed on a transparent electrode and then immersed in a dye solution, not only the titanium oxide particles constituting the porous semiconductor layer In addition, since the dye adheres to the porous insulating layer that does not contribute to photoelectric conversion, it may be disadvantageous in terms of manufacturing cost.
In Patent Document 2, the silica polymer (alkoxysilane condensate) used as the binder component penetrates into the pores of the porous semiconductor layer and adheres to the particle surface such as titanium oxide, thereby adsorbing the dye. May interfere.
 本発明は、前記従来の課題を鑑みてなされたものであって、多孔質半導体層を形成する粒子の表面に対して、色素を効率的かつ選択的に吸着させることができる色素増感型太陽電池用ペースト、それを焼成してなる多孔質絶縁層、及び色素増感型太陽電池を提供することを目的とする。 The present invention has been made in view of the above-described conventional problems, and is a dye-sensitized solar that can efficiently and selectively adsorb a dye to the surface of particles forming a porous semiconductor layer. It aims at providing the paste for batteries, the porous insulating layer formed by baking it, and a dye-sensitized solar cell.
 本発明者らは、前記課題を解決すべく検討を行ったところ、疎水化処理され、かつ特定の粒径を有する粒子を含有するペーストを用いて多孔質絶縁層を形成することにより、多孔質絶縁層への色素吸着量を抑制しつつ、多孔質半導体層を形成する粒子表面に対する色素の吸着を選択的に増加させることが可能となることを見出した。 The inventors of the present invention have studied to solve the above-mentioned problems. As a result, a porous insulating layer is formed by using a paste that is hydrophobized and contains particles having a specific particle size. It has been found that the adsorption of the dye to the surface of the particles forming the porous semiconductor layer can be selectively increased while suppressing the amount of the dye adsorbed on the insulating layer.
 すなわち、本発明は以下を要旨とするものである。
[1]疎水性粒子を含有し、多孔質半導体層上に塗布される色素増感型太陽電池用ペーストであり、前記疎水性粒子の平均粒径が前記多孔質半導体層の平均細孔径よりも大きい色素増感型太陽電池用ペースト。
[2]前記疎水性粒子が、核粒子の表面に疎水性官能基を導入したものである、[1]に記載の色素増感型太陽電池用ペースト。
That is, this invention makes the following a summary.
[1] A dye-sensitized solar cell paste containing hydrophobic particles and coated on a porous semiconductor layer, wherein the average particle size of the hydrophobic particles is larger than the average pore size of the porous semiconductor layer Large dye-sensitized solar cell paste.
[2] The paste for a dye-sensitized solar cell according to [1], wherein the hydrophobic particles have a hydrophobic functional group introduced on the surface of the core particles.
[3]前記疎水性官能基がアルキルシリル基である、[2]に記載の色素増感型太陽電池用ペースト。
[4]前記アルキルシリル基が、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、及びトリイソプロピルシリル基から選ばれる1種である、[3]に記載の色素増感型太陽電池用ペースト。
[3] The dye-sensitized solar cell paste according to [2], wherein the hydrophobic functional group is an alkylsilyl group.
[4] The dye-sensitized solar cell paste according to [3], wherein the alkylsilyl group is one selected from a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, and a triisopropylsilyl group. .
[5]前記核粒子が、シリコン、ジルコニウム、アルミニウム、マグネシウム、及びチタンから選ばれる1種又は2種以上の酸化物又は複合酸化物である、[2]~[4]のいずれか1項に記載の色素増感型太陽電池用ペースト。
[6]前記疎水性粒子よりも平均粒径が小さいバインダー粒子を含有し、前記疎水性粒子と前記バインダー粒子との合計含有量に対するバインダー粒子の含有量が1質量%以上50質量%未満である、[1]~[5]のいずれか1項に記載の色素増感型太陽電池用ペースト。
[5] In any one of [2] to [4], the core particle is one or more oxides or composite oxides selected from silicon, zirconium, aluminum, magnesium, and titanium. The paste for a dye-sensitized solar cell as described.
[6] Binder particles having an average particle size smaller than that of the hydrophobic particles are contained, and the content of the binder particles with respect to the total content of the hydrophobic particles and the binder particles is 1% by mass or more and less than 50% by mass. [1] to [5] The dye-sensitized solar cell paste according to any one of [1] to [5].
[7][1]~[6]のいずれか1項に記載の色素増感型太陽電池用ペーストを焼成してなる多孔質絶縁層。
[8][7]に記載の多孔質絶縁層を、色素を吸着してなる多孔質半導体層と導電層との間に有する色素増感型太陽電池。
[7] A porous insulating layer obtained by firing the paste for a dye-sensitized solar cell according to any one of [1] to [6].
[8] A dye-sensitized solar cell having the porous insulating layer according to [7] between a porous semiconductor layer formed by adsorbing a dye and a conductive layer.
 本発明は、多孔質半導体層を形成する粒子の表面に対して、色素を効率的かつ選択的に吸着させることができる色素増感型太陽電池用ペースト、それを焼成してなる多孔質絶縁層、及び色素増感型太陽電池を提供することができる。 The present invention relates to a dye-sensitized solar cell paste capable of efficiently and selectively adsorbing a dye to the surface of particles forming a porous semiconductor layer, and a porous insulating layer obtained by firing the paste. And a dye-sensitized solar cell.
本発明の色素増感型太陽電池の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the dye-sensitized solar cell of this invention.
[色素増感型太陽電池用ペースト]
 本発明の色素増感型太陽電池用ペーストは、疎水性粒子を含有し、多孔質半導体層上に塗布される色素増感型太陽電池用ペーストであり、前記疎水性粒子の平均粒径が前記多孔質半導体層の平均細孔径よりも大きいものである。
 なお、本明細書において「疎水性」とは、25℃のイオン交換水100gに対して前記疎水性粒子10gを投入した場合の沈降量が1g未満であることをいう。
[Dye-sensitized solar cell paste]
The paste for dye-sensitized solar cell of the present invention is a paste for dye-sensitized solar cell that contains hydrophobic particles and is coated on a porous semiconductor layer, and the average particle size of the hydrophobic particles is the above-mentioned It is larger than the average pore diameter of the porous semiconductor layer.
In the present specification, “hydrophobic” means that the sedimentation amount when 10 g of the hydrophobic particles are added to 100 g of ion-exchanged water at 25 ° C. is less than 1 g.
<疎水性粒子>
 前記疎水性粒子は、前記多孔質半導体層の平均細孔径よりも大きい平均粒径を有するものであるため、疎水性粒子自体が多孔質半導体層の孔内に入り込みにくく、多孔質半導体層を構成する粒子に対する色素の吸着を阻害しにくくなる。
 前記疎水性粒子は、疎水性の材料により構成される粒子、金属酸化物粒子及び金属複合酸化物粒子等の核粒子を疎水化処理したものを用いることができるが、入手容易性の観点から、金属酸化物粒子及び金属複合酸化物粒子等の核粒子を疎水化処理したものが好ましく、前記核粒子の表面に疎水性官能基を導入したものがより好ましい。
<Hydrophobic particles>
Since the hydrophobic particles have an average particle size larger than the average pore size of the porous semiconductor layer, the hydrophobic particles themselves do not easily enter the pores of the porous semiconductor layer and constitute the porous semiconductor layer. It becomes difficult to inhibit the adsorption of the dye to the particles.
