WO2014026131A1 - Aspirateur comprenant un ensemble récipient détachable - Google Patents

Aspirateur comprenant un ensemble récipient détachable Download PDF

Info

Publication number
WO2014026131A1
WO2014026131A1 PCT/US2013/054371 US2013054371W WO2014026131A1 WO 2014026131 A1 WO2014026131 A1 WO 2014026131A1 US 2013054371 W US2013054371 W US 2013054371W WO 2014026131 A1 WO2014026131 A1 WO 2014026131A1
Authority
WO
WIPO (PCT)
Prior art keywords
canister assembly
base
vacuum cleaner
assembly
canister
Prior art date
Application number
PCT/US2013/054371
Other languages
English (en)
Inventor
Gregg A. Henderson
Jamie Horvath
Matthew J. Doerfler
David Khalil
Chad PAGORIA
Original Assignee
Techtronic Floor Care Technology Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techtronic Floor Care Technology Limited filed Critical Techtronic Floor Care Technology Limited
Publication of WO2014026131A1 publication Critical patent/WO2014026131A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • A47L5/28Suction cleaners with handles and nozzles fixed on the casings, e.g. wheeled suction cleaners with steering handle
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • A47L5/225Convertible suction cleaners, i.e. convertible between different types thereof, e.g. from upright suction cleaners to sledge-type suction cleaners
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/106Dust removal

