WO2014024656A1 - Molding method and mold - Google Patents

Molding method and mold Download PDF

Info

Publication number
WO2014024656A1
WO2014024656A1 PCT/JP2013/069526 JP2013069526W WO2014024656A1 WO 2014024656 A1 WO2014024656 A1 WO 2014024656A1 JP 2013069526 W JP2013069526 W JP 2013069526W WO 2014024656 A1 WO2014024656 A1 WO 2014024656A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
crystalline resin
molded body
resin molded
bent portion
Prior art date
Application number
PCT/JP2013/069526
Other languages
French (fr)
Japanese (ja)
Inventor
高士 見置
貴之 宮下
小林 和仁
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Publication of WO2014024656A1 publication Critical patent/WO2014024656A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C2033/023Thermal insulation of moulds or mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0041Crystalline

Definitions

  • the present invention relates to a method for molding a crystalline resin molded body and a mold that can be used in the molding method.
  • Crystalline resins such as polyacetal resin, polyester resin, and polyarylene sulfide resin have excellent mechanical properties and are used as engineering plastics in various applications.
  • the volume of the crystalline resin molded body gradually decreases with the progress of crystallization after molding. That is, the crystalline resin has a larger molding shrinkage rate than the amorphous resin. And when the molding shrinkage rate of the whole resin molding is not uniform, warp deformation may occur in the crystalline resin molding after molding. For this reason, in the production of a crystalline resin molded body using a crystalline resin, product design may be limited.
  • housings that house parts such as personal computers, printers, copiers, fax machines, hard disk drives, audio, game machine cameras, and mobile phones have been designed to reduce weight, improve productivity, share parts, and reduce costs. In some cases, it is manufactured using a resin (see, for example, Patent Document 1).
  • the present invention has been made in order to solve the above-described problems, and an object thereof is a crystalline resin molded body molded using a crystalline resin, which reduces warpage of the crystalline resin molded body and simultaneously molds the crystalline resin molded body. It is to provide a technique for shortening the cooling time.
  • the inventors of the present invention have made extensive studies to solve the above problems. As a result, a small difference in crystallinity between the wide-angle side and the narrow-angle side of the bent portion in the crystalline resin molded body having a bent portion leads to a difference in molding shrinkage rate, and the crystalline resin molded body has a bent portion. I found out that it causes warping. Furthermore, the use of a mold having a heat insulating layer formed on at least a part of the surface corresponding to the wide-angle side of the bent portion in the metal surface of the mold for producing the crystalline resin molded body can solve the above problems. As a result, the present invention has been completed. More specifically, the present invention provides the following.
  • a molding method for molding a crystalline resin molded body having a bent portion by using a mold while suppressing the warp generated at the bent portion, and for producing the crystalline resin molded body A molding method for molding a crystalline resin molded body using a mold in which a heat insulating layer is formed on at least a part of a surface corresponding to the wide-angle side of the bent portion on the metal surface of the mold.
  • the crystalline resin molded body is composed of a bottom surface portion and a side wall portion that is self-supporting from the entire circumference of the bottom surface portion, and the bent portion is composed of a boundary portion between the bottom surface and the side wall portion.
  • the heat insulating layer is formed so that a width from a position corresponding to a bending line on the wide-angle side of the bent portion is at least twice as large as a maximum thickness of the bent portion (1) or (2) The forming method as described.
  • a mold comprising: a heat insulating layer having a lower thermal conductivity than metal.
  • the present invention even in a crystalline resin molded body having a bent portion, warping deformation in the bent portion of the crystalline resin molded body is reduced. Further, at the same time as warpage deformation is suppressed, the cooling time during molding is shortened, and high cycle molding is possible.
  • FIG. 1 is a diagram schematically showing a crystalline resin molded body 1, (a) is a perspective view, and (b) is a cross-sectional view of an XX section.
  • Drawing 2 is a figure showing typically the section of the cavity of the metallic mold of an embodiment.
  • FIG. 3 is a schematic diagram showing how the crystalline resin molded body is cooled in the cavity of the mold shown in FIG.
  • FIG. 4 is a schematic diagram illustrating another example of a crystalline resin molded body having a bent portion.
  • FIG. 5 is a schematic diagram showing the position of the heat insulating layer of the mold used in the example.
  • FIG. 6 is a schematic diagram illustrating a method for evaluating the amount of warpage deformation.
  • the molding method of the present invention is a method for producing a crystalline resin molded body having a bent portion.
  • a mold in which a heat insulating layer is formed on at least a part of the surface corresponding to the wide-angle side of the bent portion is used as a mold for manufacturing the crystalline resin molded body.
  • the material which comprises a crystalline resin molding and the material which comprises a heat insulation layer are demonstrated.
  • the material constituting the crystalline resin molded body is a crystalline resin or a crystalline resin composition containing a crystalline resin.
  • the type of crystalline resin is not particularly limited.
  • polyethylene resin, polypropylene resin, polyamide resin, polyacetal resin, modified polyphenylene ether resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, polyarylene sulfide resin, polyimide Examples include resins, polyamideimide resins, polyetherimide resins, polysulfone resins, polyethersulfone resins, polyetherketone resins, polyetheretherketone resins, fluorine resins, thermoplastic elastomers, and various biodegradable resins.
  • the crystalline resin molded body when the crystalline resin molded body is composed of a crystalline resin, it may be composed of two or more types of crystalline resins.
  • the polyacetal resin refers to a polyacetal homopolymer having only an oxymethylene group (—CH 2 O—) as a structural unit, and a polyacetal copolymer containing other comonomer units as a structural unit in addition to the oxymethylene group.
  • the comonomer unit includes an oxy C 2-6 alkylene unit (for example, an oxy C 2-4 alkylene unit such as an oxyethylene group (—CH 2 CH 2 O—), an oxypropylene group, an oxytetramethylene group).
  • a terpolymer composed of three components may be used.
  • the polyacetal copolymer may be a random copolymer, a block copolymer, a graft copolymer, or the like. Further, the polyacetal may have a branched structure as well as a linear structure, and may have a crosslinked structure. Furthermore, the terminal of the polyacetal may be stabilized, for example, by esterification with carboxylic acids such as acetic acid and propionic acid, or anhydrides thereof.
  • the polybutylene terephthalate resin is a dicarboxylic acid component containing at least terephthalic acid or an ester-forming derivative thereof (such as a lower alcohol ester) and an alkylene glycol (1,4-butanediol) having at least 4 carbon atoms or an ester-forming property thereof.
  • the polybutylene terephthalate resin is not limited to a homopolybutylene terephthalate resin, but may be a copolymer containing 60 mol% or more (particularly 75 mol% or more and less than 95 mol%) of a butylene terephthalate unit.
  • the comonomer component include dicarboxylic acids other than terephthalic acid, glycols other than 1,4-butanediol, and the like.
  • the polyarylene sulfide resin refers to a resin whose repeating unit is mainly composed of — (Ar—S) — (wherein Ar is an arylene group).
  • Ar is an arylene group.
  • the arylene group include p-phenylene group, m-phenylene group, o-phenylene group, substituted phenylene group, p, p'-diphenylene sulfone group, p, p'-biphenylene group, p, p'-diphenylene.
  • An ether group, p, p′-diphenylenecarbonyl group, naphthalene group and the like can be mentioned.
  • the polyarylene sulfide resin may be a copolymer containing different repeating units in addition to a polymer using the same repeating unit among the arylene sulfide groups composed of the arylene group, that is, a homopolymer.
  • a homopolymer those having a repeating unit of a p-phenylene sulfide group using a p-phenylene group as an arylene group are particularly preferably used.
  • the copolymer two or more different combinations can be used among the arylene sulfide groups composed of the above-mentioned arylene groups.
  • polyarylene sulfide resin having a substantially linear structure obtained by polycondensation from a monomer mainly composed of a bifunctional halogen aromatic compound as a polyarylene sulfide resin a partially branched structure or a crosslinked structure is also provided.
  • the formed polyarylene sulfide resin can also be used.
  • the polyacetal resin has a particularly high crystallinity, and therefore, the difference between the crystallinity on the wide-angle side and the crystallinity on the narrow-angle side at the bent portion tends to be large. For this reason, the crystalline resin molded body produced using the polyacetal resin tends to have a particularly large amount of warp deformation at the bent portion. According to the present invention, even when a polyacetal resin having a high degree of crystallinity is used as a raw material, the amount of warp deformation generated at the bent portion of the crystalline resin molded body is reduced.
  • the crystalline resin molded body is composed of a crystalline resin composition
  • other components (components other than the crystalline resin) included in the crystalline resin composition are not particularly limited, and an amorphous resin or an inorganic filler And the like, stabilizers such as antioxidants, flame retardants, colorants such as dyes and pigments, and additives such as lubricants.
  • the warp deformation of the crystalline resin molded body at the bent portion tends to be suppressed by including the inorganic filler in the crystalline resin molded body.
  • the inorganic filler is substantially not included, warp deformation of the crystalline resin molded body at the bent portion can be suppressed.
  • substantially free of inorganic filler means that the content of the inorganic filler in the crystalline resin composition is 5% by mass or less.
  • the shape of the inorganic filler is not particularly limited, and includes any of a fiber shape, a plate shape, a powder shape, and the like.
  • Examples of the material satisfying the heat resistance and thermal conductivity required for the heat insulation layer include resins having high heat resistance such as polyimide resin and low thermal conductivity, and porous ceramics such as porous zirconia.
  • required by a heat insulation layer changes with uses etc., it is especially preferable that it is 2 W / m * K or less.
  • polyimide resin examples include pyromellitic acid (PMDA) -based polyimide, biphenyltetracarboxylic acid-based polyimide, polyamideimide using trimellitic acid, bismaleimide-based resin (bismaleimide / triazine-based, etc.), benzophenone tetracarboxylic acid Based polyimide, acetylene-terminated polyimide, thermoplastic polyimide, and the like.
  • Preferable materials other than polyimide resin include, for example, tetrafluoroethylene resin.
  • the heat insulating layer may contain a resin other than polyimide resin and tetrafluoroethylene resin, additives, and the like as long as the effects of the present invention are not impaired.
  • the zirconia contained in the porous zirconia is not particularly limited, and may be any of stabilized zirconia, partially stabilized zirconia, and unstabilized zirconia.
  • a conventionally well-known general thing can be employ
  • porous ceramics other than porous zirconia can be used, but porous zirconia has higher durability than other porous ceramics.
  • the heat insulating layer is provided on at least a part of the surface corresponding to the wide angle side of the bent portion on the metal surface of the mold used in the present invention.
  • the mold of this embodiment will be described by taking a mold for molding a box-shaped crystalline resin molded body having an open top as an example.
  • FIG. 1 is a diagram schematically showing a crystalline resin molded body 1, (a) is a perspective view, and (b) is a cross-sectional view of an XX section.
  • the crystalline resin molded body 1 includes a rectangular bottom surface portion 10 and side wall portions 11 that are self-supporting from the entire circumference of the bottom surface portion 10.
  • a boundary portion between the bottom surface portion 10 and the side wall portion 11 becomes a bent portion 12 of the crystalline resin molded body 1.
  • the narrow angle ⁇ of the bent portion 12 is 90 °
  • the wide angle ⁇ is 270 °.
  • the thickness of the bottom surface portion 10 and the thickness of the side wall portion 11 are the same (t in the figure), and the maximum thickness (t Max ) of the bent portion 12 is the bending line (L ⁇ on the narrow angle ⁇ side of the bent portion 12). ) To the bend line (L ⁇ ) on the wide angle ⁇ side.
  • the thickness of the bottom face part 10 and the thickness of the side wall part 11 may be different.
  • FIG. 2 is a view schematically showing a cross section of a cavity of a mold 2 for producing the crystalline resin molded body 1.
  • the mold 2 includes a mold body 20 made of metal and a heat insulating layer 21.
  • the mold body 20 includes a first mold 200 and a second mold 201 disposed to face the first mold.
  • the first mold 200 has a rectangular parallelepiped shape, and a concave portion having a rectangular parallelepiped inner shape is formed on one surface constituting the rectangular parallelepiped.
  • die 201 has a rectangular parallelepiped convex part extended from a plate-shaped plane part.
  • the mold 2 is closed, and the convex portion enters the concave portion, whereby a box-shaped space is formed.
  • This space is a cavity (the entire space filled with resin inside the mold). Therefore, the shape on the wide angle ⁇ side of the crystalline resin molded body 1 is formed by the concave portion, and the shape on the narrow angle ⁇ side of the crystalline resin molded body 1 is formed by the convex portion.
  • a part of the metal surface of the first mold 200 that forms the box-shaped space is a surface corresponding to the wide angle ⁇ side of the bent portion 12 of the crystalline resin molded body 1.
  • the corresponding surface is a surface including a position corresponding to the bent line L beta in the metal surface, the corresponding surfaces in the present embodiment, the position corresponding to the bent line L beta, the The range is between the position and the position from the distance x.
  • the heat insulating layer 21 is a layer made of the material as described above.
  • the heat insulating layer 21 is provided on substantially the entire surface corresponding to the wide angle side of the bent portion 12. In this specification, “substantially the entire surface” includes the entire surface.
  • the method for forming the heat insulating layer 21 on the metal surface is not particularly limited, and a preferable method can be appropriately employed according to the type of material constituting the heat insulating layer 21.
  • a method for forming the heat insulating layer 21 will be described with specific examples.
  • the thickness of the heat insulating layer is appropriately adjusted according to the amount of warp deformation to be suppressed.
  • the preferable range of the thickness of the heat insulating layer varies depending on the material. When polyimide is used as the material constituting the heat insulating layer, the preferable thickness is 50 to 200 ⁇ m, and the more preferable thickness is 80 to 150 ⁇ m. When zirconia is used as a material constituting the heat insulating layer, a preferable thickness is 200 to 700 ⁇ m, and a more preferable thickness is 300 to 500 ⁇ m.
  • the material constituting the heat insulation layer 21 is a resin having high heat resistance and low thermal conductivity such as polyimide resin
  • a solution of a polymer precursor such as a polyimide precursor capable of forming a polymer heat insulation layer is obtained.
  • a method of forming a heat insulating layer such as a polyimide film by applying to a metal surface, heating to evaporate the solvent, and further heating to polymerize include vapor deposition polymerization of heat-resistant polymer monomers such as pyromellitic anhydride and 4,4-diaminodiphenyl ether, or, for planar molds, suitable adhesion methods or adhesive tapes.
  • a method of sticking the polymer heat insulating film to a desired portion of the metal surface to form a heat insulating layer may be formed, and a chromium (Cr) film or a titanium nitride (TiN) film as a metal-based hard film may be formed on the surface thereof.
  • the material constituting the heat insulating layer 21 is a porous ceramic such as porous zirconia
  • the thermal conductivity of porous zirconia or the like is easily adjusted to a desired range.
  • problems such as a significant decrease in the mechanical strength of the heat insulating layer 21 due to excessive formation of bubbles inside porous zirconia or the like do not occur.
  • the structure of the heat insulation layer 21 becomes suitable for the use of the present invention. Formation of the heat insulation layer 21 by thermal spraying can be performed as follows, for example. First, the raw material is melted to form a liquid.
  • the thermal spraying method is not particularly limited, and a preferable method can be appropriately selected from conventionally known methods such as arc spraying, plasma spraying, and flame spraying. As a preferable method other than the thermal spraying method, there is a method in which a slurry-like ceramic is applied to a metal surface and sintered.
  • FIG. 3 schematically shows a manufacturing process of the crystalline resin molded body 1.
  • FIG. 3 shows a state in which the raw material is filled in the cavity of the mold 2 and the crystalline resin molded body 1 is cooled inside the cavity of the mold 2.
  • the method for filling the raw material crystalline resin or crystalline resin composition into the cavity of the mold 2 is not particularly limited.
  • the mold 2 can be filled with the raw material using a conventionally known kneading apparatus.
  • the crystalline resin molding 1 is cooled in the cavity of the mold 2.
  • the narrow angle ⁇ side of the bent portion 12 is less likely to release heat (the white arrow in the figure) than the wide angle ⁇ side, and heat tends to be trapped.
  • the narrow angle ⁇ side is less likely to be cooled than the wide angle ⁇ side. Therefore, when a conventional mold having no heat insulating layer is used, crystallization proceeds more on the narrow angle ⁇ side of the bent portion 12 of the crystalline resin molded body 1 than on the wide angle ⁇ side, and crystallization occurs. The degree of contraction due to is increased.
  • the heat insulating layer 21 is provided on the surface of the mold 2 corresponding to the wide angle ⁇ side. For this reason, the cooling rate on the wide angle ⁇ side of the crystalline resin molded body 1 is reduced to the same level as that on the narrow angle ⁇ side, and the difference in cooling rate between the narrow angle ⁇ side and the wide angle ⁇ side can be reduced.
  • the difference between the crystallinity of the crystalline resin on the wide-angle ⁇ side and the crystallinity of the crystalline resin on the narrow-angle ⁇ side is reduced, and the shrinkage ratio between the narrow-angle ⁇ side and the wide-angle ⁇ side of the bent portion 12 is reduced. Since the difference can be reduced, the amount of warp deformation generated in the bent portion 12 is reduced.
  • the heat insulating layer 21 is provided on the entire surface corresponding to the wide angle ⁇ side of the bent portion 12.
  • heat-insulating layer 21 is provided on the entire of the corresponding surface, the most cooled susceptible portion of the wide angle beta side, it near the bent line L beta difficult to entirely cool. As a result, it is easy to suppress the amount of warp deformation occurring in the bent portion 12.
  • the maximum thickness t Max insulation layer 21 twice or more in length (the maximum thickness of the bent portion 12) is provided in the die 2 from a position corresponding to the bent line L beta.
  • heat-insulating layer 21 is provided to a portion corresponding to the periphery of the vicinity of the bending line L beta, further easily suppress warp deformation amount generated in the bent portion 12.
  • the crystalline resin molded body 1 includes a bottom surface portion 10 and a side wall portion 11 that is self-supporting from the entire circumference of the bottom surface portion 10. If the heat insulating effect by the heat insulating layer 21 is too great and the wide angle ⁇ side of the bent portion 12 is less likely to be cooled, the crystalline resin molded body 1 is deformed in a direction in which the upper opening of the crystalline resin molded body 1 widens. Stress is applied to the bent portion 12.
  • surroundings of the part which carries out a warp deformation support the part which is going to deform
  • High cycle molding refers to a molding method in which the cooling time is set short to shorten the manufacturing time of the crystalline resin molded body 1. The cooling time is the time from the start of injection until the mold opens in injection molding, excluding the injection / holding time.
  • the injection / holding time is set in consideration of the gate seal time of the molded product
  • the cooling time is set in consideration of the measurement time of the resin and the holding time for suppressing warpage deformation of the molded product.
  • the degree of crystallinity on the outer side of the bent part and the degree of crystallinity on the inner side are such that the outside of the bent part has the same degree of crystallinity as the inner side due to the heat of the mold (heat that can be adjusted by the mold temperature) It was necessary to put together for a long time.
  • the mold 2 of the present embodiment when used, even when the cooling time is reduced to half or less at the same mold temperature as compared with the case of using the conventional mold, the crystallinity degree outside the bent portion and the crystallinity degree inside can be matched, and the amount of warpage deformation can be suppressed to the same level.
  • the productivity of the crystalline resin molded body can be increased.
  • the effect of increasing the productivity does not depend on the type of resin used, but when polyacetal resin or polybutylene terephthalate resin is used, the difference in shrinkage between the narrow-angle side and the wide-angle side of the bent portion tends to increase.
  • the molding time can be greatly shortened.
  • the crystalline resin molded product can be held in a use environment without deformation up to a higher temperature. That is, at a higher use environment temperature, the crystalline resin molded body can maintain its shape with a small amount of warpage deformation.
  • a longer cooling time is required as the mold temperature is increased. Therefore, when using a conventional mold, the cooling time must be very long, and it is difficult to increase the mold temperature.
  • the mold 2 of this embodiment crystallization proceeds on the wide-angle side of the bent portion as well as on the narrow-angle side.
  • the warpage deformation amount can be reduced in a short cooling time. It can be suppressed to the same level as when the mold temperature is set low. Therefore, by increasing the mold temperature, the crystalline resin molding can be performed while increasing the temperature at which the shape of the crystalline resin molding can be maintained while keeping the amount of warping deformation of the crystalline resin molding under the use environment small. It is also possible to increase body productivity.
  • the crystalline resin molded body may be a crystalline resin molded body 1A having an el-shaped (L-shaped) shape extending in a direction perpendicular to the paper surface as shown in FIG. As shown in FIG. 4, the narrow angle ⁇ of the bent portion 12A is 90 °, and the wide angle ⁇ is 270 °.
  • the narrow angle ⁇ of the bent portion is not a right angle but may be an acute angle (for example, 60 °) or an obtuse angle (for example, 120 °).
  • Polyacetal resin composition No glass fiber added, “Duracon (registered trademark) M90-44” (manufactured by Polyplastics Co., Ltd.) Polybutylene terephthalate resin composition 1: no glass fiber added, “Duranex (registered trademark) 2002” (manufactured by Wintech Polymer Co., Ltd.) Polybutylene terephthalate resin composition 2: 30% by mass of glass fiber, “Duranex (registered trademark) 3300” (manufactured by Wintech Polymer Co., Ltd.) Polyphenylene sulfide resin composition 1: no glass fiber added, “Fortron (registered trademark) 0220A9” (manufactured by Polyplastics Co., Ltd.) Polyphenylene sulfide resin composition 2: 40% by mass of glass fiber, “Fortron (registered trademark) 1140A64” (manufactured by Polyplastics Co., Ltd.)
  • a mold for producing a crystalline resin molded body having a rectangular bottom surface portion and a side wall portion that is self-supporting from the entire periphery of the bottom surface portion and having an open top was used. That is, the shape of the mold body of the mold used in the example is the same as that shown in FIG. In addition, both the thickness of the side wall part and the thickness of a bottom face part of the crystalline resin molding manufactured in the Example are 2 mm. Further, the outer shape of the box-shaped crystalline resin molded body is a shape having an opening at the top of a rectangular parallelepiped having a height of 50 mm, a width of 80 mm, and a length of 40 mm.
  • FIG. 5 shows a first mold on which a heat insulating layer is formed.
  • the position where the heat insulating layer is formed is a portion corresponding to the long side of the rectangle of the bottom surface portion among the positions corresponding to the boundary portion between the bottom surface portion and the side wall portion.
  • the size of the heat insulating layer is in the range of 12.5 mm in width on both sides from the position corresponding to the boundary line of the boundary portion.
  • Thermal insulation tape made of polyimide resin at this position ("Scoth (registered trademark) polyimide tape 5413" (manufactured by Sumitomo 3M Limited, thickness 0.07 mm, thermal conductivity 0.22 (W / m ⁇ K)) was pasted.
  • Example 1 Using a polyacetal resin composition as a raw material, a box-shaped crystalline resin molded body under molding conditions shown in Table 1 below using a molding machine (manufactured by Nippon Steel Works, "J110AD") and the mold of the example Three were manufactured. As shown in FIG. 6, the length of the rectangular short side of the upper part (surface with opening) of the crystalline resin molded body was measured at the end and center of the rectangle, and the length at the end (in FIG. 6) The difference between a) and the length at the center (b in FIG. 6) was taken as the amount of warpage deformation. About three crystalline resin moldings, the amount of warp deformation was measured and the average of the amount of warp deformation was calculated. Table 2 shows the evaluation results.
  • Example 1 A crystalline resin molded body was manufactured in the same manner as in Example 1 except that five crystalline resin molded bodies were manufactured using the mold of the comparative example. And the average value of the amount of warp deformation was computed by the same method. The results are shown in Table 2.
  • Example 2 A crystalline resin molded body was produced in the same manner as in Example 1 except that the polybutylene terephthalate resin composition 1 was used as a raw material. And the average value of the amount of warp deformation was computed by the same method. The results are shown in Table 2.
  • Example 2 A crystalline resin molded body was manufactured in the same manner as in Example 2, except that five crystalline resin molded bodies were manufactured using the mold of the comparative example. And the average value of the amount of warp deformation was computed by the same method. The results are shown in Table 2.
  • Example 3 A crystalline resin molded body was manufactured in the same manner as in Example 1 except that the polybutylene terephthalate resin composition 2 was used as a raw material and five crystalline resin molded bodies were manufactured. And the average value of the amount of warp deformation was computed by the same method. The results are shown in Table 2.
  • Example 3 A crystalline resin molded body was produced in the same manner as in Example 3 except that the comparative mold was used. And the average value of the amount of warp deformation was computed by the same method. The results are shown in Table 2.
  • Example 4 The crystallinity is the same as in Example 1, except that polyphenylene sulfide resin composition 1 is used as a raw material, and so-called “TR100EH” manufactured by Sodick Co., Ltd. is used as a molding machine, and five crystalline resin moldings are produced. A resin molded body was produced. And the average value of the amount of warp deformation was computed by the same method. The results are shown in Table 2.
  • Example 5 A crystalline resin molded article was produced in the same manner as in Example 1 except that the polyphenylene sulfide resin composition 2 was used as a raw material and five crystalline resin molded articles were produced. And the average value of the amount of warp deformation was computed by the same method. The results are shown in Table 2.
  • Example 5 A crystalline resin molded body was produced in the same manner as in Example 5 except that the comparative mold was used. And the average value of the amount of warp deformation was computed by the same method. The results are shown in Table 2.
  • Example 6 Using the polyacetal resin composition and the mold used in Example 1, with a molding machine (manufactured by Sumitomo Heavy Industries, Ltd., “Sumitomo SE100D”), cylinder temperature 190 ° C., mold temperature 40 ° C., injection speed Three crystalline resin moldings were produced under the conditions of 30 mm / s, screw rotation speed 100 rpm, and cooling time 4 seconds. Further, in the case of cooling time of 20 seconds and in the case of 40 seconds, three crystalline resin molded bodies were similarly produced. For each of the three crystalline resin moldings, the amount of warpage deformation was measured by the same method as described above, and the average amount of warpage deformation was calculated. The results are shown in Table 3.
  • Example 7 A crystalline resin molded body was produced in the same manner as in Example 6 except that the mold temperature was set to 80 ° C. And the average value of the amount of warp deformation was computed by the same method. The results are shown in Table 3.
  • Example 7 A crystalline resin molded body was produced in the same manner as in Example 7 except that the heat insulating layer was not formed on the mold. And the average value of the amount of warp deformation was computed by the same method. The results are shown in Table 3.
  • the temperature at which the shape of the crystalline resin molded body can be maintained can be increased in a state where the mold temperature is set high and the amount of warp deformation of the crystalline resin molded body in the usage environment is kept small. It is possible to simultaneously increase the temperature and productivity at which the shape of the crystalline resin molded body can be maintained in a state where the amount of warp deformation of the crystalline resin molded body in the use environment is kept small.

