WO2014027845A1 - Silicon composite anode active material for lithium secondary batteries, method for preparing same, and lithium secondary batteries including same - Google Patents

Silicon composite anode active material for lithium secondary batteries, method for preparing same, and lithium secondary batteries including same Download PDF

Info

Publication number
WO2014027845A1
WO2014027845A1 PCT/KR2013/007341 KR2013007341W WO2014027845A1 WO 2014027845 A1 WO2014027845 A1 WO 2014027845A1 KR 2013007341 W KR2013007341 W KR 2013007341W WO 2014027845 A1 WO2014027845 A1 WO 2014027845A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
nano
carbon fiber
silicon
fiber composite
Prior art date
Application number
PCT/KR2013/007341
Other languages
French (fr)
Korean (ko)
Inventor
뉴엔단티엔
뉴엔쿠옹
송승완
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130093352A external-priority patent/KR101604003B1/en
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Publication of WO2014027845A1 publication Critical patent/WO2014027845A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium composite negative electrode active material for a lithium secondary battery, a manufacturing method thereof, and a lithium secondary battery including the same.
  • silicon has a theoretical capacity larger than that of a commercially available flammable material as a material that can replace a carbon material.
  • silicon has a problem in that capacity decreases rapidly because the electrode deteriorates due to a large volume change in the alloying and de-alloying process with lithium.
  • SiO Silicon oxide
  • SiO is more stable than silicon because lithium oxide (Li 2 0) and lithium silicate (Li a Si b 0 c ) formed by reaction with lithium have a moderate effect on the volume change of silicon. Charge and discharge performance can be obtained, but there is a problem that the capacity and electrical conductivity is lower than silicon (Si). In order to solve this problem, efforts are being made to develop SiO-carbon composites or carbon coated SiO materials.
  • organo-metallic precursors or liquid precursors are semi-strong and very toxic and have the disadvantage of being synthesized in the absence of oxygen or moisture.
  • the manufacturing method of the silicon nano powder includes a method of ultrasonically treating porous silicon particles, a colloid synthesis method, a vacuum deposition method, etc., but the methods are required to have a high cost process.
  • the precursor or etching solution has a toxic problem.
  • Korean Patent Publication No. 10-2004-0082876 discloses a silicon precursor and an alkali metal or an al A method of preparing silicon particles through heat treatment of carito metal and manufacturing silicon nanoparticles using ultrasonic waves has been disclosed.
  • stability can be improved from volume expansion and peeling.
  • the charge / discharge performance is not sufficient and cycle characteristics are poor.
  • Korean Patent Publication No. 10-2011-0059130 discloses a composite composition in which carbon nanotubes and graphene are mixed and a method of using the same as an electrode material, but it does not use silicon or silicon suboxide nanopowder.
  • As an electrode material it simply describes various applications such as carbon fiber, graphene, etc., and applies them to a battery. Therefore, physicochemical characteristics such as particle size, processability, and electrical conductivity of electrode material including silicon-based nano powder phase are described. There is a limit to improvement. .
  • the present invention has been made to solve the above problems, synthesizes a nano silicon-based compound powder using a low-cost silica, and includes the nano-silicon compound, graphene and carbon fiber to reduce the cost
  • An object of the present invention is to provide a negative electrode active material for a secondary battery that can improve electrode characteristics while reducing costs.
  • an object of the present invention is to provide a negative active material for a lithium secondary battery comprising the nano-silicon compound-graphene ⁇ carbon fiber composite material and a secondary battery comprising the same.
  • the present invention provides a nano silicon-based compound-graphene-carbon fiber composites selected from nano silicon, nano silicon suboxide, and mixtures thereof.
  • the nano silicon suboxide is 0 ⁇ X ⁇ 0.9, preferably 0 ⁇ X ⁇ 0.5, more preferably 0.2 ⁇ X ⁇ 0.4.
  • the present invention can provide a negative electrode active material for a lithium secondary battery comprising a nano-silicon compound-graphene-carbon fiber composite selected from nano silicon, nano silicon suboxide, and mixtures thereof.
  • the present invention can provide a lithium secondary battery comprising a negative electrode active material containing the nano-silicon compound-graphene-carbon fiber composite material.
  • the present invention is (a) oxygen exchange reaction of lithium powder and silica powder,
  • Preparing a nano silicon-based compound powder selected from cone nano silicon suboxides and mixtures thereof; and (b) mixing the prepared nano silicon-based compound powders with graphene and carbon fibers. Provides a method for producing graphene-carbon fiber composites.
  • step (a) is a step of separating and purifying the prepared nano silicon compound powder from lithium oxide It may further include.
  • step (b) comprises dispersing the nano silicon compound powder, graphene and carbon fiber in a solvent, respectively. After mixing the slurry may further comprise the step of removing the solvent and then drying.
  • the silica powder is any one selected from the group silica, microporous silica, mesoporous silica and macroporous silica or It may be two or more combinations.
  • the exemplary nano silicon-based compound according to an embodiment of the invention - graphene - a method of manufacturing a carbon fiber composite material, silica powder is not limited, for example i may be a diameter of 2 ran ⁇ 30 ⁇ .
  • the graphene is not particularly limited, for example, the diameter may be ⁇ ⁇ / m.
  • the carbon fiber is not particularly limited, but may be, for example, a thickness of lnm to im and a length of 50 to 200j3 ⁇ 4m.
  • Nano silicon compound-graphene-carbon fiber composite according to an embodiment of the present invention
  • the molar ratio of lithium and silica (Si0 2 ) can be adjusted and used within the scope of the present invention, for example, may be from 2 to 6: 1.
  • step (a) is carried out in an inert atmosphere, followed by a slicing time, for example, 1 Ball milling can be performed for 20 hours.
  • the oxygen exchange reaction in step (a) is not limited as long as the reaction reaction can proceed sufficiently.
  • it can be carried out in the temperature range of 0 ⁇ 300 ° C.
  • the carbon fiber of step (b) may be surface oxidized by acid treatment.
  • the weight mixture ratio of the nano-silicon compound powder, the mixture of graphene and carbon fiber Is not particularly limited, but may preferably be 1: 9-9: 1.
  • the graphene and the carbon fiber are not greatly limited, but preferably the weight mixing ratio. 1: 10 to 10: 1 can be.
  • step (b) is not particularly limited, but may be performed at, for example, 0 to 100 ° C.
  • carbon fiber is not particularly limited as long as it is a normal carbon fiber, for example, carbon fiber, single wall carbon nanotube, It may be any one selected from among multi-walled carbon nanotubes and carbon nanowires, and may be modified.
  • the present invention can provide a nano-silicon compound-graphene-carbon fiber composite prepared by the above production method.
  • the present invention is a nano-silicon compound -graphene-carbon fiber composites and composites that can improve the secondary battery electrochemical properties while reducing costs by synthesizing nano-silicon compound powder using a low-cost silica Cathode active material for lithium secondary battery Can provide quality.
  • the present invention has the advantage of providing a method of producing a nano silicon-based compound-graphene-carbon fiber composite having excellent productivity, economical efficiency and environmental friendliness due to the simple reaction process.
  • the present invention can use a variety of silica, secondary to the particle size, porosity, and electrical conductivity of the nano silicon-based compound—graphene-carbon fiber composite by controlling the physical properties and content of graphene and carbon fiber There is an advantage that can be applied to the battery negative electrode optimized.
  • FIG. 1 illustrates a TEM image and an electron diffraction pattern of a nano silicon powder obtained from nano silica in an embodiment of the present invention.
  • Figure 2 shows a TEM image of the nano silicon-graphene ⁇ carbon fiber composite powder in one embodiment of the present invention.
  • FIG 3 is a graph showing a constant voltage circulation curve of a lithium secondary battery including a nano silicon composite anode according to an embodiment of the present invention.
  • Figure 4 is a graph showing the charge and discharge profile of the nano silicon-graphene-carbon fiber composite anode according to an embodiment of the present invention.
  • FIG. 5 is a graph showing a capacity profile of the nano silicon-graphene-carbon fiber composite anode according to an embodiment of the present invention.
  • FIG. 6 is a graph illustrating a cycle performance comparison between a nano silicon-graphene-carbon fiber composite anode and a silicon cathode according to an embodiment of the present invention.
  • Figure 7 shows the TEM image and elemental mapping images of one embodiment of a nano-silicon suboxide produced by (Si0 0. 37) powders of the present invention.
  • Figure 8 is nano-silicon suboxide (Si0 0 37.)
  • - a graph showing the dose profile of the carbon fiber composite cathode-graphene.
  • the inventors of the present invention have studied to develop a negative electrode active material for a lithium secondary battery, to provide a nano-silicon compound-graphene-carbon fiber composite material selected from nano silicon, nano silicon suboxide, and mixtures thereof, Surprisingly, while reducing the cost of the negative electrode active material for a lithium secondary battery including the same, the present inventors have found that the electrochemical properties of the lithium secondary battery can be improved dramatically, thereby completing the present invention.
  • the present invention can provide a nano silicon-based compound-graphene-carbon fiber composites selected from nano silicon, nano silicon suboxide, and mixtures thereof.
  • the nano-silicon is a nano-sized silicon (Si)
  • the nano silicon suboxide has a SiO x to X range of 0 ⁇ X ⁇ 0.9, preferably 0 ⁇ X ⁇ 0.5, more preferably 0.2 ⁇ X ⁇ 0.4.
  • the electrical conductivity of the electrode is more excellent, and the charge and discharge reversibility and capacity of the lithium secondary battery may be excellent.
  • the present invention can provide a negative electrode active material for a lithium secondary battery comprising the nano-silicon compound-graphene-carbon fiber composite.
  • the present invention can provide a lithium secondary battery including the negative electrode active material containing the nano-silicon compound-graphene-carbon fiber composite material.
  • the present invention is the step of (a) oxygen exchange reaction of lithium powder and silica powder to prepare a nano silicon-based compound powder selected from nano silicon, nano silicon suboxide and a mixture thereof and (b) the It provides a method for producing a nano silicon-based compound ⁇ graphene carbon fiber composite comprising the step of mixing the prepared nano silicon-based compound powder, graphene and carbon fiber.
  • the nano-silicon compound-graphene-carbon fiber composite manufacturing method of the present invention by reacting the lithium powder and silica (Si0 2 ) powder to the oxygen exchange reaction of the oxygen of the silica is transferred to lithium (single di spl acement) ) To produce a nano silicon-based compound powder, and may then uniformly mix the resulting nano silicon-based compound powder, graphene and carbon fibers.
  • the nano silicon-based compound powder may be any one selected from nano silicon, nano silicon suboxide, and mixtures thereof.
  • the nano silicon is produced by reducing silica while lithium metal powder is oxidized to lithium oxide.
  • the reaction formula is the same as in the following formula ( 2) .
  • the nano silicon suboxide (SiO x ) powder is formed by the incomplete reduction of silica, X in the silicon suboxide (Si) 0 ⁇ X ⁇ 0.9, preferably 0 ⁇ X ⁇ 0.5, more preferably Preferably 0.2 ⁇ X ⁇ 0.4.
  • the silicon suboxide nanopowder may be partially reduced by adjusting oxygen exchange reaction time of the lithium powder and the silica powder or by reducing the molar ratio of lithium and silica to form a partial oxide. For example, when the ball mill process of the lithium powder and the silica powder is within 3 hours, or when the lithium and the reacting lithium are 4 moles or less, the reduction of the silica is not sufficiently performed, thereby forming a suboxide.
  • the silica (Si0 2 ) powder used in the present invention may be composed of fumed silica,
  • 0 1Crophorus Sili It can be any one or two or more combinations selected from " Hjnicroporous silica, mesoporous silica” and macroporous silica, and can be used without being limited to the type, size or pore size of silica. have.
  • the silica powder may be preferably used having a diameter of 2 ran to 30, and more preferably 10 ran to 100 ran. If the particle diameter of the silica powder exceeds the above range, lithium diffusion may not be easy. If the particle diameter is less than the particle size, particle aggregation may occur due to high specific surface area and surface energy.
  • the graphene may have a diameter of 10 nm to 5, and the carbon fiber may have a thickness of lnm to 5 ⁇ and a length of 50 to 200. Also the carbon The fiber may be any one selected from carbon fiber, single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanorubbers (M NT), and carbon nano ires.
  • SWCNTs single-walled carbon nanotubes
  • M NT multi-walled carbon nanorubbers
  • carbon nano ires any one selected from carbon fiber, single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanorubbers (M NT), and carbon nano ires.
  • the molar ratio of the lithium to silica may be 2 to 6: 1, and when lithium has a ratio of greater than 6, the amount of acid used to remove lithium remaining after the reaction and the increase of wastewater result.
  • the ratio is less than 2, an oxide having a high oxygen content (SiO y> l ⁇ y ⁇ 2) is obtained, thereby reducing the charge and discharge reversibility and capacity of the lithium secondary battery.
  • the forming of the nano silicon-based compound powder may be performed by, for example, mixing the lithium powder and the silica powder in a glove box and performing ball milling for 1 to 20 hours.
  • the glove box may be an inert gas atmosphere such as nitrogen or argon
  • the oxygen exchange reaction temperature through the ball mill of the lithium and silica may be 0 ⁇ 300 ° C. If the reaction temperature is more than 30CTC, it is not preferable that non-uniform particles having a large and small particle size may be obtained. If the reaction temperature is less than 0 ° C, the exchange reaction rate of oxygen may be lowered.
  • the method may further include separating and purifying the prepared nano silicon-based compound powder from lithium oxide.
  • the separation and purification process may include a step of removing lithium oxide, which is a side reaction product, through acid treatment.
  • the obtained lithium oxide is reacted with an acid as in the following reactions 3 and 4 to produce lithium chloride (LiCl).
  • the acid used in the acid treatment process may include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid, but is not limited thereto.
  • the product obtained after the acid treatment is washed several times with water, ethanol, isopropanol, and a mixed solvent thereof to finally dry the nano silicon-based compound powder.
  • the nano-silicon compound powder ⁇ according to the present invention is mixed with graphene and carbon fiber
  • the process may further include a step of mixing the nano silicon-based compound powder, a slurry in which graphene and carbon fibers are dispersed in a solvent, and then removing the solvent and drying it.
  • the solvent may be used as long as it can uniformly disperse the nano silicon-based compound powder, graphene and carbon fiber, and preferably selected from alcohols having 1 to 5 carbon atoms, water or a mixture thereof. It can be either.
  • the carbon fiber may improve surface dispersibility by inducing surface oxidation through acid treatment.
  • the acid may be an inorganic acid such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid or an organic acid having a carboxyl group.
  • water, ethanol, isopropanol and a mixed solvent thereof may further include drying the product after the acid treatment several times.
  • the mixed weight ratio of the nano silicon-based compound powder, graphene, and carbon fiber may be 1/9 to 9/1. If the above range is insignificant effect of mixing graphene and carbon fiber in the nano silicon-based compound powder, if less than the silicon content having an electrochemical activity may be lowered and the capacity may be reduced.
  • the weight mixing ratio of the graphene and the carbon fiber may be 1/10 to 10/1, and the step of uniformly mixing and dispersing the nano-silicon compound powder and graphene and carbon fiber
  • the present invention can provide a nano-silicon compound-graphene-carbon fiber composite material obtained by the above production method and a lithium secondary battery comprising the same as a negative electrode active material.
  • the positive electrode active material is LKMn, Ni,
  • LiPF 6 lithium salt LiPF 6 lithium salt
  • a non-aqueous carbonate solvent any one selected from the group consisting of LiPF 6 lithium salt and a non-aqueous carbonate solvent.
  • the present invention provides a lithium secondary battery including a positive electrode, a negative electrode, and a separator, wherein the negative electrode comprises: (i) a current collector made of metal; And (ii) it can provide a lithium secondary battery comprising the nano-silicon compound-graphene-carbon fiber composite material as a negative electrode active material to be applied to the current collector.
  • the argon atmosphere and the phases were mixed at (25 ° C), followed by ball milling at room temperature for 6 hours, and the reaction of solid phase (sol id-state) to induce oxygen substitution reaction.
  • Lithium oxide was separated to separate the silicon oxide synthesized from the lithium oxide, which is an auxiliary reaction product.
  • the mixture was washed sequentially with a mixture ratio of HC1 aqueous solution 1: 1).
  • LiCl salt which is easily soluble in water, was formed by reaction of acid and lithium oxide as shown in Equations 1 and 2 below.
  • FIG. 1 shows a TEM image and electron diffraction pattern of a nano silicon (SiO) powder obtained from the nano silica of the present invention.
  • Primary particles of spherical nano silicon powder having a diameter of about 50 nm are observed, and since no specific ring shape or regular electron arrangement is observed in the electron diffraction pattern, it can be confirmed that the manufactured silicon powder is amorphous. there was.
  • the composite dispersion solution includes a nano silicon-graphene-carbon fiber composite having a ratio of 50:25:25 wt. That is, nano silicon / (graphene + carbon fiber) weight ratio is 1/1, and the graphene / carbon fiber weight ratio is 1/1 to prepare a powder solution.
  • Figure 2 shows a TEM image of the nano silicon-graphene-carbon fiber composite powder. Three components of the silicon composite anode active material were uniformly mixed and good contact between the particles was confirmed.
  • Example 2 Investigation of the Low-Chemical Characteristic of Relop Secondary Judges Comprising a Cathode Made of Nano Silicon-Graphene-Carbon Fiber Cathode Active Material of Example 1
  • Nano silicon-graphene-carbon fiber composite prepared from nano silica in Example 1
  • the negative electrode was prepared by mixing the weight ratio of the re-cathode active material: super P: polyacryl ic acid binder to 75: 15:10 ( ⁇ %).
  • polyacrylic acid was dissolved in NMP (N-methyl pyrrol idinone) to prepare a binder solution, and a silicon composite negative electrode active material and super P were added thereto to prepare a slurry for negative electrode coating.
  • the slurry was coated on a copper current collector foil in a conventional manner. Next, it was dried for 12 hours at 1K C using a vacuum oven. After drying, a negative electrode was produced by passing through a roll press maintained at a pressure of 40 kg / otf.
  • lithium metal was used as a counter electrode and a reference electrode, and a manufactured silicon anode was used as a working electrode.
  • EC ethylmethyl carbonate
  • EMC ethylmethyl carbonate
  • the constant voltage circulation curve of the lithium secondary battery including the negative electrode containing the nano silicon-graphene-carbon fiber composite was 0.05 to 1.5 vs. It is shown in Figure 3 measured at 0.1 mV / s sweep rate in / potential range.
  • the peak of about 0.2 V observed in the cathodic process is the process of lithium insertion into amorphous silicon, and the peak of about 0.3 V observed in the anodic process (discharge, lithium desorption). This is due to lithium desorption from Li x Si amorphous silicon, with a peak of about 0.5 V due to a process in which lithium is desorbed from the Li 15 Si 4 phase to regenerate the silicon.
  • Nano silicon-graphene-carbonaceous oil composite according to an embodiment of the present invention is electrochemically active in the lithium cell, it can be seen that the insertion-desorption of lithium reversibly.
  • An anode including a nano silicon-graphene-carbon fiber composite according to an embodiment of the present invention has an initial layer charge (lithium insertion) capacity of 1700 mAh / g and an initial discharge (lithium desorption) capacity of At 606 mAh / g, the initial efficiency was about 36 3 ⁇ 4>, but it maintained a discharge capacity of 734-635 mAh / g up to 20 cycles after 5 cycles and an efficiency of about 95% or more.
  • the particle breakdown phenomenon during lithium insertion-desorption increases the surface area of the silicon particles (interface contacting with the electrolyte), which leads to active electrolytic reductive decomposition, resulting in additional charge capacity, resulting in high initial charge capacity.
  • the particle breakdown phenomenon during lithium insertion-desorption increases the surface area of the silicon particles (interface contacting with the electrolyte), which leads to active electrolytic reductive decomposition, resulting in additional charge capacity, resulting in high initial charge capacity.
  • lithium ions may be irreversibly adsorbed on the surface of the graphene particles to increase only the layer charge capacity.
  • Lithium oxide was washed with a 0.5M hydrochloric acid solution to separate the sub-acupuncture lithium oxide and the synthesized silicon nitrite powder in the same manner as in Example 1, and a mixed solution of ethanol and 1M HC1 aqueous solution (ethanol and 1M HC1 The mixture was washed sequentially with a mixing ratio of 1: 1). After removing LiCl, a brown nano silicon nitrite powder (SiO.37, average particle size: 50 nm) was finally obtained and dried in a vacuum oven.
  • a brown nano silicon nitrite powder SiO.37, average particle size: 50 nm
  • the composite material dispersion solution is 80: 10: nano silicon suboxide having a 10 wt% ratio (Si0 0 37.) - includes a carbon fiber composite material-graphene.
  • nano silicon nitrite / (graphene + carbon fiber) weight ratio is 4/1
  • graphene / carbon fiber weight ratio of 1/1 to prepare a powder solution.
  • water was removed by centrifugation and dried in a vacuum oven to obtain a silicon composite anode active material.
  • Example 5 Investigation of the electrochemical characteristics of the reflow secondary battery comprising a negative electrode composed of a nano silicon suboxide (SiO) -graphene-carbon fiber negative electrode active material of Example 3
  • Example 3 the nano silicon suboxide produced from nanosilica in (Si0 0 37.) - graphene-carbon fiber cathode active material: super P: the ratio by weight of the binder of 75: 10: combined common to 15 (wt3 ⁇ 4>)
  • a negative electrode was prepared. At this time, sodium carboxymethyl cellulose and polyacrylic acid were mixed at a weight ratio of 1: 1 to prepare a binder solution dissolved in water, and then a silicon composite anode active material and super P were added thereto. Put to prepare a slurry for negative electrode coating. The slurry was coated on a copper current foil in a conventional manner. Next, using a vacuum oven was dried for 12 hours at 110 ° C. After drying, a pressure of 40 kg / cu was maintained through a press (roll press) to prepare a negative electrode.
  • Lithium cell is a pullulo ethylene carbonate (FEC) and diethyl carbonate (1M LiPF 6 dissolved in an electrolyte solution using lithium metal as a counter electrode and a reference electrode, and a prepared silicon cathode as a working electrode). It was prepared using a mixed solution of DEC) (mixture ratio 5: 5). Charging and discharging were performed in a constant current-constant voltage (CC-CV) method at a voltage range of 0.05 to 1.5 V at about 0.2C.
  • FEC pullulo ethylene carbonate
  • diethyl carbonate (1M LiPF 6 dissolved in an electrolyte solution using lithium metal as a counter electrode and a reference electrode, and a prepared silicon cathode as a working electrode. It was prepared using a mixed solution of DEC) (mixture ratio 5: 5). Charging and discharging were performed in a constant current-constant voltage (CC-CV) method at a voltage range of 0.05 to 1.5 V at about 0.2C.
  • the nano-silicon suboxide (Si0 0 37.) - graphene - was shows the results in terms of negative electrode capacity (capacity) of the lithium secondary battery comprising the carbon fiber composite material as a capacity (specific gravimetric capacity) per weight in Fig.
  • the negative electrode including the nano silicon suboxide (Si0 0.37 ) -graphene-carbon fiber composite according to an embodiment of the present invention has an initial charge (lithium insertion) capacity of 1965 mAh / g, the initial discharge (li Lithium desorption capacity was 1579 mAh / g, the initial coolant efficiency was about 80 3 ⁇ 4>, but after two cycles, the keg efficiency increased to 97% or more, and the capacity retention rate up to 50 cycles was 80%.
  • This silicon suboxide (. Si0 0 37) oxygen of the initial charge Li 2 0, lithium to form a silicate improved the volume change of the silicon capacity (accomodate) nano-silicon suboxide (Si0 0 37.) In- This is because the interfacial reaction with the electrolyte was suppressed by layer discharge of the graphene-carbon fiber composite anode in an electrolyte consisting of FEC: DEC, which is known to have a negative reaction.

