WO2014024823A1 - Slurry and negative electrode for lithium ion batteries - Google Patents

Slurry and negative electrode for lithium ion batteries Download PDF

Info

Publication number
WO2014024823A1
WO2014024823A1 PCT/JP2013/071116 JP2013071116W WO2014024823A1 WO 2014024823 A1 WO2014024823 A1 WO 2014024823A1 JP 2013071116 W JP2013071116 W JP 2013071116W WO 2014024823 A1 WO2014024823 A1 WO 2014024823A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylenically unsaturated
negative electrode
lithium ion
ion battery
particles
Prior art date
Application number
PCT/JP2013/071116
Other languages
French (fr)
Japanese (ja)
Inventor
村田 浩一
石井 伸晃
武内 正隆
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2013548654A priority Critical patent/JPWO2014024823A1/en
Publication of WO2014024823A1 publication Critical patent/WO2014024823A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a slurry. More specifically, the present invention relates to a slurry capable of obtaining a lithium ion battery having a large charge / discharge capacity and good charge / discharge cycle characteristics, a negative electrode formed by applying the slurry, and a lithium ion battery having the negative electrode.
  • This application claims priority based on Japanese Patent Application No. 2012-176401 for which it applied to Japan on August 8, 2012, and uses the content here.
  • the power consumption of portable electronic devices is increasing because the multifunction of portable electronic devices is progressing faster than the power saving of electronic components. Therefore, higher capacity and smaller size of the lithium ion battery, which is the main power source of portable electronic devices, are more strongly demanded than ever. In addition, the demand for electric vehicles is increasing, and the lithium-ion batteries used there are also strongly required to have a high capacity.
  • the theoretical capacity of a lithium ion battery when Si-containing particles are used as the negative electrode material is 4200 mAh / g. Since the theoretical capacity of a lithium battery using metal lithium is 3900 mAh / g, if Si or the like can be used as a negative electrode material, it is expected that a lithium ion battery having a smaller size and higher capacity than a metal lithium battery can be obtained.
  • a negative electrode material such as Si has a large expansion coefficient and contraction coefficient associated with insertion / extraction (occlusion / release) of lithium ions.
  • the organic solvent N-methyl-pyrrolidone (NMP) is used as a binder for binding the active material to the current collector, and the resin itself has high swelling resistance to the electrolyte solution.
  • Vinylidene chloride (PVDF) has been used.
  • this organic solvent-based binder has a low binding property between active materials and between an active material and a current collector, and a large amount of binder is required to obtain an effective binding force, resulting in the capacity of a lithium ion battery.
  • the energy density is lowered.
  • the organic solvent-based binder uses NMP, which is an expensive organic solvent, in the solvent, so that the price of the final product is high.
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • Patent Document 1 As a binder for an anode of an alloy containing Si or the like, which is expected to have a large capacity, it is known that the cycle characteristics of a binder using an aqueous binder are remarkably improved as compared with the case of using PVDF (for example, non-binding).
  • PVDF for example, non-binding
  • the object of the present invention is to use a water-dispersed binder, have good binding properties between active materials and between an active material and a current collector, have a large charge / discharge capacity, high charge / discharge efficiency, and charge / discharge cycle characteristics. It is an object to provide an alloy-based slurry, a negative electrode obtained using the slurry, and a lithium ion battery having the negative electrode, which can provide a lithium ion battery to be improved.
  • a negative electrode material for a lithium ion battery containing, as an active material, particles A containing at least one element selected from the group consisting of Si, Sn, Ge, and In, Obtained by polymerizing an ethylenically unsaturated monomer containing styrene, an ethylenically unsaturated carboxylic acid ester, an ethylenically unsaturated carboxylic acid, and a crosslinking agent having at least one ethylenically unsaturated group as essential components
  • a negative electrode material for a lithium ion battery containing, as an active material, particles A containing at least one element selected from the group consisting of Si, Sn, Ge, and In; Obtained by polymerizing an ethylenically unsaturated monomer containing styrene, an ethylenically unsaturated carboxylic acid ester, an ethylenically unsaturated carboxylic acid, and a crosslinking agent having at least one ethylenically unsaturated group as essential components
  • a negative electrode material for a lithium ion battery containing, as an active material, particles A containing at least one element selected from the group consisting of Si, Sn, Ge, and In; Presence of surfactant with ethylenically unsaturated monomer containing styrene, ethylenically unsaturated carboxylic acid ester, ethylenically unsaturated carboxylic acid, and crosslinking agent having at least one ethylenically unsaturated group as essential components
  • the manufacturing method of a slurry including the process of mixing below with the aqueous emulsion containing the polymer B obtained by superposition
  • the slurry of the present invention By using the slurry of the present invention, it is possible to obtain a lithium ion battery having good binding properties between the active materials and between the active material and the current collector and improving the charge / discharge cycle characteristics using the water dispersion binder. Moreover, the lithium ion battery obtained using the slurry for lithium ion battery negative electrodes of this invention has a large charge / discharge capacity compared with what was produced using the conventional aqueous binder, and is excellent in charge / discharge efficiency.
  • Example 1 shows the cycle characteristics in Example 1 and Comparative Example 1. It is a schematic diagram which shows the lithium ion battery which concerns on one Embodiment of this invention.
  • the negative electrode material used for the slurry according to one embodiment of the present invention includes, as an active material, particles A containing at least one element selected from the group consisting of Si, Sn, Ge, and In.
  • the particle A which is one of the constituent materials of the negative electrode material according to one embodiment of the present invention contains at least one element selected from the group consisting of Si, Sn, Ge and In. Of these elements, Si or Sn is preferable.
  • the particle A may be composed of a simple substance of these elements or a compound containing these elements, or may be composed of a compound, a mixture, a eutectic or a solid solution containing at least two of these elements. Good.
  • the particle A may be a particle in which a plurality of particles are aggregated. Examples of the shape of the particle A include a block shape, a scale shape, a spherical shape, and a fibrous shape. Of these, spherical or lump shape is preferable.
  • the particles A may be secondary particles.
  • the substance containing Si element include an alloy of Si element and alkaline earth metal; an alloy of Si and transition metal; an alloy of Si and metalloid; Si, Be, Ag, Al, Au, Cd. , Ga, In, Sb or Zn solid solution alloy or eutectic alloy; CaSi, CaSi 2 , Mg 2 Si, BaSi 2 , Cu 5 Si, FeSi, FeSi 2 , CoSi 2 , Ni 2 Si, NiSi 2 , MnSi, MnSi 2, MoSi 2, CrSi 2, Cr 3 Si, TiSi 2, Ti5Si 3, NbSi 2, NdSi 2, CeSi 2, WSi 2, W 5 Si 3, TaSi 2, Ta 5 Si 3, PtSi, V 3 Silicides such as Si, VSi 2 , PdSi, RuSi, RhSi; SiO 2 , SiC, Si 3 N 4 and the like can be mentioned.
  • Examples of the substance containing Sn element include tin alone, tin alloy, tin oxide, tin sulfide, tin halide, and stannate.
  • Specific examples of the substance containing the Sn element include an alloy of Sn and Zn, an alloy of Sn and Cd, an alloy of Sn and In, an alloy of Sn and Pb; SnO, SnO 2 , Mb 4 SnO 4 (Mb Represents a metal element other than Sn.)
  • Tin tin sulfide such as SnS, SnS 2 , Mb 2 SnS 3 ; SnX 2 , SnX 4 , MbSnX 4 (Mb represents a metal element other than Sn.
  • X Tin halides such as MgSn, Mg 2 Sn, FeSn, FeSn 2 , MoSn, and MoSn 2 .
  • the particle A has a 90% particle diameter (D 90 ) in a volume-based cumulative particle size distribution measured by a laser diffraction particle size distribution analyzer, preferably 500 nm or less, more preferably 450 nm or less. In the measurement of the particle size distribution, the particle size of secondary particles is also included.
  • the particles A preferably have a particle size distribution that does not substantially contain particles having a size of 1 ⁇ m or more. The larger the particle size, the more easily the particles A are crushed due to contraction and expansion during charge / discharge, and an increase in internal resistance and a decrease in charge / discharge cycle characteristics are likely to occur.
  • the particle A has a 10% particle diameter (D 10 ) in a volume-based cumulative particle size distribution measured by a laser diffraction particle size distribution analyzer, preferably 80 nm or more, more preferably 100 nm or more.
  • the particle A has a 50% particle size (D 50 ) in a volume-based cumulative particle size distribution measured by a laser diffraction particle size distribution analyzer, preferably 100 to 400 nm, more preferably 200 to 300 nm.
  • pulverizer examples include a hammer mill, a jaw crusher, and a collision pulverizer.
  • classification can be performed by airflow classification and / or sieving.
  • airflow classifier examples include a turbo cryfire and a turboplex.
  • the negative electrode material preferably further includes carbon particles C containing a graphite material in addition to the particles A described above.
  • the carbon particles C are contained in an amount of preferably 250 to 2000 parts by mass, more preferably 250 to 500 parts by mass with respect to 100 parts by mass of the particles A.
  • the carbon particles C have a 50% particle diameter (D 50 ) in a volume-based cumulative particle size distribution of preferably 2 to 40 ⁇ m, more preferably 2 to 15 ⁇ m.
  • D 50 particle diameter
  • the particle size of secondary particles is also included.
  • the volume-based cumulative particle size distribution can be measured by a laser diffraction particle size distribution measuring machine.
  • the carbon particles C preferably have a particle size distribution in which 90% or more of particles having a particle diameter in the range of 1 to 50 ⁇ m are present on a number basis, and 90% or more of particles having a particle diameter in the range of 5 to 50 ⁇ m on the number basis It is preferable that the particle size distribution exists.
  • the carbon particles C have a 10% particle diameter (D 10 ) in a volume-based cumulative particle size distribution measured by a laser diffraction particle size distribution analyzer, preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more.
  • the carbon particles C may be particles composed only of graphite material (that is, graphite particles), or particles composed of graphite particles and a carbonaceous layer existing on the surface thereof (that is, carbon-coated graphite particles).
  • carbon-coated graphite particles or particles obtained by attaching carbon fibers to graphite particles may be used.
  • the graphite material examples include artificial graphite, pyrolytic graphite, expanded graphite, natural graphite, scaly graphite, and scaly graphite. Of these, artificial graphite is preferred.
  • the carbonaceous layer on the surface of the carbon-coated graphite particles has a peak intensity (I D ) derived from an amorphous component in the range of 1300 to 1400 cm ⁇ 1 and a range of 1580 to 1620 cm ⁇ 1 as measured by Raman spectroscopy.
  • the ratio I D / I G (R value) with the peak intensity (I G ) derived from the graphite component is preferably 0.1 or more, more preferably 0.2 or more.
  • Carbon-coated graphite particles can be produced according to a known method.
  • the graphite particles are agitated while spraying an organic compound such as an isotropic pitch, an anisotropic pitch, a resin, a resin precursor, or a monomer to the finely divided graphite particles.
  • the graphite particles and an organic compound such as pitch or phenol resin are mixed and mechanochemical treatment is performed using a device such as a hybridizer.
  • the adhesion amount of the organic compound is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the graphite particles.
  • the graphite particles to which the organic compound is adhered are preferably heat-treated at 200 ° C. or higher and 2000 ° C. or lower, more preferably 500 ° C. or higher and 1500 ° C. or lower. Carbon-coated graphite particles are obtained by this heat treatment.
  • the carbon fiber examples include vapor grown carbon fiber, petroleum pitch-based carbon fiber, coal pitch-based carbon fiber, and PAN-based carbon fiber. Of these, vapor grown carbon fiber is preferred.
  • the method for binding (adhering) the carbon fibers to the surface of the graphite particles or carbon-coated graphite particles For example, by mixing carbon fiber with an organic compound, attaching it to graphite particles or carbon-coated graphite particles, and then performing a heat treatment, the carbon fiber can be bound to the carbonaceous layer in the process of forming the carbonaceous layer. it can.
  • the amount of the carbon fiber is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of the graphite particles.
  • the binder used in the slurry according to one embodiment of the present invention is ethylene containing, as essential components, a styrene, an ethylenically unsaturated carboxylic acid ester, an ethylenically unsaturated carboxylic acid, and a crosslinking agent having at least one ethylenically unsaturated group.
  • the binder is contained in an amount of preferably 1 to 100 parts by weight, more preferably 1 to 20 parts by weight, based on 100 parts by weight of the negative electrode material.
  • the reason why styrene is an essential component in the polymer B is to develop binding properties between the negative electrode materials.
  • the amount of styrene used is preferably 30 to 70% by mass, more preferably 40 to 60% by mass, based on the total ethylenically unsaturated monomer.
  • the glass transition temperature (Tg) of the polymer B falls within an appropriate range, and cracking is unlikely to occur in the negative electrode obtained from application of the slurry for negative electrode.
  • the total ethylenically unsaturated monomer does not include a surfactant having an ethylenically unsaturated group described later.
  • the ethylenically unsaturated carboxylic acid ester used as the raw material of the polymer B preferably contains an ethylenically unsaturated carboxylic acid ester having a polar group such as a hydroxy group or a glycidyl group.
  • a polar group such as a hydroxy group or a glycidyl group.
  • Specific examples include 2-hydroxyalkyl (meth) acrylate such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate, glycidyl acrylate, and the like. Of these, 2-hydroxyethyl (meth) acrylate is preferred.
  • the amount of the ethylenically unsaturated carboxylic acid ester having a polar group is preferably 0.1 to 10% by mass, preferably 0.5 to 5% by mass, based on the total ethylenically unsaturated monomers. It is.
  • the ethylenically unsaturated carboxylic acid having a polar group in an amount of 0.1% by mass or more, the polymerization stability or mechanical stability is improved, and the swelling resistance of the dry film against the electrolytic solution is improved.
  • the content is 10% by mass or less, the binding property between the negative electrode materials and between the negative electrode material and the current collector tends to be improved.
  • the ethylenically unsaturated carboxylic acid ester may include those other than the above (referred to as other ethylenically unsaturated carboxylic acid ester).
  • n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, and isobornyl (meth) acrylate are preferred from the viewpoint of ease of emulsion polymerization and durability.
  • the amount of other ethylenically unsaturated carboxylic acid ester used is preferably 25 to 85% by mass, more preferably 30 to 80% by mass, based on the total ethylenically unsaturated monomer.
  • amount of the ethylenically unsaturated carboxylic acid ester used is 25% by mass or more, flexibility and heat resistance of the obtained negative electrode tend to be improved, and when it is 85% by mass or less, the negative electrode materials and the negative electrode material and the current collector are collected. There is a tendency to improve the binding with the body.
  • ethylenically unsaturated carboxylic acid Specific examples of the ethylenically unsaturated carboxylic acid include unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid, unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid, or unsaturated dicarboxylic acids thereof. Of these, and among them, acrylic acid and itaconic acid are preferable. These ethylenically unsaturated carboxylic acids may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amount of the ethylenically unsaturated carboxylic acid used is such that the acid value of the polymer B is preferably 6 to 100, more preferably 6 to 50.
  • the acid value is 6 or more, emulsion polymerization stability or mechanical stability is improved, and the heat resistance of the obtained negative electrode tends to be improved. Further, lithium ion, which is a negative electrode material, is occluded / released. Affinity and binding force with particles A other than carbon containing possible elements are improved.
  • the acid value is 100 or less, particularly when a material containing carbon particles C is used as the negative electrode material, the binding properties between the negative electrode materials and between the negative electrode material and the current collector tend to be improved.