Abstract

Provided is a technique for reducing the warping of crystalline resin moldings that have been molded using a crystalline resin and for simultaneously shortening cooling time during molding. A mold, in which a heat-insulating layer has been formed on at least a portion of the surface corresponding to the wide angle side of the bent section in the metal surface of a mold for manufacturing crystalline resin moldings that have a bent section, is used. Preferably, the heat-insulating layer is formed so that the width from the position corresponding to the bending line on the wide angle side of the bent section is two or more times the maximum thickness of the bent section. The mold is also able to reduce the magnitude of warping deformation of the crystalline resin molding even when the crystalline resin molding contains substantially no inorganic filler.

Description

成形方法及び金型Molding method and mold
 本発明は、結晶性樹脂成形体の成形方法及び当該成形方法に使用可能な金型に関する。 The present invention relates to a method for molding a crystalline resin molded body and a mold that can be used in the molding method.
 ポリアセタール樹脂、ポリエステル樹脂、ポリアリーレンサルファイド樹脂等の結晶性樹脂は、優れた機械的特性等を有するため、エンジニアリングプラスチックとして、様々な用途に使用されている。 Crystalline resins such as polyacetal resin, polyester resin, and polyarylene sulfide resin have excellent mechanical properties and are used as engineering plastics in various applications.
 上記結晶性樹脂を用いて結晶性樹脂成形体を製造する場合、成形後の結晶化の進行に伴って、結晶性樹脂成形体の体積が徐々に小さくなる。つまり、結晶性樹脂は非晶性樹脂と比較して成形収縮率が大きい。そして、樹脂成形体全体の成形収縮率が均一でない場合には、成形後の結晶性樹脂成形体に反り変形が生じる場合がある。このため、結晶性樹脂を用いた結晶性樹脂成形体の製造にあたっては、製品設計が制限される場合がある。 When producing a crystalline resin molded body using the crystalline resin, the volume of the crystalline resin molded body gradually decreases with the progress of crystallization after molding. That is, the crystalline resin has a larger molding shrinkage rate than the amorphous resin. And when the molding shrinkage rate of the whole resin molding is not uniform, warp deformation may occur in the crystalline resin molding after molding. For this reason, in the production of a crystalline resin molded body using a crystalline resin, product design may be limited.
 また、近年、パソコン、プリンタ、複写機、FAX、ハードディスクドライブ、オーディオ、ゲーム機カメラ、携帯電話等の部品を収容する筐体は、軽量化、生産性向上、部品共用化、コストダウンを目的として、樹脂を用いて製造される場合がある(例えば、特許文献1参照)。 In recent years, housings that house parts such as personal computers, printers, copiers, fax machines, hard disk drives, audio, game machine cameras, and mobile phones have been designed to reduce weight, improve productivity, share parts, and reduce costs. In some cases, it is manufactured using a resin (see, for example, Patent Document 1).
 これらの電子・電気機器に使用される筐体等の製品においては、製品に発生する反り変形が小さい場合であっても、製品の品質に影響を与える場合がある。 In the case of products such as casings used in these electronic and electrical devices, even if the warpage deformation generated in the product is small, the quality of the product may be affected.
特開2009-155367号公報JP 2009-155367 A
 本発明は上記課題を解決するためになされたものであり、その目的は、結晶性樹脂を用いて成形した結晶性樹脂成形体であって、結晶性樹脂成形体の反りを低減し、同時に成形時の冷却時間を短縮する技術を提供することにある。 The present invention has been made in order to solve the above-described problems, and an object thereof is a crystalline resin molded body molded using a crystalline resin, which reduces warpage of the crystalline resin molded body and simultaneously molds the crystalline resin molded body. It is to provide a technique for shortening the cooling time.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、屈曲部を有する結晶性樹脂成形体における、屈曲部の広角側と狭角側との結晶化度の小さな相違が、成形収縮率の相違につながり、結晶性樹脂成形体が屈曲部で反る原因になることを見出した。さらに、結晶性樹脂成形体を製造するための金型の金属面における、屈曲部の広角側に対応する面の少なくとも一部に断熱層が形成された金型を用いれば、上記課題を解決できることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。 The inventors of the present invention have made extensive studies to solve the above problems. As a result, a small difference in crystallinity between the wide-angle side and the narrow-angle side of the bent portion in the crystalline resin molded body having a bent portion leads to a difference in molding shrinkage rate, and the crystalline resin molded body has a bent portion. I found out that it causes warping. Furthermore, the use of a mold having a heat insulating layer formed on at least a part of the surface corresponding to the wide-angle side of the bent portion in the metal surface of the mold for producing the crystalline resin molded body can solve the above problems. As a result, the present invention has been completed. More specifically, the present invention provides the following.
 (1) 金型を用いて、屈曲部を有する結晶性樹脂成形体を、前記屈曲部で発生する反りを抑えて成形する成形方法であって、前記結晶性樹脂成形体を製造するための金型の金属面における、前記屈曲部の広角側に対応する面の少なくとも一部に断熱層が形成された金型を用いて結晶性樹脂成形体を成形する成形方法。 (1) A molding method for molding a crystalline resin molded body having a bent portion by using a mold while suppressing the warp generated at the bent portion, and for producing the crystalline resin molded body. A molding method for molding a crystalline resin molded body using a mold in which a heat insulating layer is formed on at least a part of a surface corresponding to the wide-angle side of the bent portion on the metal surface of the mold.
 (2) 前記結晶性樹脂成形体は、底面部と、前記底面部の全周から自立する側壁部とから構成され、前記屈曲部は、前記底面と前記側壁部との境界部から構成される(1)に記載の成形方法。 (2) The crystalline resin molded body is composed of a bottom surface portion and a side wall portion that is self-supporting from the entire circumference of the bottom surface portion, and the bent portion is composed of a boundary portion between the bottom surface and the side wall portion. The forming method according to (1).
 (3) 前記断熱層は、前記屈曲部の広角側の屈曲線に対応する位置からの幅が前記屈曲部の最大厚みの2倍以上となるように形成される(1)又は(2)に記載の成形方法。 (3) The heat insulating layer is formed so that a width from a position corresponding to a bending line on the wide-angle side of the bent portion is at least twice as large as a maximum thickness of the bent portion (1) or (2) The forming method as described.
 (4) 前記結晶性樹脂成形体は、無機充填剤を実質的に含有しない(1)から(3)のいずれかに記載の成形方法。 (4) The molding method according to any one of (1) to (3), wherein the crystalline resin molded body does not substantially contain an inorganic filler.
 (5) 前記結晶性樹脂成形体は、ポリアセタール樹脂成形体である(1)から(4)のいずれかに記載の成形方法。 (5) The molding method according to any one of (1) to (4), wherein the crystalline resin molded body is a polyacetal resin molded body.
 (6) 前記結晶性樹脂成形体は、ポリブチレンテレフタレート樹脂成形体である(1)から(4)のいずれかに記載の成形方法。 (6) The molding method according to any one of (1) to (4), wherein the crystalline resin molded body is a polybutylene terephthalate resin molded body.
 (7) 前記結晶性樹脂成形体は、ポリアリーレンサルファイド樹脂成形体である(1)から(4)のいずれかに記載の成形方法。 (7) The molding method according to any one of (1) to (4), wherein the crystalline resin molded body is a polyarylene sulfide resin molded body.
 (8) 屈曲部を有する結晶性樹脂成形体を成形するための金型であって、金属から構成され、第一金型と、前記第一金型に対向して配置される第二金型とを有する金型本体と、前記第一金型及び/又は前記第二金型の金属面における、前記屈曲部の広角側に対応する面の少なくとも一部に形成され、金型本体を構成する金属よりも熱伝導率が低い断熱層と、を備える金型。 (8) A mold for molding a crystalline resin molded body having a bent portion, which is made of metal, and is disposed opposite to the first mold and the first mold. A mold body, and a metal body of the first mold and / or the second mold, and is formed on at least a part of a surface corresponding to the wide-angle side of the bent portion to constitute the mold body A mold comprising: a heat insulating layer having a lower thermal conductivity than metal.
 (9) (8)に記載の金型を用いて、屈曲部を有する結晶性樹脂成形体を製造する方法であって、同一の金型温度で、前記金型と、断熱層が形成されていない以外は前記金型と同じ金型とを用いて、屈曲部を有する結晶性樹脂成形体を製造した場合に、前記屈曲部で発生する反り変形量が互いに等しくなる冷却時間を、それぞれの金型についてt及びtとしたときに、t≦t/2が満たされる製造方法 (9) A method for producing a crystalline resin molded body having a bent portion using the mold according to (8), wherein the mold and the heat insulating layer are formed at the same mold temperature. When a crystalline resin molded body having a bent portion is manufactured using the same mold as that except for the above, the cooling time in which the warp deformation amounts generated in the bent portion are equal to each other is set. when the t 1 and t 2 for the type, the manufacturing method t 1t 2/2 is satisfied
 本発明によれば、屈曲部を有する結晶性樹脂成形体であっても、結晶性樹脂成形体の屈曲部における反り変形が小さくなる。また、反り変形が抑制されると同時に、成形時の冷却時間が短縮され、ハイサイクル成形が可能である。 According to the present invention, even in a crystalline resin molded body having a bent portion, warping deformation in the bent portion of the crystalline resin molded body is reduced. Further, at the same time as warpage deformation is suppressed, the cooling time during molding is shortened, and high cycle molding is possible.
図1は結晶性樹脂成形体1を模式的に示す図であり、(a)は斜視図であり、(b)はXX断面の断面図である。FIG. 1 is a diagram schematically showing a crystalline resin molded body 1, (a) is a perspective view, and (b) is a cross-sectional view of an XX section. 図2は、実施形態の金型のキャビティの断面を模式的に示す図である。 Drawing 2 is a figure showing typically the section of the cavity of the metallic mold of an embodiment. 図3は、図2に示す金型のキャビティ内で結晶性樹脂成形体が冷却される様子を示す模式図である。FIG. 3 is a schematic diagram showing how the crystalline resin molded body is cooled in the cavity of the mold shown in FIG. 図4は、屈曲部を有する結晶性樹脂成形体の他の例を示す模式図である。FIG. 4 is a schematic diagram illustrating another example of a crystalline resin molded body having a bent portion. 図5は、実施例に用いた金型の断熱層の位置を示す模式図である。FIG. 5 is a schematic diagram showing the position of the heat insulating layer of the mold used in the example. 図6は、反り変形量の評価方法を示す模式図である。FIG. 6 is a schematic diagram illustrating a method for evaluating the amount of warpage deformation.
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.
<成形方法>
 本発明の成形方法は、屈曲部を有する結晶性樹脂成形体を製造する方法である。本発明では、結晶性樹脂成形体を製造するための金型として、屈曲部の広角側に対応する面の少なくとも一部に断熱層が形成された金型を用いる。先ず、結晶性樹脂成形体を構成する材料、断熱層を構成する材料について説明する。
<Molding method>
The molding method of the present invention is a method for producing a crystalline resin molded body having a bent portion. In the present invention, a mold in which a heat insulating layer is formed on at least a part of the surface corresponding to the wide-angle side of the bent portion is used as a mold for manufacturing the crystalline resin molded body. First, the material which comprises a crystalline resin molding and the material which comprises a heat insulation layer are demonstrated.
[結晶性樹脂成形体を構成する材料]
 結晶性樹脂成形体を構成する材料は、結晶性樹脂又は結晶性樹脂を含む結晶性樹脂組成物である。結晶性樹脂の種類は特に限定されず、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド樹脂、ポリアセタール樹脂、変性ポリフェニレンエーテル樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリアリーレンサルファイド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリサルフォン樹脂、ポリエーテルサルフォン樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、弗素樹脂、熱可塑性エラストマー、各種の生分解性樹脂等が挙げられる。また、結晶性樹脂成形体が結晶性樹脂から構成される場合には、2種類以上の結晶性樹脂から構成されてもよい。
[Materials constituting crystalline resin molding]
The material constituting the crystalline resin molded body is a crystalline resin or a crystalline resin composition containing a crystalline resin. The type of crystalline resin is not particularly limited. For example, polyethylene resin, polypropylene resin, polyamide resin, polyacetal resin, modified polyphenylene ether resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, polyarylene sulfide resin, polyimide Examples include resins, polyamideimide resins, polyetherimide resins, polysulfone resins, polyethersulfone resins, polyetherketone resins, polyetheretherketone resins, fluorine resins, thermoplastic elastomers, and various biodegradable resins. Moreover, when the crystalline resin molded body is composed of a crystalline resin, it may be composed of two or more types of crystalline resins.