As the hydrophobic particles, particles composed of hydrophobic materials, those obtained by hydrophobizing core particles such as metal oxide particles and metal composite oxide particles can be used. From the viewpoint of availability, Those obtained by hydrophobizing core particles such as metal oxide particles and metal composite oxide particles are preferred, and those obtained by introducing a hydrophobic functional group on the surface of the core particles are more preferred.
 前記疎水性官能基としては、官能基の導入容易性の観点から、アルキルシリル基が好ましく、中でもトリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、及びトリイソプロピルシリル基が好ましい。前記疎水性官能基は、これらの中から選択される1種であってもよく、また2種以上であってもよい。
 これらの中では、官能基の導入容易性の観点及び疎水性を向上させる観点から、トリメチルシリル基が好ましい。
 後述の核粒子を疎水化処理する方法としては、ミキサーなどで撹拌された核粒子に、前述の疎水性官能基を有する疎水化剤を噴霧する方法を挙げることができる。
The hydrophobic functional group is preferably an alkylsilyl group from the viewpoint of ease of introduction of the functional group, and among them, a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, and a triisopropylsilyl group are preferable. The hydrophobic functional group may be one kind selected from these, or two or more kinds.
Among these, a trimethylsilyl group is preferable from the viewpoint of easy introduction of a functional group and a viewpoint of improving hydrophobicity.
Examples of the method for hydrophobizing the core particles described below include a method of spraying the above-described hydrophobizing agent having a hydrophobic functional group onto the core particles stirred with a mixer or the like.
 前記核粒子は、絶縁性を有するものであれば特に制限はなく、絶縁性を示す粒子をそのまま使用してもよく、また、導電性を示す粒子の表面に絶縁性被膜を設けたものを使用してもよい。
 前記核粒子としては、金属酸化物粒子、及び金属複合酸化物粒子が好ましく、中でもシリコン、ジルコニウム、アルミニウム、マグネシウム、チタン、スズ、亜鉛、タンタル、ニオブ、インジウム、アルミニウム、及びカルシウムから選ばれる1種又は2種以上の酸化物又は複合酸化物が挙げられる。
 これらの中では、シリコン、ジルコニウム、アルミニウム、マグネシウム、及びチタンの酸化物又は複合酸化物が好ましく、ケイ素の酸化物(シリカ)からなる粒子がより好ましい。
The core particle is not particularly limited as long as it has an insulating property, and the insulating particle may be used as it is, or a particle having an insulating coating on the surface of the conductive particle is used. May be.
As the core particles, metal oxide particles and metal composite oxide particles are preferable, and among them, one kind selected from silicon, zirconium, aluminum, magnesium, titanium, tin, zinc, tantalum, niobium, indium, aluminum, and calcium. Alternatively, two or more kinds of oxides or composite oxides can be given.
Among these, oxides or composite oxides of silicon, zirconium, aluminum, magnesium, and titanium are preferable, and particles made of silicon oxide (silica) are more preferable.
 前記核粒子として導電性の粒子を用いる場合、核粒子の表面に設ける絶縁性被膜としては、ケイ素化合物、アルミニウム化合物、ジルコニウム化合物、マグネシウム化合物、及びカルシウム化合物から選ばれる1種又は2種以上を含有する被膜が好ましい。これらの中では、ケイ素化合物を含有する被膜が好ましく、テトラエトキシシランにより形成した被膜がより好ましい。
 前記核粒子の表面にケイ素化合物を含有する被膜を形成する処理の方法としては、例えば、前記粒子、エタノール、及びテトラエトキシシランを撹拌し、この溶液に対して、水及びアンモニア水の混合液を1~100ml/分の速度で滴下し、50~70℃で1~5時間加熱する処理方法を挙げることができる。なお、前記被膜の厚さとしては、絶縁性を確保する観点から、3~25nmが好ましく、5~20nmがより好ましく、8~15nmが更に好ましい。
 前記被膜は絶縁性の他に疎水性の性質を有していることが好ましく、疎水性でない場合には、絶縁性被膜を形成するための処理を行った後、疎水化処理を行うことが好ましい。
When using conductive particles as the core particles, the insulating coating provided on the surface of the core particles contains one or more selected from silicon compounds, aluminum compounds, zirconium compounds, magnesium compounds, and calcium compounds. A coating is preferred. In these, the film containing a silicon compound is preferable, and the film formed with tetraethoxysilane is more preferable.
As a treatment method for forming a film containing a silicon compound on the surface of the core particles, for example, the particles, ethanol, and tetraethoxysilane are stirred, and a mixed liquid of water and aqueous ammonia is added to this solution. Examples of the treatment method include dropping at a rate of 1 to 100 ml / min and heating at 50 to 70 ° C. for 1 to 5 hours. The thickness of the coating is preferably 3 to 25 nm, more preferably 5 to 20 nm, and still more preferably 8 to 15 nm from the viewpoint of ensuring insulation.
The coating preferably has a hydrophobic property in addition to the insulating property, and if it is not hydrophobic, it is preferable to perform a treatment for forming the insulating coating followed by a hydrophobic treatment. .
 疎水性粒子の平均粒径は、電解質の拡散及び絶縁性を向上させる観点から、50~120nmが好ましく、52~115nmがより好ましく、75~115nmがより好ましく、82~115nmがより好ましく、90~110nmが更に好ましい。
 なお、疎水性粒子の平均粒径は、測定装置としてレーザー回折型粒径測定機((株)堀場製作所製、型番「LA-750」)を使用し、エタノール中に疎水性粒子を分散させて測定した値である。
 前記色素増感型太陽電池用ペースト中の疎水性粒子の含有量は、成膜性を向上させる観点から、5~30質量%が好ましく、10~27質量%がより好ましく、15~24質量%が更に好ましい。
The average particle size of the hydrophobic particles is preferably from 50 to 120 nm, more preferably from 52 to 115 nm, more preferably from 75 to 115 nm, more preferably from 82 to 115 nm, from the viewpoint of improving the diffusion and insulation of the electrolyte. 110 nm is more preferable.
The average particle size of the hydrophobic particles is determined by dispersing the hydrophobic particles in ethanol using a laser diffraction type particle size measuring device (manufactured by Horiba, Ltd., model number “LA-750”) as a measuring device. It is a measured value.
The content of hydrophobic particles in the dye-sensitized solar cell paste is preferably 5 to 30% by mass, more preferably 10 to 27% by mass, and more preferably 15 to 24% by mass from the viewpoint of improving film formability. Is more preferable.
 前記色素増感型太陽電池用ペーストは、膜強度を向上させる観点から、前記疎水性粒子よりも平均粒径が小さいバインダー粒子を含有することが好ましい。
 なお、バインダー粒子の平均粒径は、多孔質半導体層の平均細孔径よりも大きい方が、色素の吸着に関しては好ましい。一方、バインダー性を向上させるためには、バインダー粒子の平均粒径は小さい方が好ましい。
 したがって、所望の色素吸着性とバインダー性とを得るためには、バインダー粒子の平均粒径とペーストへの添加量とを適宜調整して実施すればよい。
 バインダー粒子としては、シリカ、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム及び酸化カルシウムを挙げることができる。
 前記疎水性粒子と前記バインダー粒子との合計に対するバインダー粒子の含有量は、膜強度を向上させる観点から、1質量%以上50質量%未満が好ましく、5~30質量%がより好ましく、8~20質量%が更に好ましい。
The dye-sensitized solar cell paste preferably contains binder particles having an average particle size smaller than that of the hydrophobic particles from the viewpoint of improving film strength.