  • the acid value is the number of mg of potassium hydroxide necessary to neutralize the carboxylic acid present in 1 g of resin. The acid value is measured according to JIS K5601-2-1 and can be obtained by the following formula (1).
  • Acid value (valence of carboxylic acid) ⁇ (mass% of ethylenically unsaturated carboxylic acid) ⁇ (molecular weight of ethylenically unsaturated carboxylic acid) ⁇ 56.1 ⁇ 1000 (1)
  • the amount of the ethylenically unsaturated carboxylic acid that provides the desired acid value varies depending on the type and ratio of the ethylenically unsaturated monomer used in the production of the polymer B.
  • the amount is preferably 1 to 10% by mass, more preferably 1 to 5% by mass based on the body.
  • Cross-linking agent Furthermore, in order to further improve the swelling resistance of the obtained lithium ion battery negative electrode with respect to the electrolyte solvent, a cross-linking agent having at least one ethylenically unsaturated bond is used in the production of the polymer B.
  • the cross-linking agent may be one having a group that reacts with a carboxyl group or one having two or more ethylenically unsaturated groups.
  • crosslinking agent monomers having two or more ethylenically unsaturated groups such as divinylbenzene, ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, triallyl cyanurate, vinyltrimethoxysilane
  • examples thereof include silane coupling agents having an ethylenically unsaturated group such as vinyltriethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, and ⁇ -methacryloxypropyltriethoxysilane.
  • divinylbenzene is preferable.
  • These crosslinking agents may be used alone or in combination of two or more.
  • the amount of the crosslinking agent used is preferably 0.1 to 5% by mass and more preferably 0.1 to 3% by mass with respect to the total ethylenically unsaturated monomer.
  • the amount of the crosslinking agent used is 0.1% by mass or more, the swelling resistance of the dry film to the electrolytic solution tends to be improved, and when it is 5% by mass or less, the emulsion polymerization stability is improved. The adhesion between the negative electrode material and the current collector tends to be improved.
  • a compound having at least one polymerizable ethylenically unsaturated group may be used as the ethylenically unsaturated monomer as long as the object of the present invention is not impaired.
  • the compound having a polar group such as an amide group and a nitrile group include (meth) acrylamide, N-methylol (meth) acrylamide, (meth) acrylonitrile, N-vinylpyrrolidone and the like. Vinyl acetate and vinyl propionate can also be used.
  • a compound having a mercapto group, thioglycolic acid and its ester, ⁇ -mercaptopropionic acid and its ester may be used for adjusting the molecular weight.
  • the Tg of the polymer B is preferably 30 ° C. or lower.
  • Tg is 30 ° C. or lower, cracks occur in the negative electrode obtained from the application of the slurry for negative electrode, which is not preferable.
  • the above polymer B has a dry film swelling ratio of preferably 300% or less, more preferably 5% to 200%, with respect to a solvent of propylene carbonate / diethyl carbonate electrolyte at 60 ° C. It is preferable that the swelling resistance of the dry film with respect to the electrolytic solution at 60 ° C. is 300% or less because charge / discharge high temperature cycle characteristics at high temperatures are lowered.
  • the polymer B used for the slurry is obtained by polymerizing the above ethylenically unsaturated monomer. Usually, the polymerization is carried out by emulsion polymerization using water as a dispersion medium in the presence of a surfactant to obtain an aqueous emulsion containing the polymer B.
  • the reactive surfactant used in the polymerization is not particularly limited as long as it is a normal anionic surfactant or nonionic surfactant.
  • the anionic surfactant include alkyl benzene sulfonate, alkyl sulfate ester salt, polyoxyethylene alkyl ether sulfate ester salt, fatty acid salt, and the like.
  • Nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkyl ether, Examples thereof include oxyethylene alkyl phenyl ether, polyoxyethylene polycyclic finyl ether, polyoxyalkylene alkyl ether, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester and the like. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • Preferred surfactants include those having an ethylenically unsaturated group, and more preferred are those represented by the following formulas (2) to (5).
  • R is an alkyl group, and n is an integer of 10 to 40
  • n is an integer of 10 to 12
  • m is an integer of 10 to 40
  • R is an alkyl group, M is NH 4 or Na
  • the amount of the surfactant used is not particularly limited.
  • a surfactant having an ethylenically unsaturated group it is preferably 0.3 to 3% by mass based on the total ethylenically unsaturated monomer.
  • the amount of the surfactant used is 0.3% by mass or more, the polymerization stability is improved, and since the particle system of the obtained aqueous emulsion is small, the resin emulsion does not easily precipitate.
  • the amount of the surfactant used is 3% by mass or less, the adhesion between the negative electrode material and the current collector is improved, which is preferable.
  • the radical polymerization initiator used in the polymerization may be a known and conventional one, and examples thereof include persulfate and peroxide.
  • examples of the persulfate include ammonium persulfate and potassium persulfate
  • examples of the peroxide include hydrogen peroxide and organic peroxides such as t-butyl hydroperoxide and cumene hydroperoxide.
  • these polymerization initiators may be used in combination with a reducing agent such as sodium bisulfite, Rongalite, and ascorbic acid for redox polymerization.
  • the polymerization method As the polymerization method, a polymerization method charged in a batch, a polymerization method while continuously supplying each component, and the like are applied.
  • the polymerization is usually carried out at a temperature of 30 to 90 ° C. with stirring.
  • the pH of the aqueous emulsion is adjusted to improve the polymerization stability, mechanical stability, and chemical stability during polymerization. be able to.
  • ammonia triethylamine, ethanolamine, caustic soda and the like can be used. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the binder may contain components other than the polymer B described above.
  • other components include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, and casein.
  • the amount of these other binder components used is preferably 5 to 200 parts by weight, more preferably 50 to 150 parts by weight, based on 100 parts by weight of the polymer B.
  • the slurry contains a dispersion medium containing water.
  • the water contained in the dispersion medium is usually derived from the aqueous emulsion containing the above-mentioned polymer B, but is not limited thereto, and the amount can be appropriately adjusted depending on the viscosity of the slurry.
  • the dispersion medium may contain an organic solvent miscible with water as long as the object of the present invention is not impaired. Examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, methanol, isopropyl alcohol, butanol, acetone, 2-butanone and cyclohexanone. When these organic solvents are used, the amount used is preferably 1 to 50% by mass, more preferably 1 to 20% by mass in the dispersion medium, and may not be used.
  • the slurry may contain a conductive aid.
  • the conductive auxiliary agent is not particularly limited as long as it has a function of imparting conductivity and electrode stability to the negative electrode (buffering action against volume change in insertion / extraction of lithium ions).
  • vapor grown carbon fiber for example, “VGCF” (registered trademark) manufactured by Showa Denko KK
  • conductive carbon for example, “Denka Black” (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd., “Super C65” manufactured by TIMCAL, “Super C45” TIMCAL And “KS6L” manufactured by TIMCAL).
  • the amount of the conductive auxiliary is preferably 10 to 150 parts by mass, more preferably 50 to 100 parts by mass with respect to 100 parts by mass of the negative electrode material.
  • the slurry for a lithium ion battery electrode according to an embodiment of the present invention is obtained by mixing the above-described components.
  • the well-known method used for manufacture of a lithium ion battery can be used.
  • a method of adding a negative electrode material and a conductive additive to the above-described aqueous emulsion containing the polymer B and further dispersing, dissolving, or kneading can be mentioned.
  • a negative electrode for a lithium ion battery includes a current collector and a negative electrode mixture layer.
  • the thickness of the negative electrode for a lithium ion battery is usually 50 to 200 ⁇ m.
  • the current collector for example, a metal foil made of nickel, copper, aluminum, or an alloy thereof can be used.
  • the metal foil may be a normal foil without holes, or a foil with holes such as a punching metal foil, a metal mesh, or a porous foil.
  • a known conductive layer for example, Japanese Patent Application Laid-Open No. 2006-32902, Japanese Patent Application Laid-Open No. 2008-60060, Japanese Patent Application Laid-Open No.
  • the negative electrode mixture layer includes the above-described negative electrode material, a binder, and, if necessary, a conductive additive.
  • the composition ratio is preferably 1 to 100 parts by weight, more preferably 1 to 20 parts by weight, and preferably 10 to 150 parts by weight, more preferably 50 to 100 parts by weight of the conductive auxiliary, with respect to 100 parts by weight of the negative electrode material. Part by mass.
  • the negative electrode for a lithium ion battery has other layers such as a protective layer (see, for example, JP-A-2008-226666, JP-A-2009-181756, and JP-A-2010-244818) as necessary. You may do it.
  • the negative electrode for a lithium ion battery can be obtained, for example, by applying the above slurry to a current collector and drying it.
  • the method for applying the slurry is not particularly limited.
  • the thickness of the negative electrode for a lithium ion battery described above can be adjusted by the amount of slurry applied.
  • after drying the slurry for negative electrodes it can also adjust by carrying out pressure molding.
  • the pressure molding method include molding methods such as roll pressing and press pressing.
  • the pressure during pressure molding is preferably about 100 MPa to about 300 MPa (about 1 to 3 ton / cm 2 ).
  • a lithium ion battery according to an embodiment of the present invention has at least one selected from the group consisting of a non-aqueous electrolyte and a non-aqueous polymer electrolyte, a positive electrode, and the above-described negative electrode.
  • a sheet conventionally used for lithium ion batteries specifically, a sheet containing a positive electrode active material can be used.
  • the positive electrode active material include LiNiO 2 , LiCoO 2 , LiMn 2 O 4 , LiNi 0.34 Mn 0.33 Co 0.33 O 2 , and LiFePO 4 .
  • the non-aqueous electrolyte and non-aqueous polymer electrolyte used for the lithium ion battery are not particularly limited.
  • a lithium salt such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , CH 3 SO 3 Li, CF 3 SO 3 Li, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, propylene Organic electrolytes dissolved in non-aqueous solvents such as carbonate, butylene carbonate, acetonitrile, propyronitrile, dimethoxyethane, tetrahydrofuran, and ⁇ -butyrolactone; polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, etc.
  • examples thereof include a gel polymer electrolyte and a solid polymer electrolyte containing a polymer having an ethylene oxide bond.
  • a small amount of a substance that causes a decomposition reaction when the lithium ion battery is initially charged may be added to the electrolytic solution.
  • the substance include vinylene carbonate, biphenyl, propane sultone, and the like.
  • the addition amount is preferably 0.01 to 5% by mass.
  • a lithium ion battery can be provided with a separator between the positive electrode and the negative electrode.
  • the separator include non-woven fabrics, cloths, microporous films, or a combination thereof, mainly composed of polyolefins such as polyethylene and polypropylene.
  • a known inorganic particle layer (see, for example, Japanese Patent Application Laid-Open No. 2001-319634, International Publication Pamphlet WO 2007/066768, Japanese Patent Application Laid-Open No. 2008-126996, Japanese Patent Application Laid-Open No. 2008-123988) is provided on the surface of the separator. It may be.
  • FIG. 2 shows a lithium ion battery according to an embodiment of the present invention.
  • a lithium ion battery 10 shown here is a separator that separates a negative electrode 1, a positive electrode 2 opposite to the negative electrode 1, and the negative electrode 1 and the positive electrode 2. 3 and a container 4 for housing them.
  • the negative electrode 1 includes a current collector 5 and a negative electrode mixture layer 6 provided on the surface of the current collector 5.
  • Reference numeral 7 denotes an electrolyte injected into the container 4.
  • the container 4 includes a main body 4a that houses the negative electrode 1, the positive electrode 2, and the separator 3, and a lid 4b that closes the main body 4a.
  • aqueous emulsion had a non-volatile content of 45.5%, a viscosity of 3000 mPa ⁇ s, a pH of 6.5, and the acid value of the polymer B was 18.95.
  • Si fine particles Alfa Aesar, CAS7440-21-3, product number 44384, primary particle size of 50 nm or less
  • carbon particles C carbon-coated graphite particles were prepared by the following procedure. Petroleum coke was pulverized to an average particle size of 5 ⁇ m. This was heat-treated at 3000 ° C. in an Atchison furnace to obtain graphite particles. Next, petroleum pitch was mixed with the graphite particles at a mass ratio of 1%, and the petroleum pitch was adhered to the surface of the graphite particles. Then, it carbonized at 1100 degreeC by inert atmosphere.
  • BET specific surface area is 2.6 m 2 / g
  • d002 is 0.3361 nm
  • LC is 59 nm
  • 10% particle diameter (D10) is 2.3 ⁇ m
  • 50% particle diameter (D50) is 5.7 ⁇ m
  • Carbon-coated graphite particles having a 90% particle diameter (D90) of 11.8 ⁇ m and I D / I G (R value) of 0.77 were obtained.
  • 0.375 g of Si fine particles and 1.125 g of carbon-coated graphite particles C were taken and mixed in a mortar to obtain a negative electrode material in which Si fine particles and graphite particles were combined.
  • a binder mixture was prepared by adding carboxymethyl cellulose (manufactured by Daicel, product number: 1380) to the aqueous emulsion so that the solid mass ratio was 1: 1, and mixing them.
  • TIMCAL carbon black (SUPER C45) was prepared as a conductive aid.
  • the obtained slurry for a lithium ion battery negative electrode was applied on a copper foil such that the negative electrode mixture layer had a thickness of 120 ⁇ m. This was dried at 70 ° C. for 3 hours. A sheet piece having a diameter of 16 mm was punched out from the obtained sheet, and pressed at 1.5 ton / cm 2 with a POWER SAMPLE HYDRAULIC PRESS / BRE-3 manufactured by Maekawa Tester, Ltd., to obtain a negative electrode. There was no transfer on the negative electrode after pressing.
  • a 2320 type coin cell (diameter 23 mm, thickness 2.0 mm) was prepared. A foil piece having a diameter of 20 mm was punched from a lithium foil having a thickness of 0.1 mm. This was used as a positive electrode. The positive electrode was lightly pressure-bonded to a SUS spacer with a punch. This was put in a coin cell cap. Next, an electrolytic solution was injected into the coin cell.
  • the electrolytic solution was obtained by dissolving electrolyte LiPF 6 at a concentration of 1 mol / L in a solvent in which ethylene carbonate, methyl ethyl carbonate, and diethyl carbonate were mixed at a volume ratio of 3: 5: 2. It is.
  • aqueous emulsion In the synthesis of the aqueous emulsion, the same operation as in the synthesis of the aqueous emulsion described in Example 1 was performed except that 250 parts of styrene and 220 parts of 2-ethylhexyl acrylate were changed to 320 parts of styrene and 150 parts of 2-ethylhexyl acrylate. It was.
  • the obtained aqueous emulsion had a nonvolatile content of 44.9%, a viscosity of 2900 mPa ⁇ s, a pH of 6.5, and the acid value of the polymer B was 18.95.
  • the preparation of the Si-graphite composite negative electrode material, the production of the negative electrode, the production of the evaluation battery, and various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 1 A negative electrode was produced in the same manner as in Example 1 except that the aqueous emulsion was changed to SBR (manufactured by Zeon Corporation, product number: BM400B) in Example 1, and an evaluation battery was produced and a charge / discharge test was performed. The results are shown in Table 1 and FIG. After pressing, the negative electrode sheet adhered to the press plate, and the negative electrode mixture layer was slightly transferred.
  • SBR manufactured by Zeon Corporation, product number: BM400B
  • the binders in Examples 1 and 2 also show good binding properties with respect to the alloy-based negative electrode.
  • the evaluation batteries using the binders in Example 1 and Example 2 have high initial charge / discharge amounts and high initial efficiency, and excellent cycle characteristics at the 50th cycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A slurry which contains: a negative electrode material for lithium ion batteries, which contains, as an active material, particles (A) that contain at least one element selected from the group consisting of Si, Sn, Ge and In; a binder which contains a polymer (B) that is obtained by polymerizing an ethylenically unsaturated monomer in the presence of a reactive surfactant, said ethylenically unsaturated monomer containing styrene, an ethylenically unsaturated carboxylic acid ester, an ethylenically unsaturated carboxylic acid and a crosslinking agent as essential ingredients; and a dispersion medium which contains water.

