WO2014030418A1 - Vascular tissue and method for producing same - Google Patents

Vascular tissue and method for producing same Download PDF

Info

Publication number
WO2014030418A1
WO2014030418A1 PCT/JP2013/066993 JP2013066993W WO2014030418A1 WO 2014030418 A1 WO2014030418 A1 WO 2014030418A1 JP 2013066993 W JP2013066993 W JP 2013066993W WO 2014030418 A1 WO2014030418 A1 WO 2014030418A1
Authority
WO
WIPO (PCT)
Prior art keywords
vascular tissue
cells
sodium alginate
channel structure
producing
Prior art date
Application number
PCT/JP2013/066993
Other languages
French (fr)
Japanese (ja)
Inventor
実 関
真澄 山田
優輝 岩瀬
Original Assignee
国立大学法人千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人千葉大学 filed Critical 国立大学法人千葉大学
Priority to JP2014531532A priority Critical patent/JP6241890B2/en
Publication of WO2014030418A1 publication Critical patent/WO2014030418A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/069Vascular Endothelial cells
    • C12N5/0691Vascular smooth muscle cells; 3D culture thereof, e.g. models of blood vessels
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/74Alginate

Definitions

  • the present invention relates to a vascular tissue and a production method thereof.
  • An artificially constructed blood vessel-like tissue or material is essential as an artificial blood vessel graft for transplantation in the surgical field.
  • an artificial blood vessel graft for transplantation in the surgical field.
  • a tissue having a vascular network when performing physiological evaluation of cells in an environment that mimics the structure of a living body, it is necessary to create a tissue having a vascular network. In order to meet these demands, technological development for artificially producing functional vascular tissue in vitro is currently under extremely intense competition worldwide.
  • Vascular tissue prepared for such applications is capable of delivering liquid inside, has strength to withstand transplantation operations, etc., and is relatively close to actual living tissue It is necessary to satisfy the conditions such as
  • an artificial material such as polyester or PTFE or a biomaterial such as collagen or gelatin is generally used, but those having a diameter of about 5 mm or less are blocked by platelets or the like. Since it is easy, the diameter of the artificial blood vessel put into practical use in the medical field is usually 5 mm or more.
  • a vascular tissue composed at least partially of cells.
  • the vascular tissue in the living body has a multi-layered structure in which vascular endothelial cells are organized in a single layer inside vascular smooth muscle cells, and has a hollow structure for circulating blood inside.
  • vascular endothelial cells In order to efficiently circulate nutrients throughout the body tissue, it is a relatively complex tissue that branches and merges as necessary. Therefore, in order to produce a functional vascular tissue in vitro, it is necessary to develop a technique for reproducing these structures simply and accurately, and a technique for arranging cells three-dimensionally is required.
  • Non-Patent Document 1 formation and winding of a cell sheet using a temperature-responsive culture substrate as shown in Non-Patent Document 1, embedding of cells in a fibrous hydrogel material as shown in Non-Patent Document 2, Seeding of cells into a hollow polymer scaffold (substrate used as a scaffold for cell culture) as shown in Non-Patent Document 3, and a cell cluster as shown in Non-Patent Document 4 as a unit structure Application of inkjet printing used.
  • tissue structure having a branched structure is produced by a method of winding a cell sheet or a method of embedding cells in a fiber-like hydrogel material, which has been developed so far. It is difficult.
  • Non-Patent Document 4 The technique using inkjet printing as reported in Non-Patent Document 4 is almost the only existing technique that enables the production of a vascular tissue having all of a layered structure, a hollow structure, and a branched structure.
  • spherical cell clusters called spheroids and rod-shaped agarose gels that do not contain cells are accurately placed and cultured by inkjet technology. Since the cells cannot adhere to the agarose gel, the spheroids adhere to each other, and a three-dimensional arbitrary shape tissue can be produced.
  • Non-Patent Document 4 has a problem that a very complicated and special device for controlling the position of the cell three-dimensionally is required.
  • creating a hollow structure requires a multi-step process in which agarose gel guides and spheroids are stacked step by step, and a complex drive mechanism is required to accurately and individually control the position of the object. It is.
  • the cell mass is ejected by the ink jet mechanism, there is a possibility of damaging the cells.
  • a tissue prepared in vitro it is essential that a liquid can be introduced into the inside thereof.
  • a vascular tissue prepared by the technique described in Non-Patent Document 4 Since the inside of the agarose gel used as a guide is filled, a process for removing the agarose gel by heat treatment or enzyme treatment is required. On the other hand, the agarose gel present in the tissue is very difficult to remove because almost the entire surface is covered with cell clumps.
  • Non-Patent Document 4 when a multilayered blood vessel structure composed of different cells is produced using the method described in Non-Patent Document 4, three types of objects, an inner cell, an outer cell, and an agarose gel, are sequentially used. Since it is necessary to arrange and accumulate, there is a problem that the operation process becomes more complicated, and the time required for tissue construction increases and cell function may be lowered.
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to produce a vascular tissue composed of cells at least partially in vitro. It does not require complex position control devices and operations and multi-step complicated processes that are essential in existing methods, and combines all the structures of layered structures, hollow structures, and branched structures with simple operations. It is intended to provide a new method for producing a functional vascular tissue and to provide a vascular tissue obtained by the new method.
  • the invention is directed to a channel structure constituted by a material containing an inorganic salt containing at least one of a polyvalent metal cation or a polyvalent metal cation.
  • the first sodium alginate aqueous solution in which cells are suspended is introduced to form a first alginate hydrogel layer containing cells on the inner wall of the channel structure, and then the gel remaining in the channel structure is not gelled. In this method, the first sodium alginate aqueous solution is removed.
  • alginic acid is cross-linked by polyvalent metal cations supplied from the material constituting the flow path structure simply by introducing a sodium alginate aqueous solution in which cells are suspended in the flow path structure. Since an alginate hydrogel layer containing cells is formed on the inner wall of the flow channel structure, it is possible to produce a hollow vascular tissue in any form depending on the shape of the flow channel structure by a very simple operation. It becomes possible.
  • the second sodium alginate in which cells are suspended in the flow channel structure after removing the first sodium alginate aqueous solution that is not gelled is not necessarily limited. After introducing an aqueous solution and forming a second alginate hydrogel layer containing cells on the inner wall of the first alginate hydrogel layer, the second sodium alginate remaining in the channel structure and not gelled remains. It is preferable to remove the aqueous solution. By doing so, it becomes possible to produce a multi-layered vascular tissue structure consisting of an inner layer and an outer layer very easily, and it is possible to obtain a three-dimensional tissue body that more closely mimics the actual vascular structure. It becomes possible.
  • a cell suspension is introduced into the channel structure after the first sodium alginate aqueous solution or the second sodium alginate aqueous solution is removed. It is also possible to do. In this way, since it becomes possible to further adhere cells to the inner wall surface of the alginate hydrogel layer containing cells, the cells are organized into a single layer on the inner wall surface in the same manner as the actual vascular tissue. It is possible to produce a vascular tissue.
  • the flow channel structure does not contain a polyvalent cation or a polyvalent cation. It is preferable to introduce an aqueous buffer solution having a sufficiently low cation concentration. By doing so, it becomes possible to moderately remove the polyvalent metal cations present in the vicinity of the flow channel structure, so that the gelation rate of alginic acid can be adjusted, and the blood vessel to be produced The thickness of the tissue can be easily and accurately controlled.
  • the buffer aqueous solution may contain at least one of citric acid and ethylenediaminetetraacetic acid, although not limited thereto. By doing so, it becomes possible to more efficiently remove the polyvalent metal cations present in the material constituting the flow channel structure, so that the gelation rate of alginic acid can be adjusted more accurately. Is possible.
  • the invention although not limited, after removing the first sodium alginate aqueous solution or after removing the second sodium alginate aqueous solution, It is preferable to introduce an aqueous solution containing a polyvalent metal cation. By doing so, it becomes possible to completely gel the alginate hydrogel layer formed on the inner wall of the flow channel structure from the inside, and it is possible to produce a vascular tissue with higher strength.
  • the inner wall of the flow path structure can be obtained by subjecting the material constituting the flow path structure to at least one of physical operation and chemical treatment. It is also possible to separate and recover the alginic acid hydrogel layer containing the cells formed in the above from the flow channel structure. By doing so, it is possible to collect the vascular tissue formed in the flow path, and thus, for example, it is possible to provide a vascular tissue that can be used for vascular transplantation treatment. It is possible to provide a vascular tissue as a unit structure useful for constructing a large cell tissue.
  • the material constituting the flow channel structure is preferably at least partially a hydrogel material, although not limited thereto.
  • a hydrogel material By doing so, it becomes possible to efficiently supply the polyvalent metal cation necessary for gelling alginic acid to the aqueous sodium alginate solution existing inside the channel structure, and to culture cells. In some cases, oxygen and nutrients can be supplied from the material constituting the channel structure.
  • the hydrogel material includes at least one of alginic acid, agarose, gelatin, collagen, and polyethylene glycol diacrylate. Is preferred. In this way, it is biocompatible, has low toxicity to cells, has a relatively high physical strength, has a high water retention capacity, and enables efficient supply of nutrients and oxygen to cellular tissues. It is possible to produce a channel structure.
  • the material constituting the flow path structure may be at least partially polydimethylsiloxane, although not limited thereto.
  • the polyvalent metal cation is preferably at least one of calcium ion, strontium ion, and barium ion, although not limited thereto. In this way, when alginic acid is gelled, it becomes possible to reduce the toxicity to cells and to produce a high-strength vascular tissue.
  • the concentration of sodium alginate contained in the first aqueous sodium alginate solution and the second aqueous sodium alginate solution is 0.1% (w / v), although not limited thereto. ) Or more and 10% (w / v) or less.
  • the inner wall surface of the flow path structure is previously surface-treated with a polycation.
  • the polycation is preferably at least one of poly-L-lysine, chitosan, and polyethyleneimine.
  • At least one of collagen and Matrigel is added to at least one of the first aqueous sodium alginate solution and the second aqueous sodium alginate solution. May be. By doing so, it becomes possible to maintain the function of the cells embedded in the first alginate hydrogel layer or the second alginate hydrogel layer, and the inside of the formed alginate hydrogel layer. Since it is possible to promote the adhesion and proliferation of the introduced cells, it is possible to more efficiently form a single cell inner layer.
  • cell-adhesive sodium alginate is added to at least one of the first aqueous sodium alginate solution and the second aqueous sodium alginate solution. Also good. By doing so, it becomes possible to promote the adhesion and proliferation of cells introduced into the formed alginate hydrogel layer, so that it is possible to form a single cell inner layer more efficiently. Become.
  • the cell is preferably a mammal-derived cell, although not limited thereto.
  • a mammal-derived cell although not limited thereto.
  • the cells are preferably vascular smooth muscle cells, vascular endothelial cells, vascular epithelial cells, or a mixture thereof, although not limited thereto.
  • the density of cells contained in the first sodium alginate aqueous solution and the second sodium alginate aqueous solution is 10 million or more per mL, respectively, although not limited thereto. Is preferred. By doing so, it becomes possible to embed cells densely inside the alginate hydrogel layer to be formed, adhesion between cells is promoted, and functional vascular tissue can be efficiently formed In addition, the physiological function of the cell can be maintained high.
  • the cells contained in the first sodium alginate aqueous solution and the second sodium alginate aqueous solution are the type, density, and mixing ratio, respectively. It is preferable that at least one of them is different. By doing in this way, it is possible to produce a tissue closer to the vascular tissue of an actual living body constituted by a multilayer structure having different cell compositions.
  • the first alginic acid hydrogel layer and the second alginic acid hydrogel layer each have a thickness of 10 micrometers or more. By doing so, it becomes possible to efficiently embed cells in the alginate hydrogel layer and to produce a high strength vascular tissue.
  • the vascular tissue preferably has a multilayer structure, a hollow structure, and a branch structure at least partially.
  • the invention according to another aspect of the present invention is a vascular tissue produced using the vascular tissue production method according to any one of claims 1 to 21.
  • vascular tissue can be used as a transplant material, used as a luminal structure in tissue engineering, and can be used to evaluate cell functions in a structure that highly mimics the anatomy. Alternatively, it is possible to provide materials that are very useful for academic applications.
  • the present invention since the present invention is configured as described above, it does not require a special device required in the conventional method for arranging cells three-dimensionally, and the cells are suspended in the channel structure. It exhibits an excellent effect that a vascular tissue can be produced efficiently, simply and accurately by a very simple operation of introducing a turbid alginate aqueous solution.
  • the present invention is configured as described above, there are only a few reported examples so far, and a functional blood vessel having all of a multilayer structure, a hollow structure, and a branched structure at the same time. Since the tissue can be easily produced, it is possible to provide a large amount of a material that highly mimics the vascular tissue in the living body.
  • the present invention is configured as described above, the vascular tissue obtained using the present invention has excellent mechanical strength and high operability. Therefore, a material that is very useful in applications such as tissue engineering and regenerative medicine, such as creating a three-dimensional tissue incorporating a luminal structure by embedding it in another relatively large tissue, for example. It becomes possible to provide.
  • the present invention is configured as described above, it is possible to produce a vascular tissue having an arbitrary shape by arbitrarily designing the shape of the flow path, and further, sodium alginate.
  • the composition of the aqueous solution and the liquid feeding time By controlling the composition of the aqueous solution and the liquid feeding time, the thickness of the vascular tissue and the width of the hollow portion can be arbitrarily controlled. Therefore, it is possible to produce vascular tissue having various forms depending on the application.
  • the present invention is configured as described above, for example, thrombus formation behavior or angiogenesis behavior in multilayered vascular tissue having various shapes, metastasis or invasion of cancer cells in blood vessels. It becomes possible to provide a very useful material for analyzing, analyzing, and evaluating various biological phenomena that occur in vascular tissue such as behavior.
  • FIG. 1 (a) and 1 (b) are diagrams showing the structure of a device having a flow channel structure
  • FIG. 1 (a) is a view taken in the direction of arrow B in FIG. 1 (b)
  • FIG. 4A is a view taken in the direction of arrow B in FIGS. 4B to 4D, and FIGS. 4B to 4D are lines A0-A1 and A2-A3 in FIG. 4A, respectively.
  • a cross-sectional view of the flow path structure along line A4-A5 is shown.
  • FIG. 5A is a schematic diagram of a flow path structure according to an example and a micrograph of a multilayered alginate hydrogel layer formed on the inner wall of the flow path structure, and FIG. 5A shows an overall view of the flow path structure.
  • FIGS. 5B to 5E are photomicrographs at a position corresponding to the portion B in FIG.
  • FIG. 5 (b) is a fluorescence micrograph showing the formation of the first alginate hydrogel layer containing fluorescent particles
  • FIG. 5 (c) is just after the second sodium alginate aqueous solution is introduced.
  • FIG. 5D shows a state in which a buffer aqueous solution containing green fluorescent particles flows inside the alginate hydrogel layer after the second alginate hydrogel layer is formed.
  • FIG. 5E is a fluorescence micrograph
  • FIG. 5E is a phase contrast micrograph of the formed alginate hydrogel layer.
  • FIG. 6A is a micrograph showing an overall view of the flow channel structure
  • FIGS. 6B and 6C are phase contrast microscopes at positions corresponding to portion B in FIG. 6A, respectively. It is a photograph and a fluorescence micrograph.
  • FIG. 7 is a micrograph of a multilayer alginate hydrogel layer containing different cells, separated by subjecting a material constituting a flow channel structure to chemical treatment, according to an example. ) Are a phase contrast micrograph and a fluorescence micrograph, respectively.
  • FIG. 1 is a schematic view showing the most basic flow channel structure for producing a vascular tissue and the formation process of an alginate hydrogel layer containing cells.
  • 1 (a) and 1 (b) are diagrams showing the structure of a device having a flow channel structure
  • FIG. 1 (a) is a view taken in the direction of arrow B in FIG. 1 (b)
  • FIG. FIG. 2B is a cross-sectional view of the flow path structure along the line A0-A1 in FIG.
  • Fig. (C) is an enlarged view of a portion C in Fig. 1 (a) and a schematic diagram showing a process of forming an alginate hydrogel layer containing cells.
  • the material constituting the flow channel structure has physical strength that can maintain the formed flow channel structure, has low toxicity to cells, and alginic acid in which polyvalent metal cations contained in the material are introduced into the flow channel structure
  • Any material can be used as long as it diffuses into the aqueous sodium solution, and various hydrogel materials and polymer materials can be used.
  • the medium component has a certain degree of strength and can be sterilized in advance, and the medium component penetrates into the material in order to assist the maintenance of cell functions. Therefore, a material having high water retention such as hydrogel is suitable.
  • Typical hydrogel materials for constituting the channel structure include alginic acid, agarose, gelatin, collagen, polyethylene glycol diacrylate and the like.
  • a silicone polymer material such as polydimethylsiloxane has an advantage that the flow channel structure is easy to process, and can be premixed with an inorganic salt composed of polyvalent cations, and further an aqueous sodium alginate solution.
  • the alginate hydrogel layer is formed by elution of polyvalent cations from their salts, etc., so that the channel formed by such a polymer material. It is also possible to use a structure.
  • the flow channel structure shown in FIG. 1 is formed by laminating a flat substrate having a groove structure and a flat substrate having no groove structure on each other.
  • a flat substrate having a groove structure can be formed, for example, by molding using a mold.
  • the alginic acid which suspended the cell with respect to the flow-path structure comprised with the raw material containing the polyvalent metal cation or the inorganic salt containing a polyvalent metal cation was shown.
  • alginic acid is cross-linked by the polyvalent metal cations supplied from the material constituting the flow path structure, and an alginate hydrogel layer containing cells is formed on the inner wall of the flow path. It is possible to produce a vascular tissue having a hollow structure and a layered structure depending on the shape.
  • the polyvalent metal cation is previously added to the sol solution before forming the hydrogel.
  • An aqueous solution containing a cation or an inorganic salt containing a polyvalent metal cation can be mixed and then gelled to produce a flow channel structure.
  • a valent metal cation can be included.
  • the size of the flow channel structure can be set so that the depth and the width are arbitrary values of 50 micrometers or more and 10 millimeters or less, respectively, according to the structure of the vascular tissue to be manufactured.
  • the cross section of the channel structure can be rectangular, circular, or any other shape.
  • the rectangular cross section has the advantage that it can be easily formed by a molding process
  • the circular section has the advantage that a vascular tissue closer to the anatomy can be easily formed.
  • any polyvalent metal ion capable of gelling alginic acid can be used.
  • at least one of calcium ion, strontium ion, and barium ion is preferable from the viewpoint of low toxicity to cells and cost.
  • the material constituting the flow channel structure is a hydrogel material, it is preferable to dissolve these chlorides in a sol solution in advance, and when polydimethylsiloxane is used as the material, these chlorides are used. Products, sulfates and carbonates are preferably used.
  • the concentration of the polyvalent metal cation contained in the material constituting the flow channel structure may be any value as long as it allows gelation of alginic acid and is not toxic to cells. It is preferably 100 mM or less. In addition, since the time required for gelatinization of alginic acid becomes shorter as the concentration of the polyvalent metal cation is higher, it is preferable to optimize this concentration according to the size of the flow channel structure to be used.
  • the ionic strength of the aqueous sodium alginate solution needs to be appropriately adjusted in advance, and the aqueous sodium alginate solution is preferably sterilized before suspending the cells.
  • vascular smooth muscle cells By using vascular smooth muscle cells, vascular endothelial cells, vascular epithelial cells, etc. as cells suspended in an aqueous sodium alginate solution, a multilayered vascular tissue close to the actual vascular tissue can be prepared.
  • vascular smooth muscle cells By using vascular smooth muscle cells, vascular endothelial cells, vascular epithelial cells, etc. as cells suspended in an aqueous sodium alginate solution, a multilayered vascular tissue close to the actual vascular tissue can be prepared.
  • cells such as fibroblasts, myoblasts, hepatocytes, nerve cells, cardiomyocytes, etc. Is also possible.
  • the density of cells suspended in a sodium alginate aqueous solution is preferably 10 million or more per mL.
  • the cells are densely embedded inside the alginate hydrogel layer that is formed, which promotes adhesion between cells and efficiently creates functional vascular tissue.
  • it is possible to maintain high physiological functions of cells.
  • Collagen, Matrigel, etc. can be added to the sodium alginate aqueous solution in advance. By doing so, it becomes possible to assist the maintenance of the function of the cells embedded in the sodium alginate aqueous solution, and the cells can adhere to the alginate hydrogel layer to be formed. By introducing cells inside, it becomes possible to form a vascular tissue in which the inner cells are organized into a single layer, and it is possible to construct a tissue in a form closer to the actual vascular tissue.
  • cell-adhesive sodium alginate may be added to the sodium alginate aqueous solution. By doing so, it becomes possible to impart cell adhesion to the formed alginate hydrogel layer, and by introducing cells inside the alginate hydrogel layer, the inner cells are organized into a single layer. It becomes possible to produce a vascular tissue in a morphological form.
  • sodium alginate to which RDG peptide or collagen is covalently bonded can be used.
  • the inner wall surface of the channel structure is modified with a polycation in advance.
  • the polycation contained in the polycation aqueous solution at least one of poly-L-lysine, chitosan, and polyethyleneimine can be used.
  • the concentration of the polycation aqueous solution and the amount of the introduced liquid may be any value, but it is necessary to consider that there is an amount of polycation molecules that sufficiently coats the inner wall surface of the channel structure. is there.
  • polyvalent metal cations contained in the material constituting the channel structure may be partially removed by introducing the polycation aqueous solution, the polycation aqueous solution may be used as necessary. A polyvalent metal cation may be added in advance.
  • aqueous buffer solution that does not contain a polyvalent metal cation or has a sufficiently low concentration just before introducing an aqueous sodium alginate solution, if necessary.
  • This operation is effective in controlling the gelation rate of alginic acid, particularly when using a thin channel structure made of hydrogel and having a diameter of several millimeters or less.
  • EDTA ethylenediaminetetraacetic acid
  • the alginate hydrogel layer After the alginate hydrogel layer is formed, it is preferable to introduce an aqueous solution containing a polyvalent metal cation into the flow channel structure so that the alginate hydrogel layer is completely gelled from the inside. By doing so, it is possible to prevent the alginate hydrogel layer and the cells embedded therein from being removed by the shearing force of the solution flowing inside the alginate hydrogel layer.
  • the polyvalent metal cation to be introduced may be the same as or different from that contained in the material constituting the flow channel structure, but should be less toxic to cells. Is preferable, and is preferably at least one of calcium, strontium, and barium ions.
  • vascular tissue After forming an alginate hydrogel layer containing cells, vascular tissue can be efficiently formed by performing a culture operation as necessary. In addition, it is preferable to introduce a liquid medium into the channel structure during culture. By doing so, it is possible to efficiently supply oxygen and nutrients to the cells.
  • a hydrogel material is used as the material constituting the flow channel structure, cells in the flow channel can be more efficiently immersed in advance by immersing the entire device in a liquid medium and allowing the medium components to penetrate into the material. It is possible to supply oxygen and nutrients.
  • FIG. 2 is a schematic diagram showing a process for forming a multilayer alginate hydrogel layer containing two types of cells.
  • a first sodium alginate aqueous solution containing cells A is introduced into a channel structure composed of a material containing a polyvalent metal cation, and the first alginate hydrogel layer containing cells A is introduced. Is formed, a second aqueous sodium alginate solution containing cells B is introduced. After the second alginate hydrogel layer containing cells B is formed inside the first alginate hydrogel layer containing cells A, an aqueous solution containing a polyvalent metal cation is introduced to completely gel the alginate hydrogel layer. As a result, it is possible to form a multilayer alginate hydrogel layer containing two types of cells in the outer layer and the inner layer on the inner wall of the channel structure.
  • a sodium alginate aqueous solution is introduced in two stages to form a two-layer alginate hydrogel layer.
  • three or more alginate hydrogel layers are produced.
  • FIG. 3 shows a schematic diagram showing how cells are organized into a single layer inside a multilayer alginate hydrogel layer containing different types of cells.
  • an aqueous solution in which the cells C are suspended is introduced.
  • different cells are organized into a single layer inside the multilayered alginate hydrogel layer containing different cells. It is possible to obtain an organized tissue structure.
  • FIG. 4 shows a schematic view of a flow channel structure for producing a vascular tissue having a branch
  • FIG. 4 (a) is a view as seen from the direction of arrow B in FIGS. 4 (b) to 4 (d).
  • FIGS. 4B to 4D are cross-sectional views of the channel structure taken along lines A0-A1, A2-A3, and A4-A5 in FIG. 4A, respectively.
  • a flow channel structure in which the flow channel connected to the inlet branches into a plurality of flow channels, finally converges to one flow channel and is connected to the outlet, It is possible to produce a vascular tissue that branches into and joins.
  • a tissue having such a shape highly mimics the structure of an actual vascular tissue, so that it is useful for analyzing the physiological behavior of cells in the vascular tissue and is relatively large in vitro. It is also very useful as a material for forming tissue.
  • a flow channel structure having a plurality of inlets and outlets may be used, or a flow channel structure that branches in the vertical direction may be used. Alternatively, different channel structures may be used in stages.
  • the material constituting the flow channel structure is subjected to physical operation, chemical treatment, or both. By applying, it is possible to separate the formed vascular tissue from the channel structure.
  • the hydrogel when a hydrogel material that can be decomposed by an enzyme is used as a material constituting the channel structure, the hydrogel can be chemically decomposed by immersing the entire device including the channel structure in an aqueous solution containing the enzyme.
  • the hydrogel when the flow channel structure is composed of a hydrogel material that is decomposed or dissolved by temperature change, hydrogen ion concentration change, or light irradiation, the hydrogel is decomposed by performing these operations. It is possible to separate the vascular tissue from the channel structure. Further, in the case of a flow path structure constituted by two flat-plate substrates, it is possible to perform a physical operation such as physically peeling these substrates. However, regardless of which method is used, it is preferable to separate the formed vascular tissue under conditions that cause little damage to the cells.
  • FIG. 5 shows a schematic diagram of the channel structure and a micrograph of a multilayer alginate hydrogel layer formed on the inner wall of the channel structure.
  • FIG. 5 (a) shows the entire channel structure.
  • FIGS. 5B to 5E are photomicrographs at positions corresponding to the portion B in FIG.
  • FIG. 5 (b) is a fluorescence micrograph showing the formation of the first alginate hydrogel layer containing fluorescent particles
  • FIG. 5 (c) is just after the second sodium alginate aqueous solution is introduced.
  • FIG. 5D shows a state in which a buffer aqueous solution containing green fluorescent particles flows inside the alginate hydrogel layer after the second alginate hydrogel layer is formed.
  • FIG. 5E is a fluorescence micrograph
  • FIG. 5E is a phase contrast micrograph of the formed alginate hydrogel layer.
  • the flow channel structure shown in FIG. 5 (a) is composed of an agarose hydrogel prepared using an agarose aqueous solution containing calcium chloride.
  • This flow channel structure is formed by producing an agarose hydrogel having a fine groove structure by molding using a mold, and superposing and bonding to a flat agarose hydrogel.
  • the agarose concentration in the agarose aqueous solution used to form the channel structure was 5% (w / v). Further, 10 mM calcium chloride was mixed in advance as a gelling agent for sodium alginate.
  • the concentration of agarose may be any value as long as it is strong enough to perform a molding operation or the like for producing a flow channel structure during the formation of agarose hydrogel.
  • the cross-sectional shape of the flow channel structure is rectangular, and the width and depth thereof are 500 micrometers, respectively.
  • these values can be set to any value between 50 micrometers and 10 millimeters, and are circular, elliptical, and other complicated cross sections. It is also possible to use a channel structure having a shape.
  • the shape of the flow channel structure can be any shape depending on the structure of the vascular tissue to be produced.
  • silicon tubes were connected to the inlet and the outlet of the channel structure, respectively.
  • the end of the tube connected to the inlet is immersed in a container containing the aqueous solution to be introduced, and the aqueous solution is introduced into the flow path structure by suctioning from the end of the tube connected to the outlet using a syringe pump.
  • a syringe pump was introduced.
  • liquid is delivered by suction, and different types of aqueous solutions are stepped into the channel structure by sequentially immersing them in individual containers containing aqueous solutions that introduce the ends of the silicon tubes connected to the inlet. Can be introduced efficiently and efficiently.
  • any method can be used as long as the solution can be sent in order to the inside of the flow channel structure and the switching of the solution can be performed in a short time even if the solution is not sent by suction.
  • the capillary tube can be prefilled with the aqueous solution to be introduced in order, then the end of the tube can be connected to the inlet of the flow channel structure, and the pressure can be applied from the end to send the liquid. is there.
  • the channel structure constituted by the agarose hydrogel containing 10 mM calcium chloride shown in FIG. 5A first, 0.05% (w / v) poly-L-lysine aqueous solution containing 10 mM calcium chloride is added. The solution was fed for 1 minute, and the inner wall surface of the channel structure was coated with polycation. Next, after feeding a 10 mM sodium citrate aqueous solution for 30 seconds, a first sodium alginate aqueous solution having a concentration of 0.5% (w / v) containing red fluorescent particles was fed. The flow rate of these aqueous solutions was 100 ⁇ L per minute as an example.
  • the concentration, flow rate, and liquid feeding time of the poly-L-lysine and citric acid aqueous solution are conditions that allow the inner wall surface of the channel structure to be sufficiently coated and that calcium ions contained in the agarose hydrogel can be removed appropriately. Any value can be used.
  • an alginate hydrogel layer having a thickness of about 100 micrometers was formed by feeding a sodium alginate aqueous solution for about 1 minute.
  • the thickness of the alginate hydrogel layer can be controlled by changing the flow rate of the sodium alginate aqueous solution or the liquid feeding time. It is also possible to adjust the strength of the formed alginate hydrogel layer by changing the concentration of the aqueous sodium alginate solution.
  • the second alginic acid hydrogel aqueous solution containing blue fluorescent particles was introduced. It was confirmed that the second alginic acid hydrogel layer was formed inside the hydrogel layer, and a multilayered alginic acid hydrogel layer was formed. Also, as shown in FIG. 5 (d), when a 10 mM calcium chloride aqueous solution containing green fluorescent particles was introduced as a gelling agent aqueous solution inside the formed multilayer alginate hydrogel layer, the formed alginate was obtained. It was observed that green fluorescent particles flowed inside the hydrogel layer, and it was confirmed that a multilayer alginate hydrogel layer having a hollow structure depending on the shape of the channel was formed.
  • vascular tissue was constructed using a sodium alginate aqueous solution in which cells were suspended. The manufacturing method will be described.
  • FIG. 6 shows another schematic example of the flow path structure and a multilayer alginate hydrogel layer embedded in two types of cells stained with different fluorescent dyes formed on the inner wall of the flow path structure.
  • FIG. 6A is an overall view of the flow channel structure, and FIGS. 6B and 6C are phase differences at positions corresponding to the portion B in FIG. 6A, respectively. It is a micrograph and a fluorescence micrograph.
  • the flow channel structure shown in FIG. 6 (a) was produced by molding using 5% (w / v) agarose containing 10 mM calcium chloride and 0.8% (w / v) sodium chloride.
  • the ionic strength of the solution contained in the material constituting the flow channel structure may be adjusted in advance so as not to affect the cells. preferable.
  • the whole hydrogel material constituting the flow channel structure was immersed in a liquid medium containing 10 mM calcium chloride for 24 hours in advance to infiltrate nutrients into the hydrogel material.
  • fibroblasts were used as cells A contained in the first aqueous sodium alginate solution, and myoblasts were used as cells B contained in the second aqueous sodium alginate solution. These concentrations were 4 ⁇ 10 7 cells / mL and 7 ⁇ 10 7 cells / mL, respectively.
  • the first sodium alginate aqueous solution containing the cells A is introduced into the flow channel structure constituted by the agarose hydrogel containing calcium chloride, and the cells A are contained.
  • a second sodium alginate aqueous solution containing cells B is introduced, whereby the second alginate hydrogel layer containing cells B is contained inside the first alginate hydrogel layer containing cells A. It was confirmed that an alginate hydrogel layer was formed.
  • FIG. 7 shows a micrograph of a multi-layered alginate hydrogel layer containing different cells separated by subjecting the material constituting the channel structure to chemical treatment
  • FIG. And (b) are a phase contrast micrograph and a fluorescence micrograph, respectively.
  • the entire device constituted by the agarose hydrogel is immersed in a phosphate buffer containing agarase.
  • a phosphate buffer containing agarase By performing the operation, it was possible to dissolve the agarose hydrogel by enzymatic reaction and to separate the vascular tissue from the channel structure.
  • the vascular tissue separated and recovered from the flow channel structure maintained a multilayer structure even after being separated. Furthermore, it was confirmed that the mechanical strength was high enough to enable operation with tweezers or the like. In addition, it was possible to control the mechanical strength of the structure
  • the collected vascular tissue can circulate liquid inside, and the vascular tissue produced by using this method can be used as an artificial vascular graft for transplantation in a surgical field or a luminal structure. It was shown that it can be used as a unit structure for the construction of a relatively large three-dimensional organization that incorporates.
  • the present invention Since the present invention is configured as described above, the present invention highly mimics the original vascular tissue morphology, which has all of the multilayer structure, hollow structure, and branch structure, which has never been reported so far. Therefore, it is possible to provide a useful technique in the medical field and the biochemical research field because it is possible to easily produce the tissue body without requiring a special device or a complicated process.
  • the present invention is configured as described above, it is possible to produce and provide a fine artificial blood vessel graft having a diameter of about 5 mm or less, which has been practically used so far and is composed of cells. Therefore, a wide range of applications in the surgical field is expected.
  • the present invention is configured as described above, by appropriately setting the shape of the flow channel structure to be used and the feeding time of the sodium alginate aqueous solution according to the structure of the vascular tissue to be produced, A vascular tissue having an arbitrary shape and thickness can be easily produced, and a vascular tissue having various forms can be constructed depending on the application. Therefore, for example, it is possible to provide a new technique for producing various types of artificial blood vessel grafts having high strength, which are essential for blood vessel transplantation.
  • the present invention is configured as described above, for example, it is possible to produce a tissue body in which vascular endothelial cells are organized into a single layer on the inner wall surface of an alginate hydrogel layer containing vascular smooth muscle cells. It is possible to accurately reproduce the morphology of the actual vascular tissue. Therefore, the vascular tissue prepared using the present invention is a tool for evaluating the metastatic behavior and invasion behavior of cancer cells moving in the blood, or analyzing the physiological behavior of cells such as thrombus formation and angiogenesis. Expected to be widely used in the fields of medicine and biochemistry.
  • the produced vascular tissue can be separated from the flow channel structure and recovered, and has high operability from the viewpoint of strength. Therefore, for example, by implanting the collected vascular tissue in another cellular tissue to form a tissue body having a luminal structure, oxygen and nutrients can be efficiently supplied to cells inside the tissue. It is possible to build a large three-dimensional tissue, and a wide range of applications in the fields of tissue engineering and regenerative medicine are expected.