The average particle size of the binder particles is preferably larger than the average pore size of the porous semiconductor layer with respect to dye adsorption. On the other hand, in order to improve the binder property, it is preferable that the average particle size of the binder particles is small.
Therefore, in order to obtain the desired dye adsorption property and binder property, the average particle size of the binder particles and the amount added to the paste may be appropriately adjusted.
Examples of the binder particles include silica, aluminum oxide, zirconium oxide, magnesium oxide, and calcium oxide.
The content of the binder particles relative to the total of the hydrophobic particles and the binder particles is preferably 1% by mass or more and less than 50% by mass, more preferably 5 to 30% by mass, from the viewpoint of improving the film strength. More preferred is mass%.
<色素増感型太陽電池用ペーストの製造方法>
 色素増感型太陽電池用ペーストの製造方法について特に制限はないが、例えば、以下の製造方法により製造することができる。
 すなわち、疎水性粒子、バインダー粒子、ヘキシレングリコール、テルピネオール等の高沸点有機溶剤、及びセルロース系樹脂やアクリル系樹脂等を混合することにより目的とするペーストを得ることができる。
<Method for producing paste for dye-sensitized solar cell>
Although there is no restriction | limiting in particular about the manufacturing method of the paste for dye-sensitized solar cells, For example, it can manufacture with the following manufacturing methods.
That is, the target paste can be obtained by mixing hydrophobic particles, binder particles, high-boiling organic solvents such as hexylene glycol and terpineol, and cellulose resins and acrylic resins.
[多孔質絶縁層]
 本発明の多孔質絶縁層は、本発明の色素増感型太陽電池用ペーストを焼成してなるものである。
 前記多孔質絶縁層を焼成する方法に特に制限はないが、前記色素増感型太陽電池用ペーストを公知の方法で多孔質半導体層上に塗布した後、焼成することが好ましい。
 前記色素増感型太陽電池用ペーストを多孔質半導体層上に塗布する方法としては、スクリーン印刷法、インクジェット法等の方法が挙げられる。これらの中では、厚膜化の容易性や製造コストを抑える観点から、スクリーン印刷法が好ましい。
 焼成は、大気下又は不活性ガス雰囲気下、50~800℃、10秒~4時間行うことが好ましい。焼成は、単一の温度で1回のみ行ってもよく、温度を変化させて2回以上行ってもよい。なお、色素増感型太陽電池用ペーストを塗布した後、乾燥させてから焼成することが好ましい。
[Porous insulation layer]
The porous insulating layer of the present invention is obtained by firing the paste for dye-sensitized solar cells of the present invention.
Although there is no restriction | limiting in particular in the method of baking the said porous insulating layer, It is preferable to bake, after apply | coating the said paste for dye-sensitized solar cells on a porous semiconductor layer by a well-known method.
Examples of the method for applying the dye-sensitized solar cell paste on the porous semiconductor layer include a screen printing method and an ink jet method. Among these, the screen printing method is preferable from the viewpoint of easy film thickening and manufacturing cost reduction.
Firing is preferably performed in the air or in an inert gas atmosphere at 50 to 800 ° C. for 10 seconds to 4 hours. Firing may be performed only once at a single temperature, or may be performed twice or more by changing the temperature. In addition, after apply | coating the paste for dye-sensitized solar cells, drying is preferable after baking.
 焼成後の多孔質絶縁層の層厚は、電解質の拡散と絶縁性とを両立させるため、3~50μmが好ましく、4~40μmがより好ましく、5~30μmが更に好ましい。
 前記多孔質絶縁層の抵抗値は、絶縁層として使用する観点から、1kΩ以上が好ましく、100kΩ以上がより好ましく、10MΩ以上が更に好ましい。
 なお、本発明の多孔質絶縁層は色素を吸着しにくいため、多孔質半導体層上に設けられることが好ましい。多孔質半導体層上に設けることにより、多孔質半導体層に色素を効率的に吸着させることができる。
The thickness of the porous insulating layer after firing is preferably from 3 to 50 μm, more preferably from 4 to 40 μm, and even more preferably from 5 to 30 μm in order to achieve both electrolyte diffusion and insulating properties.
From the viewpoint of use as an insulating layer, the resistance value of the porous insulating layer is preferably 1 kΩ or more, more preferably 100 kΩ or more, and further preferably 10 MΩ or more.
The porous insulating layer of the present invention is preferably provided on the porous semiconductor layer because it hardly absorbs the dye. By providing on a porous semiconductor layer, a pigment | dye can be efficiently adsorb | sucked to a porous semiconductor layer.
[色素増感型太陽電池]
 本発明の色素増感型太陽電池は、前記多孔質絶縁層を、色素を吸着してなる多孔質半導体層と導電層との間に有する色素増感型太陽電池である。
[Dye-sensitized solar cell]
The dye-sensitized solar cell of the present invention is a dye-sensitized solar cell having the porous insulating layer between a porous semiconductor layer formed by adsorbing a dye and a conductive layer.
 本発明の色素増感型太陽電池の一例を図1に示す。本実施の形態の色素増感型太陽電池(直列モジュール型)10は、透明導電膜2を有する透明基板1と、透明導電膜2と対向するように設けられた導電層(対向電極)5とを有し、透明導電膜2と導電層5との間には、透明導電膜2側から順に、多孔質半導体層7と、多孔質絶縁層6とが設けられている。更に、封止剤3により電解質4がモジュール内に封止されており、導電層5は、その一端が透明導電膜2に接している。
 なお、多孔質絶縁層6と導電層5との間には、触媒層(図示せず)を設けてもよい。
An example of the dye-sensitized solar cell of the present invention is shown in FIG. The dye-sensitized solar cell (series module type) 10 according to the present embodiment includes a transparent substrate 1 having a transparent conductive film 2, and a conductive layer (counter electrode) 5 provided to face the transparent conductive film 2. Between the transparent conductive film 2 and the conductive layer 5, a porous semiconductor layer 7 and a porous insulating layer 6 are provided in this order from the transparent conductive film 2 side. Further, the electrolyte 4 is sealed in the module by the sealant 3, and one end of the conductive layer 5 is in contact with the transparent conductive film 2.
A catalyst layer (not shown) may be provided between the porous insulating layer 6 and the conductive layer 5.
 前記色素増感型太陽電池10を構成する多孔質半導体層7及び導電層5に制限はないが、具体的に以下の構成を採用することができる。
<多孔質半導体層>
 多孔質半導体層7は半導体で構成され、その形態は粒子状、膜状等の形態を採用することができるが、膜状の形態であることが好ましい。多孔質半導体層7を構成する半導体粒子としては、酸化チタン、酸化亜鉛等の公知の半導体粒子を1種類又は2種類以上組み合わせて用いることができる。これらの中では、光電変換効率、安定性、安全性の点から酸化チタンが好ましい。
 膜状の多孔質半導体層7を基板上に形成する方法としては、公知の方法を採用することができる。具体的には、スクリーン印刷法、インクジェット法等の基板上に半導体粒子を含有するペーストを塗布し、その後焼成する方法が挙げられる。
 前記色素増感型太陽電池における多孔質半導体層の平均細孔径は、1~100nmが好ましく、10~80nmがより好ましく、15~50nmが更に好ましい。
Although there is no restriction | limiting in the porous semiconductor layer 7 and the conductive layer 5 which comprise the said dye-sensitized solar cell 10, Specifically, the following structures are employable.
