WO2014030416A1 - Method for plane brazing of aluminum alloy members - Google Patents

Method for plane brazing of aluminum alloy members Download PDF

Info

Publication number
WO2014030416A1
WO2014030416A1 PCT/JP2013/066840 JP2013066840W WO2014030416A1 WO 2014030416 A1 WO2014030416 A1 WO 2014030416A1 JP 2013066840 W JP2013066840 W JP 2013066840W WO 2014030416 A1 WO2014030416 A1 WO 2014030416A1
Authority
WO
WIPO (PCT)
Prior art keywords
brazing
aluminum alloy
flux
brazed
mass
Prior art date
Application number
PCT/JP2013/066840
Other languages
French (fr)
Japanese (ja)
Inventor
貴訓 小久保
堀 久司
亮介 富樫
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to CN201380008942.8A priority Critical patent/CN104114311B/en
Priority to KR1020147021850A priority patent/KR101570949B1/en
Publication of WO2014030416A1 publication Critical patent/WO2014030416A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • B23K35/0238Sheets, foils layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent

Definitions

  • the present invention relates to a surface brazing method for aluminum alloy members capable of forming a sound fillet when the aluminum alloy members are brazed to each other in an inert gas atmosphere using a single layer brazing sheet. It is.
  • the conventional brazing techniques have been based on line contact so that a fillet shape is obtained.
  • a brazing method for example, when the lower plate is a brazing sheet and a plate-like fin is joined vertically thereto, the molten brazing material flows on the brazing sheet to form a fillet.
  • brazing is generally performed using a flux in the air or in an inert gas atmosphere in order to suppress oxidation during brazing heating. ing.
  • Patent Document 1 a member that is brazed using a non-corrosive flux and metal powder, Fe: 0.7-2.5 wt%, Mn: 0.5-2.0 wt%, 2 types are included, Mg: 0.2 wt% or less, and the number of second phase particles having a maximum diameter exceeding 5 ⁇ m at a depth of 20 ⁇ m from the surface to which the non-corrosive flux and the metal powder are applied is 200 particles / mm.
  • a brazing aluminum material characterized by being 2 or less has been proposed. According to this, according to the brazing method that does not use a clad material, it is possible to form an excellent fillet with good brazing fluidity, and to provide an aluminum material for brazing that is excellent in strength.
  • Patent Document 2 discloses a powdered aluminum alloy braze containing Cu: 23 to 37% by mass, Si: 4 to 10% by mass, the balance being Al and inevitable impurities, and an average particle size of 10 to 100 ⁇ m.
  • An aluminum alloy brazing material slurry in which a material and a fluoride-based flux containing 11% by mass or more of CsF as a solid content are suspended in a dispersion medium is brazed into an aluminum alloy casting to be brazed or the other brazed member
  • a method of brazing an aluminum alloy casting characterized in that after being applied to the surface of the brazed part, the other brazed member is assembled to the brazed part to which the aluminum alloy brazing material slurry has been applied and the assembly is heated. ing.
  • a low-temperature brazing method for an aluminum alloy casting is provided in which a brazing material having high wettability and corrosion resistance is used, and a sound joint can be obtained even by brazing in a furnace.
  • the method proposed in Patent Document 4 includes Si: 3 to 12% by mass, Mg: 0.1 to 5.0% by mass between aluminum alloy members having a solidus temperature of 570 ° C. or higher, A brazing temperature of 570 in an inert gas atmosphere with a single-layer brazing sheet made of a brazing material having a thickness of 15 to 200 ⁇ m sandwiched between and having a component composition consisting of Al and inevitable impurities as the balance. It is intended to braze aluminum alloy members without flux while applying a surface pressure of 0.6 gf / mm 2 or more while maintaining the temperature at or above.
  • the present invention has been devised to solve such a problem, and two aluminum alloy members are brazed to each other with a single layer brazing sheet, and a healthy fillet is further formed on the periphery of the brazed surface.
  • the object is to provide a surface brazing method that can be formed.
  • the surface brazing method for an aluminum alloy member of the present invention has a solidus temperature of 610 ° C. or higher using a single layer brazing sheet made of a brazing material of an Al—Si—Mg alloy.
  • a flux is applied to a region separated from the peripheral edge of the brazing surface, and the single-layer brazing sheet is sandwiched between aluminum alloy members and brought into contact with the surface, and a predetermined brazing is performed in an inert gas atmosphere.
  • the aluminum alloy members are brazed together while applying a surface pressure while maintaining the brazing temperature.
  • two aluminum alloy members are subjected to surface brazing by applying a surface pressure between the two aluminum alloy members using a single layer brazing sheet, and the brazing surface A healthy fillet can be formed on the periphery of the.
  • a single layer brazing sheet is used instead of a brazing sheet made of a clad material of two layers or three or more layers, the cost can be reduced as a whole.
  • the brazing surface between the single-layer brazing sheet and the aluminum alloy member is brazed by applying a surface pressure between the two aluminum alloy members without applying flux, it occurs between the two aluminum alloy members. As a result, surface brazing with stable quality can be performed.
  • the flux is applied to the surface of one aluminum alloy member having a large area in plan view and separated from the periphery of the brazing surface, a healthy fillet is formed on the periphery of the brazing surface. Can do.
  • the flux is applied to the surface of the brazing material and the brazing surface of the aluminum alloy member, and the brazing material is inserted between the surfaces of the aluminum alloy member to be joined for brazing heating.
  • the flux can be easily contained.
  • the quality of brazed products tends to vary.
  • the conventional flux-free surface brazing method since a clad material of two layers or three or more layers is used as a brazing sheet, the cost is high.
  • the molten brazing material flows out between the aluminum alloy members, and it is difficult to form a healthy fillet at the periphery of the brazed surface. there were.
  • the present inventors have achieved a stable fillet at the periphery of the brazing surface, without the need to apply flux to the surface of the brazing material and the brazing surface of the aluminum alloy member, at a lower cost than in the prior art.
  • the present invention has been reached in the process of earnestly studying the surface brazing method capable of forming the film. Details will be described below.
  • a single-layer brazing sheet is sufficiently formed in a state in which a single-layer brazing sheet made of a brazing material is sandwiched between two aluminum alloy members and the surface is in contact with each other without applying flux on the brazing surface. It melt
  • one aluminum alloy member may be an aluminum alloy plate, or both may be aluminum alloy plates.
  • an engaging portion may be provided so that parts made of aluminum alloy can be connected to each other, and a portion where the single-layer brazing sheet is sandwiched may be provided in the engaging portion.
  • the material to be joined is not limited to the aluminum alloy plate, and any material may be used as long as it is made of an aluminum alloy having a smooth surface that can be brazed at least partially.
  • an aluminum alloy member which is a to-be-joined material what consists of an aluminum alloy whose solidus temperature is 610 degreeC or more is preferable. Specifically, AA1000 type is preferable.
  • the solidus temperature of the aluminum alloy member to be joined is less than 610 ° C., a part of the aluminum alloy member is melted during brazing heating, and the applied aluminum alloy The member itself may be deformed.
  • a more preferable solidus temperature of the aluminum alloy member is 615 ° C. or higher.
  • a more preferable solidus temperature of the aluminum alloy member is 620 ° C. or higher.
  • the first feature of the present invention is that a brazing sheet comprising a single layer of brazing material having a predetermined composition and thickness is used to reduce costs. Therefore, first, a brazing material and a brazing sheet using the same as a thin plate will be described.
  • the brazing material an alloy containing Si: 3.0 to 12% by mass, Mg: 0.1 to 0.35% by mass, and the balance being composed of Al and inevitable impurities is used.
  • Si 3.0 to 12% by mass Si is an element for lowering the liquidus temperature of the single-layer brazing sheet depending on its content and improving wettability during surface brazing. If the amount of Si contained in the brazing material is less than 3.0% by mass, the temperature of the liquidus of the single-layer brazing sheet becomes too high, and even if a predetermined brazing temperature is reached, the single-layer brazing sheet There is a possibility that dissolution is insufficient and sufficient brazing strength cannot be obtained. When the amount of Si contained in the brazing material exceeds 12% by mass, there is a high possibility that primary Si precipitates (crystallizes) in the center of the ingot during casting, and a healthy hot-rolled sheet was obtained.
  • the Si content of the brazing filler metal is in the range of 3.0 to 12% by mass.
  • a more preferable Si content is in the range of 4.0 to 12% by mass.
  • a more preferable Si content is in the range of 5.0 to 12% by mass.
  • Mg 0.1 to 0.35% by mass Since Mg acts as a reducing agent when oxidized itself, Mg suppresses the oxidation of aluminum at the interface between the aluminum alloy plate and the brazing material of the single-layer brazing sheet by brazing heating, and wets during surface brazing. It is considered to be an element for improving the properties. If the amount of Mg contained in the brazing material is less than 0.1% by mass, although depending on the brazing temperature and the like, the effect is insufficient and sufficient brazing strength may not be obtained.
  • the Mg content of the brazing filler metal is in the range of 0.1 to 0.35% by mass.
  • a more preferable Mg content is in the range of 0.1 to 0.32% by mass.
  • a more preferable Mg content is in the range of 0.1 to 0.3% by mass.
  • Inevitable impurities include Fe, Cu, Mn, Zn, and the like.
  • Fe less than 1.0% by mass
  • Cu less than 1.0% by mass
  • Mn less than 1.0% by mass
  • the content of the components as inevitable impurities is preferably less than 1.0% by mass.
  • impurity elements include Cr, Ni, Zr, Ti, V, B, Sr, Sb, Ca, Na, etc., but Cr: less than 0.5 mass%, Ni: less than 0.5 mass% , Zr: less than 0.2% by mass, Ti: less than 0.2% by mass, V: less than 0.1% by mass, B: less than 0.05% by mass, Sr: less than 0.05% by mass, Sb: 0.0% by mass. If it is in the range of less than 05% by mass, Ca: less than 0.05% by mass, and Na: less than 0.01% by mass, the performance characteristics of the single-layer brazing sheet according to the present invention will not be significantly hindered. It may be contained as an impurity. About Pb, Bi, Sn, and In, each is less than 0.02 mass%, and each other is less than 0.02 mass%. Even if it contains an element outside the control in this range, the effect of the present invention is not hindered. .
  • the brazing material is made into a thin plate and used as a single-layer brazing sheet.
  • the thickness should just be the thickness which can achieve sound surface brazing. If the thickness is less than 15 ⁇ m, sufficient brazing strength may not be obtained. When the thickness exceeds 200 ⁇ m, the amount of the brazing material that oozes out from the joint surface becomes too large, resulting in an increase in cost. Therefore, the thickness range of the single-layer brazing sheet made of the brazing material is 15 to 200 ⁇ m. A more preferable thickness range is 15 to 150 ⁇ m. A more preferable thickness range is 20 to 100 ⁇ m.
  • a single layer brazing sheet made of brazing material having a thickness of 100 ⁇ m is manufactured as follows. Ingots, scraps, and the like as raw materials are blended and put into a melting furnace to melt a molten aluminum having a predetermined brazing material composition.
  • the melting furnace is generally a burner furnace in which the raw material is heated and melted directly by a burner flame. After the molten aluminum reaches a predetermined temperature, for example, 800 ° C., an appropriate amount of the flux for removing the debris is added, and the molten metal is stirred with a stirring rod to dissolve all raw materials.
  • an additional raw material such as Mg
  • an additional raw material such as Mg
  • the metal soot floating on the surface is removed.
  • the molten aluminum is cooled to a predetermined temperature, for example, 740 ° C.
  • the molten aluminum is poured out from the hot water outlet into a bowl, and if necessary, casting is started through an inline rotary degasser, a CFF filter, and the like.
  • a melting furnace and a holding furnace are provided side by side, after the molten metal melted in the melting furnace is transferred to the holding furnace, casting is started after further sedation or the like in the holding furnace.
  • the jacket of the DC casting machine may be a single pour, but may be a multi-pour that places importance on production efficiency. For example, while pouring through a dip tube and a float into a water-cooled mold having a size of 700 mm ⁇ 450 mm, the lower mold is lowered at a casting speed of 60 mm / min, and direct water cooling (Direct Chill), the molten metal in the sump is solidified and cooled to obtain a slab having a predetermined size, for example, 700 mm ⁇ 450 mm ⁇ 4500 mm. After the end of casting, the front and rear ends of the slab were cut and double-sided with 25 mm on one side.
  • Direct Chill direct water cooling
  • the 400 mm thick slab was inserted into a soaking furnace and homogenized at 450 to 540 ° C. for 1 to 12 hours ( HO treatment). After the homogenization treatment, the slab is taken out of the soaking furnace and subjected to several passes of hot rolling with a hot rolling mill to obtain, for example, a 6 mm thick hot rolled plate coil (Reroll).
  • the 6 mm thick hot rolled plate coil is subjected to several passes of cold rolling to obtain a single layer brazing sheet made of a brazing material having a predetermined thickness, for example, 100 ⁇ m.
  • a coil is inserted into the annealer as necessary, and an intermediate annealing process at a holding temperature of 300 to 450 ° C. is performed to perform cold rolling. It is desirable to soften the plate.
  • the second feature of the present invention is the surface of one of the aluminum alloy members having a large area in plan view without applying a flux to the brazing surface of the single-layer brazing sheet and the aluminum alloy member, It is in the point which applies a flux to the area
  • the brazing surface in this specification is the surface which is in contact with the other aluminum alloy member among the surfaces of the single-layer brazing sheet in an assembled state before brazing heating, or one aluminum alloy member. Means the surface overlapping with the other aluminum alloy member in plan view.
  • the flux when flux is applied to the brazing surface of a single-layer brazing sheet and an aluminum alloy member, void defects are likely to occur on the brazing surface as described above, and the flux may be contained. There is. Specifically, when the flux is directly applied to the contact surface between the other aluminum alloy member and the brazing material, or the surface of one aluminum alloy member that overlaps the other aluminum alloy member in plan view. The flux melted during the brazing heating is taken into the brazing surface, and the possibility that defects due to the flux occur on the brazing surface increases.
  • the flux is not applied to the brazing surface, but the flux is applied to the surface of one of the aluminum alloy members having a large area in a plan view and separated from the periphery of the brazing surface. Decided to do. A surface of one aluminum alloy member having a large area in plan view, and applying a flux to a region separated from the periphery of the brazing surface, If flux is applied to such a region, the applied flux melts during brazing heating, diffuses the surface of one aluminum alloy member having a large area in plan view, and the other aluminum alloy member To the periphery (the periphery of the brazing surface).
  • the molten flux that has reached the periphery of the brazing surface stays at the periphery as it is, and improves the wettability between the molten brazing material and the aluminum alloy member without penetrating the brazing surface.
  • a healthy fillet is formed on the periphery of the affixing surface.
  • the flux may be applied as long as it is a surface not in contact with the single-layer brazing sheet among the surfaces of one of the aluminum alloy members having a large area in plan view in the assembled state before brazing heating. Moreover, even if it is a surface which is in contact with the single-layer brazing sheet among the surfaces of one aluminum alloy member having a large area in plan view, it is a surface that does not overlap with other aluminum alloy members in plan view.
  • the flux may be applied because it deviates from the definition of the brazing surface. Even in such a case, since the predetermined surface pressure is applied to the brazed surface after assembly, the flux does not penetrate into the brazed surfaces of the single-layer brazing sheet and the aluminum alloy member. There is a low possibility that the flux will be contained inside the brazing surface during brazing heating.
  • the surface of the single layer brazing sheet is from the edge of the aluminum alloy member with the smaller area in plan view.
  • the surface of the single-layer brazing sheet protruding from the edge of the aluminum alloy member having the smaller area is not a brazed surface, and therefore flux may be applied on this surface.
  • a predetermined surface pressure is applied to the brazing surface, so that the flux does not penetrate into the brazing surfaces of the aluminum alloy members, and brazing. It is unlikely that the flux will be contained inside the brazing surface during heating. Further, the melted flux tends to stay at the edge of the brazing surface, and improves the wettability of the molten brazing material with the aluminum alloy member without degrading the quality of the brazing surface, thereby forming a healthy fillet.
  • the brazing surface is preferably a flat surface, but is not necessarily a flat surface.
  • a cylindrical concave surface is formed on one aluminum alloy member having a large area in plan view
  • a cylindrical convex surface is formed on the other aluminum alloy member having a small area in plan view.
  • the convex surface can be fitted together, and surface brazing may be performed by sandwiching a single-layer brazing sheet that has been bent into the fitting surface.
  • region which applies a flux needs to be slightly spaced apart from the edge of one brazing surface, and is the surface of one aluminum alloy member with a large area by planar view.
  • the flux application position (the shortest distance from the periphery of the brazing surface to the flux application area) exceeds 35 mm, the molten flux is not sufficiently supplied to the periphery of the brazing surface, depending on the brazing conditions and the amount of flux applied. There is a high probability that a healthy fillet will not be formed.
  • the preferred flux application position is in the range of 0.5 to 35 mm.
  • a more preferable flux application position is in the range of 0.5 to 30 mm.
  • a more preferable flux application position is in the range of 1.0 to 30 mm.
  • a preferable flux application amount is in the range of 2 to 40 g / m 2 . If the amount of flux applied is less than 2 g / m 2 , depending on the flux application position, the supply of flux to the peripheral edge of the brazing surface is insufficient, so that a healthy fillet cannot be formed. Even if the amount of flux applied exceeds 40 g / m 2 , the effect of forming a healthy fillet cannot be expected to increase any more, but rather the amount of flux used increases and the production cost increases.
  • a more preferable flux application amount is in the range of 2 to 35 g / m 2 .
  • the application of the flux may be performed by roll-printing a slurry mixed with a solvent, a flux, a binder, and the like from the surface of one aluminum alloy member that has been sealed only in a predetermined region in advance. You may carry out by air-spraying the liquid mixture diluted with the solvent. Alternatively, an appropriate amount of slurry mixed with a solvent, flux, binder, or the like may be applied around the other aluminum alloy member without applying a seal to the aluminum alloy member in advance.
  • the flux include fluoride-based non-corrosive flux, and typical compound forms include KAlF 4 , K 2 AlF 5 , K 3 AlF 6 , AlF 3 , KF, and CsF. It is more preferable to use these fluxes in combination than to use them alone because they approach the eutectic composition and lower the melting point. As described above, the preferable flux application amount is in the range of 2 to 40 g / m 2 .
  • the inert gas nitrogen gas, argon gas, helium gas, or the like can be used.
  • the oxygen concentration in the inert gas is preferably 500 ppm or less. If the oxygen concentration in the inert gas exceeds 500 ppm, the joint strength (shear stress) after surface brazing decreases. A more preferable oxygen concentration in the inert gas is 100 ppm. A more preferable oxygen concentration in the inert gas is 10 ppm or less. Specifically, for the industrial nitrogen gas, since the standard is defined as an oxygen concentration of 10 ppm or less, it is most preferable to use the industrial nitrogen gas from the viewpoint of cost.
  • the inert gas may be injected to replace the atmosphere in the heating device with the inert gas before reaching a predetermined holding temperature.
  • a single layer brazing sheet made of a brazing material of an Al—Si—Mg based alloy having a predetermined composition is melted to bring the brazing material and the aluminum alloy member into a surface.
  • Brazing heating is performed in the state of contact, and at this time, it is necessary to maintain a predetermined brazing temperature while applying a surface pressure of 1.0 gf / mm 2 or more (0.01 MPa or more) to the joint surface.
  • a surface pressure of 1.0 gf / mm 2 or more 0.01 MPa or more
  • the surface pressure applied to the joint surface is high. Therefore, a more preferable surface pressure is 5.0 gf / mm 2 or more (0.05 MPa or more). A more preferable surface pressure is 10 gf / mm 2 or more (0.1 MPa or more).
  • a single-layer brazing sheet (brazing material) having a predetermined composition is dissolved to wet the interface between the aluminum alloy members, thereby reliably brazing.
  • the brazing temperature is at least 580 ° C. or higher.
  • the brazing temperature is less than 580 ° C.
  • the brazing material is not sufficiently dissolved, and sufficient brazing strength cannot be obtained.
  • a more preferable holding temperature is 585 ° C. or higher.
  • a more preferable holding temperature is 590 ° C. or higher.
  • the holding time at the brazing temperature is preferably 2 minutes or more. Although depending on the brazing temperature, if the holding time is less than 2 minutes, sufficient brazing strength cannot be obtained due to uneven temperature at the joint surface. A more preferable holding time is 5 minutes or more.
  • the ingot was chamfered by 3 mm after cutting the hot water to a thickness of 9 mm.
  • the ingot is charged into an electric heating furnace, heated to 480 ° C. at a heating rate of 100 ° C./hr, homogenized at 480 ° C. for 1 hour, and then 3 mm thick by a hot rolling mill. Hot rolling was applied. Thereafter, the hot-rolled plate was cold-rolled to obtain a cold-rolled plate having a thickness of 1.2 mm, and subjected to a primary intermediate annealing at 390 ° C. ⁇ 2 hours for softening.
  • a seal (27 mm ⁇ 27 mm) was attached to the center of a 40 mm ⁇ 40 mm surface of a block A (40 mm ⁇ 40 mm ⁇ 4 mm) made of AA1050 alloy, and the mass was measured. Furthermore, a predetermined amount was applied onto a 40 mm ⁇ 40 mm surface by spraying a mixed solution of fluoride flux and water, and the mass was measured after drying at 200 ° C. The mass difference after fluxing before / coating is divided by application area (1.6 ⁇ 10 3 mm 2) , it was calculated flux application amount (g / m 2).
  • the seal is peeled off, and a single-layer brazing sheet (25 mm ⁇ 25 mm ⁇ 60 ⁇ m) is placed on the center of the surface where the flux is not applied (27 mm ⁇ 27 mm), and further the single-layer brazing sheet (25 mm ⁇ 25 mm).
  • a surface of 25 mm ⁇ 25 mm in AA1050 alloy block B (25 mm ⁇ 25 mm ⁇ 3 mm) was overlapped on the center of the surface.
  • a disc spring was set on the upper surface of the block B, a pressure of 1.5 MPa was applied, and the assembled block or the like was inserted into the test furnace.
  • a thermocouple attached to block A While measuring the actual temperature with a thermocouple attached to block A, heating to 600 ° C. at a rate of 50 ° C./min by PID control, holding at a brazing temperature of 600 ° C. for 5 minutes, and then outputting to the resistance wire
  • the assembled block and the like were furnace-cooled with OFF. After the thermocouple attached to the block A showed 500 ° C. or lower, the assembled block and the like were taken out of the furnace and cooled to room temperature.
  • the atmosphere during heating was adjusted using industrial nitrogen gas (nitrogen having an oxygen concentration of 10 ppm or less).
  • the fillet formation rate is a value obtained by dividing the number of locations where healthy fillets are formed in the block AB after brazing by 6 of all the observed locations. Whether or not a healthy fillet was formed was determined by measuring the “throat thickness” of the fillet portion as shown in FIG. Where a fillet with a throat thickness of 150 ⁇ m or more was observed, it was determined that a healthy fillet was formed.
  • FIGS. 5 and 6 show examples of a cross-sectional metallographic structure of a fillet having a “throat thickness” of 150 ⁇ m or more, and a cross-sectional metallographic structure of a fillet having a “throat thickness” of less than 150 ⁇ m, respectively.
  • the size of the block A is changed (48 mm ⁇ 48 mm ⁇ 4 mm, 68 mm ⁇ 68 mm ⁇ 4 mm, 98 mm ⁇ 98 mm ⁇ 4 mm, 118 mm ⁇ 118 mm ⁇ 4 mm)
  • the flux application position was adjusted by using seals of various sizes (35 ⁇ 35 mm, 55 ⁇ 55 mm, 85 ⁇ 85 mm, 105 ⁇ 105 mm).
  • the fillet formation rate is 6/6 (100%).
  • the fillet formation rate was 2/6 (33%).
  • the preferable Mg content of the brazing material is 0.1 to 0. The range is .35% by mass.
  • the flux application position the shortest distance from the periphery of the block B to the flux application area
  • fillet formation is achieved if the flux application position is 30 mm or less.
  • the rate was 6/6 (100%).
  • the fillet formation rate was 0/6 (0%).
  • the preferred flux application position is in the range of 0.5 to 35 mm.
  • the fillet formation rate is 6/6 (100%). It was. Further, even when the flux application amount is 1 g / m 2 , the fillet formation rate is 5/6 (83%), and the fillet formation rate when the flux is not applied is 1/6 (17%). It is clear that it contributed to the improvement of fillet formation rate. Even if the application amount of the flux exceeds 40 g / m 2 , the effect of forming a healthy fillet cannot be expected to increase any more. Considering that the amount of use of the flux increases and the production cost increases, A preferable flux application amount is in the range of 2 to 40 g / m 2 .
  • a surface brazing method capable of brazing two aluminum alloy members to each other with a single layer brazing sheet and further forming a healthy fillet at the periphery of the brazed surface.

Abstract

The purpose of the present invention is to form a sound fillet on the periphery of surfaces to be brazed, when two aluminum alloy members are brazed to each other by plane brazing using a single-layer brazing sheet. When aluminum alloy members having a solidus temperature of 610ºC or higher are brazed to each other by plane brazing using a single-layer brazing sheet constituted of an Al-Si-Mg alloy brazing material, a flux is applied not to the surfaces of the aluminum alloy members which are to be brazed with the single-layer brazing sheet but to an area which lies in the surface of the aluminum alloy member that is the larger in terms of plan-view area and which is separated from the periphery of the surface to be brazed. The single-layer brazing sheet is sandwiched between the aluminum alloy members. The aluminum alloy members are brazed to each other in an inert-gas atmosphere while keeping the brazing sheet in areal contact with the aluminum alloy members and while keeping the stack at a given brazing temperature and applying an areal pressure thereto.