 ポリアセタール樹脂とは、オキシメチレン基(-CHO-)のみを構成単位とするポリアセタールホモポリマー、及びオキシメチレン基以外に他のコモノマー単位を構成単位として含有するポリアセタールコポリマーを指す。コモノマー単位には、オキシC2-6アルキレン単位(例えば、オキシエチレン基(-CHCHO-)、オキシプロピレン基、オキシテトラメチレン基等のオキシC2-4アルキレン単位)が含まれる。ポリアセタール樹脂がポリアセタールコポリマーである場合は、三成分で構成されたターポリマー等であってもよい。ポリアセタールコポリマーは、ランダムコポリマーの他、ブロックコポリマー、グラフトコポリマー等であってもよい。また、ポリアセタールは、線状のみならず分岐構造であってもよく、架橋構造を有していてもよい。さらに、ポリアセタールの末端は、例えば、酢酸、プロピオン酸等のカルボン酸又はそれらの無水物とのエステル化等により安定化されていてもよい。 The polyacetal resin refers to a polyacetal homopolymer having only an oxymethylene group (—CH 2 O—) as a structural unit, and a polyacetal copolymer containing other comonomer units as a structural unit in addition to the oxymethylene group. The comonomer unit includes an oxy C 2-6 alkylene unit (for example, an oxy C 2-4 alkylene unit such as an oxyethylene group (—CH 2 CH 2 O—), an oxypropylene group, an oxytetramethylene group). When the polyacetal resin is a polyacetal copolymer, a terpolymer composed of three components may be used. The polyacetal copolymer may be a random copolymer, a block copolymer, a graft copolymer, or the like. Further, the polyacetal may have a branched structure as well as a linear structure, and may have a crosslinked structure. Furthermore, the terminal of the polyacetal may be stabilized, for example, by esterification with carboxylic acids such as acetic acid and propionic acid, or anhydrides thereof.
 ポリブチレンテレフタレート樹脂とは、少なくともテレフタル酸又はそのエステル形成性誘導体(低級アルコールエステル等)を含むジカルボン酸成分と、少なくとも炭素原子数4のアルキレングリコール(1,4-ブタンジオール)又はそのエステル形成性誘導体を含むグリコール成分とを重縮合して得られるポリブチレンテレフタレート樹脂を指す。ポリブチレンテレフタレート樹脂はホモポリブチレンテレフタレート樹脂に限らず、ブチレンテレフタレート単位を60モル%以上(特に75モル%以上95モル%未満)含有する共重合体であってもよい。コモノマー成分としては、テレフタル酸以外のジカルボン酸、1,4-ブタンジオール以外のグリコール等が挙げられる。 The polybutylene terephthalate resin is a dicarboxylic acid component containing at least terephthalic acid or an ester-forming derivative thereof (such as a lower alcohol ester) and an alkylene glycol (1,4-butanediol) having at least 4 carbon atoms or an ester-forming property thereof. A polybutylene terephthalate resin obtained by polycondensation with a glycol component containing a derivative. The polybutylene terephthalate resin is not limited to a homopolybutylene terephthalate resin, but may be a copolymer containing 60 mol% or more (particularly 75 mol% or more and less than 95 mol%) of a butylene terephthalate unit. Examples of the comonomer component include dicarboxylic acids other than terephthalic acid, glycols other than 1,4-butanediol, and the like.
 ポリアリーレンサルファイド樹脂とは、繰り返し単位が主として-(Ar-S)-(ただしArはアリーレン基)で構成された樹脂を指す。アリーレン基としては、例えばp-フェニレン基、m-フェニレン基、o-フェニレン基、置換フェニレン基、p,p’-ジフェニレンスルフォン基、p,p’-ビフェニレン基、p,p’-ジフェニレンエーテル基、p,p’-ジフェニレンカルボニル基、ナフタレン基等が挙げられる。ポリアリーレンサルファイド樹脂は、上記アリーレン基から構成されるアリーレンサルファイド基の中で、同一の繰り返し単位を用いたポリマー、即ちホモポリマーの他に、異種繰り返し単位を含んだコポリマーであってもよい。ホモポリマーとしては、アリーレン基としてp-フェニレン基を用いたp-フェニレンサルファイド基を繰り返し単位とするものが特に好ましく用いられる。又、コポリマーとしては、上記のアリーレン基からなるアリーレンサルファイド基の中で、相異なる2種以上の組合せが使用できる。また、ポリアリーレンサルファイド樹脂として、2官能性ハロゲン芳香族化合物を主体とするモノマーから縮重合によって得られる実質的に直鎖状構造のポリアリーレンサルファイド樹脂以外に、部分的に分岐構造又は架橋構造を形成させたポリアリーレンサルファイド樹脂も使用可能である。 The polyarylene sulfide resin refers to a resin whose repeating unit is mainly composed of — (Ar—S) — (wherein Ar is an arylene group). Examples of the arylene group include p-phenylene group, m-phenylene group, o-phenylene group, substituted phenylene group, p, p'-diphenylene sulfone group, p, p'-biphenylene group, p, p'-diphenylene. An ether group, p, p′-diphenylenecarbonyl group, naphthalene group and the like can be mentioned. The polyarylene sulfide resin may be a copolymer containing different repeating units in addition to a polymer using the same repeating unit among the arylene sulfide groups composed of the arylene group, that is, a homopolymer. As the homopolymer, those having a repeating unit of a p-phenylene sulfide group using a p-phenylene group as an arylene group are particularly preferably used. Further, as the copolymer, two or more different combinations can be used among the arylene sulfide groups composed of the above-mentioned arylene groups. In addition to the polyarylene sulfide resin having a substantially linear structure obtained by polycondensation from a monomer mainly composed of a bifunctional halogen aromatic compound as a polyarylene sulfide resin, a partially branched structure or a crosslinked structure is also provided. The formed polyarylene sulfide resin can also be used.
 上記の結晶性樹脂の中でも、ポリアセタール樹脂は結晶化度が特に高いため、屈曲部における広角側の結晶化度と狭角側の結晶化度との差が大きくなりやすい。このため、ポリアセタール樹脂を用いて製造した結晶性樹脂成形体は、屈曲部における反り変形量が特に大きくなる傾向にある。本発明によれば、結晶化度が高いポリアセタール樹脂を原料とする場合であっても、結晶性樹脂成形体の屈曲部に発生する反り変形量が小さくなる。 Among the above crystalline resins, the polyacetal resin has a particularly high crystallinity, and therefore, the difference between the crystallinity on the wide-angle side and the crystallinity on the narrow-angle side at the bent portion tends to be large. For this reason, the crystalline resin molded body produced using the polyacetal resin tends to have a particularly large amount of warp deformation at the bent portion. According to the present invention, even when a polyacetal resin having a high degree of crystallinity is used as a raw material, the amount of warp deformation generated at the bent portion of the crystalline resin molded body is reduced.
 結晶性樹脂成形体が結晶性樹脂組成物から構成される場合、結晶性樹脂組成物に含まれるその他の成分(結晶性樹脂以外の成分)は特に限定されず、非晶性樹脂、無機充填剤等の強化剤、酸化防止剤等の安定剤、難燃剤、染料・顔料等の着色剤、潤滑剤等の添加剤を挙げることができる。 When the crystalline resin molded body is composed of a crystalline resin composition, other components (components other than the crystalline resin) included in the crystalline resin composition are not particularly limited, and an amorphous resin or an inorganic filler And the like, stabilizers such as antioxidants, flame retardants, colorants such as dyes and pigments, and additives such as lubricants.
 結晶性樹脂組成物が無機充填剤を含む場合には、無機充填剤が結晶性樹脂成形体に含まれることによって、屈曲部での結晶性樹脂成形体の反り変形が抑えられる傾向にある。本発明によれば、無機充填剤を実質的に含まない場合であっても、屈曲部での結晶性樹脂成形体の反り変形が抑えられる。ここで、「無機充填剤を実質的に含まない」とは、結晶性樹脂組成物中の無機充填剤の含有量が5質量%以下であることを指す。なお、ここで、無機充填剤の形状は特に限定されず、繊維状、板状、粉状等のいずれも含む。 When the crystalline resin composition contains an inorganic filler, the warp deformation of the crystalline resin molded body at the bent portion tends to be suppressed by including the inorganic filler in the crystalline resin molded body. According to the present invention, even when the inorganic filler is substantially not included, warp deformation of the crystalline resin molded body at the bent portion can be suppressed. Here, “substantially free of inorganic filler” means that the content of the inorganic filler in the crystalline resin composition is 5% by mass or less. Here, the shape of the inorganic filler is not particularly limited, and includes any of a fiber shape, a plate shape, a powder shape, and the like.
[断熱層を構成する材料]
 断熱層を構成する材料は特に限定されないが、金型本体を構成する金属よりも熱伝導率が低く、高温の原料が接しても不具合を生じない程度の耐熱性を有するものであればよい。
[Materials for heat insulation layer]
Although the material which comprises a heat insulation layer is not specifically limited, Thermal conductivity is lower than the metal which comprises a metal mold | die body, and what is necessary is just to have heat resistance of the grade which does not produce a malfunction even if a high temperature raw material contacts.
 断熱層に求められる耐熱性及び熱伝導率を満たす材料としては、ポリイミド樹脂等の耐熱性が高く熱伝導率が低い樹脂、多孔質ジルコニア等の多孔質セラミックを例示することができる。断熱層に求められる熱伝導率は、用途等によっても異なるが、2W/m・K以下であることが特に好ましい。断熱層の熱伝導率を上記の範囲に調整することで、熱可塑性樹脂組成物の有する熱を金型外に排出し難くする効果が非常に高まる。以下、これらの材料について説明する。 Examples of the material satisfying the heat resistance and thermal conductivity required for the heat insulation layer include resins having high heat resistance such as polyimide resin and low thermal conductivity, and porous ceramics such as porous zirconia. Although the heat conductivity calculated | required by a heat insulation layer changes with uses etc., it is especially preferable that it is 2 W / m * K or less. By adjusting the thermal conductivity of the heat insulating layer within the above range, the effect of making it difficult to discharge the heat of the thermoplastic resin composition out of the mold is greatly enhanced. Hereinafter, these materials will be described.
 ポリイミド樹脂の具体例としては、ピロメリット酸(PMDA)系ポリイミド、ビフェニルテトラカルボン酸系ポリイミド、トリメリット酸を用いたポリアミドイミド、ビスマレイミド系樹脂(ビスマレイミド/トリアジン系等)、ベンゾフェノンテトラカルボン酸系ポリイミド、アセチレン末端ポリイミド、熱可塑性ポリイミド等が挙げられる。なお、ポリイミド樹脂から構成される断熱層であることが特に好ましい。ポリイミド樹脂以外の好ましい材料としては、例えば、テトラフルオロエチレン樹脂等が挙げられる。また、断熱層は、本発明の効果を害さない範囲で、ポリイミド樹脂、テトラフルオロエチレン樹脂以外の樹脂、添加剤等を含んでもよい。 Specific examples of the polyimide resin include pyromellitic acid (PMDA) -based polyimide, biphenyltetracarboxylic acid-based polyimide, polyamideimide using trimellitic acid, bismaleimide-based resin (bismaleimide / triazine-based, etc.), benzophenone tetracarboxylic acid Based polyimide, acetylene-terminated polyimide, thermoplastic polyimide, and the like. In addition, it is especially preferable that it is a heat insulation layer comprised from a polyimide resin. Preferable materials other than polyimide resin include, for example, tetrafluoroethylene resin. Further, the heat insulating layer may contain a resin other than polyimide resin and tetrafluoroethylene resin, additives, and the like as long as the effects of the present invention are not impaired.
 多孔質ジルコニアに含まれるジルコニアとしては、特に限定されず、安定化ジルコニア、部分安定化ジルコニア、未安定化ジルコニアのいずれでもよい。安定化ジルコニア、部分安定化ジルコニアに含まれる安定化剤としては、従来公知の一般的なものを採用することができる。また、安定化ジルコニア、部分安定化ジルコニア、及び未安定化ジルコニアから選択される少なくとも2種以上を組み合わせて使用してもよい。なお、多孔質ジルコニア以外の多孔質セラミックも使用することができるが、多孔質ジルコニアはその他の多孔質セラミックと比較して耐久性が高い。このため、多孔質ジルコニアから構成される断熱層を形成した金型を用いれば、断熱層の変形等の不具合が生じ難いため、一つの金型で連続して製造できる成形体の数が多い。 The zirconia contained in the porous zirconia is not particularly limited, and may be any of stabilized zirconia, partially stabilized zirconia, and unstabilized zirconia. A conventionally well-known general thing can be employ | adopted as a stabilizer contained in stabilized zirconia and partially stabilized zirconia. Moreover, you may use combining at least 2 or more types selected from stabilized zirconia, partially stabilized zirconia, and unstabilized zirconia. In addition, porous ceramics other than porous zirconia can be used, but porous zirconia has higher durability than other porous ceramics. For this reason, if the metal mold | die which formed the heat insulation layer comprised from porous zirconia is used, since malfunctions, such as a deformation | transformation of a heat insulation layer, do not produce easily, there are many molded objects which can be manufactured continuously with one metal mold | die.
[金型]
 上記の通り、本発明で使用する金型の金属表面には、屈曲部の広角側に対応する面の少なくとも一部に断熱層が設けられる。ここでは、上部が開口した箱状の結晶性樹脂成形体を成形するための金型を例に、本実施形態の金型を説明する。
[Mold]
As described above, the heat insulating layer is provided on at least a part of the surface corresponding to the wide angle side of the bent portion on the metal surface of the mold used in the present invention. Here, the mold of this embodiment will be described by taking a mold for molding a box-shaped crystalline resin molded body having an open top as an example.