<Porous semiconductor layer>
The porous semiconductor layer 7 is composed of a semiconductor, and the form thereof may be a particulate form or a film form, but is preferably a film form. As a semiconductor particle which comprises the porous semiconductor layer 7, well-known semiconductor particles, such as a titanium oxide and a zinc oxide, can be used 1 type or in combination of 2 or more types. Among these, titanium oxide is preferable from the viewpoint of photoelectric conversion efficiency, stability, and safety.
As a method for forming the film-like porous semiconductor layer 7 on the substrate, a known method can be employed. Specifically, a method of applying a paste containing semiconductor particles on a substrate, such as a screen printing method or an ink jet method, and then baking it can be given.
The average pore diameter of the porous semiconductor layer in the dye-sensitized solar cell is preferably 1 to 100 nm, more preferably 10 to 80 nm, and still more preferably 15 to 50 nm.
 光電変換効率を向上させるためには、後述する色素を多孔質半導体層7により多く吸着させることが必要である。このため、膜状の多孔質半導体層7は比表面積が大きなものが好ましく、10~200m2/gが好ましい。なお、本明細書において示す比表面積はBET吸着法により測定した値である。
 前述の半導体粒子としては、市販されているもののうち適当な平均粒径、例えば1nm~500nmの平均粒径を有する単一又は化合物半導体の粒子等が挙げられる。
 前述の多孔質半導体層7の乾燥及び焼成は、使用する基板や半導体粒子の種類により、温度、時間、雰囲気等の条件を適宜調整して行われる。そのような条件として、例えば、大気下又は不活性ガス雰囲気下、50~800℃の範囲内で、10秒~4時間程度が挙げられる。
In order to improve the photoelectric conversion efficiency, it is necessary to adsorb more dye, which will be described later, to the porous semiconductor layer 7. Therefore, the membrane-like porous semiconductor layer 7 preferably has a large specific surface area, and preferably 10 to 200 m 2 / g. In addition, the specific surface area shown in this specification is a value measured by the BET adsorption method.
Examples of the semiconductor particles include single or compound semiconductor particles having an appropriate average particle size, for example, an average particle size of 1 nm to 500 nm, among commercially available particles.
The porous semiconductor layer 7 is dried and fired by appropriately adjusting conditions such as temperature, time, atmosphere, and the like according to the type of substrate and semiconductor particles used. Such conditions include, for example, about 10 seconds to 4 hours in the range of 50 to 800 ° C. in the air or in an inert gas atmosphere.
(色素)
 多孔質半導体層7に吸着して光増感剤として機能する色素としては、種々の可視光領域及び/又は赤外光領域に吸収をもつものが挙げられ、多孔質半導体層7に色素を強固に吸着させるためには、色素分子中にカルボン酸基、カルボン酸無水基、スルホン酸基等のインターロック基(吸着官能基)を有することが好ましい。なお、インターロック基(吸着官能基)は、励起状態の色素と多孔質半導体層の伝導帯との間の電子移動を容易にする電気的結合を提供するものである。
 これらインターロック基(吸着官能基)を含有する色素として、例えば、ルテニウムビピリジン系色素、アゾ系色素、キノン系色素、キノンイミン系色素、スクアリリウム系色素、シアニン系色素、メロシアニン系色素、ポリフィリン系色素、フタロシアニン系色素、インジゴ系色素、ナフタロシアニン系色素等が挙げられる。
(Dye)
Examples of the dye that is adsorbed on the porous semiconductor layer 7 and functions as a photosensitizer include those having absorption in various visible light regions and / or infrared light regions. In order to make it adsorb | suck to it, it is preferable to have interlocking groups (adsorption functional group), such as a carboxylic acid group, a carboxylic anhydride group, and a sulfonic acid group, in a pigment | dye molecule | numerator. The interlock group (adsorbing functional group) provides an electrical bond that facilitates electron transfer between the excited dye and the conduction band of the porous semiconductor layer.
Examples of dyes containing these interlock groups (adsorption functional groups) include, for example, ruthenium bipyridine dyes, azo dyes, quinone dyes, quinone imine dyes, squarylium dyes, cyanine dyes, merocyanine dyes, porphyrin dyes, And phthalocyanine dyes, indigo dyes, naphthalocyanine dyes, and the like.
 色素を多孔質半導体層7に吸着させる方法としては、導電性基板(透明導電膜2)上に多孔質半導体層7が形成された積層体を、色素を溶解した溶液(色素吸着用溶液)に浸漬する方法が代表的に挙げられる。色素を溶解させる溶媒としては、色素を溶解するものであればよく、具体的には、エタノールといったアルコール類、アセトンといったケトン類、ジエチルエーテル、テトラヒドロフラン等のエーテル類、アセトニトリルといった窒素化合物類、クロロホルムといったハロゲン化脂肪族炭化水素、ヘキサンといった脂肪族炭化水素、ベンゼンといった芳香族炭化水素、酢酸エチル、酢酸ブチル等のエステル類、水等が挙げられる。これらの溶媒は2種類以上を混合して用いることもできる。
 溶液中の色素濃度は、使用する色素及び溶媒の種類により適宜調整することができるが、吸着機能を向上させるためにはできるだけ高濃度である方が好ましく、例えば、1×10-5mol/L以上が好ましい。
As a method of adsorbing the dye to the porous semiconductor layer 7, a laminate in which the porous semiconductor layer 7 is formed on a conductive substrate (transparent conductive film 2) is used as a solution (dye adsorption solution) in which the dye is dissolved. A typical example is a dipping method. The solvent for dissolving the dye may be any solvent that dissolves the dye. Specifically, alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether and tetrahydrofuran, nitrogen compounds such as acetonitrile, chloroform, etc. Examples thereof include halogenated aliphatic hydrocarbons, aliphatic hydrocarbons such as hexane, aromatic hydrocarbons such as benzene, esters such as ethyl acetate and butyl acetate, and water. Two or more of these solvents can be used in combination.
The concentration of the dye in the solution can be appropriately adjusted depending on the kind of the dye and the solvent to be used, but is preferably as high as possible in order to improve the adsorption function, for example, 1 × 10 −5 mol / L. The above is preferable.
<導電層>
 導電層5は、電解質の酸化体を還元する能力と導電性を有していれば特に限定されず、グラファイト等の炭素、白金等の金属、スズ(Sn)がドープされた酸化インジウム(In23)、フッ素(F)がドープされた酸化スズ(SnO2)、アンチモン(Sb)がドープされた酸化スズ(SnO2)、アルミニウム(Al)がドープされた酸化亜鉛(ZnO)、ガリウム(Ga)がドープされた酸化亜鉛(ZnO)、亜鉛(Zn)がドープされた酸化インジウム(In23)、ニオブ(Nb)がドープされた酸化チタン(TiO2)、タンタル(Ta)がドープされた酸化チタン(TiO2)等の透明導電性金属酸化物により好適に形成することができる。導電層5についても前述の塗布方法で形成することができる。
<Conductive layer>
The conductive layer 5 is not particularly limited as long as it has the ability to reduce the oxidant of the electrolyte and conductivity. Indium oxide (In 2 ) doped with carbon such as graphite, metal such as platinum, or tin (Sn). O 3), fluorine (tin oxide F) doped (SnO 2), antimony (Sb), tin oxide which is doped (SnO 2), aluminum (zinc oxide Al) doped (ZnO), gallium ( Ga) doped zinc oxide (ZnO), zinc (Zn) doped indium oxide (In 2 O 3 ), niobium (Nb) doped titanium oxide (TiO 2 ), tantalum (Ta) doped It can be suitably formed from a transparent conductive metal oxide such as titanium oxide (TiO 2 ). The conductive layer 5 can also be formed by the above-described coating method.
