WO2014026560A1 - 一种本地网关地址更新方法及装置 - Google Patents

一种本地网关地址更新方法及装置 Download PDF

Info

Publication number
WO2014026560A1
WO2014026560A1 PCT/CN2013/081032 CN2013081032W WO2014026560A1 WO 2014026560 A1 WO2014026560 A1 WO 2014026560A1 CN 2013081032 W CN2013081032 W CN 2013081032W WO 2014026560 A1 WO2014026560 A1 WO 2014026560A1
Authority
WO
WIPO (PCT)
Prior art keywords
address
local gateway
relay node
mobile relay
base station
Prior art date
Application number
PCT/CN2013/081032
Other languages
English (en)
French (fr)
Inventor
黄莹
谢峰
梁爽
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/394,499 priority Critical patent/US9706393B2/en
Priority to EP13829509.2A priority patent/EP2827562B1/en
Publication of WO2014026560A1 publication Critical patent/WO2014026560A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5007Internet protocol [IP] addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/12Reselecting a serving backbone network switching or routing node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/12Reselecting a serving backbone network switching or routing node
    • H04W36/125Reselecting a serving backbone network switching or routing node involving different types of service backbones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • H04W8/082Mobility data transfer for traffic bypassing of mobility servers, e.g. location registers, home PLMNs or home agents
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/005Moving wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements

Definitions

  • the present invention relates to a local gateway address update technology, and in particular, to a local gateway address update method and apparatus.
  • a relay node In the wireless relay technology of the Advanced Long Term Evolution (LTE-Advanced) standard introduced by the 3GPP standards organization, a relay node (RN, Relay Node) provides a common evolved base station (eNB) for UEs accessing its cell. A similar function and service, in turn, accesses a host base station (DeNB) serving it through a wireless interface in a manner similar to a normal UE.
  • eNB evolved base station
  • DeNB host base station
  • MRN Mobile Relay
  • the mobile relay technology can enable users (UE1 and UE2) in the high-speed train to communicate with the relatively stationary MRN, and the MRN can switch between different DeNBs during the high-speed rail movement. Therefore, the simultaneous switching of a large number of users in the high-speed rail car is avoided, the communication quality between the UE and the MRN is ensured, and a series of problems existing in the high-speed rail can be better solved by enhancing the backbone connection between the mobile RN and the DeNB.
  • the gateway (GW) of the MRN is replaced with a gateway built in the DeNB serving the MRN.
  • the GW is located on the DeNB1, and the MRN is provided by the DeNB3 to provide the base station function service.
  • the data of the UE first reaches the GW function of the DeNB1, and then the DeNB2 routes to the base station function of the DeNB3, and the MRN can be in the handover process.
  • the GW relocates its GW to the GW built in the DeNB4, so that the data of the UE can directly reach the DeNB4, shortening the path length and reducing the data delay.
  • the MRN supports the Local IP Access (LIP) function to provide high-speed local services for LTE UEs and saves backhaul link bandwidth resources.
  • the UE may connect to the local packet data network (PDN) to obtain multimedia resources through a local gateway (LGW) in the MRN, or support multi-user social network applications such as file sharing, chat, games, etc. through the local server.
  • PDN packet data network
  • LGW local gateway
  • Figure 1 is a schematic diagram of the architecture of the MRN supporting the LIPA function in a high-speed rail scenario. As shown in FIG.
  • the MRN node located in the vehicle compartment is provided with an LGW function entity, and the MRN and the DeNB transmit and receive data through the Un air interface.
  • the LGW is connected to the PDN network through the SGi interface.
  • the LGW in the MRN establishes the S5 interface core network tunnel with the UE serving gateway (SGW) through the DeNB for the IDLE state UE. Calls S5 signaling transmission.
  • SGW UE serving gateway
  • the address of the LGW that is set up in the HeNB is allocated by the security gateway (SeGW) during the establishment of the IPSec tunnel.
  • the MRN supports LIPA
  • the MRN is not connected to the SeGW network element.
  • all data sent by the core network element to the LGW must be routed through the MRN Packet Data Network Gateway (PGW). Therefore, if the MRN supports LIPA, if the MRN PGW is relocated in the MRN handover process, the S5 data related to the LIPA service sent from the UE SGW cannot reach the MRN PGW to be routed to the LGW, causing the S5 connection to be disconnected.
  • PGW Packet Data Network Gateway
  • the technical problem to be solved by the embodiment of the present invention is to provide a local gateway address update method and device, which can solve the LGW address update problem in the case that the MRN PGW is relocated in the MRN handover process.
  • a method for updating a local gateway address including:
  • the target host base station receives local gateway address allocation information
  • the target base station determines, according to the local gateway address allocation information, that an IP address is allocated to the local gateway if an IP address needs to be allocated to the local gateway in the mobile relay node;
  • the method further includes: if the target host base station does not receive the local gateway address allocation information, the target host base station does not allocate an IP address to the local gateway, and determines the mobile relay When the node supports the local IP access (LIPA) function, the IP address of the mobile relay node is stored as the IP address of the local gateway, and the mobile relay node determines that if the IP address of the local gateway is not received, The mobile relay node supports the LIPA function, and stores its own IP address as the IP address of the local gateway.
  • LIPA local IP access
  • the method further includes: determining, by the target host base station, that the target host base station is not configured, if the local gateway is not required to be allocated an IP address for the local gateway in the mobile relay node, according to the local gateway address allocation information.
  • the local gateway allocates an IP address, and when determining that the mobile relay node supports a local IP access (LIPA) function, storing an IP address of the mobile relay node as an IP address of the local gateway, where the mobile After the node determines that the IP address of the local gateway is not received, and the mobile relay node supports the LIPA function, the IP address of the local gateway is stored as the IP address of the local gateway.
  • LIPA local IP access
  • the target host base station determines whether the mobile relay node supports the LIPA function in the following manner:
  • the target base station determines whether the 'J mobile relay node supports the LIPA function indication information, and the mobile relay node supports the LIPA function indication information to indicate whether the mobile relay node supports the LIPA function;
  • the target host base station determines the movement.
  • the relay node supports the LIPA function
  • the target base station determines that the mobile relay node does not support the LIPA function fj.
  • the step of the target host base station receiving the local gateway address allocation information includes: the target host base station receiving an X2 interface switching request message that is sent by the source host base station of the mobile relay node and carrying local gateway address allocation information.
  • the target host base station receives an S1 interface switching request message that is sent by the mobility management entity (MME) and carries the local gateway address allocation information, where the MME is an MME serving the mobile relay node, and the S1 interface switching request
  • MME mobility management entity
  • the local gateway address allocation information includes at least one of the following: a local gateway address allocation indication, a local gateway address type;
  • the local gateway address allocation indication is used to indicate whether an IP address needs to be assigned to the local gateway, and the local gateway address type is used to indicate the type of the IP address of the local gateway to be allocated.
  • the target host base station determines, according to the local gateway address allocation information, that if an IP address is required to be allocated to the local gateway in the mobile relay node, the step of assigning an IP address to the local gateway includes:
  • the target host base station determines that the local gateway address allocation information includes only a local gateway address allocation indication, and the local gateway address allocation indication indicates that an IP address needs to be allocated for the local gateway, and the target host base station is a mobile relay.
  • the data packet gateway of the node service allocates an IP address to the local gateway in the mobile relay node, and the type of the IP address is the same as the IP address type of the mobile relay node; or
  • the target host base station determines that the local gateway address allocation information includes a local gateway address allocation indication and a local gateway address type, and the local gateway address allocation indication indicates that an IP address needs to be allocated for the local gateway, where the target host base station a data packet gateway serving the mobile relay node assigns an IP address to the set local gateway in the mobile relay node, the type of the IP address being of the type indicated by the local gateway address type; or
  • the target host base station determines that the local gateway address allocation information only includes a local gateway address type, and the data packet gateway serving the mobile relay node in the target host base station is a local gateway set up in the mobile relay node.
  • An IP address is assigned, the type of the IP address being of the type indicated by the local gateway address type.
  • the method further includes: sending, by the target host base station, an IP address assigned to the local gateway to the source host base station, where The source host base station sends the IP address of the local gateway to the mobile relay node; or the target host base station directly sends the IP address allocated for the local gateway to the mobile relay node.
  • the step of the target host base station sending the IP address assigned to the local gateway to the source host base station includes:
  • the target host base station directly sends the IP address assigned to the local gateway to the source host base station;
  • the target host base station sends the IP address assigned to the local gateway to the source host base station through the MME.
  • the steps of the node include:
  • the source host base station sends the IP address of the local gateway to the mobile relay node by using a radio resource control (RRC) message or an S1 interface message or an X2 interface message.
  • RRC radio resource control
  • the step of the target host base station directly sending the IP address of the local gateway to the mobile relay node includes:
  • the target base station sends the IP address of the local gateway to the mobile relay node by using a radio resource control (RRC) message or an S1 interface message or an X2 interface message.
  • RRC radio resource control
  • the step of sending the IP address of the local gateway to the serving gateway includes: the target host base station receiving the first S1 interface message sent by the mobile relay node, and sending the second S1 to the MME serving the UE
  • the interface message, the first S1 interface message and the second S1 interface message both include an IP address of the local gateway, where the UE is a UE accessing the mobile relay node; S11 interface message to the service serving the UE
  • the IP address of the local gateway is included in the S11 interface message.
  • the first S1 interface message and the second S1 interface message respectively use a path transfer request message, where the first S11 interface message uses a modify bearer request message or a session request message.
  • the step of sending the IP address of the local gateway to the serving gateway includes: The target host base station sends a third S1 interface message to the MME serving the UE, where the third S1 interface message includes an IP address of the local gateway, and the UE is a UE accessing the mobile relay node; The MME sends a second S11 interface message to the service network S11 interface message serving the UE, where the IP address of the local gateway is included.
  • the third S1 interface message uses a path transfer request message; the second S11 interface message uses a modify bearer request message or a session request message.
  • a device for implementing a local gateway address update where the device is located in a target host base station, and includes a receiving module, an allocating module, and a sending module, where:
  • the receiving module is configured to: receive local gateway address allocation information
  • the allocating module is configured to: determine, according to the local gateway address allocation information, that an IP address is allocated to the local gateway in the mobile relay node if the IP address needs to be assigned to the local gateway; the sending module is configured to: The IP address of the gateway is sent to the service gateway.
  • the allocation module is further configured to:
  • the IP address of the relay node is stored as the IP address of the local gateway.
  • the allocation module is further configured to:
  • the IP address of the mobile relay node is stored as the IP address of the local gateway.
  • the allocating module is configured to determine whether the mobile relay node supports the LIPA function in the following manner:
  • the allocation module determines whether the mobile relay node supports the LIPA function indication information, and the mobile relay node supports the LIPA function indication information to indicate whether the mobile relay node supports the LIPA function. If the allocation module receives the mobile relay node supporting LIPA function indication information and the mobile relay node supports the LIPA function indication information to indicate that the mobile relay node supports the LIPA function, the allocation module determines the mobile relay The node supports the LIPA function;
  • the allocation module receives the LIPA function indication information, but the mobile relay node supports the LIPA function indication information to indicate that the mobile relay node does not support the LIPA function, or the allocation module does not receive the The mobile relay node supports the LIPA function indication information, and the allocation module determines that the mobile relay node does not support the LIPA function.
  • the receiving module is configured to receive local gateway address allocation information according to the following manner: the receiving module receives an X2 interface switching request message that is sent by the source host base station of the mobile relay node and carries local gateway address allocation information. Or,
  • the receiving module receives an S1 interface switching request message that is sent by the mobility management entity (MME) and carries the local gateway address allocation information, where the MME is an MME serving the mobile relay node, and the S1 interface switching request message is used.
  • the local gateway address allocation information is sent by the source host base station to the MME.
  • the local gateway address allocation information includes at least one of the following: a local gateway address allocation indication, a local gateway address type;
  • the local gateway address allocation indication is used to indicate whether an IP address needs to be assigned to the local gateway, and the local gateway address type is used to indicate the type of the IP address of the local gateway to be allocated.
  • the allocating module is configured to determine, according to the local gateway address allocation information, that an IP address is allocated to the local gateway if an IP address needs to be assigned to the local gateway in the mobile relay node according to the local gateway address allocation information:
  • the allocation module determines that the local gateway address allocation information includes only a local gateway address allocation indication, and the local gateway address allocation indication indicates that an IP address needs to be allocated for the local gateway, and the allocation module is a mobile relay node.
  • the local gateway allocates an IP address, and the type of the IP address is the same as the IP address type of the mobile relay node; or
  • the allocating module determines that the local gateway address allocation information includes a local gateway address allocation indication and a local gateway address type, and the local gateway address allocation indication indicates that the local gateway is required to be Assigning an IP address, the allocation module assigns an IP address to the local gateway in the mobile relay node, and the type of the IP address is a type indicated by the local gateway address type; or
  • the allocation module determines that the local gateway address allocation information includes only the local gateway address type, and the allocation module allocates an IP address to the local gateway in the mobile relay node, where the type of the IP address is the local The type indicated by the gateway address type.
  • the sending module is further configured to:
  • the allocating module allocates an IP address to the local gateway
  • the IP address assigned to the local gateway is sent to the source host base station, so that the source host base station sends the IP address of the local gateway to the mobile relay node.
  • the allocation module allocates an IP address to the local gateway
  • the IP address assigned to the local gateway is directly sent to the mobile relay node.
  • the sending module is configured to send the IP address assigned to the local gateway to the source host base station as follows:
  • the sending module directly sends the IP address assigned to the local gateway to the source host base station, or the sending module sends the IP address allocated for the local gateway to the source host base station through the MME.
  • the sending module is configured to: after the assigning module allocates an IP address to the local gateway, send the IP address allocated for the local gateway to the mobile relay node: the sending module passes the wireless A resource control (RRC) message or an S1 interface message or an X2 interface message sends the IP address of the local gateway to the mobile relay node.
  • RRC resource control
  • the sending module is configured to send the IP address of the local gateway to the service gateway as follows:
  • the sending module receives the first S1 interface message sent by the mobile relay node, and sends a second S1 interface message to the MME serving the UE, where the first S1 interface message and the second S1 interface message are both included.
  • the IP address of the local gateway, the UE is a UE accessing the mobile relay node, and the IP address of the local gateway is sent by the MME to a serving gateway serving the UE.
  • the first S1 interface message and the second S1 interface message both use a path transfer request message.
  • the sending module is configured to send the IP address of the local gateway to the following manner Service Gateway:
  • the sending module sends a third S1 interface message to the MME serving the UE, where the third S1 interface message includes an IP address of the local gateway, and the UE is a UE accessing the mobile relay node,
  • the MME sends the IP address of the local gateway to a serving gateway serving the UE.
  • the third S1 interface message uses a path transfer request message.
  • a device for implementing local gateway address update located at a mobile relay node, comprising a judging module and a storage module, wherein:
  • the determining module is configured to: determine whether an IP address of the local gateway is received;
  • the storage module is configured to: when the determining module determines that the IP address of the local gateway is received, save the IP address of the local gateway, and determine, by the determining module, that the IP address of the local gateway is not received, And determining that the mobile relay node supports the local IP access (LIPA) function, storing its own IP address as the IP address of the local gateway.
  • LIPA local IP access
  • the device further includes a sending module, where:
  • the sending module is configured to: after sending the first S1 interface message to the target host base station, the first S1 interface message includes an IP address of the local gateway.
  • the first S1 interface message uses a path transfer request message.
  • An apparatus for implementing local gateway address update located in a service gateway serving a user equipment (UE), comprising a receiving module and an update module, where:
  • the receiving module is configured to: receive an S11 interface message sent by a mobility management entity (MME); the S11 interface message includes an IP address of a local gateway that is set in the mobile relay node;
  • MME mobility management entity
  • the update module is configured to: update an IP address of the locally saved local gateway.
  • the method and the device of the embodiment of the present invention can solve the LGW address in the handover process when the MRN supports the LIPA and the PGW of the serving MRN is relocated in the MRN handover process. Update the problem to ensure the continuity of the S5 connection, and thus ensure the business continuity of the terminal. BRIEF abstract
  • FIG. 1 is a schematic diagram of a mobile relay system architecture supporting a LIPA function in a high-speed rail scenario
  • FIG. 2 is a schematic diagram of MRN handover after route optimization in an MRN architecture 2;
  • FIG. 3 is a flow chart of Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of a target host base station according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of a mobile relay node according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic structural diagram of a service gateway according to Embodiment 4 of the present invention.
  • Fig. 10 is a flow chart showing the application example 4 of the present invention. Preferred embodiment of the invention
  • This embodiment describes a local gateway address update method.
  • the S-GW and the P-GW are built in the DeNB. As shown in Figure 3, the following steps are included:
  • Step 110 The target host base station receives local gateway address allocation information.
  • the target host base station determines whether the local gateway address allocation information is received, and if yes, performing step 120, if the local gateway address allocation information is not received, the target host base station If the IP address of the mobile relay node is not supported, the IP address of the mobile relay node is stored as the IP address of the local gateway.
  • the target host base station may determine whether the mobile relay node supports the LIPA function in the following manner: The target host base station determines whether the mobile relay node supports the LIPA function indication information from the source host base station, where the indication information is used to indicate whether the mobile relay node is Supporting the LIPA function; if the target host base station receives the indication information and the indication information indicates that the mobile relay node supports the LIPA function, the target host base station determines that the mobile relay node supports the LIPA function; if the target host base station receives the indication information, However, the indication information indicates that the mobile relay node does not support the LIPA function, or the target host base station does not receive the indication information, and the target host base station determines that the mobile relay node does not support the LIPA function.
  • the mobile relay node determines that if the IP address of the local gateway is not received, and the mobile relay node supports the LIPA function, it can store its own IP address as the IP address of the local gateway.
  • the local gateway is set up with the mobile relay node, or the local gateway is set in the mobile relay node.
  • the target host base station may receive the local gateway address allocation information by using any one of the following two methods.
  • the first mode the target host base station receives the X2 interface switching request message sent by the source host base station of the mobile relay node, where the message carries the local gateway address.
  • the target host base station receives an S1 interface switching request message sent by the mobility management entity (MME), where the message carries local gateway address allocation information, and the MME is an MME serving the mobile relay node, and the S1 interface
  • MME mobility management entity
  • the local gateway address allocation information in the handover request message is sent by the source host base station to the MME
  • the local gateway address allocation information includes at least one of the following: a local gateway address allocation indication, a local gateway address type, the local gateway address allocation indication is used to indicate whether an IP address needs to be assigned to the local gateway, and the local gateway address type is used to indicate required The type of IP address assigned to the local gateway.
  • Step 120 The target host base station determines, according to the local gateway address allocation information, that an IP address is allocated to the local gateway if an IP address needs to be allocated for the local gateway in the mobile relay node;
  • the target host base station determines that the local gateway does not need to be assigned an IP address for the local gateway in the mobile relay node according to the local gateway address allocation information, the target host base station does not assign an IP address to the local gateway, and when determining that the mobile relay node supports the LIPA function, , storing the IP address of the mobile relay node
  • the IP address of the local gateway is stored, and step 130 is performed.
  • the method for the target host base station to determine whether the mobile relay node supports the LIPA function refer to the description in step 110.
  • the mobile relay node if it does not receive the IP address of the local gateway, and the mobile relay node supports the LIPA function, it stores its own IP address as the IP address of the local gateway.
  • the target host base station allocates an IP address to the local gateway according to the local gateway address allocation information: if the target host base station determines that the local gateway address allocation information includes only the local gateway address allocation indication, and the local gateway address allocation indication indicates that the local gateway needs to be assigned an IP address. And the data packet gateway serving the mobile relay node in the target host base station allocates an IP address to the local gateway in the mobile relay node, and the type of the assigned IP address is the same as the IP address type of the mobile relay node. ;
  • the target host base station determines that the local gateway address allocation information includes a local gateway address allocation indication and a local gateway address type, and the local gateway address allocation indication indicates that an IP address needs to be allocated for the local gateway, and the target host base station is a mobile relay.
  • the data packet gateway of the node service allocates an IP address to the set local gateway in the mobile relay node, and the type of the assigned IP address is the type indicated by the local gateway address type;
  • the target host base station determines that the local gateway address allocation information only includes the local gateway address type, and the data packet gateway serving the mobile relay node in the target host base station allocates an IP address to the local gateway in the mobile relay node.
  • the type of the assigned IP address is the type indicated by the local gateway address type.
  • the interaction between the target host base station and the data packet gateway is omitted. Since the data packet gateway is set in the target host base station, when the target host base station determines that it needs to allocate an IP address to the local gateway in the mobile relay node. The data packet gateway is notified through internal interfaces and messages.
  • Step 130 Send the IP address of the local gateway to the serving gateway.
  • the target host base station after the target host base station allocates an IP address to the local gateway, the target host base station sends the IP address assigned to the local gateway to the source host base station (directly sent to the source host base station or sent by the MME), and is locally sent by the source host base station.
  • the IP address of the gateway is sent to the mobile relay node (for example, by a Radio Resource Control (RRC) message or an S1 interface message or an X2 interface message); or, the target host base station directly sends the IP address assigned to the local gateway to the mobile Relay node (eg sent via RRC message or SI interface message or X2 interface message).
  • RRC Radio Resource Control
  • the target SeNB receives the first S1 interface message sent by the mobile relay node, and sends a second S1 interface message to the MME serving the UE, where the first S1 interface message and the second S1 interface message both include the local gateway.
  • the IP address the UE is a UE accessing the mobile relay node; the MME sends the first S11 interface message to the serving gateway serving the UE, so that the serving gateway updates the IP address of the locally saved local gateway, the first The S11 interface message includes the IP address of the local gateway.
  • the content of the first S1 interface message and the second S1 interface message may be slightly different, but the path transfer request message is preferably used, and the first S11 interface message preferably uses a modify bearer request message or a session request message.
  • the target host base station sends a third S1 interface message to the MME serving the UE, where the third S1 interface message includes an IP address of the local gateway, where the UE is a UE accessing the mobile relay node, and is sent by the MME.
  • the second S11 interface message is sent to the serving gateway serving the UE, so that the serving gateway updates the IP address of the locally saved local gateway, and the second S11 interface message includes the IP address of the local gateway.
  • the third S1 interface message preferably uses a path transfer request message; the second S11 interface message preferably uses a modify bearer request message or a create session request message.
  • the first method described above is to send the IP address of the local gateway to the serving gateway through a process initiated by the mobile relay node.