 先ず、以下の説明で用いる結晶性樹脂成形体の形状について説明する。図1は結晶性樹脂成形体1を模式的に示す図であり、(a)は斜視図であり、(b)はXX断面の断面図である。図1に示す通り、結晶性樹脂成形体1は、矩形の底面部10と、底面部10の全周から自立する側壁部11と、を備える。底面部10と側壁部11との境界部が、結晶性樹脂成形体1の屈曲部12になる。また、屈曲部12の狭角αは90°であり、広角βは270°である。また、底面部10の厚み、側壁部11の厚みは同等であり(図中のt)、屈曲部12の最大厚み(tMax)は、屈曲部12の狭角α側の屈曲線(Lα)から広角β側の屈曲線(Lβ)までの最短距離である。なお、底面部10の厚み、側壁部11の厚みは異なってもよい。 First, the shape of the crystalline resin molding used in the following description will be described. FIG. 1 is a diagram schematically showing a crystalline resin molded body 1, (a) is a perspective view, and (b) is a cross-sectional view of an XX section. As shown in FIG. 1, the crystalline resin molded body 1 includes a rectangular bottom surface portion 10 and side wall portions 11 that are self-supporting from the entire circumference of the bottom surface portion 10. A boundary portion between the bottom surface portion 10 and the side wall portion 11 becomes a bent portion 12 of the crystalline resin molded body 1. Further, the narrow angle α of the bent portion 12 is 90 °, and the wide angle β is 270 °. Further, the thickness of the bottom surface portion 10 and the thickness of the side wall portion 11 are the same (t in the figure), and the maximum thickness (t Max ) of the bent portion 12 is the bending line (L α on the narrow angle α side of the bent portion 12). ) To the bend line (L β ) on the wide angle β side. In addition, the thickness of the bottom face part 10 and the thickness of the side wall part 11 may be different.
 上記結晶性樹脂成形体1を製造するための金型について説明する。図2は結晶性樹脂成形体1を製造するための金型2のキャビティの断面を模式的に示す図である。金型2は、金属から構成される金型本体20と、断熱層21とを備える。 A mold for producing the crystalline resin molded body 1 will be described. FIG. 2 is a view schematically showing a cross section of a cavity of a mold 2 for producing the crystalline resin molded body 1. The mold 2 includes a mold body 20 made of metal and a heat insulating layer 21.
 金型本体20は、第一金型200と、上記第一金型に対向して配置される第二金型201とを有する。第一金型200は直方体状であり、直方体を構成する一つの面に、内部形状が直方体状の凹部が形成されている。第二金型201は板状の平面部から延びる直方体状の凸部を有する。 The mold body 20 includes a first mold 200 and a second mold 201 disposed to face the first mold. The first mold 200 has a rectangular parallelepiped shape, and a concave portion having a rectangular parallelepiped inner shape is formed on one surface constituting the rectangular parallelepiped. The 2nd metal mold | die 201 has a rectangular parallelepiped convex part extended from a plate-shaped plane part.
 金型2が閉じ、上記凹部に上記凸部が入り込むことで、箱状の空間が形成される。この空間がキャビティ(金型内部における樹脂が充填される空間全体)である。したがって、上記凹部で結晶性樹脂成形体1の広角β側の形状を形成し、上記凸部で結晶性樹脂成形体1の狭角α側の形状を形成する。 The mold 2 is closed, and the convex portion enters the concave portion, whereby a box-shaped space is formed. This space is a cavity (the entire space filled with resin inside the mold). Therefore, the shape on the wide angle β side of the crystalline resin molded body 1 is formed by the concave portion, and the shape on the narrow angle α side of the crystalline resin molded body 1 is formed by the convex portion.
 上記箱状の空間を形成する、第一金型200の金属面の一部が、結晶性樹脂成形体1の屈曲部12の広角β側に対応する面である。具体的には、上記対応する面は、上記金属面において屈曲線Lβに対応する位置を含む面であり、本実施形態で上記対応する面は、屈曲線Lβに対応する位置と、該位置から距離xまでの位置との間の範囲とする。本実施形態では、xは屈曲部12の最大厚み(tMax)の2倍以上であることが好ましく、図2はx=2tMaxの例である。 A part of the metal surface of the first mold 200 that forms the box-shaped space is a surface corresponding to the wide angle β side of the bent portion 12 of the crystalline resin molded body 1. Specifically, the corresponding surface is a surface including a position corresponding to the bent line L beta in the metal surface, the corresponding surfaces in the present embodiment, the position corresponding to the bent line L beta, the The range is between the position and the position from the distance x. In the present embodiment, x is preferably at least twice the maximum thickness (t Max ) of the bent portion 12, and FIG. 2 is an example of x = 2t Max .
 断熱層21は、上記のような材料から構成される層であり、本実施形態では、屈曲部12の広角側に対応する面の略全面に設けられる。なお、本明細書において「略全面」には全面を含む。 The heat insulating layer 21 is a layer made of the material as described above. In the present embodiment, the heat insulating layer 21 is provided on substantially the entire surface corresponding to the wide angle side of the bent portion 12. In this specification, “substantially the entire surface” includes the entire surface.
 金属面に断熱層21を形成する方法は特に限定されず、断熱層21を構成する材料の種類等に応じて適宜好ましい方法を採用可能である。以下、断熱層21の形成方法について、具体例を挙げて説明する。なお、断熱層の厚みは、抑えなければならない反り変形量等に応じて適宜調整する。断熱層の厚みの好ましい範囲は材料により異なり、断熱層を構成する材料として、ポリイミドを使用した場合の好ましい厚みは、50~200μmであり、より好ましい厚みは80~150μmである。断熱層を構成する材料として、ジルコニアを使用した場合の好ましい厚みは200~700μmであり、より好ましい厚みは300~500μmである。 The method for forming the heat insulating layer 21 on the metal surface is not particularly limited, and a preferable method can be appropriately employed according to the type of material constituting the heat insulating layer 21. Hereinafter, a method for forming the heat insulating layer 21 will be described with specific examples. Note that the thickness of the heat insulating layer is appropriately adjusted according to the amount of warp deformation to be suppressed. The preferable range of the thickness of the heat insulating layer varies depending on the material. When polyimide is used as the material constituting the heat insulating layer, the preferable thickness is 50 to 200 μm, and the more preferable thickness is 80 to 150 μm. When zirconia is used as a material constituting the heat insulating layer, a preferable thickness is 200 to 700 μm, and a more preferable thickness is 300 to 500 μm.
 断熱層21を構成する材料が、ポリイミド樹脂等の耐熱性が高く熱伝導率が低い樹脂の場合には、高分子断熱層を形成しうるポリイミド前駆体等のポリマー前駆体の溶液を、所望の金属面に塗布し、加熱して溶媒を蒸発させ、さらに加熱してポリマー化することによりポリイミド膜等の断熱層を形成する方法が挙げられる。他の方法としては、耐熱性高分子のモノマー、例えばピロメリット酸無水物と4,4-ジアミノジフェニルエーテルを蒸着重合させる方法、又は、平面形状の金型に関しては、適切な接着方法又は粘着テープ状の高分子断熱フィルムを金属面の所望部分に貼付し断熱層を形成する方法が挙げられる。また、ポリイミド膜を形成し、さらにその表面に金属系硬膜としてのクローム(Cr)膜や窒化チタン(TiN)膜を形成してもよい。 When the material constituting the heat insulation layer 21 is a resin having high heat resistance and low thermal conductivity such as polyimide resin, a solution of a polymer precursor such as a polyimide precursor capable of forming a polymer heat insulation layer is obtained. Examples include a method of forming a heat insulating layer such as a polyimide film by applying to a metal surface, heating to evaporate the solvent, and further heating to polymerize. Other methods include vapor deposition polymerization of heat-resistant polymer monomers such as pyromellitic anhydride and 4,4-diaminodiphenyl ether, or, for planar molds, suitable adhesion methods or adhesive tapes. A method of sticking the polymer heat insulating film to a desired portion of the metal surface to form a heat insulating layer. Alternatively, a polyimide film may be formed, and a chromium (Cr) film or a titanium nitride (TiN) film as a metal-based hard film may be formed on the surface thereof.
 また、断熱層21を構成する材料が、多孔質ジルコニア等の多孔質セラミックの場合には、溶射法を採用することが好ましい。溶射法を採用することで、多孔質ジルコニア等の熱伝導率は所望の範囲に調整されやすくなる。また、多孔質ジルコニア等の内部に気泡が形成され過ぎることにより断熱層21の機械的強度が大幅に低下する等の問題も生じない。このように溶射により断熱層21を形成することで、断熱層21の構造は本発明の用途に適したものになる。溶射による断熱層21の形成は、例えば以下のようにして行うことができる。先ず、原料を溶融させて液体とする。この液体を加速させて、所望の金属面に衝突させる。最後に、衝突し付着した原料を固化させる。このようにすることで、非常に薄い断熱層21が形成される。この非常に薄い断熱層21上にさらに溶融した原料を衝突させ固化させることで、断熱層21の厚みを調整することができる。なお、原料を固化させる方法は、従来公知の冷却手段を用いてもよいし、単に放置することで固化させてもよい。なお、溶射方法は特に限定されず、アーク溶射、プラズマ溶射、フレーム溶射等の従来公知の方法から好ましい方法を適宜選択することができる。溶射法以外の好ましい方法としては、スラリー状のセラミックを金属面に塗布して焼結させる方法が挙げられる。 Further, when the material constituting the heat insulating layer 21 is a porous ceramic such as porous zirconia, it is preferable to employ a thermal spraying method. By adopting the thermal spraying method, the thermal conductivity of porous zirconia or the like is easily adjusted to a desired range. Moreover, problems such as a significant decrease in the mechanical strength of the heat insulating layer 21 due to excessive formation of bubbles inside porous zirconia or the like do not occur. Thus, by forming the heat insulation layer 21 by thermal spraying, the structure of the heat insulation layer 21 becomes suitable for the use of the present invention. Formation of the heat insulation layer 21 by thermal spraying can be performed as follows, for example. First, the raw material is melted to form a liquid. This liquid is accelerated and collides with a desired metal surface. Finally, the material that collides and adheres is solidified. By doing in this way, the very thin heat insulation layer 21 is formed. The thickness of the heat insulation layer 21 can be adjusted by making the melted raw material collide and solidify on the very thin heat insulation layer 21. As a method for solidifying the raw material, a conventionally known cooling means may be used, or the raw material may be solidified simply by leaving it to stand. The thermal spraying method is not particularly limited, and a preferable method can be appropriately selected from conventionally known methods such as arc spraying, plasma spraying, and flame spraying. As a preferable method other than the thermal spraying method, there is a method in which a slurry-like ceramic is applied to a metal surface and sintered.
[結晶性樹脂成形体の製造]
 図3には結晶性樹脂成形体1の製造過程を模式的に示す。図3には金型2のキャビティに原料が充填され、結晶性樹脂成形体1が金型2のキャビティ内部で冷却されている状態を示す。
[Production of crystalline resin molding]
FIG. 3 schematically shows a manufacturing process of the crystalline resin molded body 1. FIG. 3 shows a state in which the raw material is filled in the cavity of the mold 2 and the crystalline resin molded body 1 is cooled inside the cavity of the mold 2.
 原料である結晶性樹脂又は結晶性樹脂組成物を、金型2のキャビティ内部に充填する方法は特に限定されない。例えば、従来公知の混練装置を用いて、金型2に原料を充填できる。 The method for filling the raw material crystalline resin or crystalline resin composition into the cavity of the mold 2 is not particularly limited. For example, the mold 2 can be filled with the raw material using a conventionally known kneading apparatus.
 金型2のキャビティ内で結晶性樹脂成形体1は冷却される。このとき屈曲部12の狭角α側は、広角β側と比較して熱が放出される方向が少なく(図中の白抜き矢印)、また、熱がこもりやすい。このため、狭角α側は広角β側と比較して冷却されにくい。したがって、断熱層を有さない従来の金型を使用した場合には、結晶性樹脂成形体1の屈曲部12の狭角α側は広角β側と比較してより結晶化が進み、結晶化による収縮の度合いがより大きくなる。その結果、結晶性樹脂成形体1の屈曲部12の狭角α側と広角β側の収縮率の相違から、結晶性樹脂成形体1の上部の開口が狭まる方向に応力が発生し、屈曲部12で反りが発生する。しかし、本実施形態では、金型2の上記広角β側に対応する面に断熱層21が設けられている。このため、結晶性樹脂成形体1の広角β側の冷却速度が狭角α側と同程度まで遅くなり、狭角α側と広角β側との冷却速度の差を小さくすることができる。その結果、広角β側の結晶性樹脂の結晶化度と狭角α側の結晶性樹脂の結晶化度との差が小さくなり、屈曲部12の狭角α側と広角β側の収縮率の相違を小さくすることができるため、屈曲部12に発生する反り変形量が小さくなる。 The crystalline resin molding 1 is cooled in the cavity of the mold 2. At this time, the narrow angle α side of the bent portion 12 is less likely to release heat (the white arrow in the figure) than the wide angle β side, and heat tends to be trapped. For this reason, the narrow angle α side is less likely to be cooled than the wide angle β side. Therefore, when a conventional mold having no heat insulating layer is used, crystallization proceeds more on the narrow angle α side of the bent portion 12 of the crystalline resin molded body 1 than on the wide angle β side, and crystallization occurs. The degree of contraction due to is increased. As a result, due to the difference in shrinkage between the narrow angle α side and the wide angle β side of the bent portion 12 of the crystalline resin molded body 1, stress is generated in the direction in which the opening of the upper portion of the crystalline resin molded body 1 is narrowed, and the bent portion 12 warps. However, in this embodiment, the heat insulating layer 21 is provided on the surface of the mold 2 corresponding to the wide angle β side. For this reason, the cooling rate on the wide angle β side of the crystalline resin molded body 1 is reduced to the same level as that on the narrow angle α side, and the difference in cooling rate between the narrow angle α side and the wide angle β side can be reduced. As a result, the difference between the crystallinity of the crystalline resin on the wide-angle β side and the crystallinity of the crystalline resin on the narrow-angle α side is reduced, and the shrinkage ratio between the narrow-angle α side and the wide-angle β side of the bent portion 12 is reduced. Since the difference can be reduced, the amount of warp deformation generated in the bent portion 12 is reduced.