Abstract

The present invention relates to a nanosilicon-based compound graphene/carbon fiber composite, to a method for preparing same, and to lithium secondary batteries including an anode active material containing the composite, wherein the composite is prepared by reacting lithium powder with silica powder so as to form a nanosilicon-based compound powder through a single displacement reaction of oxygen in which the oxygen in silica is transferred to lithium, and allowing the nanosilicon-based compound powder to include the graphene and carbon fibers.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
리튬이차전지용 실리콘 복합재 善극활물질, 이의 제조방법 및 이를 포함하는 리튬이차전지  Silicon composite negative electrode active material for lithium secondary battery, manufacturing method thereof and lithium secondary battery comprising same
【기술분야】  Technical Field
<!> 본 발명은 리튬이차전지용 실리콘 복합재 음극활물질, 이의 제조방법 및 이 를 포함하는 리튬이차전지에 관한 것이다.  The present invention relates to a lithium composite negative electrode active material for a lithium secondary battery, a manufacturing method thereof, and a lithium secondary battery including the same.
【배경기술】  Background Art
<2> 리튬 이차전지용 음극 재료 중 실리콘은 탄소 재료를 대체할 수 있는 물질로 상용화된 혹연질 재료의 이론 용량보다 큰 이론 용량을 갖고 있다. 그러나 실리콘 은 리튬과의 합금화 (alloying) 및 비합금화 (de-alloying) 과정에서 많은 부피 변화 로 인하여 전극이 열화되기 때문에 용량이 급격히 감소하는 문제점이 있다.  <2> Among the negative electrode materials for lithium secondary batteries, silicon has a theoretical capacity larger than that of a commercially available flammable material as a material that can replace a carbon material. However, silicon has a problem in that capacity decreases rapidly because the electrode deteriorates due to a large volume change in the alloying and de-alloying process with lithium.
<3> 이러한 부피 변화에 따른 전극의 퇴화를 막기 위하여 다공성 실리콘을 이용 하여 부피 변화에 대한 완충 효과를 갖도록 하는 방안이 검토되고 있다. 또한, 입 자의 크기를 나노 크기로 제조하여 전극의 절대적인 부피 변화를 최소화하려는 노 력이 진행되고 있다. In order to prevent the deterioration of the electrode due to the volume change, a method of using a porous silicon to have a buffering effect against the volume change has been studied. In addition, efforts are being made to minimize the absolute volume change of the electrode by preparing the size of the particles to a nano size.
<4> 실리콘 산화물 (SiO)은 리륨과의 반웅에 의해 형성된 리튬 산화물 (Li20)과 리 튬실리케이트 (LiaSib0c)가 실리콘의 부피변화를 완화시키는 효과가 있어 실리콘보다 는 안정한 충방전 성능을 얻을 수 있지만, 실리콘 (Si)보다 용량과 전기전도도가 낮 다는 문제점이 있다. 이를 해결하기 위해 SiO-카본 복합재 또는 카본 코팅된 SiO 소재를 개발하는 노력이 진행되고 있다. <4> Silicon oxide (SiO) is more stable than silicon because lithium oxide (Li 2 0) and lithium silicate (Li a Si b 0 c ) formed by reaction with lithium have a moderate effect on the volume change of silicon. Charge and discharge performance can be obtained, but there is a problem that the capacity and electrical conductivity is lower than silicon (Si). In order to solve this problem, efforts are being made to develop SiO-carbon composites or carbon coated SiO materials.
<5> 상기 실리콘 나노분말을 제조하는 방법으로는 화학적 또는 전기 화학적 방법 으로 실리콘 웨이퍼를 식각하는 방법이 보고된 바 있다. 또한, 나노 크기의 실리콘 입자를 합성하는 다른 방법으로 유기-금속계 전구체를 이용하여 합성하는 방법 또 는 액상의 전구체를 환원하는 방법이 알려져 있다. 그러나 유기—금속계 전구체 또 는 액상 전구체는 반웅성아 매우 강하고 독성이 강하여 산소나 수분이 없는 조건에 서 합성하여야 하는 단점이 있다 .  As a method of preparing the silicon nanopowder, a method of etching a silicon wafer by a chemical or electrochemical method has been reported. In addition, as another method of synthesizing nano-sized silicon particles, a method of synthesizing using an organo-metallic precursor or a method of reducing a liquid precursor is known. However, organo-metallic precursors or liquid precursors are semi-strong and very toxic and have the disadvantage of being synthesized in the absence of oxygen or moisture.
<6> 또한, 상기 실리콘 나노 분말의 제조방법으로는 다공성의 실리콘 입자를 초 음파 처리하는 방법, 콜로이드 합성법, 진공증착법 등을 이용하여 제조하는 방법이 있으나, 상기 방법들은 비용이 높은 공정이 요구되고, 전구체 또는 식각 용액이 유 독한 문제점이 있다.  In addition, the manufacturing method of the silicon nano powder includes a method of ultrasonically treating porous silicon particles, a colloid synthesis method, a vacuum deposition method, etc., but the methods are required to have a high cost process. , The precursor or etching solution has a toxic problem.
<7> 한국공개특허 제 10-2004-0082876호에는 실리콘전구체와 알카리금속 또는 알 카리 토금속을 열처 리를 통해 실리콘 입자를 제조하고 이를 초음파를 이용하여 실 리콘 나노입자를 제조하는 방법 이 개시되어 있으나, 리튬이차전지 음극용 활물질에 적용시 부피 팽창 및 박리 등으로부터 안정성을 개선할 수는 있으나, 충방전 성능 이 층분하지 못하고, 사이클 특성 아 떨어지는 문제점 이 있다 . <7> Korean Patent Publication No. 10-2004-0082876 discloses a silicon precursor and an alkali metal or an al A method of preparing silicon particles through heat treatment of carito metal and manufacturing silicon nanoparticles using ultrasonic waves has been disclosed. However, when applied to an active material for a lithium secondary battery negative electrode, stability can be improved from volume expansion and peeling. However, there is a problem that the charge / discharge performance is not sufficient and cycle characteristics are poor.
<8> 한편, 그래핀, 탄소나노튜브 등의 도전성 재료를 전지용 전극재료로서 사용 하는 것에 관해 지속적으로 연구되고 있다. 한국공개특허 게 10-2011-0059130호에는 탄소나노튜브 및 그래핀이 흔합된 복합 조성물 및 이를 전극재료로 이용하는 방법 에 관해 기 재되어 있으나, 이는 실리콘 또는 실리콘 아산화물 나노 분말을 사용하 고 있지 않으며 전극재료로서 단순히 탄소섬유, 그래핀 등의 다양한 성분들을 흔합 하여 전지에 적용하는 것에 관해서만 기 재되 어 있어 실리콘계 나노 분말상을 포함 하는 전극재료의 입자크기, 기공정도, 전기 전도도 등의 물리화학적 특성을 개선시 키는 데 한계가 있다. .  On the other hand, the use of conductive materials such as graphene and carbon nanotubes as battery electrode materials has been continuously studied. Korean Patent Publication No. 10-2011-0059130 discloses a composite composition in which carbon nanotubes and graphene are mixed and a method of using the same as an electrode material, but it does not use silicon or silicon suboxide nanopowder. As an electrode material, it simply describes various applications such as carbon fiber, graphene, etc., and applies them to a battery. Therefore, physicochemical characteristics such as particle size, processability, and electrical conductivity of electrode material including silicon-based nano powder phase are described. There is a limit to improvement. .
<9> 따라서, 경제적으로 저 렴하면서도 상온에서 간단하게 나노 실리콘계 입자를 제조하고 이에 도전성 재료를 부가하여 이차전지 음극재료의 업자크기, 표면적, 기 공 정도, 나노구조 등의 물리화학적 특성을 조절함으로써 활물질로서 의 성능을 획 기적으로 향상시 킬 수 있는 방법에 대한 연구 개발이 필요한 실정이다 .  Therefore, it is economically inexpensive yet simple to produce nano silicon-based particles at room temperature, and by adding a conductive material to them, by controlling physicochemical properties such as size, surface area, pore size, nano structure of secondary battery anode material There is a need for research and development on how to significantly improve the performance as an active material.
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
<10> 본 발명은 상기와 같은 문제 점을 해결하기 위 하여 안출된 것으로서, 저가의 실리 카를 이용하여 나노 실리콘계 화합물 분말을 합성하며, 상기 나노 실리콘계 화 합물, 그래핀 및 탄소섬유를 포함함으로써 비용을 절감하면서 전극 특성을 향상시 킬 수 있는 이차전지용 음극활물질을 제공하는 것을 목적으로 한다 .  The present invention has been made to solve the above problems, synthesizes a nano silicon-based compound powder using a low-cost silica, and includes the nano-silicon compound, graphene and carbon fiber to reduce the cost An object of the present invention is to provide a negative electrode active material for a secondary battery that can improve electrode characteristics while reducing costs.
<1 1> 또한 , 본 발명은 상기 나노 실리콘계 화합물 -그래핀ᅳ탄소섬유 복합재를 포함 하는 리튬이차전지용 음극활물질 및 이를 포함하는 이차전지를 제공하는 데 그 목 적 이 있다.  In addition, an object of the present invention is to provide a negative active material for a lithium secondary battery comprising the nano-silicon compound-graphene ᅳ carbon fiber composite material and a secondary battery comprising the same.
【기술적 해결방법】  Technical Solution
<12> 상기와 같은 목적을 달성하기 위하여, 본 발명은 나노 실리콘 , 나노 실리콘 아산화물 및 이들의 흔합물 중에서 선택되는 나노 실리콘계 화합물-그래핀-탄소섬 유 복합재를 제공한다 .  In order to achieve the above object, the present invention provides a nano silicon-based compound-graphene-carbon fiber composites selected from nano silicon, nano silicon suboxide, and mixtures thereof.
<13> 본 발명의 일 실시 예에 따른 나노 실리콘계 화합물—그래핀-탄소섬유 복합재 에 있어서 , 상기 나노 실리콘 아산화물은 0 < X < 0.9 , 좋게는 0 < X < 0.5, 더욱 바람직하게는 0.2 < X < 0.4일 수 있다 . <14> 본 발명은 나노 실리콘, 나노 실리콘 아산화물 및 이들의 흔합물 중에서 선 택되는 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재를 포함하는 리튬이차전지용 음극활물질을 제공할 수 있다. <13> In the nano-silicon compound-graphene-carbon fiber composite according to an embodiment of the present invention, the nano silicon suboxide is 0 <X <0.9, preferably 0 <X <0.5, more preferably 0.2 < X <0.4. The present invention can provide a negative electrode active material for a lithium secondary battery comprising a nano-silicon compound-graphene-carbon fiber composite selected from nano silicon, nano silicon suboxide, and mixtures thereof.
<15> 본 발명은 상기 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재를 함유한 음 극활물질을 포함하는 리륨이차전지를 제공할 수 있다.  The present invention can provide a lithium secondary battery comprising a negative electrode active material containing the nano-silicon compound-graphene-carbon fiber composite material.
<16>  <16>
<17> 본 발명은 (a) 리튬 분말과 실리카 분말을 산소 교환 반웅시켜, 나노 실리  <17> The present invention is (a) oxygen exchange reaction of lithium powder and silica powder,
콘 나노 실리콘 아산화물 및 이들의 흔합물 중에서 선택되는 나노 실리콘계 화합 물 분말을 제조하는 단계 및 (b) 상기 제조된 나노 실리콘계 화합물 분말과, 그래 핀 및 탄소섬유를 흔합하는 단계를 포함하는 나노 실리콘계 화합물-그래핀-탄소섬 유 복합재를 제조하는 방법을 제공한다.  Preparing a nano silicon-based compound powder selected from cone nano silicon suboxides and mixtures thereof; and (b) mixing the prepared nano silicon-based compound powders with graphene and carbon fibers. Provides a method for producing graphene-carbon fiber composites.
<]8> 본 발명의 일 실시예에 따른 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재 의 제조방법에 있어서, (a)단계는 제조된 나노 실리콘계 화합물 분말을 리튬 산화 물로부터 분리 및 정제하는 단계를 더 포함할 수 있다.  <] 8> In the method for producing a nano silicon compound-graphene-carbon fiber composite according to an embodiment of the present invention, step (a) is a step of separating and purifying the prepared nano silicon compound powder from lithium oxide It may further include.
<19> 본 발명의 일 실시예에 따른 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재 의 제조방법에 있어서, (b)단계는 나노 실리콘계 화합물 분말과, 그래핀 및 탄소섬 유를 각각 용매에 분산시킨 슬러리를 흔합한 다음 상기 용매를 제거한 후 건조하는 단계를 더 포함할 수 있다. In the method of preparing a nano silicon compound-graphene-carbon fiber composite according to an embodiment of the present invention, step (b) comprises dispersing the nano silicon compound powder, graphene and carbon fiber in a solvent, respectively. After mixing the slurry may further comprise the step of removing the solvent and then drying.
<20> 본 발명의 일 실시예에 따른 나노 실리콘계 화합물—그래핀―탄소섬유 복합재 의 제조방법에 있어서, 실리카 분말은 품드 실리카, 마이크로포러스 실리카, 메조 포러스 실리카 및 매크로포러스 실리카 중에서 선택되는 어느 하나 또는 둘 이상의 흔합물일 수 있다.  <20> In the method for producing a nano-silicon compound-graphene-carbon fiber composite according to an embodiment of the present invention, the silica powder is any one selected from the group silica, microporous silica, mesoporous silica and macroporous silica or It may be two or more combinations.