Description

アルミニウム合金部材の面ろう付け方法Surface brazing method for aluminum alloy members
 本発明は、アルミニウム合金部材同士を、単層ブレージングシートを用いて不活性ガス雰囲気中で面ろう付けする際に、健全なフィレットを形成することが可能なアルミニウム合金部材の面ろう付け方法に関するものである。 The present invention relates to a surface brazing method for aluminum alloy members capable of forming a sound fillet when the aluminum alloy members are brazed to each other in an inert gas atmosphere using a single layer brazing sheet. It is.
 例えばアルミニウム熱交換器のフィン材とチューブ材のろう付けに見られるように、これまでのろう付け技術は、フィレット形状が得られるような線接触を基本としていた。このようなろう付け法では、例えば下板がブレージングシートでありその上に板状のフィンを垂直に接合する場合に、溶融したろう材がブレージングシート上を流動してフィレットを形成することとなる。
 このような線接触を基本とするろう付け技術においては、ろう付け加熱中の酸化を抑制するため、大気中または不活性ガス雰囲気中においてフラックスを使用してろう付けすることが一般的に行なわれている。
For example, as seen in the brazing of fins and tubes of aluminum heat exchangers, the conventional brazing techniques have been based on line contact so that a fillet shape is obtained. In such a brazing method, for example, when the lower plate is a brazing sheet and a plate-like fin is joined vertically thereto, the molten brazing material flows on the brazing sheet to form a fillet. .
In such a brazing technique based on line contact, brazing is generally performed using a flux in the air or in an inert gas atmosphere in order to suppress oxidation during brazing heating. ing.
 例えば特許文献1では、非腐食性フラックスと金属粉末を用いてろう付けされる部材であって、Fe:0.7~2.5wt%、Mn:0.5~2.0wt%の1種または2種を含有し、Mg:0.2wt%以下であり、非腐食性フラックスと金属粉末を塗布する表面から20μmの深さにおいて最大径で5μmを超える第2相粒子の数が200個/mm2 以下であることを特徴としたろう付け用アルミニウム材が提唱されている。
 これによると、クラッド材を使用しないろう付け法に従い、ろうの流動性が良好で優れたフィレットを形成でき、強度にも優れたろう付け用アルミニウム材が提供される。
For example, in Patent Document 1, a member that is brazed using a non-corrosive flux and metal powder, Fe: 0.7-2.5 wt%, Mn: 0.5-2.0 wt%, 2 types are included, Mg: 0.2 wt% or less, and the number of second phase particles having a maximum diameter exceeding 5 μm at a depth of 20 μm from the surface to which the non-corrosive flux and the metal powder are applied is 200 particles / mm. A brazing aluminum material characterized by being 2 or less has been proposed.
According to this, according to the brazing method that does not use a clad material, it is possible to form an excellent fillet with good brazing fluidity, and to provide an aluminum material for brazing that is excellent in strength.
 ところで、近年、車載用IGBT等の発熱を面接触で冷却する熱交換システムの需要が高まっており、アルミニウム部材の面同士をろう材によって面ろう付けする技術が必要となっている。
 例えば特許文献2には、Cu:23~37質量%,Si:4~10質量%を含み、残部がAl及び不可避的不純物からなる組成と10~100μmの平均粒径を有する粉末状アルミニウム合金ろう材と、固形分として11質量%以上のCsFを含むフッ化物系フラックスとを分散媒に懸濁させたアルミニウム合金ろう材スラリーを、ろう付けされるアルミニウム合金鋳物又は他方の被ろう付け部材のろう付け部表面に塗布した後、アルミニウム合金ろう材スラリーが塗布されたろう付け部に他方の被ろう付け部材を組み付け、その組み付け体を加熱することを特徴とするアルミニウム合金鋳物のろう付け方法が提唱されている。
 この方法によると、濡れ性及び耐食性に強いろう材を使用して、炉内ろう付けでも健全な接合部が得られるアルミニウム合金鋳物の低温ろう付け方法が提供される。
By the way, in recent years, a demand for a heat exchange system that cools heat generated by an in-vehicle IGBT or the like by surface contact is increasing, and a technique for brazing the surfaces of aluminum members with a brazing material is required.
For example, Patent Document 2 discloses a powdered aluminum alloy braze containing Cu: 23 to 37% by mass, Si: 4 to 10% by mass, the balance being Al and inevitable impurities, and an average particle size of 10 to 100 μm. An aluminum alloy brazing material slurry in which a material and a fluoride-based flux containing 11% by mass or more of CsF as a solid content are suspended in a dispersion medium is brazed into an aluminum alloy casting to be brazed or the other brazed member A method of brazing an aluminum alloy casting characterized in that after being applied to the surface of the brazed part, the other brazed member is assembled to the brazed part to which the aluminum alloy brazing material slurry has been applied and the assembly is heated. ing.
According to this method, a low-temperature brazing method for an aluminum alloy casting is provided in which a brazing material having high wettability and corrosion resistance is used, and a sound joint can be obtained even by brazing in a furnace.
 この面ろう付け技術においては、粉末状ろう材とフラックスを含む混合スラリーを、被ろう付け部材のろう付け部表面に塗布した後、被ろう付け部材同士を組み付け、その組み付け体を加熱している。このため、接合部に空隙欠陥等が生じやすく、フラックスを封じ込めやすい構造となっている。したがって、アルミニウム合金部材の面同士をろう材によって面ろう付けする技術は、前記フィレット形成を基本とするろう付け技術に比べて非常に難しい技術となっている。 In this surface brazing technique, after a mixed slurry containing a powdered brazing material and a flux is applied to the surface of the brazed portion of the brazed member, the brazed members are assembled together and the assembly is heated. . For this reason, a void defect or the like is likely to occur at the joint, and the flux is easily contained. Therefore, the technique of brazing the surfaces of the aluminum alloy members with a brazing material is a very difficult technique compared to the brazing technique based on the fillet formation.
 一方、近年では、Al-Si系合金ろう材を芯材にクラッドしたブレージングシートを不活性ガス中で無フラックスろう付けする方法が開発されている。
 例えば引用文献3には、質量%で、Mgを0.1~5.0%、Siを3~13%含有するAl-Si系ろう材が最表面に位置するアルミニウムクラッド材を用いて、減圧を伴わない非酸化性雰囲気で、前記Al-Si系ろう材とろう付け対象部材とを接触密着させて加熱し、前記芯材と前記ろう付け対象部材とを接合する方法が提示されている。
 この方法によると、フラックスや真空設備を必要とせずに大気圧下でのフラックスレスろう付けが可能になり、ろう材以外の被ろう付け構成部材へMgを添加した場合にもろう付け阻害要因とはならないとのことである。
On the other hand, in recent years, a method has been developed in which a brazing sheet in which an Al—Si alloy brazing material is clad with a core material is brazed in an inert gas without flux.
For example, in cited document 3, an aluminum clad material containing an Al—Si based brazing material containing 0.1 to 5.0% Mg and 3 to 13% Si in mass% is used to reduce the pressure. There has been proposed a method in which the Al—Si brazing material and the brazing target member are brought into contact and in close contact with each other in a non-oxidizing atmosphere without heating, and the core material and the brazing target member are joined.
According to this method, fluxless brazing at atmospheric pressure is possible without the need for flux or vacuum equipment, and even when Mg is added to brazed components other than brazing material, It must not be.
 しかしながら、上記特許文献3に記載のろう付け方法では、芯材とろう材とからなる2層以上のクラッド材を使用している。このクラッド材をブレージングシートとしてアルミニウム合金部材同士の面ろう付けに適用するためには、前記クラッド材を芯材の両面にろう材を配置した3層のものとする必要があり、クラッド材の製造が煩雑になりコストアップを伴う。
 そこで、本発明者等は、従来技術に比べ低コストで品質の安定した面ろう付け法について鋭意検討を重ねる過程で、特許文献4に示されるような単層ブレージングシートによって2つのアルミニウム合金部材同士を不活性ガス雰囲気下において無フラックスで面ろう付けする技術を提案した。
However, in the brazing method described in Patent Document 3, a clad material having two or more layers composed of a core material and a brazing material is used. In order to apply this clad material to a brazing sheet as a brazing sheet, it is necessary to make the clad material into a three-layer structure in which a braze material is disposed on both sides of a core material. Becomes complicated and increases costs.
In view of this, the inventors of the present invention, in the process of earnestly studying a surface brazing method that is low in cost and stable in quality as compared with the prior art, use a single-layer brazing sheet as shown in Patent Document 4 to connect two aluminum alloy members. A technology for surface brazing without flux in an inert gas atmosphere was proposed.
 前記特許文献4で提案した方法は、固相線温度が570℃以上であるアルミニウム合金部材同士の間に、Si:3~12質量%、Mg:0.1~5.0質量%を含み、残部がAl及び不可避的不純物からなる成分組成を有し、厚さ15~200μmのろう材からなる単層ブレージングシートを挟みこみ面接触させた状態で、不活性ガス雰囲気下で、ろう付け温度570℃以上に保持しつつ、0.6gf/mm以上の面圧を付加しながら無フラックスでアルミニウム合金部材同士をろう付けしようとするものである。 The method proposed in Patent Document 4 includes Si: 3 to 12% by mass, Mg: 0.1 to 5.0% by mass between aluminum alloy members having a solidus temperature of 570 ° C. or higher, A brazing temperature of 570 in an inert gas atmosphere with a single-layer brazing sheet made of a brazing material having a thickness of 15 to 200 μm sandwiched between and having a component composition consisting of Al and inevitable impurities as the balance. It is intended to braze aluminum alloy members without flux while applying a surface pressure of 0.6 gf / mm 2 or more while maintaining the temperature at or above.
特開平09-194976号公報Japanese Patent Laid-Open No. 09-194976 特開2007-83271号公報JP 2007-83271 A 特許第4547032号公報Japanese Patent No. 4547032 特開2012-71335号公報JP 2012-71335 A
 しかしながら、この技術によると、単層ブレージングシートを挟み込んだ2つのアルミニウム合金部材同士に所定の圧力以上の圧力を付与しながらろう付け加熱を行う必要がある。このため、ろう付け加熱時に溶融したろう材がアルミニウム合金部材同士の間から流れ出してしまい、ろう付け面の周縁に健全なフィレットが形成されないという壁に突き当たった。 However, according to this technique, it is necessary to perform brazing heating while applying a pressure equal to or higher than a predetermined pressure between two aluminum alloy members sandwiching a single layer brazing sheet. For this reason, the brazing material melted at the time of brazing heating flows out from between the aluminum alloy members, and hits a wall where a healthy fillet is not formed at the periphery of the brazed surface.
 一方で、前述のように車載用IGBT等の発熱を面接触で冷却する熱交換システムの需要が高まっており、このような熱交換システムに使用されるアルミニウム部材の面同士を面ろう付けする場合、ろう付け面の周縁に健全なフィレットを形成することが必要となっている。仮にろう付け面の周縁に健全なフィレットが形成されていない場合には、熱交換システムの使用時の熱サイクルによって接合界面に繰り返し応力が掛り、サイクル疲労のため接合界面に存在するろう材に亀裂が入る可能性が高まる。
 本発明は、このような課題を解決するために案出されたものであり、単層ブレージングシートによって2つのアルミニウム合金部材同士を面ろう付けするとともに、さらにろう付け面の周縁に健全なフィレットを形成できる面ろう付け法を提供することを目的とするものである。
On the other hand, as described above, there is an increasing demand for a heat exchange system that cools heat generated by an in-vehicle IGBT or the like by surface contact, and when the surfaces of aluminum members used in such a heat exchange system are brazed to each other It is necessary to form a healthy fillet at the periphery of the brazing surface. If a healthy fillet is not formed at the periphery of the brazing surface, repeated stress is applied to the joint interface due to the thermal cycle when the heat exchange system is used, and cracks occur in the brazing material present at the joint interface due to cycle fatigue. The possibility of entering is increased.
The present invention has been devised to solve such a problem, and two aluminum alloy members are brazed to each other with a single layer brazing sheet, and a healthy fillet is further formed on the periphery of the brazed surface. The object is to provide a surface brazing method that can be formed.
 本発明のアルミニウム合金部材の面ろう付け方法は、その目的を達成するために、Al-Si-Mg系合金のろう材からなる単層ブレージングシートを用いて固相線温度が610℃以上であるアルミニウム合金部材同士を面ろう付けする方法する際、前記単層ブレージングシートと前記アルミニウム合金部材とのろう付け面にフラックスを塗布せずに、平面視で面積の大きい方のアルミニウム合金部材の表面であって、前記ろう付け面の周縁から離間した領域にフラックスを塗布し、前記単層ブレージングシートをアルミニウム合金部材同士の間に挟みこみ面接触させた状態で、不活性ガス雰囲気下、所定のろう付け温度に保持しつつ、面圧を付加しながらアルミニウム合金部材同士をろう付けすることを特徴とする。 In order to achieve the object, the surface brazing method for an aluminum alloy member of the present invention has a solidus temperature of 610 ° C. or higher using a single layer brazing sheet made of a brazing material of an Al—Si—Mg alloy. When the surface brazing between aluminum alloy members, without applying flux to the brazing surface of the single-layer brazing sheet and the aluminum alloy member, on the surface of the aluminum alloy member having the larger area in plan view Then, a flux is applied to a region separated from the peripheral edge of the brazing surface, and the single-layer brazing sheet is sandwiched between aluminum alloy members and brought into contact with the surface, and a predetermined brazing is performed in an inert gas atmosphere. The aluminum alloy members are brazed together while applying a surface pressure while maintaining the brazing temperature.