Description

スラリー及びリチウムイオン電池用負極Slurry and negative electrode for lithium ion battery
 本発明は、スラリーに関する。より詳細には、本発明は、充放電容量が大きく、充放電サイクル特性が良好なリチウムイオン電池を得ることができるスラリー、該スラリーを塗布して成る負極及び該負極を有するリチウムイオン電池に関する。
 本願は、2012年8月8日に日本に出願された特願2012-176401号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a slurry. More specifically, the present invention relates to a slurry capable of obtaining a lithium ion battery having a large charge / discharge capacity and good charge / discharge cycle characteristics, a negative electrode formed by applying the slurry, and a lithium ion battery having the negative electrode.
This application claims priority based on Japanese Patent Application No. 2012-176401 for which it applied to Japan on August 8, 2012, and uses the content here.
 電子部品の省電力化を上回る速さで携帯電子機器の多機能化が進んでいるために、携帯電子機器の消費電力が増加している。そのため、携帯電子機器の主電源であるリチウムイオン電池の高容量化及び小型化がいままで以上に強く求められている。また、電動自動車の需要が伸び、それに使われるリチウムイオン電池にも高容量化が強く求められている。 The power consumption of portable electronic devices is increasing because the multifunction of portable electronic devices is progressing faster than the power saving of electronic components. Therefore, higher capacity and smaller size of the lithium ion battery, which is the main power source of portable electronic devices, are more strongly demanded than ever. In addition, the demand for electric vehicles is increasing, and the lithium-ion batteries used there are also strongly required to have a high capacity.
 リチウムイオン電池の高容量化を図るために、理論容量の大きいSiや、Snなどの金属元素を含む粒子を負極材料に用いることが検討されている。例えば、Siを含む粒子を負極材料に用いた場合のリチウムイオン電池の理論容量は4200mAh/gである。金属リチウムを用いた場合のリチウム電池の理論容量は3900mAh/gであるので、Siなどを負極材料に用いることができれば、金属リチウム電池よりも小型で高容量なリチウムイオン電池が得られると期待される。ところが、Siなどの負極材料はリチウムイオンの挿入・脱離(吸蔵・放出)に伴う膨張率及び収縮率が大きい。そのために粒子間に隙間が生じて期待したほどの容量が得られない。また、大きな膨張と収縮の繰り返しにより粒子が砕けて微粉化するために電気的な接触が分断されて内部抵抗が増加するので、得られるリチウムイオン電池は充放電サイクル寿命が短い。 In order to increase the capacity of lithium ion batteries, it has been studied to use particles containing metal elements such as Si and Sn having a large theoretical capacity as a negative electrode material. For example, the theoretical capacity of a lithium ion battery when Si-containing particles are used as the negative electrode material is 4200 mAh / g. Since the theoretical capacity of a lithium battery using metal lithium is 3900 mAh / g, if Si or the like can be used as a negative electrode material, it is expected that a lithium ion battery having a smaller size and higher capacity than a metal lithium battery can be obtained. The However, a negative electrode material such as Si has a large expansion coefficient and contraction coefficient associated with insertion / extraction (occlusion / release) of lithium ions. For this reason, gaps are generated between the particles, and the expected capacity cannot be obtained. Further, since the particles are crushed and pulverized by repeated large expansion and contraction, the electrical contact is interrupted and the internal resistance is increased, so that the obtained lithium ion battery has a short charge / discharge cycle life.
 従来、活物質を集電体に結着させるバインダーとして、有機溶剤のN-メチル-ピロリドン(NMP)を溶媒として、電解液に対する樹脂自体の耐膨潤性が高く、またスラリーの作製が容易なポリフッ化ビニリデン(PVDF)が用いられてきた。しかしながら、この有機溶剤系バインダーは活物質同士及び活物質と集電体との結着性が低く、実効的な結着力を得るためには大量のバインダーを必要とし、結果としてリチウムイオン電池の容量及びエネルギー密度が低下する欠点がある。また有機溶剤系バインダーは、その溶媒に高価な有機溶剤であるNMPを使用しているため、最終製品の価格が高価になるという欠点がある。 Conventionally, the organic solvent N-methyl-pyrrolidone (NMP) is used as a binder for binding the active material to the current collector, and the resin itself has high swelling resistance to the electrolyte solution. Vinylidene chloride (PVDF) has been used. However, this organic solvent-based binder has a low binding property between active materials and between an active material and a current collector, and a large amount of binder is required to obtain an effective binding force, resulting in the capacity of a lithium ion battery. In addition, there is a disadvantage that the energy density is lowered. In addition, the organic solvent-based binder uses NMP, which is an expensive organic solvent, in the solvent, so that the price of the final product is high.
 これらの問題を解決する方法として、増粘剤としてカルボキシメチルセルロース(CMC)を併用したスチレン-ブタジエンゴム(SBR)系の水分散体が提案されている(例えば、特許文献1~3参照)。このSBR系分散剤は水分散体であるために安価であり、かつ活物質同士及び活物質と集電体との結着性が良好なことから、水系のリチウムイオン電池用バインダーとして幅広い用途に使用されてきた。大容量が期待される、Si等を含む合金負極に対するバインダーとしても、PVDFを用いた場合に比べて水系バインダーを用いたものは格段にサイクル特性が向上することが知られている(例えば、非特許文献1参照)。 As a method for solving these problems, a styrene-butadiene rubber (SBR) -based aqueous dispersion using carboxymethyl cellulose (CMC) as a thickener has been proposed (see, for example, Patent Documents 1 to 3). Since this SBR dispersant is an aqueous dispersion, it is inexpensive and has good binding properties between active materials and between an active material and a current collector. Therefore, it is widely used as a binder for aqueous lithium ion batteries. Have been used. As a binder for an anode of an alloy containing Si or the like, which is expected to have a large capacity, it is known that the cycle characteristics of a binder using an aqueous binder are remarkably improved as compared with the case of using PVDF (for example, non-binding). Patent Document 1).
特開平5-74461号公報JP-A-5-74461 特開平6-150906号公報JP-A-6-150906 特開平8-250123号公報JP-A-8-250123
 従来の水系バインダーは機械的安定性が低く、また電解液溶媒に対する膨潤性が低いという問題があった。また、水系バインダーでは活物質同士が凝集しやすく、均一なスラリーを作ることが難しいという欠点があった。従って、これまで検討されてきた水系バインダーでは、充放電容量が大きく、充放電効率が高く、充放電サイクル特性がよいというリチウムイオン電池を製造することはできなかった。 Conventional water-based binders have problems of low mechanical stability and low swellability with respect to the electrolyte solvent. Further, the aqueous binder has a drawback that the active materials are easily aggregated and it is difficult to form a uniform slurry. Therefore, the water-based binders that have been studied so far have not been able to produce a lithium ion battery having a large charge / discharge capacity, high charge / discharge efficiency, and good charge / discharge cycle characteristics.
 本発明の目的は、水分散系バインダーを用いて、活物質同士及び活物質と集電体との結着性が良好で、充放電容量が大きく、充放電効率が高く、充放電サイクル特性を向上させるリチウムイオン電池を得ることができる、合金系のスラリー、該スラリーを用いて得られた負極、及び該負極を有するリチウムイオン電池を提供することである。 The object of the present invention is to use a water-dispersed binder, have good binding properties between active materials and between an active material and a current collector, have a large charge / discharge capacity, high charge / discharge efficiency, and charge / discharge cycle characteristics. It is an object to provide an alloy-based slurry, a negative electrode obtained using the slurry, and a lithium ion battery having the negative electrode, which can provide a lithium ion battery to be improved.
 本発明は、以下の[1]~[10]に関する。
[1] Si、Sn、Ge及びInからなる群から選ばれるうちの少なくとも一つの元素を含む粒子Aを活物質として含むリチウムイオン電池用負極材、
 スチレン、エチレン性不飽和カルボン酸エステル、エチレン性不飽和カルボン酸、及び少なくとも一つのエチレン性不飽和基を有する架橋剤、を必須成分として含有するエチレン性不飽和単量体を重合して得られる重合体Bを含むバインダー、及び、
 水を含む分散媒、を含むスラリー。
[2] 前記重合体Bの酸価が6~100であることを特徴とする上記[1]に記載のスラリー。
[3] 前記エチレン性不飽和単量体中、スチレンの含有量が30~70質量%である、上記[1]及び[2]のいずれか1項に記載のリチウムイオン電池用電極スラリー。
[4] 前記エチレン性不飽和単量体中、前記架橋剤の含有量が0.1~5質量%である、上記[1]乃至[3]のいずれか1項に記載のスラリー。
[5] 前記リチウムイオン電池用負極材が、炭素粒子Cをさらに含む、上記[1]乃至[4]のいずれか1項に記載のスラリー。
[6] 前記粒子Aの100質量部に対し、前記炭素粒子Cを250~2000質量部含む、上記[6]に記載のスラリー。
[7] Si、Sn、Ge及びInからなる群から選ばれるうちの少なくとも一つの元素を含む粒子Aを活物質として含むリチウムイオン電池用負極材、及び、
 スチレン、エチレン性不飽和カルボン酸エステル、エチレン性不飽和カルボン酸、及び少なくとも一つのエチレン性不飽和基を有する架橋剤、を必須成分として含有するエチレン性不飽和単量体を重合して得られる重合体Bを含むバインダー、を含むリチウムイオン電池用負極。
[8] 上記[7]に記載のリチウムイオン電池用負極を用いて得られるリチウムイオン電池。
[9] Si、Sn、Ge及びInからなる群から選ばれるうちの少なくとも一つの元素を含む粒子Aを活物質として含むリチウムイオン電池用負極材と、
 スチレン、エチレン性不飽和カルボン酸エステル、エチレン性不飽和カルボン酸、及び少なくとも一つのエチレン性不飽和基を有する架橋剤、を必須成分として含有するエチレン性不飽和単量体を界面活性剤の存在下、重合して得られる重合体Bを含む水性エマルジョンとを混合する工程を含む、スラリーの製造方法。
[10] 集電体上に、上記[1]乃至[6]に記載のスラリーを塗布する工程を含むリチウムイオン電池用負極の製造方法。
The present invention relates to the following [1] to [10].
[1] A negative electrode material for a lithium ion battery containing, as an active material, particles A containing at least one element selected from the group consisting of Si, Sn, Ge, and In,
Obtained by polymerizing an ethylenically unsaturated monomer containing styrene, an ethylenically unsaturated carboxylic acid ester, an ethylenically unsaturated carboxylic acid, and a crosslinking agent having at least one ethylenically unsaturated group as essential components A binder comprising polymer B, and
A slurry containing a dispersion medium containing water.
[2] The slurry according to [1] above, wherein the acid value of the polymer B is 6 to 100.
[3] The electrode slurry for a lithium ion battery according to any one of [1] and [2] above, wherein the content of styrene in the ethylenically unsaturated monomer is 30 to 70% by mass.
[4] The slurry according to any one of [1] to [3], wherein the content of the crosslinking agent in the ethylenically unsaturated monomer is 0.1 to 5% by mass.
[5] The slurry according to any one of [1] to [4], wherein the negative electrode material for a lithium ion battery further includes carbon particles C.
[6] The slurry according to [6], wherein 250 to 2000 parts by mass of the carbon particles C are included with respect to 100 parts by mass of the particles A.
[7] A negative electrode material for a lithium ion battery containing, as an active material, particles A containing at least one element selected from the group consisting of Si, Sn, Ge, and In;
Obtained by polymerizing an ethylenically unsaturated monomer containing styrene, an ethylenically unsaturated carboxylic acid ester, an ethylenically unsaturated carboxylic acid, and a crosslinking agent having at least one ethylenically unsaturated group as essential components A negative electrode for a lithium ion battery, comprising a binder containing the polymer B.
[8] A lithium ion battery obtained using the negative electrode for a lithium ion battery according to [7].
[9] A negative electrode material for a lithium ion battery containing, as an active material, particles A containing at least one element selected from the group consisting of Si, Sn, Ge, and In;
Presence of surfactant with ethylenically unsaturated monomer containing styrene, ethylenically unsaturated carboxylic acid ester, ethylenically unsaturated carboxylic acid, and crosslinking agent having at least one ethylenically unsaturated group as essential components The manufacturing method of a slurry including the process of mixing below with the aqueous emulsion containing the polymer B obtained by superposition | polymerization.
[10] A method for producing a negative electrode for a lithium ion battery, comprising a step of applying the slurry according to the above [1] to [6] on a current collector.
 本発明のスラリーを用いることによって、水分散系バインダーを用いて、活物質同士及び活物質と集電体との結着性が良好で充放電サイクル特性を向上させるリチウムイオン電池を得ることができる。また本発明のリチウムイオン電池負極用スラリーを用いて得られたリチウムイオン電池は、従来の水系バインダーを用いて作製したものに比べて充放電容量が大きく、充放電効率に優れる。 By using the slurry of the present invention, it is possible to obtain a lithium ion battery having good binding properties between the active materials and between the active material and the current collector and improving the charge / discharge cycle characteristics using the water dispersion binder. . Moreover, the lithium ion battery obtained using the slurry for lithium ion battery negative electrodes of this invention has a large charge / discharge capacity compared with what was produced using the conventional aqueous binder, and is excellent in charge / discharge efficiency.
実施例1及び比較例1におけるサイクル特性を示す図である。It is a figure which shows the cycle characteristics in Example 1 and Comparative Example 1. 本発明の一実施形態に係るリチウムイオン電池を示す模式図である。It is a schematic diagram which shows the lithium ion battery which concerns on one Embodiment of this invention.
[スラリー]<負極材>
 本発明の一実施形態に係るスラリーに用いる負極材は、Si、Sn、Ge及びInからなる群から選ばれるうちの少なくとも一つの元素を含む粒子Aを活物質として含む。
[Slurry] <Negative electrode material>
The negative electrode material used for the slurry according to one embodiment of the present invention includes, as an active material, particles A containing at least one element selected from the group consisting of Si, Sn, Ge, and In.
(粒子A)
 本発明の一実施形態に係る負極材の構成物質の一つである粒子Aは、Si、Sn、GeおよびInからなる群から選ばれるうちの少なくとも一つの元素を含む。これら元素のうち、好ましくはSiまたはSnである。粒子Aはこれら元素の単体またはこれら元素を含む化合物からなるものであってもよいし、これら元素のうちの少なくとも2つを含む化合物、混合体、共融体または固溶体からなるものであってもよい。また粒子Aは、複数の粒子が凝集したものであってもよい。粒子Aの形状としては、塊状、鱗片状、球状、繊維状などが挙げられる。これらのうち、球状または塊状が好ましい。粒子Aは二次粒子化していてもよい。
(Particle A)
The particle A which is one of the constituent materials of the negative electrode material according to one embodiment of the present invention contains at least one element selected from the group consisting of Si, Sn, Ge and In. Of these elements, Si or Sn is preferable. The particle A may be composed of a simple substance of these elements or a compound containing these elements, or may be composed of a compound, a mixture, a eutectic or a solid solution containing at least two of these elements. Good. The particle A may be a particle in which a plurality of particles are aggregated. Examples of the shape of the particle A include a block shape, a scale shape, a spherical shape, and a fibrous shape. Of these, spherical or lump shape is preferable. The particles A may be secondary particles.
 Si元素を含む物質の具体例としては、Si元素とアルカリ土類金属との合金;Siと遷移金属との合金;Siと半金属との合金;Siと、Be、Ag、Al、Au、Cd、Ga、In、SbまたはZnとの固溶性合金または共融性合金;CaSi、CaSi、MgSi、BaSi、CuSi、FeSi、FeSi、CoSi、NiSi、NiSi、MnSi、MnSi、MoSi、CrSi、CrSi、TiSi、Ti5Si、NbSi、NdSi、CeSi、WSi、WSi、TaSi、TaSi、PtSi、VSi、VSi、PdSi、RuSi、RhSiなどのケイ化物;SiO、SiC、Siなどが挙げられる。 Specific examples of the substance containing Si element include an alloy of Si element and alkaline earth metal; an alloy of Si and transition metal; an alloy of Si and metalloid; Si, Be, Ag, Al, Au, Cd. , Ga, In, Sb or Zn solid solution alloy or eutectic alloy; CaSi, CaSi 2 , Mg 2 Si, BaSi 2 , Cu 5 Si, FeSi, FeSi 2 , CoSi 2 , Ni 2 Si, NiSi 2 , MnSi, MnSi 2, MoSi 2, CrSi 2, Cr 3 Si, TiSi 2, Ti5Si 3, NbSi 2, NdSi 2, CeSi 2, WSi 2, W 5 Si 3, TaSi 2, Ta 5 Si 3, PtSi, V 3 Silicides such as Si, VSi 2 , PdSi, RuSi, RhSi; SiO 2 , SiC, Si 3 N 4 and the like can be mentioned.
 Sn元素を含む物質としては、錫単体、錫合金、酸化錫、硫化錫、ハロゲン化錫、錫化物などが挙げられる。Sn元素を含む物質の具体例としては、SnとZnとの合金、SnとCdとの合金、SnとInとの合金、SnとPbとの合金;SnO、SnO、MbSnO(MbはSn以外の金属元素を示す。)などの酸価錫;SnS、SnS、MbSnSなどの硫化錫;SnX、SnX、MbSnX(MbはSn以外の金属元素を示す。Xはハロゲン原子を示す。)などのハロゲン化錫;MgSn、MgSn、FeSn、FeSn、MoSn、MoSnなどの錫化物が挙げられる。 Examples of the substance containing Sn element include tin alone, tin alloy, tin oxide, tin sulfide, tin halide, and stannate. Specific examples of the substance containing the Sn element include an alloy of Sn and Zn, an alloy of Sn and Cd, an alloy of Sn and In, an alloy of Sn and Pb; SnO, SnO 2 , Mb 4 SnO 4 (Mb Represents a metal element other than Sn.) Tin tin sulfide such as SnS, SnS 2 , Mb 2 SnS 3 ; SnX 2 , SnX 4 , MbSnX 4 (Mb represents a metal element other than Sn. X Tin halides such as MgSn, Mg 2 Sn, FeSn, FeSn 2 , MoSn, and MoSn 2 .
 粒子Aは、レーザー回折式粒度分布測定機によって測定される体積基準累積粒度分布における90%粒子径(D90)が、好ましくは500nm以下、より好ましくは450nm以下である。なお、この粒度分布の測定においては二次粒子の粒径も含まれている。また、粒子Aは、1μm以上の大きさの粒子を実質的に含まない粒度分布のものがよい。
 粒子Aは、粒径が大きくなるほど、充放電時の収縮と膨張により砕けやすく、内部抵抗の増加及び充放電サイクル特性の低下を招きやすい。
 粒子Aは、レーザー回折式粒度分布測定機によって測定される体積基準累積粒度分布における10%粒子径(D10)が、好ましくは80nm以上、より好ましくは100nm以上である。また、粒子Aは、レーザー回折式粒度分布測定機によって測定される体積基準累積粒度分布における50%粒子径(D50)が、好ましくは100~400nm、より好ましくは200~300nmである。
The particle A has a 90% particle diameter (D 90 ) in a volume-based cumulative particle size distribution measured by a laser diffraction particle size distribution analyzer, preferably 500 nm or less, more preferably 450 nm or less. In the measurement of the particle size distribution, the particle size of secondary particles is also included. The particles A preferably have a particle size distribution that does not substantially contain particles having a size of 1 μm or more.