Definitions

  • the present invention relates to vacuum cleaners and, more particularly, to upright vacuum cleaners.
  • Upright vacuum cleaners are typically used to clean floor surfaces, such as carpeting. These types of vacuum cleaners, however, can be difficult to maneuver and operate in relatively confined areas. In addition, it is sometimes desirable to clean elevated surfaces, such as drapes, furniture, or steps, with a vacuum cleaner.
  • the invention provides a vacuum cleaner including a base having a foot with a suction nozzle and a handle assembly pivotally coupled to the foot for movement between an upright storage position and an inclined operating position.
  • the vacuum cleaner also includes a canister assembly removably supported by the base.
  • the canister assembly includes a suction motor operable to generate a suction force through the suction nozzle, and a dirt collection unit in fluid communication with the suction nozzle.
  • the dirt collection unit is configured to collect dirt particles from an airflow drawn through the suction nozzle by the suction motor.
  • the vacuum cleaner further includes a first engagement member extending from one of the base and the canister assembly.
  • the first engagement member engages the other of the base and the canister assembly to support the canister assembly on the base and inhibit the canister assembly from sliding side-to-side relative to the base.
  • the vacuum cleaner also includes a second engagement member supported by one of the base and the canister assembly. The second engagement member engages the other of the base and the canister assembly to inhibit movement of the canister assembly away from the handle assembly when the canister assembly is supported on the base by the first engagement member.
  • the invention provides a vacuum cleaner including a base having a foot with a suction nozzle and a handle assembly pivotally coupled to the foot for movement between an upright storage position and an inclined operating position.
  • the vacuum cleaner also includes a canister assembly removably supported by the base.
  • the canister assembly includes a suction motor operable to generate a suction force through the suction nozzle, and a dirt collection unit in fluid communication with the suction nozzle.
  • the dirt collection unit is configured to collect the dirt particles from an airflow drawn through the suction nozzle by the suction motor.
  • the vacuum cleaner further includes a first engagement member extending from a first side of the base, and a second engagement member extending from a second side of the base that is opposite the first side. A portion of the canister assembly extends over a portion of the first side and a portion of the second side of the base to rest on the first and second engagement members and to straddle the base.
  • the vacuum cleaner also includes a third engagement member supported by one of the base and the canister assembly. The third engagement member engages the other of the base and the canister assembly to releasably secure the canister assembly to the base.
  • FIG. 1A is a perspective view of a vacuum cleaner embodying the invention, the vacuum cleaner including a foot, a handle assembly, and a canister assembly connected in a first operating mode, and the handle assembly being in an upright storage position.
  • FIG. IB is a perspective view of the vacuum cleaner with the foot, the handle assembly, and the canister assembly connected in the first operating mode, and the handle assembly being in an inclined operating position.
  • FIG. 2 is a perspective view of the vacuum cleaner with the foot, the handle assembly, and the canister assembly connected in a second operating mode.
  • Fig. 3 is a perspective view of the vacuum cleaner with the foot, the handle assembly, and the canister assembly connected in a third operating mode.
  • Fig. 4 is a perspective view of the vacuum cleaner with the foot, the handle assembly, and the canister assembly connected in a fourth operating mode.
  • Fig. 5 is a cross-sectional view of the vacuum cleaner.
  • Fig. 6 is the cross-sectional view of the vacuum cleaner shown in Fig. 5 with the canister assembly pivoted away from the handle assembly.
  • Fig. 7 is a top perspective view of the foot of the vacuum cleaner.
  • Fig. 8 is an end perspective view of a portion of the handle assembly.
  • Fig. 9 is a cross-sectional view of a portion of the vacuum cleaner illustrating an interface between the handle assembly and the foot, the foot supporting a latch in an engaged position.
  • Fig. 10 is the cross-sectional view of the portion of the vacuum cleaner shown in Fig. 9 with the latch in a disengaged position.
  • Fig. 11 is a bottom perspective view of a portion of the canister assembly of the vacuum cleaner.
  • Fig. 12 is a cross-sectional view of a portion of the vacuum cleaner illustrating an interface between the foot and the canister assembly.
  • Fig. 13 is an exploded perspective view of portions of the canister assembly and the handle assembly.
  • Fig. 14 is a cross-sectional view of a portion of the vacuum cleaner illustrating an interface between the canister assembly and the handle assembly, the canister assembly supporting a latch in an engaged position.
  • Fig. 15 is the cross-sectional view of the portion of the vacuum cleaner shown in Fig. 14 with the latch in a disengaged position.
  • FIGs. 1A and IB illustrate a vacuum cleaner 20.
  • the illustrated vacuum cleaner 20 is an upright vacuum cleaner including a base 24 having a foot 28 and a handle assembly 32.
  • the foot 28 is movable along a surface to be cleaned, such as a carpeted or hard-surface floor.
  • the handle assembly 32 extends from the foot 28.
  • the handle assembly 32 allows a user to move and manipulate the foot 28 along the surface.
  • the handle assembly 32 is also movable relative to the foot 28 between an upright storage position (Fig. 1A) and an inclined operating position (Fig. IB).
  • the vacuum cleaner 20 also includes a canister assembly 36 supported by the base 24.
  • the canister assembly 36 generates a vacuum or suction force in the vacuum cleaner 20.
  • the canister assembly 36 also removes and collects dirt or other particles from an airflow drawn into the vacuum cleaner 20 by the suction force.