Abstract

Provided is a novel technique for producing functional vascular tissue having a layered structure, a hollow structure, and a branched structure combined by a simple operation, which requires neither the complex position control devices or operations that are essential to existing techniques for the ex vivo production of vascular tissue at least partially comprising cells, nor a convoluted multiple-stage process. The vascular tissue obtained by said novel technique is also provided. A method for producing the vascular tissue is used by which a first aqueous sodium alginate solution, in which cells have been suspended, is introduced into a channel structure comprising a material that contains polyvalent metal cations or that contains an inorganic salt containing the polyvalent metal cations, a first alginate hydrogel layer containing the cells is formed on the inner walls of the channel structure, and thereafter the first aqueous sodium alginate solution which remains in the channel structure and has not gelated is removed.

Description

血管組織およびその作製方法Vascular tissue and method for producing the same
 本発明は、血管組織およびその作製方法に関する。 The present invention relates to a vascular tissue and a production method thereof.
 人工的に構築された血管様の組織や材料は、外科領域における移植用人工血管グラフトとして必須である。また、再生医療を目的として、生体外において比較的大きな組織体を形成するためには、内部の細胞に効率的に酸素や栄養分を供給する必要があり、管腔状の組織を包埋することが望ましい。さらに、生体の構造を模倣した環境において細胞の生理学的評価を行う場合に、血管網を有する組織を作製する必要がある。これらの要求に応えるために、生体外において人工的に機能的な血管組織を作製するための技術開発は、現在世界的にも非常に激しい競争下にある。 An artificially constructed blood vessel-like tissue or material is essential as an artificial blood vessel graft for transplantation in the surgical field. In addition, for the purpose of regenerative medicine, in order to form a relatively large tissue body in vitro, it is necessary to efficiently supply oxygen and nutrients to internal cells, and embedding a luminal tissue. Is desirable. Furthermore, when performing physiological evaluation of cells in an environment that mimics the structure of a living body, it is necessary to create a tissue having a vascular network. In order to meet these demands, technological development for artificially producing functional vascular tissue in vitro is currently under extremely intense competition worldwide.
 このような応用を目的として作製される血管組織は、内部に液体を送液することが可能であること、移植操作などに耐えられる強度を有すること、実際の生体内の組織に比較的近い状態であること、等の条件を満たすことが必要である。 Vascular tissue prepared for such applications is capable of delivering liquid inside, has strength to withstand transplantation operations, etc., and is relatively close to actual living tissue It is necessary to satisfy the conditions such as
 たとえば通常の人工血管としては、一般的にポリエステルやPTFE等の人工材料、あるいはコラーゲンやゼラチン等の生体材料によって形成されたものが用いられるが、直径が5mm程度以下のものは血小板などによって閉塞されやすいため、医療分野において実用化されている人工血管の直径は、通常は5mm以上である。より生体親和性が高く、また血栓の形成を防止できる人工血管として、少なくとも部分的に細胞によって構成された血管組織を利用することが望ましい。 For example, as an ordinary artificial blood vessel, an artificial material such as polyester or PTFE or a biomaterial such as collagen or gelatin is generally used, but those having a diameter of about 5 mm or less are blocked by platelets or the like. Since it is easy, the diameter of the artificial blood vessel put into practical use in the medical field is usually 5 mm or more. As an artificial blood vessel having higher biocompatibility and capable of preventing thrombus formation, it is desirable to use a vascular tissue composed at least partially of cells.
 生体内における血管組織は、血管平滑筋細胞の内側に血管内皮細胞が単層状に組織化した多層状構造を形成しており、内部に血液が流通するための中空構造を有し、さらに臓器などの生体組織全体に効率よく栄養素を循環させるために必要に応じて分岐し合流する、といった比較的複雑な組織である。そのため、生体外において機能的な血管組織を作製するためには、これらの構造を簡便かつ正確に再現する手法の開発が必要であり、細胞を3次元的に配置する技術が必要となる。 The vascular tissue in the living body has a multi-layered structure in which vascular endothelial cells are organized in a single layer inside vascular smooth muscle cells, and has a hollow structure for circulating blood inside. In order to efficiently circulate nutrients throughout the body tissue, it is a relatively complex tissue that branches and merges as necessary. Therefore, in order to produce a functional vascular tissue in vitro, it is necessary to develop a technique for reproducing these structures simply and accurately, and a technique for arranging cells three-dimensionally is required.
 生体外において細胞によって構成された血管組織を構築するために、これまでに様々な技術が開発されてきた。例として、非特許文献1に示されるような温度応答性培養基材を利用した細胞シートの形成と巻き取り、非特許文献2に示されるようなファイバー状ハイドロゲル材料への細胞の包埋、非特許文献3に示されるような中空状ポリマースキャホ-ルド(細胞培養のための足場となる基材)への細胞の播種、非特許文献4に示されるような細胞集塊を単位構造として利用したインクジェットプリンティングの応用などが挙げられる。 Various techniques have been developed so far to construct a vascular tissue composed of cells in vitro. As an example, formation and winding of a cell sheet using a temperature-responsive culture substrate as shown in Non-Patent Document 1, embedding of cells in a fibrous hydrogel material as shown in Non-Patent Document 2, Seeding of cells into a hollow polymer scaffold (substrate used as a scaffold for cell culture) as shown in Non-Patent Document 3, and a cell cluster as shown in Non-Patent Document 4 as a unit structure Application of inkjet printing used.
 しかしながら、これまでに開発されてきた血管組織の作製法である、細胞シートの巻き取りによる手法や、ファイバー状のハイドロゲル材料への細胞の包埋による手法では、分岐構造を有する組織を作製することは困難である。 However, a tissue structure having a branched structure is produced by a method of winding a cell sheet or a method of embedding cells in a fiber-like hydrogel material, which has been developed so far. It is difficult.
 非特許文献4に報告されているようなインクジェットプリンティングを用いた手法は、層状構造、中空構造、分岐構造のすべてを有する血管組織の作製を可能とするほぼ唯一の既存の手法である。この手法では、スフェロイドと呼ばれる球形の細胞の塊と、細胞を含まない棒状のアガロースゲルを、それぞれインクジェット技術によって正確に配置し培養する。細胞はアガロースゲルに接着することが出来ないため、スフェロイド同士が接着し、立体的な任意の形状の組織を作製することが可能となる。 The technique using inkjet printing as reported in Non-Patent Document 4 is almost the only existing technique that enables the production of a vascular tissue having all of a layered structure, a hollow structure, and a branched structure. In this technique, spherical cell clusters called spheroids and rod-shaped agarose gels that do not contain cells are accurately placed and cultured by inkjet technology. Since the cells cannot adhere to the agarose gel, the spheroids adhere to each other, and a three-dimensional arbitrary shape tissue can be produced.
 しかしながら、上記非特許文献4に記載された手法では、細胞の位置を3次元的に制御するための非常に複雑で特殊な装置を必要する、という問題点がある。また、中空構造を作製するためには、アガロースゲルのガイドとスフェロイドを段階的に積み上げる多段階のプロセスが必要となり、さらに、物体の位置を個別に正確に制御するための複雑な駆動機構が必要である。また、インクジェット機構によって細胞塊を吐出するため、細胞に対してダメージを与える可能性がある。 However, the method described in Non-Patent Document 4 has a problem that a very complicated and special device for controlling the position of the cell three-dimensionally is required. In addition, creating a hollow structure requires a multi-step process in which agarose gel guides and spheroids are stacked step by step, and a complex drive mechanism is required to accurately and individually control the position of the object. It is. Further, since the cell mass is ejected by the ink jet mechanism, there is a possibility of damaging the cells.
 さらに、生体外において作製した組織が血管組織として機能するためには、その内部に液体を導入できることが必須であるが、上記非特許文献4に記載された手法によって作製された血管組織は、その内部にガイドとして用いたアガロースゲルが充填されてしまうため、アガロースゲルを加熱処理や酵素処理などで除去するためのプロセスが必要となる。その反面、組織内部に存在するアガロースゲルは、ほぼ全面が細胞集塊によって覆われているため、その除去は非常に困難である。 Furthermore, in order for a tissue prepared in vitro to function as a vascular tissue, it is essential that a liquid can be introduced into the inside thereof. However, a vascular tissue prepared by the technique described in Non-Patent Document 4 Since the inside of the agarose gel used as a guide is filled, a process for removing the agarose gel by heat treatment or enzyme treatment is required. On the other hand, the agarose gel present in the tissue is very difficult to remove because almost the entire surface is covered with cell clumps.
 さらに、上記非特許文献4に記載された手法を用いて、異なる細胞によって構成される多層状の血管構造を作製する場合、内側の細胞、外側の細胞、アガロースゲルの3種の物体を順番に配置し積み上げる必要があるため、操作プロセスがさらに複雑となるという問題点があるほか、組織構築に要する時間が増加し細胞機能の低下を招く可能性がある。 Furthermore, when a multilayered blood vessel structure composed of different cells is produced using the method described in Non-Patent Document 4, three types of objects, an inner cell, an outer cell, and an agarose gel, are sequentially used. Since it is necessary to arrange and accumulate, there is a problem that the operation process becomes more complicated, and the time required for tissue construction increases and cell function may be lowered.
 本発明は、従来の技術の有する上記したような問題点に鑑みてなされたものであり、その目的とするところは、少なくとも部分的に細胞によって構成される血管組織を生体外において作製するための既存の手法において必須であった、複雑な位置制御装置および操作、および、多段階にわたる煩雑なプロセスを必要とせず、簡便な操作によって、層状構造、中空構造、分岐構造のすべての構造を兼ね備えた機能的な血管組織を作製する新規手法を提供するとともに、その新規手法によって得られる血管組織を提供しようとするものである。 The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to produce a vascular tissue composed of cells at least partially in vitro. It does not require complex position control devices and operations and multi-step complicated processes that are essential in existing methods, and combines all the structures of layered structures, hollow structures, and branched structures with simple operations. It is intended to provide a new method for producing a functional vascular tissue and to provide a vascular tissue obtained by the new method.
 上記目的を達成するために、本発明の一観点に係る発明は、多価の金属カチオン又は多価の金属カチオンの少なくともいずれかを含む無機塩を含む素材によって構成される流路構造に対し、細胞を懸濁させた第1のアルギン酸ナトリウム水溶液を導入し、前記流路構造の内壁に細胞を含む第1のアルギン酸ハイドロゲル層を形成した後、前記流路構造内に残存するゲル化していない前記第1のアルギン酸ナトリウム水溶液を除去する、血管組織の作製方法である。このような方法を用いることによって、流路構造に対し細胞を懸濁させたアルギン酸ナトリウム水溶液を導入するだけで、流路構造を構成する素材から供給される多価の金属カチオンによってアルギン酸が架橋され、流路構造の内壁に細胞を含むアルギン酸ハイドロゲル層が形成されるため、非常に簡便な操作によって、流路構造の形状に依存した任意の形態の、中空状の血管組織を作製することが可能となる。 In order to achieve the above object, the invention according to one aspect of the present invention is directed to a channel structure constituted by a material containing an inorganic salt containing at least one of a polyvalent metal cation or a polyvalent metal cation. The first sodium alginate aqueous solution in which cells are suspended is introduced to form a first alginate hydrogel layer containing cells on the inner wall of the channel structure, and then the gel remaining in the channel structure is not gelled. In this method, the first sodium alginate aqueous solution is removed. By using such a method, alginic acid is cross-linked by polyvalent metal cations supplied from the material constituting the flow path structure simply by introducing a sodium alginate aqueous solution in which cells are suspended in the flow path structure. Since an alginate hydrogel layer containing cells is formed on the inner wall of the flow channel structure, it is possible to produce a hollow vascular tissue in any form depending on the shape of the flow channel structure by a very simple operation. It becomes possible.
 また、本観点に係る発明において、限定されるわけではないが、ゲル化していない前記第1のアルギン酸ナトリウム水溶液を除去した後、前記流路構造に、細胞を懸濁させた第2のアルギン酸ナトリウム水溶液を導入し、前記第1のアルギン酸ハイドロゲル層の内壁に、細胞を含む第2のアルギン酸ハイドロゲル層を形成した後、前記流路構造内に残存するゲル化していない前記第2のアルギン酸ナトリウム水溶液を除去することが好ましい。このようにすることで、非常に簡便に内層および外層からなる多層状の血管組織構造を作製することが可能となり、実際の血管構造をより高度に模倣した3次元的な組織体を得ることが可能となる。 Further, in the invention according to this aspect, the second sodium alginate in which cells are suspended in the flow channel structure after removing the first sodium alginate aqueous solution that is not gelled is not necessarily limited. After introducing an aqueous solution and forming a second alginate hydrogel layer containing cells on the inner wall of the first alginate hydrogel layer, the second sodium alginate remaining in the channel structure and not gelled remains. It is preferable to remove the aqueous solution. By doing so, it becomes possible to produce a multi-layered vascular tissue structure consisting of an inner layer and an outer layer very easily, and it is possible to obtain a three-dimensional tissue body that more closely mimics the actual vascular structure. It becomes possible.
 また、本観点に係る発明において、限定されるわけではないが、前記第1のアルギン酸ナトリウム水溶液又は前記第2のアルギン酸ナトリウム水溶液を除去した後に、前記流路構造に対し、細胞懸濁液を導入することも可能である。このようにすることで、細胞を含むアルギン酸ハイドロゲル層の内壁面に、更に細胞を接着させることが可能となるため、実際の血管組織と同様に、内壁面に細胞が単層に組織化された血管組織を作製することが可能となる。 In the invention according to this aspect, although not limited, a cell suspension is introduced into the channel structure after the first sodium alginate aqueous solution or the second sodium alginate aqueous solution is removed. It is also possible to do. In this way, since it becomes possible to further adhere cells to the inner wall surface of the alginate hydrogel layer containing cells, the cells are organized into a single layer on the inner wall surface in the same manner as the actual vascular tissue. It is possible to produce a vascular tissue.
 また、本観点に係る発明において、限定されるわけではないが、前記第1のアルギン酸ナトリウム水溶液を導入する直前に、前記流路構造に対し、多価のカチオンを含まない、又は、多価のカチオン濃度が十分に低い、バッファー水溶液を導入することが好ましい。このようにすることで、流路構造近傍に存在する多価の金属カチオンを適度に除去することが可能となるため、アルギン酸のゲル化速度を調節することが可能となるほか、作製される血管組織の厚みを容易かつ正確に制御することが可能となる。 Further, in the invention according to this aspect, although not limited, immediately before the introduction of the first aqueous sodium alginate solution, the flow channel structure does not contain a polyvalent cation or a polyvalent cation. It is preferable to introduce an aqueous buffer solution having a sufficiently low cation concentration. By doing so, it becomes possible to moderately remove the polyvalent metal cations present in the vicinity of the flow channel structure, so that the gelation rate of alginic acid can be adjusted, and the blood vessel to be produced The thickness of the tissue can be easily and accurately controlled.
 また、本観点に係る発明において、限定されるわけではないが、前記バッファー水溶液は、クエン酸及びエチレンジアミン四酢酸の少なくともいずれかを含んでいても良い。このようにすることによって、流路構造を構成する素材中に存在する多価の金属カチオンを、より効率的に除去することが可能となるため、より正確にアルギン酸のゲル化速度を調節することが可能となる。 In the invention according to this aspect, the buffer aqueous solution may contain at least one of citric acid and ethylenediaminetetraacetic acid, although not limited thereto. By doing so, it becomes possible to more efficiently remove the polyvalent metal cations present in the material constituting the flow channel structure, so that the gelation rate of alginic acid can be adjusted more accurately. Is possible.
 また、本観点に係る発明において、限定されるわけではないが、前記第1のアルギン酸ナトリウム水溶液を除去した後、又は、前記第2のアルギン酸ナトリウム水溶液を除去した後に、前記流路構造に対し、多価の金属カチオンを含む水溶液を導入することが好ましい。このようにすることによって、流路構造の内壁に形成されたアルギン酸ハイドロゲル層を内側から完全にゲル化することが可能となり、より強度の高い血管組織を作製することが可能となる。 Further, in the invention according to this aspect, although not limited, after removing the first sodium alginate aqueous solution or after removing the second sodium alginate aqueous solution, It is preferable to introduce an aqueous solution containing a polyvalent metal cation. By doing so, it becomes possible to completely gel the alginate hydrogel layer formed on the inner wall of the flow channel structure from the inside, and it is possible to produce a vascular tissue with higher strength.