<21> 본 발명의 일 실시예에 따른 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재 의 제조방법에 있어서, 실리카 분말은 제한되지 않지만예를 들면 직경이 2 ran ~ 30 ^일 수 있다. <21> The exemplary nano silicon-based compound according to an embodiment of the invention - graphene - a method of manufacturing a carbon fiber composite material, silica powder is not limited, for example i may be a diameter of 2 ran ~ 30 ^.
<22> 본 발명의 일 실시예에 따른 나노 실리콘계 화합물 -그래핀ᅳ탄소섬유 복합재 의 제조방법에 있어서, 그래핀은 특별히 제한되지 않지만 예를 들면 직경이 ΙΟηπι ~ /m일 수 있다.  In the method for producing a nano-silicon compound-graphene ᅳ carbon fiber composite material according to an embodiment of the present invention, the graphene is not particularly limited, for example, the diameter may be ΙΟηπι ~ / m.
<23> 본 발명의 일 실시예에 따른 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재 의 제조방법에 있어서, 탄소섬유는 특별히 제한되지 않지만 예를 들면 두께 lnm ~ im, 길이 50 ~ 200j¾m일 수 있다.  In the method of preparing a nano-silicon compound-graphene-carbon fiber composite according to an embodiment of the present invention, the carbon fiber is not particularly limited, but may be, for example, a thickness of lnm to im and a length of 50 to 200j¾m.
<24> 본 발명의 일 실시예에 따른 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재 의 제조방법에 있어서, 리튬과 실리카 (Si02)의 몰비는 본 발명이 목적으로 하는 범 위내에서 조절하여 사용할 수 있으며, 예를 들면 2 ~ 6 : 1일 수 있다. <24> Nano silicon compound-graphene-carbon fiber composite according to an embodiment of the present invention In the production method of, the molar ratio of lithium and silica (Si0 2 ) can be adjusted and used within the scope of the present invention, for example, may be from 2 to 6: 1.
<25> 본 발명의 일 실시예에 따른 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재 의 제조방법에 있어서, (a)단계는 비활성 분위기 내에서 흔합한 후, 층분한 시간, 일 예를 들면, 1 ~ 20시간동안 볼밀링을 실시하여 고상반웅 할 수 있다.  In the method of preparing a nano-silicon compound-graphene-carbon fiber composite according to an embodiment of the present invention, step (a) is carried out in an inert atmosphere, followed by a slicing time, for example, 1 Ball milling can be performed for 20 hours.
<26> 본 발명의 일 실시예에 따른 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재 의 제조방법에 있어서, (a)단계의 산소 교환 반웅은 교환반웅이 충분히 진행될 수 있는 온도라면 제한되지 않으며, 예를 들면 0 ~ 300 °C의 온도범위에서 실시할 수 있다. In the method for preparing a nano-silicon compound-graphene-carbon fiber composite according to an embodiment of the present invention, the oxygen exchange reaction in step (a) is not limited as long as the reaction reaction can proceed sufficiently. For example, it can be carried out in the temperature range of 0 ~ 300 ° C.
<27> 본 발명의 일 실시예에 따른 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재 의 제조방법에 있어서, (b)단계의 탄소 섬유는 산처리를 통해 표면 산화된 것일 수 있다.  In the method of manufacturing a nano silicon compound-graphene-carbon fiber composite according to an embodiment of the present invention, the carbon fiber of step (b) may be surface oxidized by acid treatment.
<28> 본 발명의 일 실시예에.따른 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재 의 제조방법에 있어서, (b)단계에서 나노 실리콘계 화합물 분말과, 그래핀 및 탄소 섬유의 흔합물의 중량흔합비는 크게 제한되는 것은 아니지만 좋게는 1 : 9 ~ 9 : 1일 수 있다.  <28> In the method for producing a nano-silicon compound-graphene-carbon fiber composite according to an embodiment of the present invention, in step (b), the weight mixture ratio of the nano-silicon compound powder, the mixture of graphene and carbon fiber Is not particularly limited, but may preferably be 1: 9-9: 1.
<29> 본 발명의 일 실시예에 따른 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재 의 제조방법에 있어서, (b)단계에서 그래핀 및 탄소 섬유는 크게 제한되는 것은 아 니지만 좋게는 중량흔합비가 1 : 10 ~ 10 : 1일 수 있다.  In the method for preparing a nano-silicon compound-graphene-carbon fiber composite according to an embodiment of the present invention, in the step (b), the graphene and the carbon fiber are not greatly limited, but preferably the weight mixing ratio. 1: 10 to 10: 1 can be.
<30> 본 발명의 일 실시예에 따른 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재 의 제조방법에 있어서, (b)단계는 크게 제한되지 않지만 예를 들면 0 ~ 100°C에서 실시할 수 있다. In the method for producing a nano-silicon compound-graphene-carbon fiber composite according to an embodiment of the present invention, step (b) is not particularly limited, but may be performed at, for example, 0 to 100 ° C.
<31> 본 발명의 일 실시예에 따른 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재 에 있어서, 탄소 섬유는 통상의 탄소섬유라면 크게 제한되지 않으며, 예를 들면 카 본파이버, 단일벽 탄소나노튜브, 다중벽 탄소나노튜브 및 탄소나노와이어 중에서 선택되는 어느 하나일 수 있으며 이를 개질한 것일 수도 있다.  In the nano-silicon compound-graphene-carbon fiber composite according to an embodiment of the present invention, carbon fiber is not particularly limited as long as it is a normal carbon fiber, for example, carbon fiber, single wall carbon nanotube, It may be any one selected from among multi-walled carbon nanotubes and carbon nanowires, and may be modified.
<32> 본 발명은 상기의 제조방법으로 제조되는 나노 실리콘계 화합물-그래핀—탄소 섬유 복합재를 제공할 수 있다.  The present invention can provide a nano-silicon compound-graphene-carbon fiber composite prepared by the above production method.
【유리한 효과】  Advantageous Effects
<33> 본 발명은 저가의 실리카를 이용하여 나노 실리콘계 화합물 분말을 합성하여 비용을 절감하면서 동시에 이차전지 전기화학적 특성을 향상시킬 수 있는 나노 실 리콘계 화합물 -그래핀-탄소섬유 복합재 및 이를 포함하는 리륨이차전지용 음극활물 질을 제공할 수 있다. The present invention is a nano-silicon compound -graphene-carbon fiber composites and composites that can improve the secondary battery electrochemical properties while reducing costs by synthesizing nano-silicon compound powder using a low-cost silica Cathode active material for lithium secondary battery Can provide quality.
<34> 또한, 본 발명은 반웅공정이 단순하여 생산성 및 경제성이 뛰어나고 환경친 화적인 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재의 제조방법을 제공할 수 있 는 이점이 있다.  In addition, the present invention has the advantage of providing a method of producing a nano silicon-based compound-graphene-carbon fiber composite having excellent productivity, economical efficiency and environmental friendliness due to the simple reaction process.
<35> 또한, 본 발명은 다양한 종류의 실리카를 사용할 수 있으며, 그래핀과 탄소 섬유의 물리적 특성과 함량을 제어함으로써 나노 실리콘계 화합물—그래핀-탄소섬유 복합재의 입경, 기공도, 전기전도도를 이차전지용 음극에 최적화하여 적용할 수 있 는 장점이 있다.  In addition, the present invention can use a variety of silica, secondary to the particle size, porosity, and electrical conductivity of the nano silicon-based compound—graphene-carbon fiber composite by controlling the physical properties and content of graphene and carbon fiber There is an advantage that can be applied to the battery negative electrode optimized.
【도면의 간단한 설명】  [Brief Description of Drawings]
<36> 도 1은 본 발명의 일 실시예에서 나노 실리카로부터 얻은 나노 실리콘 분말 의 TEM 이미지와 전자회절패턴을 나타낸 것이다.  1 illustrates a TEM image and an electron diffraction pattern of a nano silicon powder obtained from nano silica in an embodiment of the present invention.
<37> 도 2는 본 발명의 일 실시예에서 나노 실리콘 -그래핀ᅳ탄소섬유 복합재 분말 의 TEM 이미지를 나타낸 것이다.  Figure 2 shows a TEM image of the nano silicon-graphene ᅳ carbon fiber composite powder in one embodiment of the present invention.
<38> 도 3은 본 발명의 일 실시예에 따른 나노 실리콘 복합재 음극을 포함하는 리 륨이차전지의 정전압순환곡선을 나타낸 그래프이다.  3 is a graph showing a constant voltage circulation curve of a lithium secondary battery including a nano silicon composite anode according to an embodiment of the present invention.
<39> 도 4는 본 발명의 일 실시예에 따른 나노 실리콘- 그래핀-카본섬유 복합재 음극의 충방전 프로파일을 나타낸 그래프이다. Figure 4 is a graph showing the charge and discharge profile of the nano silicon-graphene-carbon fiber composite anode according to an embodiment of the present invention.
<40> 도 5는 본 발명의 일 실시예에 따른 나노 실리콘- 그래핀—카본섬유 복합재 음극의용량 프로파일을 나타낸 그래프이다. 5 is a graph showing a capacity profile of the nano silicon-graphene-carbon fiber composite anode according to an embodiment of the present invention.
<41> 도 6은 본 발명의 일 실시예에 따른 나노 실리콘 -그래핀-카본섬유 복합재 음 극과 실리콘 음극의 싸이클 성능 비교를 나타낸 그래프이다.  FIG. 6 is a graph illustrating a cycle performance comparison between a nano silicon-graphene-carbon fiber composite anode and a silicon cathode according to an embodiment of the present invention.
<42> 도 7은 본 발명의 일 실시예 의해 제조된 나노 실리콘 아산화물 (Si00.37) 분 말의 TEM 이미지와 elemental mapping 이미지를 나타낸 것이다. <42> Figure 7 shows the TEM image and elemental mapping images of one embodiment of a nano-silicon suboxide produced by (Si0 0. 37) powders of the present invention.
<43> 도 8는 본 발명의 일 실시예에 따른 나노 실리콘 아산화물 (Si00.37)- 그래핀- 카본섬유 복합재 음극의 용량 프로파일을 나타낸 그래프이다. <43> Figure 8 is nano-silicon suboxide (Si0 0 37.) In accordance with one embodiment of the present invention - a graph showing the dose profile of the carbon fiber composite cathode-graphene.
【발명의 실시를 위한 최선의 형태】  [Best form for implementation of the invention]
<44> 이하 본 발명의 나노 실라콘계 화합물 -그래핀-탄소섬유 복합재 리륨이차전 지용 음극활물질, 이의 제조방법 및 이를 포함하는 리륨이차전지를 상세히 설명한 다. 다음에 소개되는 실시예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 또한, 사용되는 기술 용어 및 과학 용 어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에 서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다. Hereinafter, a negative active material for a nano-silicon compound-graphene-carbon fiber composite lithium lithium battery of the present invention, a method of manufacturing the same, and a lithium secondary battery including the same will be described in detail. The following embodiments are provided as examples to ensure that the spirit of the present invention can be fully conveyed to those skilled in the art. In addition, unless there is another definition in the technical terminology and scientific terminology used, it has the meaning commonly understood by one of ordinary skill in the art to which this invention belongs, The description of well-known functions and configurations that may unnecessarily obscure the subject matter of the present invention will be omitted.
<45> 본 발명의 발명자들은 리튬이차전지용 음극활물질을 개발하기 위하여 연구한 결과, 나노 실리콘, 나노 실리콘 아산화물 및 이들의 흔합물 중에서 선택되는 나노 실리콘계 화합물 -그래핀―탄소섬유 복합재를 제공하여, 놀람게도 이를 포함하는 리 튬이차전지용 음극활물질의 비용을 절감하면서 동시 에 리튬이차전지 의 전기화학적 인 특성을 획 기 적으로 향상시킬 수 있음을 발견하여 본 발명을 완성하였다.  The inventors of the present invention have studied to develop a negative electrode active material for a lithium secondary battery, to provide a nano-silicon compound-graphene-carbon fiber composite material selected from nano silicon, nano silicon suboxide, and mixtures thereof, Surprisingly, while reducing the cost of the negative electrode active material for a lithium secondary battery including the same, the present inventors have found that the electrochemical properties of the lithium secondary battery can be improved dramatically, thereby completing the present invention.
<46> 본 발명은 나노 실리콘, 나노 실리콘 아산화물 및 이들의 흔합물 중에서 선 택되는 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재를 제공할 수 있다 . 이 때, 상 기 나노 실리콘은 나노 크기의 실리콘 (Si )이며, 나노 실리콘 아산화물은 SiOx에서 X 의 범위가 0 < X < 0.9 , 좋게는 0 < X < 0.5, 더욱 바람직하게는 0.2 < X < 0.4일 수 있다 . 상기 범위에서는 전극의 전기 전도도가 더욱 우수하고, 리튬이차전지 의 충 방전 가역성 및 용량이 매우 우수한 특성 이 있어서 좋다 . The present invention can provide a nano silicon-based compound-graphene-carbon fiber composites selected from nano silicon, nano silicon suboxide, and mixtures thereof. In this case, the nano-silicon is a nano-sized silicon (Si), the nano silicon suboxide has a SiO x to X range of 0 <X <0.9, preferably 0 <X <0.5, more preferably 0.2 <X <0.4. In the above range, the electrical conductivity of the electrode is more excellent, and the charge and discharge reversibility and capacity of the lithium secondary battery may be excellent.