  • the handle assembly 32 is in fluid communication with the foot 28 such that an airflow drawn into the foot 28 is directed into the handle assembly 32.
  • the handle assembly 32 is also in fluid communication with the canister assembly 36 through a flexible house 40 such that the airflow from the foot 28 is directed through the handle assembly 32, through the hose 40, and into the canister assembly 36.
  • the canister assembly 36 filters or otherwise cleans the airflow, the cleaned airflow is directed out of the vacuum cleaner 20 and back into the environment.
  • FIG. 1A-4 the illustrated vacuum cleaner 20 is operable in a variety of different cleaning modes.
  • FIGs. 1A and IB illustrate the vacuum cleaner 20 in a standard mode. In this mode, the handle assembly 32 is connected to the foot 28, and the canister assembly 36 is supported by the base 24. While in the standard mode, the vacuum cleaner 20 can be moved along a floor surface to clean the surface like a conventional vacuum cleaner.
  • Fig. 2 illustrates the vacuum cleaner 20 in a carry-along mode. In this mode, the handle assembly 32 is connected to the foot 28, but the canister assembly 36 is removed or separated from the base 24. While in the carry-along mode, a user can carry the canister assembly 36 apart from the handle assembly 32 and the foot 28.
  • Fig. 3 illustrates the vacuum cleaner 20 in a first above-the-floor mode. In this mode, the handle assembly 32 is disconnected from the foot 28, and the canister assembly 36 is removed or separated from both the handle assembly 32 and the foot 28.
  • An accessory tool e.g., a crevice tool, an upholstery tool, a pet tool, etc.
  • a free end of the handle assembly 32 i.e., the end of the handle assembly 32 that connects to the foot 28
  • the handle assembly 32 can be used to clean non-floor surfaces (e.g., furniture, drapes, etc.) or steps while carrying the canister assembly 36 apart from the base 24.
  • FIG. 4 illustrates the vacuum cleaner 20 in a second above-the-floor mode. This mode is similar to first above-the-floor mode, except an extension tube 44 of the handle assembly 32 is removed so that an accessory tool (or even the foot 28, as shown in Fig. 4) can be connected directly to a grip 48 of the handle assembly 32.
  • an accessory tool or even the foot 28, as shown in Fig. 4
  • Such an arrangement allows a user to clean non-floor surfaces or steps with a much shorter handle assembly 32 while carrying the canister assembly 36.
  • the foot 28 of the vacuum cleaner 20 includes a body 52, a plurality of wheels 56 coupled to the body 52, an agitator 60 positioned within the body 52, and a stem 64 extending from the body 52.
  • the body 52 defines a suction nozzle 68 of the foot 28.
  • the illustrated suction nozzle 68 is an opening formed in a bottom surface of the body 52 adjacent a forward end 72 of the foot 28.
  • the suction nozzle 68 is in fluid communication with the handle assembly 32, and thereby the canister assembly 36, to direct air and dirt from the surface being cleaned into the vacuum cleaner 20.
  • the wheels 56 are coupled to the body 52 adjacent a rearward end 76 of the foot 28 (i.e., adjacent the stem 64 and the handle assembly 32).
  • the wheels 56 facilitate moving the foot 28 along the surface being cleaned.
  • the foot 28 includes two wheels 56 positioned on opposing sides of the body 52. In other embodiments, the foot 28 may include fewer or more wheels.
  • the wheels 56 may be idle wheels or driven wheels.
  • the agitator 60 is positioned within the body 52 adjacent the suction nozzle 68.
  • the agitator 60 is coupled to a motor (not shown) that rotates the agitator 60 relative to the body 52.
  • the agitator 60 includes an elongated bar or shaft 80 that extends along the length of the suction nozzle 68.
  • the bar 80 supports bristles, beater bars, and/or other suitable structures for agitating carpeting. In other embodiments, other suitable actuators may also or alternatively be employed.
  • the stem 64 extends from the rearward end 76 of the foot 28.
  • the stem 64 receives a portion of the handle assembly 32 to connect the handle assembly 32 to the foot 28.
  • the illustrated stem 64 is in fluid communication with the suction nozzle 68 such that air drawn into the foot 28 through the suction nozzle 68 is directed through the stem 64 and into the handle assembly 32.
  • the stem 64 is also movable (e.g., rotatable) relative to the body 52 to move the handle assembly 32 relative to the foot 28 between the upright storage position (Fig. 1A) and the inclined operating position (Fig. IB).
  • the illustrated handle assembly 32 includes the extension tube 44 and the grip 48.
  • the extension tube 44 has a first end 84 and a second end 88. As shown in Figs. 5 and 6, the first, or lower, end 84 is received in the stem 64 of the foot 28 to connect the handle assembly 32 to the foot 28.
  • the second, or upper, end 88 supports the grip 48.
  • the grip 48 is configured to be grasped by a user to manipulate and move the vacuum cleaner 20.
  • the grip 48 also supports an actuator 92 (e.g., a power switch) that controls operation of the vacuum cleaner 20.
  • the illustrated grip 48 is removably coupled to the extension tube 44 by a latch 96.
  • the latch 96 is actuatable to disconnect the grip 48 from the extension tube 44 such that the vacuum cleaner 20 can be used without the extension tube 44 (as shown in, for example, Fig. 4).
  • the illustrated extension tube 44 also defines two conduits 100, 104.
  • the conduits 100, 104 generally extend in parallel between the first and second ends 84, 88 of the extension tube 44.
  • the illustrated conduits 100, 104 are isolated from (i.e., not in fluid communication with) each other.
  • the first conduit 100 provides an airflow pathway from the foot 28 to the flexible hose 40 and, ultimately, to the canister assembly 36.
  • the second conduit 104 provides an electrical pathway from the grip 48 to the foot 28.
  • the second conduit 104 supports and encloses wires 108 that extend between the first and second ends 84, 88 of the extension tube 44.
  • the extension tube 44 includes an electric plug 1 12 formed at the first end 84 of the tube 44.
  • the plug 112 is connected to the wires 108 (Figs. 5 and 6) in the second conduit 104 of the extension tube 44.
  • the stem 64 of the foot 28 includes an electric receptacle 1 16.