 また、本観点に係る発明において、限定されるわけではないが、前記流路構造を構成する素材に対し、物理的操作及び化学的処理の少なくともいずれかを施すことにより、前記流路構造の内壁に形成された前記細胞を含むアルギン酸ハイドロゲル層を前記流路構造から分離し回収することも可能である。このようにすることによって、流路内において形成された血管組織を回収することが可能となるため、例えば、血管移植治療のために使用可能な血管組織を提供することが可能となるほか、比較的大きな細胞組織を構築するために有用な単位構造としての血管組織を提供することが可能となる。 Moreover, in the invention according to this aspect, the inner wall of the flow path structure can be obtained by subjecting the material constituting the flow path structure to at least one of physical operation and chemical treatment. It is also possible to separate and recover the alginic acid hydrogel layer containing the cells formed in the above from the flow channel structure. By doing so, it is possible to collect the vascular tissue formed in the flow path, and thus, for example, it is possible to provide a vascular tissue that can be used for vascular transplantation treatment. It is possible to provide a vascular tissue as a unit structure useful for constructing a large cell tissue.
 また、本観点に係る発明において、限定されるわけではないが、前記流路構造を構成する素材は、少なくとも部分的にハイドロゲル材料であることが好ましい。このようにすることによって、アルギン酸をゲル化するために必要となる多価の金属カチオンを効率的に流路構造内部に存在するアルギン酸ナトリウム水溶液に供給することが可能となるほか、細胞を培養する場合に流路構造を構成する素材からも酸素や栄養分を供給することが可能となる。 In the invention according to this aspect, the material constituting the flow channel structure is preferably at least partially a hydrogel material, although not limited thereto. By doing so, it becomes possible to efficiently supply the polyvalent metal cation necessary for gelling alginic acid to the aqueous sodium alginate solution existing inside the channel structure, and to culture cells. In some cases, oxygen and nutrients can be supplied from the material constituting the channel structure.
 また、本観点に係る発明において、限定されるわけではないが、前記ハイドロゲル材料は、アルギン酸、アガロース、ゼラチン、コラーゲン、及び、ポリエチレングリコールジアクリレート、の少なくともいずれかを含んで構成されていることが好ましい。このようにすることで、生体適合性があり、細胞に対する毒性が低く、物理的強度が比較的高く、保水性が高く、さらに細胞組織への栄養素や酸素の効率的な供給を可能とする、流路構造を作製することが可能である。 Further, in the invention according to this aspect, although not limited, the hydrogel material includes at least one of alginic acid, agarose, gelatin, collagen, and polyethylene glycol diacrylate. Is preferred. In this way, it is biocompatible, has low toxicity to cells, has a relatively high physical strength, has a high water retention capacity, and enables efficient supply of nutrients and oxygen to cellular tissues. It is possible to produce a channel structure.
 また、本観点に係る発明において、限定されるわけではないが、前記流路構造を構成する素材は、少なくとも部分的にポリジメチルシロキサンであってもよい。このようにすることで、生体適合性が高く、微細な流路構造を、正確かつ簡便に作製することが可能となるため、血管組織をより簡便に作製することが可能となる。 In the invention according to this aspect, the material constituting the flow path structure may be at least partially polydimethylsiloxane, although not limited thereto. By doing in this way, since it becomes possible to produce a highly precise and simple flow channel structure with high biocompatibility, it is possible to produce a vascular tissue more easily.
 また、本観点に係る発明において、限定されるわけではないが、前記多価の金属カチオンは、カルシウムイオン、ストロンチウムイオン、及びバリウムイオンの少なくともいずれかであることが好ましい。このようにすることで、アルギン酸のゲル化時に、細胞に対する毒性を低くすることが可能となるほか、強度の高い血管組織を作製することが可能となる。 In the invention according to this aspect, the polyvalent metal cation is preferably at least one of calcium ion, strontium ion, and barium ion, although not limited thereto. In this way, when alginic acid is gelled, it becomes possible to reduce the toxicity to cells and to produce a high-strength vascular tissue.
 また、本観点に係る発明において、限定されるわけではないが、前記第1のアルギン酸ナトリウム水溶液および前記第2のアルギン酸ナトリウム水溶液に含まれるアルギン酸ナトリウムの濃度は、それぞれ0.1%(w/v)以上10%(w/v)以下であることが好ましい。このようにすることによって、流路構造の内壁において比較的強度の高いアルギン酸ハイドロゲル層を形成することが可能となる。 In the invention according to this aspect, the concentration of sodium alginate contained in the first aqueous sodium alginate solution and the second aqueous sodium alginate solution is 0.1% (w / v), although not limited thereto. ) Or more and 10% (w / v) or less. By doing so, it becomes possible to form an alginic acid hydrogel layer having a relatively high strength on the inner wall of the flow channel structure.
 また、本観点に係る発明において、限定されるわけではないが、前記流路構造は、その内壁面が予めポリカチオンによって表面処理されていることが好ましい。このようにすることによって、負電荷を有するアルギン酸ハイドロゲルを流路構造の内壁面により強固に接着させることが可能となるため、より安定にアルギン酸ハイドロゲル層を形成することが可能となる。 Further, in the invention according to this aspect, although not limited, it is preferable that the inner wall surface of the flow path structure is previously surface-treated with a polycation. By doing in this way, since it becomes possible to adhere | attach the alginic acid hydrogel which has a negative charge more firmly to the inner wall surface of a flow-path structure, it becomes possible to form an alginate hydrogel layer more stably.
 また、本観点に係る発明において、限定されるわけではないが、前記ポリカチオンとは、ポリ-L-リジン、キトサン、及び、ポリエチレンイミンの少なくともいずれかであることが好ましい。このようにすることによって、アルギン酸ハイドロゲル層を流路構造の内壁面に強固に接着させることが可能となる。 In the invention according to this aspect, although not limited, the polycation is preferably at least one of poly-L-lysine, chitosan, and polyethyleneimine. By doing in this way, it becomes possible to adhere | attach an alginate hydrogel layer firmly on the inner wall face of a flow-path structure.
 また、本観点に係る発明において、限定されるわけではないが、前記第1のアルギン酸ナトリウム水溶液および前記第2のアルギン酸ナトリウム水溶液のうちの少なくとも一方には、コラーゲン及びマトリゲルの少なくともいずれかが添加されていても良い。このようにすることによって、前記第1のアルギン酸ハイドロゲル層あるいは前記第2のアルギン酸ハイドロゲル層内に包埋された細胞の機能維持が可能となるほか、形成されたアルギン酸ハイドロゲル層の内部に導入した細胞の接着および増殖を促進することが可能となるため、より効率的に単層の細胞内層を形成することが可能となる。 In the invention according to this aspect, although not limited, at least one of collagen and Matrigel is added to at least one of the first aqueous sodium alginate solution and the second aqueous sodium alginate solution. May be. By doing so, it becomes possible to maintain the function of the cells embedded in the first alginate hydrogel layer or the second alginate hydrogel layer, and the inside of the formed alginate hydrogel layer. Since it is possible to promote the adhesion and proliferation of the introduced cells, it is possible to more efficiently form a single cell inner layer.
 また、本観点に係る発明において、限定されるわけではないが、前記第1のアルギン酸ナトリウム水溶液および前記第2のアルギン酸ナトリウム水溶液のうちの少なくとも一方には、細胞接着性アルギン酸ナトリウムが添加されていても良い。このようにすることによって、形成されたアルギン酸ハイドロゲル層の内部に導入した細胞の接着および増殖を促進することが可能となるため、より効率的に単層の細胞内層を形成することが可能となる。 In the invention according to this aspect, although not limited, cell-adhesive sodium alginate is added to at least one of the first aqueous sodium alginate solution and the second aqueous sodium alginate solution. Also good. By doing so, it becomes possible to promote the adhesion and proliferation of cells introduced into the formed alginate hydrogel layer, so that it is possible to form a single cell inner layer more efficiently. Become.
 また、本観点に係る発明において、限定されるわけではないが、前記細胞とは、哺乳動物由来の細胞であることが好ましい。このようにすることによって、哺乳動物由来の細胞を含む血管組織を構築することが可能となり、移植医療や組織工学において有用な材料の提供が可能となる。 In the invention according to this aspect, the cell is preferably a mammal-derived cell, although not limited thereto. By doing so, it is possible to construct a vascular tissue containing cells derived from mammals, and it is possible to provide materials useful in transplantation medicine and tissue engineering.
 また、本観点に係る発明において、限定されるわけではないが、前記細胞とは、血管平滑筋細胞、血管内皮細胞、血管上皮細胞、あるいはそれらの混合物であることが好ましい。このようにすることによって、より生体の組織に近い血管組織を作製することが可能となる。 In the invention according to this aspect, the cells are preferably vascular smooth muscle cells, vascular endothelial cells, vascular epithelial cells, or a mixture thereof, although not limited thereto. By doing in this way, it becomes possible to produce a vascular tissue closer to a living tissue.
 また、本観点に係る発明において、限定されるわけではないが、前記第1のアルギン酸ナトリウム水溶液および前記第2のアルギン酸ナトリウム水溶液に含まれる細胞の密度は、それぞれ1mL当たり1000万個以上であることが好ましい。このようにすることによって、形成するアルギン酸ハイドロゲル層の内部に細胞を密に包埋することが可能となり、細胞同士の接着が促進され、機能的な血管組織を効率的に形成することが可能となるほか、細胞の生理機能を高く維持することが可能である。 In the invention according to this aspect, the density of cells contained in the first sodium alginate aqueous solution and the second sodium alginate aqueous solution is 10 million or more per mL, respectively, although not limited thereto. Is preferred. By doing so, it becomes possible to embed cells densely inside the alginate hydrogel layer to be formed, adhesion between cells is promoted, and functional vascular tissue can be efficiently formed In addition, the physiological function of the cell can be maintained high.
 また、本観点に係る発明において、限定されるわけではないが、前記第1のアルギン酸ナトリウム水溶液および前記第2のアルギン酸ナトリウム水溶液に、それぞれ含まれる細胞は、その種類、密度、混合比率のうちの少なくともいずれか1つが異なることが好ましい。このようにすることによって、異なる細胞組成を有する多層構造によって構成された実際の生体の血管組織により近い組織を作製することが可能である。 Moreover, in the invention according to this aspect, although not limited, the cells contained in the first sodium alginate aqueous solution and the second sodium alginate aqueous solution are the type, density, and mixing ratio, respectively. It is preferable that at least one of them is different. By doing in this way, it is possible to produce a tissue closer to the vascular tissue of an actual living body constituted by a multilayer structure having different cell compositions.
 また、本観点に係る発明において、限定されるわけではないが、前記第1のアルギン酸ハイドロゲル層および前記第2のアルギン酸ハイドロゲル層は、その厚みがそれぞれ10マイクロメートル以上であることが好ましい。このようにすることによって、細胞を効率的にアルギン酸ハイドロゲル層に包埋することが可能となるほか、強度の高い血管組織を作製することが可能となる。 Further, in the invention according to this aspect, although not limited, it is preferable that the first alginic acid hydrogel layer and the second alginic acid hydrogel layer each have a thickness of 10 micrometers or more. By doing so, it becomes possible to efficiently embed cells in the alginate hydrogel layer and to produce a high strength vascular tissue.
 また、本観点に係る発明において、限定されるわけではないが、前記血管組織は、少なくとも部分的に多層状構造、中空構造、および分岐構造を有することが好ましい。このようにすることによって、より生体の組織に近い血管組織を提供することが可能となる。 In the invention according to this aspect, the vascular tissue preferably has a multilayer structure, a hollow structure, and a branch structure at least partially. By doing in this way, it becomes possible to provide a vascular tissue closer to a living tissue.
 また、本発明の他の一観点に係る発明は、請求項1乃至21のいずれか一項に記載の血管組織の作製方法を用いて作製された、血管組織である。このような血管組織は、移植材料としての利用、組織工学における管腔構造としての利用、生体構造を高度に模倣した構造における細胞機能の評価を可能とするため、これらの医療応用、産業応用、あるいは学術応用を行う上で非常に有用な材料を提供することが可能となる。 The invention according to another aspect of the present invention is a vascular tissue produced using the vascular tissue production method according to any one of claims 1 to 21. Such vascular tissue can be used as a transplant material, used as a luminal structure in tissue engineering, and can be used to evaluate cell functions in a structure that highly mimics the anatomy. Alternatively, it is possible to provide materials that are very useful for academic applications.
 本発明は、以上に述べられたように構成されているため、細胞を3次元的に配置するための従来の手法において必要であった特殊な装置を必要とせず、流路構造に細胞を懸濁させたアルギン酸水溶液を導入するという非常に簡便な操作によって、効率的、簡便、かつ正確に血管組織を作製することを可能とする、という優れた効果を発揮する。 Since the present invention is configured as described above, it does not require a special device required in the conventional method for arranging cells three-dimensionally, and the cells are suspended in the channel structure. It exhibits an excellent effect that a vascular tissue can be produced efficiently, simply and accurately by a very simple operation of introducing a turbid alginate aqueous solution.
 また本発明は、以上に述べられたように構成されているため、これまでにごく少数の報告例があるのみであった、多層構造、中空構造、分岐構造のすべてを同時に有する機能的な血管組織を、簡便に作製することを可能とするため、生体内の血管組織を高度に模倣した材料を安価かつ大量に提供することが可能となる。 In addition, since the present invention is configured as described above, there are only a few reported examples so far, and a functional blood vessel having all of a multilayer structure, a hollow structure, and a branched structure at the same time. Since the tissue can be easily produced, it is possible to provide a large amount of a material that highly mimics the vascular tissue in the living body.
 さらにまた、本発明は以上に述べられたように構成されているため、本発明を用いて得られる血管組織は機械的強度に優れ、操作性が高い。そのため、例えば他の比較的大きな組織の内部に埋め込むことによって、管腔構造を組み込んだ3次元的な組織を作製する、といった、組織工学や再生医療などへの応用において、非常に有用な材料を提供することが可能となる。 Furthermore, since the present invention is configured as described above, the vascular tissue obtained using the present invention has excellent mechanical strength and high operability. Therefore, a material that is very useful in applications such as tissue engineering and regenerative medicine, such as creating a three-dimensional tissue incorporating a luminal structure by embedding it in another relatively large tissue, for example. It becomes possible to provide.
 さらにまた、本発明は以上に述べられたように構成されているため、流路の形状を任意に設計することによって、任意の形状を有する血管組織を作製することが可能となり、さらに、アルギン酸ナトリウム水溶液の組成や送液時間を制御することにより、血管組織の厚みおよび中空部分の幅を任意に制御することが可能となる。そのため、用途に応じて様々な形態を有する血管組織を作製することが可能となる。 Furthermore, since the present invention is configured as described above, it is possible to produce a vascular tissue having an arbitrary shape by arbitrarily designing the shape of the flow path, and further, sodium alginate. By controlling the composition of the aqueous solution and the liquid feeding time, the thickness of the vascular tissue and the width of the hollow portion can be arbitrarily controlled. Therefore, it is possible to produce vascular tissue having various forms depending on the application.
 さらにまた、本発明は以上に述べられたように構成されているため、例えば、様々な形状を有する多層状の血管組織内における血栓形成挙動あるいは血管新生挙動、血管内における癌細胞の転移あるいは浸潤挙動など、血管組織内で生じる種々の生体現象を解析、分析、評価するための、非常に有用な材料を提供することが可能となる。 Furthermore, since the present invention is configured as described above, for example, thrombus formation behavior or angiogenesis behavior in multilayered vascular tissue having various shapes, metastasis or invasion of cancer cells in blood vessels. It becomes possible to provide a very useful material for analyzing, analyzing, and evaluating various biological phenomena that occur in vascular tissue such as behavior.