<47> 본 발명은 상기 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재를 포함하는 리륨이차전지용 음극활물질을 제공할 수 있다 . The present invention can provide a negative electrode active material for a lithium secondary battery comprising the nano-silicon compound-graphene-carbon fiber composite.
<48> 본 발명은 상기 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재를 함유한 음 극활물질을 포함하는 리튬이차전지를 제공할 수 있다 .  The present invention can provide a lithium secondary battery including the negative electrode active material containing the nano-silicon compound-graphene-carbon fiber composite material.
<49> 본 발명은 (a) 리튬 분말과 실리카 분말을 산소 교환 반웅시켜, 나노 실리 콘, 나노 실리콘 아산화물 및 이들의 흔합물 중에서 선택되는 나노 실리콘계 화합 물 분말을 제조하는 단계 및 (b) 상기 제조된 나노 실리콘계 화합물 분말과, 그래 핀 및 탄소섬유를 흔합하는 단계를 포함하는 나노 실리콘계 화합물ᅳ그래핀 탄소섬 유 복합재를 제조하는 방법을 제공한다.  The present invention is the step of (a) oxygen exchange reaction of lithium powder and silica powder to prepare a nano silicon-based compound powder selected from nano silicon, nano silicon suboxide and a mixture thereof and (b) the It provides a method for producing a nano silicon-based compound ᅳ graphene carbon fiber composite comprising the step of mixing the prepared nano silicon-based compound powder, graphene and carbon fiber.
<50> 구체적으로, 본 발명의 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재 제조 방법은 리튬 분말과 실리카 (Si02) 분말을 반웅시켜 실리카의 산소가 리튬으로 전달 되는 산소 교환반웅 (single di spl acement )이 이루어지도록 하여 나노 실리콘계 화 합물 분말을 생성하고, 이후, 생성된 나노 실리콘계 화합물 분말, 그래핀 및 탄소 섬유를 균일하게 흔합하는 것을 포함할 수 있다 . Specifically, the nano-silicon compound-graphene-carbon fiber composite manufacturing method of the present invention by reacting the lithium powder and silica (Si0 2 ) powder to the oxygen exchange reaction of the oxygen of the silica is transferred to lithium (single di spl acement) ) To produce a nano silicon-based compound powder, and may then uniformly mix the resulting nano silicon-based compound powder, graphene and carbon fibers.
<51> 상기 나노 실리콘계 화합물 분말은 나노 실리콘, 나노 실리콘 아산화물 및 이들의 흔합물 중에서 선택되는 어느 하나일 수 있다 . The nano silicon-based compound powder may be any one selected from nano silicon, nano silicon suboxide, and mixtures thereof.
<52> 상기 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재 제조방법 에 있어서, 나 노 실리콘계 화합물 분말이 나노 실리콘 (Si )일 경우 반웅식은 하기 반웅식 1과 같 다 . <53> In the manufacturing method of the nano-silicon compound-graphene-carbon fiber composite, when the nano-silicon compound powder is nanosilicon (Si), the reaction formula is the same as the following formula 1 below. <53>
<54> 4 Li + Si02 → Si + 2Li20 (반응식 1) <54> 4 Li + Si0 2 → Si + 2Li 2 0 (Scheme 1)
<55>  <55>
<56> 즉, 상기 나노 실리콘은 리튬 금속 분말이 산화리튬으로 산화되면서 실리카 를 환원시켜 생성된다.  That is, the nano silicon is produced by reducing silica while lithium metal powder is oxidized to lithium oxide.
<57> 상기 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재 제조방법에 있어서, 나 노 실리콘계 화합물 분말이 나노 실리콘 아산화물 (SiO 일 경우 반웅식은 하기 반웅 식 2와 같다. In the method of preparing the nano-silicon compound-graphene-carbon fiber composite material, when the nano-silicon compound powder is nano silicon suboxide (SiO), the reaction formula is the same as in the following formula ( 2) .
<58> 이때, 나노 실리콘 아산화물 (SiOx) 분말은 실리카가 불완전 환원되어 형성되 는 것으로, 상기 실리콘 아산화물 (Si )에서 X는 0 < X < 0.9, 좋게는 0 < X < 0.5, 더욱 바람직하게는 0.2 < X < 0.4일 수 있다. 상기 실리콘 아산화물 나노 분말은 리륨 분말과 실리카 분말의 산소 교환반웅 시간이나 리튬과 실리카의 몰비를 조절 하여 환원이 충분히 이루어지지 않게 함으로써 일부 산소가 잔류하여 아산화물이 형성될 수 있다. 일예로, 리튬 분말과 실리카 분말의 볼밀 공정을 3시간 이내로 하 거나, 실리카와 반웅하는 리튬이 4몰 이하인 경우에 실리카 환원이 층분히 이루어 지지 않아 아산화물을 형성할 수 있다. In this case, the nano silicon suboxide (SiO x ) powder is formed by the incomplete reduction of silica, X in the silicon suboxide (Si) 0 <X <0.9, preferably 0 <X <0.5, more preferably Preferably 0.2 <X <0.4. The silicon suboxide nanopowder may be partially reduced by adjusting oxygen exchange reaction time of the lithium powder and the silica powder or by reducing the molar ratio of lithium and silica to form a partial oxide. For example, when the ball mill process of the lithium powder and the silica powder is within 3 hours, or when the lithium and the reacting lithium are 4 moles or less, the reduction of the silica is not sufficiently performed, thereby forming a suboxide.
<59>  <59>
<60> (4-2x) Li + Si02→ (2-x) Li20 + SiOx (반웅식 2) <60> (4-2x) Li + Si0 2 → (2-x) Li 2 0 + SiO x (Ref. 2)
<61>  <61>
<62> 본 발명에서 사용되는 실리카 (Si02) 분말은 품드 실리카 (fumed silica), 마 The silica (Si0 2 ) powder used in the present invention may be composed of fumed silica,
01크로포러스 실리? "Hjnicroporous silica), 데조포러스 실리?"(mesoporous silica) 및 매크로포러스 실리카 (macroporous silica) 증에서 선택되는 어느 하나 또는 둘 이상의 흔합물일 수 있으며, 실리카의 종류, 크기 또는 기공 크기에 제한되지 않고 사용될 수 있다. 0 1Crophorus Sili? It can be any one or two or more combinations selected from " Hjnicroporous silica, mesoporous silica" and macroporous silica, and can be used without being limited to the type, size or pore size of silica. have.
<63> 상기 실리카 분말은 바람직하게는 2 ran ~ 30 의 직경인 것을 사용할 수 있 으며, 더욱 바람직하게는 10 ran ~ 100 ran인 것을 사용할 수 있다. 실리카 분말의 입경이 상기 범위를 초과하면 리튬확산이 용이하지 않올 수 있으며, 미만이면 높은 비표면적과 표면에너지로 인해 입자 뭉침 현상이 일어나 음극 제조시 요구되는 입 자 분산력이 떨어질 수 있다.  The silica powder may be preferably used having a diameter of 2 ran to 30, and more preferably 10 ran to 100 ran. If the particle diameter of the silica powder exceeds the above range, lithium diffusion may not be easy. If the particle diameter is less than the particle size, particle aggregation may occur due to high specific surface area and surface energy.
<64> 상기 그래핀은 직경이 10 nm ~ 5 인 것을 사용할 수 있으며, 상기 탄소섬 유는 두께가 lnm ~ 5Λη, 길이 50 200 인 것을 사용할 수 있다. 또한 상기 탄소 섬유는 카본 파이버 (carbon fiber), 단일벽 탄소 나노튜브 (SWCNT), 다중벽 탄소 나 노류브 (M NT) 및 탄소 나노와이어 (carbon nano ire) 중에서 선택되는 어느 하나일 수 있다. The graphene may have a diameter of 10 nm to 5, and the carbon fiber may have a thickness of lnm to 5Λη and a length of 50 to 200. Also the carbon The fiber may be any one selected from carbon fiber, single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanorubbers (M NT), and carbon nano ires.
<65> 상기 리튬과 실리카 (Si02)의 몰비는 2 ~ 6 : 1 일 수 있으며, 리튬이 6보다 큰 비율을 가지게 되면 반응 후 남는 리튬을 제거하기 위해 사용되는 산의 양 증가 와 폐수 증가 결과를 얻을 수 있고, 2보다 작은 비율일 경우 산소 함량이 높은 산 화물 (SiOy> l<y<2)이 얻어져 리륨이차전지의 충방전 가역성 및 용량이 감소하는 결 과를 얻을 수 있다. The molar ratio of the lithium to silica (Si0 2 ) may be 2 to 6: 1, and when lithium has a ratio of greater than 6, the amount of acid used to remove lithium remaining after the reaction and the increase of wastewater result. When the ratio is less than 2, an oxide having a high oxygen content (SiO y> l <y <2) is obtained, thereby reducing the charge and discharge reversibility and capacity of the lithium secondary battery.
<66> 상기 나노 실리콘계 화합물 분말을 형성하는 단계는 일예로, 리튬 분말과 실 리카 분말을 글러브 박스 내에서 흔합한 후 1 내지 20시간동안 볼밀링을 수행하여 실시할 수 있다. 이때, 글러브박스는 질소 또는 아르곤과 같은 비활성 기체 분위기 일 수 있으며, 상기 리튬과 실리카의 볼밀을 통한 산소 교환반웅 온도는 0 ~ 300°C 일 수 있다. 상기 반웅온도가 30CTC 초과이면 입자크기가 크고 작은 불균일한 입자 들이 얻어질 수 있어 바람직하지 않으며, 0°C 미만이면 산소의 교환반웅속도가 낮 아질 수 있다. The forming of the nano silicon-based compound powder may be performed by, for example, mixing the lithium powder and the silica powder in a glove box and performing ball milling for 1 to 20 hours. At this time, the glove box may be an inert gas atmosphere such as nitrogen or argon, the oxygen exchange reaction temperature through the ball mill of the lithium and silica may be 0 ~ 300 ° C. If the reaction temperature is more than 30CTC, it is not preferable that non-uniform particles having a large and small particle size may be obtained. If the reaction temperature is less than 0 ° C, the exchange reaction rate of oxygen may be lowered.
<67> 본 발명에서 상기 나노 실리콘계 화합물 분말을 제조하는 단계 이후에, 제조 된 나노 실리콘계 화합물 분말을 리튬 산화물로부터 분리 및 정제하는 공정을 더 포함할 수 있다.  After preparing the nano silicon-based compound powder in the present invention, the method may further include separating and purifying the prepared nano silicon-based compound powder from lithium oxide.
<68> 상기 분리 및 정제 공정은 산처리를 통해 부반웅물인 리튬산화물을 제거하는 단계를 포함할 수 있다. 얻어진 리튬산화물은 하기 반웅식 3 및 4과 같이 산과 반 웅하여 염화리튬 (LiCl)이 생성된다.  The separation and purification process may include a step of removing lithium oxide, which is a side reaction product, through acid treatment. The obtained lithium oxide is reacted with an acid as in the following reactions 3 and 4 to produce lithium chloride (LiCl).
<69>  <69>
<70> Li20 + ¾0 → 2LiOH (반웅식 3) <70> Li 2 0 + ¾0 → 2LiOH (3 reactions)
<7i> Li20 + 2HC1 → 2LiCl + ¾0 (반웅식 4) <7i> Li 2 0 + 2HC1 → 2LiCl + ¾0 (Ref. 4)
<72>  <72>
<73> 산처리 공정에서 사용되는 산의 종류는 황산, 염산, 질산, 인산 등 무기산이 사용될 수 있으며, 이에 제한되지 않는다.  The acid used in the acid treatment process may include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid, but is not limited thereto.
<74> 상기 산처리 후 물, 에탄올, 이소프로판올 및 이들의 흔합 용매로 산처리 후 의 생성물을 수차례 세척하여 최종적으로 얻어지는 나노 실리콘계 화합물 분말을 건조한다. After the acid treatment, the product obtained after the acid treatment is washed several times with water, ethanol, isopropanol, and a mixed solvent thereof to finally dry the nano silicon-based compound powder.
<75 - 본 발명에사 상기 나노 실라콘계 화합물 분말ᅳ 그래핀 및 탄소섬유를 흔합하 는 공정은 나노 실리콘계 화합물 분말과, 그래핀 및 탄소섬유를 각각 용매에 분산 시킨 슬러리를 흔합한 다음 상기 용매를 제거하고 이를 건조하는 공정을 추가로 포 함할 수 있다. <75-The nano-silicon compound powder 사 according to the present invention is mixed with graphene and carbon fiber The process may further include a step of mixing the nano silicon-based compound powder, a slurry in which graphene and carbon fibers are dispersed in a solvent, and then removing the solvent and drying it.
<76> 상기 용매는 나노 실리콘계 화합물 분말, 그래핀 및 탄소섬유를 균일하게 분 산시킬 수 있는 것이면 어느 것을 사용해도 좋으며, 바람직하게는 탄소수 1 ~ 5의 알코을, 물 또는 이들의 흔합물 중에서 선택되는 어느 하나일 수 있다.  The solvent may be used as long as it can uniformly disperse the nano silicon-based compound powder, graphene and carbon fiber, and preferably selected from alcohols having 1 to 5 carbon atoms, water or a mixture thereof. It can be either.
<77> 상기 탄소 섬유는 산 처리를 통해 표면산화를 유도하여 분산성을 향상시킬 수 있다. 이때, 산은 황산, 염산, 질산, 인산 등 무기산 또는 카르복실기를 가진 유기산을 사용할 수 있다. The carbon fiber may improve surface dispersibility by inducing surface oxidation through acid treatment. At this time, the acid may be an inorganic acid such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid or an organic acid having a carboxyl group.
<78> 상기 산처리 후 물, 에탄올, 이소프로판올 및 이들의 흔합 용매로 산처리 후 의 생성물을 수차례 세하여 건조하는 단계를 더 포함할 수 있다 . After the acid treatment, water, ethanol, isopropanol and a mixed solvent thereof may further include drying the product after the acid treatment several times.