  • the second method is to send the IP address of the local gateway to the serving gateway through a process initiated by the target host base station.
  • the IP address of the local gateway mentioned in this step may be the IP address assigned by the target host base station to the local gateway in step 120, or may be the IP address of the mobile relay node as the local gateway IP address.
  • This embodiment describes a device for implementing a local gateway address update.
  • the device is located in a target host base station. As shown in FIG. 4, the device includes a receiving module 401, an allocating module 402, and a sending module 403, where:
  • the receiving module 401 is configured to: receive local gateway address allocation information; Optionally, the receiving module 401 may receive an X2 interface switching request message that is sent by the source host base station of the mobile relay node and that carries the local gateway address allocation information; or, receive an S1 interface switching request message that is sent by the MME and carries the local gateway address allocation information.
  • the MME is an MME serving the mobile relay node, and the local gateway address allocation information in the S1 interface switching request message is sent by the source host base station to the MME.
  • the local gateway address allocation information includes at least one of the following: a local gateway address allocation indication, a local gateway address type, the local gateway address allocation indication is used to indicate whether an IP address needs to be assigned to the local gateway, and the local gateway address type is used to indicate required The type of IP address assigned to the local gateway.
  • the allocation module 402 is configured to: determine, according to the local gateway address allocation information, that an IP address is allocated to the local gateway if the IP address of the local gateway in the mobile relay node needs to be assigned;
  • the allocating module 402 is further configured to: not allocate an IP address to the local gateway when the receiving module 401 does not receive the local gateway address allocation information; and: when determining that the mobile relay node supports the LIPA function, The IP address of the node is stored as the IP address of the local gateway.
  • the allocating module 402 is further configured to: determine, according to the local gateway address allocation information, that if an IP address is not required to be allocated to the local gateway in the mobile relay node, the local gateway is not assigned an IP address, and is determined When the mobile relay node supports the LIPA function, the IP address of the mobile relay node is stored as the IP address of the local gateway.
  • the allocating module 402 determines whether the mobile relay node supports the LIPA function in the following manner:
  • the allocation module 402 determines whether the mobile relay node supports the LIPA function indication information, and the indication information is used to indicate whether the mobile relay node supports the LIPA function; if the allocation module 402 receives the indication information and the indication information indicates The mobile relay node supports the LIPA function, and the allocation module 402 determines that the mobile relay node supports the LIPA function; if the allocation module 402 receives the indication information, but the indication information indicates that the mobile relay node does not support the LIPA function, or the allocation module 402 If the indication information is not received, the allocation module 402 determines that the mobile relay node does not support the LIPA function.
  • the distribution module 402 can assign an IP address to the local gateway in one of the following ways: The allocating module 402 determines that the local gateway address allocation information includes only the local gateway address allocation indication, and the local gateway address allocation indication indicates that the local gateway needs to be assigned an IP address, and the IP address is allocated to the local gateway in the mobile relay node.
  • the type of the assigned IP address is the same as the IP address type of the mobile relay node;
  • the allocating module 402 determines that the local gateway address allocation information includes a local gateway address allocation indication and a local gateway address type, and the local gateway address allocation indication indicates that the local gateway needs to be assigned an IP address, and the local gateway is set in the mobile relay node. Assigning an IP address, the type of the assigned IP address is the type indicated by the local gateway address type;
  • the allocation module 402 determines that the local gateway address allocation information only includes the local gateway address type, and assigns an IP address to the local gateway that is set up in the mobile relay node, and the type of the assigned IP address is the type indicated by the local gateway address type. .
  • the foregoing allocation module 402 includes an allocation control unit at the target host base station and an allocation execution unit located at the data packet gateway, and the allocation control unit is configured to: perform the foregoing determination of the local gateway address allocation information to determine whether to assign an IP address to the local gateway, And the allocation execution unit is notified to perform an optional allocation operation.
  • the sending module 403 is configured to: send the IP address of the local gateway to the serving gateway.
  • the sending module is further configured to: after the allocating module 402 allocates an IP address to the local gateway, send the IP address assigned to the local gateway to the source host base station (either directly or through the MME), so that the source host base station The IP address of the local gateway is sent to the mobile relay node; or, after the allocation module 402 assigns an IP address to the local gateway, the IP address assigned to the local gateway is directly sent to the mobile relay node (for example, through an RRC message or an S1 interface). Message or X2 interface message, etc.).
  • the sending module 403 can send the IP address of the local gateway to the serving gateway in any of the following ways:
  • the sending module 403 receives the first S1 interface message sent by the mobile relay node, and sends a second S1 interface message to the MME serving the UE, where the first S1 interface message and the second S1 interface message both include the local gateway.
  • the sending module 403 sends a third SI interface message to the MME serving the UE, where the third S1 interface message includes the IP address of the local gateway, and the UE is the UE accessing the mobile relay node, and the MME will The IP address of the local gateway is sent to the serving gateway serving the UE; optionally, the third S1 interface message uses the path transfer request message.
  • This embodiment describes a device for implementing a local gateway address update.
  • the device is located at a mobile relay node. As shown in FIG. 5, the device includes a determination module 501 and a storage module 502, where:
  • the determining module 501 is configured to: determine whether an IP address of the local gateway is received;
  • the storage module 502 is configured to: when the determining module determines that the IP address of the local gateway is received, save the IP address of the local gateway, and determine, by the determining module, that the IP address of the local gateway is not received, And determining that the mobile relay node supports the LIPA function, storing its own IP address as the IP address of the local gateway.
  • the device further includes: a sending module, configured to: after sending the first S1 interface message to the target host base station, the first S1 interface message includes an IP address of the local gateway.
  • the first S1 interface message preferably uses a path transfer request message.
  • This embodiment introduces a serving gateway serving the UE, as shown in FIG. 6, including a receiving module, 601, and an updating module 602, where:
  • the receiving module 601 is configured to: receive an S11 interface message sent by the MME; the S11 interface message includes an IP address of the local gateway that is set in the mobile relay node;
  • the new module 602 is configured to: update the locally saved IP address of the local gateway.
  • Application example 1 This example describes a method in which a source DeNB transmits local gateway address allocation information to a target DeNB through an X2 interface message, and the target DeNB allocates an IP address to the LGW during handover preparation.
  • Figure 7 depicts the example flow.
  • the source SGW and the source PGW of the MRN may be built in the source DeNB, or may not be located in the source DeNB, but built in the initial DeNB (initial DeNB). As shown in Figure 7, the following steps are included:
  • Step 1 The MRN detects the signal of the target DeNB cell in the measurement process, and triggers the measurement reporting event to send a measurement report to the source DeNB. After determining, the source DeNB needs to switch the MRN to the target DeNB, and determine that there is an X2 between the source DeNB and the target DeNB. The interface, and the MRN does not need to replace the MME after the handover, the source DeNB initiates an X2 handover for the MRN, and the source DeNB sends an X2 interface handover request (handover request) message to the target DeNB, where the handover request message includes local gateway address allocation information;
  • the local gateway address allocation information includes at least one of the following: a local gateway address allocation indication, and a local gateway address type.
  • the local gateway address allocation indication is used to indicate whether an IP address needs to be allocated for the LGW; the local gateway address type is used to indicate the type of the IP address of the LGW to be allocated.
  • the handover request message may further include: the MRN supports the LIPA function indication information, where the MDN is used to indicate whether the MRN of the handover supports the LIPA function, and whether the source DeNB sends the S1 interface message sent by the UE to the UE according to the MRN received before the handover.
  • the address information of the gateway determines whether the MRN supports the LIPA function.
  • the handover request message may also carry the context information of the MRN and the UE, where the UE refers to the UE accessing the MRN.
  • Step 2 After the target DeNB receives the handover request message, if the local gateway address allocation information indicates that the LGW needs to be assigned an IP address, the MRN PGW built in the target DeNB allocates an IP address to the LGW according to the received local gateway address allocation information. If the local gateway address allocation information includes the local gateway address type, the MRN PGW allocates the IP address of the type to the LGW. If the local gateway address allocation information does not include the local gateway address type, the MRN PGW allocates the address type to the LGW. The address types assigned to the MRN are the same;
  • the local gateway address allocation information only includes the local gateway address type, it can be considered as an implicit indication that the IP address needs to be assigned to the LGW.
  • Step 3 After the target DeNB creates the MRN and the UE context and reserves the related bearer resources, it sends a handover request acknowledgement message of the X2 interface to the source DeNB, where the MRN PGW is the LGW. Assigned IP address;
  • the IP address of the LGW may be carried in a Target eNB to Source eNB Transparent Container.
  • Step 4 The source DeNB sends an air interface message RRC (Radio Resource Control) connection reconfiguration message to the MRN, where the target DeNB in the transparent transmission container carrying the target DeNB to the source DeNB is sent to the MRN through the source DeNB.
  • RRC Radio Resource Control
  • the handover command message, the source DeNB can send the IP address of the LGW to the MRN through the message, and the source DeNB can also send the IP address of the LGW to the MRN through the S1 or X2 interface message;
  • RRC connection reconfiguration message it is more reasonable to use the RRC connection reconfiguration message, but in addition to the RRC connection reconfiguration message, other RRC messages can be used.
  • Step 5 In the handover execution phase, the MRN detaches from the source DeNB and synchronizes with the target DeNB and establishes an RRC connection. After receiving the RRC reconfiguration complete message sent by the MRN, the target DeNB sends a path transfer request to the MME of the MRN. A path switch request message to update the S1 user plane and the control plane path of the RN, where the message includes the addresses of the SGW and the PGW (ie, the target SGW and the PGW of the MRN) built in the target DeNB to assist the MME in relocating the MRN. SGW and PGW;
  • Step 6 the MME of the MRN relocates the SGW and the PGW of the MRN to the addresses of the SGW and the PGW built in the target DeNB according to the addresses of the target SGW and the PGW transmitted by the target DeNB, and the MME of the MRN sends a create session request to the SGW in the target DeNB.
  • the EPS Evolved Packet System
  • Step 7 the target SGW creates a context of the MRN, and sends a create session request message to the target PGW.
  • Step 8 After the target PGW creates the context of the MRN and the EPS bearer, the PGW returns a session response message to the target SGW.
  • the signaling in steps 7 and 8 above is the internal interface message in the target DeNB.
  • Step 9 the target SGW replies to the MME of the MRN to create a session response message, to confirm that the context of the MRN and the establishment of the EPS 7 are completed;
  • Step 10 The MME of the MRN replies to the target DeNB with a path transfer request acknowledgement message.
  • Step 11 The MRN sends a path transfer request message to the target DeNB for each UE to update the S1 user plane and control plane path of each UE, including the downlink requirement.
  • the MRN supports the LIPA function, and the path transfer request message includes an IP address allocated by the MRN PGW to the LGW during the handover process.
  • path transfer process for each UE may be initiated by the MRN or directly by the target DeNB. If directly initiated by the target DeNB, step 11 may be skipped.
  • Step 12 The target DeNB sends an S1 proxy to the received MME for the path transfer request message for each UE, and each message includes an IP address allocated by the MRN PGW to the LGW during the handover process.
  • the target DeNB If the path transfer process for each UE is directly initiated by the target DeNB, and the target DeNB allocates an IP address to the LGW according to the local gateway address allocation information, the target DeNB sends a path transfer request message to the MME of the UE for each UE, the message Contains the IP address assigned to the LGW;
  • the target DeNB determines whether the MRN of the serving UE is determined according to the MRN support LIPA function indication information received in the handover request message in step 1.
  • the LIPA function is supported. If supported, the LGW and the MRN are considered to use the same IP address, and the address of the MRN is sent to the MME of the UE through the path transfer request message as the address of the LGW.
  • Step 13 The MME of the UE determines whether it is necessary to reselect an SGW for the UE. If not, the target SGW of the UE shown in FIG. 7 is also the source SGW of the UE, and the MME of the UE sends a modification for each PDN connection of the UE. The request message is sent to the target SGW of the UE, and the modified bearer request message includes the address of the updated LGW. If the MME of the UE needs to reselect an SGW, the target SGW of the UE and the source SGW of the UE are different SGWs, and the MME of the UE sends a session creation request message to the UE for each PDN connection of the UE. The SGW, and the creation session request message corresponding to the LIPA PDN connection of the UE contains the address of the updated LGW.
  • Step 14 the target SGW of the UE updates the address of the LGW, and continues to modify the bearer or Application example 2
  • This example describes a method in which the source DeNB sends local gateway address allocation information to the target DeNB through an X2 interface message, and the target DeNB allocates an IP address to the LGW during the session creation process.
  • Figure 8 depicts this example process.
  • the source SGW and the source PGW of the MRN may be built in the source DeNB, or may not be located in the source DeNB, but built in the initial DeNB (initial DeNB). As shown in Figure 8, the following steps are included:
  • Step 1 is the same as step 1 of the application example 1;
  • Step 2 After the target DeNB creates the MRN and the UE context and reserves the relevant bearer resources, sends an X2 interface handover request acknowledgement message to the source DeNB.
  • Step 3 The source DeNB sends an air interface message to the MRN, where the RRC connection reconfiguration message carries a transparent handover command message sent by the target DeNB to the MRN through the source DeNB.
  • Steps 4 to 6 are the same as application examples 1 and 5 to 7;
  • Step 7 If the local gateway address allocation information received by the target DeNB in the handover request message indicates that an IP address needs to be allocated for the LGW, the MRN PGW built in the target DeNB allocates an IP address to the LGW according to the received local gateway address allocation information;
  • the gateway address allocation information includes the local gateway address type, and the MRN PGW allocates the IP address of the type to the LGW. If the local gateway address allocation information does not include the local gateway address type, the MRN PGW allocates the address type assigned to the LGW and allocates the MRN. The same address type;
  • the local gateway address allocation information only includes the local gateway address type, it can be considered as an implicit indication that the IP address needs to be assigned to the LGW.
  • Step 8 After the target PGW creates the context of the MRN and the EPS bearer, the PGW returns a session response message to the target SGW.
  • the signaling in steps 6 and 8 above is the internal interface message in the target DeNB.
  • Step 9 the target SGW replies to the MME of the MRN to create a session response message, to confirm that the context of the MRN and the establishment of the EPS 7 are completed;
  • Step 10 The MME of the MRN returns a path transfer request acknowledgement message to the target DeNB.
  • Step 11 The target DeNB sends the IP address allocated by the MRN PGW to the LGW to the MRN, and may reconfigure the message or the S1 or X2 message through the RRC connection.
  • Step 12 to Step 15 are the same as Application Example 1 Step 11 to Step 14.
  • FIG. 9 depicts this example process.
  • the source SGW and the source PGW of the MRN may be built in the source DeNB, or may not be located in the source DeNB, but built in the initial DeNB (initial DeNB). As shown in Figure 9, the following steps are included:
  • Step 1 The MRN detects the signal of the target DeNB cell in the measurement process, and triggers the measurement reporting event to send a measurement report to the source DeNB. After determining, the source DeNB needs to switch the MRN to the target DeNB, and determines that the source DeNB does not exist with the target DeNB. The X2 interface, or the MRN needs to replace the MME after the handover, the source DeNB initiates an S1 handover for the MRN, and the source DeNB sends an S1 interface handover request (handover required) message to the source MME of the MRN, where the handover request message includes local gateway address allocation information;
  • the local gateway address allocation information includes at least one of the following: a local gateway address allocation indication, and a local gateway address type.
  • the local gateway address allocation indication is used to indicate whether an IP address needs to be allocated for the LGW; the local gateway address type is used to indicate the type of the IP address of the LGW to be allocated.
  • the handover request message may further include: the MRN supports the LIPA function indication information, and is used to indicate whether the MRN of the handover supports the LIPA function.
  • the local gateway address allocation information may be carried in a transparent transmission container of the source DeNB to the target DeNB.
  • Step 2 The source MME determines, according to the base station identifier or the target TAI (tracking area identifier) of the target DeNB in the received handover request message, whether to select a new MME, and if necessary, selects the target MME according to the two parameters, and And sending a forwarding relocation request message, where the source DeNB carries the transparent packet of the target DeNB, the target DeNB identifier, the target location area identifier, and the context information of the MRN.
  • TAI tracking area identifier
  • the forwarding relocation request message includes local gateway address allocation information (which can be carried in the transparent transmission container), and if the source MME receives the MRN to support the LIPA function, Instructing information, the message further includes the MRN supporting LIPA function indication information; if it is not necessary to select a new port, step 2 and step 10 are skipped.
  • Step 3 The target of the MRN sends an S1 interface switching request message to the target DeNB, where the local gateway address allocation information is included, and optionally, the MRN supports the LIPA function indication information.
  • Step 4 After receiving the handover request message, if the local gateway address allocation information indicates that the LGW needs to be assigned an IP address, the MRN PGW built in the target DeNB allocates an IP address to the LGW according to the received local gateway address allocation information. If the local gateway address allocation information includes the local gateway address type, the MRN PGW allocates the IP address of the type to the LGW. If the local gateway address allocation information does not include the local gateway address type, the MRN PGW allocates the address type to the LGW. The address types assigned to the MRN are the same;
  • the local gateway address allocation information only includes the local gateway address type, it can be considered as an implicit indication that the IP address needs to be assigned to the LGW.
  • Step 5 After the target DeNB creates a context for the MRN and the UE and reserves the resource for the bearer of the MRN, the target DeNB sends a handover request acknowledgement message to the target MME of the MRN, where the message includes the IP address assigned by the target PGW to the LGW, which can be obtained at the target DeNB.
  • the source DeNB is carried in a transparent transmission container, and the message may further include an IP address of the target SGW and the target PGW on the target DeNB, to assist the target MME to relocate the SGW and the PGW of the MRN;
  • Step 6 the target MME of the MRN relocates the SGW and the PGW of the MRN to the addresses of the SGW and the PGW built in the target DeNB according to the addresses of the target SGW and the PGW transmitted by the target DeNB, and the MME of the MRN sends a create session request to the SGW in the target DeNB. , including the EPS bearer information of the MRN to be created and the address of the target PGW (built in the PGW in the target DeNB);
  • Step 7 the target SGW creates a context of the MRN, and sends a create session request message to the target PGW.
  • Step 8 After the target PGW creates the context of the MRN and the EPS bearer, the PGW returns a session response message to the target SGW.
  • the signaling in steps 7 and 8 above is an internal interface message in the target DeNB.
  • Step 9 the target SGW replies to the MME of the MRN to create a session response message, to confirm that the context of the MRN and the establishment of the EPS 7 are completed;
  • Step 10 The target MME of the MRN sends a Forward Relocation Response message to the source MME.
  • the message includes an IP address assigned by the target PGW to the LGW;
  • Step 11 The source MME of the MRN sends a handover command message to the source DeNB, where the message includes an IP address allocated by the target PGW to the LGW.
  • Step 12 The source DeNB sends an RRC reconfiguration message to the MRN, where the message may carry the IP address assigned by the target PGW to the LGW, and the source DeNB may also send the IP address allocated by the target PGW to the LGW to the MRN through the S1 or X2 message.
  • Step 13 to Step 16 which are the same as Application Example 1 Step 11 to Step 14.
  • FIG. 10 depicts this example process.
  • the source SGW and the source PGW of the MRN may be built in the source DeNB, or may not be located in the source DeNB, but built in the initial DeNB (initial DeNB). As shown in Figure 10, the following steps are included:
  • Step 1 to Step 3 the same as Application Example 3 Step 1 to Step 3;
  • Step 4 After the target DeNB creates a context for the MRN and the UE and reserves resources for the bearer of the MRN, the target DeNB sends a handover request acknowledgement message to the target MME of the MRN, where the message includes the IP addresses of the target SGW and the target PGW on the target DeNB to assist.
  • the target MME relocates the SGW and the PGW of the MRN;
  • Step 5 The target MME of the MRN relocates the SGW and the PGW of the MRN to the addresses of the SGW and the PGW built in the target DeNB according to the addresses of the target SGW and the PGW sent by the target DeNB, and the MME of the MRN sends a create session request to the SGW in the target DeNB. , including the EPS bearer information of the MRN to be created and the address of the target PGW (built in the PGW in the target DeNB);
  • Step 6 the target SGW creates a context of the MRN, and sends a create session request message to the target PGW.
  • Step 7 If the local gateway address allocation information in the handover request message received by the target DeNB indicates that the LGW needs to be assigned an IP address, the MRN PGW built in the target DeNB allocates an IP address to the LGW according to the received local gateway address allocation information; The address allocation information includes the local gateway address type, and the MRN PGW allocates the IP address of the type to the LGW. If the local gateway address allocation information does not include the local gateway address type, the MRN PGW allocates the address type assigned to the LGW to the MRN. The address type is the same;
  • the local gateway address allocation information only includes the local gateway address type, it can be considered as an implicit indication that the IP address needs to be assigned to the LGW.
  • Step 8 After the target PGW creates the context of the MRN and the EPS bearer, the target PGW replies with the Create Session Response message, where the message includes the IP address assigned by the target PGW to the LGW; the signaling in the foregoing Steps 6 and 8 is in the target DeNB. Internal interface message.
  • Step 9 the target SGW replies to the MME of the MRN to create a session response message, to confirm that the context of the MRN and the establishment of the EPS bearer are completed, and the message includes the IP address allocated by the target PGW to the LGW;
  • Step 10 The target MME of the MRN sends a Forward Relocation Response message to the source MME, where the message includes an IP address allocated by the target PGW to the LGW.
  • Step 11 The source MME of the MRN sends a handover command message to the source DeNB, where the message includes an IP address allocated by the target PGW to the LGW.
  • Step 12 The source DeNB sends an RRC reconfiguration message to the MRN, where the message may carry the IP address assigned by the target PGW to the LGW, and the source DeNB may also send the IP address allocated by the target PGW to the LGW to the MRN through the S1 or X2 message.
  • Step 13 to Step 16 which are the same as Application Example 1 Step 11 to Step 14.
  • FIG. 9 and FIG. 10 is also applicable to the scenario in which the MME of the MRN does not change during the handover process. If the MME is unchanged, the messages transmitted between all the source MMEs and the target MME may be Omitted, and the behavior of both the source MME and the target MME are the same MME behavior.
  • a program to instruct the associated hardware such as a read only memory, a magnetic disk, or an optical disk.
  • all or part of the steps of the above embodiments may also be implemented using one or more integrated circuits.
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware, or may be implemented in the form of a software function module. The invention is not limited to any specific form of combination of hardware and software.
  • the method and the device of the embodiment of the present invention can solve the address update problem of the LGW during the handover process to ensure the continuity of the S5 connection, so that the MRN supports the LIPA and the PGW of the serving MRN is relocated in the MRN handover process. Ensure the business continuity of the terminal. Therefore, the present invention has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种本地网关地址更新方法及装置,能够解决MRN切换过程中MRN PGW发生重定位情况下的LGW地址更新问题。所述方法包括:目标宿主基站接收本地网关地址分配信息;所述目标宿主基站根据所述本地网关地址分配信息判断如果需要为移动中继节点中合设的本地网关分配IP地址,则为本地网关分配IP地址;将本地网关的IP地址发送给服务网关。一种装置,位于目标宿主基站中,包括接收模块、分配模块和发送模块。另一种装置,位于移动中继节点,包括判断模块和存储模块。另一种装置,位于为UE服务的服务网关,包括接收模块和更新模块。釆用使用本发明实施例方法及装置,保证S5连接的连续性,进而保证终端的业务连续性。

