WO2014026824A2 - Dreiphasiger mehrpunkt-stromrichter - Google Patents

Dreiphasiger mehrpunkt-stromrichter Download PDF

Info

Publication number
WO2014026824A2
WO2014026824A2 PCT/EP2013/065303 EP2013065303W WO2014026824A2 WO 2014026824 A2 WO2014026824 A2 WO 2014026824A2 EP 2013065303 W EP2013065303 W EP 2013065303W WO 2014026824 A2 WO2014026824 A2 WO 2014026824A2
Authority
WO
WIPO (PCT)
Prior art keywords
phase
power converter
converter
multipoint
voltage
Prior art date
Application number
PCT/EP2013/065303
Other languages
English (en)
French (fr)
Other versions
WO2014026824A3 (de
Inventor
Marvin Nabe
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2014026824A2 publication Critical patent/WO2014026824A2/de
Publication of WO2014026824A3 publication Critical patent/WO2014026824A3/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Definitions

  • the invention relates to a three-phase multipoint power converter.
  • a power converter which is also called inverter in this conversion, needed.
  • An inverter also referred to as a DC / AC power converter, converts DC power into AC by switching between different DC voltage levels.
  • the resulting AC voltage is not sinusoidal but consists of a series of high-frequency rectangular pulses designed to be as close as possible to a sine wave. This non-ideal sine shape causes upper oscillations, i.
  • harmonic filters can be used to filter out problematic harmonics and to filter the output oscillation. These harmonic filters cause additional costs and losses.
  • the simplest inverter is the two-position converter, also referred to as a two-stage converter, since it works with two voltage levels.
  • the three-point NPC power converter (neutral point clamped) represents an extension of the two-point converter. This three-point converter has the zero voltage as an additional voltage level. Since the three-point converter generates lower harmonics, the filter effort is simplified.
  • the three-state power converter is used when the value of the amplitude of the DC voltage exceeds the value of the reverse voltage of a semiconductor turn-off switch used.
  • power converters that work with five voltage levels, but these circuits are characterized by a much higher complexity. In the publication entitled "Recent Advances in Multilevel
  • the former type of converter is referred to as a "bulk” inverter and the second type of converter as a “conditioning” inverter.
  • This publication shows various topologies of hybrid power converters. According to this publication, a hybrid multipoint power converter electrically connects at least two multi-point power converters in series or in parallel. As a result, multi-point converters with a higher number of voltage levels are available. The number of voltage stages of the hybrid multipoint power converter is the product of the voltage levels of the bulk and conditioning inverters.
  • the invention is based on the object of specifying a three-phase multipoint power converter, which is less expensive than a hybrid multipoint power converter of known type.
  • three three-phase converters of the same topology are interconnected with one another and with a voltage intermediate circuit with at least three capacitors connected in series.
  • the third three-phase power converter connects the AC-side terminals of these two three-phase power converters to one another, the AC-side terminals of this third three-phase power converter each having one output terminal of the three-phase multi-point converter according to the invention.
  • Form power converter In the interconnection of the two three-phase converters on the alternating voltage side by means of the third three-phase converter corresponding AC-side terminals of the two three-phase converters are linked by means of a half-bridge of the third three-phase converter.
  • the advantage of this three-phase multipoint power converter according to the invention is that one and the same topology is used for the three three-phase power converters.
  • the two three-phase converters, which are each electrically connected in parallel on the DC voltage side of a capacitor of the voltage intermediate circuit, are only loaded with one third of the DC link voltage, whereby the connecting three-phase converter is loaded with two thirds of the DC link voltage.
  • the three-phase power converters, which are loaded with a low voltage are controlled with a higher pulse frequency than the three-phase power converter, which is loaded with a high voltage.
  • two three-phase multipoint converters according to the invention are interconnected such that the two voltage intermediate circuits are linked together by means of another capacitor and the output terminals of the two three-phase multipoint converters by means of another power converter of the same topology with each other get connected.
  • At the AC voltage side terminals of this connecting three-phase power converter is in each case a voltage with eight voltage levels.
  • the associated chained voltages then each have fifteen voltage levels.
  • the simplest embodiment of the three-phase multipoint power converter according to the invention has three three-phase power converters in the topology of two-point converters.
  • a six-pack module can be used in each case for the two conditioning converters, whereas for the bulk-current converters three half-bridge modules are used. With these modules, the three three-phase converters can be interconnected without much effort.
  • a three-point power converter is used in each case for the three three-phase power converters.
  • the use of three three-phase three-phase converters increases the number of capacitors connected in series.
  • the voltage intermediate circuit has two capacitors. As a result, there are seven voltage levels in the voltage intermediate circuit.
  • the voltages applied to the three AC side output terminals of the three-phase multi-point converter then have seven voltage levels, whereas their chained voltages have thirteen voltage levels.
  • the middle capacitor which divides the two capacitors, to which a three-phase converter is electrically connected in parallel on the DC voltage side, is divided into two capacitors of equal size. This makes it possible that the connection point of these two equal-sized Kondenstoren can be connected to ground. Thus, one obtains a voltage intermediate circuit with center, which is grounded, whereby a symmetrical voltage distribution is achieved in the converter.
  • FIG. 1 shows a block diagram of a first embodiment of a three-phase multipoint power converter according to the invention, wherein in 2 shows a first realization of this invention
  • FIG 3 shows an advantageous embodiment of the three-phase multipoint power converter according to the invention in the realization of FIG 2, the
  • FIG. 6 shows a second implementation of the three-phase multipoint power converter according to the invention, wherein the
  • Topology ANPC shows, and in the
  • FIGS. 8-10 are different embodiments of a
  • FIG. 1 illustrates a block diagram of a three-phase multipoint power converter 2 according to the invention.
  • This three-phase multipoint power converter 2 has three three-phase
  • this three-phase multipoint power converter 2 has a voltage intermediate circuit 10, which has three capacitors Cl, C2 and C3, which are electrically connected in series. Electrically parallel to the voltage intermediate circuit 10, which is also referred to as DC voltage intermediate circuit, is a
  • the DC voltage source 12 connected, which is shown here as an equivalent circuit diagram.
  • the three-phase converter 4 is connected on the DC side electrically parallel to the upper capacitor Cl of the voltage intermediate circuit 10, whereas the three-phase converter 6 is connected on the DC side electrically parallel to the lower capacitor C3 of the voltage intermediate circuit 10. Since three capacitors Cl, C2 and C3 are electrically connected in series in the voltage intermediate circuit 10, this voltage intermediate circuit 10 has four Voltage levels up.
  • the pending DC voltage U D c is divided approximately equally among the three capacitors Cl, C2 and C3, so that in each case a direct voltage U C i, U C 2 and U 3 is pending C on these capacitors Cl, C2 and C3, whose amp Lituden in each case approximately one third of the voltage intermediate circuit 10 pending DC voltage U D c corresponds.
  • the three-phase power converter 8 connects the AC-side outputs Ri, S ⁇ and ⁇ of the three-phase power converter 4 to the AC-side outputs R 2 , S 2 and T 2 of the three-phase power converter 6. In this case, the outputs R ⁇ ,
  • Si and i of the upper three-phase power converter 4 each having a positive terminal 14, 18 and 22 of the three half bridges R, S and T of the three-phase power converter 8 and the negative terminals 16, 20 and 24 of these three half bridges R, S and T of the three-phase power converter 8 with the AC-side terminals R 2 , S 2 and T 2 of the lower three-phase
  • FIG 2 an implementation of the inventive three-phase multi-point converter 2 is shown in FIG 1 in more detail.
  • three-phase converters 4, 6 and 8 are 6-pulse
  • IGBT insulated gate bipolar transistors
  • the three-phase converters 4 and 6 are charged with only one third of the intermediate circuit voltage, switchable semiconductor switches with a lower blocking voltage can be used in contrast to the turn-off semiconductor switches of the three-phase converter 8. Because of this voltage load, the three-phase converter 4 and 6 are operated at a higher pulse frequency than the three-phase power converter 8. Thus, one can denote the power converters 4 and 6 as a "conditioning" rectifier and the power converter 8 as a "bulk" rectifier of a hybrid power converter.
  • FIG. 3 an advantageous embodiment of the three-phase multipoint power converter 2 according to the invention is shown in greater detail in the realization according to FIG.
  • This embodiment differs from the embodiment according to FIG. 2 in that the middle capacitor C2 of the three capacitors C1, C2 and C3 connected electrically in series is subdivided into two equal capacitors C2 / 2.
  • the connection point 26 of these two equal capacitors C2 / 2 is electrically connected to ground.
  • This connection point 26 represents the center of the voltage intermediate circuit 10. By grounding this center point, a symmetrical voltage distribution in the three-phase multipoint power converter 2 is achieved.
  • a realization of an advantageous development of the three-phase multipoint power converter 2 according to the invention according to FIG. 2 is shown in more detail in FIG.
  • This advantageous development consists of two three-phase multipoint converters 2 according to FIG 2, which are referred to in this embodiment as 2 and 2 2 .
  • These two three-phase multipoint converters 2i and 2 2 are the DC side connected by means of another capacitor C4 and the AC side by means of another three-phase converter 28 together.
  • the further capacitor C4 connects the voltage intermediate circuit 10i of the first three-phase multipoint power converter 2i with the voltage intermediate circuit 10 2 of the second three-phase multipoint power converter 2 2 such that the capacitors Cli, C2i, C3i and Cl 2 , C2 2 , C3 2 and the further capacitor C4 are electrically connected in series.
  • FIG 5 the embodiment of the three-phase multi-point power converter 2 is shown in FIG 4, wherein its voltage intermediate circuit 10 has a center which is grounded. As a result, a symmetrical voltage distribution is achieved.
  • FIG. 6 shows a second embodiment of the three-phase multipoint power converter 2 according to the invention as shown in FIG. 1 in more detail.
  • This realization differs from the realization of the three-phase multipoint power converter 2 according to FIG. 2 in that, instead of 6-pulse two-point converters for the three three-phase converters 4, 6 and 8, in each case a three-point power converter in the topology NPC (neutral Point Clamped) is used.
  • NPC neutral Point Clamped
  • three-phase three-phase converters can also be used in the ANPC (Advanced Neutral Point Clamped) topology become.
  • ANPC Advanced Neutral Point Clamped
  • these two topologies differ in that, instead of center-point diodes, turn-off semiconductor switches, in particular insulated gate bipolar transistors (IGBTs), are used.
  • IGBTs insulated gate bipolar transistors
  • Block diagram of a three-phase three-phase converter in the topology ANPC is shown in more detail in FIG 7 and known from US 2006/0056209 AI.
  • FIGS. 8 to 10 show various embodiments of the DC voltage source.
  • the source is designed as a simple DC voltage source 12 (grounded or potential-free).
  • the source is connected to two separate direct voltage sources 12 and 12 ⁇ 2 as a bipolar direct voltage source with center grounding executed.
  • the DC voltage source 12 is designed as a simple potential-free DC voltage source, wherein the voltage intermediate circuit 10 is formed such that a center exists, which is electrically conductively connected to ground. This still gives a symmetrical voltage distribution in the three-phase multipoint power converter 2.
  • the three-phase multipoint power converter can be operated according to the invention at different voltage sources.
  • One application of this three-phase multipoint power converter 2 according to the invention is photovoltaics, wind power, drives.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