 特に、本実施形態では、屈曲部12の広角β側に対応する面の全体に断熱層21が設けられている。上記対応する面の全体に断熱層21が設けられることで、広角β側の最も冷却されやすい部分である、屈曲線Lβ近傍を全体的に冷却されにくくできる。その結果、屈曲部12に発生する反り変形量を抑えやすい。 In particular, in the present embodiment, the heat insulating layer 21 is provided on the entire surface corresponding to the wide angle β side of the bent portion 12. By heat-insulating layer 21 is provided on the entire of the corresponding surface, the most cooled susceptible portion of the wide angle beta side, it near the bent line L beta difficult to entirely cool. As a result, it is easy to suppress the amount of warp deformation occurring in the bent portion 12.
 また、本実施形態では、屈曲線Lβに対応する位置から最大厚みtMax(屈曲部12の最大厚み)の2倍以上の長さの断熱層21が金型2に設けられている。屈曲線Lβ近傍の周辺に対応する部分にまで断熱層21が設けられることで、屈曲部12に発生する反り変形量をさらに抑えやすい。 Further, in the present embodiment, the maximum thickness t Max insulation layer 21 twice or more in length (the maximum thickness of the bent portion 12) is provided in the die 2 from a position corresponding to the bent line L beta. By heat-insulating layer 21 is provided to a portion corresponding to the periphery of the vicinity of the bending line L beta, further easily suppress warp deformation amount generated in the bent portion 12.
 また、本実施形態では、結晶性樹脂成形体1は底面部10と、底面部10の全周から自立する側壁部11とから構成される。断熱層21による断熱効果が大きすぎて、屈曲部12の広角β側の方が冷却されにくくなると、結晶性樹脂成形体1の上部の開口が広がる方向に、結晶性樹脂成形体1を変形させる応力が屈曲部12に加わる。本実施形態の形状であれば、上記応力による反りが発生しようとする場合であっても、反り変形する部分の周囲が、変形しようとする部分を支えて、反り変形を抑える。したがって、結晶性樹脂成形体1が、底面部10と、底面部10の全周から自立する側壁部11とから構成される場合には、屈曲部12の広角β側が狭角α側よりも冷却されにくくなっても、結晶性樹脂成形体1の反り変形量を小さくできる。 Further, in the present embodiment, the crystalline resin molded body 1 includes a bottom surface portion 10 and a side wall portion 11 that is self-supporting from the entire circumference of the bottom surface portion 10. If the heat insulating effect by the heat insulating layer 21 is too great and the wide angle β side of the bent portion 12 is less likely to be cooled, the crystalline resin molded body 1 is deformed in a direction in which the upper opening of the crystalline resin molded body 1 widens. Stress is applied to the bent portion 12. Even if it is a case where the curvature by the said stress is going to generate | occur | produce if it is the shape of this embodiment, the circumference | surroundings of the part which carries out a warp deformation support the part which is going to deform | transform, and suppress a warp deformation. Therefore, when the crystalline resin molded body 1 is composed of the bottom surface portion 10 and the side wall portion 11 that is self-supporting from the entire circumference of the bottom surface portion 10, the wide angle β side of the bent portion 12 is cooled more than the narrow angle α side. Even if it becomes difficult to be done, the amount of warp deformation of the crystalline resin molded body 1 can be reduced.
 また、本実施形態の金型2を使用すれば、ハイサイクル成形が可能であり、このハイサイクル成形を行えば結晶性樹脂成形体1の生産性を高めるとともに、結晶性樹脂成形体1中の結晶性樹脂の結晶化度を充分高めつつ、結晶性樹脂成形体1の反り変形を抑えられる。なお、ハイサイクル成形とは冷却時間を短く設定して、結晶性樹脂成形体1の製造時間を短くする成形方法を指す。冷却時間とは、射出成形において、射出開始から金型が開くまでの時間の内、射出・保圧時間を除いた時間のことである。一般的に、射出・保圧時間は成形品のゲートシール時間を考慮して設定され、冷却時間は樹脂の計量時間及び成形品の反り変形抑制のための保持時間を考慮して設定される。以下、金型2を用いたハイサイクル成形について説明する。 In addition, if the mold 2 of the present embodiment is used, high cycle molding is possible. If this high cycle molding is performed, the productivity of the crystalline resin molded body 1 is increased and the crystalline resin molded body 1 has a high productivity. The warp deformation of the crystalline resin molded body 1 can be suppressed while sufficiently increasing the crystallinity of the crystalline resin. High cycle molding refers to a molding method in which the cooling time is set short to shorten the manufacturing time of the crystalline resin molded body 1. The cooling time is the time from the start of injection until the mold opens in injection molding, excluding the injection / holding time. In general, the injection / holding time is set in consideration of the gate seal time of the molded product, and the cooling time is set in consideration of the measurement time of the resin and the holding time for suppressing warpage deformation of the molded product. Hereinafter, high cycle molding using the mold 2 will be described.
 上記の通り、断熱層を有さない従来の金型を使用した場合、結晶性樹脂成形体の屈曲部の狭角側は広角側と比較してより結晶化が進む傾向にある。このため、従来の金型を用いる場合、屈曲部の外側の結晶化度が内側の結晶化度と同等レベルに達するまで、結晶性樹脂成形体となる樹脂組成物をキャビティ内に保持する必要がある。つまり、金型の熱(金型温度で調整可能な熱)で屈曲部の外側も内側と同程度の結晶化度になるように、屈曲部の外側の結晶化度と内側の結晶化度とを長時間掛けて合わせる必要があった。 As described above, when a conventional mold having no heat insulating layer is used, the narrow angle side of the bent portion of the crystalline resin molded product tends to be crystallized more than the wide angle side. For this reason, when a conventional mold is used, it is necessary to hold the resin composition to be a crystalline resin molded body in the cavity until the degree of crystallization on the outside of the bent portion reaches the same level as the degree of crystallization on the inside. is there. In other words, the degree of crystallinity on the outer side of the bent part and the degree of crystallinity on the inner side are such that the outside of the bent part has the same degree of crystallinity as the inner side due to the heat of the mold (heat that can be adjusted by the mold temperature) It was necessary to put together for a long time.
 しかし、本実施形態の金型2を使用すれば、屈曲部12の狭角α側と広角β側で同じように結晶化が進むため、従来の金型を用いる場合のように、冷却時間を長くして、広角β側の結晶化度が充分高まるのを待つ必要がない。このため、本実施形態の金型2を用いれば、上記の冷却時間の内、樹脂の計量時間以外の成形品保持時間が短縮され、ハイサイクル成形が可能となる。より具体的には、本実施形態の金型2を用いた場合には、従来の金型を用いた場合と比べ、同一の金型温度においては、冷却時間を半分以下まで短縮しても、屈曲部の外側の結晶化度と内側の結晶化度とを合わせることができ、反り変形量を互いに等しいレベルに抑えることができる。 However, if the mold 2 of the present embodiment is used, crystallization proceeds in the same way on the narrow angle α side and the wide angle β side of the bent portion 12, so that the cooling time is reduced as in the case of using a conventional mold. There is no need to wait until the crystallinity on the wide angle β side is sufficiently increased. For this reason, if the metal mold | die 2 of this embodiment is used, molded product holding time other than the measurement time of resin will be shortened among said cooling time, and high cycle molding will be attained. More specifically, when the mold 2 of the present embodiment is used, even when the cooling time is reduced to half or less at the same mold temperature as compared with the case of using the conventional mold, The crystallinity degree outside the bent portion and the crystallinity degree inside can be matched, and the amount of warpage deformation can be suppressed to the same level.
 上記の通り、本実施形態の金型2を用いれば、結晶性樹脂成形体の生産性を高めることができる。この生産性を高める効果は、使用する樹脂の種類によらないが、ポリアセタール樹脂やポリブチレンテレフタレート樹脂を使用する場合には屈曲部の狭角側と広角側との収縮量差が大きくなる傾向にあり、従来の金型を用いる場合には冷却時間を非常に長く設定する必要があったが、このような樹脂を用いる場合でも、成形時間を大幅に短縮することができる。 As described above, if the mold 2 of the present embodiment is used, the productivity of the crystalline resin molded body can be increased. The effect of increasing the productivity does not depend on the type of resin used, but when polyacetal resin or polybutylene terephthalate resin is used, the difference in shrinkage between the narrow-angle side and the wide-angle side of the bent portion tends to increase. In the case of using a conventional mold, it is necessary to set the cooling time very long. However, even when such a resin is used, the molding time can be greatly shortened.
 なお、断熱層を有する金型を用いると、金型外に熱が排出されにくくなる結果、冷却時間を長く設定する必要があるようにも思われるが、本実施形態の金型2では、キャビティ表面の一部に断熱層が存在するに過ぎないため、断熱層を考慮して冷却時間を長く設定する必要はほとんどない。 When a mold having a heat insulating layer is used, it seems that it is necessary to set a longer cooling time as a result of the difficulty in discharging heat to the outside of the mold. Since only the heat insulating layer exists on a part of the surface, it is almost unnecessary to set the cooling time long considering the heat insulating layer.
 また、金型温度をより高く設定すれば、使用環境下で、より高い温度まで結晶性樹脂成形体は変形せずに形状を保持できる。即ち、より高い使用環境温度において、結晶性樹脂成形体は、反り変形量を小さく抑えた状態で、形状を保持できる。しかしながら、金型温度を高く設定した場合と低く設定した場合との間で、成形時に反り変形量を同程度に抑えるには、金型温度を高くするほど長い冷却時間が必要となる。そのため、従来の金型を用いる場合には、冷却時間を非常に長くしなければならず、金型温度を高めることは困難である。一方、本実施形態の金型2を使用すれば、屈曲部の広角側も狭角側と同様に結晶化が進むため、金型温度を高く設定した場合でも、短い冷却時間で反り変形量を、金型温度を低く設定した場合と同程度に抑えることができる。よって、金型温度を高めることにより、使用環境下での結晶性樹脂成形体の反り変形量を小さく抑えた状態で、結晶性樹脂成形体の形状を保持できる温度を上げつつ、結晶性樹脂成形体の生産性を高めることも可能である。 Also, if the mold temperature is set higher, the crystalline resin molded product can be held in a use environment without deformation up to a higher temperature. That is, at a higher use environment temperature, the crystalline resin molded body can maintain its shape with a small amount of warpage deformation. However, in order to suppress the warpage deformation amount at the same time between molding when the mold temperature is set high and when it is set low, a longer cooling time is required as the mold temperature is increased. Therefore, when using a conventional mold, the cooling time must be very long, and it is difficult to increase the mold temperature. On the other hand, if the mold 2 of this embodiment is used, crystallization proceeds on the wide-angle side of the bent portion as well as on the narrow-angle side. Therefore, even when the mold temperature is set high, the warpage deformation amount can be reduced in a short cooling time. It can be suppressed to the same level as when the mold temperature is set low. Therefore, by increasing the mold temperature, the crystalline resin molding can be performed while increasing the temperature at which the shape of the crystalline resin molding can be maintained while keeping the amount of warping deformation of the crystalline resin molding under the use environment small. It is also possible to increase body productivity.
<変形例>
 次に、変形例について、図4を参照しながら説明する。同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
<Modification>
Next, a modification will be described with reference to FIG. The same constituent elements are denoted by the same reference numerals, and the description thereof is omitted or simplified.
 結晶性樹脂成形体は図4に示すような、紙面に垂直な方向に延びる、エル字型(L字型)の形状を有する結晶性樹脂成形体1Aであってもよい。図4に示す通り、屈曲部12Aの狭角αは90°、広角βは270°である。 The crystalline resin molded body may be a crystalline resin molded body 1A having an el-shaped (L-shaped) shape extending in a direction perpendicular to the paper surface as shown in FIG. As shown in FIG. 4, the narrow angle α of the bent portion 12A is 90 °, and the wide angle β is 270 °.
 また、屈曲部の狭角αは直角ではなく、鋭角(例えば60°)や鈍角(例えば120°)であってもよい。 Further, the narrow angle α of the bent portion is not a right angle but may be an acute angle (for example, 60 °) or an obtuse angle (for example, 120 °).
 以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
<材料>
ポリアセタール樹脂組成物:ガラス繊維無添加、「ジュラコン(登録商標)M90-44」(ポリプラスチックス(株)社製)
ポリブチレンテレフタレート樹脂組成物1:ガラス繊維無添加、「ジュラネックス(登録商標)2002」(ウィンテックポリマー(株)社製)
ポリブチレンテレフタレート樹脂組成物2:ガラス繊維30質量%含有、「ジュラネックス(登録商標)3300」(ウィンテックポリマー(株)社製)
ポリフェニレンサルファイド樹脂組成物1:ガラス繊維無添加、「フォートロン(登録商標)0220A9」(ポリプラスチックス(株)社製)
ポリフェニレンサルファイド樹脂組成物2:ガラス繊維40質量%含有、「フォートロン(登録商標)1140A64」(ポリプラスチックス(株)社製)
<Material>
Polyacetal resin composition: No glass fiber added, “Duracon (registered trademark) M90-44” (manufactured by Polyplastics Co., Ltd.)
Polybutylene terephthalate resin composition 1: no glass fiber added, “Duranex (registered trademark) 2002” (manufactured by Wintech Polymer Co., Ltd.)
Polybutylene terephthalate resin composition 2: 30% by mass of glass fiber, “Duranex (registered trademark) 3300” (manufactured by Wintech Polymer Co., Ltd.)
Polyphenylene sulfide resin composition 1: no glass fiber added, “Fortron (registered trademark) 0220A9” (manufactured by Polyplastics Co., Ltd.)