The larger the particle size, the more easily the particles A are crushed due to contraction and expansion during charge / discharge, and an increase in internal resistance and a decrease in charge / discharge cycle characteristics are likely to occur.
The particle A has a 10% particle diameter (D 10 ) in a volume-based cumulative particle size distribution measured by a laser diffraction particle size distribution analyzer, preferably 80 nm or more, more preferably 100 nm or more. The particle A has a 50% particle size (D 50 ) in a volume-based cumulative particle size distribution measured by a laser diffraction particle size distribution analyzer, preferably 100 to 400 nm, more preferably 200 to 300 nm.
 粒度分布を調整するために、公知の粉砕方法及び/又は分級方法を利用することができる。粉砕装置としては、例えば、ハンマーミル、ジョークラッシャー、衝突式粉砕器などが挙げられる。また、分級は気流分級及び/又は篩によって行うことができる。気流分級装置としては、例えば、ターボクライファイヤー、ターボプレックスなどが挙げられる。 In order to adjust the particle size distribution, a known pulverization method and / or classification method can be used. Examples of the pulverizer include a hammer mill, a jaw crusher, and a collision pulverizer. Moreover, classification can be performed by airflow classification and / or sieving. Examples of the airflow classifier include a turbo cryfire and a turboplex.
(炭素粒子C)
 負極材は、上記の粒子Aに加えて、黒鉛材料を含有する炭素粒子Cをさらに含むことが好ましい。炭素粒子Cは、粒子Aが100質量部に対して、好ましくは250~2000質量部、より好ましく250~500質量部含まれる。
 炭素粒子Cは、体積基準累積粒度分布における50%粒子径(D50)が、好ましくは2~40μm、より好ましくは2~15μmである。なお、この粒度分布の測定においては二次粒子の粒径も含まれている。体積基準累積粒度分布は、レーザー回折式粒度分布測定機によって測定することができる。
(Carbon particle C)
The negative electrode material preferably further includes carbon particles C containing a graphite material in addition to the particles A described above. The carbon particles C are contained in an amount of preferably 250 to 2000 parts by mass, more preferably 250 to 500 parts by mass with respect to 100 parts by mass of the particles A.
The carbon particles C have a 50% particle diameter (D 50 ) in a volume-based cumulative particle size distribution of preferably 2 to 40 μm, more preferably 2 to 15 μm. In the measurement of the particle size distribution, the particle size of secondary particles is also included. The volume-based cumulative particle size distribution can be measured by a laser diffraction particle size distribution measuring machine.
 また炭素粒子Cは、粒子径1~50μmの範囲にある粒子が数基準で90%以上存在する粒度分布であることが好ましく、粒子径5~50μmの範囲にある粒子が数基準で90%以上存在する粒度分布であることが好ましい。炭素粒子Cは、レーザー回折式粒度分布測定機によって測定される体積基準累積粒度分布における10%粒子径(D10)が、好ましくは1μm以上、より好ましくは2μm以上である。 The carbon particles C preferably have a particle size distribution in which 90% or more of particles having a particle diameter in the range of 1 to 50 μm are present on a number basis, and 90% or more of particles having a particle diameter in the range of 5 to 50 μm on the number basis It is preferable that the particle size distribution exists. The carbon particles C have a 10% particle diameter (D 10 ) in a volume-based cumulative particle size distribution measured by a laser diffraction particle size distribution analyzer, preferably 1 μm or more, more preferably 2 μm or more.
 炭素粒子Cは、黒鉛材料のみからなる粒子(すなわち、黒鉛粒子)であってもよいし、黒鉛粒子とその表面に存在する炭素質層とからなる粒子(すなわち、炭素被覆黒鉛粒子)であってもよいし、炭素被覆黒鉛粒子または黒鉛粒子に炭素繊維を付着させてなる粒子であってもよい。 The carbon particles C may be particles composed only of graphite material (that is, graphite particles), or particles composed of graphite particles and a carbonaceous layer existing on the surface thereof (that is, carbon-coated graphite particles). Alternatively, carbon-coated graphite particles or particles obtained by attaching carbon fibers to graphite particles may be used.
 黒鉛材料としては、人造黒鉛、熱分解黒鉛、膨張黒鉛、天然黒鉛、鱗状黒鉛、鱗片状黒鉛などが挙げられる。これらのうち人造黒鉛が好ましい。
 炭素被覆黒鉛粒子表面の炭素質層は、ラマン分光スペクトルで測定される1300~1400cm-1の範囲にある非晶質成分由来のピークの強度(I)と1580~1620cm-1の範囲にある黒鉛成分由来のピークの強度(I)との比I/I(R値)が好ましくは0.1以上、より好ましくは0.2以上である。
Examples of the graphite material include artificial graphite, pyrolytic graphite, expanded graphite, natural graphite, scaly graphite, and scaly graphite. Of these, artificial graphite is preferred.
The carbonaceous layer on the surface of the carbon-coated graphite particles has a peak intensity (I D ) derived from an amorphous component in the range of 1300 to 1400 cm −1 and a range of 1580 to 1620 cm −1 as measured by Raman spectroscopy. The ratio I D / I G (R value) with the peak intensity (I G ) derived from the graphite component is preferably 0.1 or more, more preferably 0.2 or more.
 炭素被覆黒鉛粒子は、公知の方法に従って製造することができる。例えば、微粉化された黒鉛粒子に等方性ピッチ、異方性ピッチ、樹脂又は樹脂前駆体若しくはモノマーなどの有機化合物を吹きかけながら前記黒鉛粒子を撹拌する。またはハイブリダイザーなどの装置により、黒鉛粒子と、ピッチやフェノール樹脂などの有機化合物とを混合してメカノケミカル処理を行う。有機化合物の付着量は、黒鉛粒子100質量部に対して、好ましくは0.05~10質量部、より好ましくは0.1~10質量部である。次いで、有機化合物が付着された黒鉛粒子を、好ましくは200℃以上2000℃以下、より好ましくは500℃以上1500℃以下で熱処理する。この熱処理によって炭素被覆黒鉛粒子が得られる。 Carbon-coated graphite particles can be produced according to a known method. For example, the graphite particles are agitated while spraying an organic compound such as an isotropic pitch, an anisotropic pitch, a resin, a resin precursor, or a monomer to the finely divided graphite particles. Alternatively, the graphite particles and an organic compound such as pitch or phenol resin are mixed and mechanochemical treatment is performed using a device such as a hybridizer. The adhesion amount of the organic compound is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the graphite particles. Next, the graphite particles to which the organic compound is adhered are preferably heat-treated at 200 ° C. or higher and 2000 ° C. or lower, more preferably 500 ° C. or higher and 1500 ° C. or lower. Carbon-coated graphite particles are obtained by this heat treatment.
 炭素繊維としては、気相法炭素繊維、石油ピッチ系炭素繊維、石炭ピッチ系炭素繊維、PAN系炭素繊維などが挙げられる。これらのうち気相法炭素繊維が好ましい。黒鉛粒子または炭素被覆黒鉛粒子の表面に炭素繊維を結着(接着)させる方法に特に制限はない。
 例えば、炭素繊維を有機化合物に混ぜて、それを黒鉛粒子または炭素被覆黒鉛粒子に付着させ、次いで熱処理を行うことによって、炭素質層の形成過程で炭素繊維を炭素質層に結着させることができる。炭素繊維の量は、黒鉛粒子100質量部に対して、好ましくは0.1~20質量部、より好ましくは0.1~15質量部である。
Examples of the carbon fiber include vapor grown carbon fiber, petroleum pitch-based carbon fiber, coal pitch-based carbon fiber, and PAN-based carbon fiber. Of these, vapor grown carbon fiber is preferred. There is no particular limitation on the method for binding (adhering) the carbon fibers to the surface of the graphite particles or carbon-coated graphite particles.
For example, by mixing carbon fiber with an organic compound, attaching it to graphite particles or carbon-coated graphite particles, and then performing a heat treatment, the carbon fiber can be bound to the carbonaceous layer in the process of forming the carbonaceous layer. it can. The amount of the carbon fiber is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of the graphite particles.
<バインダー>
 本発明の一実施形態に係るスラリーに用いるバインダーは、スチレン、エチレン性不飽和カルボン酸エステル、エチレン性不飽和カルボン酸及び少なくとも一つのエチレン性不飽和基を有する架橋剤を必須成分として含有するエチレン性不飽和単量体を重合することで得られる重合体Bを含む。
 バインダーは、負極材100質量部に対し、好ましくは1~100質量部、より好ましくは1~20質量部含まれる。
<Binder>
The binder used in the slurry according to one embodiment of the present invention is ethylene containing, as essential components, a styrene, an ethylenically unsaturated carboxylic acid ester, an ethylenically unsaturated carboxylic acid, and a crosslinking agent having at least one ethylenically unsaturated group. A polymer B obtained by polymerizing a polymerizable unsaturated monomer.
The binder is contained in an amount of preferably 1 to 100 parts by weight, more preferably 1 to 20 parts by weight, based on 100 parts by weight of the negative electrode material.
(重合体B)(スチレン)
 重合体B中、スチレンを必須成分とする理由は、負極材同士の結着性を発現させるためである。特に負極材として上述の炭素粒子Cを含むものを用いた場合、より一層その効果を発現することができる。スチレンの使用量としては全エチレン性不飽和単量体に対して好ましくは30~70質量%であり、より好ましくは、40~60質量%である。スチレンの使用量を30質量%以上とすることにより、負極材同士の結着性が向上し、負極材と集電体との密着力が向上する。一方、スチレン使用量を70質量%以下とすると、重合体Bのガラス転移温度(Tg)が適正範囲となり、負極用スラリーの塗布から得られた負極に割れが発生しにくい。なお、全エチレン性不飽和単量体には、後述のエチレン性不飽和基を有する界面活性剤は含まない。
(Polymer B) (Styrene)
The reason why styrene is an essential component in the polymer B is to develop binding properties between the negative electrode materials. In particular, when the negative electrode material containing the above-described carbon particles C is used, the effect can be further exhibited. The amount of styrene used is preferably 30 to 70% by mass, more preferably 40 to 60% by mass, based on the total ethylenically unsaturated monomer. By setting the amount of styrene to be 30% by mass or more, the binding property between the negative electrode materials is improved, and the adhesion between the negative electrode material and the current collector is improved. On the other hand, when the amount of styrene used is 70% by mass or less, the glass transition temperature (Tg) of the polymer B falls within an appropriate range, and cracking is unlikely to occur in the negative electrode obtained from application of the slurry for negative electrode. The total ethylenically unsaturated monomer does not include a surfactant having an ethylenically unsaturated group described later.
(エチレン性不飽和カルボン酸エステル)
 重合体Bの原料となるエチレン性不飽和カルボン酸エステルは、ヒドロキシ基、グリシジル基などの極性基を有するエチレン性不飽和カルボン酸エステルを含有することが好ましく、これらは得られるバインダーの乳化重合安定性または機械的安定性を向上させる目的で用いられる。具体的には例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル等の(メタ)アクリル酸2-ヒドロキシアルキル、アクリル酸グリシジル等が挙げられる。これらの中でも、(メタ)アクリル酸2-ヒドロキシエチルが好ましい。
(Ethylenically unsaturated carboxylic acid ester)
The ethylenically unsaturated carboxylic acid ester used as the raw material of the polymer B preferably contains an ethylenically unsaturated carboxylic acid ester having a polar group such as a hydroxy group or a glycidyl group. Used for the purpose of improving the stability or mechanical stability. Specific examples include 2-hydroxyalkyl (meth) acrylate such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate, glycidyl acrylate, and the like. Of these, 2-hydroxyethyl (meth) acrylate is preferred.
 極性基を有するエチレン性不飽和カルボン酸エステルの使用量としては、全エチレン性不飽和単量体に対して好ましくは0.1~10質量%であり、好ましくは、0.5~5質量%である。極性基を有するエチレン性不飽和カルボン酸の使用量を0.1質量%以上とすることで、重合安定性または機械的安定性が向上し、また、電解液に対する乾燥皮膜の耐膨潤性が向上する傾向にあり、10質量%以下とすると、負極材同士及び負極材と集電体との結着性が向上する傾向がある。 The amount of the ethylenically unsaturated carboxylic acid ester having a polar group is preferably 0.1 to 10% by mass, preferably 0.5 to 5% by mass, based on the total ethylenically unsaturated monomers. It is. By using the ethylenically unsaturated carboxylic acid having a polar group in an amount of 0.1% by mass or more, the polymerization stability or mechanical stability is improved, and the swelling resistance of the dry film against the electrolytic solution is improved. When the content is 10% by mass or less, the binding property between the negative electrode materials and between the negative electrode material and the current collector tends to be improved.
 エチレン性不飽和カルボン酸エステルは、上記以外のもの(その他のエチレン性不飽和カルボン酸エステルとする)を含んでもよい。例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸iso-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸イソボロニル、(メタ)アクリル酸ベンジル等の(メタ)アクリル酸エステル類が挙げられる。これらの中でも、乳化重合の容易さや耐久性の観点から、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸イソボロニルが好ましい。 The ethylenically unsaturated carboxylic acid ester may include those other than the above (referred to as other ethylenically unsaturated carboxylic acid ester). For example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, iso-butyl (meth) acrylate, Tert-butyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth And (meth) acrylic acid esters such as isononyl acrylate, isobornyl (meth) acrylate, and benzyl (meth) acrylate. Among these, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, and isobornyl (meth) acrylate are preferred from the viewpoint of ease of emulsion polymerization and durability.
 その他のエチレン性不飽和カルボン酸エステルの使用量としては、全エチレン性不飽和単量体に対して好ましくは25~85質量%であり、より好ましくは、30~80質量%である。エチレン性不飽和カルボン酸エステルの使用量を25質量%以上とすると、得られる負極の柔軟性や耐熱性が向上する傾向にあり、85質量%以下とすると、負極材同士及び負極材と集電体との結着性が向上する傾向がある。 The amount of other ethylenically unsaturated carboxylic acid ester used is preferably 25 to 85% by mass, more preferably 30 to 80% by mass, based on the total ethylenically unsaturated monomer. When the amount of the ethylenically unsaturated carboxylic acid ester used is 25% by mass or more, flexibility and heat resistance of the obtained negative electrode tend to be improved, and when it is 85% by mass or less, the negative electrode materials and the negative electrode material and the current collector are collected. There is a tendency to improve the binding with the body.
(エチレン性不飽和カルボン酸)
 エチレン性不飽和カルボン酸の具体的な例としては、アクリル酸、メタクリル酸、クロトン酸等の不飽和モノカルボン酸、マレイン酸、フマル酸、イタコン酸等の不飽和ジカルボン酸またはこれら不飽和ジカルボン酸のハーフエステル等が挙げられ、これらの中でも、アクリル酸、イタコン酸が好ましい。これらのエチレン性不飽和カルボン酸は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
(Ethylenically unsaturated carboxylic acid)
Specific examples of the ethylenically unsaturated carboxylic acid include unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid, unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid, or unsaturated dicarboxylic acids thereof. Of these, and among them, acrylic acid and itaconic acid are preferable. These ethylenically unsaturated carboxylic acids may be used individually by 1 type, and may be used in combination of 2 or more type.
 エチレン性不飽和カルボン酸の使用量は、重合体Bの酸価が、好ましくは6~100、より好ましくは6~50になる範囲である。酸価を6以上とすると、乳化重合安定性または機械的安定性が向上し、また、得られる負極の耐熱性が向上する傾向にあり、更には、負極材である、リチウムイオンを吸蔵・放出可能な元素を含む炭素以外の粒子Aとの親和性、結着力が向上する。一方、酸価を100以下とすると、特に負極材として炭素粒子Cを含むものを用いる場合、負極材同士及び負極材と集電体との結着性が向上する傾向がある。酸価とは、樹脂1g中に存在するカルボン酸を中和するのに必要な水酸化カリウムのmg数である。酸価はJIS K5601-2-1に従って測定を行い、下記式(1)で求めることができる。 The amount of the ethylenically unsaturated carboxylic acid used is such that the acid value of the polymer B is preferably 6 to 100, more preferably 6 to 50. When the acid value is 6 or more, emulsion polymerization stability or mechanical stability is improved, and the heat resistance of the obtained negative electrode tends to be improved. Further, lithium ion, which is a negative electrode material, is occluded / released. Affinity and binding force with particles A other than carbon containing possible elements are improved. On the other hand, when the acid value is 100 or less, particularly when a material containing carbon particles C is used as the negative electrode material, the binding properties between the negative electrode materials and between the negative electrode material and the current collector tend to be improved. The acid value is the number of mg of potassium hydroxide necessary to neutralize the carboxylic acid present in 1 g of resin. The acid value is measured according to JIS K5601-2-1 and can be obtained by the following formula (1).
 酸価=(カルボン酸の価数)×(エチレン性不飽和カルボン酸の質量%)÷(エチレン性不飽和カルボン酸の分子量)×56.1×1000・・・(1) Acid value = (valence of carboxylic acid) × (mass% of ethylenically unsaturated carboxylic acid) ÷ (molecular weight of ethylenically unsaturated carboxylic acid) × 56.1 × 1000 (1)
 所望の酸価が得られるエチレン性不飽和カルボン酸の使用量は、重合体Bの製造に使用するエチレン性不飽和単量体の種類や比率によって異なるが、通常、全エチレン性不飽和単量体に対して好ましくは1~10質量%であり、より好ましくは、1~5質量%である。 The amount of the ethylenically unsaturated carboxylic acid that provides the desired acid value varies depending on the type and ratio of the ethylenically unsaturated monomer used in the production of the polymer B. The amount is preferably 1 to 10% by mass, more preferably 1 to 5% by mass based on the body.
(架橋剤)
 さらに、得られるリチウムイオン電池負極の電解液溶剤に対する耐膨潤性をより向上させるために、重合体Bの製造には、少なくとも一つのエチレン性不飽和結合を有する架橋剤が用いられる。架橋剤は、カルボキシル基と反応する基を有するもの、或いは、2つ以上のエチレン性不飽和基を有するものであればよい。架橋剤としては、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリアリルシアヌレート等のエチレン性不飽和基を2個以上有する単量体、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリオキシプロピルトリメトキシシラン、γ-メタクリオキシプロピルトリエトキシシラン等の、エチレン性不飽和基を有するシランカップリング剤等が挙げられ、これらの中でも、ジビニルベンゼンが好ましい。これらの架橋剤は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