 Al-Si-Mg系合金のろう材として、Si:3.0~12質量%、Mg:0.1~0.35質量%を含み、残部がAl及び不可避的不純物からなる成分組成を有する合金を用いることが好ましい。
 また、前記ろう付け面の周縁から0.5~35mmの範囲で離間した領域にフラックスを塗布することが好ましい。
 さらに、前記フラックスの塗布量は、2~40g/mとすることが好ましい。
An alloy containing Si: 3.0 to 12% by mass, Mg: 0.1 to 0.35% by mass as a brazing material for an Al—Si—Mg based alloy, with the balance being composed of Al and inevitable impurities Is preferably used.
Further, it is preferable to apply a flux to a region separated from the periphery of the brazing surface within a range of 0.5 to 35 mm.
Further, the amount of the flux applied is preferably 2 to 40 g / m 2 .
 本発明により提供されるアルミニウム合金部材の面ろう付け方法によると、単層ブレージングシートによって2つのアルミニウム合金部材を2つのアルミニウム合金部材間に面圧を付加して面ろう付けするとともに、ろう付け面の周縁に健全なフィレットを形成することができる。
 2層又は3層以上のクラッド材からなるブレージングシートを用いるのではなく、単層のブレージングシートを用いているため、全体として低コスト化が図れる。また、単層ブレージングシートとアルミニウム合金部材とのろう付け面にフラックスを塗布せずに、2つのアルミニウム合金部材間に面圧を付加してろう付けしているため、両アルミニウム合金部材間に発生しやすい空隙欠陥等を抑制することができ、結果として品質の安定した面ろう付けが行える。さらに、平面視で面積の大きい一方のアルミニウム合金部材の表面であって、ろう付け面の周縁から離間した領域にフラックスを塗布しているため、ろう付け面の周縁に健全なフィレットを形成することができる。
According to the surface brazing method of an aluminum alloy member provided by the present invention, two aluminum alloy members are subjected to surface brazing by applying a surface pressure between the two aluminum alloy members using a single layer brazing sheet, and the brazing surface A healthy fillet can be formed on the periphery of the.
Since a single layer brazing sheet is used instead of a brazing sheet made of a clad material of two layers or three or more layers, the cost can be reduced as a whole. Also, since the brazing surface between the single-layer brazing sheet and the aluminum alloy member is brazed by applying a surface pressure between the two aluminum alloy members without applying flux, it occurs between the two aluminum alloy members. As a result, surface brazing with stable quality can be performed. Furthermore, since the flux is applied to the surface of one aluminum alloy member having a large area in plan view and separated from the periphery of the brazing surface, a healthy fillet is formed on the periphery of the brazing surface. Can do.
試験片の形状、配置を説明する図Diagram explaining the shape and arrangement of the test piece 試験片の組み付けを説明する概念図Conceptual diagram explaining assembly of test specimen 試験片の切断位置、観察位置を説明する図Diagram explaining the cutting position and observation position of the test piece フィレットの「のど厚」を説明する図Illustration explaining the throat thickness of the fillet のど厚が150μm以上のフィレットの断面金属組織Cross-sectional metallographic structure of a fillet with a throat thickness of 150 μm or more のど厚が150μm未満のフィレットの断面金属組織Cross-sectional metallographic structure of a fillet with a throat thickness of less than 150 μm ろう材中のMg添加量の影響を示す図Diagram showing the effect of Mg content in brazing filler metal フラックス塗布位置の影響を示す図Diagram showing the effect of flux application position フラックス塗布量の影響を示す図Diagram showing the effect of flux application amount
 通常、面ろう付けする際は、ろう材の表面及びアルミニウム合金部材のろう付け面にフラックスを塗布し、接合するアルミニウム合金部材の面同士の間にろう材を挿入してろう付け加熱を行なうため、接合部に空隙欠陥等が生じやすく、フラックスを封じ込めやすい構造となってしまう。このため、ろう付け製品の品質にバラツキが生じ易い。
 また、従来の無フラックス面ろう付け法では、2層又は3層以上のクラッド材をブレージングシートとして用いているためにコスト高となっている。さらに、従来の無フラックス面ろう付け法では、無フラックスであるがゆえに溶融したろう材がアルミニウム合金部材同士の間から流れ出してしまい、ろう付け面の周縁に健全なフィレットが形成されにくいといった問題があった。
Usually, when brazing, the flux is applied to the surface of the brazing material and the brazing surface of the aluminum alloy member, and the brazing material is inserted between the surfaces of the aluminum alloy member to be joined for brazing heating. As a result, void defects or the like are likely to occur at the joint, and the flux can be easily contained. For this reason, the quality of brazed products tends to vary.
Further, in the conventional flux-free surface brazing method, since a clad material of two layers or three or more layers is used as a brazing sheet, the cost is high. Furthermore, in the conventional flux-free surface brazing method, since there is no flux, the molten brazing material flows out between the aluminum alloy members, and it is difficult to form a healthy fillet at the periphery of the brazed surface. there were.
 前述のように車載用IGBT等の発熱を面接触で冷却する熱交換システムの需要が高まっており、このような熱交換システムに使用されるアルミニウム部材の面同士を面ろう付けする場合、ろう付け面の周縁に健全なフィレットを形成することが必要となる。仮にろう付け面の周縁に健全なフィレットが形成されていない場合には、熱交換システムの使用時の熱サイクルによって接合界面に繰り返し応力が掛り、サイクル疲労のため接合界面に存在するろう材に亀裂が入る可能性が高まる。
 そこで、本発明者等は、ろう材の表面及びアルミニウム合金部材のろう付け面にフラックスを塗布することなしに、従来技術に比べ低コストで品質が安定し、ろう付け面の周縁に健全なフィレットを形成できる面ろう付け法について鋭意検討を重ねる過程で、本発明に到達した。
 以下にその詳細を説明する。
As described above, there is an increasing demand for heat exchange systems that cool heat generated by in-vehicle IGBTs by surface contact. When brazing the surfaces of aluminum members used in such a heat exchange system, brazing is performed. It is necessary to form a healthy fillet at the periphery of the surface. If a healthy fillet is not formed at the periphery of the brazing surface, repeated stress is applied to the joint interface due to the thermal cycle when the heat exchange system is used, and cracks occur in the brazing material present at the joint interface due to cycle fatigue. The possibility of entering is increased.
Accordingly, the present inventors have achieved a stable fillet at the periphery of the brazing surface, without the need to apply flux to the surface of the brazing material and the brazing surface of the aluminum alloy member, at a lower cost than in the prior art. The present invention has been reached in the process of earnestly studying the surface brazing method capable of forming the film.
Details will be described below.
 まず本発明は、ろう付け面にはフラックスを塗布することなく、2つのアルミニウム合金部材同士の間にろう材からなる単層ブレージングシートを挟み込み面接触させた状態で、単層ブレージングシートを十分に溶解させてアルミニウム合金部材同士の界面をろう材で濡らして面ろう付けしようとするものである。
 2つのアルミニウム合金部材のうち、一方のアルミニウム合金部材がアルミニウム合金板であってもよいし、両方ともアルミニウム合金板であっても構わない。例えばアルミニウム合金製の部品同士が連結できるように係合部を設けて、当該係合部に単層ブレージングシートを挟み込める部位を設けるようにしてもよい。要するに本発明において、被接合材はアルミニウム合金板に限定されず、少なくとも一部にろう付け可能な平滑面を有するアルミニウム合金製のものであれば何であってもよい。
First, in the present invention, a single-layer brazing sheet is sufficiently formed in a state in which a single-layer brazing sheet made of a brazing material is sandwiched between two aluminum alloy members and the surface is in contact with each other without applying flux on the brazing surface. It melt | dissolves and wets the interface between aluminum alloy members with a brazing material, and is going to carry out surface brazing.
Of the two aluminum alloy members, one aluminum alloy member may be an aluminum alloy plate, or both may be aluminum alloy plates. For example, an engaging portion may be provided so that parts made of aluminum alloy can be connected to each other, and a portion where the single-layer brazing sheet is sandwiched may be provided in the engaging portion. In short, in the present invention, the material to be joined is not limited to the aluminum alloy plate, and any material may be used as long as it is made of an aluminum alloy having a smooth surface that can be brazed at least partially.
 Al-Si-Mg系のろう材を用いてろう付けするとき、当該ろう材を十分に溶解するためには、580℃以上の温度でろう付けする必要がある。このため、被接合材であるアルミニウム合金部材としては、その固相線温度が610℃以上のアルミニウム合金からなるものが好ましい。具体的には、AA1000系のものが好ましい。
 被接合材であるアルミニウム合金部材の固相線温度が610℃に満たないものである場合、ろう付け加熱中に、アルミニウム合金部材の一部が溶解し、付加している圧力のためにアルミニウム合金部材そのものが変形してしまう可能性がある。
 より好ましいアルミニウム合金部材の固相線温度は615℃以上である。さらに好ましいアルミニウム合金部材の固相線温度は620℃以上である。
When brazing using an Al—Si—Mg brazing material, it is necessary to braze at a temperature of 580 ° C. or higher in order to sufficiently dissolve the brazing material. For this reason, as an aluminum alloy member which is a to-be-joined material, what consists of an aluminum alloy whose solidus temperature is 610 degreeC or more is preferable. Specifically, AA1000 type is preferable.
When the solidus temperature of the aluminum alloy member to be joined is less than 610 ° C., a part of the aluminum alloy member is melted during brazing heating, and the applied aluminum alloy The member itself may be deformed.
A more preferable solidus temperature of the aluminum alloy member is 615 ° C. or higher. A more preferable solidus temperature of the aluminum alloy member is 620 ° C. or higher.
 本発明の第一の特徴点は、コストを抑えるためにブレージングシートとして、所定の組成と厚みを有するろう材単層からなるものを使用した点にある。
 そこで、まず、ろう材及びそれを薄板としたブレージングシートについて説明する。
 ろう材として、Si:3.0~12質量%、Mg:0.1~0.35質量%を含み、残部がAl及び不可避的不純物からなる成分組成を有する合金を用いる。
The first feature of the present invention is that a brazing sheet comprising a single layer of brazing material having a predetermined composition and thickness is used to reduce costs.
Therefore, first, a brazing material and a brazing sheet using the same as a thin plate will be described.
As the brazing material, an alloy containing Si: 3.0 to 12% by mass, Mg: 0.1 to 0.35% by mass, and the balance being composed of Al and inevitable impurities is used.
Si:3.0~12質量%
 Siは、その含有量によって単層ブレージングシートの液相線の温度を下げるとともに、面ろう付け中の濡れ性を改善するための元素である。ろう材に含まれるSi量が、3.0質量%未満であると、単層ブレージングシートの液相線の温度が高くなりすぎて、所定のろう付け温度に到達しても単層ブレージングシートの溶解が不十分となり、十分なろう付け強度が得られない可能性がある。ろう材に含まれるSi量が、12質量%を超えると、鋳造中に鋳塊中央部に初晶Siが析出(晶出)する可能性が高くなり、仮に健全な熱延板が得られたとしてもミクロ的に均質な組織の単層ブレージングシートを得ることが困難となる。
 したがって、ろう材のSi含有量は、3.0~12質量%の範囲とする。より好ましいSi含有量は、4.0~12質量%の範囲である。さらに好ましいSi含有量は、5.0~12質量%の範囲である。
Si: 3.0 to 12% by mass
Si is an element for lowering the liquidus temperature of the single-layer brazing sheet depending on its content and improving wettability during surface brazing. If the amount of Si contained in the brazing material is less than 3.0% by mass, the temperature of the liquidus of the single-layer brazing sheet becomes too high, and even if a predetermined brazing temperature is reached, the single-layer brazing sheet There is a possibility that dissolution is insufficient and sufficient brazing strength cannot be obtained. When the amount of Si contained in the brazing material exceeds 12% by mass, there is a high possibility that primary Si precipitates (crystallizes) in the center of the ingot during casting, and a healthy hot-rolled sheet was obtained. However, it becomes difficult to obtain a single layer brazing sheet having a microscopically homogeneous structure.
Therefore, the Si content of the brazing filler metal is in the range of 3.0 to 12% by mass. A more preferable Si content is in the range of 4.0 to 12% by mass. A more preferable Si content is in the range of 5.0 to 12% by mass.
Mg:0.1~0.35質量%
 Mgは、自らが酸化されることにより、還元剤として作用するため、ろう付け加熱によるアルミニウム合金板と単層ブレージングシートのろう材との界面におけるアルミニウムの酸化を抑制し、面ろう付け中の濡れ性を改善するための元素であると考えられる。
 ろう材に含まれるMg量が0.1質量%未満であると、ろう付け温度などにもよるが、その効果が不十分となり、十分なろう付け強度が得られない可能性がある。ろう材に含まれるMg量が0.35質量%を超えると、ろう付け加熱中に、ろう付け面の周縁にまで拡散した溶融フラックスが溶融ろう材に接触し、ろう材に含まれるMgと反応することで、フラックスの機能が損なわれて、健全なフィレットが形成されない。
 したがって、ろう材のMg含有量は、0.1~0.35質量%の範囲とする。より好ましいMg含有量は、0.1~0.32質量%の範囲である。さらに好ましいMg含有量は、0.1~0.3質量%の範囲である。
Mg: 0.1 to 0.35% by mass
Since Mg acts as a reducing agent when oxidized itself, Mg suppresses the oxidation of aluminum at the interface between the aluminum alloy plate and the brazing material of the single-layer brazing sheet by brazing heating, and wets during surface brazing. It is considered to be an element for improving the properties.