Polyphenylene sulfide resin composition 2: 40% by mass of glass fiber, “Fortron (registered trademark) 1140A64” (manufactured by Polyplastics Co., Ltd.)
<実施例の金型>
 図1に示すような、矩形の底面部と、底面部の全周から自立する側壁部とを備え、上部が開口した結晶性樹脂成形体を製造するための金型を用いた。即ち、実施例で用いた金型の金型本体の形状は図2に示すものと同様である。なお、実施例で製造した結晶性樹脂成形体の側壁部の厚みと底面部の厚みは、ともに2mmである。また、箱状の結晶性樹脂成形体の外形は、高さは50mm、横80mm、縦40mmの直方体の上部に開口を有する形状である。
<Mold of Example>
As shown in FIG. 1, a mold for producing a crystalline resin molded body having a rectangular bottom surface portion and a side wall portion that is self-supporting from the entire periphery of the bottom surface portion and having an open top was used. That is, the shape of the mold body of the mold used in the example is the same as that shown in FIG. In addition, both the thickness of the side wall part and the thickness of a bottom face part of the crystalline resin molding manufactured in the Example are 2 mm. Further, the outer shape of the box-shaped crystalline resin molded body is a shape having an opening at the top of a rectangular parallelepiped having a height of 50 mm, a width of 80 mm, and a length of 40 mm.
 図5には、断熱層が形成された第一金型を示す。断熱層が形成される位置は、底面部と側壁部との境界部に対応する位置のうち、底面部の長方形の長辺にあたる部分である。断熱層の大きさは、境界部の境界線に対応する位置から両側に幅12.5mmの範囲である。この位置にポリイミド樹脂から構成される断熱テープ(「Scoth(登録商標)ポリイミドテープ 5413」(住友スリーエム(株)社製、厚み0.07mm、熱伝導率0.22(W/m・K))を貼り付けた。 FIG. 5 shows a first mold on which a heat insulating layer is formed. The position where the heat insulating layer is formed is a portion corresponding to the long side of the rectangle of the bottom surface portion among the positions corresponding to the boundary portion between the bottom surface portion and the side wall portion. The size of the heat insulating layer is in the range of 12.5 mm in width on both sides from the position corresponding to the boundary line of the boundary portion. Thermal insulation tape made of polyimide resin at this position ("Scoth (registered trademark) polyimide tape 5413" (manufactured by Sumitomo 3M Limited, thickness 0.07 mm, thermal conductivity 0.22 (W / m · K)) Was pasted.
<比較例の金型>
 断熱テープを金型本体に貼り付けない以外は、実施例の金型と同様である。
<Mold of comparative example>
Except for not attaching the heat insulating tape to the mold body, it is the same as the mold of the example.
<実施例1>
 ポリアセタール樹脂組成物を原料とし、成形機((株)日本製鋼所製、「J110AD」)、実施例の金型を用いて、下記表1に示す成形条件で、箱状の結晶性樹脂成形体を3つ製造した。図6に示すように、結晶性樹脂成形体の上部(開口がある面)の長方形の短辺の長さを、長方形の端と中央とで測定し、端での長さ(図6中のa)と中央での長さ(図6中のb)との差を反り変形量とした。3つの結晶性樹脂成形体について、反り変形量を測定し、反り変形量の平均を算出した。表2に評価結果を示した。
<Example 1>
Using a polyacetal resin composition as a raw material, a box-shaped crystalline resin molded body under molding conditions shown in Table 1 below using a molding machine (manufactured by Nippon Steel Works, "J110AD") and the mold of the example Three were manufactured. As shown in FIG. 6, the length of the rectangular short side of the upper part (surface with opening) of the crystalline resin molded body was measured at the end and center of the rectangle, and the length at the end (in FIG. 6) The difference between a) and the length at the center (b in FIG. 6) was taken as the amount of warpage deformation. About three crystalline resin moldings, the amount of warp deformation was measured and the average of the amount of warp deformation was calculated. Table 2 shows the evaluation results.
<比較例1>
 比較例の金型を用い、結晶性樹脂成形体を5つ製造した以外は、実施例1と同様の方法で、結晶性樹脂成形体を製造した。そして、同様の方法で反り変形量の平均値を算出した。結果を表2に示した。
<Comparative Example 1>
A crystalline resin molded body was manufactured in the same manner as in Example 1 except that five crystalline resin molded bodies were manufactured using the mold of the comparative example. And the average value of the amount of warp deformation was computed by the same method. The results are shown in Table 2.
<実施例2>
 原料としてポリブチレンテレフタレート樹脂組成物1を用いた以外は、実施例1と同様の方法で、結晶性樹脂成形体を製造した。そして、同様の方法で反り変形量の平均値を算出した。結果を表2に示した。
<Example 2>
A crystalline resin molded body was produced in the same manner as in Example 1 except that the polybutylene terephthalate resin composition 1 was used as a raw material. And the average value of the amount of warp deformation was computed by the same method. The results are shown in Table 2.
<比較例2>
 比較例の金型を用い、結晶性樹脂成形体を5つ製造した以外は、実施例2と同様の方法で、結晶性樹脂成形体を製造した。そして、同様の方法で反り変形量の平均値を算出した。結果を表2に示した。
<Comparative Example 2>
A crystalline resin molded body was manufactured in the same manner as in Example 2, except that five crystalline resin molded bodies were manufactured using the mold of the comparative example. And the average value of the amount of warp deformation was computed by the same method. The results are shown in Table 2.
<実施例3>
 原料としてポリブチレンテレフタレート樹脂組成物2を用い、結晶性樹脂成形体を5つ製造した以外は、実施例1と同様の方法で、結晶性樹脂成形体を製造した。そして、同様の方法で反り変形量の平均値を算出した。結果を表2に示した。
<Example 3>
A crystalline resin molded body was manufactured in the same manner as in Example 1 except that the polybutylene terephthalate resin composition 2 was used as a raw material and five crystalline resin molded bodies were manufactured. And the average value of the amount of warp deformation was computed by the same method. The results are shown in Table 2.
<比較例3>
 比較例の金型を用いた以外は、実施例3と同様の方法で、結晶性樹脂成形体を製造した。そして、同様の方法で反り変形量の平均値を算出した。結果を表2に示した。
<Comparative Example 3>
A crystalline resin molded body was produced in the same manner as in Example 3 except that the comparative mold was used. And the average value of the amount of warp deformation was computed by the same method. The results are shown in Table 2.
<実施例4>
 原料としてポリフェニレンサルファイド樹脂組成物1を用い、成形機として(株)ソディック製の「TR100EH」を用い、結晶性樹脂成形体を5つ製造した以外は、実施例1と同様の方法で、結晶性樹脂成形体を製造した。そして、同様の方法で反り変形量の平均値を算出した。結果を表2に示した。
<Example 4>
The crystallinity is the same as in Example 1, except that polyphenylene sulfide resin composition 1 is used as a raw material, and so-called “TR100EH” manufactured by Sodick Co., Ltd. is used as a molding machine, and five crystalline resin moldings are produced. A resin molded body was produced. And the average value of the amount of warp deformation was computed by the same method. The results are shown in Table 2.
<比較例4>
 比較例の金型を用いた以外は、実施例4と同様の方法で、結晶性樹脂成形体を製造した。そして、同様の方法で反り変形量の平均値を算出した。結果を表2に示した。
<Comparative example 4>
A crystalline resin molded body was produced in the same manner as in Example 4 except that the comparative mold was used. And the average value of the amount of warp deformation was computed by the same method. The results are shown in Table 2.
<実施例5>
 原料としてポリフェニレンサルファイド樹脂組成物2を用い、結晶性樹脂成形体を5つ製造した以外は、実施例1と同様の方法で、結晶性樹脂成形体を製造した。そして、同様の方法で反り変形量の平均値を算出した。結果を表2に示した。
<Example 5>
A crystalline resin molded article was produced in the same manner as in Example 1 except that the polyphenylene sulfide resin composition 2 was used as a raw material and five crystalline resin molded articles were produced. And the average value of the amount of warp deformation was computed by the same method. The results are shown in Table 2.
<比較例5>
 比較例の金型を用いた以外は、実施例5と同様の方法で、結晶性樹脂成形体を製造した。そして、同様の方法で反り変形量の平均値を算出した。結果を表2に示した。
<Comparative Example 5>
A crystalline resin molded body was produced in the same manner as in Example 5 except that the comparative mold was used. And the average value of the amount of warp deformation was computed by the same method. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から、断熱層を形成した金型を用いれば、結晶性樹脂成形体の反り変形量を抑えられることが確認された。また、ガラス繊維を含まない原料を用いた場合に、断熱層が形成された金型を用いることによる効果が特に大きく現れることが確認された。 From Table 2, it was confirmed that the amount of warp deformation of the crystalline resin molded body can be suppressed by using a mold in which a heat insulating layer is formed. In addition, it was confirmed that the effect of using a mold having a heat insulating layer appears particularly greatly when a raw material not containing glass fibers is used.
<実施例6>
 ポリアセタール樹脂組成物、実施例1で使用した金型を用い、成形機(住友重機械工業(株)社製、「住友SE100D」)にて、シリンダー温度190℃、金型温度40℃、射出速度30mm/s、スクリュ回転数100rpm、冷却時間4秒の条件で結晶性樹脂成形体を3つ製造した。また、冷却時間20秒の場合、40秒の場合についても同様に結晶性樹脂成形体を3つずつ製造した。各3つずつの結晶性樹脂成形体について、上記と同様の方法で反り変形量を測定し、反り変形量の平均を算出した。結果を表3に示した。
<Example 6>
Using the polyacetal resin composition and the mold used in Example 1, with a molding machine (manufactured by Sumitomo Heavy Industries, Ltd., “Sumitomo SE100D”), cylinder temperature 190 ° C., mold temperature 40 ° C., injection speed Three crystalline resin moldings were produced under the conditions of 30 mm / s, screw rotation speed 100 rpm, and cooling time 4 seconds. Further, in the case of cooling time of 20 seconds and in the case of 40 seconds, three crystalline resin molded bodies were similarly produced. For each of the three crystalline resin moldings, the amount of warpage deformation was measured by the same method as described above, and the average amount of warpage deformation was calculated. The results are shown in Table 3.
<比較例6>
 金型に断熱層が形成されていない以外は、実施例6と同様の方法で、結晶性樹脂成形体を製造した。そして、同様の方法で反り変形量の平均値を算出した。結果を表3に示した。
<Comparative Example 6>
A crystalline resin molded body was produced in the same manner as in Example 6 except that the heat insulating layer was not formed on the mold. And the average value of the amount of warp deformation was computed by the same method. The results are shown in Table 3.
<実施例7>
 金型温度を80℃に設定した以外は、実施例6と同様の方法で、結晶性樹脂成形体を製造した。そして、同様の方法で反り変形量の平均値を算出した。結果を表3に示した。
<Example 7>
A crystalline resin molded body was produced in the same manner as in Example 6 except that the mold temperature was set to 80 ° C. And the average value of the amount of warp deformation was computed by the same method. The results are shown in Table 3.
<比較例7>
 金型に断熱層が形成されていない以外は、実施例7と同様の方法で、結晶性樹脂成形体を製造した。そして、同様の方法で反り変形量の平均値を算出した。結果を表3に示した。
<Comparative Example 7>
A crystalline resin molded body was produced in the same manner as in Example 7 except that the heat insulating layer was not formed on the mold. And the average value of the amount of warp deformation was computed by the same method. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、例えば変形量を約1mmに抑制しようとすると、断熱層を有さない金型を用いた場合には、金型温度を40℃に下げたとしても、少なくとも40秒の冷却時間を要するのに対し、断熱層を有する金型を用いれば、金型温度を80℃に上げた場合でも4秒の冷却時間で達成できる。即ち、本発明の金型を用いればハイサイクル成形が可能である。また、金型温度を高く設定して使用環境下での結晶性樹脂成形体の反り変形量を小さく抑えた状態で、結晶性樹脂成形体の形状を保持できる温度も高められる。使用環境下での結晶性樹脂成形体の反り変形量を小さく抑えた状態で、結晶性樹脂成形体の形状を保持できる温度と生産性を、同時に高めることが可能である。 As is apparent from Table 3, for example, when the amount of deformation is to be suppressed to about 1 mm, when a mold having no heat insulating layer is used, even if the mold temperature is lowered to 40 ° C., at least 40 seconds. However, if a mold having a heat insulating layer is used, a cooling time of 4 seconds can be achieved even when the mold temperature is raised to 80 ° C. That is, high cycle molding is possible by using the mold of the present invention. In addition, the temperature at which the shape of the crystalline resin molded body can be maintained can be increased in a state where the mold temperature is set high and the amount of warp deformation of the crystalline resin molded body in the usage environment is kept small. It is possible to simultaneously increase the temperature and productivity at which the shape of the crystalline resin molded body can be maintained in a state where the amount of warp deformation of the crystalline resin molded body in the use environment is kept small.
 1   結晶性樹脂成形体
 10  底面部
 11  側壁部
 12  屈曲部
 2   金型
 20  金型本体
 200 第一金型
 201 第二金型
 21  断熱層
DESCRIPTION OF SYMBOLS 1 Crystalline resin molding 10 Bottom part 11 Side wall part 12 Bending part 2 Mold 20 Mold main body 200 First mold 201 Second mold 21 Thermal insulation layer