<79> 본 발명에서 나노 실리콘계 화합물 분말과 그래핀 및 탄소섬유의 흔합 중량 비는 1/9 ~ 9/1 일수 있다. 상기 범위 초과이면 나노 실리콘계 화합물 분말에 그래 핀과 탄소섬유를 흔합한 효과가 미미하며, 미만이면 전기화학적 활성을 가지는 실 리콘 함량이 낮아지고 용량이 떨어질 수 있다. In the present invention, the mixed weight ratio of the nano silicon-based compound powder, graphene, and carbon fiber may be 1/9 to 9/1. If the above range is insignificant effect of mixing graphene and carbon fiber in the nano silicon-based compound powder, if less than the silicon content having an electrochemical activity may be lowered and the capacity may be reduced.
<80> 상기 그래핀 및 탄소섬유의 중량흔합비는 1/10 ~ 10/1일 수 있으며, 나노 실 리콘계 화합물 분말과 그래핀 및 탄소섬유를 균일하게 흔합하고 분산시키는 단계는The weight mixing ratio of the graphene and the carbon fiber may be 1/10 to 10/1, and the step of uniformly mixing and dispersing the nano-silicon compound powder and graphene and carbon fiber
0 ~ 100 °C에서 실시될 수 있다. It can be carried out at 0 ~ 100 ° C.
<8i> 본 발명은 상기 제조방법에 의해 얻어지는, 나노 실리콘계 화합물 -그래핀-탄 소섬유 복합재 및 이를 음극활물질로서 포함하는 리튬이차전지를 제공할 수 있다. <82> 본 발명에 따른 리튬이차전지의 일 양태로서, 양극활물질은 LKMn, Ni, The present invention can provide a nano-silicon compound-graphene-carbon fiber composite material obtained by the above production method and a lithium secondary battery comprising the same as a negative electrode active material. In one embodiment of the lithium secondary battery according to the present invention, the positive electrode active material is LKMn, Ni,
Co)02계, LiMn2-xMx04 (M=Li , Al, Zn, Zr, Cr, Co, Ni , Fe) 스피넬계, LiMP04 (M=Fe,Co) 0 2 type , LiMn 2 - x M x 0 4 (M = Li, Al, Zn, Zr, Cr, Co, Ni, Fe) Spinel type, LiMP0 4 (M = Fe,
Mn, Co, Ni) 중에서 선택되는 어느 하나를 포함하며, 전해질로서 LiPF6 리튬염과 비 수용성 카보네이트계 용매를 포함할 수 있다. Mn, Co, Ni), and any one selected from the group consisting of LiPF 6 lithium salt and a non-aqueous carbonate solvent.
<83> 본 발명은 양극, 음극 및 분리막을 포함하는 리튬 이차 전지에 있어서, 상기 음극은 ( i ) 금속재질의 집전체; 및 (ii) 상기 집전체에 도포되는 음극 활물질로서 상기 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재를 포함하는 리튬 이차 전지를 제공할 수 있다. The present invention provides a lithium secondary battery including a positive electrode, a negative electrode, and a separator, wherein the negative electrode comprises: (i) a current collector made of metal; And (ii) it can provide a lithium secondary battery comprising the nano-silicon compound-graphene-carbon fiber composite material as a negative electrode active material to be applied to the current collector.
<84>  <84>
<85> 이하 본 발명에 따른 나노 실리콘계 화합물—그래핀-탄소섬유 복합재의 제조 방법을 바람직한 일 실시예를 통해 설명하고자 한다.  Hereinafter, a method for preparing a nano-silicon compound-graphene-carbon fiber composite according to the present invention will be described through a preferred embodiment.
<86> <87> (실시예 1) 산소 치환 고상반응에 의한 나노 실리카로부터 나노 실리콘 분말 의 제조와 나노 실리콘 -그래핀-카본섬유 복합재 제조 <86> Example 1 Preparation of Nano Silicon Powders from Nano Silica by Oxygen Substitution Solid Phase Reaction and Preparation of Nano Silicon-Graphene-Carbon Fiber Composites
<88> 실리카 (Si02ᅳ 평균입경 15nm) 분말과 리튬 금속 분말 (평균입경 25 )을 1 : <88> silica (Si0 2 ᅳ average particle diameter 15nm) powder and lithium metal powder (average particle diameter 25) 1:
4몰비로 아르곤 분위기, 상은 (25°C)에서 흔합한 후, 상온에서 6시간동안 볼밀링하 며 고상 (sol id-state) 반웅시켜 산소 치환반웅을 유도하였다. At 4 molar ratios, the argon atmosphere and the phases were mixed at (25 ° C), followed by ball milling at room temperature for 6 hours, and the reaction of solid phase (sol id-state) to induce oxygen substitution reaction.
<89> 부반웅물인 리튬산화물과 합성된 실리콘 분말올 분리하기 위해 리튬산화물을 <89> Lithium oxide was separated to separate the silicon oxide synthesized from the lithium oxide, which is an auxiliary reaction product.
0.5M 염산 용액으로 세척하고, 에탄올과 1M HC1 수용액의 흔합용액 (에탄올과 1M Wash with 0.5M hydrochloric acid solution and mix with ethanol and 1M HC1 aqueous solution (ethanol and 1M
HC1 수용액의 흔합비율 1:1)으로 순차적으로 씻어냈다. The mixture was washed sequentially with a mixture ratio of HC1 aqueous solution 1: 1).
<90> 상기 공정으로, 하기 식 1 및 2와 같이 산과 리튬산화물이 반웅하여 물에 용 해하기 쉬운 LiCl 염이 생성되었다. In the above process, LiCl salt, which is easily soluble in water, was formed by reaction of acid and lithium oxide as shown in Equations 1 and 2 below.
<9i> 이후, 물로 수차례 세척하여 LiCl을 제거한 다음, 최종적으로 수득한 짙은 갈색의 나노 실리콘 분말 (SiO, 평균입경 50 nm)을 진공오븐에서 건조하였다. After washing several times with water to remove LiCl, the finally obtained dark brown nano silicon powder (SiO, average particle diameter: 50 nm) was dried in a vacuum oven.
<92> 도 1은 본 발명의 나노 실리카로부터 얻은 나노 실리콘 (SiO) 분말의 TEM 이 미지와 전자회절패턴을 나타낸 것이다. 약 50 nm의 직경을 가지는 구상형의 나노 실리콘 분말의 1차 입자가 관찰되며, 전자회절패턴에서 특정 링 (ring) 모양 또는 규칙적인 전자배열이 관찰되지 않으므로, 제조된 실리콘 분말은 비정질임을 확인할 수 있었다. FIG. 1 shows a TEM image and electron diffraction pattern of a nano silicon (SiO) powder obtained from the nano silica of the present invention. Primary particles of spherical nano silicon powder having a diameter of about 50 nm are observed, and since no specific ring shape or regular electron arrangement is observed in the electron diffraction pattern, it can be confirmed that the manufactured silicon powder is amorphous. there was.
<93> 상기 제조된 나노 실리콘 분말 lOOmg을 물 ΙΟΟι 에 균일하게 분산하고, 그 래핀 분말 (평균입경 2.5/m) 50mg 및 카본섬유 분말 (두께 lOOnm) 50mg을 물 200 ^에 분산시킨 슬러리를 상기 물에 분산된 나노 실리콘 분말 용액과 흔합한 후. 초음파 를 이용해 분산하여 복합재 분산용액을 제조하였다. 이때, 복합재 분산용액은 50 : 25 : 25 wt 비율을 가지는 나노 실리콘 -그래핀-카본섬유 복합재를 포함한다. 즉, 나노 실리콘 /(그래핀 +탄소섬유) 무게비가 1/1이며, 그래핀 /카본섬유 무게비도 1/1 인 분말액을 제조한다. 다음으로, 원심분리를 통하여 물을 제거하고 진공오본에서 건조시킴으로써 실리콘 복합재 음극활물질을 얻었다.  The slurry prepared by uniformly dispersing the prepared nano silicon powder 100 mg in water ΙΟΟι, and dispersing 50 mg of graphene powder (average particle diameter 2.5 / m) and 50 mg of carbon fiber powder (thickness 100 nm) in water 200 ^ After mixing with nano silicon powder solution dispersed in. Dispersion was performed using ultrasonic waves to prepare a composite dispersion solution. In this case, the composite dispersion solution includes a nano silicon-graphene-carbon fiber composite having a ratio of 50:25:25 wt. That is, nano silicon / (graphene + carbon fiber) weight ratio is 1/1, and the graphene / carbon fiber weight ratio is 1/1 to prepare a powder solution. Next, water was removed through centrifugation and dried in a vacuum oven to obtain a silicon composite anode active material.
<94> 도 2는 나노 실리콘—그래핀-카본섬유 복합재 분말의 TEM 이미지를 나타낸 것 이다. 실리콘 복합재 음극활물질을 이루고 있는 세가지 성분이 균일하게 흔합되어 있고 입자간 접촉이 양호함을 확인할 수 있었다.  Figure 2 shows a TEM image of the nano silicon-graphene-carbon fiber composite powder. Three components of the silicon composite anode active material were uniformly mixed and good contact between the particles was confirmed.
<95>  <95>
<96> (실시예 2) 실시예 1의 나노 실리콘 -그래핀-카본섬유 음극활물질로 이루어지 음극을 포함하는 리롭이차저지의 저기화학적 특성 조사  Example 2 Investigation of the Low-Chemical Characteristic of Relop Secondary Judges Comprising a Cathode Made of Nano Silicon-Graphene-Carbon Fiber Cathode Active Material of Example 1
<97> 실시예 1에서 나노 실리카로부터 제조한 나노 실리콘 -그래핀-카본섬유 복합 재 음극활물질 : super P : 폴리아크릴산 (polyacryl ic acid) 바인더의 중량비를 75 : 15 : 10 (^%)로 흔합하여 음극을 제조하였다. 이때, 폴리아크릴산을 NMP(N- methyl pyrrol idinone)에 용해하여 바인더 용액을 준비한 후, 여기에 실리콘 복합 재 음극활물질 및 super P를 넣어 음극 코팅용 슬러리를 제조하였다. 상기 슬러리 를 구리 집전체 포일위에 통상의 방법으로 코팅하였다. 다음으로, 진공 오븐을 이 용하여 1K C에서 12시간동안 건조하였다. 건조 후 40 kg/otf의 압력이 유지되는 롤 프레스 (roll press)에 통과시켜 음극을 제작하였다. <97> Nano silicon-graphene-carbon fiber composite prepared from nano silica in Example 1 The negative electrode was prepared by mixing the weight ratio of the re-cathode active material: super P: polyacryl ic acid binder to 75: 15:10 (^%). At this time, polyacrylic acid was dissolved in NMP (N-methyl pyrrol idinone) to prepare a binder solution, and a silicon composite negative electrode active material and super P were added thereto to prepare a slurry for negative electrode coating. The slurry was coated on a copper current collector foil in a conventional manner. Next, it was dried for 12 hours at 1K C using a vacuum oven. After drying, a negative electrode was produced by passing through a roll press maintained at a pressure of 40 kg / otf.
<98> 리튬셀은 리튬 메탈을 상대전극 및 기준전극으로 하고, 제조된 실리콘 음극 을 작업 전극으로 사용하였다. 전해액으로 1M LiPF6이 녹아 있는 에틸렌 카보네이트 In the lithium cell, lithium metal was used as a counter electrode and a reference electrode, and a manufactured silicon anode was used as a working electrode. Ethylene carbonate with 1M LiPF 6 dissolved in electrolyte
(EC) 및 에틸메틸 카보네이트 (EMC)의 흔합용액 (흔합액 비율 3:7)에 실란 첨가제 ( t r i s ( 2-meht oxy e t hoxy ) vinylsilane) 5wt%°l 되도록 하여 제작하였다 . (EC) and ethylmethyl carbonate (EMC) were prepared by mixing 5 wt% ° l of a silane additive (t r i s (2-mehtoxy e t hoxy) vinylsilane) in a mixed solution (mixture ratio 3: 7).
<99> 나노 실리콘 -그래핀-카본섬유 복합재를 함유한 음극을 포함하는 리튬이차전 지의 정전압순환곡선을 0.05 ~ 1.5 vs. / 전위구간에서 0.1 mV/s sweep rate로 측정하여 도 3에 나타내었다.  <99> The constant voltage circulation curve of the lithium secondary battery including the negative electrode containing the nano silicon-graphene-carbon fiber composite was 0.05 to 1.5 vs. It is shown in Figure 3 measured at 0.1 mV / s sweep rate in / potential range.
<ioo> Cat hod ic process (충전, 리튬삽입)에서 관찰되는 약 0.2 V의 피크는 비정질 실리콘으로 리튬삽입이 일어나는 프로세스이고, anodic process (방전, 리튬탈착)에 서 관찰되는 약 0.3 V의 피크는 LixSi 비정질 실리콘으로부터 리튬 탈착에 의한 것 이고, 약 0.5 V의 피크는 Li15Si4 상으로부터 리륨이 탈착되어 실리콘이 재생성되는 프로세스에 의한 것이다. 본 발명의 일 실시예에 따른 나노 실리콘-그래핀-카본섬 유 복합재가 리튬셀에서 전기화학적으로 활성을 보이며 가역적으로 리튬의 삽입-탈 착이 일어남을 알 수 있다. The peak of about 0.2 V observed in the cathodic process (charging, lithium insertion) is the process of lithium insertion into amorphous silicon, and the peak of about 0.3 V observed in the anodic process (discharge, lithium desorption). This is due to lithium desorption from Li x Si amorphous silicon, with a peak of about 0.5 V due to a process in which lithium is desorbed from the Li 15 Si 4 phase to regenerate the silicon. Nano silicon-graphene-carbonaceous oil composite according to an embodiment of the present invention is electrochemically active in the lithium cell, it can be seen that the insertion-desorption of lithium reversibly.
ιοι> 다음으로, 나노 실리콘 -그래핀-카본섬유 복합재 음극의 충방전 프로파일을 살펴보면, 150 /crf 전류밀도 (약 0.02C 에 해당)로 0.1 - 1.5 V vs. Li/Li+ 구간 에서 정전류-정전압 (CC-CV) 방식으로 충전과 방전을 실시하였다. 도 4는 이에 따 른 충방전 프로파일을 나타낸 것으로서, 비정질 실리콘으로의 리튬 삽입, 탈착 반 웅에 의한 LixSi 형성에 의한 평탄면을 확인할 수 있었다. Next, look at the charge and discharge profiles of the nano-silicon-graphene-carbon fiber composite anodes at 0.1-1.5 V vs. 150 / crf current density (approximately 0.02C). Charging and discharging were performed in a constant current-constant voltage (CC-CV) method in the Li / Li + period. Figure 4 shows the charge and discharge profile accordingly, it was confirmed that the flat surface by the Li x Si formation by lithium insertion, desorption reaction into amorphous silicon.
102> 또한, 음극의 용량 (capacity)을 무게당 용량 (specific gravimetric capacity)으로 환산한 결과를 도 5에 나타내었다. In addition, the result of converting the capacity (catacity) of the negative electrode into a specific gravimetric capacity is shown in FIG.