Die Erfindung bezieht sich auf einen dreiphasigen Mehrpunkt- Stromrichter. Erfindungsgemäß weist dieser Dreiphasiger Mehrpunkt-Stromrichter (2,2i,22) drei dreiphasigen Stromrichtern (4,6,8) gleicher Topologie und einen Gleichspannungszwischenkreis (10), bestehend aus wenigstens drei Kondensatoren (C1,C2,C3), die elektrisch in Reihe geschaltet sind, auf, wobei ein dreiphasiger Stromrichter (4) gleichspannungsseitig elektrisch parallel zu einem oberen Kondensator (C1) und ein weiterer dreiphasiger Stromrichter (6) gleichspannungsseitig elektrisch parallel zu einem unteren Kondensator (C3) geschaltet ist, wobei diese beiden dreiphasigen Stromrichter (4,6) wechselspannungsseitig jeweils mittels einer Halbbrücke (R,S,T) des dritten dreiphasigen Stromrichters (8) miteinander verknüpft sind und wobei wechselspannungsseitige Anschlüsse dieser Halbbrücken (R,S,T) dieses dritten dreiphasigen Stromrichters (8) jeweils einen Ausgangs -Anschluss (RM,SM,Tm) des dreiphasigen Mehrpunkt-Stromrichters (2) bilden. Somit erhält man einen dreiphasigen Hybrid-Mehrpunkt- Stromrichter, der mit Standart -Modulen ohne großen Aufwand realisiert werden kann.