実施形態に係る、血管組織作製のための最も基本的な流路構造および、細胞を含むアルギン酸ハイドロゲル層の形成プロセスを示した概略図である。図1(a)および図1(b)は、流路構造を有するデバイスの構造を示した図であり、図1(a)は図1(b)におけるB矢視図であり、図1(b)は図1(a)におけるA0-A1線における流路構造の断面図である。図(c)は、図1(a)における部分Cの拡大図および、細胞を含むアルギン酸ハイドロゲル層の形成プロセスを示した概略図である。It is the schematic which showed the formation process of the alginate hydrogel layer containing the most basic flow-path structure for vascular tissue preparation based on embodiment, and a cell. 1 (a) and 1 (b) are diagrams showing the structure of a device having a flow channel structure, FIG. 1 (a) is a view taken in the direction of arrow B in FIG. 1 (b), and FIG. FIG. 2B is a cross-sectional view of the flow path structure along the line A0-A1 in FIG. Fig. (C) is an enlarged view of a portion C in Fig. 1 (a) and a schematic diagram showing a process of forming an alginate hydrogel layer containing cells. 実施形態に係る、2種類の細胞を含む多層状のアルギン酸ハイドロゲル層を形成するプロセスを示した概略図である。It is the schematic which showed the process which forms the multilayered alginate hydrogel layer containing two types of cells based on embodiment. 実施形態に係る、異なる種類の細胞を含む多層状のアルギン酸ハイドロゲル層の内側に細胞を単層状に組織化する様子を示した概略図である。It is the schematic which showed a mode that the cell was organized into the monolayer inside the multilayered alginate hydrogel layer containing a different kind of cell based on embodiment. 実施形態に係る、分岐を有する血管組織を作製するための流路構造の概略図である。図4(a)は、図4(b)乃至(d)におけるB矢視図であり、図4(b)乃至(d)はそれぞれ、図4(a)におけるA0-A1線、A2-A3線、A4-A5線における、流路構造の断面図を示している。It is the schematic of the flow-path structure for producing the vascular tissue which has a branch based on embodiment. 4A is a view taken in the direction of arrow B in FIGS. 4B to 4D, and FIGS. 4B to 4D are lines A0-A1 and A2-A3 in FIG. 4A, respectively. A cross-sectional view of the flow path structure along line A4-A5 is shown. 実施例に係る、流路構造の概略図例および、流路構造の内壁において形成した多層状のアルギン酸ハイドロゲル層の顕微鏡写真であり、図5(a)は、流路構造の全体図を示しており、図5(b)乃至(e)は、図5(a)における部分Bに相当する位置の顕微鏡写真である。図5(b)は、蛍光粒子を含む第1のアルギン酸ハイドロゲル層が形成された様子を示した蛍光顕微鏡写真であり、図5(c)は、第2のアルギン酸ナトリウム水溶液が導入された直後の様子を示した蛍光顕微鏡写真であり、図5(d)は、第2のアルギン酸ハイドロゲル層が形成された後に緑色蛍光粒子を含むバッファー水溶液がアルギン酸ハイドロゲル層の内部を流れる様子を示した蛍光顕微鏡写真であり、図5(e)は形成されたアルギン酸ハイドロゲル層の位相差顕微鏡写真である。FIG. 5A is a schematic diagram of a flow path structure according to an example and a micrograph of a multilayered alginate hydrogel layer formed on the inner wall of the flow path structure, and FIG. 5A shows an overall view of the flow path structure. FIGS. 5B to 5E are photomicrographs at a position corresponding to the portion B in FIG. FIG. 5 (b) is a fluorescence micrograph showing the formation of the first alginate hydrogel layer containing fluorescent particles, and FIG. 5 (c) is just after the second sodium alginate aqueous solution is introduced. FIG. 5D shows a state in which a buffer aqueous solution containing green fluorescent particles flows inside the alginate hydrogel layer after the second alginate hydrogel layer is formed. FIG. 5E is a fluorescence micrograph, and FIG. 5E is a phase contrast micrograph of the formed alginate hydrogel layer. 実施例に係る、流路構造の他の概略図例および、流路構造の内壁において形成された、異なる蛍光色素によって染色された2種類の細胞を包埋する、多層状のアルギン酸ハイドロゲル層の顕微鏡写真であり、図6(a)は流路構造の全体図を示しており、図6(b)および(c)はそれぞれ、図6(a)における部分Bに相当する位置の位相差顕微鏡写真および蛍光顕微鏡写真である。Example of other schematic diagram of channel structure according to Example, and multilayer alginate hydrogel layer embedded in two types of cells stained with different fluorescent dyes formed on the inner wall of channel structure FIG. 6A is a micrograph showing an overall view of the flow channel structure, and FIGS. 6B and 6C are phase contrast microscopes at positions corresponding to portion B in FIG. 6A, respectively. It is a photograph and a fluorescence micrograph. 実施例に係る、流路構造を構成する素材に対し化学的処理を施すことによって分離された、異なる細胞を含む多層状のアルギン酸ハイドロゲル層の顕微鏡写真であり、図7(a)および(b)はそれぞれ位相差顕微鏡写真および蛍光顕微鏡写真である。FIG. 7 is a micrograph of a multilayer alginate hydrogel layer containing different cells, separated by subjecting a material constituting a flow channel structure to chemical treatment, according to an example. ) Are a phase contrast micrograph and a fluorescence micrograph, respectively.
 以下、本発明に係る血管組織の作製方法および血管組織の最良の形態を詳細に説明するものとする。ただし、本発明は多くの異なる形態による実施が可能であり、以下に示す実施形態、実施例の例示にのみ限定されるものではない。 Hereinafter, the method for producing a vascular tissue and the best mode of the vascular tissue according to the present invention will be described in detail. However, the present invention can be implemented in many different forms, and is not limited only to the embodiments and examples described below.
 図1は、血管組織作製のための最も基本的な流路構造および、細胞を含むアルギン酸ハイドロゲル層の形成プロセスを示した概略図である。図1(a)および図1(b)は、流路構造を有するデバイスの構造を示した図であり、図1(a)は図1(b)におけるB矢視図であり、図1(b)は図1(a)におけるA0-A1線における流路構造の断面図である。図(c)は、図1(a)における部分Cの拡大図および、細胞を含むアルギン酸ハイドロゲル層の形成プロセスを示した概略図である。 FIG. 1 is a schematic view showing the most basic flow channel structure for producing a vascular tissue and the formation process of an alginate hydrogel layer containing cells. 1 (a) and 1 (b) are diagrams showing the structure of a device having a flow channel structure, FIG. 1 (a) is a view taken in the direction of arrow B in FIG. 1 (b), and FIG. FIG. 2B is a cross-sectional view of the flow path structure along the line A0-A1 in FIG. Fig. (C) is an enlarged view of a portion C in Fig. 1 (a) and a schematic diagram showing a process of forming an alginate hydrogel layer containing cells.
 流路構造を構成する素材としては、形成された流路構造を維持できる物理的強度があり、細胞に対する毒性が低く、素材内部に含まれる多価の金属カチオンが流路構造内部に導入したアルギン酸ナトリウム水溶液へと拡散するものであれば、どのような材料であっても用いることが可能であり、種々のハイドロゲル材料やポリマー素材を用いることが可能である。ただし、操作性の観点から、ある程度強度が高く、予め滅菌可能であり、また、細胞の機能維持を補佐するために、培地成分が素材内部に浸透することが好ましい。そのため、ハイドロゲルのような保水性の高い材料は好適である。流路構造を構成するための代表的なハイドロゲル素材としては、アルギン酸、アガロース、ゼラチン、コラーゲン、ポリエチレングリコールジアクリレート等が挙げられる。 The material constituting the flow channel structure has physical strength that can maintain the formed flow channel structure, has low toxicity to cells, and alginic acid in which polyvalent metal cations contained in the material are introduced into the flow channel structure Any material can be used as long as it diffuses into the aqueous sodium solution, and various hydrogel materials and polymer materials can be used. However, from the viewpoint of operability, it is preferable that the medium component has a certain degree of strength and can be sterilized in advance, and the medium component penetrates into the material in order to assist the maintenance of cell functions. Therefore, a material having high water retention such as hydrogel is suitable. Typical hydrogel materials for constituting the channel structure include alginic acid, agarose, gelatin, collagen, polyethylene glycol diacrylate and the like.
 一方、ポリジメチルシロキサンのようなシリコーンポリマー材料は、流路構造を加工しやすいという利点があり、多価カチオンによって構成される無機塩を予め混合することが可能であること、さらにアルギン酸ナトリウム水溶液を流路構造内部に導入する際に、それらの塩から多価カチオンが溶出することによってアルギン酸ハイドロゲル層が形成されること、等の特徴があるため、そのようなポリマー材料によって形成された流路構造を用いることも可能である。 On the other hand, a silicone polymer material such as polydimethylsiloxane has an advantage that the flow channel structure is easy to process, and can be premixed with an inorganic salt composed of polyvalent cations, and further an aqueous sodium alginate solution. When introduced into the inside of the channel structure, the alginate hydrogel layer is formed by elution of polyvalent cations from their salts, etc., so that the channel formed by such a polymer material. It is also possible to use a structure.
 図1に示された流路構造は、溝構造を有する平板状の基板と、溝構造を有さない平板状の基板を上下にはり合わせることによって形成されている。溝構造を有する平板状の基板は、たとえば鋳型を用いたモールディングによって形成することが可能である。 The flow channel structure shown in FIG. 1 is formed by laminating a flat substrate having a groove structure and a flat substrate having no groove structure on each other. A flat substrate having a groove structure can be formed, for example, by molding using a mold.
 図1(c)に示されるように、本発明では、多価の金属カチオン又は多価の金属カチオンを含む無機塩を含む素材によって構成された流路構造に対し、細胞を懸濁させたアルギン酸ナトリウム水溶液を導入すると、流路構造を構成する素材から供給される多価の金属カチオンによってアルギン酸が架橋され、流路の内壁に細胞を含むアルギン酸ハイドロゲル層が形成されるため、流路構造の形状に依存した、中空構造かつ層状構造を有する血管組織を作製することが可能である。 As shown in FIG.1 (c), in this invention, the alginic acid which suspended the cell with respect to the flow-path structure comprised with the raw material containing the polyvalent metal cation or the inorganic salt containing a polyvalent metal cation was shown. When an aqueous sodium solution is introduced, alginic acid is cross-linked by the polyvalent metal cations supplied from the material constituting the flow path structure, and an alginate hydrogel layer containing cells is formed on the inner wall of the flow path. It is possible to produce a vascular tissue having a hollow structure and a layered structure depending on the shape.
 多価の金属カチオンを流路を構成する素材に含ませるためには、流路を構成する素材がハイドロゲル材料である場合は、ハイドロゲルを形成する前のゾル溶液に、予め多価の金属カチオンを含む水溶液又は多価の金属カチオンを含む無機塩を混合させた後、ゲル化させ、流路構造を作製することが可能であり、このようにすることによって、ハイドロゲル内に均一に多価の金属カチオンを含ませることが可能である。また、作製した流路構造全体を、多価の金属カチオンを含む水溶液に一定時間浸すことによって、多価の金属カチオンを流路構造を構成する素材に含ませることも可能である。一方、流路構造を構成する素材としてポリジメチルシロキサンを用いる場合は、ポリジメチルシロキサンのプレポリマーに対し予め多価の金属カチオンを含む無機塩を混合した後に、モールディングによって流路構造を作製することが好ましい。 In order to include a polyvalent metal cation in the material constituting the flow path, when the material constituting the flow path is a hydrogel material, the polyvalent metal cation is previously added to the sol solution before forming the hydrogel. An aqueous solution containing a cation or an inorganic salt containing a polyvalent metal cation can be mixed and then gelled to produce a flow channel structure. A valent metal cation can be included. Moreover, it is also possible to include polyvalent metal cations in the material constituting the channel structure by immersing the entire channel structure thus prepared in an aqueous solution containing polyvalent metal cations for a certain period of time. On the other hand, when polydimethylsiloxane is used as a material constituting the flow channel structure, an inorganic salt containing a polyvalent metal cation is mixed in advance with the polydimethylsiloxane prepolymer, and then the flow channel structure is prepared by molding. Is preferred.
 流路構造の大きさは、作製対象とする血管組織の構造に応じて、深さおよび幅がそれぞれ50マイクロメートル以上10ミリメートル以下の任意の値となるように設定することが可能である。 The size of the flow channel structure can be set so that the depth and the width are arbitrary values of 50 micrometers or more and 10 millimeters or less, respectively, according to the structure of the vascular tissue to be manufactured.
 流路構造の断面は、矩形、円形、あるいはその他の任意の形状のものを用いることが可能である。ただし、矩形の断面のものは、モールディングによる作製プロセスによって形成しやすい、という利点があり、円形のものは、より生体構造に近い血管組織を形成しやすい、という利点がある。 The cross section of the channel structure can be rectangular, circular, or any other shape. However, the rectangular cross section has the advantage that it can be easily formed by a molding process, and the circular section has the advantage that a vascular tissue closer to the anatomy can be easily formed.
 流路構造を構成する素材に含まれる多価の金属カチオンとしては、アルギン酸をゲル化することのできる多価の金属イオンであれば、任意の物を用いることが可能である。ただし、細胞への毒性の少なさ、コスト等の観点から、カルシウムイオン、ストロンチウムイオン、及びバリウムイオンの少なくともいずれかであることが好ましい。より具体的には、流路構造を構成する素材がハイドロゲル材料である場合は、これらの塩化物を予めゾル溶液に溶解させることが好ましく、ポリジメチルシロキサンを素材として用いる場合は、これらの塩化物、硫酸塩、炭酸塩を使用することが好ましい。 As the polyvalent metal cation contained in the material constituting the channel structure, any polyvalent metal ion capable of gelling alginic acid can be used. However, at least one of calcium ion, strontium ion, and barium ion is preferable from the viewpoint of low toxicity to cells and cost. More specifically, when the material constituting the flow channel structure is a hydrogel material, it is preferable to dissolve these chlorides in a sol solution in advance, and when polydimethylsiloxane is used as the material, these chlorides are used. Products, sulfates and carbonates are preferably used.
 流路構造を構成する素材に含まれる多価の金属カチオンの濃度は、アルギン酸のゲル化を可能とし、また細胞に毒性のない範囲であれば、どのような値であっても構わないが10mM以上100mM以下であることが好ましい。なお、多価の金属カチオンの濃度が高いほど、アルギン酸のゲル化に要する時間は短くなるため、使用する流路構造の大きさに応じて、この濃度を最適化することが好ましい。 The concentration of the polyvalent metal cation contained in the material constituting the flow channel structure may be any value as long as it allows gelation of alginic acid and is not toxic to cells. It is preferably 100 mM or less. In addition, since the time required for gelatinization of alginic acid becomes shorter as the concentration of the polyvalent metal cation is higher, it is preferable to optimize this concentration according to the size of the flow channel structure to be used.
 アルギン酸ナトリウム水溶液には細胞を懸濁させる必要がある。そのため、予めアルギン酸ナトリウム水溶液のイオン強度は適切に調節されている必要があり、また、細胞を懸濁させる前にアルギン酸ナトリウム水溶液が滅菌されていることが好ましい。 It is necessary to suspend cells in the sodium alginate aqueous solution. Therefore, the ionic strength of the aqueous sodium alginate solution needs to be appropriately adjusted in advance, and the aqueous sodium alginate solution is preferably sterilized before suspending the cells.
 アルギン酸ナトリウム水溶液に懸濁させる細胞として、血管平滑筋細胞、血管内皮細胞、血管上皮細胞等を用いることによって、実際の血管組織に近い多層状の血管組織を作製することができる。ただしその他にも、必要に応じて、繊維芽細胞、筋芽細胞、肝細胞、神経細胞、心筋細胞、等の細胞を用いることによって、個別の組織や臓器における複合的な血管構造を構築することも可能である。 By using vascular smooth muscle cells, vascular endothelial cells, vascular epithelial cells, etc. as cells suspended in an aqueous sodium alginate solution, a multilayered vascular tissue close to the actual vascular tissue can be prepared. However, if necessary, construct a complex vascular structure in individual tissues or organs by using cells such as fibroblasts, myoblasts, hepatocytes, nerve cells, cardiomyocytes, etc. Is also possible.
 アルギン酸ナトリウム水溶液に懸濁させる細胞の密度は、1mL当たり1000万個以上であることが好ましい。このように細胞を高密度に懸濁させることで、形成するアルギン酸ハイドロゲル層の内部に細胞が密に包埋されるため、細胞同士の接着が促進され、機能的な血管組織を効率的に形成することが可能となるほか、細胞の生理機能を高く維持することが可能である。 The density of cells suspended in a sodium alginate aqueous solution is preferably 10 million or more per mL. By suspending cells in high density in this way, the cells are densely embedded inside the alginate hydrogel layer that is formed, which promotes adhesion between cells and efficiently creates functional vascular tissue. In addition to being able to form, it is possible to maintain high physiological functions of cells.
 アルギン酸ナトリウム水溶液には、予めコラーゲンやマトリゲル等を添加することが可能である。このようにすることによって、アルギン酸ナトリウム水溶液に包埋された細胞の機能維持を補助することが可能となるとともに、形成するアルギン酸ハイドロゲル層に対し細胞が接着可能となるため、アルギン酸ハイドロゲル層の内側に細胞を導入することで、内側の細胞が単層に組織化された血管組織を形成させることが可能となり、実際の血管組織により近い形態の組織を構築することが可能である。 Collagen, Matrigel, etc. can be added to the sodium alginate aqueous solution in advance. By doing so, it becomes possible to assist the maintenance of the function of the cells embedded in the sodium alginate aqueous solution, and the cells can adhere to the alginate hydrogel layer to be formed. By introducing cells inside, it becomes possible to form a vascular tissue in which the inner cells are organized into a single layer, and it is possible to construct a tissue in a form closer to the actual vascular tissue.
 また、アルギン酸ナトリウム水溶液には、細胞接着性アルギン酸ナトリウムが添加されていても良い。このようにすることによって、形成されるアルギン酸ハイドロゲル層に対し、細胞接着性を付与することが可能となり、アルギン酸ハイドロゲル層の内側に細胞を導入することによって、内側の細胞が単層に組織化した形態の血管組織を作製することが可能となる。たとえば、RDGペプチドやコラーゲンが共有結合されたアルギン酸ナトリウムを用いることができる。 Moreover, cell-adhesive sodium alginate may be added to the sodium alginate aqueous solution. By doing so, it becomes possible to impart cell adhesion to the formed alginate hydrogel layer, and by introducing cells inside the alginate hydrogel layer, the inner cells are organized into a single layer. It becomes possible to produce a vascular tissue in a morphological form. For example, sodium alginate to which RDG peptide or collagen is covalently bonded can be used.
 アルギン酸ハイドロゲル層を流路構造の内壁に安定的に形成させるために、予め流路構造の内壁面がポリカチオンによって修飾されていることが望ましい。たとえばポリカチオン水溶液を導入することによって、流路構造の内壁面を修飾することが可能である。 In order to stably form the alginate hydrogel layer on the inner wall of the channel structure, it is desirable that the inner wall surface of the channel structure is modified with a polycation in advance. For example, it is possible to modify the inner wall surface of the channel structure by introducing a polycation aqueous solution.
 ポリカチオン水溶液に含まれるポリカチオンとしては、ポリ-L-リジン、キトサン、及び、ポリエチレンイミンの少なくともいずれかを用いることが可能である。なお、これらのポリカチオンの分子量が高くなるほど、アルギン酸ハイドロゲル層と流路構造の内壁面との接着強度が高まる傾向にあるため、平均分子量が10万以上のものを用いることが好ましい。また、ポリカチオン水溶液の濃度および導入液量については、どのような値であっても良いが、流路構造の内壁面を十分にコートする量のポリカチオン分子が存在するように配慮する必要がある。さらにまた、ポリカチオン水溶液を導入することで、流路構造を構成する素材に含まれる多価の金属カチオンが部分的に除去されてしまう可能性があるため、ポリカチオン水溶液には必要に応じて予め多価の金属カチオンが添加されていても良い。 As the polycation contained in the polycation aqueous solution, at least one of poly-L-lysine, chitosan, and polyethyleneimine can be used. In addition, since it exists in the tendency for the adhesive strength of an alginate hydrogel layer and the inner wall surface of a flow-path structure to increase, so that the molecular weight of these polycations becomes high, it is preferable to use a thing with an average molecular weight of 100,000 or more. In addition, the concentration of the polycation aqueous solution and the amount of the introduced liquid may be any value, but it is necessary to consider that there is an amount of polycation molecules that sufficiently coats the inner wall surface of the channel structure. is there. Furthermore, since polyvalent metal cations contained in the material constituting the channel structure may be partially removed by introducing the polycation aqueous solution, the polycation aqueous solution may be used as necessary. A polyvalent metal cation may be added in advance.