  • the receptacle 116 is shaped and sized to receive the plug 1 12 (Fig. 8) of the extension tube 44 when the handle assembly 32 is connected to the foot 28.
  • the plug 112 and the receptacle 1 16 electrically couple the foot 28 to the extension tube 44 to provide electrical power to the foot 28.
  • Electrical power can be used to power components of the foot 28 such as, for example, the motor for the agitator 60 (Figs. 5 and 6).
  • the plug 112 of the extension tube 44 can be plugged into other powered accessory tools having similarly shaped and sized electric receptacles as the foot 28.
  • the grip 48 includes a male attachment end 118 and an electric plug 120 that are shaped and sized similar to the first end 84 and the electric plug 112 (Fig. 8) of the extension tube 44.
  • the extension tube 44 includes an electric receptacle 124 at the second end 88 that is shaped and sized similar to the electric receptacle 116 in the foot 28.
  • the attachment end 1 18 of the grip 48 is insertable into the second end 88 of the extension tube 44 to physically couple the grip 48 to the extension tube 44.
  • the plug 120 and the receptacle 124 electrically couple the grip 48 to the extension tube 44 and, ultimately, to the foot 28.
  • the male attachment end 118 and the plug 120 allow the grip 48 to be plugged directly into the foot 28 (or other powered accessory tool) when the extension tube 44 is removed, as shown in Fig. 4.
  • Such an arrangement provides universal, modular connections between the grip 48, the extension tube 44, the foot 28, and other accessory tools.
  • the handle assembly 32 is movable relative to the foot 28 between a first position (Figs. 1 A-2), in which the handle assembly 32 is connected to the foot 28, and a second position (Fig. 3), in which the handle assembly 32 is disconnected from the foot 28.
  • the vacuum cleaner 20 includes a latch 128 to releasably secure the handle assembly 32 to the foot 28.
  • the latch 128 is supported by the stem 64 of the foot 28 and engages the extension tube 44 of the handle assembly 32 to selectively secure the handle assembly 32 to the foot 28.
  • the latch 128 may be supported by the handle assembly 32 and may engage a portion of the foot 28 to selectively secure the handle assembly 32 to the foot 28.
  • the illustrated latch 128 includes a foot pedal 132, a wedge 136, and a biasing member 140.
  • the foot pedal 132 extends outwardly from the stem 64 for actuation by a user.
  • the foot pedal 132 is configured to be depressed by a foot of the user stepping on the foot pedal 132.
  • the wedge 136 is positioned within the stem 64.
  • the wedge 136 includes a ramped surface 144 and a projection 148.
  • the ramped surface 144 of the wedge 136 engages a corresponding ramped surface 152 of the foot pedal 152.
  • the projection 148 is configured to fit within a groove 156 (Fig. 8) formed in the first end 84 of the extension tube 44.
  • the biasing member 140 is positioned between the wedge 136 and an inner surface 160 of the stem 64.
  • the biasing member 140 biases the wedge 136 toward and into engagement with the handle assembly 32.
  • the biasing member 140 is a coil spring mounted on a boss 164 that extends from the inner surface 160 of the stem 64. In other embodiments, other suitable biasing members may also or alternatively be employed.
  • Fig. 9 illustrates the latch 128 in an engaged position.
  • the foot pedal 132 is fully extended from the stem 64, and the projection 148 extends into the groove 156 (Fig. 8) of the extension tube 44 to secure the handle assembly 32 within the stem 64.
  • a force Fi is applied to the foot pedal 132 to actuate (e.g., depress) the foot pedal 132, as shown in Fig. 10, the ramped surface 152 of the foot pedal 132 slides along the ramped surface 144 of the wedge 136 to move the wedge 136 against the bias of the biasing member 140.
  • the projection 148 of the wedge 136 slides out of the groove 156 (Fig. 8) in the extension tube 44 to release the handle assembly 32.
  • the handle assembly 32 can then be disconnected from the foot 28 by pulling the extension tube 44 out of the stem 64.
  • the latch 128 is positioned on the vacuum cleaner 20 so that the foot pedal 132 is inoperable when the canister assembly 36 is supported by the base 24. That is, the foot pedal 132 cannot be actuated by a user to release the handle assembly 32 from the foot 28 while the canister assembly 36 is connected to the base 24 in the first cleaning mode, as shown in Figs. 1A and IB.
  • Such an arrangement inhibits the handle assembly 32 from being disconnected from the foot 28 before the canister assembly 36 is removed from the base 24.
  • Such an arrangement inhibits the foot pedal 132 from being unintentionally actuated when the vacuum cleaner 20 is being operated in the first cleaning mode.
  • the latch 128 is substantially covered by the canister assembly 36 when the canister assembly 36 is supported by the base 24 such that the latch 128 is inaccessible to a user.
  • a body 168 of the canister assembly 36 defines a recess 172.
  • the recess 172 is shaped and sized to provide sufficient clearance for the latch 128 (specifically, the foot pedal 132) when the canister assembly 36 is on the base 24.
  • the latch 128 is received in the recess 172 of the canister assembly 36 when the canister assembly 36 is supported by the base 24 so that the body 168 of the canister assembly 36 does not contact or interfere with the foot pedal 132.
  • the canister assembly 36 and the foot pedal 132 are located on a forward side of the base 24 so that the canister assembly 36 overhangs a portion of the foot 28. In other embodiments, the canister assembly 36 and/or the foot pedal 132 may be located on a rearward side of the base 24.
  • the illustrated canister assembly 36 includes the body 168, a suction motor 176 positioned within the body 168, a separator unit 180 supported by the body 168, and a dirt collection unit 184 supported by the body 168.
  • the suction motor 176 is housed within a lower portion of the body 168 and includes an electric motor and a fan.
  • the suction motor 176 is operable to generate a vacuum or suction force in the canister assembly 36.
  • the suction motor When the canister assembly 36 is connected to the handle assembly 32 and the handle assembly 32 is connected to the foot 28, the suction motor generates the suction force through the first conduit 100 of the handle assembly 32 and the suction nozzle 68 of the foot 28.