If the amount of Mg contained in the brazing material is less than 0.1% by mass, although depending on the brazing temperature and the like, the effect is insufficient and sufficient brazing strength may not be obtained. When the amount of Mg contained in the brazing material exceeds 0.35% by mass, the molten flux diffused to the periphery of the brazing surface contacts the molten brazing material during the brazing heating and reacts with Mg contained in the brazing material. By doing so, the function of a flux is impaired and a healthy fillet is not formed.
Therefore, the Mg content of the brazing filler metal is in the range of 0.1 to 0.35% by mass. A more preferable Mg content is in the range of 0.1 to 0.32% by mass. A more preferable Mg content is in the range of 0.1 to 0.3% by mass.
 不可避的不純物としてはFe、Cu、Mn、Zn等が挙げられるが、これら元素については、Fe:1.0質量%未満、Cu:1.0質量%未満、Mn:1.0質量%未満、Zn:1.0質量%未満の範囲であれば、本発明の効果を妨げるものではない。したがって、不可避的不純物としての前記成分含有量はそれぞれ1.0質量%未満とすることが好ましい。 Inevitable impurities include Fe, Cu, Mn, Zn, and the like. For these elements, Fe: less than 1.0% by mass, Cu: less than 1.0% by mass, Mn: less than 1.0% by mass, If it is the range of less than Zn: 1.0 mass%, the effect of this invention will not be prevented. Therefore, the content of the components as inevitable impurities is preferably less than 1.0% by mass.
 また、その他の不純物元素として、Cr、Ni、Zr、Ti、V、B、Sr、Sb、Ca、Na等も考えられるが、Cr:0.5質量%未満、Ni:0.5質量%未満、Zr:0.2質量%未満、Ti:0.2質量%未満、V:0.1質量%未満、B:0.05質量%未満、Sr:0.05質量%未満、Sb:0.05質量%未満、Ca:0.05質量%未満、Na:0.01質量%未満の範囲であれば、本発明に係る単層ブレージングシートの性能特性を大きく阻害することがないため、不可避的不純物として含んでいてもよい。Pb、Bi、Sn、Inについては、それぞれ0.02質量%未満、その他各0.02質量%未満であって、この範囲で管理外元素を含有しても本発明の効果を妨げるものではない。 Other impurity elements include Cr, Ni, Zr, Ti, V, B, Sr, Sb, Ca, Na, etc., but Cr: less than 0.5 mass%, Ni: less than 0.5 mass% , Zr: less than 0.2% by mass, Ti: less than 0.2% by mass, V: less than 0.1% by mass, B: less than 0.05% by mass, Sr: less than 0.05% by mass, Sb: 0.0% by mass. If it is in the range of less than 05% by mass, Ca: less than 0.05% by mass, and Na: less than 0.01% by mass, the performance characteristics of the single-layer brazing sheet according to the present invention will not be significantly hindered. It may be contained as an impurity. About Pb, Bi, Sn, and In, each is less than 0.02 mass%, and each other is less than 0.02 mass%. Even if it contains an element outside the control in this range, the effect of the present invention is not hindered. .
ろう材からなる単層ブレージングシート
 本発明では、上記ろう材を薄板とし、単層ブレージングシートとして用いる。その厚みは、健全な面ろう付けを達成できる厚みであればよい。厚みが15μm未満であると、十分なろう付け強度が得られない可能性がある。厚みが200μmを超えると、接合面から染み出すろう材の量が多くなりすぎて、コスト高となる。
 したがって、ろう材からなる単層ブレージングシートの厚みの範囲は、15~200μmとする。より好ましい厚みの範囲は、15~150μmである。さらに好ましい厚みの範囲は、20~100μmである。
Single-layer brazing sheet made of brazing material In the present invention, the brazing material is made into a thin plate and used as a single-layer brazing sheet. The thickness should just be the thickness which can achieve sound surface brazing. If the thickness is less than 15 μm, sufficient brazing strength may not be obtained. When the thickness exceeds 200 μm, the amount of the brazing material that oozes out from the joint surface becomes too large, resulting in an increase in cost.
Therefore, the thickness range of the single-layer brazing sheet made of the brazing material is 15 to 200 μm. A more preferable thickness range is 15 to 150 μm. A more preferable thickness range is 20 to 100 μm.
ろう材からなる単層ブレージングシートの製造方法
 例えば、100μm厚さのろう材からなる単層ブレージングシートであれば、以下のように製造する。
 原料となるインゴット、スクラップ等を配合し、溶解炉に投入して、所定のろう材組成からなるアルミニウム溶湯を溶製する。溶解炉は、バーナーの火炎によって直接原料を加熱溶解するバーナー炉が一般的である。アルミニウム溶湯が所定の温度、例えば、800℃に達した後、適量の除滓用フラックスを投入して、攪拌棒により溶湯の攪拌を行い、全ての原料を溶解する。その後、成分調整のため、追加の原料、例えばMg等を投入し、30~60分程度の鎮静を行った後、表面に浮遊するメタル滓を除去する。アルミニウム溶湯が所定の温度、例えば、740℃にまで冷却された後、出湯口から樋に出湯し、必要に応じて、インライン回転脱ガス装置、CFFフィルター等を通し鋳造を開始する。なお、溶解炉と保持炉が併設されている場合には、溶解炉で溶製された溶湯を保持炉に移湯した後、保持炉でさらに鎮静等を行ってから鋳造を開始する。
Manufacturing method of single layer brazing sheet made of brazing material For example, a single layer brazing sheet made of brazing material having a thickness of 100 μm is manufactured as follows.
Ingots, scraps, and the like as raw materials are blended and put into a melting furnace to melt a molten aluminum having a predetermined brazing material composition. The melting furnace is generally a burner furnace in which the raw material is heated and melted directly by a burner flame. After the molten aluminum reaches a predetermined temperature, for example, 800 ° C., an appropriate amount of the flux for removing the debris is added, and the molten metal is stirred with a stirring rod to dissolve all raw materials. After that, an additional raw material, such as Mg, is added for component adjustment, and after calming for about 30 to 60 minutes, the metal soot floating on the surface is removed. After the molten aluminum is cooled to a predetermined temperature, for example, 740 ° C., the molten aluminum is poured out from the hot water outlet into a bowl, and if necessary, casting is started through an inline rotary degasser, a CFF filter, and the like. In the case where a melting furnace and a holding furnace are provided side by side, after the molten metal melted in the melting furnace is transferred to the holding furnace, casting is started after further sedation or the like in the holding furnace.
 DC鋳造機のジャケットは、1本注ぎであってもよいが、生産効率を重視する多本注ぎのものであってもよい。例えば、700mm×450mmのサイズの水冷式鋳型内に、ディップチューブ、フロートを通して注湯しながら、鋳造速度60mm/minで下型を下げ、水冷式鋳型下部において凝固シェル層に対して直接水冷(Direct Chill)を行いつつ、サンプ内の溶湯を凝固冷却せしめ、所定の寸法、例えば、700mm×450mm×4500mm寸法のスラブを得る。鋳造終了後、スラブの先端、後端を切断して片面25mmの両面面削を施し、400mm厚さとしたスラブをソーキング炉に挿入して、450~540℃×1~12時間の均質化処理(HO処理)を施す。均質化処理後、スラブをソーキング炉から取り出して、熱間圧延機によって何パスかの熱間圧延を施して、例えば、6mm厚の熱間圧延板コイル(Reroll)を得る。 The jacket of the DC casting machine may be a single pour, but may be a multi-pour that places importance on production efficiency. For example, while pouring through a dip tube and a float into a water-cooled mold having a size of 700 mm × 450 mm, the lower mold is lowered at a casting speed of 60 mm / min, and direct water cooling (Direct Chill), the molten metal in the sump is solidified and cooled to obtain a slab having a predetermined size, for example, 700 mm × 450 mm × 4500 mm. After the end of casting, the front and rear ends of the slab were cut and double-sided with 25 mm on one side. The 400 mm thick slab was inserted into a soaking furnace and homogenized at 450 to 540 ° C. for 1 to 12 hours ( HO treatment). After the homogenization treatment, the slab is taken out of the soaking furnace and subjected to several passes of hot rolling with a hot rolling mill to obtain, for example, a 6 mm thick hot rolled plate coil (Reroll).
 この6mm厚の熱間圧延板コイルに何パスかの冷間圧延を施して、所定の厚さ、例えば、100μm厚さのろう材からなる単層ブレージングシートを得る。なお、冷間圧延工程において、冷間圧延板の加工硬化が著しい場合には、必要に応じて、コイルをアニーラーに挿入し、保持温度300~450℃の中間焼鈍処理を施して、冷間圧延板を軟化させることが望ましい。 The 6 mm thick hot rolled plate coil is subjected to several passes of cold rolling to obtain a single layer brazing sheet made of a brazing material having a predetermined thickness, for example, 100 μm. In the cold rolling process, if the work hardening of the cold rolled sheet is significant, a coil is inserted into the annealer as necessary, and an intermediate annealing process at a holding temperature of 300 to 450 ° C. is performed to perform cold rolling. It is desirable to soften the plate.
 本発明の第二の特徴点は、単層ブレージングシートとアルミニウム合金部材とのろう付け面にフラックスを塗布せずに、平面視で面積の大きい一方のアルミニウム合金部材の表面であって、前記ろう付け面の周縁から離間した領域にフラックスを塗布する点にある。
 そこで、次にフラックスの塗布形態について説明する。
 なお、本明細書中におけるろう付け面とは、ろう付け加熱前の組み付けの状態で、単層ブレージングシートの表面のうち、他方のアルミニウム合金部材と接触している面、或いは一方のアルミニウム合金部材の表面のうち、平面視で他方のアルミニウム合金部材と重複する面、のことを意味する。
The second feature of the present invention is the surface of one of the aluminum alloy members having a large area in plan view without applying a flux to the brazing surface of the single-layer brazing sheet and the aluminum alloy member, It is in the point which applies a flux to the area | region spaced apart from the periphery of the attaching surface.
Then, the application | coating form of a flux is demonstrated next.
In addition, the brazing surface in this specification is the surface which is in contact with the other aluminum alloy member among the surfaces of the single-layer brazing sheet in an assembled state before brazing heating, or one aluminum alloy member. Means the surface overlapping with the other aluminum alloy member in plan view.
 一般的に、単層ブレージングシートとアルミニウム合金部材とのろう付け面にフラックスが塗布されている場合には、前述のようにろう付け面に空隙欠陥等が生じやすく、フラックスを封じ込めてしまう可能性がある。具体的には、他方のアルミニウム合金部材とろう材との接触面や、或いは一方のアルミニウム合金部材の表面であって、平面視して他方のアルミニウム合金部材と重複する面に直接フラックスを塗布すると、ろう付け加熱中に溶融したフラックスがろう付け面に取り込まれて、ろう付け面にフラックス起因の欠陥が発生する可能性が高まる。 In general, when flux is applied to the brazing surface of a single-layer brazing sheet and an aluminum alloy member, void defects are likely to occur on the brazing surface as described above, and the flux may be contained. There is. Specifically, when the flux is directly applied to the contact surface between the other aluminum alloy member and the brazing material, or the surface of one aluminum alloy member that overlaps the other aluminum alloy member in plan view. The flux melted during the brazing heating is taken into the brazing surface, and the possibility that defects due to the flux occur on the brazing surface increases.
 そこで、本発明では、このろう付け面にはフラックスを塗布せずに、平面視で面積の大きい一方のアルミニウム合金部材の表面であって、前記ろう付け面の周縁から離間した領域にフラックスを塗布することにした。
平面視で面積の大きい一方のアルミニウム合金部材の表面であって、前記ろう付け面の周縁から離間した領域にフラックスを塗布し、
 このような領域にフラックスを塗布しておけば、ろう付け加熱の際、塗布されたフラックスは溶融し、平面視で面積の大きい一方のアルミニウム合金部材の表面を拡散して、他方のアルミニウム合金部材の周縁(ろう付け面の周縁)にまで到達する。このようにして、ろう付け面の周縁に到達した溶融フラックスは、そのままその周縁に滞留し、ろう付け面に浸透することなく、溶融ろう材とアルミニウム合金部材との濡れ性を改善して、ろう付け面の周縁に健全なフィレットを形成させる。
Therefore, in the present invention, the flux is not applied to the brazing surface, but the flux is applied to the surface of one of the aluminum alloy members having a large area in a plan view and separated from the periphery of the brazing surface. Decided to do.
A surface of one aluminum alloy member having a large area in plan view, and applying a flux to a region separated from the periphery of the brazing surface,
If flux is applied to such a region, the applied flux melts during brazing heating, diffuses the surface of one aluminum alloy member having a large area in plan view, and the other aluminum alloy member To the periphery (the periphery of the brazing surface). In this way, the molten flux that has reached the periphery of the brazing surface stays at the periphery as it is, and improves the wettability between the molten brazing material and the aluminum alloy member without penetrating the brazing surface. A healthy fillet is formed on the periphery of the affixing surface.
 ろう付け加熱前の組み付けの状態で、平面視で面積の大きい一方のアルミニウム合金部材の表面のうち、単層ブレージングシートと接触していない面であればもちろんフラックスを塗布しても構わない。また、平面視で面積の大きい一方のアルミニウム合金部材の表面のうち、単層ブレージングシートと接触している面であっても、平面視で他のアルミニウム合金部材と重複していない面であれば、上記ろう付け面の定義から外れるのでフラックスを塗布しても構わない。このような場合であっても、組付け後であればろう付け面に所定の面圧を付加しているため、フラックスが単層ブレージングシートとアルミニウム合金部材のろう付け面に浸透することはなく、ろう付け加熱の際にフラックスをろう付け面の内部に封じ込めてしまう可能性は低い。 Of course, the flux may be applied as long as it is a surface not in contact with the single-layer brazing sheet among the surfaces of one of the aluminum alloy members having a large area in plan view in the assembled state before brazing heating. Moreover, even if it is a surface which is in contact with the single-layer brazing sheet among the surfaces of one aluminum alloy member having a large area in plan view, it is a surface that does not overlap with other aluminum alloy members in plan view. The flux may be applied because it deviates from the definition of the brazing surface. Even in such a case, since the predetermined surface pressure is applied to the brazed surface after assembly, the flux does not penetrate into the brazed surfaces of the single-layer brazing sheet and the aluminum alloy member. There is a low possibility that the flux will be contained inside the brazing surface during brazing heating.