Description

Beschreibung
Dreiphasiger Mehrpunkt-Stromrichter Die Erfindung bezieht sich auf einen dreiphasigen Mehrpunkt- Stromrichter .
Zur Generierung einer Wechselgröße, insbesondere einer dreiphasigen Wechselgröße, aus einer Gleichspannung wird ein Stromrichter, der bei dieser Wandlung auch als Wechselrichter bezeichnet wird, benötigt. Ein Wechselrichter, der auch als DC/AC-Stromrichter bezeichnet wird, wandelt Gleichstrom in Wechselstrom um, indem er zwischen verschiedenen Gleichspannungsstufen umschaltet. Die daraus resultierende Wechselspan- nung ist nicht sinusförmig, sondern besteht aus einer Reihe von hochfrequenten rechteckigen Impulsen, die so angelegt sind, dass sie einer Sinuswelle möglichst nahe kommen. Diese nicht ideale Sinusform verursacht OberSchwingungen, d.h.
Ströme und Spannungen höherer Frequenz, deren Auswirkungen von einer zusätzlichen Belastung der Isolierung und der Lager von Motoren bis hin zu Störungen anderer Geräte reichen. Zwar können Oberschwingungsfilter eingesetzt werden, um problematische Oberschwingungen herauszufiltern und die Ausgangsschwingung zu filtern. Diese Oberschwingungsfilter verursa- chen zusätzliche Kosten und Verluste.
Der einfachste Wechselrichter ist der Zweipunkt-Stromrichter, auch als Zwei-Stufen-Stromrichter bezeichnet, da dieser mit zwei Spannungsstufen arbeitet. Der Dreipunkt-NPC-Stromrichter (Neutral Point Clamped) stellt eine Erweiterung des Zweipunkt-Stromrichters dar. Dieser Dreipunkt-Stromrichter weist als zusätzliche Spannungsstufe die Nullpunkt-Spannung auf. Da der Dreipunkt-Stromrichter geringere Oberschwingungen erzeugt, vereinfacht sich der Filteraufwand. Der Dreipunkt- Stromrichter wird dann verwendet, wenn der Wert der Amplitude der Gleichspannung den Wert der Sperrspannung eines verwendeten abschaltbaren Halbleiterschalters übersteigt. Mittlerweile gibt es Stromrichter, die mit fünf Spannungsstufen arbeiten, allerdings zeichnen sich diese Schaltungen durch eine deutlich höhere Komplexität aus. In der Veröffentlichung mit dem Titel "Recent Advances in Multilevel
Converter/Inverter Topologies and Applications" von Fang Z. Peng et al . , veröffentlicht im Konferenzband der International Power Electronics Conference, IEEE 2010, Seiten 492-501, werden mehrere Mehrpunkt-Topologien miteinander verglichen. Insbesondere ist ein Fünfpunkt-Stromrichter in der Topologie mit Klemmdioden bzw. mit Klemmkondensatoren dargestellt. Neben diesen Klemmdioden und Klemmkondensatoren sind außerdem Steuer- und Ladeschaltkreise erforderlich. Bei Wechselrichtern für Mittelspannungsantriebe beispielsweise im unteren Leistungsbereich sind einfache Lösungen gefordert.
Aus der Veröffentlichung "A New Simplified Multilevel Inver- ter Topology for DC-AC Conversion" von Gerardo Ceglia et al . , abgedruckt in IEEE Transactions on Power Electronics, Vol. 21, No. 5, September 2006, Seiten 1311-1319, ist eine neue Topologie für einen Fünfpunkt-Stromrichter entnehmbar, die gegenüber der herkömmlichen Topologie mit Klemmdioden bzw. Klemmkondensatoren aufwandsärmer ist. Diese neue Topolgie verwendet eine H-Brücke, die mit einem bidirektionalen Hilfsschalter verknüpft ist. Mittels dieser Topologie werden für einen Fünfpunkt-Stromrichter nur fünf abschaltbare Halbleiter, acht Dioden und zwei Kondensatoren benötigt. Bei einem DC/AC-Stromrichter mit n Spannungsstufen werden bei dieser Topologie eine H-Brücke, n-2 bidirektionale Hilfsschalter und n-1 Kondensatoren, die elektrisch in Reihe geschaltet sind, miteinander verschaltet.
Der Veröffentlichung "Comparison of Hybrid Propulsion Drive Schemes" von K.A. Corzine et al . , veröffentlicht 2005 in IEEE Electric Ship Technology Symposium, Seiten 355-362, ist eine weitere Mehrpunkt-Topologie für einen DC/AC-Stromrichter entnehmbar. Diese Mehrpunkt-Topologie schaltet mehrere Stromrichter elektrisch in Reihe oder parallel. Diese Schaltungsvariante eines Mehrpunkt-Stromrichters wird als Hybrid-Strom- richter bezeichnet. Ein derartiger Hybrid-Stromrichter teilt die Leistung auf einen Stromrichter mit abschaltbaren Halbleiterschalter hoher Sperrspannung, die mit einer kleineren Schaltfrequenz betrieben werden, und einen Stromrichter mit abschaltbaren Halbleiterschaltern niedrigerer Sperrspannung, die mit einer hohen Schaltfrequenz betrieben werden, auf. Der erstgenannte Stromrichtertyp wird als "bulk" -Wechselrichter und der zweitgenannte Stromrichtertyp als "conditioning" - Wechselrichter bezeichnet. Dieser Veröffentlichung sind ver- schiedene Topologien von Hybrid-Stromrichtern entnehmbar. Gemäß dieser Veröffentlichung verschaltet ein Hybrid-Mehrpunkt- Stromrichter wenigstens zwei Mehrpunkt-Stromrichter elektrisch in Reihe oder parallel. Daraus resultierend Mehrpunkt- Stromrichter, die eine höhere Anzahl von Spannungsstufen auf- weisen. Die Anzahl der Spannungsstufen des Hybrid-Mehrpunkt- Stromrichters ergibt sich als Produkt der Spannungsstufen des bulk- und conditioning-Wechselrichters .