(Crosslinking agent)
Furthermore, in order to further improve the swelling resistance of the obtained lithium ion battery negative electrode with respect to the electrolyte solvent, a cross-linking agent having at least one ethylenically unsaturated bond is used in the production of the polymer B. The cross-linking agent may be one having a group that reacts with a carboxyl group or one having two or more ethylenically unsaturated groups. As the crosslinking agent, monomers having two or more ethylenically unsaturated groups such as divinylbenzene, ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, triallyl cyanurate, vinyltrimethoxysilane, Examples thereof include silane coupling agents having an ethylenically unsaturated group such as vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, and γ-methacryloxypropyltriethoxysilane. Among these, divinylbenzene is preferable. These crosslinking agents may be used alone or in combination of two or more.
 架橋剤の使用量としては、全エチレン性不飽和単量体に対して好ましくは0.1~5質量%であり、より好ましくは、0.1~3質量%である。架橋剤の使用量が0.1質量%以上であると、電解液に対する乾燥皮膜の耐膨潤性が向上する傾向にあり、5質量%以下であると、乳化重合安定性が向上し、また、負極材と集電体の密着力が向上する傾向にある。 The amount of the crosslinking agent used is preferably 0.1 to 5% by mass and more preferably 0.1 to 3% by mass with respect to the total ethylenically unsaturated monomer. When the amount of the crosslinking agent used is 0.1% by mass or more, the swelling resistance of the dry film to the electrolytic solution tends to be improved, and when it is 5% by mass or less, the emulsion polymerization stability is improved. The adhesion between the negative electrode material and the current collector tends to be improved.
(その他のエチレン性不飽和単量体)
 また、本発明の目的を損なわない範囲で、少なくとも1つの重合可能なエチレン性不飽和基を有する化合物を、エチレン性不飽和単量体として用いてもよい。
 例えば、アミド基、ニトリル基などの極性基を有する化合物として、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、(メタ)アクリロニトリル及びN-ビニルピロリドン等が挙げられる。
 また酢酸ビニルやプロピオン酸ビニルを用いることもできる。
(Other ethylenically unsaturated monomers)
In addition, a compound having at least one polymerizable ethylenically unsaturated group may be used as the ethylenically unsaturated monomer as long as the object of the present invention is not impaired.
Examples of the compound having a polar group such as an amide group and a nitrile group include (meth) acrylamide, N-methylol (meth) acrylamide, (meth) acrylonitrile, N-vinylpyrrolidone and the like.
Vinyl acetate and vinyl propionate can also be used.
(重合体B中の他の成分)
 さらに、分子量を調整するためにメルカプト基を有する化合物、チオグリコール酸及びそのエステル、β-メルカプトプロピオン酸及びそのエステルなどを用いてもよい。
(Other components in polymer B)
Further, a compound having a mercapto group, thioglycolic acid and its ester, β-mercaptopropionic acid and its ester may be used for adjusting the molecular weight.
(重合体Bの特性)
 上記重合体BのTgは、30℃以下であることが好ましい。Tgが30℃以下であると、負極用スラリーの塗布から得られた負極に割れが発生し、好ましくない。
 さらに、上記重合体Bは、60℃のプロピレンカーボネート、ジエチルカーボネート系電解液溶剤に対する乾燥皮膜の耐膨潤率が、好ましくは300%以下であり、より好ましくは、5%~200%である。60℃の電解液に対する乾燥皮膜の耐膨潤率が300%以下であると、高温時の充放電高温サイクル特性が低下し、好ましい。
(Characteristics of polymer B)
The Tg of the polymer B is preferably 30 ° C. or lower. When Tg is 30 ° C. or lower, cracks occur in the negative electrode obtained from the application of the slurry for negative electrode, which is not preferable.
Further, the above polymer B has a dry film swelling ratio of preferably 300% or less, more preferably 5% to 200%, with respect to a solvent of propylene carbonate / diethyl carbonate electrolyte at 60 ° C. It is preferable that the swelling resistance of the dry film with respect to the electrolytic solution at 60 ° C. is 300% or less because charge / discharge high temperature cycle characteristics at high temperatures are lowered.
(重合体Bの製造)
 スラリーに用いる重合体Bは、上述のエチレン性不飽和単量体を重合して得られる。通常、重合は界面活性剤の存在下、水を分散媒として乳化重合で行われ、重合体Bを含む水性エマルジョンを得る。
(Production of polymer B)
The polymer B used for the slurry is obtained by polymerizing the above ethylenically unsaturated monomer. Usually, the polymerization is carried out by emulsion polymerization using water as a dispersion medium in the presence of a surfactant to obtain an aqueous emulsion containing the polymer B.
(界面活性剤)
 重合の際に用いられる反応性界面活性剤としては、通常のアニオン性界面活性剤、ノニオン性界面活性剤であれば特に制限されるものではない。アニオン性界面活性剤としては、例えば、アルキルベンゼンスルホン酸塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、脂肪酸塩等が挙げられ、ノニオン界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン多環フィニルエーテル、ポリオキシアルキレンアルキルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル等が挙げられる。これらは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 好ましい界面活性剤として、上記のうちエチレン性不飽和基を有するものが挙げられ、より好ましくは以下の式(2)~(5)で表されるものを挙げることができる。
(Surfactant)
The reactive surfactant used in the polymerization is not particularly limited as long as it is a normal anionic surfactant or nonionic surfactant. Examples of the anionic surfactant include alkyl benzene sulfonate, alkyl sulfate ester salt, polyoxyethylene alkyl ether sulfate ester salt, fatty acid salt, and the like. Nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkyl ether, Examples thereof include oxyethylene alkyl phenyl ether, polyoxyethylene polycyclic finyl ether, polyoxyalkylene alkyl ether, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester and the like. These may be used individually by 1 type and may be used in combination of 2 or more type.
Preferred surfactants include those having an ethylenically unsaturated group, and more preferred are those represented by the following formulas (2) to (5).
Figure JPOXMLDOC01-appb-C000001
(式中、Rはアルキル基、nは10~40の整数である)
Figure JPOXMLDOC01-appb-C000001
(Wherein R is an alkyl group, and n is an integer of 10 to 40)
Figure JPOXMLDOC01-appb-C000002
(式中、nは10~12の整数、mは10~40の整数である)
Figure JPOXMLDOC01-appb-C000002
(In the formula, n is an integer of 10 to 12, and m is an integer of 10 to 40)
Figure JPOXMLDOC01-appb-C000003
(式中、Rはアルキル基、MはNHまたはNaである)
Figure JPOXMLDOC01-appb-C000003
(Wherein R is an alkyl group, M is NH 4 or Na)
Figure JPOXMLDOC01-appb-C000004
(式中、Rはアルキル基、MはNaである)
Figure JPOXMLDOC01-appb-C000004
(Wherein R is an alkyl group, and M is Na)
 界面活性剤の使用量に特に制限はなく、例えば、エチレン性不飽和基を有する界面活性剤を用いる場合、好ましくは全エチレン性不飽和単量体に対して0.3~3質量%である。界面活性剤の使用量が0.3質量%以上であると、重合安定性が向上し、また得られる水性エマルジョンの粒子系が小さいため、樹脂エマルジョンの沈降が発生しにくい。また界面活性剤の使用量が3質量%以下であると、負極材と集電体の密着力が向上し、好ましい。 The amount of the surfactant used is not particularly limited. For example, when a surfactant having an ethylenically unsaturated group is used, it is preferably 0.3 to 3% by mass based on the total ethylenically unsaturated monomer. . When the amount of the surfactant used is 0.3% by mass or more, the polymerization stability is improved, and since the particle system of the obtained aqueous emulsion is small, the resin emulsion does not easily precipitate. Further, when the amount of the surfactant used is 3% by mass or less, the adhesion between the negative electrode material and the current collector is improved, which is preferable.
 重合の際に用いられるラジカル重合開始剤としては公知慣用のものであればよく、例えば、過硫酸塩や過酸化物が挙げられる。過硫酸塩としては、過硫酸アンモニウム、過硫酸カリウム等が挙げられ、過酸化物としては、過酸化水素の他、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等の有機過酸化物が挙げられる。また、必要に応じて、これらの重合開始剤を重亜硫酸ナトリウム、ロンガリット、アスコルビン酸等の還元剤と併用してレドックス重合としてもよい。 The radical polymerization initiator used in the polymerization may be a known and conventional one, and examples thereof include persulfate and peroxide. Examples of the persulfate include ammonium persulfate and potassium persulfate, and examples of the peroxide include hydrogen peroxide and organic peroxides such as t-butyl hydroperoxide and cumene hydroperoxide. If necessary, these polymerization initiators may be used in combination with a reducing agent such as sodium bisulfite, Rongalite, and ascorbic acid for redox polymerization.
 重合法としては、一括して仕込む重合方法、各成分を連続供給しながら重合する方法などが適用される。重合は通常30~90℃の温度で攪拌下に行われる。尚エチレン性不飽和カルボン酸を重合中または重合終了後に塩基性物質を加えて、水性エマルジョンのpHを調整することにより、重合時の重合安定性、機械的安定性、化学的安定性を向上させることができる。 As the polymerization method, a polymerization method charged in a batch, a polymerization method while continuously supplying each component, and the like are applied. The polymerization is usually carried out at a temperature of 30 to 90 ° C. with stirring. By adding a basic substance during or after the polymerization of ethylenically unsaturated carboxylic acid, the pH of the aqueous emulsion is adjusted to improve the polymerization stability, mechanical stability, and chemical stability during polymerization. be able to.
 この場合に使用される塩基性物質としては、アンモニア、トリエチルアミン、エタノールアミン、苛性ソーダ等を使用することができる。これらは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 As the basic substance used in this case, ammonia, triethylamine, ethanolamine, caustic soda and the like can be used. These may be used individually by 1 type and may be used in combination of 2 or more type.
(重合体B以外のバインダー成分)
 本発明の目的を損なわない範囲で、バインダーは上述の重合体B以外の成分を含んでもよい。他の成分の例としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(塩)、酸化スターチ、リン酸化スターチ、カゼインなどが挙げられる。これら他のバインダー成分の使用量は、重合体B100質量部に対し、好ましくは5~200質量部、より好ましくは50~150質量部である。
(Binder components other than polymer B)
As long as the object of the present invention is not impaired, the binder may contain components other than the polymer B described above. Examples of other components include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, and casein. The amount of these other binder components used is preferably 5 to 200 parts by weight, more preferably 50 to 150 parts by weight, based on 100 parts by weight of the polymer B.
<分散媒>
 スラリーは、水を含む分散媒を含む。分散媒に含まれる水は、通常、上述の重合体Bを含む水性エマルジョンに由来するものであるが、それに限定されず、スラリーの粘度等によって、適宜、量を調整することができる。
 分散媒は、本発明の目的を損ねない範囲で、水と混和する有機溶媒を含んでもよい。例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、メタノール、イソプロピルアルコール、ブタノール、アセトン、2-ブタノン、シクロヘキサノンなどが挙げられる。これら有機溶媒を使用する場合、その使用量は、分散媒中、好ましくは1~50質量%、より好ましくは1~20質量%であり、使用しなくてもよい。
<Dispersion medium>
The slurry contains a dispersion medium containing water. The water contained in the dispersion medium is usually derived from the aqueous emulsion containing the above-mentioned polymer B, but is not limited thereto, and the amount can be appropriately adjusted depending on the viscosity of the slurry.
The dispersion medium may contain an organic solvent miscible with water as long as the object of the present invention is not impaired. Examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, methanol, isopropyl alcohol, butanol, acetone, 2-butanone and cyclohexanone. When these organic solvents are used, the amount used is preferably 1 to 50% by mass, more preferably 1 to 20% by mass in the dispersion medium, and may not be used.
<導電助剤>
 スラリーは、導電助剤を含んでもよい。導電助剤は負極に対し導電性及び電極安定性(リチウムイオンの挿入・脱離における体積変化に対する緩衝作用)を付与する役目を果たすものであれば特に制限は無く、例えば、気相法炭素繊維(例えば、「VGCF」(登録商標)昭和電工社製)、導電性カーボン(例えば、「デンカブラック」(登録商標)電気化学工業社製、「Super C65」TIMCAL社製、「Super C45」TIMCAL社製、「KS6L」TIMCAL社製)などが挙げられる。導電助剤の量は、負極材100質量部に対して、好ましくは10~150質量部、より好ましくは50~100質量部である。
<Conductive aid>
The slurry may contain a conductive aid. The conductive auxiliary agent is not particularly limited as long as it has a function of imparting conductivity and electrode stability to the negative electrode (buffering action against volume change in insertion / extraction of lithium ions). For example, vapor grown carbon fiber (For example, “VGCF” (registered trademark) manufactured by Showa Denko KK), conductive carbon (for example, “Denka Black” (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd., “Super C65” manufactured by TIMCAL, “Super C45” TIMCAL And “KS6L” manufactured by TIMCAL). The amount of the conductive auxiliary is preferably 10 to 150 parts by mass, more preferably 50 to 100 parts by mass with respect to 100 parts by mass of the negative electrode material.
<スラリーの製造方法>
 本発明の一実施形態に係るリチウムイオン電池電極用スラリーは、上述の各成分を混合して得られる。混合の方法には特に制限は無く、リチウムイオン電池の製造に用いられる公知の方法を用いることができる。例えば、上述の重合体Bを含む水性エマルジョンに、負極材と導電助剤とを加えて、さらに、分散、溶解または混練する方法があげられる。
<Method for producing slurry>
The slurry for a lithium ion battery electrode according to an embodiment of the present invention is obtained by mixing the above-described components. There is no restriction | limiting in particular in the method of mixing, The well-known method used for manufacture of a lithium ion battery can be used. For example, a method of adding a negative electrode material and a conductive additive to the above-described aqueous emulsion containing the polymer B and further dispersing, dissolving, or kneading can be mentioned.
[リチウムイオン電池用負極]
 本発明の一実施形態に係るリチウムイオン電池用負極は、集電体と、負極合材層とを有する。リチウムイオン電池用負極の厚さは、通常、50~200μmである。
 集電体としては例えば、ニッケル、銅、アルミニウム及びこれらの合金からなる金属箔を用いることができる。金属箔は、孔のない通常の箔であっても、パンチングメタル箔、金属メッシュ、多孔質箔など、孔のある箔であってもよい。
 また必要に応じて、公知の導電層(例えば特開2006-32902号公報、特開2008-60060号公報、特開2012-72396号公報、国際公開パンフレットWO2009/147989号、国際公開パンフレットWO2011/024798号、国際公開パンフレットWO2011/024799号、国際公開パンフレットWO2012/029858号、国際公開パンフレットWO2012/96189号を参照)が形成されたものでもよい。
[Anode for lithium ion batteries]
A negative electrode for a lithium ion battery according to an embodiment of the present invention includes a current collector and a negative electrode mixture layer. The thickness of the negative electrode for a lithium ion battery is usually 50 to 200 μm.
As the current collector, for example, a metal foil made of nickel, copper, aluminum, or an alloy thereof can be used. The metal foil may be a normal foil without holes, or a foil with holes such as a punching metal foil, a metal mesh, or a porous foil.
If necessary, a known conductive layer (for example, Japanese Patent Application Laid-Open No. 2006-32902, Japanese Patent Application Laid-Open No. 2008-60060, Japanese Patent Application Laid-Open No. 2012-72396, International Publication Pamphlet WO 2009/147989, International Publication Pamphlet WO 2011/024798). No., International Publication Pamphlet WO2011 / 024799, International Publication Pamphlet WO2012 / 029858, and International Publication Pamphlet WO2012 / 96189) may be formed.
 負極合材層は、上述の負極材、バインダー及び必要に応じて導電助剤を含む。その組成比は、負極材100質量部に対し、バインダーが好ましくは1~100質量部、より好ましくは1~20質量部、導電助剤が好ましくは10~150質量部、より好ましくは50~100質量部である。
 リチウムイオン電池用負極はこの他、必要に応じて保護層(例えば特開2008-226566号公報、特開2009-181756号公報、特開2010-244818号公報を参照)など、他の層を有していてもよい。
The negative electrode mixture layer includes the above-described negative electrode material, a binder, and, if necessary, a conductive additive. The composition ratio is preferably 1 to 100 parts by weight, more preferably 1 to 20 parts by weight, and preferably 10 to 150 parts by weight, more preferably 50 to 100 parts by weight of the conductive auxiliary, with respect to 100 parts by weight of the negative electrode material. Part by mass.
In addition to this, the negative electrode for a lithium ion battery has other layers such as a protective layer (see, for example, JP-A-2008-226666, JP-A-2009-181756, and JP-A-2010-244818) as necessary. You may do it.
 リチウムイオン電池用負極は、例えば、上述のスラリーを集電体に塗布し乾燥させることによって得ることができる。スラリーの塗布方法は特に制限されない。スラリーの塗布量によって、上述のリチウムイオン電池用負極の厚さを調整できる。また、負極用スラリーを乾燥させた後、加圧成形することによっても調整することができる。加圧成形法としては、ロール加圧、プレス加圧などの成形法が挙げられる。加圧成形するときの圧力は、好ましくは約100MPa~約300MPa(1~3ton/cm程度)である。 The negative electrode for a lithium ion battery can be obtained, for example, by applying the above slurry to a current collector and drying it. The method for applying the slurry is not particularly limited. The thickness of the negative electrode for a lithium ion battery described above can be adjusted by the amount of slurry applied. Moreover, after drying the slurry for negative electrodes, it can also adjust by carrying out pressure molding. Examples of the pressure molding method include molding methods such as roll pressing and press pressing. The pressure during pressure molding is preferably about 100 MPa to about 300 MPa (about 1 to 3 ton / cm 2 ).