 例えば、ろう付け加熱前に、サイズの異なる二つのアルミニウム合金部材の間に単層ブレージングシートを挟み込むような場合、単層ブレージングシートの表面が平面視で面積の小さい方のアルミニウム合金部材の縁から所定の幅だけはみ出すように設定する場合もある。このような場合、面積の小さい方のアルミニウム合金部材の縁からはみ出している単層型ブレージングシートの表面はろう付け面ではないので、この表面上にフラックスを塗布してもかまわない。このような場合であっても、組付け後であれば、ろう付け面に所定の面圧を付加しているため、フラックスがアルミニウム合金部材同士のろう付け面に浸透することはなく、ろう付け加熱の際にフラックスをろう付け面の内部に封じ込めてしまう可能性は低い。また溶融したフラックスは、ろう付け面の縁に滞留し易く、ろう付け面の品質を劣化させることなく、溶融ろう材のアルミニウム合金部材との濡れ性を改善して健全なフィレットを形成させる。 For example, when a single layer brazing sheet is sandwiched between two aluminum alloy members of different sizes before brazing heating, the surface of the single layer brazing sheet is from the edge of the aluminum alloy member with the smaller area in plan view. There is a case where it is set so as to protrude by a predetermined width. In such a case, the surface of the single-layer brazing sheet protruding from the edge of the aluminum alloy member having the smaller area is not a brazed surface, and therefore flux may be applied on this surface. Even in such a case, after assembling, a predetermined surface pressure is applied to the brazing surface, so that the flux does not penetrate into the brazing surfaces of the aluminum alloy members, and brazing. It is unlikely that the flux will be contained inside the brazing surface during heating. Further, the melted flux tends to stay at the edge of the brazing surface, and improves the wettability of the molten brazing material with the aluminum alloy member without degrading the quality of the brazing surface, thereby forming a healthy fillet.
 ろう付け面は平面であることが望ましいが、必ずしも平面でなくてもよい。例えば、平面視で面積の大きい一方のアルミニウム合金部材には、円柱状の凹面が形成され、平面視で面積の小さい他方のアルミニウム合金部材には、円柱状の凸面が形成され、前記凹面と前記凸面とが嵌め合わせ可能となっており、その嵌め合わせ面に、曲げ加工された単層ブレージングシートを挟み込んで面ろう付けを行ってもよい。 The brazing surface is preferably a flat surface, but is not necessarily a flat surface. For example, a cylindrical concave surface is formed on one aluminum alloy member having a large area in plan view, and a cylindrical convex surface is formed on the other aluminum alloy member having a small area in plan view. The convex surface can be fitted together, and surface brazing may be performed by sandwiching a single-layer brazing sheet that has been bent into the fitting surface.
 なお、フラックスを塗布する領域は、平面視で面積の大きい一方のアルミニウム合金部材の表面であって、ろう付け面の縁から僅かに離間している必要がある。フラックス塗布位置(ろう付け面の周縁からフラックス塗布領域までの最短距離)が35mmを超える場合、ろう付け条件やフラックス塗布量にもよるが、溶融フラックスがろう付け面の周縁に十分に供給されず、健全なフィレットが形成されない可能性が高くなる。
 フラックスの塗布精度等も考慮すると、好ましい前記フラックス塗布位置は、0.5~35mmの範囲である。より好ましいフラックス塗布位置は、0.5~30mmの範囲である。さらに好ましいフラックス塗布位置は、1.0~30mmの範囲である。
In addition, the area | region which applies a flux needs to be slightly spaced apart from the edge of one brazing surface, and is the surface of one aluminum alloy member with a large area by planar view. When the flux application position (the shortest distance from the periphery of the brazing surface to the flux application area) exceeds 35 mm, the molten flux is not sufficiently supplied to the periphery of the brazing surface, depending on the brazing conditions and the amount of flux applied. There is a high probability that a healthy fillet will not be formed.
Considering the flux application accuracy and the like, the preferred flux application position is in the range of 0.5 to 35 mm. A more preferable flux application position is in the range of 0.5 to 30 mm. A more preferable flux application position is in the range of 1.0 to 30 mm.
 また、好ましいフラックスの塗布量は、2~40g/mの範囲である。フラックスの塗布量が2g/m未満であると、フラックス塗布位置にもよるが、ろう付け面の周縁へのフラックス供給が不足するため、健全なフィレットを形成することができない。フラックスの塗布量が40g/mを超えても、健全なフィレットを形成するという効果はそれ以上高まることは期待できず、むしろフラックスの使用量が増加して生産コストが高まる。より好ましいフラックスの塗布量は、2~35g/mの範囲である。 A preferable flux application amount is in the range of 2 to 40 g / m 2 . If the amount of flux applied is less than 2 g / m 2 , depending on the flux application position, the supply of flux to the peripheral edge of the brazing surface is insufficient, so that a healthy fillet cannot be formed. Even if the amount of flux applied exceeds 40 g / m 2 , the effect of forming a healthy fillet cannot be expected to increase any more, but rather the amount of flux used increases and the production cost increases. A more preferable flux application amount is in the range of 2 to 35 g / m 2 .
 フラックスの塗布は、予め一方のアルミニウム合金部材の表面に所定の領域のみシールを施した上で、その上から溶媒、フラックス、バインダー等を混合したスラリーをロール印刷して行ってもよいし、さらに溶媒で薄めた混合液をエアースプレーして行ってもよい。或いは、予めアルミニウム合金部材にシールを施すことなく、他方のアルミニウム合金部材の周囲に溶媒、フラックス、バインダー等を混合したスラリーを筆などによって、適量塗布してもよい。フラックスとしては、例えば、フッ化物系非腐食性フラックスが挙げられ、代表的な化合物形態としては、KAlF,KAlF,KAlF,AlF,KF,CsF等が挙げられる。これらフラックスは単独で使用するよりも、混合して使用するほうが共晶組成に近づき融点が下がるのでより好ましい。また、前述のように好ましいフラックスの塗布量は、2~40g/mの範囲である。 The application of the flux may be performed by roll-printing a slurry mixed with a solvent, a flux, a binder, and the like from the surface of one aluminum alloy member that has been sealed only in a predetermined region in advance. You may carry out by air-spraying the liquid mixture diluted with the solvent. Alternatively, an appropriate amount of slurry mixed with a solvent, flux, binder, or the like may be applied around the other aluminum alloy member without applying a seal to the aluminum alloy member in advance. Examples of the flux include fluoride-based non-corrosive flux, and typical compound forms include KAlF 4 , K 2 AlF 5 , K 3 AlF 6 , AlF 3 , KF, and CsF. It is more preferable to use these fluxes in combination than to use them alone because they approach the eutectic composition and lower the melting point. As described above, the preferable flux application amount is in the range of 2 to 40 g / m 2 .
不活性ガス雰囲気下で
 前述のようにAl-Si-Mg系合金のろう材からなる単層ブレージングシートを十分に溶解して、アルミニウム合金部材同士の界面を濡らして面ろう付けするためには、少なくとも保持温度580℃以上で所定時間保持することが必要である。
 このため、ろう付け加熱中であっても、アルミニウム合金部材のろう付け面の表面或いは単層ブレージングシートのろう材面の酸化を抑制するために、不活性ガス雰囲気下で面ろう付けを行う必要がある。
In order to sufficiently braze the single-layer brazing sheet made of the brazing material of the Al—Si—Mg alloy as described above in an inert gas atmosphere and wet the interface between the aluminum alloy members, It is necessary to hold at a holding temperature of 580 ° C. or higher for a predetermined time.
For this reason, even during brazing heating, it is necessary to perform surface brazing in an inert gas atmosphere in order to suppress oxidation of the brazing surface of the aluminum alloy member or the brazing material surface of the single-layer brazing sheet. There is.
 不活性ガスとしては、窒素ガス、アルゴンガス、ヘリウムガス等が使用できる。また、不活性ガス中の酸素濃度は、500ppm以下であることが好ましい。不活性ガス中の酸素濃度が500ppmを超えると、面ろう付け後の接合強度(せん断応力)が低下する。より好ましい不活性ガス中の酸素濃度は100ppmである。さらに好ましい不活性ガス中の酸素濃度は10ppm以下である。具体的には、工業用窒素ガスについては、酸素濃度10ppm以下と規格が定められているので、コスト面からも工業用窒素ガスを使用することが最も好ましい。
 もちろん、ろう付け加熱中、ろう付け温度保持中及び冷却中は、加熱装置内を不活性ガス雰囲気で充満しておくことが好ましい。しかしながら、電磁誘導加熱のように急速加熱する場合には所定の保持温度に到達する前に、不活性ガスを噴射して加熱装置内の大気を不活性ガスに置換してもよい。
As the inert gas, nitrogen gas, argon gas, helium gas, or the like can be used. The oxygen concentration in the inert gas is preferably 500 ppm or less. If the oxygen concentration in the inert gas exceeds 500 ppm, the joint strength (shear stress) after surface brazing decreases. A more preferable oxygen concentration in the inert gas is 100 ppm. A more preferable oxygen concentration in the inert gas is 10 ppm or less. Specifically, for the industrial nitrogen gas, since the standard is defined as an oxygen concentration of 10 ppm or less, it is most preferable to use the industrial nitrogen gas from the viewpoint of cost.
Of course, it is preferable to fill the inside of the heating apparatus with an inert gas atmosphere during brazing heating, brazing temperature holding and cooling. However, in the case of rapid heating such as electromagnetic induction heating, the inert gas may be injected to replace the atmosphere in the heating device with the inert gas before reaching a predetermined holding temperature.
面圧を付加しながら
 本発明に係る面ろう付け方法において、所定の組成のAl-Si-Mg系合金のろう材からなる単層ブレージングシートを溶解して、ろう材とアルミニウム合金部材とを面接触させた状態で、ろう付け加熱を行うが、この際接合面に対して1.0gf/mm以上(0.01MPa以上)の面圧を付加しながら、所定のろう付け温度で保持する必要がある。もちろん、ろう付け加熱時には面圧を付加せずに、所定の保持温度に到達してから、接合面に対して1.0gf/mm以上の面圧を付加して面ろう付けを行ってもよい。
 面圧が1.0gf/mm未満の場合、十分なろう付け強度を得ることができない。もちろん、面ろう付け後のろう付け強度を十分に確保するためには接合面に対して付加する面圧は高い方が好ましい。したがって、より好ましい面圧は5.0gf/mm以上(0.05MPa以上)である。さらに好ましい面圧は10gf/mm以上(0.1MPa以上)である。
In the surface brazing method according to the present invention while applying a surface pressure, a single layer brazing sheet made of a brazing material of an Al—Si—Mg based alloy having a predetermined composition is melted to bring the brazing material and the aluminum alloy member into a surface. Brazing heating is performed in the state of contact, and at this time, it is necessary to maintain a predetermined brazing temperature while applying a surface pressure of 1.0 gf / mm 2 or more (0.01 MPa or more) to the joint surface. There is. Of course, it is possible to perform surface brazing by applying a surface pressure of 1.0 gf / mm 2 or more to the joint surface after reaching a predetermined holding temperature without applying surface pressure during brazing heating. Good.
When the surface pressure is less than 1.0 gf / mm 2 , sufficient brazing strength cannot be obtained. Of course, in order to sufficiently secure the brazing strength after the surface brazing, it is preferable that the surface pressure applied to the joint surface is high. Therefore, a more preferable surface pressure is 5.0 gf / mm 2 or more (0.05 MPa or more). A more preferable surface pressure is 10 gf / mm 2 or more (0.1 MPa or more).
所定のろう付け温度に保持しつつ
 本発明に係る面ろう付け方法において、所定の組成の単層ブレージングシート(ろう材)を溶解して、アルミニウム合金部材同士の界面を濡らして、確実に面ろう付けを行い、十分なろう付け強度を確保するためには、少なくともろう付け温度580℃以上である必要がある。
 ろう付け温度が580℃未満である場合には、ろう材の溶解が不十分となり、十分なろう付け強度が得られない。もちろん、保持温度が高い方がより十分なろう付け強度が得られる。したがって、より好ましい保持温度は、585℃以上とする。さらに好ましい保持温度は、590℃以上である。
 ろう付け温度における保持時間は、2分以上であることが好ましい。ろう付け温度にもよるが、保持時間が2分未満であると、接合面における温度の不均一によって、十分なろう付け強度が得られない。より好ましい保持時間は、5分以上である。
In the surface brazing method according to the present invention while maintaining a predetermined brazing temperature, a single-layer brazing sheet (brazing material) having a predetermined composition is dissolved to wet the interface between the aluminum alloy members, thereby reliably brazing. In order to perform brazing and secure sufficient brazing strength, it is necessary that the brazing temperature is at least 580 ° C. or higher.
When the brazing temperature is less than 580 ° C., the brazing material is not sufficiently dissolved, and sufficient brazing strength cannot be obtained. Of course, higher brazing strength can be obtained when the holding temperature is higher. Therefore, a more preferable holding temperature is 585 ° C. or higher. A more preferable holding temperature is 590 ° C. or higher.
The holding time at the brazing temperature is preferably 2 minutes or more. Although depending on the brazing temperature, if the holding time is less than 2 minutes, sufficient brazing strength cannot be obtained due to uneven temperature at the joint surface. A more preferable holding time is 5 minutes or more.
単層ブレージングシートの作製
 所定の各種インゴットを計量、配合して、離型材を塗布した#30坩堝に9kgずつ(計5試料)の原材料を装入装填した。これら坩堝を電気炉内に挿入して、760℃で溶解して滓を除去し、その後、溶湯温度を740℃に保持した。次に小型回転脱ガス装置によって、溶湯に流量1Nl/分で窒素ガスを10分間吹き込み、脱ガス処理を行った。その後30分間の鎮静を行なって溶湯表面に浮上した滓を攪拌棒にて除去し、さらにスプーンで成分分析用鋳型にディスクサンプルを採取した。
 次いで、治具を用いて順次坩堝を電気炉内から取り出し、200℃に予熱しておいた5個の金型(70mm×70mm×15mm)にアルミニウム溶湯を鋳込んだ。各ろう材試料のディスクサンプルは、発光分光分析によって、組成分析を行なった。その結果を表1に示す。
Preparation of Single-layer Brazing Sheet Various predetermined ingots were weighed and blended, and 9 kg (total 5 samples) of raw materials were charged into a # 30 crucible coated with a release material. These crucibles were inserted into an electric furnace and melted at 760 ° C. to remove the soot, and then the molten metal temperature was kept at 740 ° C. Next, degassing treatment was performed by blowing nitrogen gas into the molten metal at a flow rate of 1 Nl / min for 10 minutes with a small rotary degassing apparatus. Thereafter, the sedation was performed for 30 minutes, and the cocoon floating on the surface of the molten metal was removed with a stirring rod, and a disk sample was collected with a spoon as a mold for component analysis.
Next, the crucible was sequentially taken out from the electric furnace using a jig, and molten aluminum was cast into five molds (70 mm × 70 mm × 15 mm) preheated to 200 ° C. The disk sample of each brazing material sample was subjected to composition analysis by emission spectroscopic analysis. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 鋳塊は、押し湯を切断後、両面を3mmずつ面削して、厚み9mmとした。電気加熱炉にこの鋳塊を装入して、100℃/hrの昇温速度で480℃まで加熱し、480℃×1時間の均質化処理を行い、続いて熱間圧延機にて3mm厚さにまで熱間圧延を施した。
 この後、熱間圧延板に冷間圧延を施して、1.2mm厚さの冷延板とし、軟化させるために390℃×2時間の1次中間焼鈍を施した。さらに冷間圧延を施して、0.3mm厚さの冷延板とし、軟化させるため390℃×2時間の2次中間焼鈍を施した。さらに冷間圧延を施して、0.06mm(60μm)の最終冷間圧延板とした。この最終冷間圧延板を所定の大きさ(26mm×26mm)に切断して、複数枚の単層ブレージングシートとした。
The ingot was chamfered by 3 mm after cutting the hot water to a thickness of 9 mm. The ingot is charged into an electric heating furnace, heated to 480 ° C. at a heating rate of 100 ° C./hr, homogenized at 480 ° C. for 1 hour, and then 3 mm thick by a hot rolling mill. Hot rolling was applied.
Thereafter, the hot-rolled plate was cold-rolled to obtain a cold-rolled plate having a thickness of 1.2 mm, and subjected to a primary intermediate annealing at 390 ° C. × 2 hours for softening. Further, it was cold-rolled to obtain a cold-rolled sheet having a thickness of 0.3 mm, and subjected to secondary intermediate annealing at 390 ° C. × 2 hours for softening. Further, cold rolling was performed to obtain a final cold rolled plate having a thickness of 0.06 mm (60 μm). This final cold-rolled sheet was cut into a predetermined size (26 mm × 26 mm) to obtain a plurality of single-layer brazing sheets.
試験片の作製
 図1に示すように、AA1050合金製のブロックA(40mm×40mm×4mm)における40mm×40mmの面上中央に、シール(27mm×27mm)を貼り付けて、質量を測定した。さらにフッ化物フラックスと水の混合液をスプレーにて、40mm×40mmの面上に所定の量を塗布して、200℃で乾燥させた後、質量を測定した。フラックス塗布前/塗布後における質量差を塗布面積(1.6×10mm)で除して、フラックス塗布量(g/m)を算出した。さらにシールを剥がして、フラックスの塗布されていない領域(27mm×27mm)の面上中央に単層ブレージングシート(25mm×25mm×60μm)を載置し、さらに上記単層ブレージングシート(25mm×25mm)の面上中央にAA1050合金製のブロックB(25mm×25mm×3mm)における25mm×25mmの面を重ねた。
Production of Test Piece As shown in FIG. 1, a seal (27 mm × 27 mm) was attached to the center of a 40 mm × 40 mm surface of a block A (40 mm × 40 mm × 4 mm) made of AA1050 alloy, and the mass was measured. Furthermore, a predetermined amount was applied onto a 40 mm × 40 mm surface by spraying a mixed solution of fluoride flux and water, and the mass was measured after drying at 200 ° C. The mass difference after fluxing before / coating is divided by application area (1.6 × 10 3 mm 2) , it was calculated flux application amount (g / m 2). Further, the seal is peeled off, and a single-layer brazing sheet (25 mm × 25 mm × 60 μm) is placed on the center of the surface where the flux is not applied (27 mm × 27 mm), and further the single-layer brazing sheet (25 mm × 25 mm). A surface of 25 mm × 25 mm in AA1050 alloy block B (25 mm × 25 mm × 3 mm) was overlapped on the center of the surface.
 図2に示すように、治具を使用してブロックBの上面に皿バネをセットして1.5MPaの圧力を付与し、試験炉内に組み上げたブロック等を挿入した。ブロックAに取り付けた熱電対によって実体温度を測定しつつ、PID制御により600℃まで50℃/分の速度で加熱し、600℃のろう付け温度で5分間保持した後、抵抗線への出力をOFFとして、組み上げたブロック等を炉冷した。ブロックAに取り付けた熱電対が500℃以下を示した後、組み上げたブロック等を炉から取り出して室温まで空冷した。加熱中の雰囲気は工業用窒素ガス(酸素濃度10ppm以下の窒素)を使用して調整した。 As shown in FIG. 2, using a jig, a disc spring was set on the upper surface of the block B, a pressure of 1.5 MPa was applied, and the assembled block or the like was inserted into the test furnace. While measuring the actual temperature with a thermocouple attached to block A, heating to 600 ° C. at a rate of 50 ° C./min by PID control, holding at a brazing temperature of 600 ° C. for 5 minutes, and then outputting to the resistance wire The assembled block and the like were furnace-cooled with OFF. After the thermocouple attached to the block A showed 500 ° C. or lower, the assembled block and the like were taken out of the furnace and cooled to room temperature. The atmosphere during heating was adjusted using industrial nitrogen gas (nitrogen having an oxygen concentration of 10 ppm or less).
フィレット形成率の測定
 図3に示すように、ろう付け後のブロックABにおいて、○印の6箇所について、断面ミクロ組織観察を行って、フィレット形成率を測定した。ここにおけるフィレット形成率とは、ろう付け後のブロックAB内で健全なフィレットが形成されていた箇所の数を、全観察箇所の6で割った値のことである。健全なフィレットが形成されている否かの判定は、図4に示すようにフィレット部の「のど厚」を測定することによって行った。のど厚が150μm以上のフィレットが観察された箇所は、健全なフィレットが形成されたと判定した。のど厚が150μm未満のフィレットが観察された箇所、あるいはフィレットが全く観察されなかった箇所は、健全なフィレットが形成されなかったとして判定した。図5、図6に、それぞれ「のど厚」が150μm以上のフィレットの断面金属組織、「のど厚」が150μm未満のフィレットの断面金属組織の例を示す。
3. Measurement of fillet formation rate As shown in FIG. 3, in the block AB after brazing, the cross-sectional microstructure was observed at 6 points marked with ◯, and the fillet formation rate was measured. The fillet formation rate here is a value obtained by dividing the number of locations where healthy fillets are formed in the block AB after brazing by 6 of all the observed locations. Whether or not a healthy fillet was formed was determined by measuring the “throat thickness” of the fillet portion as shown in FIG. Where a fillet with a throat thickness of 150 μm or more was observed, it was determined that a healthy fillet was formed. A place where a fillet with a throat thickness of less than 150 μm was observed, or a place where no fillet was observed at all was determined as a healthy fillet was not formed. FIGS. 5 and 6 show examples of a cross-sectional metallographic structure of a fillet having a “throat thickness” of 150 μm or more, and a cross-sectional metallographic structure of a fillet having a “throat thickness” of less than 150 μm, respectively.
 上述のようにして、フィレット形成率に及ぼす、(1)ろう材中のMg添加量の影響、(2)フラックス塗布位置(ブロックBの周縁からフラックス塗布領域までの最短距離)の影響、(3)フラックス塗布量の影響、について調査した。但し、(2)フラックス塗布位置の影響を調査する際には、ブロックAのサイズを変化させる(48mm×48mm×4mm、68mm×68mm×4mm、98mm×98mm×4mm、118mm×118mm×4mm)とともに、シールについても各種サイズ(35×35mm、55×55mm、85×85mm、105×105mm)のものを使用することで、フラックス塗布位置を調節した。 As described above, on the fillet formation rate, (1) the influence of the amount of Mg added in the brazing material, (2) the influence of the flux application position (the shortest distance from the periphery of the block B to the flux application area), (3 ) The effect of flux application amount was investigated. However, (2) When investigating the influence of the flux application position, the size of the block A is changed (48 mm × 48 mm × 4 mm, 68 mm × 68 mm × 4 mm, 98 mm × 98 mm × 4 mm, 118 mm × 118 mm × 4 mm) Also, the flux application position was adjusted by using seals of various sizes (35 × 35 mm, 55 × 55 mm, 85 × 85 mm, 105 × 105 mm).
 その結果を表2~4、及び図7~9に示す。なお、以下に示す実施例の図表中にあって、特に細かい条件の表示がないものについては、C合金ろう材(Mg添加量:0.19質量%)を用い、フラックス塗布位置を1mmに設定し、フラックス塗布量を10g/mに設定して、上記ろう付け条件下でろう付けを行って、接合ブロックABの作製を行った。 The results are shown in Tables 2 to 4 and FIGS. In addition, in the charts of the examples shown below, for those where there is no indication of detailed conditions, a C alloy brazing material (Mg addition amount: 0.19 mass%) is used, and the flux application position is set to 1 mm. Then, the amount of flux applied was set to 10 g / m 2 , and brazing was performed under the above brazing conditions to produce the joining block AB.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2、図7に示すように、フィレット形成率に及ぼすろう材中のMg添加量の影響についてみると、ろう材に含まれるMg量が0.29質量%以下であれば、フィレット形成率が6/6(100%)であった。ろう材に含まれるMg量が0.51質量%の場合、フィレット形成率は2/6(33%)であった。ろう材に含まれるMg量が0.1質量%未満であると、十分なろう付け強度が得られない可能性があることも考慮すると、好ましいろう材のMg含有量は、0.1~0.35質量%の範囲である。 As shown in Table 2 and FIG. 7, regarding the influence of the amount of Mg added in the brazing filler metal on the fillet formation rate, if the amount of Mg contained in the brazing filler metal is 0.29% by mass or less, the fillet formation rate is 6/6 (100%). When the amount of Mg contained in the brazing material was 0.51% by mass, the fillet formation rate was 2/6 (33%). Considering that there is a possibility that sufficient brazing strength may not be obtained when the amount of Mg contained in the brazing material is less than 0.1% by mass, the preferable Mg content of the brazing material is 0.1 to 0. The range is .35% by mass.
 表3、図8に示すように、フィレット形成率に及ぼすフラックス塗布位置(ブロックBの周縁からフラックス塗布領域までの最短距離)の影響についてみると、フラックス塗布位置が30mm以下であれば、フィレット形成率が6/6(100%)であった。また、フラックス塗布位置が40mmである場合、フィレット形成率は0/6(0%)であった。また、フラックスの塗布精度等も考慮すると、好ましいフラックス塗布位置は、0.5~35mmの範囲である。 As shown in Table 3 and FIG. 8, regarding the influence of the flux application position (the shortest distance from the periphery of the block B to the flux application area) on the fillet formation rate, fillet formation is achieved if the flux application position is 30 mm or less. The rate was 6/6 (100%). Further, when the flux application position was 40 mm, the fillet formation rate was 0/6 (0%). Considering the flux application accuracy and the like, the preferred flux application position is in the range of 0.5 to 35 mm.
 表4、図9に示すように、フィレット形成率に及ぼすフラックス塗布量の影響についてみると、フラックス塗布量が3g/m以上であれば、フィレット形成率は6/6(100%)であった。また、フラックス塗布量が1g/mの場合であっても、フィレット形成率は5/6(83%)を示しており、フラックスを塗布しない場合のフィレット形成率である1/6(17%)よりも遥かに高く、フィレット形成率の向上に寄与したことが明らかである。フラックスの塗布量が40g/mを超えても、健全なフィレットを形成するという効果はそれ以上高まることは期待できず、むしろフラックスの使用量が増加して生産コストが高まることも考慮すると、好ましいフラックス塗布量は2~40g/mの範囲である。 As shown in Table 4 and FIG. 9, regarding the influence of the flux application amount on the fillet formation rate, if the flux application amount is 3 g / m 2 or more, the fillet formation rate is 6/6 (100%). It was. Further, even when the flux application amount is 1 g / m 2 , the fillet formation rate is 5/6 (83%), and the fillet formation rate when the flux is not applied is 1/6 (17%). It is clear that it contributed to the improvement of fillet formation rate. Even if the application amount of the flux exceeds 40 g / m 2 , the effect of forming a healthy fillet cannot be expected to increase any more. Considering that the amount of use of the flux increases and the production cost increases, A preferable flux application amount is in the range of 2 to 40 g / m 2 .
 以上のように本発明によると、単層ブレージングシートによって2つのアルミニウム合金部材同士を面ろう付けするとともに、さらにろう付け面の周縁に健全なフィレットを形成できる面ろう付け法を提供することができる。 As described above, according to the present invention, it is possible to provide a surface brazing method capable of brazing two aluminum alloy members to each other with a single layer brazing sheet and further forming a healthy fillet at the periphery of the brazed surface. .

Claims (4)

  1.  Al-Si-Mg系合金のろう材からなる単層ブレージングシートを用いて固相線温度が610℃以上であるアルミニウム合金部材同士を面ろう付けする方法する際、前記単層ブレージングシートと前記アルミニウム合金部材とのろう付け面にフラックスを塗布せずに、平面視で面積の大きい方のアルミニウム合金部材の表面であって、前記ろう付け面の周縁から離間した領域にフラックスを塗布し、前記単層ブレージングシートをアルミニウム合金部材同士の間に挟みこみ面接触させた状態で、不活性ガス雰囲気下、所定のろう付け温度に保持しつつ、面圧を付加しながらアルミニウム合金部材同士をろう付けすることを特徴とするアルミニウム合金部材の面ろう付け方法。 When performing a surface brazing of aluminum alloy members having a solidus temperature of 610 ° C. or more using a single layer brazing sheet made of a brazing material of an Al—Si—Mg alloy, the single layer brazing sheet and the aluminum The flux is not applied to the brazing surface with the alloy member, but the flux is applied to the surface of the aluminum alloy member having a larger area in plan view and spaced from the periphery of the brazing surface. In a state where the layer brazing sheet is sandwiched between the aluminum alloy members and brought into contact with each other, the aluminum alloy members are brazed while applying a surface pressure while maintaining a predetermined brazing temperature in an inert gas atmosphere. A surface brazing method for an aluminum alloy member.
  2.  前記Al-Si-Mg系合金のろう材として、Si:3.0~12質量%、Mg:0.1~0.35質量%を含み、残部がAl及び不可避的不純物からなる成分組成を有する合金を用いる請求項1に記載のアルミニウム合金部材の面ろう付け方法。 The brazing material of the Al—Si—Mg alloy includes Si: 3.0 to 12% by mass, Mg: 0.1 to 0.35% by mass, and the balance is composed of Al and inevitable impurities. The method for brazing aluminum alloy members according to claim 1, wherein an alloy is used.
  3.  前記ろう付け面の周縁からの離間距離を0.5~35mmの範囲とする請求項1または2に記載のアルミニウム合金部材の面ろう付け方法。 The method for brazing an aluminum alloy member according to claim 1 or 2, wherein the distance from the periphery of the brazing surface is in the range of 0.5 to 35 mm.
  4.  前記フラックスの塗布量を2~40g/mとする請求項1~3のいずれかに記載のアルミニウム合金部材の面ろう付け方法。 The method for brazing an aluminum alloy member according to any one of claims 1 to 3, wherein a coating amount of the flux is 2 to 40 g / m 2 .
PCT/JP2013/066840 2012-08-22 2013-06-19 Method for plane brazing of aluminum alloy members WO2014030416A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380008942.8A CN104114311B (en) 2012-08-22 2013-06-19 The face method for welding of aluminium alloy element
KR1020147021850A KR101570949B1 (en) 2012-08-22 2013-06-19 Method for plane brazing of aluminum alloy members

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012183326A JP5906994B2 (en) 2012-08-22 2012-08-22 Surface brazing method for aluminum alloy members
JP2012-183326 2012-08-22

Publications (1)

Publication Number Publication Date
WO2014030416A1 true WO2014030416A1 (en) 2014-02-27

Family

ID=50149734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066840 WO2014030416A1 (en) 2012-08-22 2013-06-19 Method for plane brazing of aluminum alloy members

Country Status (5)

Country Link
JP (1) JP5906994B2 (en)
KR (1) KR101570949B1 (en)
CN (1) CN104114311B (en)
TW (1) TW201408415A (en)
WO (1) WO2014030416A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151315A1 (en) * 2018-02-02 2019-08-08 株式会社Uacj Brazing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105880769A (en) * 2014-11-26 2016-08-24 江苏财发铝业股份有限公司 Preparation method of high Mg content aluminum alloy brazing material
CN105234572A (en) * 2015-11-03 2016-01-13 苏州新一磁业有限公司 Manufacturing and assembling method for metal LOGO
TWI697372B (en) * 2019-08-27 2020-07-01 宏進金屬科技股份有限公司 Brazing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190592A (en) * 2006-01-19 2007-08-02 Sanmei Electric Co Ltd Welding method using silver braze
JP2012071335A (en) * 2010-09-29 2012-04-12 Nippon Light Metal Co Ltd Surface brazing method of aluminum alloy material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194976A (en) * 1996-01-22 1997-07-29 Nippon Light Metal Co Ltd Aluminum material to be brazed
TW424025B (en) * 1997-09-16 2001-03-01 Mazda Motor A joined metal member and a method and an apparatus for fabricating the same
JP4635796B2 (en) * 2005-09-21 2011-02-23 日本軽金属株式会社 Brazing method for aluminum alloy castings and brazed liquid-cooled parts
JP4547032B1 (en) * 2009-04-17 2010-09-22 三菱アルミニウム株式会社 Fluxless brazing method of aluminum material and aluminum clad material for fluxless brazing
US20110262676A1 (en) * 2010-04-22 2011-10-27 Sheng-Li Hsu Structure of combined metal casing and plastic member
JP2012061483A (en) * 2010-09-14 2012-03-29 Mitsubishi Alum Co Ltd Flux-less brazing method of aluminum material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190592A (en) * 2006-01-19 2007-08-02 Sanmei Electric Co Ltd Welding method using silver braze
JP2012071335A (en) * 2010-09-29 2012-04-12 Nippon Light Metal Co Ltd Surface brazing method of aluminum alloy material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151315A1 (en) * 2018-02-02 2019-08-08 株式会社Uacj Brazing method
JPWO2019151315A1 (en) * 2018-02-02 2021-01-14 株式会社Uacj Brazing method
EP3747582A4 (en) * 2018-02-02 2021-11-17 UACJ Corporation Brazing method
JP7256760B2 (en) 2018-02-02 2023-04-12 株式会社Uacj Brazing method

Also Published As

Publication number Publication date
JP2014039947A (en) 2014-03-06
TWI562849B (en) 2016-12-21
KR101570949B1 (en) 2015-11-20
KR20140114858A (en) 2014-09-29
CN104114311A (en) 2014-10-22
CN104114311B (en) 2016-08-24
JP5906994B2 (en) 2016-04-20
TW201408415A (en) 2014-03-01

Similar Documents

Publication Publication Date Title
TWI504460B (en) Welding method of aluminum alloy element
RU2642245C2 (en) Multilayer aluminium sheet for flux-free high temperature brazing in controlled atmosphere
KR101731688B1 (en) Method for surface brazing between aluminum alloy member and copper alloy member
JP2016035112A (en) Aluminum brazing sheet
CN103906852A (en) Aluminum alloy for heat exchanger fin and manufacturing method therefor, as well as heat exchanger using said aluminum alloy
JP2014050861A (en) Aluminum-alloy-made brazing sheet
JP2012051028A (en) Structure using aluminum alloy material and joining method for the same
JP2012050993A (en) Fluxless brazing method of aluminum material and aluminum clad material for fluxless brazing
JP5906994B2 (en) Surface brazing method for aluminum alloy members
JP5713451B2 (en) Aluminum alloy brazing sheet and manufacturing method thereof, and brazing method of aluminum heat exchanger
JP2014037576A (en) Brazing sheet made of aluminum alloy, and method for brazing the same
JP2013086103A (en) Aluminum alloy brazing sheet
JP5695490B2 (en) Aluminum alloy brazing sheet
JP5687849B2 (en) Aluminum alloy brazing sheet
JP5713452B2 (en) Aluminum alloy brazing sheet and manufacturing method thereof, and brazing method of aluminum heat exchanger
CN104694789B (en) 4004 aluminium alloys and its production method of soldering bismuth-containing and tellurium
JP2018099725A (en) Aluminum alloy brazing sheet
JP2013103265A (en) Aluminum alloy brazing sheet and brazing method
JP2013094837A (en) Aluminum alloy brazing sheet
JP2012052160A (en) Member for flux-less brazing, excellent in blazing property, and method for flux-less brazing aluminum member
US20230323515A1 (en) Monolayer aluminum alloy material for brazing and method of manufacturing an aluminum structure
WO2022176420A1 (en) Aluminum alloy sheet and method for producing same, and heat exchanger
JP2011140696A (en) Aluminum alloy brazing sheet and method of manufacturing aluminum alloy brazing sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147021850

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13830729

Country of ref document: EP

Kind code of ref document: A1