  • a power cord 188 (only a portion of which is shown in Figs. 1A-4) extends into the canister assembly 36 to provide power to the suction motor 176.
  • the power cord 188 is also electrically connected to the grip 48 through the flexible hose 40 (Figs. 1A-4) to provide electrical power to the handle assembly 32 and the foot 28.
  • the separator unit 180 and the dirt collection unit 184 are supported by the body 168 generally above the suction motor 176.
  • the separator unit 180 is a cyclonic separator unit.
  • the cyclonic separator unit 180 includes a two-stage cyclone system including a first, upstream cyclone 190 and a second, downstream cyclone 192 positioned within the first cyclone 190.
  • the cyclones 190, 192 are operable to separate dirt particles from an airflow.
  • the cyclonic separator unit also includes a filter 196 to separate additional dirt particles from the airflow.
  • the illustrated filter 196 is positioned downstream of (above in Figs. 5 and 6) the second cyclone 192.
  • the separator unit 180 further includes an inlet 200 (Figs. 1A-4) connected to the flexible hose 40 to receive the airflow from the handle assembly 32.
  • the dirt collection unit 184 is in fluid communication with the cyclone 192 to collect the dirt particles that are separated from the airflow by the separator unit 180.
  • the canister assembly 36 may be a bag unit such that the separator unit 180 is omitted and the dirt collection unit 184 includes a bag positioned within the body 168.
  • the airflow After passing through the filter 196, the airflow is directed through a conduit 204 in the body 168 toward the suction motor 176. The cleaned airflow is then exhausted out of the body 168 through vents 208 (Fig. 1A) formed in an upper surface of the body 168 that supports the separator and dirt collection units 180, 184.
  • the illustrated separator and dirt collection units 180, 184, or dirt cup are manufactured and assembled together as a subassembly of the canister assembly 36.
  • the separator and dirt collection units 180, 184 are removable from the body 168 to facilitate changing or cleaning the filter 196 and emptying the dirt collection unit 184.
  • the canister assembly 36 includes a latch 212 having a manual actuator 216 to selectively secure the units 180, 184 to the body 168.
  • the actuator 216 is actuatable (e.g., depressible) by a user to release the separator and dirt collection units 180, 184 from the body 168. When released, the units 180, 184 can be lifted away from the body 168 and the suction motor 176.
  • the canister assembly 36 also includes a handle 220 extending from the separator unit 180.
  • the handle 220 is configured to be grasped by a user to facilitate carrying the canister assembly 36.
  • the handle 220 can be used to carry the separator unit 180 and the dirt collection unit 184 apart from the body 168 and the suction motor 176 of the canister assembly 36.
  • the handle 220 can be used to carry the entire canister assembly 36 apart from the handle assembly 32.
  • the canister assembly 36 is removable from the base 24 to be carried along by a user separately from the handle assembly 32 and the foot 28. When the canister assembly 36 is not supported by the base 24, the canister assembly 36 remains in fluid communication with the handle assembly 32 and the foot 28 through the flexible hose 40.
  • the vacuum cleaner 20 includes a mounting post 224 and a latch 228 to mount and secure the canister assembly 36 to the base 24.
  • the mounting post 224 extends from the stem 64 of the foot 28 adjacent the latch 128 that releasably secures the handle assembly 32 to the foot 28.
  • the mounting post 224 engages a portion of the canister assembly 36 to support the canister assembly 36 on the foot 28.
  • the mounting post 224 may extend from the extension tube 44 of the handle assembly 32 to engage the canister assembly 36.
  • the mounting post 224 may extend from the canister assembly 36 and engage the handle assembly 32 and/or the foot 28 to support the canister assembly 36 on the base 24.
  • the illustrated mounting post 224 is located adjacent the first end 84 of the handle assembly 32 so that a lower portion of the canister assembly 36 is engaged by the mounting post 224.
  • the illustrated mounting post 224 is a pin that extends through the stem 64 of the foot 28.
  • a first end portion 232 of the post 224 extends outwardly from a first side 234 of the stem 64 in one direction
  • a second end portion 236 of the post 224 extends outwardly from a second side 236 the stem 64 that is opposite the first side 234 in an opposite direction.
  • the end portions 232, or engagement members form bosses that extend outwardly from the stem 64.
  • the two end portions 232, 236 engage the canister assembly 36 at two discrete locations to inhibit the canister assembly 36 from rotating around or about the handle assembly 32 when supported by the mounting post 224.
  • the mounting post 224 may include two separate pins that extend outwardly from the foot 28.
  • the mounting post 224 may be a single ledge or surface on the base 24 that is configured to support the canister assembly 36.
  • the mounting post 224 is configured to be received in a groove 240 of the canister assembly 36 to support the canister assembly 36.
  • the groove 240 is formed in a rear surface 244 of the body 168 of the canister assembly 36 adjacent the recess 172 that receives the foot pedal 132.
  • the illustrated groove 240 is divided by the recess 172 into two discrete groove portions 248, 252.
  • the first groove portion 248 receives the first end portion 232 of the mounting post 224, while the second groove portion 252 receives the second end portion 236 of the mounting post 224.
  • each groove portion 248, 252 increases in cross-sectional area from a closed end 262 to an open end 264.
  • the open ends 264 of the groove portions 248, 252 are thereby larger to facilitate inserting the mounting post 224 into the groove 240 when connecting the canister assembly 36 to the foot 28.
  • the recess 172 and the groove 240 are formed in the rear surface 214 of the canister assembly 36 such that a portion of the stem 64 is received within the recess 172 when the canister assembly 36 is supported by the mounting post 224.