[リチウムイオン電池]
 本発明の一実施形態に係るリチウムイオン電池は、非水系電解液及び非水系ポリマー電解質からなる群から選ばれる少なくとも一つ、正極、及び上述の負極を有するものである。
 正極には、リチウムイオン電池に従来から使われていたもの、具体的には正極活物質を含んでなるシートを用いることができる。正極活物質としては、LiNiO、LiCoO、LiMn2O、LiNi0.34Mn0.33Co0.33、LiFePOなどが挙げられる。
[Lithium ion battery]
A lithium ion battery according to an embodiment of the present invention has at least one selected from the group consisting of a non-aqueous electrolyte and a non-aqueous polymer electrolyte, a positive electrode, and the above-described negative electrode.
As the positive electrode, a sheet conventionally used for lithium ion batteries, specifically, a sheet containing a positive electrode active material can be used. Examples of the positive electrode active material include LiNiO 2 , LiCoO 2 , LiMn 2 O 4 , LiNi 0.34 Mn 0.33 Co 0.33 O 2 , and LiFePO 4 .
 リチウムイオン電池に用いられる非水系電解液及び非水系ポリマー電解質は特に制限されない。例えば、LiClO、LiPF、LiAsF、LiBF、LiSOCF、CHSOLi、CFSOLiなどのリチウム塩を、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、アセトニトリル、プロピロニトリル、ジメトキシエタン、テトラヒドロフラン、γ-ブチロラクトンなどの非水系溶媒に溶かしてなる有機電解液や;ポリエチレンオキシド、ポリアクリルニトリル、ポリフッ化ビリニデン、及びポリメチルメタクリレートなどを含有するゲル状のポリマー電解質や;エチレンオキシド結合を有するポリマーなどを含有する固体状のポリマー電解質が挙げられる。 The non-aqueous electrolyte and non-aqueous polymer electrolyte used for the lithium ion battery are not particularly limited. For example, a lithium salt such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , CH 3 SO 3 Li, CF 3 SO 3 Li, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, propylene Organic electrolytes dissolved in non-aqueous solvents such as carbonate, butylene carbonate, acetonitrile, propyronitrile, dimethoxyethane, tetrahydrofuran, and γ-butyrolactone; polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, etc. Examples thereof include a gel polymer electrolyte and a solid polymer electrolyte containing a polymer having an ethylene oxide bond.
 また、電解液には、リチウムイオン電池の初回充電時に分解反応が起きる物質を少量添加してもよい。該物質としては、例えば、ビニレンカーボネート、ビフェニール、プロパンスルトンなどが挙げられる。添加量としては0.01~5質量%が好ましい。 In addition, a small amount of a substance that causes a decomposition reaction when the lithium ion battery is initially charged may be added to the electrolytic solution. Examples of the substance include vinylene carbonate, biphenyl, propane sultone, and the like. The addition amount is preferably 0.01 to 5% by mass.
 リチウムイオン電池には正極と負極との間にセパレータを設けることができる。セパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はそれらを組み合わせたものなどが挙げられる。セパレータの表面には、公知の無機粒子層(例えば特開2001-319634号公報、国際公開パンフレットWO2007/066768号、特開2008-126996号公報、特開2008-123988号公報を参照)が設けられていてもよい。 A lithium ion battery can be provided with a separator between the positive electrode and the negative electrode. Examples of the separator include non-woven fabrics, cloths, microporous films, or a combination thereof, mainly composed of polyolefins such as polyethylene and polypropylene. A known inorganic particle layer (see, for example, Japanese Patent Application Laid-Open No. 2001-319634, International Publication Pamphlet WO 2007/066768, Japanese Patent Application Laid-Open No. 2008-126996, Japanese Patent Application Laid-Open No. 2008-123988) is provided on the surface of the separator. It may be.
 図2は、本発明の一実施形態に係るリチウムイオン電池を示すもので、ここに示すリチウムイオン電池10は、負極1と、これに対向する正極2と、負極1と正極2とを隔てるセパレータ3と、これらを収容する収容体4とを備えている。
 負極1は、集電体5と、集電体5の表面に設けられた負極合材層6とを有する。符号7は、収容体4内に注入された電解質である。収容体4は、負極1、正極2、およびセパレータ3を収容する本体4aと、これを閉止する蓋体4bとからなる。
FIG. 2 shows a lithium ion battery according to an embodiment of the present invention. A lithium ion battery 10 shown here is a separator that separates a negative electrode 1, a positive electrode 2 opposite to the negative electrode 1, and the negative electrode 1 and the positive electrode 2. 3 and a container 4 for housing them.
The negative electrode 1 includes a current collector 5 and a negative electrode mixture layer 6 provided on the surface of the current collector 5. Reference numeral 7 denotes an electrolyte injected into the container 4. The container 4 includes a main body 4a that houses the negative electrode 1, the positive electrode 2, and the separator 3, and a lid 4b that closes the main body 4a.
 以下に実施例及び比較例を示して本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。なお、実施例及び比較例中の「部」及び「%」は、特に断りのない場合はそれぞれ質量部、質量%を示す。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In the examples and comparative examples, “parts” and “%” respectively represent parts by mass and mass% unless otherwise specified.
(水性エマルジョンの合成)
 冷却管、温度計、攪拌機、滴下ロートを有するセパラブルフラスコに、イオン交換水160部及びアニオン性界面活性剤(三洋化成工業株式会社製、エレミノールJS-20(アルキルアリルスルホコハク酸ナトリウム)、40%品)2部を仕込み、75℃に昇温した。予めエレミノールJS-20を10部、ハイテノール08E(ポリオキシエチレンアルキルエーテル硫酸エステル塩、第一工業製薬株式会社製)2部、スチレン250部、アクリル酸2-エチルヘキシル220部、メタクリル酸2-ヒドロキシエチル10部、ジビニルベンゼン1.5部、アクリル酸(80%品)15部、及びイオン交換水395部からなるモノマー乳化物を3時間かけて滴下した。同時に重合開始剤として過硫酸カリウム2部をイオン交換水50部に溶解したものを3時間かけて80℃で滴下重合した。滴下終了後、2時間熟成後冷却し、アンモニア水4.5部を添加して、重合体Bを含む水性エマルジョンを得た。得られた水性エマルジョンの不揮発分は45.5%、粘度3000mPa・s、pH6.5であり、重合体Bの酸価は18.95であった。
(Synthesis of aqueous emulsion)
In a separable flask having a condenser, thermometer, stirrer, and dropping funnel, 160 parts of ion-exchanged water and an anionic surfactant (Sanyo Kasei Kogyo Co., Ltd., Eleminol JS-20 (sodium alkylallylsulfosuccinate), 40% Product) 2 parts were charged and heated to 75 ° C. 10 parts of Eleminol JS-20 in advance, 2 parts of Haitenol 08E (polyoxyethylene alkyl ether sulfate, Daiichi Kogyo Seiyaku Co., Ltd.), 250 parts of styrene, 220 parts of 2-ethylhexyl acrylate, 2-hydroxy methacrylate A monomer emulsion consisting of 10 parts of ethyl, 1.5 parts of divinylbenzene, 15 parts of acrylic acid (80% product), and 395 parts of ion-exchanged water was added dropwise over 3 hours. At the same time, 2 parts of potassium persulfate dissolved in 50 parts of ion exchange water as a polymerization initiator was dropped and polymerized at 80 ° C. over 3 hours. After completion of dropping, the mixture was aged for 2 hours and then cooled, and 4.5 parts of ammonia water was added to obtain an aqueous emulsion containing the polymer B. The obtained aqueous emulsion had a non-volatile content of 45.5%, a viscosity of 3000 mPa · s, a pH of 6.5, and the acid value of the polymer B was 18.95.
(負極材の調製)
 粒子Aとして、Si微粒子(Alfa Aesar社製、CAS7440-21-3、製品番号44384、一次粒子径50nm以下)を用意した。炭素粒子Cとして、以下の手順で炭素被覆黒鉛粒子を調製した。
 石油系コークスを、平均粒子径5μmとなるように粉砕した。これをアチソン炉にて3000℃で熱処理して、黒鉛粒子を得た。次いで、黒鉛粒子に質量比1%で石油ピッチを混ぜて、黒鉛粒子表面に石油ピッチを付着させた。その後、不活性雰囲気下1100℃で炭化処理した。BET比表面積が2.6m/gで、d002が0.3361nmで、LCが59nmで、10%粒子径(D10)が2.3μmで、50%粒子径(D50)が5.7μmで、90%粒子径(D90)が11.8μmで、且つI/I(R値)が0.77である炭素被覆黒鉛粒子が得られた。
 Si微粒子を0.375g及び炭素被覆黒鉛粒子Cを1.125gとり、乳鉢で混合して、Si微粒子及び黒鉛粒子が複合化された負極材を得た。
(Preparation of negative electrode material)
As particles A, Si fine particles (Alfa Aesar, CAS7440-21-3, product number 44384, primary particle size of 50 nm or less) were prepared. As carbon particles C, carbon-coated graphite particles were prepared by the following procedure.
Petroleum coke was pulverized to an average particle size of 5 μm. This was heat-treated at 3000 ° C. in an Atchison furnace to obtain graphite particles. Next, petroleum pitch was mixed with the graphite particles at a mass ratio of 1%, and the petroleum pitch was adhered to the surface of the graphite particles. Then, it carbonized at 1100 degreeC by inert atmosphere. BET specific surface area is 2.6 m 2 / g, d002 is 0.3361 nm, LC is 59 nm, 10% particle diameter (D10) is 2.3 μm, 50% particle diameter (D50) is 5.7 μm, Carbon-coated graphite particles having a 90% particle diameter (D90) of 11.8 μm and I D / I G (R value) of 0.77 were obtained.
0.375 g of Si fine particles and 1.125 g of carbon-coated graphite particles C were taken and mixed in a mortar to obtain a negative electrode material in which Si fine particles and graphite particles were combined.
(負極の製造)
 上記水性エマルジョンにカルボキシメチルセルロース(ダイセル社製、品番:1380)を、固形分質量比が1:1となるように加え、混合してなるバインダー混合物を用意した。導電助剤としてTIMCAL製カーボンブラック(SUPER C45)を用意した。前記の負極材100質量部、バインダー混合物100質量部、及び導電助剤85.7質量部を混ぜ合わせ、これに粘度調整のための水を適量加え、自転・公転ミキサー(シンキー社製)にて混練しリチウムイオン電池負極用スラリーを得た。
 得られたリチウムイオン電池負極用スラリーを、負極合材層の厚さが120μmとなるよう銅箔上に塗布した。これを70℃で3時間乾燥させた。得られたシートから直径16mmのシート片を打ち抜き、前川試験機製作所製POWER SAMPLE HYDRAULIC PRESS/BRE-3にて1.5ton/cmでプレスし、負極を得た。
プレス後の負極に転写はなかった。
(Manufacture of negative electrode)
A binder mixture was prepared by adding carboxymethyl cellulose (manufactured by Daicel, product number: 1380) to the aqueous emulsion so that the solid mass ratio was 1: 1, and mixing them. TIMCAL carbon black (SUPER C45) was prepared as a conductive aid. Mix 100 parts by weight of the negative electrode material, 100 parts by weight of the binder mixture, and 85.7 parts by weight of the conductive additive, add an appropriate amount of water for viscosity adjustment, and use a rotating / revolving mixer (made by Shinky Corporation). This was kneaded to obtain a slurry for a lithium ion battery negative electrode.
The obtained slurry for a lithium ion battery negative electrode was applied on a copper foil such that the negative electrode mixture layer had a thickness of 120 μm. This was dried at 70 ° C. for 3 hours. A sheet piece having a diameter of 16 mm was punched out from the obtained sheet, and pressed at 1.5 ton / cm 2 with a POWER SAMPLE HYDRAULIC PRESS / BRE-3 manufactured by Maekawa Tester, Ltd., to obtain a negative electrode.
There was no transfer on the negative electrode after pressing.
(評価用電池の作製)
 露点-80℃以下の乾燥アルゴンガス雰囲気に保ったグローブボックス内で下記の操作を実施した。
 2320型コインセル(直径23mm、厚み2.0mm)を用意した。
 厚み0.1mmのリチウム箔から直径20mmの箔片を打ち抜いた。これを正極とした。正極をSUS製スペーサーにポンチで軽く圧着させた。これをコインセルキャップに入れた。次に電解液をコインセルに注入した。その後、セパレータ(セルガード社製、品番:2500)及び負極をこの順で載せ、コインセルケースをコインセルキャップとかしめて密封し、評価用リチウムイオン電池を得た。
 なお、電解液は、エチレンカーボネート、メチルエチルカーボネート、及びジエチルカーボネートが体積比で3:5:2の割合で混合された溶媒に電解質LiPFを1mol/Lの濃度で溶解させて得られた液である。
(Production of evaluation battery)
The following operation was carried out in a glove box kept in a dry argon gas atmosphere having a dew point of -80 ° C or lower.
A 2320 type coin cell (diameter 23 mm, thickness 2.0 mm) was prepared.
A foil piece having a diameter of 20 mm was punched from a lithium foil having a thickness of 0.1 mm. This was used as a positive electrode. The positive electrode was lightly pressure-bonded to a SUS spacer with a punch. This was put in a coin cell cap. Next, an electrolytic solution was injected into the coin cell. Thereafter, a separator (manufactured by Celgard, product number: 2500) and a negative electrode were placed in this order, and the coin cell case was crimped and sealed with a coin cell cap to obtain a lithium ion battery for evaluation.
The electrolytic solution was obtained by dissolving electrolyte LiPF 6 at a concentration of 1 mol / L in a solvent in which ethylene carbonate, methyl ethyl carbonate, and diethyl carbonate were mixed at a volume ratio of 3: 5: 2. It is.
(充放電試験)
 評価用リチウムイオン電池に、レストポテンシャルから25mVまでを80mA/gで定電流充電した。次いで80mA/gで定電流放電を行い、1.5Vでカットオフした。
 この充放電操作を1サイクルとして50サイクル行った。1サイクル目の充電容量(初期充電容量)、1サイクル目の放電容量(初期放電容量)、2サイクル目の放電量、及び50サイクル目の放電容量を測定した。それらの結果を表1に示す。
 表1中、初期効率は初期充電容量に対する初期放電容量の割合であり、放電量維持率は2回目放電容量に対する50サイクル目の放電容量の割合である。
 また、サイクル特性を図1に示す。
(Charge / discharge test)
The lithium ion battery for evaluation was charged at a constant current of 80 mA / g from rest potential to 25 mV. Subsequently, constant current discharge was performed at 80 mA / g and cut off at 1.5 V.
This charge / discharge operation was performed as 50 cycles for 50 cycles. The charge capacity at the first cycle (initial charge capacity), the discharge capacity at the first cycle (initial discharge capacity), the discharge amount at the second cycle, and the discharge capacity at the 50th cycle were measured. The results are shown in Table 1.
In Table 1, the initial efficiency is the ratio of the initial discharge capacity to the initial charge capacity, and the discharge amount maintenance ratio is the ratio of the discharge capacity at the 50th cycle to the second discharge capacity.
The cycle characteristics are shown in FIG.
 水性エマルジョンの合成において、スチレン250部及びアクリル酸2-エチルヘキシル220部を、スチレン320部及びアクリル酸2-エチルヘキシル150部に変えた以外は実施例1記載の水性エマルジョンの合成と同様な操作を行った。得られた水性エマルジョンの不揮発分は44.9%、粘度2900mPa・s、pH6.5であり、重合体Bの酸価は18.95であった。また、Si-黒鉛複合化負極材の調製、負極の製造、評価用電池の作製、各種評価は、実施例1と同様に行った。その結果を表1に示す。 In the synthesis of the aqueous emulsion, the same operation as in the synthesis of the aqueous emulsion described in Example 1 was performed except that 250 parts of styrene and 220 parts of 2-ethylhexyl acrylate were changed to 320 parts of styrene and 150 parts of 2-ethylhexyl acrylate. It was. The obtained aqueous emulsion had a nonvolatile content of 44.9%, a viscosity of 2900 mPa · s, a pH of 6.5, and the acid value of the polymer B was 18.95. The preparation of the Si-graphite composite negative electrode material, the production of the negative electrode, the production of the evaluation battery, and various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例1)
 実施例1において水性エマルジョンをSBR(日本ゼオン社製、品番:BM400B)とした以外は実施例1と同様にして負極を製造し、評価用電池を作製して充放電試験を行った。その結果を表1及び図1に示す。プレス後、負極シートがプレス板に付着しており、負極合材層がわずかに転写していた。
(Comparative Example 1)
A negative electrode was produced in the same manner as in Example 1 except that the aqueous emulsion was changed to SBR (manufactured by Zeon Corporation, product number: BM400B) in Example 1, and an evaluation battery was produced and a charge / discharge test was performed. The results are shown in Table 1 and FIG. After pressing, the negative electrode sheet adhered to the press plate, and the negative electrode mixture layer was slightly transferred.
(比較例2)
 水性エマルジョンの合成において、スチレン250部及びアクリル酸2-エチルヘキシル220部を、アクリル酸2-エチルヘキシル470部に変えた以外は実施例1記載の水性エマルジョンの合成と同様な操作を行った。得られた水性エマルジョンの不揮発分は44.8%、粘度2800mPa・s、pH6.4であり、重合体Bの酸価は18.95であった。また、Si-黒鉛複合化負極材の調製、負極の製造、評価用電池の作製、各種評価は、実施例1と同様に行った。その結果を表1に示す。
(Comparative Example 2)
In the synthesis of the aqueous emulsion, the same operation as in the synthesis of the aqueous emulsion described in Example 1 was performed except that 250 parts of styrene and 220 parts of 2-ethylhexyl acrylate were changed to 470 parts of 2-ethylhexyl acrylate. The obtained aqueous emulsion had a non-volatile content of 44.8%, a viscosity of 2800 mPa · s, a pH of 6.4, and the acid value of the polymer B was 18.95. The preparation of the Si-graphite composite negative electrode material, the production of the negative electrode, the production of the evaluation battery, and various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例3)
 水性エマルジョンの合成において、アクリル酸15部を、アクリル酸非使用に変えた以外は実施例1の水性エマルジョンの合成と同様な操作を行った。得られた不揮発分は45.1%、粘度850mPa・s、pH7.4であった。また、Si-黒鉛複合化負極材の合成、負極の製造、評価用電池の作製、各種評価は、実施例1と同様に行った。その結果を表1に示す。
(Comparative Example 3)
In the synthesis of the aqueous emulsion, the same operation as in the synthesis of the aqueous emulsion of Example 1 was performed except that 15 parts of acrylic acid was changed to not using acrylic acid. The obtained non-volatile content was 45.1%, the viscosity was 850 mPa · s, and the pH was 7.4. The synthesis of the Si-graphite composite negative electrode material, the production of the negative electrode, the production of an evaluation battery, and various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1に示す通り、実施例1及び実施例2におけるバインダーは合金系負極に対しても良好な結着性を示す。また、実施例1及び実施例2におけるバインダーを使用した評価用電池は初期充放電量及び初期効率とも高い値を示し、かつ50サイクル目におけるサイクル特性も優れていることが明らかである。 As shown in Table 1, the binders in Examples 1 and 2 also show good binding properties with respect to the alloy-based negative electrode. In addition, it is apparent that the evaluation batteries using the binders in Example 1 and Example 2 have high initial charge / discharge amounts and high initial efficiency, and excellent cycle characteristics at the 50th cycle.