Description

一种本地网关地址更新方法及装置
技术领域
本发明涉及本地网关地址更新技术, 具体涉及一种本地网关地址更新方 法及装置。
背景技术
在 3GPP标准组织推出的先进的长期演进( LTE-Advanced )标准中无线 中继( Wireless Relay )技术中, 中继节点( RN, Relay Node )对接入其小区 的 UE提供与普通演进基站(eNB )类似的功能和服务, 又通过无线接口以 类似于普通 UE的方式接入一个服务于它的宿主基站(DeNB )。 随着高速铁 路大规模地建设和投入运行, 在列车上通信的需求不断增大。 但由于高速移 动的列车受到多普勒频移、 小区频繁切换、 高铁车厢穿透损耗大等影响, 现 有网络基站的覆盖很难满足高铁的通信质量需求。 因此业界提出在高铁上部 署中继节点, 这种中继节点通常称为移动中继 (MRN, Mobile Relay ) 。 如 图 1所示, 通过移动中继技术, 可以使得高铁列车中的用户 (UE1和 UE2 ) 与相对静止的 MRN进行通信, 而 MRN在随着高铁移动过程中可在不同的 DeNB之间进行切换, 从而避免了高铁车厢中大量用户的同时切换, 保证了 UE和 MRN之间的通信质量,此外通过增强移动 RN与 DeNB之间的骨干连 接, 能够较好的解决高铁存在的一系列问题。
若 MRN釆用图 1中所示架构 (即与已标准化的 RIO fix relay相同的架 构, 通常称为架构 2 ) , 为减少 UE数据的延迟, 可考虑路由优化方案, 当 MRN移动至离初始 ( initial ) DeNB较远时, MRN的网关 ( GW ) 更换为服 务 MRN的 DeNB内置的网关。如图 2所示, MRN切换前,其 GW位于 DeNBl 上, 而 MRN由 DeNB3提供基站功能服务, UE的数据首先到达 DeNBl的 GW功能, 再经过 DeNB2路由至 DeNB3的基站功能, MRN可在切换过程 中将其 GW重定位至 DeNB4内置的 GW, 从而使得 UE的数据可直接到达 DeNB4, 缩短路径长度, 减少数据延迟。
另外, 为了更好的满足用户需求及进一步提升用户体验, 3GPP 考虑 MRN支持本地 IP访问 ( LIPA, Local IP Access )功能以为 LTE UE提供高 速本地业务, 并节省空口回程链路( backhaul link ) 带宽资源。 例如, UE可 通过 MRN中合设的本地网关( Local Gateway, 简称 LGW )连接本地分组数 据网 (PDN )获取多媒体资源, 或者通过本地服务器支持多用户的社交网络 应用例如文件共享、聊天、 游戏等。 图 1为高铁场景下 MRN支持 LIPA功能 的架构示意图。 如图 1所示, 位于车厢内的 MRN节点中合设了 LGW功能 实体, MRN与 DeNB间通过 Un空口收发数据。 LGW通过 SGi接口与 PDN 网络相连。 对于存在 LIPA连接的连接态 UE, LGW与 MRN之间存在直接 隧道用于 LIPA业务数据, 并且 MRN中 LGW通过 DeNB与 UE服务网关 ( SGW )建立 S5接口核心网隧道,用于 IDLE态 UE的寻呼及 S5信令传输。
在家庭基站( HeNB ) 支持 LIPA的场景下, HeNB中合设的 LGW的地 址在 IPSec隧道建立过程中由安全网关( SeGW )分配。但是在 MRN支持 LIPA 情况下, MRN不与 SeGW网元相连。 并且 LGW与 MRN合设情况下, 所有 由核心网网元发送给 LGW的数据必须通过 MRN分组数据网网关 ( PGW ) 路由才能到达。 因此,在 MRN支持 LIPA情况下, MRN切换过程中若 MRN PGW发生重定位, 则从 UE SGW发送的 LIPA业务相关的 S5数据不能顺利 到达 MRN PGW以路由至 LGW, 导致 S5连接断开。
发明内容
本发明实施例要解决的技术问题是提供一种本地网关地址更新方法及装 置, 能够解决 MRN切换过程中 MRN PGW发生重定位情况下的 LGW地址 更新问题。
为解决上述问题, 釆用如下技术方案:
一种本地网关地址更新的方法, 包括:
目标宿主基站接收本地网关地址分配信息;
所述目标宿主基站根据所述本地网关地址分配信息判断如果需要为移动 中继节点中合设的本地网关分配 IP地址, 则为本地网关分配 IP地址;
将本地网关的 IP地址发送给服务网关。 可选地, 所述方法还包括: 所述目标宿主基站如果未接收到所述本地网 关地址分配信息, 则所述目标宿主基站不为所述本地网关分配 IP地址,在判 断所述移动中继节点支持本地 IP访问 (LIPA ) 功能时, 将所述移动中继节 点的 IP地址存储为所述本地网关的 IP地址, 所述移动中继节点判断如果没 有收到本地网关的 IP地址, 且本移动中继节点支持 LIPA功能, 则将自身的 IP地址存储为所述本地网关的 IP地址。
可选地, 所述方法还包括: 所述目标宿主基站根据所述本地网关地址分 配信息判断如果不需要为移动中继节点中合设的本地网关分配 IP地址,则所 述目标宿主基站不为所述本地网关分配 IP地址 ,在判断所述移动中继节点支 持本地 IP访问 (LIPA )功能时, 将所述移动中继节点的 IP地址存储为所述 本地网关的 IP地址, 所述移动中继节点判断如果没有收到本地网关的 IP地 址, 且本移动中继节点支持 LIPA功能, 则将自身的 IP地址存储为所述本地 网关的 IP地址。
可选地, 所述目标宿主基站釆用以下方式判断所述移动中继节点是否支 持 LIPA功能:
所述目标宿主基站判断是否从源宿主基站接收 'J移动中继节点支持 LIPA功能指示信息, 所述移动中继节点支持 LIPA功能指示信息用于指示移 动中继节点是否支持 LIPA功能;
如果所述目标宿主基站接收到所述移动中继节点支持 LIPA功能指示信 息且所述移动中继节点支持 LIPA功能指示信息指示移动中继节点支持 LIPA 功能, 则所述目标宿主基站判断所述移动中继节点支持 LIPA功能;
如果所述目标宿主基站接收到所述移动中继节点支持 LIPA功能指示信 息, 但所述移动中继节点支持 LIPA功能指示信息指示移动中继节点不支持 LIPA功能, 或者所述目标宿主基站没有接收到所述移动中继节点支持 LIPA 功能指示信息, 则所述目标宿主基站判断所述移动中继节点不支持 LIPA功 fj匕。
可选地, 所述目标宿主基站接收本地网关地址分配信息的步骤包括: 所述目标宿主基站接收到所述移动中继节点的源宿主基站发送的携带本 地网关地址分配信息的 X2接口切换请求消息; 或者, 所述目标宿主基站接收到移动管理实体( MME )发送的携带本地网关地 址分配信息的 S 1接口切换请求消息,所述 MME是为所述移动中继节点服务 的 MME, 所述 S1接口切换请求消息中的本地网关地址分配信息由源宿主基 站发送至所述 MME。
可选地, 所述本地网关地址分配信息至少包含以下之一: 本地网关地址 分配指示, 本地网关地址类型;
其中, 所述本地网关地址分配指示用于指示是否需要为本地网关分配 IP 地址, 所述本地网关地址类型用于指示所需分配的本地网关的 IP地址的类 型。
可选地, 所述目标宿主基站根据所述本地网关地址分配信息判断如果需 要为移动中继节点中合设的本地网关分配 IP地址, 则为本地网关分配 IP地 址的步骤包括:
所述目标宿主基站判断所述本地网关地址分配信息中仅包含本地网关地 址分配指示, 且该本地网关地址分配指示指示需要为本地网关分配 IP地址, 则所述目标宿主基站中的为移动中继节点服务的数据分组网关为移动中继节 点中合设的本地网关分配 IP地址, 所述 IP地址的类型与所述移动中继节点 的 IP地址类型相同; 或者,
所述目标宿主基站判断所述本地网关地址分配信息中包含本地网关地址 分配指示和本地网关地址类型, 且该本地网关地址分配指示指示需要为本地 网关分配 IP地址,则所述目标宿主基站中的为移动中继节点服务的数据分组 网关为移动中继节点中合设的本地网关分配 IP地址, 所述 IP地址的类型为 所述本地网关地址类型所指示的类型; 或者
所述目标宿主基站判断所述本地网关地址分配信息中仅包含本地网关地 址类型, 则所述目标宿主基站中的为移动中继节点服务的数据分组网关为移 动中继节点中合设的本地网关分配 IP地址, 所述 IP地址的类型为所述本地 网关地址类型所指示的类型。
可选地,所述目标宿主基站为本地网关分配 IP地址后,所述方法还包括: 所述目标宿主基站将为本地网关分配的 IP地址发送给源宿主基站,所述 源宿主基站将所述本地网关的 IP地址发送给所述移动中继节点; 或者, 所述目标宿主基站直接将为本地网关分配的 IP地址发送给所述移动中 继节点。
可选地,所述目标宿主基站将为本地网关分配的 IP地址发送给源宿主基 站的步骤包括:
所述目标宿主基站直接将为本地网关分配的 IP地址发送给源宿主基站; 或者,
所述目标宿主基站通过 MME将为本地网关分配的 IP地址发送给源宿主 基站。 节点的步骤包括:
所述源宿主基站通过无线资源控制( RRC )消息或 S1接口消息或 X2接 口消息发送所述本地网关的 IP地址给所述移动中继节点。
可选地,所述目标宿主基站直接将所述本地网关的 IP地址发送给所述移 动中继节点的步骤包括:
所述目标宿主基站通过无线资源控制 ( RRC ) 消息或 S1接口消息或 X2 接口消息发送所述本地网关的 IP地址给所述移动中继节点。
可选地, 所述将本地网关的 IP地址发送给服务网关的步骤包括: 所述目标宿主基站接收所述移动中继节点发送的第一 S1 接口消息, 向 为 UE服务的 MME发送第二 S1接口消息, 所述第一 S1接口消息和所述第 二 S1接口消息中均包含所述本地网关的 IP地址, 所述 UE为接入所述移动 中继节点的 UE;所述 MME发送第一 S11接口消息给为所述 UE服务的服务
S 11接口消息中包含所述本地网关的 IP地址。
可选地,第一 S1接口消息和第二 S1接口消息均釆用路径转移请求消息, 所述第一 S11接口消息釆用修改承载请求消息或者创建会话请求消息。
可选地, 所述将本地网关的 IP地址发送给服务网关的步骤包括: 所述目标宿主基站向为 UE服务的 MME发送第三 S1接口消息,所述第 三 S1接口消息中包含所述本地网关的 IP地址, 所述 UE为接入所述移动中 继节点的 UE;所述 MME发送第二 S11接口消息给为所述 UE服务的服务网 S 11接口消息中包含所述本地网关的 IP地址。
可选地, 第三 S1接口消息釆用路径转移请求消息; 所述第二 S11接口 消息釆用修改承载请求消息或者创建会话请求消息。
种实现本地网关地址更新的装置, 所述装置位于目标宿主基站中, 包括 接收模块、 分配模块和发送模块, 其中:
所述接收模块设置成: 接收本地网关地址分配信息;
所述分配模块设置成: 根据所述本地网关地址分配信息判断如果需要为 移动中继节点中合设的本地网关分配 IP地址, 则为本地网关分配 IP地址; 所述发送模块设置成: 将本地网关的 IP地址发送给服务网关。
可选地, 所述分配模块还设置成:
在所述接收模块未接收到所述本地网关地址分配信息时, 不为所述本地 网关分配 IP地址; 以及在判断所述移动中继节点支持本地 IP访问 (LIPA ) 功能时, 将所述移动中继节点的 IP地址存储为所述本地网关的 IP地址。
可选地, 所述分配模块还设置成:
根据所述本地网关地址分配信息判断如果不需要为移动中继节点中合设 的本地网关分配 IP地址, 则不为所述本地网关分配 IP地址, 并在判断所述 移动中继节点支持本地 IP访问 (LIPA )功能时, 将所述移动中继节点的 IP 地址存储为所述本地网关的 IP地址。
可选地, 所述分配模块设置成釆用以下方式判断所述移动中继节点是否 支持 LIPA功能:
所述分配模块判断是否从源宿主基站接收到移动中继节点支持 LIPA功 能指示信息, 所述移动中继节点支持 LIPA功能指示信息用于指示移动中继 节点是否支持 LIPA功能; 如果所述分配模块接收到所述移动中继节点支持 LIPA功能指示信息且 所述移动中继节点支持 LIPA功能指示信息指示移动中继节点支持 LIPA功 能, 则所述分配模块判断所述移动中继节点支持 LIPA功能;
如果所述分配模块接收到所述移动中继节点支持 LIPA功能指示信息, 但所述移动中继节点支持 LIPA功能指示信息指示移动中继节点不支持 LIPA 功能, 或者所述分配模块没有接收到所述移动中继节点支持 LIPA功能指示 信息, 则所述分配模块判断所述移动中继节点不支持 LIPA功能。
可选地,所述接收模块设置成按照如下方式接收本地网关地址分配信息: 所述接收模块接收到所述移动中继节点的源宿主基站发送的携带本地网 关地址分配信息的 X2接口切换请求消息; 或者,
所述接收模块接收到移动管理实体 ( MME )发送的携带本地网关地址分 配信息的 S1接口切换请求消息, 所述 MME是为所述移动中继节点服务的 MME, 所述 S1接口切换请求消息中的本地网关地址分配信息由源宿主基站 发送至所述 MME。
可选地, 所述本地网关地址分配信息至少包含以下之一: 本地网关地址 分配指示, 本地网关地址类型;
其中, 所述本地网关地址分配指示用于指示是否需要为本地网关分配 IP 地址, 所述本地网关地址类型用于指示所需分配的本地网关的 IP地址的类 型。
可选地, 所述分配模块设置成按照如下方式根据所述本地网关地址分配 信息判断如果需要为移动中继节点中合设的本地网关分配 IP地址,则为本地 网关分配 IP地址:
所述分配模块判断所述本地网关地址分配信息中仅包含本地网关地址分 配指示,且该本地网关地址分配指示指示需要为本地网关分配 IP地址, 则所 述分配模块为移动中继节点中合设的本地网关分配 IP地址, 所述 IP地址的 类型与所述移动中继节点的 IP地址类型相同; 或者,
所述分配模块判断所述本地网关地址分配信息中包含本地网关地址分配 指示和本地网关地址类型, 且该本地网关地址分配指示指示需要为本地网关 分配 IP地址, 则所述分配模块为移动中继节点中合设的本地网关分配 IP地 址, 所述 IP地址的类型为所述本地网关地址类型所指示的类型; 或者
所述分配模块判断所述本地网关地址分配信息中仅包含本地网关地址类 型,则所述分配模块为移动中继节点中合设的本地网关分配 IP地址,所述 IP 地址的类型为所述本地网关地址类型所指示的类型。
可选地, 所述发送模块还设置成:
在所述分配模块为本地网关分配 IP地址后, 将为本地网关分配的 IP地 址发送给源宿主基站,以使所述源宿主基站将所述本地网关的 IP地址发送给 所述移动中继节点; 或者,
在所述分配模块为本地网关分配 IP地址后,直接将为本地网关分配的 IP 地址发送给所述移动中继节点。
可选地,所述发送模块设置成按照如下方式将为本地网关分配的 IP地址 发送给源宿主基站:
所述发送模块直接将为本地网关分配的 IP地址发送给源宿主基站,或者 所述发送模块通过 MME将为本地网关分配的 IP地址发送给源宿主基站。
可选地, 所述发送模块设置成按照如下方式在所述分配模块为本地网关 分配 IP地址后,直接将为本地网关分配的 IP地址发送给所述移动中继节点: 所述发送模块通过无线资源控制(RRC )消息或 S1接口消息或 X2接口 消息发送所述本地网关的 IP地址给所述移动中继节点。
可选地,所述发送模块设置成按照如下方式将本地网关的 IP地址发送给 服务网关:
所述发送模块接收所述移动中继节点发送的第一 S1接口消息, 向为 UE 服务的 MME发送第二 S1接口消息, 所述第一 S1接口消息和所述第二 S1 接口消息中均包含所述本地网关的 IP地址,所述 UE为接入所述移动中继节 点的 UE, 通过所述 MME将所述本地网关的 IP地址发送给为所述 UE服务 的服务网关。
可选地,第一 S1接口消息和第二 S1接口消息均釆用路径转移请求消息。 可选地,所述发送模块设置成按照如下方式将本地网关的 IP地址发送给 服务网关:
所述发送模块向为 UE服务的 MME发送第三 S1接口消息, 所述第三 S1接口消息中包含所述本地网关的 IP地址, 所述 UE为接入所述移动中继 节点的 UE, 通过所述 MME将所述本地网关的 IP地址发送给为所述 UE服 务的服务网关。
可选地, 第三 S1接口消息釆用路径转移请求消息。
一种实现本地网关地址更新的装置, 位于移动中继节点, 包括判断模块 和存储模块, 其中:
所述判断模块设置成: 判断是否收到本地网关的 IP地址;