  • a portion of the body 168 of the canister assembly 36 extends over portions of the first and second sides 234, 238 (Fig. 12) of the stem 64 such that the canister assembly 36 straddles the stem 64.
  • Such an arrangement inhibits the canister assembly 36 from sliding, rocking, shifting, or otherwise moving side-to-side relative to the handle assembly 32 when supported by the mounting post 224.
  • such an arrangement helps position the canister assembly 36 on the base 24 so that the latch 228 on the canister assembly 36 properly aligns with a corresponding structure of the handle assembly 32.
  • the latch 228 is supported by the canister assembly 36.
  • the illustrated latch 228, or engagement member, is supported at an upper end of the canister assembly 36 opposite from the suction motor 176.
  • the latch 228 is operable to engage a portion of the handle assembly 32 to releasably secure the canister assembly 36 to the handle assembly 32.
  • the latch 228 is located on the canister assembly 36 between the first and second ends 84, 88 of the extension tube 44. In particular, the latch 228 is located between the grip 48 of the handle assembly 32 and the mounting post 224.
  • the latch 228 With the mounting post 224, the latch 228 provides a three-point connection (two points on the mounting post 224 and one point on the latch 228) for connecting the canister assembly 36 to the handle assembly 32 and the foot 28.
  • the latch 228 includes a manual actuator 268, a hook 272, and a biasing member 276 (Figs. 14 and 15).
  • the manual actuator 268 extends outwardly from the body 168 of the canister assembly 36 to be actuated (e.g., depressed) by a user.
  • the hook 272 is configured to engage a flange 280 of the handle assembly 32 to secure the latch 228 to the handle assembly 32.
  • the illustrated hook 272 is integrally formed as a single piece with the actuator 268. In other embodiments, the actuator 268 and the hook 272 may be separate elements that are coupled together. Additionally or alternatively, in some embodiments, the latch 228 may be supported by the handle assembly 32, and the flange 280 may be formed on the canister assembly 36.
  • the biasing member 276 is positioned between the actuator 268 and an inner surface 284 of the body 168.
  • the biasing member 276 biases the hook 272 into engagement with the flange 280.
  • the biasing member 276 is a coil spring that surrounds a boss 288 of the actuator 268. In other embodiments, other suitable biasing members may also or alternatively be employed.
  • Fig. 14 illustrates the latch 228 in an engaged position.
  • the manual actuator 268 is fully extended from the body 168 of the canister assembly 36, and the hook 272 extends behind the flange 280 to engage the flange 280 and secure the canister assembly 36 to the handle assembly 32.
  • the hook 272 moves (e.g., slides) away from the flange 280. Once the hook 272 clears the flange 280, the canister assembly 36 is released from the handle assembly 32. The canister assembly 36 can then be removed from the base 24.
  • the canister assembly 36 is removable from the handle assembly 32 and the foot 28 using a rocking or pivoting motion and a lifting motion.
  • the canister assembly 36 is supported by the mounting post 224 and secured to the handle assembly 32 by the latch 228.
  • the latch 228 is actuated to disengage the flange 280
  • the canister assembly 36 can be pivoted about the mounting post 224 relative to the handle assembly 32 and the foot 28.
  • the canister assembly 36 is pivotable in a first direction A (counterclockwise in Fig. 6) away from the handle assembly 32 when the latch 228 disengages the flange 280 on the handle assembly 32.
  • the canister assembly 36 (which includes the suction motor 176, the separator unit 180, and the dirt collection unit 184) can be lifted as a single assembly off of the mounting post 224 to operate the vacuum cleaner 20 in the second, third, or fourth cleaning modes, as shown in Figs. 2-4. Separating the canister assembly 36 from the handle assembly 32 and the foot 28 also allows the foot pedal 132 (Fig. 7) to be actuated to disconnect the handle assembly 32 from the foot 28.
  • the canister assembly 36 can be reconnected to the handle assembly 32 and the foot 28 using a substantially opposite set of motions.
  • the groove 240 (Fig. 1 1) in the canister assembly 36 is generally aligned with the mounting post 224. Once aligned, the canister assembly 36 is lowered onto the mounting post 224 such that the mounting post 224 is received in the groove 240 and the canister assembly 36 is supported by the foot 28.
  • the canister assembly 36 is then pivoted in a second direction (clockwise in Fig. 6) opposite the first direction A and toward the handle assembly 32. As the canister assembly 36 is pivoted toward the handle assembly 32, the hook 272 of the latch 228 engages the flange 280 of the handle assembly 32.
  • the hook 272 is configured to automatically move against the bias of the biasing member 276 and out of the way of the flange 280 as the canister assembly 36 is being connected to the handle assembly 32 without requiring a user to actuate the manual actuator 268. Once the hook 272 clears the flange 280, the biasing member 276 biases the hook 272 back into engagement behind the flange 280 to secure the canister assembly 36 to the handle assembly 32. Biasing the latch 228 into engagement with the flange 280 also provides an audible "click" to notify the user that the canister assembly 36 is properly connected to the handle assembly 32.
  • the relative locations of the mounting post 224 and the latch 228 may be reversed.
  • the latch 228 may be located adjacent the first end 84 of the handle assembly 32, and the mounting post 224 may be located between the grip 48 of the handle assembly 32 and the latch 228.
  • the canister assembly 36 may still be removed from and reconnected to the handle assembly 32 and the foot 17 in a similar manner as described above.
  • a bottom portion of the canister assembly 36 (rather than an upper portion) may be pivoted toward and away from the handle assembly 32 when the canister assembly 36 is installed on and removed from the base 24.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nozzles For Electric Vacuum Cleaners (AREA)