Der Erfindung liegt nun die Aufgabe zugrunde, einen dreipha- sigen Mehrpunkt-Stromrichter anzugeben, der gegenüber einem Hybrid-Mehrpunkt-Stromrichter bekannter Art aufwandsärmer ist .
Diese Aufgabe wird erfindungsgemäß mit den Merkmalen des An- Spruchs 1 gelöst.
Erfindungsgemäß werden drei dreiphasige Stromrichter gleicher Topologie miteinander und mit einem Spannungszwischenkreis mit wenigstens drei elektrisch in Reihe geschalteten Konden- satoren verschaltet. Dabei wird jeweils ein dreiphasiger
Stromrichter gleichspannungsseitig elektrisch parallel zu einem oberen bzw. zu einem unteren Kondensator der drei Kondensatoren des Spannungszwischenkreises geschaltet. Der dritte dreiphasige Stromrichter verbindet die wechselspannungsseiti - gen Anschlüsse dieser beiden dreiphasigen Stromrichter miteinander, wobei die wechselspannungsseitigen Anschlüsse dieses dritten dreiphasigen Stromrichters jeweils einen Ausgangs- Anschluss des erfindungsgemäßen dreiphasigen Mehrpunkt- Stromrichters bilden. Bei der Verschaltung der beiden dreiphasigen Stromrichter wechselspannungsseitig mittels des dritten dreiphasigen Stromrichters werden korrespondierende wechselspannungsseitige Anschlüsse der beiden dreiphasigen Stromrichter mittels einer Halbbrücke des dritten dreiphasigen Stromrichters verknüpft .
Der Vorteil dieses erfindungsgemäßen dreiphasigen Mehrpunkt- Stromrichters besteht darin, dass für die drei dreiphasigen Stromrichter ein und dieselbe Topologie verwendet wird. Die beiden dreiphasigen Stromrichter, die jeweils gleichspan- nungsseitig einem Kondensator des Spannungszwischenkreises elektrisch parallel geschaltet sind, werden nur mit einem Drittel der Zwischenkreisspannung belastet, wobei der verbin- dende dreiphasige Stromrichter mit zwei Dritteln der Zwischenkreisspannung belastet wird. Die dreiphasigen Stromrichter, die mit einer geringen Spannung belastet werden, werden mit einer höheren Pulsfrequenz gesteuert als der dreiphasige Stromrichter, der mit einer hohen Spannung belastet wird.
Bei einer vorteilhaften Ausführungsform des erfindungsgemäßen dreiphasigen Mehrpunkt-Stromrichters werden zwei erfindungsgemäße dreiphasige Mehrpunkt-Stromrichter derart miteinander verschaltet, dass die beiden Spannungszwischenkreise mittels eines weiteren Kondensators miteinander verknüpft werden und die Ausgangs-Anschlüsse der beiden dreiphasigen Mehrpunkt- Stromrichter mittels eines weiteren Stromrichters gleicher Topologie miteinander verbunden werden. An den wechselspan- nungsseitigen Anschlüssen dieses verbindenden dreiphasigen Stromrichters steht jeweils eine Spannung mit acht Spannungsstufen an. Die zugehörigen verketteten Spannungen weisen dann jeweils fünfzehn Spannungsstufen auf.
Die einfachste Ausführungsform des erfindungsgemäßen dreipha- sigen Mehrpunkt-Stromrichters weist drei dreiphasige Stromrichter in der Topologie Zweipunkt-Stromrichter auf. Dadurch können für die beiden conditioning-Stromrichter jeweils ein Sixpack-Modul verwendet werden, wogegen für den bulk-Strom- richter drei Halbbrücken-Module verwendet werden. Mit diesen Modulen können die drei dreiphasigen Stromrichter ohne großen Aufwand verschaltet werden. Bei einer weiteren Ausführungsform des erfindungsgemäßen dreiphasigen Mehrpunkt-Stromrichters wird für die drei dreiphasigen Stromrichter jeweils ein Dreipunkt-Stromrichter verwendet. Durch die Verwendung von drei dreiphasigen Dreipunkt- Stromrichtern erhöht sich die Anzahl der elektrisch in Reihe geschalteten Kondensatoren. Für jeden dreiphasigen Dreipunkt- Stromrichter weist der Spannungszwischenkreis zwei Kondensatoren auf. Dadurch liegen im Spannungszwischenkreis sieben Spannungsstufen vor. Die Spannungen, die an den drei wech- selspannungsseitigen Ausgangs-Anschlüssen des dreiphasigen Mehrpunkt-Stromrichters anliegen, weisen dann sieben Spannungsstufen auf, wogegen deren verkettete Spannungen dreizehn Spannungsstufen aufweisen.
Bei einer weiteren vorteilhaften Ausführungsform des erfin- dungsgemäßen dreiphasigen Mehrpunkt-Stromrichters ist der mittlere Kondensator, der die beiden Kondensatoren, denen jeweils gleichspannungsseitig ein dreiphasiger Stromrichter elektrisch parallel geschaltet ist, in zwei gleich große Kondensatoren unterteilt. Dadurch besteht die Möglichkeit, dass der Verbindungspunkt dieser beiden gleich großen Kondenstoren mit Erde verbunden werden kann. Somit erhält man einen Spannungszwischenkreis mit Mittelpunkt, der geerdet ist, wodurch eine symmetrische Spannungsaufteilung im Stromrichter erreicht wird.
Zur weiteren Erläuterung der Erfindung wird auf die Zeichnung Bezug genommen, in der mehrere Ausführungsformen eines dreiphasigen Mehrpunkt-Stromrichters nach der Erfindung schematisch veranschaulicht sind.