Claims (10)

  1.  Si、Sn、Ge及びInからなる群から選ばれるうちの少なくとも一つの元素を含む粒子Aを活物質として含むリチウムイオン電池用負極材、
     スチレン、エチレン性不飽和カルボン酸エステル、エチレン性不飽和カルボン酸、及び少なくとも一つのエチレン性不飽和基を有する架橋剤、を必須成分として含有するエチレン性不飽和単量体を重合して得られる重合体Bを含むバインダー、及び、
     水を含む分散媒、を含むスラリー。
    A negative electrode material for a lithium ion battery comprising, as an active material, particles A containing at least one element selected from the group consisting of Si, Sn, Ge, and In;
    Obtained by polymerizing an ethylenically unsaturated monomer containing styrene, an ethylenically unsaturated carboxylic acid ester, an ethylenically unsaturated carboxylic acid, and a crosslinking agent having at least one ethylenically unsaturated group as essential components A binder comprising polymer B, and
    A slurry containing a dispersion medium containing water.
  2.  前記重合体Bの酸価が6~100であることを特徴とする請求項1に記載のスラリー。 The slurry according to claim 1, wherein the acid value of the polymer B is 6 to 100.
  3.  前記エチレン性不飽和単量体中、スチレンの含有量が30~70質量%である、請求項1及び2のいずれか1項に記載のスラリー。 The slurry according to any one of claims 1 and 2, wherein the ethylenically unsaturated monomer has a styrene content of 30 to 70 mass%.
  4.  前記エチレン性不飽和単量体中、前記架橋剤の含有量が0.1~5質量%である、請求項1乃至3のいずれか1項に記載のスラリー。 The slurry according to any one of claims 1 to 3, wherein the content of the crosslinking agent in the ethylenically unsaturated monomer is 0.1 to 5% by mass.
  5.  前記リチウムイオン電池用負極材が、炭素粒子Cをさらに含む、請求項1乃至4のいずれか1項に記載のスラリー。 The slurry according to any one of claims 1 to 4, wherein the negative electrode material for a lithium ion battery further contains carbon particles C.
  6.  前記粒子Aの100質量部に対し、前記炭素粒子Cを250~2000質量部含む、請求項5に記載のスラリー。 The slurry according to claim 5, comprising 250 to 2000 parts by mass of the carbon particles C with respect to 100 parts by mass of the particles A.
  7.  Si、Sn、Ge及びInからなる群から選ばれるうちの少なくとも一つの元素を含む粒子Aを活物質として含むリチウムイオン電池用負極材、及び、
     スチレン、エチレン性不飽和カルボン酸エステル、エチレン性不飽和カルボン酸、及び少なくとも一つのエチレン性不飽和基を有する架橋剤、を必須成分として含有するエチレン性不飽和単量体を重合して得られる重合体Bを含むバインダー、を含むリチウムイオン電池用負極。
    A negative electrode material for a lithium ion battery containing, as an active material, particles A containing at least one element selected from the group consisting of Si, Sn, Ge, and In; and
    Obtained by polymerizing an ethylenically unsaturated monomer containing styrene, an ethylenically unsaturated carboxylic acid ester, an ethylenically unsaturated carboxylic acid, and a crosslinking agent having at least one ethylenically unsaturated group as essential components A negative electrode for a lithium ion battery, comprising a binder containing the polymer B.
  8.  請求項7に記載のリチウムイオン電池用負極を用いて得られるリチウムイオン電池。 A lithium ion battery obtained using the negative electrode for a lithium ion battery according to claim 7.
  9.  Si、Sn、Ge及びInからなる群から選ばれるうちの少なくとも一つの元素を含む粒子Aを活物質として含むリチウムイオン電池用負極材と、
     スチレン、エチレン性不飽和カルボン酸エステル、エチレン性不飽和カルボン酸、及び少なくとも一つのエチレン性不飽和基を有する架橋剤、を必須成分として含有するエチレン性不飽和単量体を界面活性剤の存在下、重合して得られる重合体Bを含む水性エマルジョンとを混合する工程を含む、スラリーの製造方法。
    A negative electrode material for a lithium ion battery containing, as an active material, particles A containing at least one element selected from the group consisting of Si, Sn, Ge, and In;
    Presence of surfactant with ethylenically unsaturated monomer containing styrene, ethylenically unsaturated carboxylic acid ester, ethylenically unsaturated carboxylic acid, and crosslinking agent having at least one ethylenically unsaturated group as essential components The manufacturing method of a slurry including the process of mixing below with the aqueous emulsion containing the polymer B obtained by superposition | polymerization.
  10.  集電体上に、請求項1乃至6のいずれか1項に記載のスラリーを塗布する工程を含むリチウムイオン電池用負極の製造方法。 The manufacturing method of the negative electrode for lithium ion batteries including the process of apply | coating the slurry of any one of Claims 1 thru | or 6 on a collector.
PCT/JP2013/071116 2012-08-08 2013-08-05 Slurry and negative electrode for lithium ion batteries WO2014024823A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013548654A JPWO2014024823A1 (en) 2012-08-08 2013-08-05 Slurry and negative electrode for lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-176401 2012-08-08
JP2012176401 2012-08-08