<電解質(電解液)>
 電解質4の具体例としては、ヨウ素系電解質、臭素系電解質、セレン系電解質、硫黄系電解質等各種の電解質を用いることが可能であり、このような電解質4を、I2、LiI、ジメチルプロピルイミダゾリウムヨージド等をアセトニトリル、メトキシアセトニトリル、プロピレンカーボネート、エチレンカボネート等の有機溶媒に溶かした電解液等が好適に用いられる。
 なお、本発明の色素増感型太陽電池10において、前記本発明の多孔質絶縁層以外の構成要素に特に制限はなく、一般的な色素増感型太陽電池に使用される構成要素を適宜使用することができる。
<Electrolyte (electrolyte)>
As specific examples of the electrolyte 4, various electrolytes such as an iodine-based electrolyte, a bromine-based electrolyte, a selenium-based electrolyte, and a sulfur-based electrolyte can be used, and such an electrolyte 4 is used as I 2 , LiI, dimethylpropylimidazo. An electrolytic solution obtained by dissolving lithium iodide or the like in an organic solvent such as acetonitrile, methoxyacetonitrile, propylene carbonate, or ethylene carbonate is preferably used.
In the dye-sensitized solar cell 10 of the present invention, there are no particular limitations on the components other than the porous insulating layer of the present invention, and the components used for general dye-sensitized solar cells are appropriately used. can do.
 以下に、本発明を実施例により詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
 実施例及び比較例で使用した材料は以下のとおりである。
・ガラス基板     :日本板硝子(株)製、3cm×3cm(フッ素
            ドープ酸化錫膜付き、シート抵抗10Ω/□)
・酸化チタン粒子(I):住友大阪セメント(株)製、平均粒径20nm
            なお、酸化チタン粒子(I)10gを25℃のイ
            オン交換水100gに投入したところ、その全量
            が沈降したことを目視で確認した。
・酸化チタン粒子(II):住友大阪セメント(株)製、平均粒径400nm
            なお、酸化チタン粒子(II)10gを25℃のイ
            オン交換水100gに投入したところ、その全量
            が沈降したことを目視で確認した。
・疎水化処理シリカ粒子:ヘキサメチルジシラザンによる表面処理(疎水化
            処理)により表面官能基としてメチル基が導入さ
            れたシリカ粒子(電気化学工業(株)製、平均粒径
            100nm)
            この疎水化処理シリカ粒子10gをコック付きロ
            ートへ25℃のイオン交換水100gと共に投入
            したところ、一部が沈降したことを目視で確認し
            た。次いで、コックを開き水50gと沈降分とを
            採取し、ホットプレート上にて水分を蒸発させた
            後、沈降分の質量を測定したところ、沈降量は0
            .2gであった。
・未処理シリカ粒子(I):疎水化処理を行っていないシリカ粒子
            (電気化学工業(株)製、平均粒径100nm)
            なお、未処理シリカ粒子(I)10gを25℃のイ
            オン交換水100gに投入したところ、その全量
            が沈降したことを目視で確認した。
・未処理シリカ粒子(II):疎水化処理を行っていないシリカ粒子
            なお、未処理シリカ粒子(II)はシリカ分12質
            量%のアルコール分散液の状態で用いた。
            (扶桑化学工業(株)製、平均粒径が10nm)
            なお、未処理シリカ粒子(II)10gを25℃のイ
            オン交換水100gに投入したところ、その全量
            が沈降したことを目視で確認した。
・エチルセルロース  :日新化成(株)製
・α-テルピネオール :ヤスハラケミカル(株)製
・色素        :ダイソルジャパン(株)製、型番「Black D
            ye」
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.
The materials used in the examples and comparative examples are as follows.
Glass substrate: manufactured by Nippon Sheet Glass Co., Ltd., 3 cm × 3 cm (with fluorine-doped tin oxide film, sheet resistance 10Ω / □)
-Titanium oxide particles (I): manufactured by Sumitomo Osaka Cement Co., Ltd., average particle size 20 nm
When 10 g of titanium oxide particles (I) were added to 100 g of ion exchanged water at 25 ° C., it was visually confirmed that the total amount had settled.
-Titanium oxide particles (II): manufactured by Sumitomo Osaka Cement Co., Ltd., average particle diameter of 400 nm
When 10 g of titanium oxide particles (II) were added to 100 g of ion exchanged water at 25 ° C., it was visually confirmed that the total amount had settled.
Hydrophobized silica particles: Silica particles in which methyl groups have been introduced as surface functional groups by surface treatment with hexamethyldisilazane (hydrophobization treatment, average particle size 100 nm, manufactured by Denki Kagaku Kogyo Co., Ltd.)
When 10 g of the hydrophobized silica particles were introduced into a funnel equipped with 100 g of ion-exchanged water at 25 ° C., it was visually confirmed that a part of the silica particles had settled. Next, the cock was opened, 50 g of water and the sediment were collected, the moisture was evaporated on a hot plate, and the mass of the sediment was measured.
. 2g.
Untreated silica particles (I): Silica particles that have not been hydrophobized (Electrochemical Industry Co., Ltd., average particle size 100 nm)
When 10 g of untreated silica particles (I) were added to 100 g of ion exchanged water at 25 ° C., it was visually confirmed that the entire amount had settled.
Untreated silica particles (II): Silica particles not subjected to hydrophobic treatment Untreated silica particles (II) were used in the form of an alcohol dispersion having a silica content of 12% by mass.
(Fuso Chemical Co., Ltd., average particle size is 10 nm)
When 10 g of untreated silica particles (II) were added to 100 g of ion exchanged water at 25 ° C., it was visually confirmed that the entire amount had settled.
・ Ethylcellulose: Nisshin Kasei Co., Ltd. ・ α-Terpineol: Yashara Chemical Co., Ltd. ・ Dye: Daisol Japan Co., Ltd., Model No. “Black D”
ye "
<多孔質半導体層形成ペーストの作製>
 酸化チタン粒子(I)の水分散液(酸化チタンとして20質量部)をエバポレータでエタノールに溶媒置換したものに、α-テルピネオールを72質量部、エチルセルロース8重量部を投入して混合した。次いでエバポレータで混合物からエタノールを除去して多孔質半導体層形成ペーストを作製した。
<Preparation of porous semiconductor layer forming paste>
72 parts by weight of α-terpineol and 8 parts by weight of ethylcellulose were added to and mixed with an aqueous dispersion of titanium oxide particles (I) (20 parts by weight as titanium oxide) substituted with ethanol by an evaporator. Next, ethanol was removed from the mixture by an evaporator to prepare a porous semiconductor layer forming paste.