Abstract

L'invention concerne un aspirateur, qui comprend une base ayant un pied et un ensemble manche couplé de façon pivotante au pied, et un ensemble récipient supporté de façon détachable par la base. L'aspirateur comprend également un premier élément d'accouplement s'étendant de l'un parmi la base et l'ensemble récipient. Le premier élément d'accouplement s'accouple à l'autre de la base et de l'ensemble récipient pour supporter l'ensemble récipient sur la base et empêcher l'ensemble récipient de glisser d'un côté à l'autre par rapport à la base. L'aspirateur comprend en outre un second élément d'accouplement supporté par l'un parmi la base et l'ensemble récipient. Le second élément d'accouplement s'accouple à l'autre de la base et de l'ensemble récipient pour empêcher un mouvement de l'ensemble récipient à l'opposé de l'ensemble manche lorsque l'ensemble récipient est supporté sur la base par le premier élément d'accouplement.
PCT/US2013/054371 2012-08-09 2013-08-09 Aspirateur comprenant un ensemble récipient détachable WO2014026131A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261681460P 2012-08-09 2012-08-09
US61/681,460 2012-08-09

Publications (1)

Publication Number Publication Date
WO2014026131A1 true WO2014026131A1 (fr) 2014-02-13

Family

ID=49001095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/054371 WO2014026131A1 (fr) 2012-08-09 2013-08-09 Aspirateur comprenant un ensemble récipient détachable

Country Status (2)