Claims (9)

  1.  金型を用いて、屈曲部を有する結晶性樹脂成形体を、前記屈曲部で発生する反りを抑えて成形する成形方法であって、
     前記結晶性樹脂成形体を製造するための金型の金属面における、前記屈曲部の広角側に対応する面の少なくとも一部に断熱層が形成された金型を用いて結晶性樹脂成形体を成形する成形方法。
    Using a mold, a molding method for molding a crystalline resin molded body having a bent portion while suppressing warpage occurring at the bent portion,
    A crystalline resin molded body using a mold in which a heat insulating layer is formed on at least a part of a surface corresponding to the wide angle side of the bent portion in the metal surface of the mold for producing the crystalline resin molded body. Molding method to mold.
  2.  前記結晶性樹脂成形体は、底面部と、前記底面部の全周から自立する側壁部とから構成され、
     前記屈曲部は、前記底面と前記側壁部との境界部から構成される請求項1に記載の成形方法。
    The crystalline resin molded body is composed of a bottom surface portion and a side wall portion that is self-supporting from the entire circumference of the bottom surface portion,
    The said bending part is a shaping | molding method of Claim 1 comprised from the boundary part of the said bottom face and the said side wall part.
  3.  前記断熱層は、前記屈曲部の広角側の屈曲線に対応する位置からの幅が前記屈曲部の最大厚みの2倍以上となるように形成される請求項1又は2に記載の成形方法。 The molding method according to claim 1 or 2, wherein the heat insulating layer is formed such that a width from a position corresponding to a bending line on the wide-angle side of the bent portion is twice or more a maximum thickness of the bent portion.
  4.  前記結晶性樹脂成形体は、無機充填剤を実質的に含有しない請求項1から3のいずれかに記載の成形方法。 The molding method according to any one of claims 1 to 3, wherein the crystalline resin molded body does not substantially contain an inorganic filler.
  5.  前記結晶性樹脂成形体は、ポリアセタール樹脂成形体である請求項1から4のいずれかに記載の成形方法。 The molding method according to any one of claims 1 to 4, wherein the crystalline resin molded body is a polyacetal resin molded body.
  6.  前記結晶性樹脂成形体は、ポリブチレンテレフタレート樹脂成形体である請求項1から4のいずれかに記載の成形方法。 The molding method according to any one of claims 1 to 4, wherein the crystalline resin molded body is a polybutylene terephthalate resin molded body.
  7.  前記結晶性樹脂成形体は、ポリアリーレンサルファイド樹脂成形体である請求項1から4のいずれかに記載の成形方法。 The molding method according to any one of claims 1 to 4, wherein the crystalline resin molded body is a polyarylene sulfide resin molded body.
  8.  屈曲部を有する結晶性樹脂成形体を成形するための金型であって、
     金属から構成され、第一金型と、前記第一金型に対向して配置される第二金型とを有する金型本体と、
     前記第一金型及び/又は前記第二金型の金属面における、前記屈曲部の広角側に対応する面の少なくとも一部に形成され、金型本体を構成する金属よりも熱伝導率が低い断熱層と、を備える金型。
    A mold for molding a crystalline resin molded body having a bent portion,
    A mold body made of metal and having a first mold and a second mold disposed to face the first mold,
    The metal surface of the first mold and / or the second mold is formed on at least a part of the surface corresponding to the wide angle side of the bent portion and has a lower thermal conductivity than the metal constituting the mold body. A mold comprising a heat insulating layer.
  9.  請求項8に記載の金型を用いて、屈曲部を有する結晶性樹脂成形体を製造する方法であって、同一の金型温度で、前記金型と、断熱層が形成されていない以外は前記金型と同じ金型とを用いて、屈曲部を有する結晶性樹脂成形体を製造した場合に、前記屈曲部で発生する反り変形量が互いに等しくなる冷却時間を、それぞれの金型についてt及びtとしたときに、t≦t/2が満たされる製造方法。 A method for producing a crystalline resin molded body having a bent portion using the mold according to claim 8, except that the mold and the heat insulating layer are not formed at the same mold temperature. When a crystalline resin molding having a bent portion is manufactured using the same die as the die, the cooling time for which the warp deformation amounts generated in the bent portion are equal to each other is set to t when set to 1 and t 2, the manufacturing method of t 1t 2/2 is satisfied.
PCT/JP2013/069526 2012-08-07 2013-07-18 Molding method and mold WO2014024656A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-175436 2012-08-07
JP2012175436 2012-08-07