<多孔質半導体層付き基板(ブランク)の作製>
 ガラス基板に対して、酸化チタン粒子を含有する多孔質半導体層形成ペーストを1cm×1cmとなるように塗布し、500℃で1時間焼成することにより多孔質半導体層付き基板を得た。
 なお、前記多孔質半導体層形成ペースト5gを磁性ルツボ中100℃で加熱、乾燥させた後、電気炉中で焼成(500℃、1時間)することにより得られた焼成体の平均細孔径を多孔質半導体層の平均細孔径として、窒素ガス吸着法で測定したところ20nmであった。
 多孔質半導体層の厚さについては、後述の方法で測定を行ったところ、20μmであった。
<Preparation of substrate (blank) with porous semiconductor layer>
A porous semiconductor layer-containing paste containing titanium oxide particles was applied to a glass substrate so as to have a size of 1 cm × 1 cm, and baked at 500 ° C. for 1 hour to obtain a substrate with a porous semiconductor layer.
The porous body layer forming paste 5 g was heated and dried at 100 ° C. in a magnetic crucible and then fired in an electric furnace (500 ° C., 1 hour). The average pore diameter of the porous semiconductor layer was 20 nm as measured by a nitrogen gas adsorption method.
The thickness of the porous semiconductor layer was 20 μm when measured by the method described later.
<実施例1>
(1)色素増感型太陽電池用ペースト(多孔質絶縁層形成ペースト)の調製
 フラスコに疎水化処理シリカ粒子18質量部、未処理シリカ粒子(II)17質量部(シリカ分2質量部)、エチルセルロース8質量部、α-テルピネオール72質量部を配合して混合した後、エバポレータでアルコール分を除去することにより多孔質絶縁層形成ペースト(P1)を得た。
<Example 1>
(1) Preparation of dye-sensitized solar cell paste (porous insulating layer forming paste) Hydrophobized silica particles 18 parts by mass, untreated silica particles (II) 17 parts by mass (silica content 2 parts by mass) in a flask, After blending and mixing 8 parts by mass of ethyl cellulose and 72 parts by mass of α-terpineol, the alcohol content was removed by an evaporator to obtain a porous insulating layer forming paste (P1).
(2)多孔質絶縁層付き基板(S1)の作製
 前記(1)で得られた多孔質絶縁層形成ペースト(P1)をガラス基板上に1cm×1cmとなるように塗布し、500℃で1時間焼成することにより多孔質絶縁層付き基板(S1)を得た。
(2) Production of substrate (S1) with porous insulating layer The porous insulating layer forming paste (P1) obtained in (1) above was applied on a glass substrate so as to be 1 cm × 1 cm, and 1 at 500 ° C. Substrate (S1) with a porous insulating layer was obtained by baking for a time.
(3)積層基板(D1)の作製
 前記多孔質半導体層付き基板上に多孔質絶縁層形成ペースト(P1)を塗布して同様に焼成することで、積層基板(D1)を得た。
(3) Production of laminated substrate (D1) A porous insulating layer-forming paste (P1) was applied on the substrate with a porous semiconductor layer and fired in the same manner to obtain a laminated substrate (D1).
(4)層の厚さの測定
 多孔質絶縁層付き基板(S1)、積層基板(D1)に形成した膜の厚さを、触針式表面形状測定器(ケーエルエー・テンコール(株)製、型番「P-10」)で測定したところ、多孔質絶縁層の厚さは7μmであり、積層基板の各層の合計の厚さは27μmであった。これらの値より多孔質半導体層の厚さは20μmであることがわかる。
(4) Measurement of layer thickness The thickness of the film formed on the substrate with a porous insulating layer (S1) and the laminated substrate (D1) was measured using a stylus type surface profile measuring instrument (manufactured by KLA-Tencor Corporation, model number). As measured by “P-10”), the thickness of the porous insulating layer was 7 μm, and the total thickness of each layer of the laminated substrate was 27 μm. From these values, it can be seen that the thickness of the porous semiconductor layer is 20 μm.
(5)色素吸着量の測定
 作製した各基板をそれぞれ3×10-4mol/lのルテニウム金属錯体色素(Black Dye色素)溶液10ml中に24時間浸漬して色素を吸着させた。これら基板を、水酸化ナトリウム溶液(水酸化ナトリウム1質量部、水40質量部及びエタノール40質量部を混合した溶液)4質量部に24時間浸漬させることにより各層に吸着した色素を溶出させ、この溶液の吸光度を測定し、多孔質絶縁層の色素吸着量、及び積層基板における多孔質半導体層の色素吸着量を算出した。結果を表1に示す。
(5) Measurement of Dye Adsorption Amount Each of the prepared substrates was immersed in 10 ml of a 3 × 10 −4 mol / l ruthenium metal complex dye (Black Dye dye) solution for 24 hours to adsorb the dye. By immersing these substrates in 4 parts by mass of a sodium hydroxide solution (a solution obtained by mixing 1 part by mass of sodium hydroxide, 40 parts by mass of water and 40 parts by mass of ethanol), the dye adsorbed on each layer is eluted, The absorbance of the solution was measured, and the dye adsorption amount of the porous insulating layer and the dye adsorption amount of the porous semiconductor layer in the laminated substrate were calculated. The results are shown in Table 1.
<比較例1>
 未処理シリカ粒子(I)18質量部、未処理シリカ粒子(II)のアルコール分散液を17質量部(シリカ分2質量部)、エチルセルロース8質量部、α-テルピネオール72質量部を配合したこと以外は実施例1と同様にして多孔質絶縁層付き基板(S2)及び積層基板(D2)を得た。これらの各基板について、実施例1と同様に色素吸着量を測定した。結果を表1に示す。
 なお、多孔質絶縁層の厚さ及び多孔質半導体層の厚さはそれぞれ7μm、20μであり、実施例1と同じであった。
<Comparative Example 1>
Other than blending 18 parts by mass of untreated silica particles (I), 17 parts by mass of an alcohol dispersion of untreated silica particles (II) (2 parts by mass of silica), 8 parts by mass of ethyl cellulose, and 72 parts by mass of α-terpineol. Obtained a substrate (S2) with a porous insulating layer and a laminated substrate (D2) in the same manner as in Example 1. For each of these substrates, the dye adsorption amount was measured in the same manner as in Example 1. The results are shown in Table 1.
The thickness of the porous insulating layer and the thickness of the porous semiconductor layer were 7 μm and 20 μm, respectively, which were the same as those in Example 1.
<比較例2>
 未処理シリカ粒子(II)のアルコール分散液をシリカ分が20質量部となるように配合し、更にエチルセルロース8質量部、α-テルピネオール72質量部を配合したこと以外は実施例1と同様にして多孔質絶縁層付き基板(S3)及び積層基板(D3)を得た。これらの各基板について、実施例1と同様に色素吸着量を測定した。結果を表1に示す。
 なお、多孔質絶縁層の厚さ及び多孔質半導体層の厚さはそれぞれ7μm、20μmであり、実施例1と同じであった。
<Comparative Example 2>
An alcohol dispersion of untreated silica particles (II) was blended so that the silica content was 20 parts by mass, and further 8 parts by mass of ethyl cellulose and 72 parts by mass of α-terpineol were blended in the same manner as in Example 1. A substrate with a porous insulating layer (S3) and a laminated substrate (D3) were obtained. For each of these substrates, the dye adsorption amount was measured in the same manner as in Example 1. The results are shown in Table 1.
The thickness of the porous insulating layer and the thickness of the porous semiconductor layer were 7 μm and 20 μm, respectively, and were the same as those in Example 1.