FIG 1 zeigt ein Blockschaltbild einer ersten Ausführungsform eines dreiphasigen Mehrpunkt-Stromrichters nach der Erfindung, wobei in FIG 2 eine erste Realisierung dieses erfindungsgemäßen
Stromrichters dargestellt ist, die
FIG 3 zeigt eine vorteilhafte Ausführungsform des erfindungsgemäßen dreiphasigen Mehrpunkt-Stromrichters in der Realisierung gemäß FIG 2, die
FIG 4 zeigt eine vorteilhafte Weiterbildung des erfindungsgemäßen dreiphasigen Mehrpunkt-Stromrichters in der Realisierung gemäß FIG 2, wogegen die
FIG 5 eine vorteilhafte Ausführungsform der vorteilhaften
Weiterbildung des erfindungsgemäßen dreiphasigen Mehrpunkt-Stromrichters zeigt, in der
FIG 6 ist eine zweite Realisierung des erfindungsgemäßen dreiphasigen Mehrpunkt-Stromrichters dargestellt, wobei die
FIG 7 ein Schaltbild eines Dreipunkt-Stromrichters in der
Topologie ANPC zeigt, und in den
FIG 8-10 sind unterschiedliche Ausführungsformen einer
Gleichspannungsquelle für den dreiphasigen Mehrpunkt-Stromrichter gemäß FIG 1 dargestellt.
FIG 1 veranschaulicht ein Blockschaltbild eines dreiphasigen Mehrpunkt-Stromrichters 2 gemäß der Erfindung. Dieser dreiphasige Mehrpunkt-Stromrichter 2 weist drei dreiphasige
Stromrichter 4, 6 und 8 gleicher Topologie auf. Außerdem weist dieser dreiphasige Mehrpunkt-Stromrichter 2 einen Spannungszwischenkreis 10 auf, der drei Kondensatoren Cl, C2 und C3 aufweist, die elektrisch in Reihe geschaltet sind. Elektrisch parallel zum Spannungszwischenkreis 10, der auch als Gleichspannungszwischenkreis bezeichnet wird, ist eine
Gleichspannungsquelle 12 geschaltet, die hier als Ersatzschaltbild dargestellt ist. Der dreiphasige Stromrichter 4 ist gleichspannungsseitig elektrisch parallel zum oberen Kondensator Cl des Spannungszwischenkreises 10 geschaltet, wogegen der dreiphasige Stromrichter 6 gleichspannungsseitig elektrisch parallel zum unteren Kondensator C3 des Spannungszwischenkreises 10 geschaltet ist. Da im Spannungszwischenkreis 10 drei Kondensatoren Cl, C2 und C3 elektrisch in Reihe geschaltet sind, weist dieser Spannungszwischenkreis 10 vier Spannungsstufen auf. Die anstehende Gleichspannung UDc teilt sich annähernd gleichmäßig auf die drei Kondensatoren Cl, C2 und C3 auf, so dass jeweils eine Gleichspannung UCi , UC2 und UC3 an diesen Kondensatoren Cl, C2 und C3 ansteht, deren Amp- lituden jeweils annähernd ein Drittel der am Spannungszwischenkreis 10 anstehenden Gleichspannung UDc entspricht. Der dreiphasige Stromrichter 8 verbindet die wechselspannungssei - tigen Ausgänge Ri , S± und ΤΊ des dreiphasigen Stromrichters 4 mit den wechselspannungsseitigen Ausgängen R2, S2 und T2 des dreiphasigen Stromrichters 6. Dabei werden die Ausgänge R±,
Si und i des oberen dreiphasigen Stromrichters 4 jeweils mit einem positiven Anschluss 14, 18 und 22 der drei Halbbrücken R, S und T des dreiphasigen Stromrichters 8 und die negativen Anschlüsse 16, 20 und 24 dieser drei Halbbrücken R, S und T des dreiphasigen Stromrichters 8 mit den wechselspannungsseitigen Anschlüssen R2, S2 und T2 des unteren dreiphasigen
Stromrichters 6 elektrisch leitend verbunden. Die wechselspannungsseitigen Anschlüsse dieser drei Halbbrücken R, S und T des dreiphasigen Stromrichters 8 bilden die Ausgangs-An- Schlüsse RM, SM und TM des dreiphasigen Mehrpunkt-Stromrichters 2.
In FIG 2 ist eine Realisierung des erfindungsgemäßen dreiphasigen Mehrpunkt-Stromrichters 2 nach FIG 1 näher dargestellt. Als dreiphasige Stromrichter 4, 6 und 8 werden 6 -pulsige
Stromrichter mit abschaltbaren Halbleiterschaltern, insbesondere Insulated-Gate-Bipolar-Transistoren (IGBT) , verwendet. Dabei werden für die dreiphasigen Zweipunkt-Stromrichter 4 und 6 jeweils ein IGBT-Sixpack-Modul verwendet, wobei für die Realisierung des dreiphasigen Stromrichters 8 drei IGBT- Halbbrücken-Module verwendet werden.
Da die dreiphasigen Stromrichter 4 und 6 nur mit einem Drittel der Zwischenkreisspannung beaufschlagt werden, können ab- schaltbare Halbleiterschalter mit einer geringeren Sperrspannung verwendet werden im Gegensatz zu den abschaltbaren Halbleiterschaltern des dreiphasigen Stromrichters 8. Wegen dieser Spannungsbelastung werden die dreiphasigen Stromrichter 4 und 6 mit einer höheren Pulsfrequenz betrieben als der dreiphasige Stromrichter 8. Somit kann man die Stromrichter 4 und 6 als "conditioning" -Stromrichter und den Stromrichter 8 als "bulk" -Stromrichter eines Hybrid-Stromrichters bezeichnen.