 アルギン酸のゲル化速度を制御するために、必要に応じてアルギン酸ナトリウム水溶液を導入する直前に多価の金属カチオンを含まない、あるいはその濃度が十分に低い、バッファー水溶液を導入することが可能である。この操作は、特に、ハイドロゲルによって構成された、直径数ミリメートル以下の細い流路構造を用いる場合に、アルギン酸のゲル化速度を制御する上で効果的である。また、バッファー水溶液にクエン酸あるいはエチレンジアミン四酢酸(EDTA)等の、金属カチオンに対しキレート効果のある物質を溶解することによって、短時間でより効率的に金属カチオンを除去することが可能となる。なお、バッファー水溶液中のクエン酸あるいはEDTA等の濃度が高くなるほど、あるいはバッファー水溶液の送液時間が長くなるほど、アルギン酸のゲル化は遅くなるため、これらの値は、アルギン酸ハイドロゲル層を形成しやすくなるように予め最適化されていることが好ましい。 In order to control the gelation rate of alginic acid, it is possible to introduce an aqueous buffer solution that does not contain a polyvalent metal cation or has a sufficiently low concentration just before introducing an aqueous sodium alginate solution, if necessary. . This operation is effective in controlling the gelation rate of alginic acid, particularly when using a thin channel structure made of hydrogel and having a diameter of several millimeters or less. Further, by dissolving a substance having a chelating effect on the metal cation such as citric acid or ethylenediaminetetraacetic acid (EDTA) in the buffer aqueous solution, the metal cation can be more efficiently removed in a short time. The higher the concentration of citric acid or EDTA in the buffer aqueous solution, or the longer the solution feeding time of the buffer aqueous solution, the slower the gelation of alginic acid. Therefore, these values tend to form an alginate hydrogel layer. It is preferable to optimize in advance.
 アルギン酸ハイドロゲル層が形成された後に、流路構造に対し多価の金属カチオンを含む水溶液を導入し、内側からアルギン酸ハイドロゲル層を完全にゲル化させることが好ましい。このようにすることで、アルギン酸ハイドロゲル層の内側を流れる溶液のせん断力によって、アルギン酸ハイドロゲル層およびその内部に包埋された細胞が除去されてしまうことを防ぐことが可能である。また、導入する多価の金属カチオンは、流路構造を構成する素材に含まれるものと同じものであっても、異なるものであっても構わないが、細胞に対し毒性が少ないものであることが好ましく、カルシウム、ストロンチウム、及びバリウムイオンの少なくともいずれかであることが好ましい。 After the alginate hydrogel layer is formed, it is preferable to introduce an aqueous solution containing a polyvalent metal cation into the flow channel structure so that the alginate hydrogel layer is completely gelled from the inside. By doing so, it is possible to prevent the alginate hydrogel layer and the cells embedded therein from being removed by the shearing force of the solution flowing inside the alginate hydrogel layer. In addition, the polyvalent metal cation to be introduced may be the same as or different from that contained in the material constituting the flow channel structure, but should be less toxic to cells. Is preferable, and is preferably at least one of calcium, strontium, and barium ions.
 細胞を含むアルギン酸ハイドロゲル層を形成した後、必要に応じて培養操作を行うことによって、血管組織を効率的に形成することが可能となる。なお、培養時には、流路構造に対し液体培地を導入することが好ましい。このようにすることによって、細胞に効率的に酸素や栄養素を供給することが可能である。また、流路構造を構成する素材にハイドロゲル材料を用いた場合は、予めデバイス全体を液体培地に浸し、培地成分を素材内部に浸透させておくことで、さらに効率的に流路内の細胞に対し酸素や栄養素を供給することが可能である。なお、予め多価の金属カチオンを添加した培地を用いることで、アルギン酸ハイドロゲル層の機械的強度を損なうことなく、培養操作を行うことが可能である。 After forming an alginate hydrogel layer containing cells, vascular tissue can be efficiently formed by performing a culture operation as necessary. In addition, it is preferable to introduce a liquid medium into the channel structure during culture. By doing so, it is possible to efficiently supply oxygen and nutrients to the cells. In addition, when a hydrogel material is used as the material constituting the flow channel structure, cells in the flow channel can be more efficiently immersed in advance by immersing the entire device in a liquid medium and allowing the medium components to penetrate into the material. It is possible to supply oxygen and nutrients. In addition, it is possible to perform culture | cultivation operation, without impairing the mechanical strength of an alginate hydrogel layer by using the culture medium which added the polyvalent metal cation previously.
 図2には、2種類の細胞を含む多層状のアルギン酸ハイドロゲル層を形成するプロセスを示した概略図が示されている。 FIG. 2 is a schematic diagram showing a process for forming a multilayer alginate hydrogel layer containing two types of cells.
 図2に示すように、多価の金属カチオンを含む素材によって構成される流路構造に対し、細胞Aを含む第1のアルギン酸ナトリウム水溶液を導入し、細胞Aを含む第1のアルギン酸ハイドロゲル層が形成された後に、細胞Bを含む第2のアルギン酸ナトリウム水溶液を導入する。細胞Aを含む第1のアルギン酸ハイドロゲル層の内側に細胞Bを含む第2のアルギン酸ハイドロゲル層が形成された後に、多価の金属カチオンを含む水溶液を導入しアルギン酸ハイドロゲル層を完全にゲル化することで、流路構造の内壁において2種の細胞を外層、内層にそれぞれ含む多層状のアルギン酸ハイドロゲル層を形成することが可能である。 As shown in FIG. 2, a first sodium alginate aqueous solution containing cells A is introduced into a channel structure composed of a material containing a polyvalent metal cation, and the first alginate hydrogel layer containing cells A is introduced. Is formed, a second aqueous sodium alginate solution containing cells B is introduced. After the second alginate hydrogel layer containing cells B is formed inside the first alginate hydrogel layer containing cells A, an aqueous solution containing a polyvalent metal cation is introduced to completely gel the alginate hydrogel layer. As a result, it is possible to form a multilayer alginate hydrogel layer containing two types of cells in the outer layer and the inner layer on the inner wall of the channel structure.
 図2では、2段階でアルギン酸ナトリウム水溶液を導入することによって、2層のアルギン酸ハイドロゲル層を形成しているが、この導入操作を繰り返すことで、3層以上のアルギン酸ハイドロゲル層を作製することも可能である。また、それぞれ異なる種類の細胞を懸濁させた複数種のアルギン酸ナトリウム水溶液を段階的に導入することによって、各層に異なる細胞が配置された3層以上の血管組織を構築することも可能である。 In FIG. 2, a sodium alginate aqueous solution is introduced in two stages to form a two-layer alginate hydrogel layer. By repeating this introduction operation, three or more alginate hydrogel layers are produced. Is also possible. It is also possible to construct three or more layers of vascular tissue in which different cells are arranged in each layer by stepwise introducing a plurality of types of sodium alginate aqueous solutions in which different types of cells are suspended.
 図3には、異なる種類の細胞を含む多層状のアルギン酸ハイドロゲル層の内側に細胞を単層状に組織化する様子を示した概略図が示されている。 FIG. 3 shows a schematic diagram showing how cells are organized into a single layer inside a multilayer alginate hydrogel layer containing different types of cells.
 図3に示すように、外層に細胞Aを含み、内層に細胞Bを含む多層状のアルギン酸ハイドロゲル層が形成された後、細胞Cを懸濁させた水溶液を導入し、細胞Cがアルギン酸ハイドロゲル層の内壁面に接着した状態において、培養操作を行い必要に応じて細胞を増殖させることによって、異なる細胞を含む多層状のアルギン酸ハイドロゲル層の内側に、さらに異なる細胞が単層に組織化した組織構造を得ることが可能である。なお、増殖しない、あるいは増殖速度の低い細胞を用いる場合には、必要に応じて予め細胞Aおよび細胞Bを高密度でアルギン酸ハイドロゲル層に包埋することが好ましく、また、細胞Cを複数回導入することも可能である。 As shown in FIG. 3, after a multilayer alginate hydrogel layer containing cells A in the outer layer and cells B in the inner layer is formed, an aqueous solution in which the cells C are suspended is introduced. In the state where it adheres to the inner wall surface of the gel layer, by culturing and growing the cells as necessary, different cells are organized into a single layer inside the multilayered alginate hydrogel layer containing different cells. It is possible to obtain an organized tissue structure. When cells that do not proliferate or have a low growth rate are used, it is preferable to embed cells A and B in high density in an alginate hydrogel layer in advance as necessary. It is also possible to introduce.
 図3に示したように、異なる種類の細胞を含む多層状のアルギン酸ハイドロゲル層の内側に、さらに異なる細胞を単層に組織化させることで、実際の血管組織における内膜、中膜、外膜、といった多層状の形態を高度に模倣した血管組織を作製することが可能である。 As shown in FIG. 3, by further organizing different cells into a single layer inside a multilayered alginate hydrogel layer containing different types of cells, the intima, media and outer layers in actual vascular tissue It is possible to produce a vascular tissue that highly mimics a multilayered form such as a membrane.
 図4には、分岐を有する血管組織を作製するための流路構造の概略図が示されており、図4(a)は、図4(b)乃至(d)におけるB矢視図であり、図4(b)乃至(d)はそれぞれ、図4(a)におけるA0-A1線、A2-A3線、A4-A5線における、流路構造の断面図を示している。 FIG. 4 shows a schematic view of a flow channel structure for producing a vascular tissue having a branch, and FIG. 4 (a) is a view as seen from the direction of arrow B in FIGS. 4 (b) to 4 (d). FIGS. 4B to 4D are cross-sectional views of the channel structure taken along lines A0-A1, A2-A3, and A4-A5 in FIG. 4A, respectively.
 図4に示すように、入口に接続された流路が複数の流路へと分岐し、最終的に1つの流路に収束し出口に接続される、といった流路構造を用いることによって、複雑に分岐し合流する血管組織を作製することが可能である。このような形状を有する組織は、実際の血管組織の構造を高度に模倣しているため、血管組織内における細胞の生理的挙動の解析を行う際に有用である他、生体外で比較的大きな組織を形成するための材料としても非常に有用である。なお、複雑な血管組織を作製する場合には、複数の入口および出口を有する流路構造を用いても良く、上下方向に分岐する流路構造を用いても良く、太さが部分的に、あるいは段階的に異なる流路構造を用いても良い。 As shown in FIG. 4, by using a flow channel structure in which the flow channel connected to the inlet branches into a plurality of flow channels, finally converges to one flow channel and is connected to the outlet, It is possible to produce a vascular tissue that branches into and joins. A tissue having such a shape highly mimics the structure of an actual vascular tissue, so that it is useful for analyzing the physiological behavior of cells in the vascular tissue and is relatively large in vitro. It is also very useful as a material for forming tissue. In the case of producing a complex vascular tissue, a flow channel structure having a plurality of inlets and outlets may be used, or a flow channel structure that branches in the vertical direction may be used. Alternatively, different channel structures may be used in stages.
 流路構造の内壁に細胞を含むアルギン酸ハイドロゲル層を形成し、必要に応じて培養操作を行った後に、流路構造を構成する素材に対し、物理的操作、化学的処理、あるいはその両者を施すことによって、形成した血管組織を流路構造から分離することが可能である。 After forming an alginate hydrogel layer containing cells on the inner wall of the flow channel structure and performing a culture operation as necessary, the material constituting the flow channel structure is subjected to physical operation, chemical treatment, or both. By applying, it is possible to separate the formed vascular tissue from the channel structure.
 例えば、流路構造を構成する素材として酵素によって分解可能なハイドロゲル材料を用いた場合、流路構造を含むデバイス全体を酵素を含む水溶液に浸すことによってハイドロゲルを化学的に分解することが可能であり、また、温度変化、水素イオン濃度変化、あるいは光照射によって分解あるいは溶解されるハイドロゲル材料を用いて流路構造が構成されている場合、それらの操作を行うことによってハイドロゲルを分解し、血管組織を流路構造から分離することが可能である。また、2枚の平板状基板によって構成された流路構造の場合には、それらの基板を物理的に剥離する、といった物理的操作を行うことも可能である。ただし、いずれの方法を用いる場合であっても、細胞へのダメージが少ない条件下において、形成された血管組織を分離することが好ましい。 For example, when a hydrogel material that can be decomposed by an enzyme is used as a material constituting the channel structure, the hydrogel can be chemically decomposed by immersing the entire device including the channel structure in an aqueous solution containing the enzyme. In addition, when the flow channel structure is composed of a hydrogel material that is decomposed or dissolved by temperature change, hydrogen ion concentration change, or light irradiation, the hydrogel is decomposed by performing these operations. It is possible to separate the vascular tissue from the channel structure. Further, in the case of a flow path structure constituted by two flat-plate substrates, it is possible to perform a physical operation such as physically peeling these substrates. However, regardless of which method is used, it is preferable to separate the formed vascular tissue under conditions that cause little damage to the cells.
 以下、上記実施形態に係る血管組織の作製方法を実際に行うことで、本発明の効果を確認した。以下説明する。 Hereinafter, the effect of the present invention was confirmed by actually performing the method for producing a vascular tissue according to the above embodiment. This will be described below.
 図5には、流路構造の概略図例および、流路構造の内壁において形成した多層状のアルギン酸ハイドロゲル層の顕微鏡写真が示されており、図5(a)は、流路構造の全体図であり、図5(b)乃至(e)は、図5(a)における部分Bに相当する位置の顕微鏡写真である。図5(b)は、蛍光粒子を含む第1のアルギン酸ハイドロゲル層が形成された様子を示した蛍光顕微鏡写真であり、図5(c)は、第2のアルギン酸ナトリウム水溶液が導入された直後の様子を示した蛍光顕微鏡写真であり、図5(d)は、第2のアルギン酸ハイドロゲル層が形成された後に緑色蛍光粒子を含むバッファー水溶液がアルギン酸ハイドロゲル層の内部を流れる様子を示した蛍光顕微鏡写真であり、図5(e)は形成されたアルギン酸ハイドロゲル層の位相差顕微鏡写真である。 FIG. 5 shows a schematic diagram of the channel structure and a micrograph of a multilayer alginate hydrogel layer formed on the inner wall of the channel structure. FIG. 5 (a) shows the entire channel structure. FIGS. 5B to 5E are photomicrographs at positions corresponding to the portion B in FIG. FIG. 5 (b) is a fluorescence micrograph showing the formation of the first alginate hydrogel layer containing fluorescent particles, and FIG. 5 (c) is just after the second sodium alginate aqueous solution is introduced. FIG. 5D shows a state in which a buffer aqueous solution containing green fluorescent particles flows inside the alginate hydrogel layer after the second alginate hydrogel layer is formed. FIG. 5E is a fluorescence micrograph, and FIG. 5E is a phase contrast micrograph of the formed alginate hydrogel layer.
 図5(a)に示した流路構造は、塩化カルシウムを含むアガロース水溶液を用いて作製されたアガロースハイドロゲルによって構成されている。この流路構造は、鋳型を利用したモールディングによって微細な溝構造を有するアガロースハイドロゲルを作製し、平板状のアガロースハイドロゲルと重ね合わせボンディングすることにより形成されたものである。 The flow channel structure shown in FIG. 5 (a) is composed of an agarose hydrogel prepared using an agarose aqueous solution containing calcium chloride. This flow channel structure is formed by producing an agarose hydrogel having a fine groove structure by molding using a mold, and superposing and bonding to a flat agarose hydrogel.
 流路構造を形成するために用いたアガロース水溶液中のアガロース濃度は5%(w/v)であった。また、アルギン酸ナトリウムのゲル化剤として、10mMの塩化カルシウムを予め混合した。なお、アガロースの濃度は、アガロースハイドロゲル形成時に、流路構造を作製するためのモールディング操作等を行うことが可能な強度であれば、任意の値であって構わない。 The agarose concentration in the agarose aqueous solution used to form the channel structure was 5% (w / v). Further, 10 mM calcium chloride was mixed in advance as a gelling agent for sodium alginate. The concentration of agarose may be any value as long as it is strong enough to perform a molding operation or the like for producing a flow channel structure during the formation of agarose hydrogel.
 本実施例では、流路構造を正確に作製するために、まずフォトリソグラフィーによって、シリコン基板上にSU-8フォトレジストによって構成された微細構造を有する鋳型を作製し、その鋳型を用いモールディングを行った。そのため、流路構造の断面形状は矩形であり、その幅および深さはそれぞれ500マイクロメートルであった。なお、作製対象とする血管組織の構造に応じて、これらの値は、50マイクロメートル以上10ミリメートル以下の任意の値に設定することが可能であり、また、円形、楕円形、その他複雑な断面形状を有する流路構造を利用することも可能である。また、流路構造の形状は、作製対象とする血管組織の構造に応じて、任意の形状を用いることが可能である。 In this example, in order to accurately manufacture the channel structure, first, a template having a fine structure composed of SU-8 photoresist is prepared on a silicon substrate by photolithography, and molding is performed using the template. It was. Therefore, the cross-sectional shape of the flow channel structure is rectangular, and the width and depth thereof are 500 micrometers, respectively. Depending on the structure of the vascular tissue to be produced, these values can be set to any value between 50 micrometers and 10 millimeters, and are circular, elliptical, and other complicated cross sections. It is also possible to use a channel structure having a shape. In addition, the shape of the flow channel structure can be any shape depending on the structure of the vascular tissue to be produced.