Publications (1)

Publication Number Publication Date
WO2014024656A1 true WO2014024656A1 (en) 2014-02-13

Family

ID=50067890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069526 WO2014024656A1 (en) 2012-08-07 2013-07-18 Molding method and mold

Country Status (2)

Country Link
TW (1) TW201417979A (en)
WO (1) WO2014024656A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08169035A (en) * 1994-07-28 1996-07-02 Asahi Chem Ind Co Ltd Injection molding method for synthetic resin
JP2001113572A (en) * 1999-10-20 2001-04-24 Olympus Optical Co Ltd Mold for injection molding
JP2008213409A (en) * 2007-03-07 2008-09-18 Mitsubishi Engineering Plastics Corp Mold assembly, injection molding method, and molded article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08169035A (en) * 1994-07-28 1996-07-02 Asahi Chem Ind Co Ltd Injection molding method for synthetic resin
JP2001113572A (en) * 1999-10-20 2001-04-24 Olympus Optical Co Ltd Mold for injection molding
JP2008213409A (en) * 2007-03-07 2008-09-18 Mitsubishi Engineering Plastics Corp Mold assembly, injection molding method, and molded article

Also Published As

Publication number Publication date
TW201417979A (en) 2014-05-16

Similar Documents

Publication Publication Date Title
JP5812631B2 (en) Manufacturing method of injection molded products
EP2476535A1 (en) Process for producing injection-molded article
JP2011104789A (en) Method of manufacturing metallic composite laminated component
US11198784B2 (en) Resin composition
KR101648185B1 (en) Manufacturing method for mold
WO2012121066A1 (en) Production method for injection-molded article
WO2014024656A1 (en) Molding method and mold
WO2013035443A1 (en) Method for producing resin composite molded body and resin composite molded body
WO2012121075A1 (en) Production method for injection-molded article
WO2012121065A1 (en) Production method for injection-molded article
JP6026846B2 (en) Method for producing mold and crystalline thermoplastic resin molded body
KR102507218B1 (en) Thermotropic liquid crystal polyester resin composition and manufacturing method thereof.
JP5642947B2 (en) Manufacturing method of injection molded products
WO2013054592A1 (en) Die and method for producing resin molded body
JPWO2005054345A1 (en) Film circuit board production process tape
JP5623823B2 (en) Oriented film
WO2014132702A1 (en) Insulated mold and molding manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13828184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP