WO2014029414A1 - Verfahren zum positionieren eines elektrisch antreibbaren fahrzeugs - Google Patents
Verfahren zum positionieren eines elektrisch antreibbaren fahrzeugs Download PDFInfo
- Publication number
- WO2014029414A1 WO2014029414A1 PCT/EP2012/066176 EP2012066176W WO2014029414A1 WO 2014029414 A1 WO2014029414 A1 WO 2014029414A1 EP 2012066176 W EP2012066176 W EP 2012066176W WO 2014029414 A1 WO2014029414 A1 WO 2014029414A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- distance
- sensor
- primary coil
- distance sensor
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/66—Arrangements of batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
- B60L53/126—Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/35—Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
- B60L53/36—Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/65—Monitoring or controlling charging stations involving identification of vehicles or their battery types
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/12—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/70—Interactions with external data bases, e.g. traffic centres
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
- Y02T90/167—Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/14—Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing
Definitions
- traction battery which provides the electrical energy required for the driving operation. Discharged batteries must be recharged if necessary by means of a charging device.
- the traction battery of the electrically driven vehicle and the charging device are often electrically connected to each other by means of a charging cable. Making this electrical connection is sometimes troublesome, especially if the cable is long, dirty or wet, or if the connectors are heavy.
- the invention has for its object to provide a method and a device that allow safe and reliable positioning of an electrically driven vehicle during inductive charging.
- a method for Positionin ⁇ ren an electrically driven vehicle with respect to a Primary coil of an inductive charging device wherein in the method, the vehicle is positioned by means of at least one first Ent ⁇ fernungssensors, wherein the first Entfer ⁇ tion sensor is arranged at the primary coil.
- the first distance sensor is advantageously arranged at the primary coil.
- the method may be configured such that the first Ent ⁇ fernungssensor is an ultrasonic sensor.
- it is in the area located at the primary coil ers ⁇ th distance sensor is an ultrasonic sensor.
- the distance of the primary coil to an obstacle can be determined. It turns the driving ⁇ imaging is a (large) obstacle, so that the position / distance of the vehicle can be reliably determined by means of the Ultra ⁇ sound sensor.
- the method may also be configured such that ⁇ is measured by the first distance sensor along a first direction, the distance between the primary coil and the vehicle ge and the vehicle is instructed by means of a first move command, fully close along the first direction to the primary coil.
- a driver of the vehicle can be instructed ent ⁇ long fully close the first direction to the primary coil by means of a first move command.
- the vehicle is positioned along the first direction with respect to the primary coil.
- the method may also be configured such that by means of a second distance sensor it is detected when an outer edge of the vehicle (vehicle outer edge) reaches the primary coil, and then the vehicle is instructed by means of a second driving command to continue along the first direction for a predetermined distance.
- a driver of the driving ⁇ zeugs can be instructed by means of a second move command, along the first direction a Continue on the predetermined route. This positions a secondary coil of the vehicle over the primary coil. A particularly accurate positioning of the driving ⁇ zeugs it is achieved here. If the outer edge of the vehicle reaches the primary coil, the secondary coil of the driving ⁇ zeugs is namely not positioned over the primary coil.
- the secondary coil of the vehicle - for example, on the underbody of the vehicle - at a considerable (known) distance from the outer edge of the vehicle. This is considered that the vehicle or the driver is instructed by the second driving command ent ⁇ long the first direction a predetermined distance techzu ⁇ drive. This positions the secondary coil of the vehicle over the primary coil of the vehicle.
- the outer edge of the vehicle is, for example, the front bumper of the vehicle.
- the method may also be configured such that the readied ⁇ agreed route a predetermined number of units of a rotary arranged on a wheel of the vehicle corresponds to the rotation sensor.
- the vehicle can be instructed by means of the second Fahrbe ⁇ error, for example, continue as long along the first direction until the predetermined number of rotation units of the rotary sensor is reached.
- the method may be configured such that the rotary ⁇ sensor is a rotation sensor of an anti-lock brake system of the vehicle.
- Modern vehicles today usually have an anti-lock braking system (ABS). Therefore, these vehicles already have (at least) a rotation sensor of this antilock braking system, so that the method can be carried out with little effort and at low cost.
- ABS anti-lock braking system
- the method may also be configured such that the rotary sensor is a speedometer sensor of the vehicle.
- the method may also be such that (eg while driving along the first direction) by means of at least one third distance sensor, the orientation of the vehicle in a second direction is determined, and by means of a third driving command, the vehicle is instructed to align in the second direction with respect to the primary coil.
- a driver of the vehicle can also be instructed by means of a third travel command to align the vehicle in the second direction with respect to the primary coil.
- the vehicle in addition to positioning along the first direction, the vehicle can advantageously also be positioned along the second direction. Characterized the secondary coil of the vehicle to the primary coil of La ⁇ signaling device can, for example, an undesirable lateral displacement be avoided (in the second direction).
- the method may be such that the orientation of the vehicle in the second direction is determined by measuring the distance from the primary coil to a wheel of the vehicle and the distance from the primary coil to a second wheel of the vehicle by means of the at least one third range sensor , As a result, the orientation of the vehicle in the second direction is determined in a simple manner.
- the method can be designed such that the second distance sensor and / or the third distance sensor is arranged at the primary coil. Means such ⁇ be arranged distance sensors can be determined the position of the vehicle reliably.
- the method may also be such that the first direction and the second direction are perpendicular to each other. Thereby, the position of the vehicle (and in particular the distance of the vehicle from the primary coil) can be determined in the plane spanned by the first direction and the second direction.
- a device for positioning an electrically drivable vehicle with respect to a primary coil of an inductive charging device wherein in the device is set up to position the vehicle by means of at least a first distance sensor, wherein the first distance sensor is arranged at the primary coil ⁇ .
- the first distance sensor may be an ultrasonic sensor.
- the device may configured (designed) to be to be measured by the first distance sensor along a first direction, the distance between the primary coil and the vehicle and assign means of a first move command the vehicle to ⁇ , fully close along the first direction to the primary coil.
- the device may also be configured, by means of a first move command to instruct a driver of the driving ⁇ zeugs, fully close along the first direction to the primary coil.
- the device may also be configured to detect by means of a second distance sensor when an outer edge of the vehicle (ie a vehicle outer edge) reaches the primary coil, and then instruct the vehicle to continue along the first direction for a predetermined distance by means of a second drive command.
- the Einrich- processing may be also configured to instruct by a second Fahrbe ⁇ yogs a driver of the vehicle to drive on a predetermined distance along the first direction. Since ⁇ through the secondary coil of the vehicle via the primary ⁇ coil is positioned.
- the device may also be configured such that the predetermined distance corresponds to a predetermined number of rotary units of a rotary sensor arranged on a wheel of the vehicle.
- the device may be configured such that the rotation sensor is a rotation sensor of an anti-lock system of the vehicle.
- the device can also be configured such that the rotation sensor is a speedometer sensor of the vehicle.
- the device can be configured to determine (for example, during traveling of the vehicle along the first direction) with ⁇ means of at least a third distance sensor, the Reg ⁇ processing of the vehicle in a second direction, and senmilawei- the vehicle by means of a third operating command, to align in the second direction with respect to the primary coil.
- the device can alternatively be configured to instruct a Fah ⁇ rer of the vehicle by means of a third operating command to align the vehicle with respect to the second direction in the primary coil.
- the device may also be configured to measure, by means of the at least one third distance sensor, the distance from the primary coil to a wheel of the vehicle and the distance from the primary coil to a second wheel of the vehicle.
- the device can be designed such that the second distance sensor and / or the third distance sensor is arranged at the primary coil.
- the device may be configured such that the first direction and the second direction perpendicular to each other are integrally ⁇ arranged. This device also has the advantages indicated above in connection with the method.
- Embodiment of a device with a first distance sensor and an electrically drivable vehicle in
- Figure 2 shows the embodiment of Figure 1 with a
- FIG. 3 shows the illustration of Figure 2 in a view from above, in Figure 4, the embodiment of Figure 1 with a
- Figure 5 shows the representation of Figure 4 in a view from above, in
- Figure 6 is a top view of the embodiment of Figure 1 with the first distance sensor, the second distance sensor and the two third distance sensors and in
- FIG. 7 is a flowchart of an example
- FIG. 1 shows a schematic sectional view of a device for positioning an electrically drivable vehicle 2.
- This vehicle 2 has a
- the electrically driven vehicle 2 is or moves on a plane 6, which extends in the exemplary embodiment in the x-direction and y-direction.
- This x-y plane 6 may be, for example, a street, a place, a parking lot or the floor of a parking garage.
- an electrical primary coil 8 is shown only schematically.
- This primary coil 8 can - as shown in Figure 1 - be arranged on the level 6, but it can also be arranged sunk in the plane 6.
- a first Distance sensor 10 is arranged, which measures the distance xl between the primary coil 8 and the vehicle 2 in the x direction. In FIG. 1, this distance x1 between the primary coil 8 and the vehicle 2 is indicated by the arrow 12. More specifically, the first distance sensor 10 measures the distance to an outer edge 15 of the vehicle 2. This outer edge 15 typically represents a front bumper 15 of the vehicle 2 (in a vehicle moving toward the primary coil 8).
- Measured values of the first distance sensor 10 are transmitted via a signal line 18 to a control device 20.
- This control device 20 processes the measured values and is able to send driving commands to the electrically drivable vehicle 2 in accordance with the processing results.
- the control device 20 is connected to an antenna 22, by means of which the travel commands are sent to an antenna 24 of the vehicle 2.
- This wireless transmission of the movement commands (wireless data transmission) is symbolized by an arrow 26.
- the vehicle 2 responds accordingly to the travel commands sent by the control device 20, ie the vehicle 2 executes these travel commands.
- Example ⁇ as drives and brakes the vehicle according to the Fahrbe ⁇ missing and the steering is electrically adjusted / corrected in accordance with the received movement commands.
- the steering correction can, for. B. be realized via an electrically assisted steering system of the vehicle 2.
- a driver of the vehicle can be instructed to drive or steer the vehicle in accordance with the driving commands.
- the first distance sensor is designed as an ultrasonic sensor (similar to how he is (for example, electronic parking aids ⁇ rule park distance control PDC) of Fahrzeu ⁇ gen known).
- ultrasonic sensors work very well and can measure distances to cm distances accurately.
- ultrasonic sensors are very inexpensive. However, they need a measurement area up to which they measure the distance. This measuring surface is formed here by the electrically drivable Fahr ⁇ tool. Therefore, it is advantageous to arrange in particular the ultrasonic sensors in the primary coil, so that these sensors can measure the distance to the vehicle from the primary coil. (If the ultrasonic sensors were located on the vehicle, then there may not be a clearly detectable measurement surface associated with the primary coil, so the range finding would not work.)
- the distance x 1 between the primary coil 8 and the vehicle 2 is measured along the first direction x.
- the first distance sensor 10 transmits a measured value for the distance x 1 to the control device 20 via the signal line 18.
- the control device 20 recognizes that the vehicle is still at a distance x 1 from the primary coil 8 and transmits a first travel command 28 by means of the wireless data transmission 26 the vehicle 2.
- the vehicle 2 is instructed to approach the primary coil 8 along the first direction x.
- FIG. 2 shows the state when the vehicle 2 reaches the primary coil 8.
- the second distance sensor measures the distance to an obstacle in the z-direction.
- the z-direction is perpendicular to the xy-plane angeord ⁇ net and in the exemplary embodiment, the height direction (Ver ⁇ tical) is.
- second distance sensor 202 measures an "infinite" distance, but as soon as the vehicle reaches primary coil 8, as shown in FIG. sensor 202, the distance to the outer edge 15 of the vehicle 2.
- This distance is shown in the example of Figure 2 as the distance zl (arrow 205).
- Vehicle 2 (more precisely: the outer edge 15 of the vehicle 2) has reached the primary coil 8.
- the secondary coil 4 of the vehicle 2 is not yet arranged above the primary coil 8.
- a ⁇ Ver set which is characterized ⁇ be in the exemplary embodiment with the distance x2 (arrow 207).
- the size of the distance x2 is vehicle-specific and stored at the control device 20. Namely, it is known for each vehicle at which distance from the outer edge 15 the secondary coil 4 (eg on the underbody of the vehicle) is arranged.
- control device 20 sends a second drive command 205 to the vehicle 2 by means of the wireless data transmission 26.
- the vehicle 2 is instructed to continue the predetermined route x2 along the first direction x.
- Characterized the secondary coil 4 of the vehicle via the primary coil 8 of the device is positio ned ⁇ .
- the length of the distance X2 is converted by the control device 20 into a number of rotary units of a wheel 210 of the vehicle 2 arranged rotary sensor 212.
- the rotary ⁇ sensor 212 is part of an anti-lock braking system (ABS) of the vehicle 2.
- ABS anti-lock braking system
- Namely known anti-lock systems of modern vehicles is in each case at the wheels a rotation sensor which measures the rotation or the speed of the wheels.
- rotary sensors for example, induction sensors are used, which detect the rotation of a mounted on the wheel 210 metal part.
- the wheels for example, perforated discs or toothed discs, which are rotated past the rotary sensor and thus allow, with a large resolution, the rotation of the wheel 210 and thus the movement of the vehicle 2 to measure.
- Hall sensors are also used which detect the rotation of a magnet arranged on the wheel 210.
- the rotation sensor (wheel sensor) of the ABS system thus provides a high resolution signal for the distance traveled by the driving ⁇ compelling journey.
- the rotation sensor 212 may also be another rotation sensor, for example a speedometer sensor of the vehicle 2.
- a speedometer sensor generates the speedometer signal, which is displayed on the speedometer of the vehicle as a speed.
- Such a tachometer sensor is often realized as a arranged in a gear on a gear ⁇ ter Hall sensor, which measures the rotation of the gear.
- the controller 20 thus calculates the predetermined
- the secondary coil 4 is arranged in the x-direction exactly above the primary coil 8.
- FIG. 3 shows the state according to FIG. 2 in a view from above (top view).
- the position of the coil turns of the primary coil 8 is indicated by means of a dashed line 302.
- the wheel 210, the other wheel 305 and the secondary coil 4 is shown.
- ⁇ means of a dashed line 308, the position of the coil turns of the secondary coil 4 is indicated.
- the third distance sensor 310 measures the distance from the primary coil 8 to the wheel 210 of the vehicle 2. This distance is denoted by “a” in the exemplary embodiment (arrow 502)
- the further third distance sensor 310 'measures the distance between the primary coil 8 and the further wheel 305 of the vehicle 2. This distance is designated in the exemplary embodiment with “b” (arrow 504). If the vehicle 2 is correctly aligned with the primary coil 8 (so that an imaginary longitudinal axis of the vehicle 2 passes through the center of the primary coil 8, as shown in FIG. 5), then the distance a and the distance b are equal (a b ).
- the control device 20 If, however, calculated by the third distance sensor 310 and the further third distance sensor 310 'that the distance a equal to the distance b is (a ⁇ b), then detects the control device 20 that the driving ⁇ generating 2 in the second direction y is not is aligned correctly with respect to the primary coil 8. The control device 20 then sends a third movement command 315 to the vehicle 2 by means of the wireless data transmission 26. With this third movement command 315, the vehicle 2 is instructed to align itself in the second direction y with respect to the primary coil 8. This alignment takes place in the embodiment, since ⁇ by that the vehicle is changed so while driving along the ers ⁇ th direction x, the steering system (that is, the steering angle of the front wheels 210 and 305 are changed), that the
- first distance sensor 10 the second distance sensor 202, the third distance ⁇ sensor 310 and the further third distance sensor 310 'disposed at the primary coil.
- the means for posi tioning ⁇ of the electrically powered vehicle 2 has the arranged on the primary coil 8 first distance sensor 10, the second distance sensor 202, the third distance sensor 310, the other third distance sensor 310 ', the signal line 18, the control device 20 and the antenna 22 on.
- ⁇ represents.
- the vehicle is brought into a specific position to the primary coil.
- the positioning of the vehicle in the x-direction is shown, while in the right branch of the flow chart ⁇ positioning is shown in the y-direction. Both positions are timed parallel to each other, ie while the vehicle is aligned in the x-direction, the vehicle is simultaneously directed in the y-direction from ⁇ .
- the starting point of the method is that the vehicle 2 approaches the primary coil 8 in the x direction, block 710.
- the first distance sensor 10 is used to measure the distance (the distance) between the primary coil and the vehicle in the x direction, block 720. accordingly, the precisely measured ⁇ NEN distance (the measured distance) is sent as the first operation command 28 to the vehicle driving command, zoom down in the x direction to the primary coil 8, block 730. Thereafter, 202 gemes ⁇ sen by the second distance sensor whether the front If this is not the case, then the method continues at block 720 and the measurement of the distance between the vehicle and the primary coil by means of the first range sensor 10 is repeated.
- the method proceeds to block 750th
- the second move command is sent 205 to the vehicle, with which the accelerator ⁇ imaging is instructed to continue a predetermined distance in the x-direction, this predetermined distance a réelle ⁇ arbitrary number rotating units of the ABS sensor 212 corresponds to.
- the vehicle in the x direction is positioned, ie, the secondary coil 4 of the vehicle is aligned in the x direction over the Pri ⁇ märspule. 8
- the positioning of the vehicle in the y-direction takes place parallel to the previously explained positioning of the vehicle in the x-direction.
- the alignment of the vehicle in the y-direction to the primary coil is measured by means of third distance sensors 310 and 310 ', block 760.
- the third travel command 315 is sent to the vehicle.
- the vehicle is instructed to correct the y-directional alignment as it approaches the primary coil, block 770. Correcting the y-directional orientation is by means of the vehicle's electric steering.
- the method continues at block 760 , If the alignment in the y-direction is correct, then the curve goes to block 790. Then the vehicle is correctly positioned both in the x-direction and in the y-direction, ie the secondary coil 4 of the vehicle is in the x-direction and arranged in the y-direction over the primary coil 8.
- the x-direction is the first direction, the y-direction the second direction and the z-direction the third direction.
- the first direction x, the second direction y and the third direction z are perpendicular to each other angeord ⁇ net.
- the second distance sensor and / or the third distance sensors may (as the first distance sensor) be ultrasound sensors.
- the first distance sensor, the second distance sensor and / or the third distance sensors can also be other distance sensors, for example laser range sensors.
- the first range sensor, the second range sensor, and / or the third range sensors may also be elements of a system of range sensors, respectively.
- a further distance sensor may form a system, this system measuring the distance of the vehicle to the primary coil in the x-direction. This also applies to the other distance sensors .
- the distance sensors are integrated in the primary coil 8.
- the first distance sensor 10, the second distance sensor 202 and the third distance sensors 310 and 310 ' operate partially simultaneously.
- the approach of the vehicle is detected in the x direction, it will ⁇ known by the second distance sensor 202 when the outer edge (z. B. the bumper) of the driving ⁇ zeugs reaches the primary coil, and by means of Ent third ⁇ fernungssensoren 310 and 310 'is the orientation in the transverse direction: detected (here in y-direction).
- a method and a device for positioning an electrically drivable vehicle have been described, with which the electrically drivable vehicle can be safely and reliably positioned relative to the primary coil of the inductive charging device.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Acoustics & Sound (AREA)
- General Physics & Mathematics (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Die Erfindung betrifft ein Verfahren zum Positionieren eines elektrisch antreibbaren Fahrzeugs (2) bezüglich einer Primärspule (8) einer induktiven Ladeeinrichtung. Dabei wird das Fahrzeug (2) mittels mindestens eines ersten Entfernungssensors (10) positioniert, wobei der erste Entfernungssensor (10) bei der Primärspule (8) angeordnet ist.
Description
Beschreibung
Verfahren zum Positionieren eines elektrisch antreibbaren Fahrzeugs
Elektrisch antreibbare Fahrzeuge weisen eine Fahrbatterie (Akkumulator) auf, welche die für den Fahrbetrieb benötigte elektrische Energie zur Verfügung stellt. Entladene Batterien müssen bei Bedarf mittels einer Ladeeinrichtung wieder aufge- laden werden. Dazu werden die Fahrbatterie des elektrisch antreibbaren Fahrzeugs und die Ladeeinrichtung häufig mittels eines Ladekabels elektrisch miteinander verbunden. Das Herstellen dieser elektrischen Verbindung wird manchmal als lästig empfunden, insbesondere wenn das Kabel lang, schmutzig oder nass ist oder wenn die Verbindungsstecker schwer sind.
Eine elektrische Verbindung mit einem Ladekabel ist nicht notwendig, wenn die Fahrbatterie induktiv aufgeladen wird. Dabei ist außerhalb des Fahrzeugs eine Primärspule angeord- net, die mittels eines elektromagnetischen Felds elektrische Energie zu einer Sekundärspule des Fahrzeugs überträgt. Der Wirkungsgrad dieser drahtlosen Energieübertragung hängt wesentlich davon ab, wie genau das Fahrzeug mit der Sekundär¬ spule bezüglich der Primärspule der induktiven Ladevorrich- tung positioniert ist.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Einrichtung anzugeben, die eine sichere und zuverlässige Positionierung eines elektrisch antreibbaren Fahrzeugs beim induktiven Laden ermöglichen.
Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren und eine Einrichtung nach den unabhängigen Patentansprüchen. Vorteilhafte Ausgestaltungen des Verfahrens und der Einrich- tung sind in den abhängigen Patentansprüchen angegeben.
Erfindungsgemäß angegeben wird ein Verfahren zum Positionie¬ ren eines elektrisch antreibbaren Fahrzeugs bezüglich einer
Primärspule einer induktiven Ladeeinrichtung, wobei bei dem Verfahren das Fahrzeug mittels mindestens eines ersten Ent¬ fernungssensors positioniert wird, wobei der erste Entfer¬ nungssensor bei der Primärspule angeordnet ist. Hierbei ist der ersten Entfernungssensor vorteilhafterweise bei der Primärspule angeordnet. Mittels eines derart angeordneten ersten Entfernungssensors kann die Position des Fahrzeugs zuverläs¬ sig bestimmt werden. Das Verfahren kann so ausgestaltet sein, dass der erste Ent¬ fernungssensor ein Ultraschallsensor ist. Vorteilhafterweise handelt es sich bei dem bei der Primärspule angeordneten ers¬ ten Entfernungssensor um einen Ultraschallsensor. Mittels eines Ultraschallsensors kann die Entfernung der Primärspule zu einem Hindernis ermittelt werden. Dabei stellt das Fahr¬ zeug ein (großes) Hindernis dar, so dass mittels des Ultra¬ schallsensors zuverlässig die Position / die Entfernung des Fahrzeugs ermittelt werden kann. Das Verfahren kann auch so ausgestaltet sein, dass mittels des ersten Entfernungssensors entlang einer ersten Richtung die Entfernung zwischen der Primärspule und dem Fahrzeug ge¬ messen wird und mittels eines ersten Fahrbefehls das Fahrzeug angewiesen wird, entlang der ersten Richtung auf die Primär- spule zuzufahren. Alternativ kann auch mittels eines ersten Fahrbefehls ein Fahrer des Fahrzeugs angewiesen werden, ent¬ lang der ersten Richtung auf die Primärspule zuzufahren. Mittels des ersten Fahrbefehls wird das Fahrzeug entlang der ersten Richtung bezüglich der Primärspule positioniert.
Das Verfahren kann auch so ausgestaltet sein, dass mittels eines zweiten Entfernungssensors erkannt wird, wenn eine Außenkante des Fahrzeugs (Fahrzeugaußenkante) die Primärspule erreicht, und daraufhin wird mittels eines zweiten Fahrbe- fehls das Fahrzeug angewiesen, entlang der ersten Richtung eine vorbestimmte Strecke weiterzufahren. Alternativ kann auch mittels eines zweiten Fahrbefehls ein Fahrer des Fahr¬ zeugs angewiesen werden, entlang der ersten Richtung eine
vorbestimmte Strecke weiterzufahren. Dadurch wird eine Sekundärspule des Fahrzeugs über der Primärspule positioniert. Es wird hierbei ein besonders genaues Positionieren des Fahr¬ zeugs erreicht. Wenn die Außenkante des Fahrzeugs die Primär- spule erreicht, dann ist nämlich die Sekundärspule des Fahr¬ zeugs noch nicht über der Primärspule positioniert. Vielmehr kann sich die Sekundärspule des Fahrzeugs - beispielsweise am Unterboden des Fahrzeugs - in einer beträchtlichen (bekannten) Entfernung von der Außenkante des Fahrzeugs befinden. Dies wird dadurch berücksichtigt, dass das Fahrzeug oder der Fahrer mittels des zweiten Fahrbefehls angewiesen wird, ent¬ lang der ersten Richtung eine vorbestimmte Strecke weiterzu¬ fahren. Dadurch wird die Sekundärspule des Fahrzeugs über der Primärspule des Fahrzeugs positioniert. Bei der Außenkante des Fahrzeugs handelt es sich beispielsweise um die vordere Stoßstange des Fahrzeugs.
Das Verfahren kann auch so ausgestaltet sein, dass die vorbe¬ stimmte Strecke einer vorbestimmten Anzahl Dreheinheiten eines an einem Rad des Fahrzeugs angeordneten Drehsensors entspricht. So kann das Fahrzeug mittels des zweiten Fahrbe¬ fehls beispielsweise angewiesen werden, so lange entlang der ersten Richtung weiterzufahren, bis die vorbestimmte Anzahl Dreheinheiten des Drehsensors erreicht ist.
Das Verfahren kann dabei so ausgestaltet sein, dass der Dreh¬ sensor ein Drehsensor eines Antiblockiersystems des Fahrzeugs ist. Moderne Fahrzeuge verfügen heute üblicherweise über ein Antiblockiersystem (ABS) . Daher ist bei diesen Fahrzeugen be- reits (mindestens) ein Drehsensor dieses Antiblockiersystems vorhanden, so dass das Verfahren mit geringem Aufwand und kostengünstig durchgeführt werden kann.
Das Verfahren kann auch so ausgestaltet sein, dass der Dreh- sensor ein Tachosensor des Fahrzeugs ist.
Das Verfahren kann auch so ablaufen, dass (z.B. während des Fahrens entlang der ersten Richtung) mittels mindestens eines
dritten Entfernungssensors die Ausrichtung des Fahrzeugs in einer zweiten Richtung ermittelt wird, und mittels eines dritten Fahrbefehls das Fahrzeug angewiesen wird, sich in der zweiten Richtung bezüglich der Primärspule auszurichten. Al- ternativ kann auch mittels eines dritten Fahrbefehls ein Fahrer des Fahrzeugs angewiesen werden, das Fahrzeug in der zweiten Richtung bezüglich der Primärspule auszurichten. Damit kann vorteilhafterweise zusätzlich zum Positionieren entlang der ersten Richtung das Fahrzeug auch entlang der zwei- ten Richtung positioniert werden. Dadurch kann beispielsweise ein unerwünschter seitlicher Versatz (in der zweiten Richtung) der Sekundärspule des Fahrzeugs zur Primärspule der La¬ deeinrichtung vermieden werden. Das Verfahren kann dabei so ablaufen, dass die Ausrichtung des Fahrzeugs in der zweiten Richtung ermittelt wird, indem mittels des mindestens einen dritten Entfernungssensors die Entfernung von der Primärspule zu einem Rad des Fahrzeugs und die Entfernung von der Primärspule zu einem zweiten Rad des Fahrzeugs gemessen wird. Dadurch wird auf einfache Weise die Ausrichtung des Fahrzeugs in der zweiten Richtung ermittelt.
Das Verfahren kann dabei so ausgestaltet sein, dass der zweite Entfernungssensor und/oder der dritte Entfernungssen- sor bei der Primärspule angeordnet ist. Mittels derart ange¬ ordneter Entfernungssensoren kann die Position des Fahrzeugs zuverlässig bestimmt werden.
Das Verfahren kann auch so ablaufen, dass die erste Richtung und die zweite Richtung senkrecht zueinander angeordnet sind. Dadurch kann die Position des Fahrzeugs (und insbesondere die Entfernung des Fahrzeugs von der Primärspule) in der durch die erste Richtung und die zweite Richtung aufgespannten Ebene ermittelt werden.
Erfindungsgemäß angegeben wird weiterhin eine Einrichtung zum Positionieren eines elektrisch antreibbaren Fahrzeugs bezüglich einer Primärspule einer induktiven Ladeeinrichtung, wo-
bei die Einrichtung eingerichtet ist, das Fahrzeug mittels mindestens eines ersten Entfernungssensors zu positionieren, wobei der erste Entfernungssensor bei der Primärspule ange¬ ordnet ist.
Bei dieser Einrichtung kann der erste Entfernungssensor ein Ultraschallsensor sein.
Die Einrichtung kann ausgestaltet (ausgebildet) sein, mittels des ersten Entfernungssensors entlang einer ersten Richtung die Entfernung zwischen der Primärspule und dem Fahrzeug zu messen und mittels eines ersten Fahrbefehls das Fahrzeug an¬ zuweisen, entlang der ersten Richtung auf die Primärspule zuzufahren. Alternativ kann die Einrichtung auch ausgestaltet sein, mittels eines ersten Fahrbefehls einen Fahrer des Fahr¬ zeugs anzuweisen, entlang der ersten Richtung auf die Primärspule zuzufahren.
Die Einrichtung kann auch ausgestaltet sein, mittels eines zweiten Entfernungssensors zu erkennen, wenn eine Außenkante des Fahrzeugs (d.h. eine Fahrzeugaußenkante) die Primärspule erreicht, und daraufhin mittels eines zweiten Fahrbefehls das Fahrzeug anzuweisen, entlang der ersten Richtung eine vorbestimmte Strecke weiterzufahren. Alternativ kann die Einrich- tung auch ausgestaltet sein, mittels eines zweiten Fahrbe¬ fehls einen Fahrer des Fahrzeugs anzuweisen, entlang der ersten Richtung eine vorbestimmte Strecke weiterzufahren. Da¬ durch wird die Sekundärspule des Fahrzeugs über der Primär¬ spule positioniert.
Die Einrichtung kann auch so ausgestaltet sein, dass die vorbestimmte Strecke einer vorbestimmten Anzahl Dreheinheiten eines an einem Rad des Fahrzeugs angeordneten Drehsensors entspricht .
Die Einrichtung kann so ausgestaltet sein, dass der Drehsensor ein Drehsensor eines Antiblockiersystems des Fahrzeugs ist .
Die Einrichtung kann auch so ausgestaltet sein, dass der Drehsensor ein Tachosensor des Fahrzeugs ist. Die Einrichtung kann dabei ausgestaltet sein, (z.B. während des Fahrens des Fahrzeugs entlang der ersten Richtung) mit¬ tels mindestens eines dritten Entfernungssensors die Ausrich¬ tung des Fahrzeugs in einer zweiten Richtung zu ermitteln, und mittels eines dritten Fahrbefehls das Fahrzeug anzuwei- sen, sich in der zweiten Richtung bezüglich der Primärspule auszurichten. Dabei kann die Einrichtung alternativ auch ausgestaltet sein, mittels eines dritten Fahrbefehls einen Fah¬ rer des Fahrzeugs anzuweisen, das Fahrzeug in der zweiten Richtung bezüglich der Primärspule auszurichten.
Die Einrichtung kann auch ausgestaltet sein, mittels des mindestens einen dritten Entfernungssensors die Entfernung von der Primärspule zu einem Rad des Fahrzeugs und die Entfernung von der Primärspule zu einem zweiten Rad des Fahrzeugs zu messen.
Dabei kann die Einrichtung so ausgestaltet sein, dass der zweite Entfernungssensor und/oder der dritte Entfernungssensor bei der Primärspule angeordnet ist.
Die Einrichtung kann so ausgestaltet sein, dass die erste Richtung und die zweite Richtung senkrecht zueinander ange¬ ordnet sind. Diese Einrichtung weist ebenfalls die Vorteile auf, die oben im Zusammenhang mit dem Verfahren angegeben sind.
Im Folgenden wird die Erfindung anhand eines Ausführungsbei¬ spiels näher erläutert. Dazu sind in
Figur 1 in einer schematischen Schnittdarstellung ein
Ausführungsbeispiel einer Einrichtung mit einem
ersten Entfernungssensor sowie ein elektrisch antreibbares Fahrzeug, in
Figur 2 das Ausführungsbeispiel der Figur 1 mit einem
zusätzlichen zweiten Entfernungssensor, in
Figur 3 die Darstellung der Figur 2 in einer Ansicht von oben, in Figur 4 das Ausführungsbeispiel der Figur 1 mit einem
zusätzlichen dritten Entfernungssensor, in
Figur 5 die Darstellung der Figur 4 in einer Ansicht von oben, in
Figur 6 in einer Ansicht von oben das Ausführungsbeispiel der Figur 1 mit dem ersten Entfernungssensor, dem zweiten Entfernungssensor und den zwei dritten Entfernungssensoren und in
Figur 7 ein Ablaufdiagramm eines beispielhaften
Verfahrensablaufs dargestellt.
In Figur 1 ist in einer schematischen Schnittdarstellung eine Einrichtung zum Positionieren eines elektrisch antreibbaren Fahrzeugs 2 dargestellt. Dieses Fahrzeug 2 weist eine
elektrische Sekundärspule 4 auf. Mittels dieser Sekundärspule 4 kann eine Fahrbatterie 5 aufgeladen werden, welche die zur Fortbewegung des Fahrzeugs benötigte Energie speichert. Das elektrisch antreibbare Fahrzeug 2 steht bzw. fährt auf einer Ebene 6, welche sich im Ausführungsbeispiel in x-Richtung und y-Richtung erstreckt. Diese x-y-Ebene 6 kann beispielsweise eine Straße, ein Platz, ein Parkplatz oder der Boden eines Parkhauses sein. An der Ebene 6 ist eine lediglich schema- tisch dargestellte elektrische Primärspule 8 angeordnet.
Diese Primärspule 8 kann - wie in Figur 1 dargestellt - auf der Ebene 6 angeordnet sein, sie kann aber auch in der Ebene 6 versenkt angeordnet sein. An der Primärspule 8 ist ein ers-
ter Entfernungssensor 10 angeordnet, welcher in x-Richtung die Entfernung xl zwischen der Primärspule 8 und dem Fahrzeug 2 misst. In der Figur 1 ist diese Entfernung xl zwischen der Primärspule 8 und dem Fahrzeug 2 mit dem Pfeil 12 angedeutet. Genauer betrachtet misst der erste Entfernungssensor 10 die Entfernung zu einer Außenkante 15 des Fahrzeugs 2. Diese Außenkante 15 stellt (bei einem Fahrzeug, das sich auf die Primärspule 8 zubewegt) üblicherweise eine vordere Stoßstange 15 des Fahrzeugs 2 dar.
Messwerte des ersten Entfernungssensors 10 werden über eine Signalleitung 18 zu einer Steuereinrichtung 20 übertragen. Diese Steuereinrichtung 20 verarbeitet die Messwerte und ist in der Lage, entsprechend der Verarbeitungsergebnisse Fahrbe- fehle an das elektrisch antreibbare Fahrzeug 2 zu senden.
Dazu ist die Steuereinrichtung 20 mit einer Antenne 22 verbunden, mittels der die Fahrbefehle zu einer Antenne 24 des Fahrzeugs 2 gesendet werden. Diese drahtlose Übertragung der Fahrbefehle (drahtlose Datenübertragung) ist mittels eines Pfeils 26 symbolisiert. Das Fahrzeug 2 reagiert entsprechend auf die von der Steuereinrichtung 20 gesendeten Fahrbefehle, d. h. das Fahrzeug 2 führt diese Fahrbefehle aus. Beispiels¬ weise fährt und bremst das Fahrzeug entsprechend den Fahrbe¬ fehlen und die Lenkung wird entsprechend den empfangenen Fahrbefehlen elektrisch eingestellt/korrigiert. Die Lenkkorrektur kann z. B. über ein elektrisch unterstütztes Lenksystem des Fahrzeugs 2 realisiert werden. Alternativ kann auch mittels der Fahrbefehle ein Fahrer des Fahrzeugs angewiesen werden, das Fahrzeug entsprechend den Fahrbefehlen zu fahren bzw. zu lenken. Dazu können Informationen, die mit den Fahrbefehlen zu dem Fahrzeug übertragen werden, beispielsweise an einer Anzeige des Armaturenbretts für den Fahrer angezeigt werden . Der erste Entfernungssensor ist als ein Ultraschallsensor ausgestaltet (ähnlich wie er beispielsweise aus elektroni¬ schen Einparkhilfen (park distance control, PDC) von Fahrzeu¬ gen bekannt ist) . Als Entfernungssensoren eingesetzte Ultra-
schallsensoren arbeiten sehr genau und können Entfernungen auf cm-Distanzen genau messen. Darüber hinaus sind Ultraschallsensoren sehr preisgünstig. Allerdings benötigen sie eine Messfläche, bis zu der sie die Entfernung messen. Diese Messfläche wird hier durch das elektrisch antreibbare Fahr¬ zeug gebildet. Daher ist es vorteilhaft, insbesondere die Ultraschallsensoren bei der Primärspule anzuordnen, so dass diese Sensoren von der Primärspule aus die Entfernung zu dem Fahrzeug messen können. (Wenn die Ultraschallsensoren bei dem Fahrzeug angeordnet wären, dann gäbe es ggf. keine eindeutig erkennbare Messfläche, die der Primärspule zugeordnet ist, so dass die Entfernungsmessung dann nicht funktionieren würde.)
Mittels des ersten Entfernungssensors 10 wird nun entlang der ersten Richtung x die Entfernung xl zwischen der Primärspule 8 und dem Fahrzeug 2 gemessen. Der erste Entfernungssensor 10 übermittelt einen Messwert für die Entfernung xl über die Signalleitung 18 an die Steuereinrichtung 20. Die Steuereinrichtung 20 erkennt, dass das Fahrzeug noch die Entfernung xl von der Primärspule 8 entfernt ist und sendet einen ersten Fahrbefehl 28 mittels der drahtlosen Datenübertragung 26 zu dem Fahrzeug 2. Mittels dieses ersten Fahrbefehls wird das Fahrzeug 2 angewiesen, entlang der ersten Richtung x auf die Primärspule 8 zuzufahren.
In Figur 2 ist der Zustand dargestellt, wenn das Fahrzeug 2 die Primärspule 8 erreicht. Mittels eines zweiten Entfer¬ nungssensors 202 wird erkannt, dass die Außenkante 15 des Fahrzeugs 2 die Primärspule 8 erreicht. Der zweite Entfer- nungssensor misst in z-Richtung die Entfernung zu einem Hindernis. (Die z-Richtung ist senkrecht zur x-y-Ebene angeord¬ net und stellt im Ausführungsbeispiel die Höhenrichtung (Ver¬ tikale) dar.) Solange das Fahrzeug die Primärspule 2 noch nicht erreicht hat, befindet sich über dem zweiten Entfer- nungssensor 202 in z-Richtung kein Hindernis, so dass der zweite Entfernungssensor 202 eine „unendliche" Entfernung misst. Sobald das Fahrzeug aber - wie in Figur 2 dargestellt - die Primärspule 8 erreicht, misst der zweite Entfernungs-
sensor 202 die Entfernung bis zur Außenkante 15 des Fahrzeugs 2. Diese Entfernung ist im Beispiel der Figur 2 als Entfernung zl dargestellt (Pfeil 205) . Anhand der Veränderung der gemessenen Entfernung in z-Richtung von „unendlich" auf die Entfernung zl erkennt die Steuereinrichtung 20, dass das
Fahrzeug 2 (genauer gesagt: die Außenkante 15 des Fahrzeugs 2) die Primärspule 8 erreicht hat. Wie in Figur 2 deutlich zu erkennen, ist jedoch die Sekundärspule 4 des Fahrzeugs 2 noch nicht über der Primärspule 8 angeordnet. Vielmehr besteht zwischen der Primärspule 8 und der Sekundärspule 4 ein Ver¬ satz, der im Ausführungsbeispiel mit der Entfernung x2 be¬ zeichnet ist (Pfeil 207) . Die Größe der Entfernung x2 ist fahrzeugspezifisch und bei der Steuereinrichtung 20 abgespeichert. Es ist nämlich für jedes Fahrzeug bekannt, in welcher Entfernung von der Außenkante 15 die Sekundärspule 4 (z. B. am Unterboden des Fahrzeugs) angeordnet ist.
Jetzt sendet die Steuereinrichtung 20 einen zweiten Fahrbefehl 205 mittels der drahtlosen Datenübertragung 26 an das Fahrzeug 2. Mit diesem zweiten Fahrbefehl wird das Fahrzeug 2 angewiesen, entlang der ersten Richtung x die vorbestimmte Strecke x2 weiterzufahren. Dadurch wird die Sekundärspule 4 des Fahrzeugs über der Primärspule 8 der Einrichtung positio¬ niert .
Die Länge der Strecke X2 wird von der Steuereinrichtung 20 umgerechnet in eine Anzahl Dreheinheiten eines an einem Rad 210 des Fahrzeugs 2 angeordneten Drehsensors 212. Der Dreh¬ sensor 212 ist Teil eines Antiblockiersystems (ABS) des Fahr- zeugs 2. Bei den als solche gut bekannten Antiblockiersyste- men von modernen Fahrzeugen befindet sich nämlich an den Rädern jeweils ein Drehsensor, welcher die Drehung bzw. die Drehzahl der Räder misst. Als derartige Drehsensoren werden beispielsweise Induktionsgeber eingesetzt, welche die Drehung eines an dem Rad 210 angebrachten Metallteils erkennen. Dazu befinden sich an den Rädern beispielsweise Lochscheiben oder Zahnscheiben, welche an dem Drehsensor vorbeigedreht werden und somit ermöglichen, mit einer großen Auflösung die Drehung
des Rades 210 und damit die Fortbewegung des Fahrzeugs 2 zu messen. Bei neueren Fahrzeugen werden auch Hallgeber eingesetzt, welche die Drehung eines an dem Rad 210 angeordneten Magneten erkennen. Der Drehsensor (Radsensor) des ABS-Systems liefert also ein hochauflösendes Signal für die von dem Fahr¬ zeug zurückgelegte Wegstrecke. Alternativ kann der Drehsensor 212 auch ein anderer Drehsensor sein, beispielsweise ein Tachosensor des Fahrzeugs 2. Ein solcher Tachosensor erzeugt das Tachosignal, welches auf dem Tachometer des Fahrzeugs als Geschwindigkeit angezeigt wird. Ein derartiger Tachosensor ist oft als ein in einem Getriebe an einem Zahnrad angeordne¬ ter Hallsensor realisiert, der die Umdrehung des Zahnrads misst . Die Steuereinrichtung 20 rechnet also die vorbestimmte
Strecke x2 in eine Anzahl von Dreheinheiten des Drehsensors 212 um und sendet an das Fahrzeug 2 den zweiten Fahrbefehl 205, dass das Fahrzeug so lange entlang der ersten Richtung x weiterfahren soll, bis der Drehsensor 212 die entsprechende Anzahl Dreheinheiten des Rades 210 erkannt hat.
Nachdem das Fahrzeug 2 die vorbestimmte Strecke in der ersten Richtung x gefahren ist, ist die Sekundärspule 4 in x-Rich- tung genau über die Primärspule 8 angeordnet.
In Figur 3 ist der Zustand gemäß der Figur 2 in einer Ansicht von oben (Draufsicht) dargestellt. Hierbei ist mittels einer gestrichelten Linie 302 die Lage der Spulenwindungen der Primärspule 8 angedeutet. Von dem Fahrzeug 2 ist das Rad 210, das weitere Rad 305 und die Sekundärspule 4 dargestellt. Mit¬ tels einer gestrichelten Linie 308 ist die Lage der Spulenwindungen der Sekundärspule 4 angedeutet.
In Figur 4 und in Figur 5 ist dargestellt, wie (beispiels- weise während des Fahrens entlang der ersten Richtung x) mit¬ tels mindestens eines dritten Entfernungssensors 310 die Aus¬ richtung des Fahrzeugs 2 in der zweiten Richtung y ermittelt wird. Im Ausführungsbeispiel ist dazu neben dem dritten Ent-
fernungssensor 310 noch ein weiterer dritter Entfernungssensor 310' vorhanden, vgl. Figur 5.
Dabei misst der dritte Entfernungssensor 310 die Entfernung von der Primärspule 8 zu dem Rad 210 des Fahrzeugs 2. Diese Entfernung ist im Ausführungsbeispiel mit „a" bezeichnet (Pfeil 502). Der weitere dritte Entfernungssensor 310' misst die Entfernung zwischen der Primärspule 8 und dem weiteren Rad 305 des Fahrzeugs 2. Diese Entfernung ist im Ausführungs- beispiel mit „b" bezeichnet (Pfeil 504) . Wenn das Fahrzeug 2 korrekt zur Primärspule 8 hin ausgerichtet ist (so dass eine gedachte Längsachse des Fahrzeugs 2 durch den Mittelpunkt der Primärspule 8 verläuft, wie in Figur 5 dargestellt) , dann sind die Entfernung a und die Entfernung b gleich groß (a = b) . Wenn jedoch mittels des dritten Entfernungssensors 310 und des weiteren dritten Entfernungssensors 310' ermittelt wird, dass die Entfernung a ungleich der Entfernung b ist (a Φ b) , dann erkennt die Steuereinrichtung 20, dass das Fahr¬ zeug 2 in der zweiten Richtung y nicht korrekt bezüglich der Primärspule 8 ausgerichtet ist. Daraufhin sendet die Steuer¬ einrichtung 20 einen dritten Fahrbefehl 315 mittels der drahtlosen Datenübertragung 26 an das Fahrzeug 2. Mit diesem dritten Fahrbefehl 315 wird das Fahrzeug 2 angewiesen, sich in der zweiten Richtung y bezüglich der Primärspule 8 auszu- richten. Diese Ausrichtung erfolgt im Ausführungsbeispiel da¬ durch, dass das Fahrzeug während des Fahrens entlang der ers¬ ten Richtung x die Lenkung so verändert (d. h. den Lenkeinschlag der Vorderräder 210 und 305 verändert) , dass die
Längsachse des Fahrzeugs so ausgerichtet wird, dass diese den Mittelpunkt der Primärspule 8 schneidet. Dann ist das Fahr¬ zeug 2 in der zweiten Richtung y zur Primärspule 8 ausgerichtet .
In Figur 6 ist dargestellt, dass der erste Entfernungssensor 10, der zweite Entfernungssensor 202, der dritte Entfernungs¬ sensor 310 und der weitere dritte Entfernungssensor 310' an der Primärspule 8 angeordnet sind. Die Einrichtung zum Posi¬ tionieren des elektrisch antreibbaren Fahrzeugs 2 weist den
an der Primärspule 8 angeordneten ersten Entfernungssensor 10, den zweiten Entfernungssensor 202, den dritten Entfernungssensor 310, den weiteren dritten Entfernungssensor 310', die Signalleitung 18, die Steuereinrichtung 20 sowie die An- tenne 22 auf.
In Figur 7 ist das Verfahren zum Positionieren des Fahrzeugs 2 noch einmal beispielhaft in Form eines Ablaufdiagramms dar¬ gestellt. Bei dem Positionieren wird das Fahrzeug in eine be- stimmte Position zur Primärspule gebracht. Im linken Zweig des Ablaufdiagramms ist die Positionierung des Fahrzeugs in x-Richtung dargestellt, während im rechten Zweig des Ablauf¬ diagramms die Positionierung in y-Richtung dargestellt ist. Beide Positionierungen laufen zeitlich parallel zueinander ab, d. h. während das Fahrzeug in x-Richtung ausgerichtet wird, wird gleichzeitig auch das Fahrzeug in y-Richtung aus¬ gerichtet .
Ausgangspunkt des Verfahrens ist, dass das Fahrzeug 2 in x- Richtung auf die Primärspule 8 zufährt, Block 710. Mittels des ersten Entfernungssensors 10 erfolgt eine Messung der Entfernung (des Abstandes) zwischen der Primärspule und dem Fahrzeug in x-Richtung, Block 720. Entsprechend der gemesse¬ nen Entfernung (des gemessenen Abstands) wird als erster Fahrbefehl 28 an das Fahrzeug der Fahrbefehl gesendet, in x- Richtung an die Primärspule 8 heranzufahren, Block 730. Danach wird mittels des zweiten Entfernungssensors 202 gemes¬ sen, ob die vordere Außenkante des Fahrzeugs die Primärspule 8 erreicht hat, Block 740. Ist das nicht der Fall, dann geht das Verfahren bei Block 720 weiter und die Messung der Entfernung zwischen Fahrzeug und Primärspule mittels des ersten Entfernungssensors 10 wird wiederholt. Hat die Vorder¬ kante/Außenkante des Fahrzeugs die Primärspule erreicht, dann geht das Verfahren bei Block 750 weiter. Dann wird der zweite Fahrbefehl 205 an das Fahrzeug abgesendet, mit dem das Fahr¬ zeug angewiesen wird, in x-Richtung eine vorbestimmte Strecke weiterzufahren, wobei diese vorbestimmte Strecke einer vorbe¬ stimmten Anzahl Dreheinheiten des ABS-Sensors 212 entspricht.
Dann ist das Fahrzeug in x-Richtung positioniert, d. h. die Sekundärspule 4 des Fahrzeugs ist in x-Richtung über der Pri¬ märspule 8 ausgerichtet. Zeitlich parallel zu der bisher erläuterten Positionierung des Fahrzeugs in x-Richtung findet auch die Positionierung des Fahrzeugs in y-Richtung statt. Dazu wird mittels dritter Entfernungssensoren 310 und 310' die Ausrichtung des Fahrzeugs in y-Richtung zur Primärspule gemessen, Block 760. Ent- sprechend der gemessenen Werte wird der dritte Fahrbefehl 315 an das Fahrzeug gesendet. Mit diesem dritten Fahrbefehl 315 wird das Fahrzeug angewiesen, die Ausrichtung in y-Richtung beim Heranfahren an die Primärspule zu korrigieren, Block 770. Das Korrigieren der Ausrichtung in y-Richtung erfolgt mittels der elektrischen Lenkung des Fahrzeugs. Danach erfolgt eine weitere Messung mittels der dritten Entfernungs¬ sensoren 310 und 310', ob das Fahrzeug in y-Richtung korrekt ausgerichtet ist, Block 780. Wenn die Ausrichtung in y-Richtung noch nicht korrekt ist, dann wird das Verfahren bei Block 760 fortgesetzt. Wenn die Ausrichtung in y-Richtung korrekt ist, dann geht der Verlauf über in den Block 790. Dann ist das Fahrzeug sowohl in x-Richtung als auch in y- Richtung korrekt positioniert, d. h. die Sekundärspule 4 des Fahrzeugs ist in x-Richtung und in y-Richtung über der Pri- märspule 8 angeordnet.
Im Ausführungsbeispiel ist die x-Richtung die erste Richtung, die y-Richtung die zweite Richtung und die z-Richtung die dritte Richtung. Die erste Richtung x, die zweite Richtung y und die dritte Richtung z sind senkrecht zueinander angeord¬ net .
Der zweite Entfernungssensor und/oder die dritten Entfernungssensoren können (wie der erste Entfernungssensor) Ultra- schallsensoren sein. Der erste Entfernungssensor, der zweite Entfernungssensor und/oder die dritten Entfernungssensoren können aber auch andere Entfernungssensoren sein, beispielsweise Laser-Entfernungssensoren.
Der erste Entfernungssensor, der zweite Entfernungssensor und/oder die dritten Entfernungssensoren können auch Elemente jeweils eines Systems von Entfernungssensoren sein. Bei- spielsweise kann neben dem ersten Entfernungssensor 10 ein weiterer Entfernungssensor ein System bilden, wobei dieses System in x-Richtung die Entfernung des Fahrzeugs zur Primärspule misst. Dies gilt auch für die anderen Entfernungssenso¬ ren. Die Entfernungssensoren sind in die Primärspule 8 inte- griert.
Der erste Entfernungssensor 10, der zweite Entfernungssensor 202 sowie die dritten Entfernungssensoren 310 und 310' arbeiten teilweise gleichzeitig. Mittels des ersten Entfernungs- sensors 10 wird die Annäherung des Fahrzeugs in x-Richtung erkannt, mittels des zweiten Entfernungssensors 202 wird er¬ kannt, wenn die Außenkante (z. B. die Stoßstange) des Fahr¬ zeugs die Primärspule erreicht, und mittels der dritten Ent¬ fernungssensoren 310 und 310' wird die Ausrichtung in Quer- richtung (hier: in y-Richtung) erkannt.
Es wurde ein Verfahren und eine Einrichtung zum Positionieren eines elektrisch antreibbaren Fahrzeugs beschrieben, mit denen sicher und zuverlässig das elektrisch antreibbare Fahr- zeug bezüglich der Primärspule der induktiven Ladeeinrichtung positioniert werden kann.
Claims
1. Verfahren zum Positionieren eines elektrisch antreibbaren Fahrzeugs (2) bezüglich einer Primärspule (8) einer indukti- ven Ladeeinrichtung, wobei bei dem Verfahren
- das Fahrzeug (2) mittels mindestens eines ersten Entfer¬ nungssensors (10) positioniert wird, wobei der erste Entfer¬ nungssensor (10) bei der Primärspule (8) angeordnet ist.
2. Verfahren nach Anspruch 1,
d a d u r c h g e k e n n z e i c h n e t , dass
- der erste Entfernungssensor (10) ein Ultraschallsensor ist.
3. Verfahren nach Anspruch 1 oder 2,
d a d u r c h g e k e n n z e i c h n e t , dass
- mittels des ersten Entfernungssensors (10) entlang einer ersten Richtung (x) die Entfernung zwischen der Primärspule (8) und dem Fahrzeug (2) gemessen wird und mittels eines ers¬ ten Fahrbefehls (28) das Fahrzeug (2) oder ein Fahrer des Fahrzeugs (2) angewiesen wird, entlang der ersten Richtung (x) auf die Primärspule (8) zuzufahren.
4. Verfahren nach einem der vorhergehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t , dass
- mittels eines zweiten Entfernungssensors (202) erkannt wird, wenn eine Außenkante (15) des Fahrzeugs (2) die Primär¬ spule (8) erreicht, und
- daraufhin mittels eines zweiten Fahrbefehls (215) das Fahr¬ zeug (2) oder ein Fahrer des Fahrzeugs (2) angewiesen wird, entlang der ersten Richtung (x) eine vorbestimmte Strecke (207) weiterzufahren.
5. Verfahren nach Anspruch 4,
d a d u r c h g e k e n n z e i c h n e t , dass
- die vorbestimmte Strecke (207) einer vorbestimmten Anzahl
Dreheinheiten eines an einem Rad (210) des Fahrzeugs angeord¬ neten Drehsensors (212) entspricht.
6. Verfahren nach Anspruch 5,
d a d u r c h g e k e n n z e i c h n e t , dass
- der Drehsensor (212) ein Drehsensor eines Antiblockiersys- tems des Fahrzeugs (2) ist.
7. Verfahren nach Anspruch 5,
d a d u r c h g e k e n n z e i c h n e t , dass
- der Drehsensor (212) ein Tachosensor des Fahrzeugs (2) ist.
8. Verfahren nach einem der vorhergehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t , dass
- mittels mindestens eines dritten Entfernungssensors (310, 310') die Ausrichtung des Fahrzeugs (2) in einer zweiten Richtung (y) ermittelt wird, und
- mittels eines dritten Fahrbefehls (315) das Fahrzeug (2) angewiesen wird, sich in der zweiten Richtung (y) bezüglich der Primärspule (8) auszurichten oder mittels eines dritten Fahrbefehls (315) ein Fahrer des Fahrzeugs (2) angewiesen wird, das Fahrzeug (2) in der zweiten Richtung (y) bezüglich der Primärspule (8) auszurichten.
9. Verfahren nach Anspruch 8,
d a d u r c h g e k e n n z e i c h n e t , dass
- die Ausrichtung des Fahrzeugs in der zweiten Richtung (y) ermittelt wird, indem mittels des mindestens einen dritten
Entfernungssensors (310, 310') die Entfernung von der Primär¬ spule (8) zu einem Rad (210) des Fahrzeugs (2) und die Ent¬ fernung von der Primärspule (8) zu einem zweiten Rad (305) des Fahrzeugs (2) gemessen wird.
10. Verfahren nach einem der Ansprüche 4 bis 9,
d a d u r c h g e k e n n z e i c h n e t , dass
- der zweite Entfernungssensor (202) und/oder der dritte Entfernungssensor (310) bei der Primärspule (8) angeordnet ist.
11. Verfahren nach einem der Ansprüche 8 bis 10,
d a d u r c h g e k e n n z e i c h n e t , dass
- die erste Richtung (x) und die zweite Richtung (y) senkrecht zueinander angeordnet sind.
12. Einrichtung zum Positionieren eines elektrisch antreibba- ren Fahrzeugs (2) bezüglich einer Primärspule (8) einer induktiven Ladeeinrichtung, wobei die Einrichtung ausgestaltet ist,
- das Fahrzeug (2) mittels mindestens eines ersten Entfer¬ nungssensors (10) zu positionieren, wobei der erste Entfer- nungssensor (10) bei der Primärspule (8) angeordnet ist.
13. Einrichtung nach Anspruch 12,
d a d u r c h g e k e n n z e i c h n e t , dass
- der erste Entfernungssensor (10) ein Ultraschallsensor ist.
14. Einrichtung nach Anspruch 12 oder 13,
d a d u r c h g e k e n n z e i c h n e t , dass
diese ausgestaltet ist,
- mittels des ersten Entfernungssensors (10) entlang einer ersten Richtung (x) die Entfernung zwischen der Primärspule
(8) und dem Fahrzeug (2) zu messen und mittels eines ersten Fahrbefehls (28) das Fahrzeug (2) oder einen Fahrer des Fahr¬ zeugs (2) anzuweisen, entlang der ersten Richtung (x) auf die Primärspule (8) zuzufahren.
15. Einrichtung nach einem der Ansprüche 12 bis 14,
d a d u r c h g e k e n n z e i c h n e t , dass
diese ausgestaltet ist,
- mittels eines zweiten Entfernungssensors (202) zu erkennen, wenn eine Außenkante (15) des Fahrzeugs (2) die Primärspule
(8) erreicht, und
- daraufhin mittels eines zweiten Fahrbefehls (215) das Fahr¬ zeug oder einen Fahrer des Fahrzeugs (2) anzuweisen, entlang der ersten Richtung (x) eine vorbestimmte Strecke (207) wei- terzufahren.
16. Einrichtung nach Anspruch 15,
d a d u r c h g e k e n n z e i c h n e t , dass
- die vorbestimmte Strecke (207) einer vorbestimmten Anzahl Dreheinheiten eines an einem Rad (210) des Fahrzeugs (2) angeordneten Drehsensors (212) entspricht.
17. Einrichtung nach Anspruch 16,
d a d u r c h g e k e n n z e i c h n e t , dass
- der Drehsensor (212) ein Drehsensor eines Antiblockiersys- tems des Fahrzeugs (2) ist.
18. Einrichtung nach Anspruch 16,
d a d u r c h g e k e n n z e i c h n e t , dass
- der Drehsensor (212) ein Tachosensor des Fahrzeugs (2) ist.
19. Einrichtung nach einem der Ansprüche 12 bis 18,
d a d u r c h g e k e n n z e i c h n e t , dass
diese ausgestaltet ist,
- mittels mindestens eines dritten Entfernungssensors (310) die Ausrichtung des Fahrzeugs (2) in einer zweiten Richtung (y) zu ermitteln, und
- mittels eines dritten Fahrbefehls (315) das Fahrzeug (2) anzuweisen, sich in der zweiten Richtung (y) bezüglich der Primärspule (8) auszurichten oder mittels eines dritten Fahrbefehls (315) einen Fahrer des Fahrzeugs (2) anzuweisen, das Fahrzeug (2) in der zweiten Richtung (y) bezüglich der Pri- märspule (8) auszurichten.
20. Einrichtung nach Anspruch 19,
d a d u r c h g e k e n n z e i c h n e t , dass
diese ausgestaltet ist,
- mittels des mindestens einen dritten Entfernungssensors (310) die Entfernung von der Primärspule (8) zu einem Rad (210) des Fahrzeugs (2) und die Entfernung von der Primärspule (8) zu einem zweiten Rad (305) des Fahrzeugs (2) zu messen .
21. Einrichtung nach einem der Ansprüche 15 bis 20,
d a d u r c h g e k e n n z e i c h n e t , dass
- der zweite Entfernungssensor (202) und/oder der dritte Entfernungssensor (310) bei der Primärspule (8) angeordnet ist.
22. Einrichtung nach einem der Ansprüche 19 bis 21,
d a d u r c h g e k e n n z e i c h n e t , dass
- die erste Richtung (x) und die zweite Richtung (y) senkrecht zueinander angeordnet sind.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2012/066176 WO2014029414A1 (de) | 2012-08-20 | 2012-08-20 | Verfahren zum positionieren eines elektrisch antreibbaren fahrzeugs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2012/066176 WO2014029414A1 (de) | 2012-08-20 | 2012-08-20 | Verfahren zum positionieren eines elektrisch antreibbaren fahrzeugs |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014029414A1 true WO2014029414A1 (de) | 2014-02-27 |
Family
ID=46826454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2012/066176 WO2014029414A1 (de) | 2012-08-20 | 2012-08-20 | Verfahren zum positionieren eines elektrisch antreibbaren fahrzeugs |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014029414A1 (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015210314A1 (de) | 2015-06-03 | 2016-12-08 | Audi Ag | Verfahren zur Positionsbestimmung eines Kraftfahrzeugs relativ zu einer Primärspule, Kraftfahrzeug und Ladeplatte |
WO2017042364A1 (en) * | 2015-09-11 | 2017-03-16 | Bombardier Primove Gmbh | A system and a method for determining a relative position and/or orientation between a primary and a secondary winding structure |
EP3157115A4 (de) * | 2014-03-21 | 2018-03-07 | IHI Corporation | Kontaktloses stromzufuhrsystem |
DE102017115327A1 (de) * | 2017-07-10 | 2019-01-10 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Verfahren und Vorrichtung zur Positionierung eines Kraftfahrzeugs oberhalb einer Bodenplatte |
CN114261305A (zh) * | 2022-01-14 | 2022-04-01 | 上海西井信息科技有限公司 | 充换电对位方法、装置、系统、设备、存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5821731A (en) * | 1996-01-30 | 1998-10-13 | Sumitomo Wiring Systems, Ltd. | Connection system and connection method for an electric automotive vehicle |
DE202009010275U1 (de) * | 2009-03-31 | 2009-10-15 | Baack, Tim | Parkplatz mit integrierter Ladefunktion |
US20100235006A1 (en) * | 2009-03-12 | 2010-09-16 | Wendell Brown | Method and Apparatus for Automatic Charging of an Electrically Powered Vehicle |
WO2012058466A1 (en) * | 2010-10-29 | 2012-05-03 | Qualcomm Incorporated | Wireless energy transfer via coupled parasitic resonators |
-
2012
- 2012-08-20 WO PCT/EP2012/066176 patent/WO2014029414A1/de active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5821731A (en) * | 1996-01-30 | 1998-10-13 | Sumitomo Wiring Systems, Ltd. | Connection system and connection method for an electric automotive vehicle |
US20100235006A1 (en) * | 2009-03-12 | 2010-09-16 | Wendell Brown | Method and Apparatus for Automatic Charging of an Electrically Powered Vehicle |
DE202009010275U1 (de) * | 2009-03-31 | 2009-10-15 | Baack, Tim | Parkplatz mit integrierter Ladefunktion |
WO2012058466A1 (en) * | 2010-10-29 | 2012-05-03 | Qualcomm Incorporated | Wireless energy transfer via coupled parasitic resonators |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3157115A4 (de) * | 2014-03-21 | 2018-03-07 | IHI Corporation | Kontaktloses stromzufuhrsystem |
US10122211B2 (en) | 2014-03-21 | 2018-11-06 | Ihi Corporation | Wireless power transfer system |
DE102015210314A1 (de) | 2015-06-03 | 2016-12-08 | Audi Ag | Verfahren zur Positionsbestimmung eines Kraftfahrzeugs relativ zu einer Primärspule, Kraftfahrzeug und Ladeplatte |
WO2017042364A1 (en) * | 2015-09-11 | 2017-03-16 | Bombardier Primove Gmbh | A system and a method for determining a relative position and/or orientation between a primary and a secondary winding structure |
US10923967B2 (en) | 2015-09-11 | 2021-02-16 | Bombardier Primove Gmbh | System and a method for determining a relative position and/or orientation between a primary and a secondary winding structure |
DE102017115327A1 (de) * | 2017-07-10 | 2019-01-10 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Verfahren und Vorrichtung zur Positionierung eines Kraftfahrzeugs oberhalb einer Bodenplatte |
CN114261305A (zh) * | 2022-01-14 | 2022-04-01 | 上海西井信息科技有限公司 | 充换电对位方法、装置、系统、设备、存储介质 |
CN114261305B (zh) * | 2022-01-14 | 2024-05-24 | 上海西井科技股份有限公司 | 充换电对位方法、装置、系统、设备、存储介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3205530B1 (de) | Verfahren zum betreiben eines zumindest zeitweise elektrisch antreibbaren kraftfahrzeugs, steuergerät für ein kraftfahrzeug sowie entsprechendes kraftfahrzeug | |
EP3049273A1 (de) | Verfahren, vorrichtung und system zum ermitteln einer position eines fahrzeugs | |
EP2456648B1 (de) | Vorrichtung und verfahren zum unterstützten einparken eines fahrzeugs | |
DE102012015262A1 (de) | Verfahren zum Positionieren eines Kraftwagens, System mit einem solchen Kraftwagen sowie Kraftwagen | |
WO2014183926A2 (de) | System zur ausrichtung eines fahrzeugs und verwendung des systems | |
WO2014029414A1 (de) | Verfahren zum positionieren eines elektrisch antreibbaren fahrzeugs | |
DE102005062086A1 (de) | Verfahren zum Ermitteln der Befahrbarkeit einer Parklücke und Einparkhilfeeinrichtung | |
EP3328715B1 (de) | Verfahren zum zumindest semi-autonomen manövrieren eines kraftfahrzeugs mit lagekorrektur, fahrerassistenzsystem sowie kraftfahrzeug | |
DE102009027289A1 (de) | Verfahren und Vorrichtung zur Einparkunterstützung eines Fahrzeugs | |
WO2018082867A1 (de) | Verfahren zum leiten eines kraftfahrzeugs in eine ladeposition an einer induktiven ladestation sowie steuervorrichtung und kraftfahrzeug | |
DE102017217441B4 (de) | Verfahren zum Durchführen eines Bordsteinparkens eines Kraftfahrzeugs, Vorrichtung und Kraftfahrzeug | |
WO2013079395A1 (de) | Verfahren zur positionierung eines messsystems und messsystem zur durchführung des verfahrens | |
EP3147182B1 (de) | Verfahren zum zumindest semi-autonomen manövrieren eines kraftfahrzeugs mit erkennung eines odometriefehlers, recheneinrichtung, fahrerassistenzsystem sowie kraftfahrzeug | |
EP3197705A1 (de) | In abstandssensoren integrierte lokalisierung von ladespulen | |
DE102018103824A1 (de) | Vorrichtungen und verfahren zum ermitteln einer zurückgelegten wegstrecke | |
DE102010063840A1 (de) | Verfahren zum Einparken oder Manövrieren eines Kraftfahrzeugs mit niedriger Geschwindigkeit und Vorrichtung zur Durchführung desselben | |
WO2008037708A1 (de) | Verfahren und system zur unterstützung eines rangierens eines kraftfahrzeugs | |
DE102010049586A1 (de) | Verfahren zur Unterstützung eines Fahrzeugführers eines Fahrzeugs bei der Ansteuerung einer Zielposition | |
WO2016055245A1 (de) | Steuervorrichtung zur positionierung eines fahrzeugs, fahrzeug, ladestation und verfahren | |
DE102015221585B3 (de) | Verfahren zum Betreiben einer Ladevorrichtung zum induktiven Laden eines elektrischen Energiespeichers eines Kraftfahrzeugs, Ladevorrichtung sowie Anordnung | |
EP3684643B1 (de) | Verfahren zum betrieb einer induktiven übertragungseinrichtung | |
EP3864427A1 (de) | Vorrichtung zur positionsbestimmung eines relativ zu einem fahrzeug bewegbaren gegenstandes und ein damit ausgestattetes fahrzeug | |
DE102018211955A1 (de) | Fahrzeug mit einem Empfänger für eine kontaktlose Energieübertragung | |
DE102015118584A1 (de) | Verfahren zum zumindest semi-autonomen Manövrieren eines Kraftfahrzeugs mit Bestimmung eines Zielwinkels für die Ausfahrt aus einer Parklücke, Fahrerassistenzsystem sowie Kraftfahrzeug | |
DE102018205062A1 (de) | Verfahren zum Positionieren eines Kraftfahrzeugs zur Durchführung eines induktiven Ladevorgangs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12756406 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12756406 Country of ref document: EP Kind code of ref document: A1 |