<比較例3>
(1)疎水性シリカ重合体の合成
 テトラメトキシシラン12.67質量%、エタノール50質量%を氷冷下で混合撹拌し、別に氷冷しておいた1規定硝酸4.16質量%と純水24.5質量%との混合液を氷冷下で10分間撹拌した後、60℃にて2.5時間撹拌し、シリカ重合体を合成した。
 このシリカ重合体の分子量を、ゲル浸透クロマトグラフ(GPC)を用いて測定したところ、ポリスチレン換算重量平均分子量で1,000~4,000であった。前記シリカ重合体は、その大きさが10nm以下であり多孔質半導体層の平均細孔径よりも小さいため、多孔質半導体層の細孔内に浸透する。
 次いで、この重合体が溶解する溶液にトリメチルメトキシシランを8.67質量%添加して10分間加熱撹拌し、シリカ重合体の表面にトリメチルシリル基を導入した。過度に置換するとバインダーとしての機能が損なわれるため、室温まで放冷し低温条件で12時間反応を行い、部分的にトリメチルシリル基を導入したシリカ重合体を得た。
 次いで、塗布性に悪影響を与える未反応トリメチルメトキシシラン及びその2量体等をエバポレータを用いて除去した。
 その後、この反応物に純水を加えて固液分離操作を繰り返した。この操作により親水性であるトリメチルシリル基が十分に導入されていないシリカ重合体及び硝酸と、疎水性であるトリメチルシリル基が十分に導入されたシリカ重合体とを分離することができる。
<Comparative Example 3>
(1) Synthesis of hydrophobic silica polymer 12.67% by mass of tetramethoxysilane and 50% by mass of ethanol were mixed and stirred under ice cooling, and 4.16% by mass of 1N nitric acid and pure water which had been ice-cooled separately. The mixed solution of 24.5% by mass was stirred for 10 minutes under ice cooling, and then stirred for 2.5 hours at 60 ° C. to synthesize a silica polymer.
When the molecular weight of this silica polymer was measured using a gel permeation chromatograph (GPC), it was 1,000 to 4,000 in terms of polystyrene-reduced weight average molecular weight. Since the silica polymer has a size of 10 nm or less and is smaller than the average pore diameter of the porous semiconductor layer, it penetrates into the pores of the porous semiconductor layer.
Next, 8.67% by mass of trimethylmethoxysilane was added to the solution in which the polymer was dissolved, and the mixture was heated and stirred for 10 minutes to introduce trimethylsilyl groups on the surface of the silica polymer. Since the function as a binder is impaired when it is excessively substituted, it is allowed to cool to room temperature and reacted for 12 hours under low temperature conditions to obtain a silica polymer in which a trimethylsilyl group is partially introduced.
Subsequently, unreacted trimethylmethoxysilane and its dimer which adversely affect the coating properties were removed using an evaporator.
Thereafter, pure water was added to the reaction product, and the solid-liquid separation operation was repeated. By this operation, the silica polymer and nitric acid in which the hydrophilic trimethylsilyl group is not sufficiently introduced can be separated from the silica polymer in which the hydrophobic trimethylsilyl group is sufficiently introduced.
(2)多孔質絶縁層形成ペーストの合成
 前記操作により得られたトリメチルシリル基を導入したシリカ重合体をシリカ(SiO2)換算で1質量%、酸化チタン粒子(I)を17.5質量%、酸化チタン粒子(II)17.5質量%、エチルセルロースを5質量%及びα-テルピネオールを59質量%の割合で配合し、多孔質絶縁層形成ペースト(P2)を作製した。
 この多孔質絶縁層形成ペースト用いたこと以外は実施例1と同様にして多孔質絶縁層付き基板(S4)及び積層基板(D4)を得た。これらの各基板について、実施例1と同様に色素吸着量を測定した。
 なお、多孔質絶縁層の厚さ及び多孔質半導体層の厚さはそれぞれ7μm、20μmであり、実施例1と同じであった。結果を表1に示す。
(2) Synthesis of Porous Insulating Layer Forming Paste The silica polymer introduced with the trimethylsilyl group obtained by the above operation was 1% by mass in terms of silica (SiO 2 ), 17.5% by mass of titanium oxide particles (I), Titanium oxide particles (II) 17.5% by mass, ethyl cellulose 5% by mass and α-terpineol 59% by mass were blended to prepare a porous insulating layer forming paste (P2).
A substrate with a porous insulating layer (S4) and a laminated substrate (D4) were obtained in the same manner as in Example 1 except that this porous insulating layer forming paste was used. For each of these substrates, the dye adsorption amount was measured in the same manner as in Example 1.
The thickness of the porous insulating layer and the thickness of the porous semiconductor layer were 7 μm and 20 μm, respectively, and were the same as those in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1の多孔質絶縁層は、色素吸着量が比較例に比べて大幅に少ない。また、多孔質半導体層へ積層した場合に、多孔質半導体層への色素の吸着を妨げないことがわかる。 The porous insulating layer of Example 1 has much less dye adsorption than the comparative example. Further, it can be seen that, when laminated on the porous semiconductor layer, the adsorption of the dye to the porous semiconductor layer is not hindered.
 実施例1、比較例1、比較例2、及び比較例3で作製した積層基板D1、D2、D3、及びD4を用い、図1に示す2直列の電極構造を有する電極膜を得た。得られた電極膜に対し色素吸着を行い、熱可塑性樹脂フィルム(デュポン社製、ハイミラン)を用い、電解液注入孔を有したガラス板を貼り合わせたセルを作製した。その後、色素増感太陽電池で一般的に用いられているヨウ素系電解液(ヨウ素、ヨウ化リチウム、ジメチルプロピルイミダゾリウムヨージド、t-ブチルピリジン、及びアセトニトリル混合溶液)を注入し、電池セルを作製した。
 作成した各電池セルの光電変換特性を太陽電池特性測定装置(山下電装(株)製:YSS-100AAH)を用いて測定した。結果を表2に示す。
Using the multilayer substrates D1, D2, D3, and D4 produced in Example 1, Comparative Example 1, Comparative Example 2, and Comparative Example 3, an electrode film having a two-series electrode structure shown in FIG. 1 was obtained. Dye adsorption was performed on the obtained electrode film, and a cell in which a glass plate having an electrolyte injection hole was bonded using a thermoplastic resin film (manufactured by DuPont, High Milan) was produced. Thereafter, an iodine-based electrolytic solution (iodine, lithium iodide, dimethylpropylimidazolium iodide, t-butylpyridine, and acetonitrile mixed solution) generally used in dye-sensitized solar cells is injected, and the battery cell is inserted. Produced.
The photoelectric conversion characteristics of each battery cell prepared were measured using a solar battery characteristic measuring device (Yamashita Denso Co., Ltd .: YSS-100AAH). The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 これらの結果より、本発明の多孔質絶縁層を色素増感型太陽電池へ適用した場合、色素の使用量を必要最低限に抑制することができ、かつ光電変換効率の向上に寄与することができる。 From these results, when the porous insulating layer of the present invention is applied to a dye-sensitized solar cell, the amount of the dye used can be suppressed to the minimum necessary, and it can contribute to the improvement of photoelectric conversion efficiency. it can.