103> 본 발명의 일 .실시예에 따른 나노 실리콘—그래핀-카본섬유 복합재를 포함하 는 음극은 초기 층전 (리튬 삽입) 용량은 1700 mAh/g, 초기 방전 (리튬 탈착) 용량은 606 mAh/g로서, 초기 효율은 약 36 ¾>이나, 5회 이후 20 싸이클까지 734 - 635 mAh/g의 방전용량과 약 95 % 이상의 효율을 유지하였다. 103> An anode including a nano silicon-graphene-carbon fiber composite according to an embodiment of the present invention has an initial layer charge (lithium insertion) capacity of 1700 mAh / g and an initial discharge (lithium desorption) capacity of At 606 mAh / g, the initial efficiency was about 36 ¾>, but it maintained a discharge capacity of 734-635 mAh / g up to 20 cycles after 5 cycles and an efficiency of about 95% or more.
<104> 또한, 리튬삽입-탈착 중 일어나는 입자 부서짐 현상에 의해 실리콘 입자의 표면적 (전해질과 접하는 계면적)이 증가하게 되고, 이로써 전해질 환원분해가 활발 히 일어나 추가적인 충전 용량이 발생함으로써 높은 초기 충전 용량을 얻을 수 있 었다. In addition, the particle breakdown phenomenon during lithium insertion-desorption increases the surface area of the silicon particles (interface contacting with the electrolyte), which leads to active electrolytic reductive decomposition, resulting in additional charge capacity, resulting in high initial charge capacity. Could get.
<105> 또한, 그래핀 입자의 표면에 리튬이온이 비가역적으로 흡착되어 층전 용량만 을 증가시킬 수 있다.  In addition, lithium ions may be irreversibly adsorbed on the surface of the graphene particles to increase only the layer charge capacity.
<106> 도 6은 본 발명의 일 실시예에 따른 나노 실리콘—그래핀-카본섬유 복합재 음 극과, 실리콘 음극의 싸이클 성능을 비교한 것으로서, 나노 실리콘 분말만으로 제 조된 음극에서는 3회 싸이클 이후 급격히 방전용량이 감소하였다. 이는 상기 나노 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재 음극의 그래핀과 탄소섬유가 리튬과 의 반웅시 발생하는 실리콘의 부피변화를 수용 (accomodate)하고 음극의 전기전도도 를 증가시킴으로써 싸이클 성능올 상당히 향상됨을 확인할 수 있다.  6 is a comparison of the cycle performance of the nano silicon-graphene-carbon fiber composite negative electrode and the silicon negative electrode according to an embodiment of the present invention, in the negative electrode made of nano silicon powder only after three cycles rapidly The discharge capacity was reduced. This is because the graphene and carbon fibers of the nano-nano-silicon compound-graphene-carbon fiber composite anode accommodate the volume change of silicon generated when reacting with lithium and increase the electrical conductivity of the cathode, thereby significantly improving cycle performance. can confirm.
<107>  <107>
<108> (실시예 3) 산소 치환 고상반응에 의한 나노 실리카로부터 나노 실리콘 아산  (Example 3) Nano silicon nitrous acid from nano silica by oxygen-substituted solid phase reaction
화물 (SiOx) 분말의 제조와 나노 실리콘 아산화물ᅳ그래핀-카본섬유 복합재 제조  Preparation of Carbide (SiOx) Powders and Nano Silicon Nitrous Graphene-Carbon Fiber Composites
<109> 실리카 (Si02, 평균입경 15ran) 분말과 리튬 금속 분말 (평균입경 25/m)을 1 : <109> Silica (Si0 2 , average particle diameter 15ran) powder and lithium metal powder (average particle diameter 25 / m) 1:
4 몰비로 아르곤 분위기, 상온 (25°C)에서 흔합한 후, 상온에서 3시간동안 볼밀링 하며 고상 (solid-state) 반웅시켜 산소 치환반웅을 유도하였다. After mixing in an argon atmosphere at room temperature (25 ° C.) at 4 molar ratio, the ball-milling at room temperature for 3 hours and solid-state reaction to induce oxygen substitution reaction.
<iio> (4-2x) Li + Si02 → (2-χ) Li - 20 + Si0x (반웅식 4) <iio> (4-2x) Li + Si0 2 → (2-χ) Li-20 + Si0 x (Ref. 4)
<m> 실시예 1과 동일한 방법으로 부반웅물인 리튬산화물과 합성된 실리콘 아산화 물 분말을 분리하기 위해 리튬산화물을 0.5M 염산 용액으로 세척하고, 에탄올과 1M HC1 수용액의 흔합용액 (에탄올과 1M HC1 수용액의 흔합비율 1:1)으로 순차적으로 씻어냈다. LiCl을 제거한 후, 최종적으로 갈색의 나노 실리콘 아산화물 분말 (SiOo.37, 평균입경 50 nm)을 얻은 후 진공오븐에서 건조하였다.<m> Lithium oxide was washed with a 0.5M hydrochloric acid solution to separate the sub-acupuncture lithium oxide and the synthesized silicon nitrite powder in the same manner as in Example 1, and a mixed solution of ethanol and 1M HC1 aqueous solution (ethanol and 1M HC1 The mixture was washed sequentially with a mixing ratio of 1: 1). After removing LiCl, a brown nano silicon nitrite powder (SiO.37, average particle size: 50 nm) was finally obtained and dried in a vacuum oven.
Λ ' \2> 도 7은 본 발명의 일 실시예에 따른 나노 실리카로부터 얻은 나노 실리콘 아 산화물 분말의 ΤΕΜ 이미지와 elemental mapping 이미지를 나타낸 것이다. 약 50 nm의 직경을 가지는 실리콘 아산화물의 약 200 ~ 300nm 직경의 2차 입자를 확인할 수 있었다. elemental mapping 분석에 의해 얻은 Si : 0 = 1 : 0.37 비로부터, 제 조된 실리콘 아산화물의 화학식이 Si00.37 임을 알 수 있다. <Π3> 실시예 1과 동일한 방법으로 나노 실리콘 아산화물 (Si00.37) 분말 lOOmg을 물 Λ '\ 2> FIG. 7 shows ΤΕΜ image and elemental mapping image of the nano silicon nanooxide powder obtained from nano silica according to an embodiment of the present invention. Secondary particles having a diameter of about 200 to 300 nm of silicon suboxide having a diameter of about 50 nm could be identified. From the Si: 0 = 1: 0.37 ratio obtained by elemental mapping analysis, the formula of the prepared silicon suboxide is Si0 0 . It can be seen that 37 . <Π3> Examples 1 and nano-silicon suboxide in the same manner (Si0 0. 37) of the powder lOOmg water
100m에 균일하게 분산하고, 그래핀 분말 (평균입경 2.5卿) 12.5mg 및 카본섬유 분 말 (두께 lOOnm) 12.5mg을 물 50 ^에 분산시킨 슬러리를 상기 물에 분산된 나노 실 리콘 아산화물 분말 용액과 흔합한 후, 초음파를 이용해 분산하여 복합재 분산용액 을 제조하였다. 이때, 복합재 분산용액은 80 : 10 : 10 wt% 비율을 가지는 나노 실 리콘 아산화물 (Si00.37)-그래핀-카본섬유 복합재를 포함한다. 즉, 나노 실리콘 아산 화물 /(그래핀 +탄소섬유) 무게비가 4/1이며, 그래핀 /카본섬유 무게비도 1/1인 분말 액을 제조한다. 다음으로, 원심분리를 통하여 물을 제거하고 진공오본에서 건조시 킴으로써 실리콘 복합재 음극활물질을 얻었다. A nanosilicon suboxide powder solution dispersed in water, which was uniformly dispersed in 100 m, and a slurry obtained by dispersing 12.5 mg of graphene powder (average particle diameter 2.5 卿) and 12.5 mg of carbon fiber powder (100 nm thick) in 50 ^ After mixing with, dispersion was prepared using ultrasonic waves to prepare a composite dispersion solution. At this time, the composite material dispersion solution is 80: 10: nano silicon suboxide having a 10 wt% ratio (Si0 0 37.) - includes a carbon fiber composite material-graphene. In other words, nano silicon nitrite / (graphene + carbon fiber) weight ratio is 4/1, graphene / carbon fiber weight ratio of 1/1 to prepare a powder solution. Next, water was removed by centrifugation and dried in a vacuum oven to obtain a silicon composite anode active material.
<114>  <114>
<Π5> (실시예 4) 실시예 3의 나노 실리콘 아산화물 (SiO )-그래핀-카본섬유 음극 활물질로 이루어진 음극을 포함하는 리롭이차전지의 전기화학적 특성 조사 <Example 5> (Example 4) Investigation of the electrochemical characteristics of the reflow secondary battery comprising a negative electrode composed of a nano silicon suboxide (SiO) -graphene-carbon fiber negative electrode active material of Example 3
<ιΐ6> 실시예 3에서 나노실리카로부터 제조한 나노 실리콘 아산화물 (Si00.37)-그래 핀-카본섬유 음극활물질 : super P : 바인더의 중량비를 75 : 10 : 15 (wt¾>)로 흔 합하여 음극을 제조하였다. 이때, 나트륨 카르복시 메틸 셀를로오스 (sodium carboxymethyl cellulose) 및 폴리아크릴산 (polyacrylic acid)을 1 : 1 중량흔합비 로 흔합하여 물에 용해한 바인더 용액을 준비한 후, 여기에 실리콘 복합재 음극활 물질 및 super P를 넣어 음극 코팅용 슬러리를 제조하였다. 상기 슬러리를 구리 집 전체 포일위에 통상의 방법으로 코팅하였다. 다음으로, 진공 오븐을 이용하여 110 °C에서 12시간동안 건조하였다. 건조 후 40 kg/cu의 압력이 유지되는 를 프레스 (roll press)에 통과시켜 음극을 제작하였다. <ιΐ6> Example 3 the nano silicon suboxide produced from nanosilica in (Si0 0 37.) - graphene-carbon fiber cathode active material: super P: the ratio by weight of the binder of 75: 10: combined common to 15 (wt¾>) A negative electrode was prepared. At this time, sodium carboxymethyl cellulose and polyacrylic acid were mixed at a weight ratio of 1: 1 to prepare a binder solution dissolved in water, and then a silicon composite anode active material and super P were added thereto. Put to prepare a slurry for negative electrode coating. The slurry was coated on a copper current foil in a conventional manner. Next, using a vacuum oven was dried for 12 hours at 110 ° C. After drying, a pressure of 40 kg / cu was maintained through a press (roll press) to prepare a negative electrode.
<117> 리튬셀은 리튬 메탈을 상대전극 및 기준전극으로 하고, 제조된 실리콘 음극 을 작업전극으로 사용하고, 전해액으로 1M LiPF6이 녹아 있는 풀루오로 에틸렌 카보 네이트 (FEC)와 디에틸 카보네이트 (DEC)의 흔합용액 (흔합액 비율 5:5)를 사용하여 제작되었다. 약 0.2C로 0.05 ~ 1.5 V 전압구간에서 정전류-정전압 (CC-CV) 방식으 로 충전과 방전을 실시하였다. 상기 나노 실리콘 아산화물 (Si00.37)-그래핀-카본섬유 복합재를 포함하는 리튬이차전지의 음극용량 (capacity)을 무게당 용량 (specific gravimetric capacity)으로 환산한 결과를 도 8에 나타내였다. Lithium cell is a pullulo ethylene carbonate (FEC) and diethyl carbonate (1M LiPF 6 dissolved in an electrolyte solution using lithium metal as a counter electrode and a reference electrode, and a prepared silicon cathode as a working electrode). It was prepared using a mixed solution of DEC) (mixture ratio 5: 5). Charging and discharging were performed in a constant current-constant voltage (CC-CV) method at a voltage range of 0.05 to 1.5 V at about 0.2C. The nano-silicon suboxide (Si0 0 37.) - graphene - was shows the results in terms of negative electrode capacity (capacity) of the lithium secondary battery comprising the carbon fiber composite material as a capacity (specific gravimetric capacity) per weight in Fig.
118> 본 발명의 일 실시예에 따른 나노 실리콘 아산화물 (Si00.37)-그래핀-카본섬유 복합재를 포함하는 음극은 초기 충전 (리튬 삽입) 용량은 1965 mAh/g, 초기 방전 (리 튬 탈착) 용량은 1579 mAh/g로서, 초기 쿨통효율은 약 80 ¾>이나, 2회 이후 클통효 율이 97 % 이상으로 증가하였으며, 50 싸이클까지의 용량유지율은 80 %이였다. 118> The negative electrode including the nano silicon suboxide (Si0 0.37 ) -graphene-carbon fiber composite according to an embodiment of the present invention has an initial charge (lithium insertion) capacity of 1965 mAh / g, the initial discharge (li Lithium desorption capacity was 1579 mAh / g, the initial coolant efficiency was about 80 ¾>, but after two cycles, the keg efficiency increased to 97% or more, and the capacity retention rate up to 50 cycles was 80%.
<119> 이는 실시예 2의 나노실리콘 복합재로 제조된 음극에서보다 충방전 성능이 향상된 것이다. 이는 실리콘 아산화물 (Si00.37)에서의 산소가 초기 충전 중 Li20, 리 튬실리케이트를 형성하여 실리콘의 부피변화 수용력 (accomodate)이 향상되었고 나 노 실리콘 아산화물 (Si00.37)-그래핀-카본섬유 복합재 음극을 부반웅 억제효과가 있 다고 알려져 있는 FEC:DEC로 이루어진 전해액에서 층방전시킴으로써 전해액과의 계 면반웅이 억제되었기 때문이다. This is an improved charge and discharge performance than the negative electrode made of the nanosilicon composite of Example 2. This silicon suboxide (. Si0 0 37) oxygen of the initial charge Li 2 0, lithium to form a silicate improved the volume change of the silicon capacity (accomodate) nano-silicon suboxide (Si0 0 37.) In- This is because the interfacial reaction with the electrolyte was suppressed by layer discharge of the graphene-carbon fiber composite anode in an electrolyte consisting of FEC: DEC, which is known to have a negative reaction.
<120>  <120>
<121> 이상과 같이 본 발명에서는 한정된 실시예에 의해 설명되었으나 이는 본 발 명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예 에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.  As described above, the present invention has been described by a limited embodiment, but this is only provided to help a more general understanding of the present invention, and the present invention is not limited to the above embodiments. Those skilled in the art can make various modifications and variations from this description.
<122> 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있 는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.  Therefore, the spirit of the present invention should not be limited to the described embodiments, and all the things equivalent to or equivalent to the scope of the claims as well as the claims to be described below are within the scope of the spirit of the present invention. Will belong.
<123>  <123>