 流路構造内に溶液を導入するために、流路構造の入口および出口にはそれぞれシリコンチューブを接続した。本実施例では、入口に接続されたチューブの末端を、導入する水溶液の入った容器に浸し、出口に接続されたチューブの末端からシリンジポンプを用いて吸引することによって、流路構造内に水溶液を導入した。このように吸引による送液を行い、入口に接続されたシリコンチューブの末端を導入する水溶液の入った個別の容器に順番に浸していくことで、異なる種類の水溶液を流路構造内へと段階的に、かつ効率的に導入することが可能である。なお、吸引による送液でなくとも、流路構造内に対し順番に水溶液を送液でき、かつ水溶液の切り替えを短時間に可能とする送液方法であれば、どのような方法を用いてもよい。例えば、キャピラリーチューブ内に、導入する水溶液を予め順番に充填した後、チューブの末端を流路構造の入口に接続し、末端から圧力を印可して送液する、といった操作を行うことも可能である。 In order to introduce the solution into the channel structure, silicon tubes were connected to the inlet and the outlet of the channel structure, respectively. In this embodiment, the end of the tube connected to the inlet is immersed in a container containing the aqueous solution to be introduced, and the aqueous solution is introduced into the flow path structure by suctioning from the end of the tube connected to the outlet using a syringe pump. Was introduced. In this way, liquid is delivered by suction, and different types of aqueous solutions are stepped into the channel structure by sequentially immersing them in individual containers containing aqueous solutions that introduce the ends of the silicon tubes connected to the inlet. Can be introduced efficiently and efficiently. It should be noted that any method can be used as long as the solution can be sent in order to the inside of the flow channel structure and the switching of the solution can be performed in a short time even if the solution is not sent by suction. Good. For example, the capillary tube can be prefilled with the aqueous solution to be introduced in order, then the end of the tube can be connected to the inlet of the flow channel structure, and the pressure can be applied from the end to send the liquid. is there.
 以上のように構成される流路構造および送液システムを用い、まず、細胞を用いずに、アルギン酸ハイドロゲル層の形成が可能であるかについて検証を行った。その作製方法を説明する。 Using the flow path structure and liquid feeding system configured as described above, first, it was verified whether an alginate hydrogel layer could be formed without using cells. The manufacturing method will be described.
 図5(a)に示された、10mM塩化カルシウムを含むアガロースハイドロゲルによって構成された流路構造に対し、まず10mM 塩化カルシウムを含む0.05%(w/v)ポリ-L-リジン水溶液を1分間送液し、流路構造の内壁面をポリカチオンによってコーティングした。次に、10mM クエン酸ナトリウム水溶液を30秒間送液した後、赤色の蛍光粒子を含む濃度0.5%(w/v)の第1のアルギン酸ナトリウム水溶液を送液した。これらの水溶液の流速は、一例として毎分100μLであった。なお、ポリ-L-リジンおよびクエン酸水溶液の濃度、流速、および送液時間は、十分に流路構造の内壁面がコーティングされ、かつ、アガロースハイドロゲルに含まれるカルシウムイオンを適度に除去できる条件であれば、任意の値とすることができる。 For the channel structure constituted by the agarose hydrogel containing 10 mM calcium chloride shown in FIG. 5A, first, 0.05% (w / v) poly-L-lysine aqueous solution containing 10 mM calcium chloride is added. The solution was fed for 1 minute, and the inner wall surface of the channel structure was coated with polycation. Next, after feeding a 10 mM sodium citrate aqueous solution for 30 seconds, a first sodium alginate aqueous solution having a concentration of 0.5% (w / v) containing red fluorescent particles was fed. The flow rate of these aqueous solutions was 100 μL per minute as an example. The concentration, flow rate, and liquid feeding time of the poly-L-lysine and citric acid aqueous solution are conditions that allow the inner wall surface of the channel structure to be sufficiently coated and that calcium ions contained in the agarose hydrogel can be removed appropriately. Any value can be used.
 上記の条件では、1分間程度のアルギン酸ナトリウム水溶液の送液によって、100マイクロメートル程度の厚みを有するアルギン酸ハイドロゲル層が形成された。なお、アルギン酸ハイドロゲル層の厚みは、アルギン酸ナトリウム水溶液の流速、あるいは送液時間を変化させることによって制御することが可能である。また、アルギン酸ナトリウム水溶液の濃度を変化させることによって、形成されるアルギン酸ハイドロゲル層の強度を調節することも可能である。 Under the above conditions, an alginate hydrogel layer having a thickness of about 100 micrometers was formed by feeding a sodium alginate aqueous solution for about 1 minute. The thickness of the alginate hydrogel layer can be controlled by changing the flow rate of the sodium alginate aqueous solution or the liquid feeding time. It is also possible to adjust the strength of the formed alginate hydrogel layer by changing the concentration of the aqueous sodium alginate solution.
 図5(b)および(c)に示されるように、第1のアルギン酸ハイドロゲル層が形成された後、青色の蛍光粒子を含む第2のアルギン酸ハイドロゲル水溶液を導入したところ、第1のアルギン酸ハイドロゲル層の内側に第2のアルギン酸ハイドロゲル層が形成され、多層状のアルギン酸ハイドロゲル層が形成されることが確認された。また図5(d)に示されるように、形成された多層状のアルギン酸ハイドロゲル層の内側に、緑色の蛍光粒子を含む10mM塩化カルシウム水溶液をゲル化剤水溶液として導入したところ、形成されたアルギン酸ハイドロゲル層の内部に緑色の蛍光粒子が流れる様子が観察され、流路形状に依存した、中空構造を有する多層状のアルギン酸ハイドロゲル層が形成されたことが確認された。 As shown in FIGS. 5B and 5C, after the first alginic acid hydrogel layer was formed, the second alginic acid hydrogel aqueous solution containing blue fluorescent particles was introduced. It was confirmed that the second alginic acid hydrogel layer was formed inside the hydrogel layer, and a multilayered alginic acid hydrogel layer was formed. Also, as shown in FIG. 5 (d), when a 10 mM calcium chloride aqueous solution containing green fluorescent particles was introduced as a gelling agent aqueous solution inside the formed multilayer alginate hydrogel layer, the formed alginate was obtained. It was observed that green fluorescent particles flowed inside the hydrogel layer, and it was confirmed that a multilayer alginate hydrogel layer having a hollow structure depending on the shape of the channel was formed.
 次に、細胞を懸濁させたアルギン酸ナトリウム水溶液を用い、血管組織の構築を行った。その作製方法を説明する。 Next, vascular tissue was constructed using a sodium alginate aqueous solution in which cells were suspended. The manufacturing method will be described.
 図6には、流路構造の他の概略図例および、流路構造の内壁において形成された、異なる蛍光色素によって染色された2種類の細胞を包埋する、多層状のアルギン酸ハイドロゲル層の顕微鏡写真が示されており、図6(a)は流路構造の全体図であり、図6(b)および(c)はそれぞれ、図6(a)における部分Bに相当する位置の位相差顕微鏡写真および蛍光顕微鏡写真である。 FIG. 6 shows another schematic example of the flow path structure and a multilayer alginate hydrogel layer embedded in two types of cells stained with different fluorescent dyes formed on the inner wall of the flow path structure. FIG. 6A is an overall view of the flow channel structure, and FIGS. 6B and 6C are phase differences at positions corresponding to the portion B in FIG. 6A, respectively. It is a micrograph and a fluorescence micrograph.
 細胞を懸濁させたアルギン酸ナトリウム溶液としては、0.5%(w/v)アルギン酸ナトリウム、0.9%(w/v)塩化ナトリウム、0.1%(w/v)コラーゲンを含む10mM HEPES緩衝液を用いた。 As the sodium alginate solution in which the cells are suspended, 10 mM HEPES containing 0.5% (w / v) sodium alginate, 0.9% (w / v) sodium chloride, 0.1% (w / v) collagen is used. Buffer was used.
 図6(a)に示す流路構造は、10mM塩化カルシウム、0.8%(w/v)塩化ナトリウムを含む、5%(w/v)アガロースを用いて、モールディングによって作製した。なお、このようにハイドロゲルを用いて流路構造を作製する場合には、流路構造を構成する素材に含まれる溶液のイオン強度が、細胞に影響を与えないよう予め調節されていることが好ましい。 The flow channel structure shown in FIG. 6 (a) was produced by molding using 5% (w / v) agarose containing 10 mM calcium chloride and 0.8% (w / v) sodium chloride. In addition, when producing a flow channel structure using a hydrogel in this way, the ionic strength of the solution contained in the material constituting the flow channel structure may be adjusted in advance so as not to affect the cells. preferable.
 流路構造を構成するハイドロゲル素材全体を、予め10mM塩化カルシウムを含む液体培地に24時間浸すことによって、ハイドロゲル素材中に栄養分を浸透させた。 The whole hydrogel material constituting the flow channel structure was immersed in a liquid medium containing 10 mM calcium chloride for 24 hours in advance to infiltrate nutrients into the hydrogel material.
 細胞としては、第1のアルギン酸ナトリウム水溶液に含まれる細胞Aとして、繊維芽細胞を、第2のアルギン酸ナトリウム水溶液に含まれる細胞Bとして、筋芽細胞をそれぞれ用いた。これらの濃度は、それぞれ4x10個/mLおよび7x10個/mLであった。 As cells, fibroblasts were used as cells A contained in the first aqueous sodium alginate solution, and myoblasts were used as cells B contained in the second aqueous sodium alginate solution. These concentrations were 4 × 10 7 cells / mL and 7 × 10 7 cells / mL, respectively.
 図6(b)および(c)に示されるように、塩化カルシウムを含むアガロースハイドロゲルによって構成された流路構造に対し、細胞Aを含む第1のアルギン酸ナトリウム水溶液を導入し、細胞Aを含む第1のアルギン酸ハイドロゲル層が形成された後、細胞Bを含む第2のアルギン酸ナトリウム水溶液を導入することで、細胞Aを含む第1のアルギン酸ハイドロゲル層の内側に細胞Bを含む第2のアルギン酸ハイドロゲル層が形成されることが確認された。さらに、形成された多層状のアルギン酸ハイドロゲル層の内側に、緑色の蛍光粒子を含む10mM塩化カルシウム水溶液をゲル化剤水溶液として導入したところ、形成されたアルギン酸ハイドロゲル層の内部に緑色の蛍光粒子が流れる様子が観察され、このような操作によって、異なる細胞を含み、中空構造を有する多層状のアルギン酸ハイドロゲル層が形成されたことが確認された。 As shown in FIGS. 6B and 6C, the first sodium alginate aqueous solution containing the cells A is introduced into the flow channel structure constituted by the agarose hydrogel containing calcium chloride, and the cells A are contained. After the first alginate hydrogel layer is formed, a second sodium alginate aqueous solution containing cells B is introduced, whereby the second alginate hydrogel layer containing cells B is contained inside the first alginate hydrogel layer containing cells A. It was confirmed that an alginate hydrogel layer was formed. Further, when a 10 mM calcium chloride aqueous solution containing green fluorescent particles is introduced as a gelling agent aqueous solution inside the formed multilayer alginate hydrogel layer, green fluorescent particles are formed inside the formed alginate hydrogel layer. It was confirmed that a multi-layered alginate hydrogel layer containing different cells and having a hollow structure was formed by such an operation.
 なお、細胞Aおよび細胞Bとして、ヒト由来の血管平滑筋細胞および血管内皮細胞を用いた場合であっても、同様に血管組織を作製することが可能であった。また、分岐を有する流路構造の内部においても、同様に血管組織を作製することが可能であった。 Even when human-derived vascular smooth muscle cells and vascular endothelial cells were used as the cells A and B, it was possible to prepare vascular tissues in the same manner. Moreover, it was possible to produce a vascular tissue in the same way inside the channel structure having branches.
 図7には、流路構造を構成する素材に対し化学的処理を施すことによって分離された、異なる細胞を含む多層状のアルギン酸ハイドロゲル層の顕微鏡写真が示されており、図7(a)および(b)はそれぞれ位相差顕微鏡写真および蛍光顕微鏡写真である。 FIG. 7 shows a micrograph of a multi-layered alginate hydrogel layer containing different cells separated by subjecting the material constituting the channel structure to chemical treatment, and FIG. And (b) are a phase contrast micrograph and a fluorescence micrograph, respectively.
 図7に示されるように、流路構造の内壁において細胞を含むアルギン酸ハイドロゲル層が形成された後、アガロースハイドロゲルによって構成されたデバイス全体を、アガラーゼを含むリン酸緩衝液中に浸す、という操作を行うことにより、酵素反応によってアガロースハイドロゲルを溶解することが可能であり、流路構造から血管組織を分離することが可能であった。 As shown in FIG. 7, after the alginate hydrogel layer containing cells is formed on the inner wall of the channel structure, the entire device constituted by the agarose hydrogel is immersed in a phosphate buffer containing agarase. By performing the operation, it was possible to dissolve the agarose hydrogel by enzymatic reaction and to separate the vascular tissue from the channel structure.
 また、図7に示されるように、流路構造から分離され回収された血管組織は、分離された後も多層構造を保つことが確認された。さらに、ピンセット等による操作を可能とする程度の高い機械的強度を保っていることが確認された。なお、アルギン酸ナトリウム水溶液の濃度を変化させることで、形成される組織の機械的強度を制御することが可能であった。 Further, as shown in FIG. 7, it was confirmed that the vascular tissue separated and recovered from the flow channel structure maintained a multilayer structure even after being separated. Furthermore, it was confirmed that the mechanical strength was high enough to enable operation with tweezers or the like. In addition, it was possible to control the mechanical strength of the structure | tissue formed by changing the density | concentration of the sodium alginate aqueous solution.
 さらに、回収した血管組織は内部に液体を流通させることが可能であることが確認され、本手法を用いて作製された血管組織は、外科領域における移植用人工血管グラフトとして、あるいは、管腔構造を組み込んだ比較的大きな3次元的組織構築のための単位構造として利用可能であることが示された。 Furthermore, it has been confirmed that the collected vascular tissue can circulate liquid inside, and the vascular tissue produced by using this method can be used as an artificial vascular graft for transplantation in a surgical field or a luminal structure. It was shown that it can be used as a unit structure for the construction of a relatively large three-dimensional organization that incorporates.
 本発明は、以上説明したように構成されているため、これまでにほとんど報告されていなかった、多層構造、中空構造、分岐構造のすべてを同時に兼ね備えた、本来の血管組織の形態を高度に模倣した組織体を、特殊な装置や複雑なプロセスを必要とせず、簡便に作製することを可能とするため、医療分野や生化学研究分野において有用な技術を提供することが可能となる。 Since the present invention is configured as described above, the present invention highly mimics the original vascular tissue morphology, which has all of the multilayer structure, hollow structure, and branch structure, which has never been reported so far. Therefore, it is possible to provide a useful technique in the medical field and the biochemical research field because it is possible to easily produce the tissue body without requiring a special device or a complicated process.
 また、本発明は、以上説明したように構成されているため、これまでにほとんど実用化されていなかった、細胞によって構成された、直径5mm程度以下の微細な人工血管グラフトの作製および提供を可能とするため、外科医療分野における幅広い応用が期待される。 In addition, since the present invention is configured as described above, it is possible to produce and provide a fine artificial blood vessel graft having a diameter of about 5 mm or less, which has been practically used so far and is composed of cells. Therefore, a wide range of applications in the surgical field is expected.
 また、本発明は、以上説明したように構成されているため、使用する流路構造の形状およびアルギン酸ナトリウム水溶液の送液時間を、作製する血管組織の構造に応じて適切に設定することで、任意の形状および厚みを有する血管組織を簡便に作製することが可能であり、用途に応じて種々の形態を有する血管組織の構築が可能である。そのため、たとえば血管移植のために必須な、強度の高い様々な形態の人工血管グラフトを作製するための新規技術を提供することが可能である。 In addition, since the present invention is configured as described above, by appropriately setting the shape of the flow channel structure to be used and the feeding time of the sodium alginate aqueous solution according to the structure of the vascular tissue to be produced, A vascular tissue having an arbitrary shape and thickness can be easily produced, and a vascular tissue having various forms can be constructed depending on the application. Therefore, for example, it is possible to provide a new technique for producing various types of artificial blood vessel grafts having high strength, which are essential for blood vessel transplantation.
 また、本発明は、以上説明したように構成されているため、たとえば血管平滑筋細胞を含むアルギン酸ハイドロゲル層の内壁面に、血管内皮細胞を単層に組織化した組織体を作製することが可能であり、実際の血管組織の形態を正確に再現することが可能である。そのため、本発明を用いて作製した血管組織は、血液中を移動する癌細胞の転移挙動および浸潤挙動の評価、または、血栓形成および血管新生などの細胞の生理学的な挙動解析のためのツールとして、医学、生化学の分野における幅広い利用が期待される。 In addition, since the present invention is configured as described above, for example, it is possible to produce a tissue body in which vascular endothelial cells are organized into a single layer on the inner wall surface of an alginate hydrogel layer containing vascular smooth muscle cells. It is possible to accurately reproduce the morphology of the actual vascular tissue. Therefore, the vascular tissue prepared using the present invention is a tool for evaluating the metastatic behavior and invasion behavior of cancer cells moving in the blood, or analyzing the physiological behavior of cells such as thrombus formation and angiogenesis. Expected to be widely used in the fields of medicine and biochemistry.
 さらにまた、本発明を用いた場合、作製した血管組織は流路構造から分離し回収することが可能であり、かつ強度の観点からも高い操作性を有している。そこで、例えば、回収した血管組織を他の細胞組織内に埋め込み、管腔構造を有する組織体を形成することで、組織内部の細胞に効率的に酸素や栄養素を供給することが可能な比較的大きな3次元組織を構築することが可能となり、組織工学、再生医学の分野における幅広い応用が期待される。 Furthermore, when the present invention is used, the produced vascular tissue can be separated from the flow channel structure and recovered, and has high operability from the viewpoint of strength. Therefore, for example, by implanting the collected vascular tissue in another cellular tissue to form a tissue body having a luminal structure, oxygen and nutrients can be efficiently supplied to cells inside the tissue. It is possible to build a large three-dimensional tissue, and a wide range of applications in the fields of tissue engineering and regenerative medicine are expected.