 1  透明基板
 2  透明導電膜
 3  封止剤
 4  電解質
 5  導電層(対向電極)
 6  多孔質絶縁層
 7  多孔質半導体層
 10 色素増感型太陽電池
DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Transparent conductive film 3 Sealant 4 Electrolyte 5 Conductive layer (counter electrode)
6 Porous insulating layer 7 Porous semiconductor layer 10 Dye-sensitized solar cell

Claims (8)

  1.  疎水性粒子を含有し、多孔質半導体層上に塗布される色素増感型太陽電池用ペーストであり、前記疎水性粒子の平均粒径が前記多孔質半導体層の平均細孔径よりも大きい色素増感型太陽電池用ペースト。 A paste for dye-sensitized solar cells containing hydrophobic particles and coated on a porous semiconductor layer, wherein the average particle diameter of the hydrophobic particles is larger than the average pore diameter of the porous semiconductor layer Sensitive solar cell paste.
  2.  前記疎水性粒子が、核粒子の表面に疎水性官能基を導入したものである、請求項1に記載の色素増感型太陽電池用ペースト。 The dye-sensitized solar cell paste according to claim 1, wherein the hydrophobic particles have a hydrophobic functional group introduced on the surface of the core particles.
  3.  前記疎水性官能基がアルキルシリル基である、請求項2に記載の色素増感型太陽電池用ペースト。 The dye-sensitized solar cell paste according to claim 2, wherein the hydrophobic functional group is an alkylsilyl group.
  4.  前記アルキルシリル基が、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、及びトリイソプロピルシリル基から選ばれる1種である、請求項3に記載の色素増感型太陽電池用ペースト。 The dye-sensitized solar cell paste according to claim 3, wherein the alkylsilyl group is one selected from a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, and a triisopropylsilyl group.
  5.  前記核粒子が、シリコン、ジルコニウム、アルミニウム、マグネシウム、及びチタンから選ばれる1種又は2種以上の酸化物又は複合酸化物である、請求項2~4のいずれか1項に記載の色素増感型太陽電池用ペースト。 The dye sensitization according to any one of claims 2 to 4, wherein the core particle is one or more oxides or composite oxides selected from silicon, zirconium, aluminum, magnesium, and titanium. Type solar cell paste.
  6.  前記疎水性粒子よりも平均粒径が小さいバインダー粒子を含有し、前記疎水性粒子と前記バインダー粒子との合計含有量に対するバインダー粒子の含有量が1質量%以上50質量%未満である、請求項1~5のいずれか1項に記載の色素増感型太陽電池用ペースト。 Binder particles having an average particle size smaller than that of the hydrophobic particles are contained, and the content of the binder particles with respect to the total content of the hydrophobic particles and the binder particles is 1% by mass or more and less than 50% by mass. 6. The paste for a dye-sensitized solar cell according to any one of 1 to 5.
  7.  請求項1~6のいずれか1項に記載の色素増感型太陽電池用ペーストを焼成してなる多孔質絶縁層。 A porous insulating layer formed by firing the dye-sensitized solar cell paste according to any one of claims 1 to 6.
  8.  請求項7に記載の多孔質絶縁層を、色素を吸着してなる多孔質半導体層と導電層との間に有する色素増感型太陽電池。 A dye-sensitized solar cell comprising the porous insulating layer according to claim 7 between a porous semiconductor layer adsorbing a dye and a conductive layer.
PCT/JP2013/072337 2012-08-22 2013-08-21 Dye-sensitive solar cell paste, porous insulation layer, and die-sensitive solar cell WO2014030685A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014531659A JP6102926B2 (en) 2012-08-22 2013-08-21 Dye-sensitized solar cell paste, porous insulating layer, and dye-sensitized solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012183141 2012-08-22
JP2012-183141 2012-08-22

Publications (1)

Publication Number Publication Date
WO2014030685A1 true WO2014030685A1 (en) 2014-02-27

Family

ID=50149991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072337 WO2014030685A1 (en) 2012-08-22 2013-08-21 Dye-sensitive solar cell paste, porous insulation layer, and die-sensitive solar cell

Country Status (2)

Country Link
JP (1) JP6102926B2 (en)
WO (1) WO2014030685A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001509A1 (en) * 2004-06-25 2006-01-05 Ibiden Co., Ltd. Process for producing porous body, porous body, and honeycomb structural body
WO2007043533A1 (en) * 2005-10-11 2007-04-19 Kyocera Corporation Photoelectric transducer, process for producing the same, and photovoltaic apparatus
JP2009252575A (en) * 2008-04-08 2009-10-29 Sharp Corp Paste for dye-sensitized solar cell, transparent insulating film for dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell fabrication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001509A1 (en) * 2004-06-25 2006-01-05 Ibiden Co., Ltd. Process for producing porous body, porous body, and honeycomb structural body
WO2007043533A1 (en) * 2005-10-11 2007-04-19 Kyocera Corporation Photoelectric transducer, process for producing the same, and photovoltaic apparatus
JP2009252575A (en) * 2008-04-08 2009-10-29 Sharp Corp Paste for dye-sensitized solar cell, transparent insulating film for dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell fabrication method

Also Published As

Publication number Publication date
JPWO2014030685A1 (en) 2016-07-28
JP6102926B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
EP2348570A1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
CN109206017B (en) Graphene-doped glass coating liquid and preparation method thereof
WO2010125929A1 (en) Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
WO2011086869A1 (en) Wet-type solar battery and wet-type solar battery module
WO2014092066A1 (en) Photoelectric conversion element
JP2007035594A (en) Photoelectric cell
KR101236969B1 (en) Method of preparing titania nano-powder for dye-sensitized solar cell, method of preparing titania nano-dispersion, and photocatalyst
JP6265124B2 (en) Dye-sensitized solar cell paste, porous light reflecting insulating layer, and dye-sensitized solar cell
US20100075193A1 (en) Proton Conductive Membrane and Method for Producing it
KR100807238B1 (en) Photoelectrode of dye-sensitized solar cell containing glass powder
KR101406427B1 (en) Conductive polymer-carbon composite electrode for dye sensitized solar cell having catalytic activity and electrical conductivity and dye sensitized solar cell using the same and method for manufacturing thereof
JP6102926B2 (en) Dye-sensitized solar cell paste, porous insulating layer, and dye-sensitized solar cell
JP6029982B2 (en) Photoelectric conversion element
WO2015129608A1 (en) Paste for porous light reflection insulating layer, porous light reflection insulating layer, and dye-sensitized solar cell
CN103456516A (en) Electrode, photoelectric conversion element, electronic apparatus and architectural structure
JP2013191273A (en) Photoelectrode, manufacturing method thereof, and dye-sensitized solar cell using the same
JP5800675B2 (en) Method for producing coating material for forming porous metal oxide semiconductor film and photoelectric cell
US20130099176A1 (en) Electrode compostion for inkjet printing and method for manufacturing electrode for dye-sensitized solar cell using the same
JP4195225B2 (en) Photoelectric conversion element and dye-sensitized solar cell using the same
WO2012070603A1 (en) Photoelectric conversion element and photoelectric conversion element module
KR101434068B1 (en) Dsc solar cell
KR101321645B1 (en) Dye solar cell with silane coupling co-adsorbent and method of manufacturing the same
Munkhbayar et al. Effect of N719–Dye Adsorption Into Composition of Different Sized TiO2 Films for Photovoltaic Performance of the Dye-Sensitized Solar Cells
KR20070075185A (en) Paste composition for forming semiconductive electrode and preparation method of semiconductive electrode using the same
WO2011155131A1 (en) Dye-adsorbed semiconductor electrode for dye-sensitized solar cell, dye-sensitized solar cell, and process for production of dye-adsorbed semiconductor electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830422

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014531659

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13830422

Country of ref document: EP

Kind code of ref document: A1