In FIG 3 ist eine vorteilhafte Ausführungsform des erfindungsgemäßen dreiphasigen Mehrpunkt-Stromrichters 2 in der Realisierung gemäß FIG 2 näher dargestellt. Diese Ausführungsform unterscheidet sich von der Ausführungsform gemäß FIG 2 dadurch, dass der mittlere Kondensator C2 der drei elektrisch in Reihe geschalteten Kondensatoren Cl, C2 und C3 in zwei gleich große Kondensatoren C2/2 unterteilt ist. Der Verbindungspunkt 26 dieser beiden gleich großen Kondensatoren C2/2 ist mit Erde elektrisch leitend verbunden. Dieser Ver- bindungspunkt 26 stellt den Mittelpunkt des Spannungszwischenkreises 10 dar. Durch die Erdung dieses Mittelpunktes wird eine symmetrische Spannungsaufteilung im dreiphasigen Mehrpunkt-Stromrichter 2 erreicht. Eine Realisierung einer vorteilhaften Weiterbildung des erfindungsgemäßen dreiphasigen Mehrpunkt-Stromrichters 2 gemäß FIG 2 ist in FIG 4 näher dargestellt. Diese vorteilhafte Weiterbildung besteht aus zwei dreiphasigen Mehrpunkt-Stromrichtern 2 gemäß FIG 2, die in dieser Ausführungsform als 2 und 22 bezeichnet werden. Diese beiden dreiphasigen Mehrpunkt- Stromrichter 2i und 22 sind gleichspannungsseitig mittels eines weiteren Kondensators C4 und wechselspannungsseitig mittels eines weiteren dreiphasigen Stromrichters 28 miteinander verknüpft. Der weitere Kondensator C4 verbindet den Span- nungszwischenkreis 10i des ersten dreiphasigen Mehrpunkt- Stromrichters 2i mit dem Spannungszwischenkreis 102 des zweiten dreiphasigen Mehrpunkt-Stromrichters 22 derart, dass die Kondensatoren Cli, C2i, C3i und Cl2, C22, C32 und der weitere Kondensator C4 elektrisch in Reihe geschaltet sind. Mittels des Weiteren dreiphasigen Stromrichters 28 werden die Ausgangs -Anschlüsse RMi, SMI und TMi des ersten dreiphasigen Mehrpunkt-Stromrichters 2i mit dem Ausgangs-Anschlüssen RM2, SM2 und TM2 des zweiten dreiphasigen Mehrpunkt-Stromrichters 22 miteinander verbunden. Dies wird dadurch erreicht, dass die positiven Anschlüsse 30, 34 und 38 der drei Halbbrücken R, S und T des weiteren dreiphasigen Stromrichters 28 jeweils mit einem Ausgangs -Anschluss RMi, SMi und T des dreiphasigen Mehrpunkt-Stromrichters 2i elektrisch leitend verbunden sind, wogegen die negativen Anschlüsse 32, 36 und 40 dieser drei Halbbrücken R, S und T des weiteren dreiphasigen Stromrichters 28 jeweils mit einem Ausgangs -Anschluss RM2 , SM2 und TM2 des zweiten dreiphasigen Mehrpunkt-Stromrichters 22 elekt- risch leitend verbunden sind. An den Ausgangs-Anschlüssen RM, SM und TM dieses dreiphasigen Mehrpunkt-Stromrichters 2 steht jeweils eine Phasenspannung uR, us und uT mit jeweils acht Spannungsstufen an. Dadurch weisen die zugehörigen verketteten Spannungen uRS, uST und UTR jeweils einen Spannungsverlauf mit fünfzehn Spannungsstufen auf.
In FIG 5 ist die Ausführungsform des dreiphasigen Mehrpunkt- Stromrichters 2 gemäß FIG 4 dargestellt, wobei sein Spannungszwischenkreis 10 einen Mittelpunkt aufweist, der geerdet ist. Dadurch wird eine symmetrische Spannungsaufteilung erreicht .
In FIG 6 ist eine zweite Realisierung des erfindungsgemäßen dreiphasigen Mehrpunkt-Stromrichters 2 gemäß FIG 1 näher dar- gestellt. Diese Realisierung unterscheidet sich von der Realisierung des dreiphasigen Mehrpunkt-Stromrichters 2 gemäß FIG 2 darin, dass anstelle von 6 -pulsigen Zweipunkt-Stromrichtern für die drei dreiphasigen Stromrichter 4,6 und 8 jeweils ein Dreipunkt-Stromrichter in der Topologie NPC (Neut- ral Point Clamped) verwendet wird. Durch die Verwendung von dreiphasigen Dreipunkt-Stromrichtern weist der Spannungszwischenkreis 10 doppelt so viele Kondensatoren Cl, C6 auf, die elektrisch in Reihe geschaltet sind. Dadurch weist dieser Spannungszwischenkreis 10 sieben Spannungsstufen auf.
Anstelle von dreiphasigen Dreipunkt-Stromrichtern in der Topologie NPC können auch dreiphasige Dreipunkt-Stromrichter in der Topologie ANPC (Advanced Neutral Point Clamped) verwendet werden. Diese beiden Topologien unterscheiden sich schaltungstechnisch dadurch, dass anstelle von Mittelpunkts-Dioden abschaltbaren Halbleiterschalter, insbesondere Insulated- Gate-Bipolar-Transistoren (IGBT) , verwendet werden. Ein
Blockschaltbild eines dreiphasigen Dreipunkt-Stromrichters in der Topologie ANPC ist in FIG 7 näher dargestellt und aus der US 2006/0056209 AI bekannt.
In den FIG 8 bis 10 sind verschiedene Ausführungsformen der Gleichspannungsquelle dargestellt. Gemäß der Ausführungsform der FIG 8 ist die Quelle als einfache Gleichspannungsquelle 12 (geerdet oder potentialfrei) ausgeführt. In der Ausführungsform gemäß FIG 9 ist die Quelle mit zwei getrennten Gleichspannungsquellen 12± und 122 als bipolare Gleichspan- nungsquelle mit Mittelpunktserdung ausgeführt. Bei der Ausführungsform gemäß FIG 10 ist die Gleichspannungsquelle 12 als einfache potentialfreie Gleichspannungsquelle ausgeführt, wobei der Spannungszwischenkreis 10 derart ausgebildet ist, dass ein Mittelpunkt existiert, der mit Erde elektrisch lei- tend verbunden ist. Dadurch erhält man trotzdem eine symmetrische Spannungsaufteilung im dreiphasigen Mehrpunkt -Stromrichter 2. Somit kann der dreiphasige Mehrpunkt-Stromrichter nach der Erfindung an unterschiedlichen Spannungsquellen betrieben werden. Ein Anwendungsgebiet dieses erfindungsgemäßen dreiphasigen Mehrpunkt-Stromrichters 2 ist die Photovoltaik, Windkraft, Antriebe.

Claims

Patentansprüche
1. Dreiphasiger Mehrpunkt -Stromrichter {2,21,22) mit drei dreiphasigen Stromrichtern (4,6,8) gleicher Topologie und mit einem Gleichspannungszwischenkreis (10) , bestehend aus wenigstens drei Kondensatoren (C1,C2,C3), die elektrisch in Reihe geschaltet sind, wobei ein dreiphasiger Stromrichter (4) gleichspannungsseitig elektrisch parallel zu einem oberen Kondensator (Cl) und ein weiterer dreiphasiger Stromrichter (6) gleichspannungsseitig elektrisch parallel zu einem unteren Kondensator (C3) geschaltet ist, wobei diese beiden dreiphasigen Stromrichter (4,6) wechselspannungsseitig jeweils mittels einer Halbbrücke (R,S,T) des dritten dreiphasigen Stromrichters (8) miteinander verknüpft sind und wobei wech- selspannungsseitige Anschlüsse dieser Halbbrücken (R,S,T) dieses dritten dreiphasigen Stromrichters (8) jeweils einen Ausgangs -Anschluss (RM,SM,TM) des dreiphasigen Mehrpunkt- Stromrichters (2) bilden.
2. Dreiphasiger Mehrpunkt-Stromrichter (2) mit zwei dreiphasigen Mehrpunkt-Stromrichtern (2i( 22) nach Anspruch 1, wobei die Gleichspannungszwischenkreise (10i, 102) der beiden dreiphasigen Mehrpunkt-Stromrichter {2±,22) mittels eines weiteren Kondensators (C4) elektrisch miteinander verbunden sind, und wobei die Ausgangs-Anschlüsse (RMi , SMi , Mi , RM2 , SM2 , TM2) dieser beiden dreiphasigen Mehrpunkt-Stromrichter {2±,22) jeweils mittels einer Halbbrücke (R,S,T) eines weiteren Stromrichters (28) miteinander verknüpft sind.
3. Dreiphasiger Mehrpunkt-Stromrichter (2,2i,22) nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, dass jeder dreiphasige Stromrichter (4,6,8) ein 6- pulsiger Stromrichter mit abschaltbaren Halbleiterschaltern ist .
4. Dreiphasiger Mehrpunkt-Stromrichter (2,2i,22) nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, dass jeder dreiphasige Stromrichter (4,6,8) ein Dreipunkt- Stromrichter ist.
5. Dreiphasiger Mehrpunkt-Stromrichter {2,21,22) nach An- spruch 1, d a d u r c h g e k e n n z e i c h n e t, dass der mittlere Kondensator (C2) der Reihenschaltung dreier Kondensatoren (C1,C2,C3) durch zwei Kondensatoren
(C2/2,C2/2) ersetzt wird und deren Verbindungspunkt (26) geerdet ist.
6. Dreiphasiger Mehrpunkt-Stromrichter {2,21,22) nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t, dass der Verbindungskondensator (C4) der beiden Spannungszwischenkreise (10i,102) der beiden Mehrpunkt-Stromrichter (2i,22) durch zwei Kondensatoren (C4/2,C4/2) ersetzt wird und deren Verbindungspunkt (26) geerdet ist.
7. Dreiphasiger Mehrpunkt-Stromrichter {2,21,22) nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t, dass der dreiphasige Dreipunkt-Stromrichter als NPC-Strom- richter ausgeführt ist.
8. Dreiphasiger Mehrpunkt-Stromrichter {2,21,22) nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass der dreiphasige Dreipunkt-Stromrichter als ANPC-Strom- richter ausgeführt ist.
9. Dreiphasiger Mehrpunkt-Stromrichter {2,2±,22) nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t, dass als abschaltbarer Halbleiterschalter Insulated-Gate-
Bipolar-Transistoren niedriger Spannungsbelastung vorgesehen sind .
10. Dreiphasiger Mehrpunkt-Stromrichter {2,2±,22) nach An- spruch 1, d a d u r c h g e k e n n z e i c h n e t, dass als abschaltbarer Halbleiterschalter einer jeden Halbbrücke (R,S,T) des dritten dreiphasigen Stromrichters (8, 81, 82) jeweils ein Insulated-Gate-Bipolar-Transistor höherer Spannungsbelastung vorgesehen ist.
PCT/EP2013/065303 2012-08-17 2013-07-19 Dreiphasiger mehrpunkt-stromrichter WO2014026824A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012214666.0 2012-08-17
DE102012214666.0A DE102012214666A1 (de) 2012-08-17 2012-08-17 Dreiphasiger Mehrpunkt-Stromrichter