Publications (1)

Publication Number Publication Date
WO2014024823A1 true WO2014024823A1 (en) 2014-02-13

Family

ID=50068049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071116 WO2014024823A1 (en) 2012-08-08 2013-08-05 Slurry and negative electrode for lithium ion batteries

Country Status (2)

Country Link
JP (1) JPWO2014024823A1 (en)
WO (1) WO2014024823A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112618A1 (en) * 2013-01-21 2014-07-24 昭和電工株式会社 Binder for lithium ion secondary battery electrodes, slurry, electrode, and lithium ion secondary battery
WO2015045522A1 (en) * 2013-09-27 2015-04-02 昭和電工株式会社 Binder composition for nonaqueous battery electrodes, slurry for nonaqueous battery electrodes, nonaqueous battery electrode, and nonaqueous battery
WO2017056984A1 (en) * 2015-09-28 2017-04-06 Necエナジーデバイス株式会社 Method for producing negative electrode for lithium ion secondary batteries
WO2017094712A1 (en) * 2015-11-30 2017-06-08 日本電気株式会社 Lithium ion secondary battery
CN109860596A (en) * 2018-12-27 2019-06-07 上海三瑞高分子材料股份有限公司 A kind of lithium battery silicon-based anode slurry and preparation method thereof
US10707519B2 (en) 2015-11-30 2020-07-07 Nec Corporation Lithium ion secondary battery
JP2021153060A (en) * 2017-03-28 2021-09-30 東亞合成株式会社 Binder for nonaqueous electrolyte secondary battery electrode
JP2022169616A (en) * 2017-05-24 2022-11-09 昭和電工株式会社 Aqueous binder resin composition, slurry for nonaqueous battery, nonaqueous battery electrode, nonaqueous battery separator, and nonaqueous battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214182A (en) * 2002-12-17 2004-07-29 Mitsubishi Chemicals Corp Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2007115671A (en) * 2005-09-22 2007-05-10 Matsushita Electric Ind Co Ltd Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery using it
JP2010287470A (en) * 2009-06-12 2010-12-24 Panasonic Corp Nonaqueous secondary battery and its manufacturing method
JP2011243464A (en) * 2010-05-19 2011-12-01 Showa Denko Kk Binder for lithium ion secondary battery electrodes, slurry obtained by using the binder for electrodes, electrodes obtained by using the slurry, and lithium ion secondary battery obtained by using the electrodes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3744462B2 (en) * 2002-05-08 2006-02-08 ソニー株式会社 Non-aqueous electrolyte battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214182A (en) * 2002-12-17 2004-07-29 Mitsubishi Chemicals Corp Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2007115671A (en) * 2005-09-22 2007-05-10 Matsushita Electric Ind Co Ltd Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery using it
JP2010287470A (en) * 2009-06-12 2010-12-24 Panasonic Corp Nonaqueous secondary battery and its manufacturing method
JP2011243464A (en) * 2010-05-19 2011-12-01 Showa Denko Kk Binder for lithium ion secondary battery electrodes, slurry obtained by using the binder for electrodes, electrodes obtained by using the slurry, and lithium ion secondary battery obtained by using the electrodes

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6007263B2 (en) * 2013-01-21 2016-10-12 昭和電工株式会社 Lithium ion secondary battery electrode binder, slurry, electrode, and lithium ion secondary battery
JPWO2014112618A1 (en) * 2013-01-21 2017-01-19 昭和電工株式会社 Lithium ion secondary battery electrode binder, slurry, electrode, and lithium ion secondary battery
WO2014112618A1 (en) * 2013-01-21 2014-07-24 昭和電工株式会社 Binder for lithium ion secondary battery electrodes, slurry, electrode, and lithium ion secondary battery
US9947929B2 (en) 2013-09-27 2018-04-17 Showa Denko K.K. Binder composition for nonaqueous battery electrodes, slurry for nonaqueous battery electrodes, nonaqueous battery electrode, and nonaqueous battery
WO2015045522A1 (en) * 2013-09-27 2015-04-02 昭和電工株式会社 Binder composition for nonaqueous battery electrodes, slurry for nonaqueous battery electrodes, nonaqueous battery electrode, and nonaqueous battery
JPWO2015045522A1 (en) * 2013-09-27 2017-03-09 昭和電工株式会社 Non-aqueous battery electrode binder composition, non-aqueous battery electrode slurry, non-aqueous battery electrode, and non-aqueous battery
CN108028365A (en) * 2015-09-28 2018-05-11 Nec能源元器件株式会社 It is used to prepare the method for lithium ion secondary battery cathode
WO2017056984A1 (en) * 2015-09-28 2017-04-06 Necエナジーデバイス株式会社 Method for producing negative electrode for lithium ion secondary batteries
JPWO2017056984A1 (en) * 2015-09-28 2018-07-12 Necエナジーデバイス株式会社 Method for producing negative electrode for lithium ion secondary battery
US20180233735A1 (en) * 2015-09-28 2018-08-16 Nec Energy Devices, Ltd. Method for producing negative electrode for lithium ion secondary batteries
WO2017094712A1 (en) * 2015-11-30 2017-06-08 日本電気株式会社 Lithium ion secondary battery
CN108292779A (en) * 2015-11-30 2018-07-17 日本电气株式会社 Lithium rechargeable battery
JPWO2017094712A1 (en) * 2015-11-30 2018-09-13 日本電気株式会社 Lithium ion secondary battery
US10707519B2 (en) 2015-11-30 2020-07-07 Nec Corporation Lithium ion secondary battery
US10756337B2 (en) 2015-11-30 2020-08-25 Nec Corporation Lithium ion secondary battery
JP2021153060A (en) * 2017-03-28 2021-09-30 東亞合成株式会社 Binder for nonaqueous electrolyte secondary battery electrode
JP2022169616A (en) * 2017-05-24 2022-11-09 昭和電工株式会社 Aqueous binder resin composition, slurry for nonaqueous battery, nonaqueous battery electrode, nonaqueous battery separator, and nonaqueous battery
JP7444206B2 (en) 2017-05-24 2024-03-06 株式会社レゾナック Slurry for non-aqueous battery separators and non-aqueous battery separators
CN109860596A (en) * 2018-12-27 2019-06-07 上海三瑞高分子材料股份有限公司 A kind of lithium battery silicon-based anode slurry and preparation method thereof

Also Published As

Publication number Publication date
JPWO2014024823A1 (en) 2016-07-25

Similar Documents

Publication Publication Date Title
WO2014024823A1 (en) Slurry and negative electrode for lithium ion batteries
US11552297B2 (en) Binder composition for lithium ion secondary battery electrode-use, slurry composition for lithium ion secondary battery electrode-use, electrode for lithium ion secondary battery-use, and lithium ion secondary battery
US10403896B2 (en) Binder composition for storage device electrode, slurry for storage device electrode, storage device electrode, and storage device
US11462737B2 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP6627763B2 (en) Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
KR20180059433A (en) A binder composition for a non-aqueous secondary battery electrode, a slurry composition for a non-aqueous secondary battery electrode, an electrode for a non-aqueous secondary battery,
KR102260940B1 (en) Dispersant of conductive carbon material for lithium ion battery, slurry for electrode of lithium ion battery, electrode for lithium ion battery and lithium ion battery
JP7156449B2 (en) Binder aqueous solution for lithium ion battery negative electrode
KR20170129691A (en) All solid secondary batteries
US10529989B2 (en) Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
US20160260973A1 (en) Slurry composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
KR20140046082A (en) Electrode for electricity storage device, slurry for electrode, binder composition for electrode, and electricity storage device
US10249879B2 (en) Binder composition for secondary battery electrode-use, slurry composition for secondary battery electrode-use, electrode for secondary battery-use and production method therefor, and secondary battery
US11646421B2 (en) Thermally crosslinkable binder aqueous solution for lithium-ion battery, thermally crosslinkable slurry for lithium-ion battery negative electrode, negative electrode for lithium-ion battery
JP7276326B2 (en) Binder composition for electricity storage device, slurry composition for electricity storage device electrode, electrode for electricity storage device, and electricity storage device
JP6645101B2 (en) Slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2014029850A (en) Slurry composition for lithium ion secondary battery negative electrode, secondary battery negative electrode, and secondary battery
JP6462125B2 (en) Non-aqueous battery electrode binder composition, non-aqueous battery electrode binder, non-aqueous battery electrode composition, non-aqueous battery electrode, and non-aqueous battery
JP6665592B2 (en) Binder composition for non-aqueous secondary battery electrode and method for producing the same, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
KR20210023836A (en) Binder composition for electrochemical element electrode, slurry composition for electrochemical element electrode, electrode for electrochemical element, and electrochemical element
JP2018006333A (en) Binder solution for lithium ion battery positive electrode, powdery binder for lithium ion battery positive electrode, slurry for lithium ion battery positive electrode, positive electrode for lithium ion battery, and lithium ion battery
KR101910988B1 (en) Binder composition for secondary cell negative electrode, slurry composition for secondary cell negative electrode, negative electrode for secondary cell, and secondary cell
JP2016072151A (en) Composite particle for electrode and method for producing the same
KR20150037276A (en) Binder Composition for Secondary Battery, and Lithium Secondary Battery Comprising The Same
WO2024135437A1 (en) Binder composition for nonaqueous secondary batteries and nonaqueous secondary battery electrode

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013548654

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13827726

Country of ref document: EP

Kind code of ref document: A1