所述存储模块设置成:在所述判断模块判断接收到所述本地网关的 IP地 址时,保存所述本地网关的 IP地址,在所述判断模块判断未接收到所述本地 网关的 IP地址, 且判断本移动中继节点支持本地 IP访问 (LIPA ) 功能, 则 将自身的 IP地址存储为所述本地网关的 IP地址。
可选地, 所述装置还包括发送模块, 其中:
所述发送模块设置成: 向目标宿主基站发送第一 S1 接口消息后, 所述 第一 S1接口消息中包含所述本地网关的 IP地址。
可选地, 所述第一 S1接口消息釆用路径转移请求消息。
一种实现本地网关地址更新的装置, 位于为用户设备(UE )服务的服务 网关, 包括接收模块和更新模块, 其中:
所述接收模块设置成:接收移动管理实体(MME )发送的 S11接口消息; 所述 S11接口消息中包含移动中继节点中合设的本地网关的 IP地址;
所述更新模块设置成: 更新本地保存的所述本地网关的 IP地址。
使用本发明实施例的方法及装置, 在 MRN支持 LIPA, 且 MRN切换过 程中服务 MRN的 PGW发生重定位情况下,能解决切换过程中 LGW的地址 更新问题, 以保证 S5连接的连续性, 进而保证终端的业务连续性。 附图概述
图 1是高铁场景下支持 LIPA功能的移动中继系统架构示意图; 图 2是 MRN架构 2下路由优化后的 MRN切换示意图;
图 3是本发明实施例 1流程图;
图 4是本发明实施例 2目标宿主基站结构示意图;
图 5是本发明实施例 3移动中继节点结构示意图;
图 6是本发明实施例 4服务网关结构示意图;
图 7是本发明应用示例 1的流程示意图;
图 8是本发明应用示例 2的流程示意图;
图 9是本发明应用示例 3的流程示意图;
图 10是本发明应用示例 4的流程示意图。 本发明的较佳实施方式
为使本发明的目的、 技术方案和优点更加清楚明白, 下文中将结合附图 对本发明的实施例进行详细说明。 需要说明的是, 在不冲突的情况下, 本申 请中的实施例及实施例中的特征可以相互任意组合。
实施例 1
本实施例描述本地网关地址更新方法, 在本实施例中, 移动中继节点的
S-GW、 P-GW内置在 DeNB中, 如图 3所示, 包括以下步骤:
步骤 110, 目标宿主基站接收本地网关地址分配信息;
可选地, 在移动中继发生切换的过程中, 目标宿主基站判断是否接收到 本地网关地址分配信息, 如果接收到, 则执行步骤 120 , 如果未接收到本地 网关地址分配信息, 则目标宿主基站不为本地网关分配 IP地址,在判断移动 中继节点支持 LIPA功能时,将移动中继节点的 IP地址存储为本地网关的 IP 地址, 执行步骤 130。 目标宿主基站可釆用以下方式判断移动中继节点是否支持 LIPA功能: 目标宿主基站判断是否从源宿主基站接收到移动中继节点支持 LIPA功能指 示信息, 该指示信息用于指示移动中继节点是否支持 LIPA功能; 如果目标 宿主基站接收到该指示信息且该指示信息指示移动中继节点支持 LIPA功能, 则目标宿主基站判断该移动中继节点支持 LIPA功能; 如果目标宿主基站接 收到该指示信息, 但该指示信息指示移动中继节点不支持 LIPA功能, 或者 目标宿主基站没有接收到该指示信息, 则目标宿主基站判断该移动中继节点 不支持 LIPA功能。
对于移动中继节点而言, 移动中继节点判断如果没有收到本地网关的 IP 地址, 且本移动中继节点支持 LIPA功能, 则可将自身的 IP地址存储为本地 网关的 IP地址。本地网关与移动中继节点合设, 或者说本地网关设置于移动 中继节点中。
目标宿主基站可通过以下两种方式任意之一来接收本地网关地址分配信 息, 方式一, 目标宿主基站接收移动中继节点的源宿主基站发送的 X2接口 切换请求消息, 该消息中携带本地网关地址分配信息; 方式二, 目标宿主基 站接收移动管理实体(MME )发送的 S1接口切换请求消息, 该消息中携带 本地网关地址分配信息, 该 MME是为该移动中继节点服务的 MME, 该 S1 接口切换请求消息中的本地网关地址分配信息由源宿主基站发送至该
本地网关地址分配信息至少包含以下之一: 本地网关地址分配指示, 本 地网关地址类型, 该本地网关地址分配指示用于指示是否需要为本地网关分 配 IP地址, 该本地网关地址类型用于指示所需分配的本地网关的 IP地址的 类型。
步骤 120, 所述目标宿主基站根据所述本地网关地址分配信息判断如果 需要为移动中继节点中合设的本地网关分配 IP地址, 则为本地网关分配 IP 地址;
如果目标宿主基站根据本地网关地址分配信息判断不需要为移动中继节 点中合设的本地网关分配 IP地址, 则目标宿主基站不为本地网关分配 IP地 址, 在判断移动中继节点支持 LIPA功能时, 将该移动中继节点的 IP地址存 储为本地网关的 IP地址, 执行步骤 130。 目标宿主基站判断移动中继节点是 否支持 LIPA功能的方法参见步骤 110中的描述。 对于移动中继节点而言, 其判断如果没有收到本地网关的 IP地址 ,且本移动中继节点支持 LIPA功能 , 则将自身的 IP地址存储为本地网关的 IP地址。
目标宿主基站根据本地网关地址分配信息为本地网关分配 IP地址: 如果目标宿主基站判断本地网关地址分配信息中仅包含本地网关地址分 配指示,且该本地网关地址分配指示指示需要为本地网关分配 IP地址, 则由 目标宿主基站中的为移动中继节点服务的数据分组网关为移动中继节点中合 设的本地网关分配 IP地址, 所分配的 IP地址的类型与移动中继节点的 IP地 址类型相同;
所述目标宿主基站判断本地网关地址分配信息中包含本地网关地址分配 指示和本地网关地址类型, 且该本地网关地址分配指示指示需要为本地网关 分配 IP地址,则目标宿主基站中的为移动中继节点服务的数据分组网关为移 动中继节点中合设的本地网关分配 IP地址, 所分配的 IP地址的类型为本地 网关地址类型所指示的类型;
所述目标宿主基站判断本地网关地址分配信息中仅包含本地网关地址类 型, 则目标宿主基站中的为移动中继节点服务的数据分组网关为移动中继节 点中合设的本地网关分配 IP地址, 所分配的 IP地址的类型为本地网关地址 类型所指示的类型。
上述过程中省略了目标宿主基站与数据分组网关之间的交互, 由于数据 分组网关设置于目标宿主基站中, 因此, 当目标宿主基站判断需要为移动中 继节点中合设的本地网关分配 IP地址时,会通过内部的接口和消息通知数据 分组网关。
步骤 130, 将本地网关的 IP地址发送给服务网关。
可选地, 目标宿主基站为本地网关分配 IP地址后, 目标宿主基站将为本 地网关分配的 IP地址发送给源宿主基站(直接发送给源宿主基站或者通过 MME发送) , 由源宿主基站将本地网关的 IP地址发送给所述移动中继节点 (例如通过无线资源控制( RRC )消息或 S1接口消息或 X2接口消息发送 ); 或者, 目标宿主基站直接将为本地网关分配的 IP地址发送给移动中继节点 (例如通过 RRC消息或 SI接口消息或 X2接口消息发送 ) 。
方式一, 目标宿主基站接收移动中继节点发送的第一 S1 接口消息, 向 为 UE服务的 MME发送第二 S1接口消息, 该第一 S1接口消息和第二 S1 接口消息中均包含本地网关的 IP地址,上述 UE为接入移动中继节点的 UE; 再由 MME发送第一 S11接口消息给为该 UE服务的服务网关, 以使服务网 关更新本地保存的本地网关的 IP地址,该第一 S 11接口消息中包含本地网关 的 IP地址;
上述第一 S1接口消息和第二 S1接口消息的内容可能略有不同, 但优选 釆用路径转移请求消息, 第一 S11接口消息优选釆用修改承载请求消息或者 创建会话请求消息。
方式二, 目标宿主基站向为 UE服务的 MME发送第三 S1接口消息, 该 第三 S1接口消息中包含本地网关的 IP地址, 该 UE为接入所述移动中继节 点的 UE; 由 MME发送第二 S11接口消息给为该 UE服务的服务网关, 以使 服务网关更新本地保存的本地网关的 IP地址,该第二 S11接口消息中包含本 地网关的 IP地址。
该第三 S1接口消息优选釆用路径转移请求消息; 第二 S11接口消息优 选釆用修改承载请求消息或者创建会话请求消息。
上述方式一是通过由移动中继节点发起的流程,将本地网关的 IP地址发 送给服务网关。 方式二是通过目标宿主基站发起的流程, 将本地网关的 IP地 址发送给服务网关。 本步骤中所提到的本地网关的 IP地址可能是步骤 120 中目标宿主基站为本地网关分配的 IP地址, 也可能是作为本地网关 IP地址 的移动中继节点 IP地址。
实施例 2
本实施例介绍实现本地网关地址更新的装置, 该装置位于目标宿主基站 中, 如图 4所示, 包括接收模块 401、 分配模块 402和发送模块 403 , 其中:
>该接收模块 401设置成: 接收本地网关地址分配信息; 可选地, 接收模块 401可接收移动中继节点的源宿主基站发送的携带本 地网关地址分配信息的 X2接口切换请求消息; 或者, 接收 MME发送的携 带本地网关地址分配信息的 S1接口切换请求消息,该 MME是为该移动中继 节点服务的 MME, 该 S1接口切换请求消息中的本地网关地址分配信息由源 宿主基站发送至该 MME。
本地网关地址分配信息至少包含以下之一: 本地网关地址分配指示, 本 地网关地址类型, 该本地网关地址分配指示用于指示是否需要为本地网关分 配 IP地址, 该本地网关地址类型用于指示所需分配的本地网关的 IP地址的 类型。
>该分配模块 402设置成: 根据所述本地网关地址分配信息判断如果需 要为移动中继节点中合设的本地网关分配 IP地址, 则为本地网关分 配 IP地址;
可选地, 该分配模块 402还设置成: 在接收模块 401未接收到本地网关 地址分配信息时, 不为本地网关分配 IP地址; 以及在判断移动中继节点支持 LIPA功能时, 将移动中继节点的 IP地址存储为该本地网关的 IP地址。
可选地, 该分配模块 402还设置成: 根据该本地网关地址分配信息判断 如果不需要为移动中继节点中合设的本地网关分配 IP地址,则不为本地网关 分配 IP地址, 并在判断移动中继节点支持 LIPA功能时, 将该移动中继节点 的 IP地址存储为本地网关的 IP地址。
可选地, 分配模块 402釆用以下方式判断移动中继节点是否支持 LIPA 功能:
分配模块 402判断是否从源宿主基站接收到移动中继节点支持 LIPA功 能指示信息, 该指示信息用于指示移动中继节点是否支持 LIPA功能; 如果 分配模块 402接收到该指示信息且该指示信息指示移动中继节点支持 LIPA 功能, 则分配模块 402判断该移动中继节点支持 LIPA功能; 如果分配模块 402接收到该指示信息, 但该指示信息指示移动中继节点不支持 LIPA功能, 或者分配模块 402没有接收到该指示信息, 则分配模块 402判断该移动中继 节点不支持 LIPA功能。
该分配模块 402可釆用以下方式之一为本地网关分配 IP地址: 分配模块 402判断本地网关地址分配信息中仅包含本地网关地址分配指 示,且该本地网关地址分配指示指示需要为本地网关分配 IP地址, 则为移动 中继节点中合设的本地网关分配 IP地址, 所分配的 IP地址的类型与该移动 中继节点的 IP地址类型相同;
分配模块 402判断本地网关地址分配信息中包含本地网关地址分配指示 和本地网关地址类型, 且该本地网关地址分配指示指示需要为本地网关分配 IP地址, 则为移动中继节点中合设的本地网关分配 IP地址, 所分配的 IP地 址的类型为该本地网关地址类型所指示的类型;
分配模块 402判断本地网关地址分配信息中仅包含本地网关地址类型, 则为移动中继节点中合设的本地网关分配 IP地址, 所分配的 IP地址的类型 为该本地网关地址类型所指示的类型。
上述分配模块 402包括位于目标宿主基站的分配控制单元和位于数据分 组网关的分配执行单元, 分配控制单元设置成: 进行上述对本地网关地址分 配信息的判断, 以决策是否为本地网关分配 IP地址, 并通知分配执行单元进 行可选地分配操作。
>该发送模块 403设置成: 将本地网关的 IP地址发送给服务网关。
可选地,发送模块还设置成:在分配模块 402为本地网关分配 IP地址后, 将为本地网关分配的 IP地址发送给源宿主基站(直接发送或者通过 MME发 送) , 以使源宿主基站将该本地网关的 IP地址发送给移动中继节点; 或者, 在分配模块 402为本地网关分配 IP地址后, 直接将为本地网关分配的 IP地 址发送给移动中继节点 (例如通过 RRC消息或 S1接口消息或 X2接口消息 等) 。
可选地,该发送模块 403可以釆用以下方式任意之一将本地网关的 IP地 址发送给服务网关:
方式一, 发送模块 403接收移动中继节点发送的第一 S1接口消息, 向 为 UE服务的 MME发送第二 S1接口消息, 该第一 S1接口消息和第二 S1 接口消息中均包含本地网关的 IP地址, 该 UE为接入移动中继节点的 UE , 通过 MME将本地网关的 IP地址发送给为 UE服务的服务网关; 可选地, 该 第一 S1接口消息和第二 S1接口消息均釆用路径转移请求消息; 方式二, 发送模块 403向为 UE服务的 MME发送第三 SI接口消息, 该 第三 S 1接口消息中包含本地网关的 IP地址, 该 UE为接入移动中继节点的 UE,通过该 MME将本地网关的 IP地址发送给为该 UE服务的服务网关; 可 选地, 该第三 S1接口消息釆用路径转移请求消息。
实施例 3
本实施例介绍实现本地网关地址更新的装置,该装置位于移动中继节点, 如图 5所示, 包括判断模块 501和存储模块 502, 其中:
该判断模块 501设置成: 判断是否收到本地网关的 IP地址;
该存储模块 502设置成: 在所述判断模块判断接收到所述本地网关的 IP 地址时,保存所述本地网关的 IP地址, 在所述判断模块判断未接收到所述本 地网关的 IP地址, 且判断本移动中继节点支持 LIPA功能, 则将自身的 IP 地址存储为所述本地网关的 IP地址。
可选地, 该装置还包括发送模块, 设置成: 向目标宿主基站发送第一 S1 接口消息后,该第一 S1接口消息中包含本地网关的 IP地址。该第一 S1接口 消息优选釆用路径转移请求消息。
实施例 4
本实施例介绍为 UE服务的服务网关, 如图 6所示, 包括接收模 ,601和 更新模块 602, 其中:
该接收模块 601设置成: 接收 MME发送的 S11接口消息; 该 S11接口 消息中包含移动中继节点中合设的本地网关的 IP地址;
该新模块 602设置成: 更新本地保存的所述本地网关的 IP地址。
下文中将结合应用示例对上述实施例进行详细说明。在不冲突的情况下, 本申请中的应用示例及应用示例中的特征可以相互任意组合。 应用示例 1 本示例描述的是源 DeNB通过 X2接口消息将本地网关地址分配信息发 送给目标 DeNB ,目标 DeNB在切换准备过程中为 LGW分配 IP地址的方法。 图 7描述了本示例流程。 在本示例中, MRN 的源 SGW和源 PGW可能内置 于源 DeNB 中, 也可能不位于源 DeNB 中, 而是内置于初始 DeNB ( initial DeNB ) 中。 如图 7所示, 包括以下步骤:
步骤 1 , MRN在测量过程中检测到目标 DeNB小区的信号, 并触发测量 上报事件发送测量报告给源 DeNB, 源 DeNB 确定需将 MRN切换至目标 DeNB后 , 判断源 DeNB与目标 DeNB之间存在 X2接口, 并且切换后 MRN 不需要更换 MME, 则源 DeNB为 MRN发起 X2切换, 源 DeNB发送 X2接 口切换请求(handover request ) 消息至目标 DeNB, 该切换请求消息中包含 本地网关地址分配信息;
本地网关地址分配信息至少包括以下之一: 本地网关地址分配指示, 本 地网关地址类型。 其中本地网关地址分配指示用于指示是否需要为 LGW分 配 IP地址; 本地网关地址类型用于指示所需分配的 LGW的 IP地址的类型。 可选的,该切换请求消息中还可以包括 MRN支持 LIPA功能指示信息,用于 指示该切换的 MRN是否支持 LIPA功能,源 DeNB根据切换之前接收的 MRN 为 UE发送的 S1接口消息中是否包含本地网关的地址信息判断该 MRN是否 支持 LIPA功能。另外,切换请求消息中还可携带 MRN和 UE的上下文信息, 此处所述 UE是指接入 MRN的 UE。