Publications (2)

Publication Number Publication Date
WO2014026824A2 true WO2014026824A2 (de) 2014-02-20
WO2014026824A3 WO2014026824A3 (de) 2014-09-04

Family

ID=49000908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/065303 WO2014026824A2 (de) 2012-08-17 2013-07-19 Dreiphasiger mehrpunkt-stromrichter

Country Status (2)

Country Link
DE (1) DE102012214666A1 (de)
WO (1) WO2014026824A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2838189A3 (de) * 2013-08-15 2015-03-25 General Electric Company Leistungswandler mit mehrstufiger Brückentopologie und Steuerverfahren
CN112512858A (zh) * 2018-07-31 2021-03-16 西门子股份公司 模块化变流器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013215992A1 (de) 2013-08-13 2015-02-19 Siemens Aktiengesellschaft Dreiphasige Mehrpunkt-Stromrichteranordnung als AC/AC-Umrichter
DE102013216213A1 (de) 2013-08-15 2015-02-19 Siemens Aktiengesellschaft Dreiphasiger Mehrpunkt-Stromrichter
FR3019699B1 (fr) * 2014-04-03 2016-05-13 Schneider Toshiba Inverter Europe Sas Convertisseur de puissance multi-niveaux

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060056209A1 (en) 2002-10-09 2006-03-16 Ingemar Blidberg Converter and a method for controlling a converter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10140747A1 (de) * 2000-09-13 2002-03-21 Abb Research Ltd Steuer- und Regelverfahren für einen Dreipunkt-Stromrichter mit aktiven Klemmschaltern sowie Vorrichtung hierzu

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060056209A1 (en) 2002-10-09 2006-03-16 Ingemar Blidberg Converter and a method for controlling a converter

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FANG Z. PENG ET AL.: "Recent Advances in Multilevel Converter/Inverter Topologies and Applications", KONFERENZBAND DER INTERNATIO- NAL POWER ELECTRONICS CONFERENCE, IEEE 2010, 2010, pages 492 - 501
GERARDO CEGLIA ET AL.: "A New Simplified Multilevel Inver- ter Topology for DC-AC Conversion", IEEE TRANSACTIONS ON POWER ELECTRONICS, vol. 21, no. 5, September 2006 (2006-09-01), pages 1311 - 1319
K.A. CORZINE ET AL.: "Comparison of Hybrid Propulsion Drive Schemes", IEEE ELECTRIC SHIP TECHNOLOGY SYMPOSIUM, 2005, pages 355 - 362

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2838189A3 (de) * 2013-08-15 2015-03-25 General Electric Company Leistungswandler mit mehrstufiger Brückentopologie und Steuerverfahren
US9450503B2 (en) 2013-08-15 2016-09-20 General Electric Company Power converter with a multi-level bridge topology and control method
CN112512858A (zh) * 2018-07-31 2021-03-16 西门子股份公司 模块化变流器

Also Published As

Publication number Publication date
WO2014026824A3 (de) 2014-09-04
DE102012214666A1 (de) 2014-02-20

Similar Documents

Publication Publication Date Title
DE102016218304B3 (de) Vorrichtung zur Spannungswandlung, Traktionsnetz und Verfahren zum Laden einer Batterie
DE10143279B4 (de) Frequenzumrichter
EP2241001B1 (de) Umrichter
DE112009004960B4 (de) Leistungsumwandlungseinrichtung
DE102011005185B4 (de) Leistungshalbleiterbauelement und dieses verwendendes Leistungsumformungssystem
EP2815497B1 (de) Netzeinspeisevorrichtung, energieeinspeisesystem sowie verfahren zum betrieb einer netzeinspeisevorrichtung
WO2007115893A1 (de) Platzsparender wechselrichter mit reduzierten schaltverlusten und erhöhter lebensdauer
DE102008007658A1 (de) Statischer Umformer
WO2014026824A2 (de) Dreiphasiger mehrpunkt-stromrichter
EP3002866B1 (de) Spannungszwischenkreis-Stromrichter in Fünfpunkttopologie
WO2016146171A1 (de) Hocheffizienter stromrichter für einphasige systeme
EP2845303B1 (de) Stromrichter und betriebsverfahren zum wandeln von spannungen
DE102012107122A1 (de) Wechselrichterschaltung
EP2928060A1 (de) Modulare Stromrichterschaltung mit Submodulen, die unterschiedliches Schaltvermögen aufweisen
WO2018104174A1 (de) Hocheffizienter stromrichter für einphasige systeme
WO2009098093A2 (de) Wechselrichteranordnung zum einspeisen von photovoltaisch gewonnener energie in ein öffentliches netz
DE3035305C2 (de) Wechselrichterschaltung für einen Dreiphasen-Synchronmotor
DE102006016501A1 (de) Leistungshalbleitermodul
WO2018104177A1 (de) Hocheffizienter stromrichter für dreiphasige systeme
EP4033653A1 (de) Kaskadierter multizellenumrichter mit 3-poligen h-brücken mit geteiltem zwischenkreiskondensator
WO2014026825A2 (de) Dreiphasiger mehrpunkt-stromrichter
WO2018082786A1 (de) Anlage zum übertragen elektrischer leistung mit filtereinheit
DE102013216213A1 (de) Dreiphasiger Mehrpunkt-Stromrichter
DE102019201630A1 (de) Hocheffizienter Stromrichter für einphasige und dreiphasige Systeme
DE102013215992A1 (de) Dreiphasige Mehrpunkt-Stromrichteranordnung als AC/AC-Umrichter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13750651

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 13750651

Country of ref document: EP

Kind code of ref document: A2