Claims (23)

  1.  多価の金属カチオン又は多価の金属カチオンを含む無機塩を含む素材によって構成される流路構造に対し、
     細胞を懸濁させた第1のアルギン酸ナトリウム水溶液を導入し、前記流路構造の内壁に細胞を含む第1のアルギン酸ハイドロゲル層を形成した後、
     前記流路構造内に残存するゲル化していない前記第1のアルギン酸ナトリウム水溶液を除去する、血管組織の作製方法。
    For a channel structure constituted by a material containing an inorganic salt containing a polyvalent metal cation or a polyvalent metal cation,
    After introducing a first aqueous sodium alginate solution in which cells are suspended and forming a first alginate hydrogel layer containing cells on the inner wall of the flow channel structure,
    A method for producing a vascular tissue, wherein the first sodium alginate aqueous solution that is not gelled and remains in the flow channel structure is removed.
  2.  ゲル化していない前記第1のアルギン酸ナトリウム水溶液を除去した後、
     前記流路構造に、細胞を懸濁させた第2のアルギン酸ナトリウム水溶液を導入し、前記第1のアルギン酸ハイドロゲル層の内壁に、細胞を含む第2のアルギン酸ハイドロゲル層を形成した後、
     前記流路構造内に残存するゲル化していない前記第2のアルギン酸ナトリウム水溶液を除去する、請求項1に記載の血管組織の作製方法。
    After removing the first sodium alginate aqueous solution not gelled,
    After introducing a second sodium alginate aqueous solution in which cells are suspended into the channel structure, and forming a second alginate hydrogel layer containing cells on the inner wall of the first alginate hydrogel layer,
    The method for producing a vascular tissue according to claim 1, wherein the second sodium alginate aqueous solution that is not gelled and remains in the flow channel structure is removed.
  3.  前記第1のアルギン酸ナトリウム水溶液を除去した後、あるいは前記第2のアルギン酸ナトリウム水溶液を除去した後に、前記流路構造に対し、細胞懸濁液を導入する、請求項1乃至2のいずれか1項に記載の血管組織の作製方法。 3. The cell suspension is introduced into the flow channel structure after removing the first sodium alginate aqueous solution or after removing the second sodium alginate aqueous solution. 4. 2. A method for producing a vascular tissue according to 1.
  4.  前記第1のアルギン酸ナトリウム水溶液を導入する直前に、前記流路構造に対し、多価のカチオンを含まない、あるいは多価のカチオン濃度が十分に低い、バッファー水溶液を導入する、請求項1乃至3のいずれか1項に記載の血管組織の作製方法。 The buffer aqueous solution which does not contain a polyvalent cation or has a sufficiently low polyvalent cation concentration is introduced into the flow channel structure immediately before introducing the first sodium alginate aqueous solution. The method for producing a vascular tissue according to any one of the above.
  5.  前記バッファー水溶液は、クエン酸及びエチレンジアミン四酢酸の少なくともいずれかを含む、請求項4に記載の血管組織の作製方法。 The method for producing a vascular tissue according to claim 4, wherein the aqueous buffer solution contains at least one of citric acid and ethylenediaminetetraacetic acid.
  6.  前記第1のアルギン酸ナトリウム水溶液を除去した後、又は、前記第2のアルギン酸ナトリウム水溶液を除去した後に、前記流路構造に対し、多価の金属カチオンを含む水溶液を導入する、請求項1乃至5のいずれか1項に記載の血管組織の作製方法。 6. After removing the first sodium alginate aqueous solution or after removing the second sodium alginate aqueous solution, an aqueous solution containing a polyvalent metal cation is introduced into the flow channel structure. The method for producing a vascular tissue according to any one of the above.
  7.  前記流路構造を構成する素材に対し、物理的操作及び化学的処理の少なくともいずれかを施すことにより、前記流路構造の内壁に形成された前記細胞を含むアルギン酸ハイドロゲル層を前記流路構造から分離し回収する、請求項1乃至6のいずれか1項に記載の血管組織の作製方法。 By applying at least one of physical operation and chemical treatment to the material constituting the flow channel structure, an alginate hydrogel layer containing the cells formed on the inner wall of the flow channel structure is formed in the flow channel structure. The method for producing a vascular tissue according to any one of claims 1 to 6, wherein the blood vessel tissue is separated and recovered from the blood vessel.
  8. 前記流路構造を構成する素材は、少なくとも部分的にハイドロゲル材料である、請求項1乃至7のいずれか1項に記載の血管組織の作製方法。 The method for producing a vascular tissue according to any one of claims 1 to 7, wherein the material constituting the flow channel structure is at least partially a hydrogel material.
  9. 前記ハイドロゲル材料は、アルギン酸、アガロース、ゼラチン、コラーゲン、及び、ポリエチレングリコールジアクリレートの少なくともいずれかを含んで構成されている、請求項8に記載の血管組織の作製方法。 The method for producing a vascular tissue according to claim 8, wherein the hydrogel material includes at least one of alginic acid, agarose, gelatin, collagen, and polyethylene glycol diacrylate.
  10.  前記流路構造を構成する素材は、少なくとも部分的にポリジメチルシロキサンである、請求項1乃至7のいずれか1項に記載の血管組織の作製方法。 The method for producing a vascular tissue according to any one of claims 1 to 7, wherein the material constituting the flow channel structure is at least partially polydimethylsiloxane.
  11.  前記多価の金属カチオンとは、カルシウムイオン、ストロンチウムイオン、及び、バリウムイオンの少なくともいずれかである請求項1乃至10のいずれか1項に記載の血管組織の作製方法。 The method for producing a vascular tissue according to any one of claims 1 to 10, wherein the polyvalent metal cation is at least one of calcium ion, strontium ion, and barium ion.
  12.  前記第1のアルギン酸ナトリウム水溶液および前記第2のアルギン酸ナトリウム水溶液に含まれるアルギン酸ナトリウムの濃度は、それぞれ0.1%(w/v)以上10%(w/v)以下である、請求項1乃至11のいずれか1項に記載の血管組織の作製方法。 The concentration of sodium alginate contained in the first aqueous sodium alginate solution and the second aqueous sodium alginate solution is 0.1% (w / v) or more and 10% (w / v) or less, respectively. 12. The method for producing a vascular tissue according to any one of 11 above.
  13.  前記流路構造は、その内壁面が予めポリカチオンによって表面処理されている、請求項1乃至12のいずれか1項に記載の血管組織の作製方法。 The method for producing a vascular tissue according to any one of claims 1 to 12, wherein an inner wall surface of the channel structure is previously surface-treated with a polycation.
  14.  前記ポリカチオンは、ポリ-L-リジン、キトサン、及び、ポリエチレンイミンの少なくともいずれかを含む、請求項13に記載の血管組織の作製方法。 14. The method for producing a vascular tissue according to claim 13, wherein the polycation contains at least one of poly-L-lysine, chitosan, and polyethyleneimine.
  15.  前記第1のアルギン酸ナトリウム水溶液および前記第2のアルギン酸ナトリウム水溶液のうちの少なくとも一方には、コラーゲン及びマトリゲルの少なくともいずれかが添加されている、請求項1乃至14のいずれか1項に記載の血管組織の作製方法。 The blood vessel according to any one of claims 1 to 14, wherein at least one of collagen and Matrigel is added to at least one of the first sodium alginate aqueous solution and the second sodium alginate aqueous solution. Tissue making method.
  16.  前記第1のアルギン酸ナトリウム水溶液および前記第2のアルギン酸ナトリウム水溶液のうちの少なくとも一方には、細胞接着性アルギン酸ナトリウムが添加されている、請求項1乃至15のいずれか1項に記載の血管組織の作製方法。 The vascular tissue according to any one of claims 1 to 15, wherein cell-adhesive sodium alginate is added to at least one of the first aqueous sodium alginate solution and the second aqueous sodium alginate solution. Manufacturing method.
  17.  前記細胞とは、哺乳動物由来の細胞である、請求項1乃至16のいずれか1項に記載の血管組織の作製方法。 The method for producing a vascular tissue according to any one of claims 1 to 16, wherein the cell is a cell derived from a mammal.
  18.  前記細胞とは、血管平滑筋細胞、血管内皮細胞、及び血管上皮細胞の少なくともいずれかを含む、請求項1乃至17のいずれか1項に記載の血管組織の作製方法。 The method for producing vascular tissue according to any one of claims 1 to 17, wherein the cells include at least one of vascular smooth muscle cells, vascular endothelial cells, and vascular epithelial cells.
  19.  前記第1のアルギン酸ナトリウム水溶液および前記第2のアルギン酸ナトリウム水溶液に含まれる細胞の密度は、それぞれ1
    mL当たり1000万個以上である、請求項1乃至18のいずれか1項に記載の血管組織の作製方法。
    The density of the cells contained in the first aqueous sodium alginate solution and the second aqueous sodium alginate solution is 1 respectively.
    The method for producing a vascular tissue according to any one of claims 1 to 18, wherein the number is 10 million or more per mL.
  20.  前記第1のアルギン酸ナトリウム水溶液および前記第2のアルギン酸ナトリウム水溶液に、それぞれ含まれる細胞は、その種類、密度、及び、混合比率のうちの少なくともいずれか1つが異なる、請求項2乃至19のいずれか1項に記載の血管組織の作製方法。 The cell contained in each of the first sodium alginate aqueous solution and the second sodium alginate aqueous solution is different in at least one of its kind, density, and mixing ratio. 2. A method for producing a vascular tissue according to item 1.
  21.  前記第1のアルギン酸ハイドロゲル層および前記第2のアルギン酸ハイドロゲル層は、その厚みがそれぞれ10マイクロメートル以上である、請求項1乃至20のいずれか1項に記載の血管組織の作製方法。 21. The method for producing a vascular tissue according to claim 1, wherein the first alginate hydrogel layer and the second alginate hydrogel layer each have a thickness of 10 micrometers or more.
  22.  前記血管組織は、少なくとも部分的に多層状構造、中空構造、および分岐構造を有する、請求項1乃至21のいずれか1項に記載の血管組織の作製方法。 The method for producing a vascular tissue according to any one of claims 1 to 21, wherein the vascular tissue has at least partially a multilayer structure, a hollow structure, and a branched structure.
  23. 請求項1乃至22のいずれか一項に記載の血管組織の作製方法を用いて作製された、血管組織。

     
    A vascular tissue produced using the vascular tissue production method according to any one of claims 1 to 22.

PCT/JP2013/066993 2012-08-18 2013-06-20 Vascular tissue and method for producing same WO2014030418A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014531532A JP6241890B2 (en) 2012-08-18 2013-06-20 Vascular tissue and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012181261 2012-08-18
JP2012-181261 2012-08-18

Publications (1)

Publication Number Publication Date
WO2014030418A1 true WO2014030418A1 (en) 2014-02-27

Family

ID=50149736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066993 WO2014030418A1 (en) 2012-08-18 2013-06-20 Vascular tissue and method for producing same

Country Status (2)

Country Link
JP (1) JP6241890B2 (en)
WO (1) WO2014030418A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141691A1 (en) * 2016-02-16 2017-08-24 国立大学法人大阪大学 Method for producing three-dimensional tissue having vascular system structure, and three-dimensional tissue comprising gel having vascular system structure
CN107320780A (en) * 2017-06-27 2017-11-07 上普博源(北京)生物科技有限公司 A kind of multilayer aquagel of hollow tubular structure and preparation method and application
WO2019078251A1 (en) * 2017-10-19 2019-04-25 国立大学法人東京大学 Adhesive and use for same
WO2021080516A1 (en) * 2019-10-23 2021-04-29 Singapore University Of Technology And Design Method of forming a vasculature structure and a vasculature structure thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102473438B1 (en) * 2020-05-11 2022-12-02 재단법인 아산사회복지재단 Membrane for forming biomaterial structure comprising artificial blood vessel, artificial biomaterial structure comprising the membrane and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005025584A1 (en) * 2003-09-05 2005-03-24 Centre National De La Recherche Scientifique Use of adipose tissue cells for initiating the formation of a functional vascular network
WO2009042639A2 (en) * 2007-09-24 2009-04-02 Nortis, Inc. Method for creating perfusable microvessel systems
JP2012120696A (en) * 2010-12-08 2012-06-28 Univ Of Tokyo Three dimensional cell cultured matter containing blood vessel-like structure
JP2013009598A (en) * 2011-05-31 2013-01-17 Chiba Univ Complex type hepatocyte organoid and method for preparing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005025584A1 (en) * 2003-09-05 2005-03-24 Centre National De La Recherche Scientifique Use of adipose tissue cells for initiating the formation of a functional vascular network
WO2009042639A2 (en) * 2007-09-24 2009-04-02 Nortis, Inc. Method for creating perfusable microvessel systems
JP2012120696A (en) * 2010-12-08 2012-06-28 Univ Of Tokyo Three dimensional cell cultured matter containing blood vessel-like structure
JP2013009598A (en) * 2011-05-31 2013-01-17 Chiba Univ Complex type hepatocyte organoid and method for preparing the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BO YUAN ET AL.: "A Strategy for Depositing Different Types of Cells in Three Dimensions to Mimic Tubular Structures in Tissues", ADVANCED MATERIALS, vol. 24, no. 7, 14 February 2012 (2012-02-14), pages 890 - 896 *
CYRILLE NOROTTE ET AL.: "Scaffold-free vascular tissue engineering using bioprinting", BIOMATERIALS, vol. 30, no. 30, 2009, pages 5910 - 5917 *
MARINA I. SANTOS ET AL.: "Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering", BIOMATERIALS, vol. 29, no. 32, 2008, pages 4306 - 4313 *
N.M.S. BETTAHALLI E ET AL.: "Development of poly (1-lactic acid) hollow fiber membranes for artificial vasculature in tissue engineering scaffolds", JOURNAL OF MEMBRANE SCIENCE, vol. 371, 2011, pages 117 - 126 *
ROSS J. DEVOLDER ET AL.: "Microfabrication of proangiogenic cell-Laden alginate-g-Pyrrole hydrogels", BIOMATERIALS, vol. 33, no. 31, 26 July 2012 (2012-07-26), pages 7718 - 7726 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141691A1 (en) * 2016-02-16 2017-08-24 国立大学法人大阪大学 Method for producing three-dimensional tissue having vascular system structure, and three-dimensional tissue comprising gel having vascular system structure
US11473054B2 (en) 2016-02-16 2022-10-18 Osaka University Method of producing three-dimensional tissue having vascular system structure, and three-dimensional tissue including gel having vascular system structure
CN107320780A (en) * 2017-06-27 2017-11-07 上普博源(北京)生物科技有限公司 A kind of multilayer aquagel of hollow tubular structure and preparation method and application
CN107320780B (en) * 2017-06-27 2020-04-28 上普博源(北京)生物科技有限公司 Multilayer hydrogel with hollow tube structure and preparation method and application thereof
WO2019078251A1 (en) * 2017-10-19 2019-04-25 国立大学法人東京大学 Adhesive and use for same
JP2019073665A (en) * 2017-10-19 2019-05-16 国立大学法人 東京大学 Adhesive and use thereof
JP7090868B2 (en) 2017-10-19 2022-06-27 国立大学法人 東京大学 Adhesives and their use
WO2021080516A1 (en) * 2019-10-23 2021-04-29 Singapore University Of Technology And Design Method of forming a vasculature structure and a vasculature structure thereof

Also Published As

Publication number Publication date
JPWO2014030418A1 (en) 2016-07-28
JP6241890B2 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
Jang et al. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics
Onoe et al. Cell-laden microfibers for bottom-up tissue engineering
Hoch et al. Bioprinting of artificial blood vessels: current approaches towards a demanding goal
JP6712220B2 (en) Method for printing a tissue construct having an embedded vasculature
CN108149342B (en) Preparation method of composite cavity microfiber based on microfluidic technology
Blakely et al. Bio-pick, place, and perfuse: a new instrument for three-dimensional tissue engineering
US9217129B2 (en) Oscillating cell culture bioreactor
JP5524824B2 (en) Improved bioreactor surface
JP6241890B2 (en) Vascular tissue and method for producing the same
EP2617811B1 (en) Method for manufacturing multilayered cell sheet, multilayered cell sheet having vascular network obtained thereby, method of use thereof
US9427496B2 (en) Method for creating an internal transport system within tissue scaffolds using computer-aided tissue engineering
JP6710000B2 (en) Micro fiber
Li et al. A versatile method for fabricating tissue engineering scaffolds with a three-dimensional channel for prevasculature networks
JP6628416B2 (en) Cell culture method
JP5945802B2 (en) Complex hepatocyte tissue body and method for producing the same
He et al. Layer-by-layer micromolding of natural biopolymer scaffolds with intrinsic microfluidic networks
Li et al. Rapid fabrication of ready-to-use gelatin scaffolds with prevascular networks using alginate hollow fibers as sacrificial templates
JP2021003527A (en) Biocompatible porous membrane, bio-capsule device, and method for producing biocompatible porous membrane
Li et al. Advances of 3D printing in vascularized organ construction
Zhu et al. 3D bioprinting for vascular grafts and microvasculature
CN110721345A (en) Preparation method of ultrathin cavity composite microfiber material for encapsulating cells
JP2015195752A (en) Cell sheet culture substrate, cell sheet culture substrate complex, and production method for cell sheet/culture substrate complex
Thangadurai et al. Emerging perspectives on 3D printed bioreactors for clinical translation of engineered and bioprinted tissue constructs
Zhang 3D bioprinting of vasculature network for tissue engineering
US20230407220A1 (en) Novel tissue culture systems and reduced gravity culture method for the production of vascularized tissue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014531532

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13830703

Country of ref document: EP

Kind code of ref document: A1