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
나노 실리콘 , 나노 실리콘 아산화물 및 이들의 흔합물 중에서 선택되는 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재 .  Nano silicon-based compound-graphene-carbon fiber composites selected from nano silicon, nano silicon suboxide, and mixtures thereof.
【청구항 2】 [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 나노 실리콘 아산화물은 SiOx(0 < X < 0.5)인 나노 실리콘계 화합물-그 래핀ᅳ탄소섬유 복합재 . The nano silicon suboxide is SiO x (0 <X <0.5) nano silicon compound-graphene ᅳ carbon fiber composite.
【청구항 3】 [Claim 3]
제 1항 및 게 2항 중에서 선택되는 어느 한 항의 나노 실리 콘계 화합물ᅳ그래핀 -탄소섬유 복합재를 포함하는 리튬이차전지용 음극활물질 .  The negative electrode active material for a lithium secondary battery comprising the nano-silicon compound ᅳ graphene-carbon fiber composite of any one of claims 1 and 2.
【청구항 4】 [Claim 4]
제 3항의 리튬이차전지용 음극활물질을 포함하는 리튬이차전지 .  A lithium secondary battery comprising the negative electrode active material for lithium secondary battery of claim 3.
【청구항 5】 [Claim 5]
(a) 리튬 분말과 실리카 분말을 산소 교환 반웅시 켜, 나노 실리콘, 나노 실 리콘 아산화물 및 이들의 흔합물 중에서 선택되는 나노 실리콘계 화합물 분말을 제 조하는 단계 및  (a) oxygen exchange reaction of lithium powder and silica powder to produce a nano silicon-based compound powder selected from nano silicon, nano silicon suboxide and mixtures thereof; and
(b) 상기 제조된 나노 실리콘계 화합물 분말과 , 그래핀 및 탄소섬유를 흔합 하는 단계를 포함하는 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재를 제조하는 방법 .  (B) a method for producing a nano-silicon compound-graphene-carbon fiber composite comprising the step of mixing the prepared nano-silicon compound powder, graphene and carbon fiber.
【청구항 6】 [Claim 6]
제 5항에 있어서,  The method of claim 5,
상기 (a)단계는 제조된 나노 실리콘계 화합물 분말을 리튬 산화물로부터 분 리 및 정제하는 단계를 더 포함하는 나노 실리콘계 화합물 -그래핀ᅳ탄소섬유 복합재 를 제조하는 방법 .  The step (a) is a method for producing a nano silicon-based compound-graphene ᅳ carbon fiber composite further comprising the step of separating and purifying the prepared nano silicon-based compound powder from lithium oxide.
【청구항 7】 제 5항에 있어서, [Claim 7] The method of claim 5,
상기 (b)단계는 나노 실리콘계 화합물 분말과, 그래핀 및 탄소섬유를 각각 용매에 분산시킨 슬러리를 흔합한 다음 상기 용매를 제거한 후 건조하는 단계를 더 포함하는 나노 실리콘계 화합물—그래핀-탄소섬유 복합재를 제조하는 방법 .  Step (b) is a nano silicon compound-graphene-graphene-carbon fiber composites further comprising the step of mixing the nano silicon compound powder, a slurry of graphene and carbon fibers dispersed in a solvent, and then removing the solvent and drying How to make it.
【청구항 8】 [Claim 8]
제 5항에 있어서,  The method of claim 5,
상기 실리카 분말은 품드 실리카, 마이크로포러스 실리카, 메조포러스 실리 카 및 매크로포러스 실리카 중에서 선택되는 어느 하나 또는 둘 이상의 흔합물인 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재를 제조하는 방법 .  The silica powder is any one or two or more combinations selected from the group silica, microporous silica, mesoporous silica and macroporous silica nano-silicon compound-graphene-carbon fiber composite manufacturing method.
[청구항 9】 [Claim 9]
제 5항에 있어서,  The method of claim 5,
상기 실리카 분말은 직경이 2 nm ~ 30 인 나노 실리콘계 화합물 -그래핀ᅳ탄 소섬유 복합재를 제조하는 방법.  The silica powder is a method for producing a nano-silicon compound-graphene pentane small fiber composite having a diameter of 2 nm ~ 30.
【청구항 10] [Claim 10]
제 5항에 있어서,  The method of claim 5,
상기 그래핀은 직경이 lOran ~ 5卿인 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재를 제조하는 방법 .  The graphene is a method for producing a nano-silicon compound-graphene-carbon fiber composite having a diameter of lOran ~ 5 卿.
【청구항 11] [Claim 11]
거 15항에 있어서,  According to claim 15,
상기 탄소섬유는 두께 lnm ~ 5 , 길이 50 ~ 200 인 나노 실리콘계 화합물— 그래핀-탄소섬유 복합재를 제조하는 방법.  The carbon fiber is a nano-silicon compound of lnm ~ 5, length 50 ~ 200-graphene-carbon fiber composite manufacturing method.
【청구항 12] [Claim 12]
제 5항에 있어서,  The method of claim 5,
상기 리튬과 실리카 (Si02)의 몰비는 2 ~ 6 : 1인 나노 실리콘계 화합물 -그래 핀-탄소섬유 복합재를 제조하는 방법. A method of producing a nano-silicon compound-graphene-carbon fiber composite material, wherein the molar ratio of the lithium and silica (Si0 2 ) is 2 to 6: 1.
【청구항 13] 제 5항에 있어서, [Claim 13] The method of claim 5,
상기 )단계는 비활성 분위기 내에서 흔합한 후, 1 ~ 20 시간동안 볼밀링 공정으로 실시하는 것인 나노 실리콘계 화합물—그래핀―탄소섬유 복합재를 제조하는 방법.  The step) is a method for producing a nano-silicon compound-graphene-carbon fiber composites which are carried out by a ball milling process for 1 to 20 hours after mixing in an inert atmosphere.
【청구항 14】 [Claim 14]
제 5항에 있어서,  The method of claim 5,
상기 (a)단계의 산소 교환 반웅은 0 ~ 300 °C의 온도범위에서 실시하는 것인 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재를 제조하는 방법. Oxygen exchange reaction in step (a) is a method for producing a nano silicon-based compound-graphene-carbon fiber composite material is carried out at a temperature range of 0 ~ 300 ° C.
【청구항 15] [Claim 15]
제 5항에 있어서,  The method of claim 5,
상기 (b)단계의 탄소 섬유는 산처리를 통해 표면 산화된 것인 나노 실리콘계 화합물—그래핀-탄소섬유 복합재를 제조하는 방법.  The carbon fiber of step (b) is surface-oxidized by acid treatment method for producing a nano silicon-based compound—graphene-carbon fiber composite.
【청구항 16】 [Claim 16]
제 5항에 있어서,  The method of claim 5,
상기 (b)단계에서 나노 실리콘계 화합물 분말과, 그래핀 및 탄소 섬유의 흔 합물의 중량흔합비는 1 : 9 ~ 9 : 1인 나노 실리콘계 화합물—그래핀-탄소섬유 복 합재를 제조하는 방법 .  The method of producing a nano-silicon compound—graphene-carbon fiber composite material having a weight mixing ratio of the nano silicon-based compound powder and the graphene and carbon fiber mixture in the step (b) is from 1: 9 to 9: 1.
【청구항 17] [Claim 17]
제 5항에 있어서, 6. The method of claim 5,
상기 (b)단계에서 그래핀 및 탄소 섬유는 중량흔합비가 1 : 10 ~ 10 : 1인 나노 실리콘계 화합물 -그래핀-탄소섬유 복합재를 제조하는 방법.  Graphene and carbon fibers in the step (b) is a method of producing a nano silicon compound-graphene-carbon fiber composite having a weight mixing ratio of 1: 10 ~ 10: 1.
【청구항 18] [Claim 18]
제 5항에 있어서,  The method of claim 5,
상기 (b)단계는 0 ~ 100°C에서 실시되는 나노 실리콘계 화합물-그래핀 -탄소 섬유 복합재를 제조하는 방법 . Step (b) is a method for producing a nano silicon-based compound-graphene-carbon fiber composite is carried out at 0 ~ 100 ° C.
【청구항 19】 거 15항에 있어서, [Claim 19] According to claim 15,
상기 탄소 섬유는 카본파이버, 단일벽 탄소나노튜브, 다중벽 탄소나노튜브 및 탄소나노와이어 중에서 선택되는 어느 하나인 나노 실리콘계 화합물 -그래핀-탄 소섬유 복합재를 제조하는 방법 .  The carbon fiber is any one selected from carbon fiber, single-walled carbon nanotubes, multi-walled carbon nanotubes and carbon nanowires nano-silicon compound-graphene-carbon fiber composite manufacturing method.
PCT/KR2013/007341 2012-08-16 2013-08-14 Silicon composite anode active material for lithium secondary batteries, method for preparing same, and lithium secondary batteries including same WO2014027845A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0089550 2012-08-16
KR20120089550 2012-08-16
KR1020130093352A KR101604003B1 (en) 2012-08-16 2013-08-06 Anodes active material containing Si composite for lithium secondary batteries and its preparation method and lithium secondary batteries comprising the same
KR10-2013-0093352 2013-08-06