步骤 2, 目标 DeNB接收到切换请求消息后, 若该消息中本地网关地址 分配信息指示需为 LGW分配 IP地址,则目标 DeNB中内置的 MRN PGW根 据接收的本地网关地址分配信息为 LGW分配 IP地址; 若本地网关地址分配 信息中包含本地网关地址类型 ,则 MRN PGW为 LGW分配该类型的 IP地址 , 若本地网关地址分配信息中没有包含本地网关地址类型, 则 MRN PGW为 LGW分配的地址类型与为 MRN分配的地址类型相同;
若本地网关地址分配信息中仅包含本地网关地址类型, 则可认为是一种 隐含指示需要为 LGW分配 IP地址的方式。
步骤 3 ,目标 DeNB创建 MRN和 UE上下文并预留相关的承载资源之后, 发送 X2接口的切换请求确认消息给源 DeNB,其中包含 MRN PGW为 LGW 分配的 IP地址;
可选地, 该 LGW的 IP地址可以在目标 DeNB到源 DeNB的透传容器 ( Target eNB To Source eNB Transparent Container ) 中携带。
步骤 4, 源 DeNB发送空口消息 RRC (无线资源控制 )连接重配置消息 给 MRN, 该 RRC连接重配置消息中携带目标 DeNB到源 DeNB的透传容器 中的目标 DeNB通过源 DeNB发送给 MRN的透传的切换命令消息,源 DeNB 可通过该消息将 LGW的 IP地址发送给 MRN, 此外, 源 DeNB还可以通过 S1或 X2接口消息将 LGW的 IP地址发送给 MRN;
釆用 RRC连接重配置消息更为合理, 但除了 RRC连接重配置消息外, 也可以釆用其他 RRC消息来实现。
步骤 5, 切换执行( Handover execution )阶段中, MRN从源 DeNB去附 着并与目标 DeNB同步并建立 RRC连接,目标 DeNB接收 MRN发送的 RRC 重配置完成消息后,向 MRN的 MME发送路径转移请求( path switch request ) 消息,以更新 RN的 S 1用户面及控制面路径,该消息中包含内置于目标 DeNB 的 SGW和 PGW (即 MRN的目标 SGW和 PGW ) 的地址 , 以辅助 MME重 新定位 MRN的 SGW和 PGW;
步骤 6, MRN的 MME并根据目标 DeNB发送的目标 SGW和 PGW的 地址将 MRN的 SGW和 PGW重定位为内置于目标 DeNB的 SGW和 PGW 的地址, MRN的 MME向目标 DeNB中 SGW发送创建会话请求, 其中包括 需创建的 MRN的 EPS (演进分组系统 )承载信息和目标 PGW (内置于目标 DeNB中 PGW ) 的地址;
步骤 7, 目标 SGW创建 MRN的上下文, 并向目标 PGW发送创建会话 请求消息;
步骤 8, 目标 PGW创建 MRN的上下文和 EPS承载后, 向目标 SGW回 复创建会话响应消息;
上述步骤 7和步骤 8中信令均为目标 DeNB中内部接口消息。
步骤 9, 目标 SGW向 MRN的 MME回复创建会话响应消息, 以确认 MRN的上下文及 EPS 7 载建立完成; 步骤 10, MRN的 MME向目标 DeNB回复路径转移请求确认消息; 步骤 11 , MRN针对每个 UE发送路径转移请求消息给目标 DeNB , 以更 新各 UE的 S1用户面及控制面路径, 其中包含下行需转移的承载信息等; 本示例中 MRN支持 LIPA功能, 则该路径转移请求消息中包含 MRN PGW在切换过程中为 LGW分配的 IP地址。
值得注意的是, 针对每个 UE的路径转移过程可以由 MRN发起, 也可 以直接由目标 DeNB发起, 若直接由目标 DeNB发起, 则步骤 11可跳过。
步骤 12, 目标 DeNB对接收的针对每个 UE的路径转移请求消息做 S1 代理后发送给 UE的 MME , 每个消息中均包含 MRN PGW在切换过程中为 LGW分配的 IP地址;
若针对每个 UE的路径转移过程直接由目标 DeNB发起, 且目标 DeNB 根据本地网关地址分配信息为 LGW分配了 IP地址, 则目标 DeNB针对每个 UE发送路径转移请求消息给 UE的 MME, 该消息中包含其为 LGW分配的 IP地址;
若针对每个 UE的路径转移过程直接由目标 DeNB发起, 且目标 DeNB 不需要为 LGW分配 IP地址, 则目标 DeNB根据步骤 1切换请求消息中接收 的 MRN支持 LIPA功能指示信息判断服务 UE的 MRN是否支持 LIPA功能, 若支持 , 则认为 LGW和 MRN使用相同的 IP地址 , 并将 MRN的地址当作 LGW的地址通过路径转移请求消息发送给 UE的 MME。
步骤 13 , UE的 MME判断是否需要为 UE重新选择一个 SGW, 若不需 要, 则图 7中所示 UE的目标 SGW也即 UE的源 SGW, UE的 MME针对该 UE的每个 PDN连接发送修改承载请求消息给 UE的目标 SGW,并且该修改 承载请求消息中包含更新的 LGW的地址。若 UE的 MME需要重新选择一个 SGW, 则图 7中所示 UE的目标 SGW和 UE的源 SGW为不同的 SGW, UE 的 MME针对该 UE的每个 PDN连接发送创建会话请求消息给 UE的目标 SGW, 并且 UE的 LIPA PDN连接所对应的创建会话请求消息中包含更新的 LGW的地址。
步骤 14, UE的目标 SGW更新该 LGW的地址, 并继续完成修改承载或 应用示例 2
本示例描述的是源 DeNB通过 X2接口消息将本地网关地址分配信息发 送给目标 DeNB ,目标 DeNB在创建会话过程中为 LGW分配 IP地址的方法。 图 8描述了本示例流程。 在本示例中, MRN 的源 SGW和源 PGW可能内置 于源 DeNB 中, 也可能不位于源 DeNB 中, 而是内置于初始 DeNB ( initial DeNB ) 中。 如图 8所示, 包括以下步骤:
步骤 1 , 与应用示例 1步骤 1相同;
步骤 2,目标 DeNB创建 MRN和 UE上下文并预留相关的承载资源之后, 发送 X2接口切换请求确认消息给源 DeNB;
步骤 3 , 源 DeNB发送空口消息 RRC连接重配置消息给 MRN, 该 RRC 连接重配置消息中携带目标 DeNB通过源 DeNB发送给 MRN的透传的切换 命令消息;
步骤 4至步骤 6, 与应用示例 1步骤 5至 7相同;
步骤 7 , 若目标 DeNB在切换请求消息中接收的本地网关地址分配信息 指示需为 LGW分配 IP地址,则目标 DeNB中内置的 MRN PGW根据接收的 本地网关地址分配信息为 LGW分配 IP地址; 若本地网关地址分配信息中包 含本地网关地址类型, 则 MRN PGW为 LGW分配该类型的 IP地址, 若本地 网关地址分配信息中没有包含本地网关地址类型, 则 MRN PGW为 LGW分 配的地址类型与为 MRN分配的地址类型相同;
若本地网关地址分配信息中仅包含本地网关地址类型, 则可认为是一种 隐含指示需要为 LGW分配 IP地址的方式。
步骤 8, 目标 PGW创建 MRN的上下文和 EPS承载后, 向目标 SGW回 复创建会话响应消息;
上述步骤 6和步骤 8中信令均为目标 DeNB中内部接口消息。
步骤 9, 目标 SGW向 MRN的 MME回复创建会话响应消息, 以确认 MRN的上下文及 EPS 7 载建立完成; 步骤 10, MRN的 MME向目标 DeNB回复路径转移请求确认消息; 步骤 11 ,目标 DeNB将 MRN PGW为 LGW分配的 IP地址发送给 MRN, 可通过 RRC连接重配置消息或 S1或 X2消息;
步骤 12至步骤 15 , 与应用示例 1步骤 11至步骤 14相同。
应用示例 3
本示例描述的是目标 DeNB在 S1切换中的切换准备过程中分配 IP地址 的方法。 图 9描述了本示例流程。 在本示例中, MRN 的源 SGW和源 PGW 可能内置于源 DeNB中, 也可能不位于源 DeNB中, 而是内置于初始 DeNB ( initial DeNB ) 中。 如图 9所示, 包括以下步骤:
步骤 1 , MRN在测量过程中检测到目标 DeNB小区的信号, 并触发测量 上报事件发送测量报告给源 DeNB , 源 DeNB 确定需将 MRN切换至目标 DeNB后,判断源 DeNB与目标 DeNB之间不存在 X2接口,或者切换后 MRN 需要更换 MME, 则源 DeNB为 MRN发起 S1切换, 源 DeNB发送 S1接口 切换要求 ( handover required ) 消息给 MRN的源 MME , 该切换要求消息中 包含本地网关地址分配信息;
本地网关地址分配信息至少包括以下之一: 本地网关地址分配指示, 本 地网关地址类型。 其中本地网关地址分配指示用于指示是否需要为 LGW分 配 IP地址; 本地网关地址类型用于指示所需分配的 LGW的 IP地址的类型。 可选的,该切换要求消息中还可以包括 MRN支持 LIPA功能指示信息,用于 指示该切换的 MRN是否支持 LIPA 功能。 本地网关地址分配信息可在源 DeNB到目标 DeNB的透传容器中携带。
步骤 2, 源 MME根据接收的切换要求消息中的目标 DeNB的基站标识 或者目标 TAI (跟踪区标识)判断是否要选择一个新的 MME, 如果需要则 根据这两个参数选择目标 MME, 并向其发送转发重定位请求消息, 其中携 带源 DeNB到目标 DeNB透传容器, 目标 DeNB标识、 目标位置区标识, MRN 的上下文信息等信息。 该转发重定位请求消息中包含本地网关地址分 配信息 (可以在透传容器中携带), 若源 MME接收到 MRN支持 LIPA功能 指示信息, 则该消息中还包含 MRN支持 LIPA功能指示信息; 如果不需要选择新的 ΜΜΕ, 则步骤 2和步骤 10跳过。
步骤 3 , MRN的目标 ΜΜΕ发送 S1接口切换请求消息给目标 DeNB, 其中包含本地网关地址分配信息,可选的还包含 MRN支持 LIPA功能指示信 息;
步骤 4, 目标 DeNB接收到切换请求消息后, 若该消息中本地网关地址 分配信息指示需要为 LGW分配 IP地址,则目标 DeNB中内置的 MRN PGW 根据接收的本地网关地址分配信息为 LGW分配 IP地址, 若本地网关地址分 配信息中包含本地网关地址类型, 则 MRN PGW为 LGW分配该类型的 IP 地址,若本地网关地址分配信息中没有包含本地网关地址类型,则 MRN PGW 为 LGW分配的地址类型与为 MRN分配的地址类型相同;
若本地网关地址分配信息中仅包含本地网关地址类型, 则可认为是一种 隐含指示需要为 LGW分配 IP地址的方式。
步骤 5 , 目标 DeNB为 MRN和 UE创建上下文并为 MRN的承载预留资 源之后 , 向 MRN的目标 MME发送切换请求确认消息 , 该消息中包括目标 PGW为 LGW分配的 IP地址,可在目标 DeNB到源 DeNB透传容器中携带, 该消息中还可以包括目标 DeNB上目标 SGW和目标 PGW的 IP地址 , 以辅 助目标 MME重新定位 MRN的 SGW和 PGW;
步骤 6, MRN的目标 MME根据目标 DeNB发送的目标 SGW和 PGW 的地址将 MRN的 SGW和 PGW重定位为内置于目标 DeNB的 SGW和 PGW 的地址, MRN的 MME向目标 DeNB中 SGW发送创建会话请求, 其中包括 需创建的 MRN的 EPS承载信息和目标 PGW (内置于目标 DeNB中 PGW ) 的地址;
步骤 7, 目标 SGW创建 MRN的上下文, 并向目标 PGW发送创建会话 请求消息;
步骤 8, 目标 PGW创建 MRN的上下文和 EPS承载后, 向目标 SGW回 复创建会话响应消息;
上述步骤 7和步骤 8中信令均为目标 DeNB中内部接口消息。 步骤 9, 目标 SGW向 MRN的 MME回复创建会话响应消息, 以确认 MRN的上下文及 EPS 7 载建立完成;
步骤 10, MRN的目标 MME向源 MME发送转发重定位响应消息。 该 消息中包括目标 PGW为 LGW分配的 IP地址;
步骤 11 , MRN的源 MME向源 DeNB发送切换命令消息 , 该消息中包 括目标 PGW为 LGW分配的 IP地址;
步骤 12, 源 DeNB发送 RRC重配置消息给 MRN, 该消息中可以携带目 标 PGW为 LGW分配的 IP地址, 源 DeNB还可以通过 S1或 X2消息将目标 PGW为 LGW分配的 IP地址发送给 MRN;
步骤 13至步骤 16, 与应用示例 1步骤 11至步骤 14相同。
应用示例 4
本示例描述的是目标 DeNB在 S1切换中的创建会话过程中分配 IP地址 的方法。 图 10描述了本示例流程。 在本示例中, MRN 的源 SGW和源 PGW 可能内置于源 DeNB中, 也可能不位于源 DeNB中, 而是内置于初始 DeNB ( initial DeNB ) 中。 如图 10所示, 包括以下步骤:
步骤 1至步骤 3 , 与应用示例 3步骤 1至步骤 3相同;
步骤 4, 目标 DeNB为 MRN和 UE创建上下文并为 MRN的承载预留资 源之后 , 向 MRN的目标 MME发送切换请求确认消息 , 该消息中包括目标 DeNB上目标 SGW和目标 PGW的 IP地址 ,以辅助目标 MME重新定位 MRN 的 SGW和 PGW;
步骤 5 , MRN的目标 MME根据目标 DeNB发送的目标 SGW和 PGW 的地址将 MRN的 SGW和 PGW重定位为内置于目标 DeNB的 SGW和 PGW 的地址, MRN的 MME向目标 DeNB中 SGW发送创建会话请求, 其中包括 需创建的 MRN的 EPS承载信息和目标 PGW (内置于目标 DeNB中 PGW ) 的地址;
步骤 6, 目标 SGW创建 MRN的上下文, 并向目标 PGW发送创建会话 请求消息; 步骤 7, 若目标 DeNB接收的切换请求消息中本地网关地址分配信息指 示需要为 LGW分配 IP地址,则目标 DeNB中内置的 MRN PGW根据接收的 本地网关地址分配信息为 LGW分配 IP地址; 若本地网关地址分配信息中包 含本地网关地址类型, 则 MRN PGW为 LGW分配该类型的 IP地址, 若本地 网关地址分配信息中没有包含本地网关地址类型, 则 MRN PGW为 LGW分 配的地址类型与为 MRN分配的地址类型相同;
若本地网关地址分配信息中仅包含本地网关地址类型, 则可认为是一种 隐含指示需要为 LGW分配 IP地址的方式。
步骤 8, 目标 PGW创建 MRN的上下文和 EPS承载后, 向目标 SGW回 复创建会话响应消息, 该消息中包括目标 PGW为 LGW分配的 IP地址; 上述步骤 6和步骤 8中信令均为目标 DeNB中内部接口消息。
步骤 9, 目标 SGW向 MRN的 MME回复创建会话响应消息, 以确认 MRN的上下文及 EPS承载建立完成,该消息中包括目标 PGW为 LGW分配 的 IP地址;
步骤 10, MRN的目标 MME向源 MME发送转发重定位响应消息, 该 消息中包括目标 PGW为 LGW分配的 IP地址;
步骤 11 , MRN的源 MME向源 DeNB发送切换命令消息 , 该消息中包 括目标 PGW为 LGW分配的 IP地址;
步骤 12, 源 DeNB发送 RRC重配置消息给 MRN, 该消息中可以携带目 标 PGW为 LGW分配的 IP地址, 源 DeNB还可以通过 S1或 X2消息将目标 PGW为 LGW分配的 IP地址发送给 MRN;
步骤 13至步骤 16, 与应用示例 1步骤 11至步骤 14相同。
需要说明的是,上述图 9和图 10所示实施例,同样适用于 MRN的 MME 在切换过程中不变的场景, 如果 MME不变, 则所有源 MME和目标 MME 之间传递的消息都可以省略, 并且源 MME 和目标 MME 的行为都是同一 MME的行为。 本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的 但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
工业实用性
使用本发明实施例的方法及装置, 在 MRN支持 LIPA, 且 MRN切换过 程中服务 MRN的 PGW发生重定位情况下,能解决切换过程中 LGW的地址 更新问题, 以保证 S5 连接的连续性, 进而保证终端的业务连续性。 因此本 发明具有很强的工业实用性。