Country Link
US (1) US20140041149A1 (fr)
WO (1) WO2014026131A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9456721B2 (en) * 2013-02-28 2016-10-04 Omachron Intellectual Property Inc. Surface cleaning apparatus
US8943647B1 (en) * 2013-08-09 2015-02-03 Techtronic Floor Care Technology Limited Vacuum cleaner including a removable handle assembly
EP3065612A4 (fr) * 2013-11-07 2017-08-02 Techtronic Industries Company Limited Agencement de verrouillage destiné à un aspirateur
CA2948397C (fr) * 2014-05-29 2019-10-29 Omachron Intellectual Property Inc. Appareil de nettoyage de surface
US10085603B2 (en) * 2014-09-03 2018-10-02 Samsung Electronic Co., Ltd. Vacuum cleaner
US10080471B2 (en) 2015-12-21 2018-09-25 Electrolux Home Care Products, Inc. Versatile vacuum cleaners
USD887656S1 (en) 2018-08-10 2020-06-16 Sharkninja Operating Llc Vacuum cleaner
USD924509S1 (en) * 2018-11-08 2021-07-06 Sharkninja Operating Llc Vacuum cleaner
USD996750S1 (en) * 2020-01-31 2023-08-22 Sharkninja Operating Llc Vacuum cleaner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0887040A1 (fr) * 1997-06-23 1998-12-30 Sanyo Electric Co. Ltd Aspirateur convertible
EP1190660A2 (fr) * 2000-09-22 2002-03-27 Daewoo Electronics Co., Ltd Aspirateur versatile
US20100229336A1 (en) * 2009-03-13 2010-09-16 G.B.D. Corp. Surface cleaning apparatus
US20120090105A1 (en) * 2010-10-15 2012-04-19 Henderson Gregg A Steering assembly for surface cleaning device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0228153D0 (en) * 2002-12-03 2003-01-08 Techtronic Ind Co Ltd Suction cleaners
KR100474081B1 (ko) * 2003-06-26 2005-03-14 삼성광주전자 주식회사 일체로 형성된 프레임조립체 및 착탈가능한 본체를구비한 진공청소기
KR100701177B1 (ko) * 2005-08-18 2007-03-28 주식회사 대우일렉트로닉스 캐니스터형으로 전환이 가능한 업라이트형 청소기의 본체장착구조
US7937802B2 (en) * 2007-08-14 2011-05-10 Samsung Gwangju Electronics Co., Ltd. Vacuum cleaner for use in both upright form and canister form
KR101491002B1 (ko) * 2007-12-05 2015-02-06 삼성전자주식회사 청소기
KR101534063B1 (ko) * 2008-12-09 2015-07-07 삼성전자주식회사 업라이트 및 캐니스터 겸용 진공청소기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0887040A1 (fr) * 1997-06-23 1998-12-30 Sanyo Electric Co. Ltd Aspirateur convertible
EP1190660A2 (fr) * 2000-09-22 2002-03-27 Daewoo Electronics Co., Ltd Aspirateur versatile
US20100229336A1 (en) * 2009-03-13 2010-09-16 G.B.D. Corp. Surface cleaning apparatus
US20120090105A1 (en) * 2010-10-15 2012-04-19 Henderson Gregg A Steering assembly for surface cleaning device

Also Published As

Publication number Publication date
US20140041149A1 (en) 2014-02-13

Similar Documents

Publication Publication Date Title
US8943647B1 (en) Vacuum cleaner including a removable handle assembly
US20140041149A1 (en) Vacuum cleaner including a removable canister assembly
EP2988641B1 (fr) Aspirateur comprenant un ensemble de collecte de poussière amovible
AU2015101867A4 (en) Vacuum cleaner including a removable canister assembly
US8302251B2 (en) Handheld vacuum unit retention features
EP2561783B1 (fr) Buse d'aspiration auxiliaire et port pour aspirateur
US8060980B2 (en) Floor care appliance equipped with break-over protected latch assembly
AU2006233189B2 (en) Upright vacuum cleaner with removable power head
EP3209176B1 (fr) Aspirateur avec un valve de conversion
EP3030125B1 (fr) Aspirateur comprenant un ensemble manche amovible
US20160095485A1 (en) Vacuum cleaner including a removable dirt collection assembly
AU2006206657A1 (en) Vacuum cleaner with collapsible handle
CA2746227A1 (fr) Aspirateur portatif a conversion
AU2008202353A1 (en) Vacuum cleaner cleanout system
CA2556620C (fr) Aspirateur avec tube-rallonge rapide
WO2015109493A1 (fr) Aspirateur doté d'un mécanisme de réglage de hauteur d'encliquetage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13750818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13750818

Country of ref document: EP

Kind code of ref document: A1