Publications (1)

Publication Number Publication Date
WO2014027845A1 true WO2014027845A1 (en) 2014-02-20

Family

ID=50101328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007341 WO2014027845A1 (en) 2012-08-16 2013-08-14 Silicon composite anode active material for lithium secondary batteries, method for preparing same, and lithium secondary batteries including same

Country Status (1)

Country Link
WO (1) WO2014027845A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206802A (en) * 2015-08-24 2015-12-30 苏州高通新材料科技有限公司 Lithium-rich sulfonated graphene-nanometer SiOx negative electrode material and preparation method and application thereof
WO2023184133A1 (en) * 2022-03-29 2023-10-05 宁德新能源科技有限公司 Negative electrode sheet, negative electrode sheet used in electrochemical apparatus, electrochemical apparatus and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080076075A (en) * 2007-02-14 2008-08-20 삼성에스디아이 주식회사 Anode active material, method of preparing the same, anode and lithium battery containing the material
KR20110059130A (en) * 2009-11-27 2011-06-02 연세대학교 산학협력단 Composite composition and bipolar plate for fuel cell using the same
KR20110124728A (en) * 2010-05-11 2011-11-17 주식회사 루트제이제이 Active material for secondary lithium battery, manufacturing method thereof, and secondary lithium battery comprising the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080076075A (en) * 2007-02-14 2008-08-20 삼성에스디아이 주식회사 Anode active material, method of preparing the same, anode and lithium battery containing the material
KR20110059130A (en) * 2009-11-27 2011-06-02 연세대학교 산학협력단 Composite composition and bipolar plate for fuel cell using the same
KR20110124728A (en) * 2010-05-11 2011-11-17 주식회사 루트제이제이 Active material for secondary lithium battery, manufacturing method thereof, and secondary lithium battery comprising the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU, Y. ET AL.: "Improvement of cycling stability of Si anode by mechanochemcial reduction and carbon coating.", JOURNAL OF POWER SOURCES., vol. 189, 2009, pages 480 - 484 *
YANG, XUELIN ET AL.: "Nanosized silicon-based composite derived by in situ mechanochemical reduction for lithium ion batteries.", JOURNAL OF POWER SOURCES., vol. 164, 2007, pages 880 - 884 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206802A (en) * 2015-08-24 2015-12-30 苏州高通新材料科技有限公司 Lithium-rich sulfonated graphene-nanometer SiOx negative electrode material and preparation method and application thereof
WO2023184133A1 (en) * 2022-03-29 2023-10-05 宁德新能源科技有限公司 Negative electrode sheet, negative electrode sheet used in electrochemical apparatus, electrochemical apparatus and electronic device

Similar Documents

Publication Publication Date Title
Mu et al. A two-dimensional nitrogen-rich carbon/silicon composite as high performance anode material for lithium ion batteries
Lin et al. Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage
EP3158599B1 (en) Porous silicon electrode and method
Wu et al. Silicon nanoparticles embedded in a porous carbon matrix as a high-performance anode for lithium-ion batteries
Chen et al. In situ nitrogenated graphene–few-layer WS 2 composites for fast and reversible Li+ storage
Yang et al. An in situ method of creating metal oxide–carbon composites and their application as anode materials for lithium-ion batteries
Guo et al. A three dimensional SiO x/C@ RGO nanocomposite as a high energy anode material for lithium-ion batteries
KR101751787B1 (en) Anodes active material containing Si composite for lithium secondary batteries and its preparation method and lithium secondary batteries comprising the same
Zhu et al. Controlled fabrication of Si nanoparticles on graphene sheets for Li-ion batteries
US9620783B2 (en) Mesoporous metal oxide microsphere electrode compositions and their methods of making
Jeong et al. High-performance characteristics of silicon inverse opal synthesized by the simple magnesium reduction as anodes for lithium-ion batteries
Gao et al. From natural material to high-performance silicon based anode: Towards cost-efficient silicon based electrodes in high-performance Li-ion batteries
Abbas et al. One-pot synthesis of a composite of monodispersed CuO nanospheres on carbon nanotubes as anode material for lithium-ion batteries
Ren et al. A facile synthesis of SiO2@ C@ graphene composites as anode material for lithium ion batteries
Wenelska et al. Hollow carbon sphere/metal oxide nanocomposites anodes for lithium-ion batteries
Cai et al. Two-dimensional Nb-based M4C3Tx MXenes and their sodium storage performances
KR20130107928A (en) Method of preparing carbon nanotube-olivine type lithium manganese phosphate composites and lithium secondary battery using the same
Zhou et al. Enhanced lithium ion battery performance of nano/micro-size Si via combination of metal-assisted chemical etching method and ball-milling
Wang et al. Electrocatalysis of polysulfide conversion by conductive RuO 2 nano dots for lithium–sulfur batteries
KR20120103947A (en) Transition metal oxide/graphene composites and synthesizing method thereof
Kim et al. Molten salts approach of metal-organic framework-derived nitrogen-doped porous carbon as sulfur host for lithium-sulfur batteries
Qiang et al. Ge@ C core–shell nanostructures for improved anode rate performance in lithium-ion batteries
Han et al. Facile assembly of α-Fe2O3 nanorings@ reduced graphene oxide composites with high lithium storage performance
Chen et al. Porous Si@ C coaxial nanotubes: Layer-by-layer assembly on ZnO nanorod templates and application to lithium-ion batteries
Ye et al. Constructing Li 3 VO 4 nanoparticles anchored on crumpled reduced graphene oxide for high-power lithium-ion batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13829636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13829636

Country of ref document: EP

Kind code of ref document: A1