Claims

权 利 要 求 书
1、 一种本地网关地址更新的方法, 包括:
目标宿主基站接收本地网关地址分配信息;
所述目标宿主基站根据所述本地网关地址分配信息判断如果需要为移动 中继节点中合设的本地网关分配 IP地址, 则为本地网关分配 IP地址;
将本地网关的 IP地址发送给服务网关。
2、如权利要求 1所述的方法, 所述方法还包括: 所述目标宿主基站如果 未接收到所述本地网关地址分配信息, 则所述目标宿主基站不为所述本地网 关分配 IP地址, 在判断所述移动中继节点支持本地 IP访问( LIPA )功能时, 将所述移动中继节点的 IP地址存储为所述本地网关的 IP地址, 所述移动中 继节点判断如果没有收到本地网关的 IP地址, 且本移动中继节点支持 LIPA 功能, 则将自身的 IP地址存储为所述本地网关的 IP地址。
3、如权利要求 1所述的方法, 所述方法还包括: 所述目标宿主基站根据 所述本地网关地址分配信息判断如果不需要为移动中继节点中合设的本地网 关分配 IP地址, 则所述目标宿主基站不为所述本地网关分配 IP地址, 在判 断所述移动中继节点支持本地 IP访问 (LIPA ) 功能时, 将所述移动中继节 点的 IP地址存储为所述本地网关的 IP地址, 所述移动中继节点判断如果没 有收到本地网关的 IP地址, 且本移动中继节点支持 LIPA功能, 则将自身的 IP地址存储为所述本地网关的 IP地址。
4、如权利要求 2或 3所述的方法,所述目标宿主基站釆用以下方式判断 所述移动中继节点是否支持 LIPA功能:
所述目标宿主基站判断是否从源宿主基站接收 'J移动中继节点支持 LIPA功能指示信息, 所述移动中继节点支持 LIPA功能指示信息用于指示移 动中继节点是否支持 LIPA功能;
如果所述目标宿主基站接收到所述移动中继节点支持 LIPA功能指示信 息且所述移动中继节点支持 LIPA功能指示信息指示移动中继节点支持 LIPA 功能, 则所述目标宿主基站判断所述移动中继节点支持 LIPA功能;
如果所述目标宿主基站接收到所述移动中继节点支持 LIPA功能指示信 息, 但所述移动中继节点支持 LIPA功能指示信息指示移动中继节点不支持 LIPA功能, 或者所述目标宿主基站没有接收到所述移动中继节点支持 LIPA 功能指示信息, 则所述目标宿主基站判断所述移动中继节点不支持 LIPA功 能。
5、如权利要求 1所述的方法, 其中, 所述目标宿主基站接收本地网关地 址分配信息的步骤包括:
所述目标宿主基站接收到所述移动中继节点的源宿主基站发送的携带本 地网关地址分配信息的 X2接口切换请求消息; 或者,
所述目标宿主基站接收到移动管理实体( MME )发送的携带本地网关地 址分配信息的 S 1接口切换请求消息,所述 MME是为所述移动中继节点服务 的 MME, 所述 S1接口切换请求消息中的本地网关地址分配信息由源宿主基 站发送至所述 MME。
6、 如权利要求 1或 2或 3或 5所述的方法, 其中:
所述本地网关地址分配信息至少包含以下之一:本地网关地址分配指示, 本地网关地址类型;
其中, 所述本地网关地址分配指示用于指示是否需要为本地网关分配 IP 地址, 所述本地网关地址类型用于指示所需分配的本地网关的 IP地址的类 型。
7、如权利要求 6所述的方法, 其中, 所述目标宿主基站根据所述本地网 关地址分配信息判断如果需要为移动中继节点中合设的本地网关分配 IP地 址, 则为本地网关分配 IP地址的步骤包括:
所述目标宿主基站判断所述本地网关地址分配信息中仅包含本地网关地 址分配指示, 且该本地网关地址分配指示指示需要为本地网关分配 IP地址, 则所述目标宿主基站中的为移动中继节点服务的数据分组网关为移动中继节 点中合设的本地网关分配 IP地址, 所述 IP地址的类型与所述移动中继节点 的 IP地址类型相同; 或者,
所述目标宿主基站判断所述本地网关地址分配信息中包含本地网关地址 分配指示和本地网关地址类型, 且该本地网关地址分配指示指示需要为本地 网关分配 IP地址,则所述目标宿主基站中的为移动中继节点服务的数据分组 网关为移动中继节点中合设的本地网关分配 IP地址, 所述 IP地址的类型为 所述本地网关地址类型所指示的类型; 或者
所述目标宿主基站判断所述本地网关地址分配信息中仅包含本地网关地 址类型, 则所述目标宿主基站中的为移动中继节点服务的数据分组网关为移 动中继节点中合设的本地网关分配 IP地址, 所述 IP地址的类型为所述本地 网关地址类型所指示的类型。
8、如权利要求 7所述的方法, 其中, 所述目标宿主基站为本地网关分配 IP地址后, 所述方法还包括:
所述目标宿主基站将为本地网关分配的 IP地址发送给源宿主基站,所述 源宿主基站将所述本地网关的 IP地址发送给所述移动中继节点; 或者, 所述目标宿主基站直接将为本地网关分配的 IP地址发送给所述移动中 继节点。
9、如权利要求 8所述的方法, 其中, 所述目标宿主基站将为本地网关分 配的 IP地址发送给源宿主基站的步骤包括:
所述目标宿主基站直接将为本地网关分配的 IP地址发送给源宿主基站; 或者,
所述目标宿主基站通过 MME将为本地网关分配的 IP地址发送给源宿主 基站。
10、 如权利要求 8所述的方法, 其中, 所述源宿主基站将所述本地网关 的 IP地址发送给所述移动中继节点的步骤包括:
所述源宿主基站通过无线资源控制( RRC )消息或 S1接口消息或 X2接 口消息发送所述本地网关的 IP地址给所述移动中继节点。
11、 如权利要求 8所述的方法, 其中, 所述目标宿主基站直接将所述本 地网关的 IP地址发送给所述移动中继节点的步骤包括:
所述目标宿主基站通过无线资源控制 ( RRC ) 消息或 S1接口消息或 X2 接口消息发送所述本地网关的 IP地址给所述移动中继节点。
12、 如权利要求 2、 3、 8-11中任一权利要求所述的方法, 其中, 所述将 本地网关的 IP地址发送给服务网关的步骤包括:
所述目标宿主基站接收所述移动中继节点发送的第一 S1 接口消息, 向 为 UE服务的 MME发送第二 S1接口消息, 所述第一 S1接口消息和所述第 二 S1接口消息中均包含所述本地网关的 IP地址, 所述 UE为接入所述移动 中继节点的 UE;所述 MME发送第一 S11接口消息给为所述 UE服务的服务
S 11接口消息中包含所述本地网关的 IP地址。
13、 如权利要求 12所述的方法, 其中,
第一 S1接口消息和第二 S1接口消息均釆用路径转移请求消息, 所述第 一 S11接口消息釆用修改承载请求消息或者创建会话请求消息。
14、 如权利要求 2、 3、 8-11中任一权利要求所述的方法, 其中, 所述将 本地网关的 IP地址发送给服务网关的步骤包括:
所述目标宿主基站向为 UE服务的 MME发送第三 S1接口消息,所述第 三 S1接口消息中包含所述本地网关的 IP地址, 所述 UE为接入所述移动中 继节点的 UE;所述 MME发送第二 S11接口消息给为所述 UE服务的服务网
S 11接口消息中包含所述本地网关的 IP地址。
15、 如权利要求 14所述的方法, 其中,
第三 S1接口消息釆用路径转移请求消息; 所述第二 S11接口消息釆用 修改承载请求消息或者创建会话请求消息。
16、 一种实现本地网关地址更新的装置,所述装置位于目标宿主基站中, 包括接收模块、 分配模块和发送模块, 其中:
所述接收模块设置成: 接收本地网关地址分配信息;
所述分配模块设置成: 根据所述本地网关地址分配信息判断如果需要为 移动中继节点中合设的本地网关分配 IP地址, 则为本地网关分配 IP地址; 所述发送模块设置成: 将本地网关的 IP地址发送给服务网关。
17、 如权利要求 16所述的装置, 其中, 所述分配模块还设置成: 在所述接收模块未接收到所述本地网关地址分配信息时, 不为所述本地 网关分配 IP地址; 以及在判断所述移动中继节点支持本地 IP访问 (LIPA ) 功能时, 将所述移动中继节点的 IP地址存储为所述本地网关的 IP地址。
18、 如权利要求 16所述的装置, 其中, 所述分配模块还设置成: 根据所述本地网关地址分配信息判断如果不需要为移动中继节点中合设 的本地网关分配 IP地址, 则不为所述本地网关分配 IP地址, 并在判断所述 移动中继节点支持本地 IP访问 (LIPA )功能时, 将所述移动中继节点的 IP 地址存储为所述本地网关的 IP地址。
19、 如权利要求 17或 18所述的装置, 其中, 所述分配模块设置成釆用 以下方式判断所述移动中继节点是否支持 LIPA功能:
所述分配模块判断是否从源宿主基站接收到移动中继节点支持 LIPA功 能指示信息, 所述移动中继节点支持 LIPA功能指示信息用于指示移动中继 节点是否支持 LIPA功能;
如果所述分配模块接收到所述移动中继节点支持 LIPA功能指示信息且 所述移动中继节点支持 LIPA功能指示信息指示移动中继节点支持 LIPA功 能, 则所述分配模块判断所述移动中继节点支持 LIPA功能;
如果所述分配模块接收到所述移动中继节点支持 LIPA功能指示信息, 但所述移动中继节点支持 LIPA功能指示信息指示移动中继节点不支持 LIPA 功能, 或者所述分配模块没有接收到所述移动中继节点支持 LIPA功能指示 信息, 则所述分配模块判断所述移动中继节点不支持 LIPA功能。
20、如权利要求 16所述的装置, 其中, 所述接收模块设置成按照如下方 式接收本地网关地址分配信息:
所述接收模块接收到所述移动中继节点的源宿主基站发送的携带本地网 关地址分配信息的 X2接口切换请求消息; 或者,
所述接收模块接收到移动管理实体 ( MME )发送的携带本地网关地址分 配信息的 S1接口切换请求消息, 所述 MME是为所述移动中继节点服务的 MME, 所述 S1接口切换请求消息中的本地网关地址分配信息由源宿主基站 发送至所述 MME。
21、 如权利要求 16或 17或 18或 20所述的装置, 其中:
所述本地网关地址分配信息至少包含以下之一:本地网关地址分配指示, 本地网关地址类型;
其中, 所述本地网关地址分配指示用于指示是否需要为本地网关分配 IP 地址, 所述本地网关地址类型用于指示所需分配的本地网关的 IP地址的类 型。
22、如权利要求 21所述的装置, 其中, 所述分配模块设置成按照如下方 式根据所述本地网关地址分配信息判断如果需要为移动中继节点中合设的本 地网关分配 IP地址, 则为本地网关分配 IP地址:
所述分配模块判断所述本地网关地址分配信息中仅包含本地网关地址分 配指示,且该本地网关地址分配指示指示需要为本地网关分配 IP地址, 则所 述分配模块为移动中继节点中合设的本地网关分配 IP地址, 所述 IP地址的 类型与所述移动中继节点的 IP地址类型相同; 或者,
所述分配模块判断所述本地网关地址分配信息中包含本地网关地址分配 指示和本地网关地址类型, 且该本地网关地址分配指示指示需要为本地网关 分配 IP地址, 则所述分配模块为移动中继节点中合设的本地网关分配 IP地 址, 所述 IP地址的类型为所述本地网关地址类型所指示的类型; 或者
所述分配模块判断所述本地网关地址分配信息中仅包含本地网关地址类 型,则所述分配模块为移动中继节点中合设的本地网关分配 IP地址,所述 IP 地址的类型为所述本地网关地址类型所指示的类型。
23、 如权利要求 22所述的装置, 其中, 所述发送模块还设置成: 在所述分配模块为本地网关分配 IP地址后, 将为本地网关分配的 IP地 址发送给源宿主基站,以使所述源宿主基站将所述本地网关的 IP地址发送给 所述移动中继节点; 或者,
在所述分配模块为本地网关分配 IP地址后,直接将为本地网关分配的 IP 地址发送给所述移动中继节点。
24、如权利要求 23所述的装置, 其中, 所述发送模块设置成按照如下方 式将为本地网关分配的 IP地址发送给源宿主基站: 所述发送模块直接将为本地网关分配的 IP地址发送给源宿主基站,或者 所述发送模块通过 MME将为本地网关分配的 IP地址发送给源宿主基站。
25、如权利要求 23所述的装置, 其中, 所述发送模块设置成按照如下方 式在所述分配模块为本地网关分配 IP地址后, 直接将为本地网关分配的 IP 地址发送给所述移动中继节点:
所述发送模块通过无线资源控制(RRC )消息或 S1接口消息或 X2接口 消息发送所述本地网关的 IP地址给所述移动中继节点。
26、 如权利要求 17、 18、 23-25中任一权利要求所述的装置, 其中, 所 述发送模块设置成按照如下方式将本地网关的 IP地址发送给服务网关:
所述发送模块接收所述移动中继节点发送的第一 S1接口消息, 向为 UE 服务的 MME发送第二 S1接口消息, 所述第一 S1接口消息和所述第二 S1 接口消息中均包含所述本地网关的 IP地址,所述 UE为接入所述移动中继节 点的 UE, 通过所述 MME将所述本地网关的 IP地址发送给为所述 UE服务 的服务网关。
27、 如权利要求 26所述的装置, 其中,
第一 S1接口消息和第二 S1接口消息均釆用路径转移请求消息。
28、 如权利要求 17、 18、 23-25中任一权利要求所述的装置, 其中, 所 述发送模块设置成按照如下方式将本地网关的 IP地址发送给服务网关:
所述发送模块向为 UE服务的 MME发送第三 S1接口消息, 所述第三 S1接口消息中包含所述本地网关的 IP地址, 所述 UE为接入所述移动中继 节点的 UE, 通过所述 MME将所述本地网关的 IP地址发送给为所述 UE服 务的服务网关。
29、 如权利要求 28所述的装置, 其中,
第三 S1接口消息釆用路径转移请求消息。
30、 一种实现本地网关地址更新的装置, 位于移动中继节点, 包括判断 模块和存储模块, 其中:
所述判断模块设置成: 判断是否收到本地网关的 IP地址; 所述存储模块设置成:在所述判断模块判断接收到所述本地网关的 IP地 址时,保存所述本地网关的 IP地址,在所述判断模块判断未接收到所述本地 网关的 IP地址, 且判断本移动中继节点支持本地 IP访问 (LIPA ) 功能, 则 将自身的 IP地址存储为所述本地网关的 IP地址。
31、 如权利要求 30所述的装置, 所述装置还包括发送模块, 其中: 所述发送模块设置成: 向目标宿主基站发送第一 S1 接口消息后, 所述 第一 S1接口消息中包含所述本地网关的 IP地址。
32、 如权利要求 31所述的装置, 其中,
所述第一 S1接口消息釆用路径转移请求消息。
33、 一种实现本地网关地址更新的装置, 位于为用户设备(UE )服务的 服务网关, 包括接收模块和更新模块, 其中:
所述接收模块设置成:接收移动管理实体(MME )发送的 S11接口消息; 所述 S11接口消息中包含移动中继节点中合设的本地网关的 IP地址;
所述更新模块设置成: 更新本地保存的所述本地网关的 IP地址。
PCT/CN2013/081032 2012-08-15 2013-08-08 一种本地网关地址更新方法及装置 WO2014026560A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/394,499 US9706393B2 (en) 2012-08-15 2013-08-08 Method and device for local gateway address updating
EP13829509.2A EP2827562B1 (en) 2012-08-15 2013-08-08 Method and device for local gateway address updating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210290625.7A CN102801822B (zh) 2012-08-15 2012-08-15 一种本地网关地址更新方法及装置
CN201210290625.7 2012-08-15

Publications (1)

Publication Number Publication Date
WO2014026560A1 true WO2014026560A1 (zh) 2014-02-20

Family

ID=47200782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081032 WO2014026560A1 (zh) 2012-08-15 2013-08-08 一种本地网关地址更新方法及装置

Country Status (4)

Country Link
US (1) US9706393B2 (zh)
EP (1) EP2827562B1 (zh)
CN (1) CN102801822B (zh)
WO (1) WO2014026560A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103621140A (zh) * 2011-06-28 2014-03-05 京瓷株式会社 通信控制方法和家庭基站
CN102801822B (zh) * 2012-08-15 2018-05-15 中兴通讯股份有限公司 一种本地网关地址更新方法及装置
CN102821170A (zh) * 2012-08-15 2012-12-12 中兴通讯股份有限公司 一种地址分配方法及宿主基站
CN104717631B (zh) * 2013-12-11 2019-06-25 中兴通讯股份有限公司 一种实现本地网关业务的方法、系统及连接设备
CN104735638B (zh) * 2013-12-18 2020-10-23 中兴通讯股份有限公司 一种小基站环境下交互信息的方法、基站和移动管理实体
KR102219415B1 (ko) * 2014-01-20 2021-02-25 삼성전자 주식회사 Lte 망에서 최적 데이터 경로를 위한 mme와 로컬 서버, 이들 간 인터페이스 및 데이터 송수신 방법
RU2630418C1 (ru) * 2014-03-13 2017-09-07 Интердиджитал Пэйтент Холдингз, Инк. Локальная разгрузка и архитектура малых сот (sca)
WO2015176236A1 (zh) * 2014-05-20 2015-11-26 华为技术有限公司 移动管理实体、用户设备及路由优化方法
CN105142128B (zh) * 2014-06-05 2020-01-14 中兴通讯股份有限公司 专用网络选择方法及装置
US11089519B2 (en) * 2016-04-13 2021-08-10 Qualcomm Incorporated Migration of local gateway function in cellular networks
CN107306391B (zh) * 2016-04-18 2020-03-03 中国移动通信有限公司研究院 一种网络地址分配方法、装置和网关设备
CN106792936B (zh) * 2016-12-08 2020-04-03 上海华为技术有限公司 一种保持业务连续性的pgw切换方法及通信设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101626565A (zh) * 2009-07-28 2010-01-13 重庆邮电大学 一种移动中继系统中组用户的切换方法
CN101674336A (zh) * 2008-09-08 2010-03-17 大唐移动通信设备有限公司 一种ip地址分配方法、系统及装置
CN101729337A (zh) * 2008-10-31 2010-06-09 华为技术有限公司 建立传输承载的方法、设备、系统及下行数据传输方法
CN101998554A (zh) * 2009-08-18 2011-03-30 中兴通讯股份有限公司 基于移动中继的切换方法和移动无线中继系统
US20120003962A1 (en) * 2009-03-06 2012-01-05 Ajou University Industry-Academic Cooperation Foundation Group handover method and apparatus in broadband wireless communication system that supports mobile relay station
CN102457931A (zh) * 2010-10-22 2012-05-16 中兴通讯股份有限公司 一种数据路由控制方法及系统
CN102801822A (zh) * 2012-08-15 2012-11-28 中兴通讯股份有限公司 一种本地网关地址更新方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7561553B2 (en) * 2002-02-27 2009-07-14 Motorola, Inc. Method and apparatus for providing IP mobility for mobile networks and detachable mobile network nodes
US9480092B2 (en) * 2009-04-23 2016-10-25 Qualcomm Incorporated Establishing packet data network connectivity for local internet protocol access traffic
US20120224536A1 (en) * 2009-11-10 2012-09-06 Nokia Siemens Networks Oy Network device in a communication network and method for providing communications traffic breakout
US8538325B2 (en) * 2010-09-17 2013-09-17 Telefonaktiebolaget Lm Ericsson (Publ) Monitoring cellular radio access node performance
KR101582015B1 (ko) * 2011-01-21 2015-12-31 블랙베리 리미티드 (로컬) 오프로딩에 이용되는 접속에 대한 접속 컨텍스트를 결정하기 위한 네트워크 장치 및 프로세스
US9924413B2 (en) * 2011-07-01 2018-03-20 Interdigital Patent Holdings, Inc. Method and apparatus for supporting local IP access and selected IP traffic offload

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101674336A (zh) * 2008-09-08 2010-03-17 大唐移动通信设备有限公司 一种ip地址分配方法、系统及装置
CN101729337A (zh) * 2008-10-31 2010-06-09 华为技术有限公司 建立传输承载的方法、设备、系统及下行数据传输方法
US20120003962A1 (en) * 2009-03-06 2012-01-05 Ajou University Industry-Academic Cooperation Foundation Group handover method and apparatus in broadband wireless communication system that supports mobile relay station
CN101626565A (zh) * 2009-07-28 2010-01-13 重庆邮电大学 一种移动中继系统中组用户的切换方法
CN101998554A (zh) * 2009-08-18 2011-03-30 中兴通讯股份有限公司 基于移动中继的切换方法和移动无线中继系统
CN102457931A (zh) * 2010-10-22 2012-05-16 中兴通讯股份有限公司 一种数据路由控制方法及系统
CN102801822A (zh) * 2012-08-15 2012-11-28 中兴通讯股份有限公司 一种本地网关地址更新方法及装置

Also Published As

Publication number Publication date
EP2827562B1 (en) 2018-10-03
US20150071210A1 (en) 2015-03-12
CN102801822B (zh) 2018-05-15
EP2827562A1 (en) 2015-01-21
US9706393B2 (en) 2017-07-11
CN102801822A (zh) 2012-11-28
EP2827562A4 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP6005816B2 (ja) フェムトセルを含む無線通信ネットワークにおけるローカルipアクセスサポート方法及び装置
WO2014026560A1 (zh) 一种本地网关地址更新方法及装置
KR101560067B1 (ko) 기지국 사이의 핸드오버를 관리하기 위한 방법 및 장치
US8687592B2 (en) Method for switching session of user equipment in wireless communication system and system employing the same
US9538450B2 (en) System and method for mobile relay packet gateway relocation for path optimization
US9560625B2 (en) Method and apparatus for configuring mobile relay node tracking area and location update
US9807667B2 (en) Method for relocating gateway, mobile management entity and host base station
US9516561B2 (en) Method and device for supporting group handover
US20140286314A1 (en) Method and device for supporting group handover
US9860734B2 (en) Method and device of supporting group mobility
US9549433B2 (en) Mobility management unit and wireless side network element, and method and device for releasing local IP access connection
CN111405666B (zh) 一种rn支持多种无线接入系统的方法
CN106162774B (zh) 跨MeNB切换方法、装置及基站
JP6169717B2 (ja) ローカルipアクセス接続解放方法及びmrn
KR101495466B1 (ko) 통신 시스템
WO2014026564A1 (zh) 一种地址分配方法及宿主基站
WO2014044117A1 (zh) 一种网关重定位的方法及移动性管理实体
WO2013139200A1 (zh) 一种小区切换的寻址方法以及寻址装置
WO2012167665A1 (zh) 一种用于中继节点切换的信令处理方法及系统
KR20160092388A (ko) 이동형 소형셀에서 로컬 서비스 제공을 위한 세션 제어 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13829509

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013829509

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14394499

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE