WO2014024547A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2014024547A1
WO2014024547A1 PCT/JP2013/064910 JP2013064910W WO2014024547A1 WO 2014024547 A1 WO2014024547 A1 WO 2014024547A1 JP 2013064910 W JP2013064910 W JP 2013064910W WO 2014024547 A1 WO2014024547 A1 WO 2014024547A1
Authority
WO
WIPO (PCT)
Prior art keywords
styrene
layer
mass
inner liner
thickness
Prior art date
Application number
PCT/JP2013/064910
Other languages
French (fr)
Japanese (ja)
Inventor
剛史 土田
睦樹 杉本
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012174857A external-priority patent/JP5342683B1/en
Priority claimed from JP2012198216A external-priority patent/JP5566430B2/en
Priority claimed from JP2012249377A external-priority patent/JP5466283B1/en
Priority claimed from JP2012276792A external-priority patent/JP5466288B1/en
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Publication of WO2014024547A1 publication Critical patent/WO2014024547A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/12Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim
    • B60C5/14Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim with impervious liner or coating on the inner wall of the tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0008Compositions of the inner liner
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/12Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim
    • B60C5/14Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim with impervious liner or coating on the inner wall of the tyre
    • B60C2005/145Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim with impervious liner or coating on the inner wall of the tyre made of laminated layers

Definitions

  • the present invention relates to a pneumatic tire provided with an inner liner.
  • the inner liner is disposed on the inside of the tire, and has a function of reducing air leakage from the inside to the outside of the pneumatic tire to maintain the tire internal pressure constant.
  • a material having such a function rubber compositions having low gas permeability such as butyl-based rubber are conventionally used.
  • a film made of a material containing a thermoplastic resin may be used instead of the butyl rubber composition.
  • thermoplastic elastomer having high air permeation resistance is inferior in vulcanization adhesion to insulation rubber and carcass rubber adjacent to the inner liner than butyl rubber. If the vulcanization adhesion of the inner liner is low, air is entrapped between the inner liner and insulation rubber or carcass rubber, causing a so-called air-in phenomenon in which something like a small balloon appears. Although there is no problem in the performance of the tire, the presence of the air-in gives the user the impression that the appearance is bad.
  • Patent Document 1 JP-A-9-019987 discloses a polyamide-based resin and a polyester-based resin as a laminate suitable for a pneumatic tire having an air permeation preventing layer such as an inner liner layer or the like, which keeps air pressure constant. And at least one of a gas barrier layer (A) and an adhesive layer (B) selected from the group consisting of polyarylate resins, polyamide alloys and polyester alloys, in at least two layers, There is disclosed a laminate of a laminate film and a rubber layer, which comprises a laminate film irradiated with an electron beam from the surface, and the adhesive layer (B) is heat-bonded to the rubber layer (R).
  • the laminate has a problem in that the adhesive layer comes into contact with the bladder in a heated state in the vulcanization step and adheres to the bladder.
  • thermoplastic elastomer composition (A) as a dispersed phase, a thermoplastic resin composition (a thermoplastic resin composition (A) as a thermoplastic elastomer composition having air resistance.
  • a thermoplastic elastomer composition is disclosed in which B) is a matrix and the thermoplastic resin composition is a blend of two or more thermoplastic resins.
  • nylon resin is used as the thermoplastic resin composition, but nylon resin is hard at room temperature and unsuitable as an inner liner for tires.
  • the thermoplastic elastomer composition does not adhere to the rubber layer by vulcanization. Therefore, when the thermoplastic elastomer is used for the inner liner, an adhesive layer for vulcanization is further required, which is disadvantageous from the viewpoint of productivity.
  • JP-A 2008-024219 discloses that maleic anhydride modified hydrogenated styrene-ethylene-butadiene-styrene block copolymer is dispersed in a good air-blocking ethylene-vinyl alcohol copolymer. Also, a flexible gas barrier layer is disclosed. Also disclosed is an inner liner layer produced by sandwiching the gas barrier layer with a thermoplastic polyurethane layer and further applying a rubber paste (70/30 of butyl rubber / natural rubber dissolved in toluene) on the surface to be adhered to the tire rubber. ing.
  • a rubber paste 70/30 of butyl rubber / natural rubber dissolved in toluene
  • the soft resin-dispersed modified ethylene-vinyl alcohol copolymer has low adhesion and may peel off from the thermoplastic polyurethane layer.
  • the flexible resin is dispersed in the modified ethylene-vinyl alcohol copolymer of the flexible resin, the modified ethylene-vinyl alcohol copolymer in the matrix is poor in bending fatigue and is broken during running of the tire.
  • a rubber paste is applied to the surface to be bonded to the tire rubber, a process different from the normal inner liner manufacturing process is required, resulting in poor productivity.
  • Patent Document 4 JP-A-2005-343379 discloses an inner liner designed to have a thickness at a shoulder portion larger than a thickness at a tire crown portion in order to effectively suppress the occurrence of a crack in the inner liner layer. Layers are disclosed. However, when the thickness dimension is increased, the weight is increased, which causes a problem from the viewpoint of reducing the fuel consumption of the tire.
  • Patent Document 5 proposes to improve adhesion by using a petroleum resin or terpene resin as a tackifier for SIBS which is a thermoplastic elastomer.
  • SIBS a petroleum resin or terpene resin
  • a polyamide-based polymer is blended, and there is a problem that the resistance to flex cracking is lowered.
  • JP-A-2010-100675 uses natural rosin, terpene, chroman indene resin, petroleum resin or alkylphenol resin as a tackifier in a blend of SIBS and a sulfur-crosslinkable polymer. It has been proposed to improve the adhesion of carcass ply rubber.
  • SIBS is a matrix (sea portion) and sulfur if the amount of the sulfur-crosslinkable polymer is 100 parts by weight or less
  • the crosslinkable polymer forms a domain structure (island portion) and adhesion at the contact interface with the carcass rubber is not improved.
  • the amount of sulfur-crosslinkable polymer is 100 parts by weight or more, the gas barrier property is lowered except for butyl rubber, and the adhesive strength is lowered in butyl rubber, and the adhesiveness is increased depending on the blended polymer, and the thickness is 600 ⁇ m or less There is a problem that the film of can not be produced.
  • WO 2008/029781 produces tires with strips of film laminates in which a thermoplastic resin and a thermoplastic elastomer are blended. By forming a laminate, gas barrier properties and adhesion can be improved, and bonding between ribbon-like strips is enabled.
  • the gauge at the unvulcanized green cover of the film laminate is constant, and if the gauge is made thin, there is a possibility that the finished tire after vulcanization at the buttress portion and the like may become thin.
  • a first object of the present invention is a pneumatic tire provided with an inner liner having excellent air permeability and good adhesion to adjacent rubber, and air having reduced rolling resistance and excellent low temperature durability. It is to provide a tire.
  • a second object of the present invention is to provide a polymer laminate having good vulcanization adhesion with adjacent rubber and suppressing an increase in rolling resistance, and having excellent air permeability resistance and flex crack growth resistance. It is providing a pneumatic tire.
  • a third object of the present invention is to provide an inner liner having excellent vulcanization adhesion with adjacent rubber and at the same time suppressing an increase in rolling resistance, and having excellent air permeability resistance and flex crack growth resistance.
  • Another object of the present invention is to provide a pneumatic tire in which the occurrence of air-in is suppressed.
  • a fourth object of the present invention is to provide an inner liner having excellent vulcanization adhesion with adjacent rubber and at the same time suppressing an increase in rolling resistance, and having excellent air permeability resistance and flex crack growth resistance.
  • Another object of the present invention is to provide a pneumatic tire in which the occurrence of air-in is suppressed.
  • the present invention is a pneumatic tire comprising an inner liner on the inner side of a carcass ply tire mounted between a pair of bead portions, the inner liner comprising a polymer laminate, the polymer laminate comprising styrene-isobutylene -A first layer comprising a first A polymer composition containing a styrene-triblock copolymer, a first layer having a thickness of 0.05 mm or more and 0.8 mm or less, a styrene-isoprene-styrene triblock copolymer, and a styrene-isobutylene diblock copolymer And a second layer having a thickness of 0.01 mm or more and 0.8 mm or less comprising the second A polymer composition containing at least one of the combination, and at least one of the first A polymer composition and the second A polymer composition is epoxy 0.5% or more by mass of hydrogenated styrene-butadiene-s
  • the epoxidized styrene-butadiene-styrene triblock copolymer has a weight average molecular weight of 10,000 or more and 400,000 or less, and a styrene component content of 10% by mass or more and 30% by mass or less
  • the epoxy equivalent is preferably 50 or more and 1,000 or less.
  • the present invention is a pneumatic tire comprising an inner liner on the inner side of a carcass ply tire mounted between a pair of bead portions, the inner liner comprising a polymer laminate, the polymer laminate comprising styrene-isobutylene -A thickness consisting of a first layer comprising a first B polymer composition containing a styrene triblock copolymer and a second layer B containing a styrene-isobutylene diblock copolymer and having a thickness of 0.05 mm or more and 0.6 mm or less At least one of the first B polymer composition and the second B polymer composition containing a second layer having a thickness of 0.01 mm or more and 0.3 mm or less, and 0.1 mass of a tackifier per 100 mass parts of the polymer component And the second layer is disposed in contact with the rubber layer of the carcass ply, and the inner liner is It is thicker Ge shoulder position Pe than the thickness Gc
  • the tackifier preferably has a weight average molecular weight of 1 ⁇ 10 2 or more and 1 ⁇ 10 6 or less and a softening point of 50 ° C. or more and 150 ° C. or less.
  • the present invention is a pneumatic tire having an inner liner on the inner side of a carcass ply tire mounted between a pair of bead portions, the inner liner comprising a styrene-isobutylene-styrene triblock copolymer having a polymer component.
  • a first layer with a thickness of 0.05 mm or more and 0.6 mm or less comprising a first C polymer composition containing 75% by mass to 99.5% by mass and isobutylene-based modified copolymer 0.5% by mass to 25% by mass
  • a second C polymer composition comprising a polymer component containing 10% by mass to 100% by mass of a styrene-isobutylene block copolymer and 0% by mass to 90% by mass of a styrene-isobutylene-styrene triblock copolymer
  • the isobutylene-based modified copolymer includes an isobu-based modified copolymer including a second layer of 0.01 mm or more and 0.3 mm or less.
  • a random copolymer consisting of a polymer block mainly composed of len and a polymer block mainly composed of an aromatic vinyl compound, wherein at least one block is a random copolymer containing ⁇ -pinene and the second layer is a carcass ply rubber
  • the inner liner is disposed in contact with the layer, and the inner liner has a thickness Ge at the shoulder position Pe that is greater than the thickness Gc at the crown center position Pc.
  • the aromatic vinyl compound of the isobutylene-based modified copolymer is preferably styrene.
  • the present invention is a pneumatic tire comprising an inner liner on the tire inner side of a carcass ply mounted between a pair of bead portions, the inner liner comprising a styrene-isobutylene-styrene triblock copolymer.
  • a thickness of 0.01 mm or more and 0.3 mm or less which comprises a first layer having a thickness of 0.05 mm or more and 0.6 mm or less made of a 1D polymer composition, and a second D polymer composition containing a styrene-isobutylene diblock copolymer
  • the second D polymer composition and at least one of the first D polymer composition and the second D polymer composition is an acid having an unsaturated bond in the styrene block portion of the styrene-isobutylene-styrene triblock copolymer in the polymer component.
  • an inner liner thickness Ge shoulder position Pe is greater than the thickness Gc at the crown center position Pc.
  • the SIBS modified copolymer preferably has a styrene component content of 10% by mass to 30% by mass, and a weight average molecular weight of 50,000 to 400,000.
  • the normal L is drawn from the ground contact end Te of the tread portion to the tire inner diameter direction with respect to the boundary line between the carcass ply and the inner liner
  • the intersection point of the boundary line between the carcass ply and the inner liner and the tire center line CL is a crown center position Pc
  • the distance along the contour of the inner liner from the shoulder position Pe to the crown center position Pc is a shoulder distance Wc
  • the thick portion of the inner liner is preferably formed in a region having a width of at least 10% of the shoulder distance Wc from the shoulder position Pe to the crown center position Pc side.
  • the thick portion of the inner liner is preferably formed in a region having a width of at least 50% of the shoulder distance Wc from the shoulder position Pe to the crown center position Pc.
  • the thick portion of the inner liner is the shoulder position Pe It is preferable to form in the area
  • the thick portion of the inner liner is preferably formed in a region having a width of 100% or less of the side distance Ws on the tire maximum width position Ps side from the shoulder position Pe.
  • the thickness Ge of the shoulder position Pe is preferably 120% or more and 500% or less of the thickness Gc at the crown center position Pc of the inner liner.
  • the styrene-isobutylene-styrene triblock copolymer has a styrene component content of 10% by mass to 30% by mass, and a weight average molecular weight of 50,000 to 400,000 preferable.
  • the epoxidized styrene-butadiene-styrene triblock copolymer has a weight average molecular weight of 10,000 or more and 400,000 or less, and a styrene component content of 10% by mass or more and 30% by mass or less
  • the epoxy equivalent is preferably 50 or more and 1,000 or less.
  • a pneumatic tire provided with an inner liner having good air permeability and good adhesion to adjacent rubber, and reduced rolling resistance, low temperature It is possible to obtain a pneumatic tire excellent in durability.
  • a polymer laminate having good vulcanization adhesion with adjacent rubber and in which the increase in rolling resistance is suppressed, and excellent air permeability and resistance to air It is possible to obtain a pneumatic tire having flex crack growth properties.
  • the present invention has an inner liner having good vulcanization adhesion with the adjacent rubber and suppressing an increase in rolling resistance, and has excellent air permeability and resistance to air. It is possible to obtain a pneumatic tire having flex crack growth properties and in which the occurrence of air-in is suppressed.
  • the present invention has an inner liner having good vulcanization adhesion with the adjacent rubber and suppressing an increase in rolling resistance, and has excellent air permeability and resistance to air. It is possible to provide a pneumatic tire having flex crack growth properties and further suppressing the occurrence of air-in.
  • the thickness dimension at the shoulder portion of the inner liner is configured to be larger than the thickness dimension at the tire crown portion, the durability of the inner liner at the shoulder portion is improved. For this reason, it is possible to effectively suppress tearing and deformation due to the strength reduction of the inner liner and the reduction of the peeling force, and it is possible to effectively suppress the air leakage.
  • the SIBS is used in the first layer
  • the SIB is used in the second layer
  • the SIBS modified copolymer is used in at least one of the first layer and the second layer, even if the shoulder portion is designed to be thick, butyl Compared to the case where a rubber system is used, the increase in weight of the tire can be suppressed, and the deterioration of rolling resistance can be prevented.
  • the pneumatic tire includes an inner liner on the inner side of a carcass ply tire mounted between a pair of bead portions, the inner liner is made of a polymer laminate, and the polymer laminate is styrene-isobutylene.
  • -A first layer comprising a first A polymer composition containing a styrene-triblock copolymer, a first layer having a thickness of 0.05 mm or more and 0.8 mm or less, a styrene-isoprene-styrene triblock copolymer, and a styrene-isobutylene diblock copolymer
  • a second layer having a thickness of 0.01 mm or more and 0.8 mm or less comprising the second A polymer composition containing at least one of the combination, and at least one of the first A polymer composition and the second A polymer composition is epoxy 0.5% by mass or more of fluorinated styrene-butadiene-styrene triblock copolymer 4
  • the second layer is disposed to be in contact with the rubber layer of the carcass ply, and the inner liner is thicker at the shoulder position Pe than at the crown center position Pc and has a thickness Ge It is 0.2
  • FIG. 1 is a schematic cross-sectional view of the right half of the pneumatic tire
  • FIG. 2 is an enlarged schematic cross-sectional view of its tread portion.
  • the pneumatic tire 1 has a tread portion 2 and sidewall portions 3 and bead portions 4 so as to form a toroidal shape from both ends of the tread portion.
  • the bead core 5 is embedded in the bead portion 4.
  • a carcass ply 6 is provided from one bead portion 4 to the other bead portion, and both ends are folded around and locked around the bead core 5, and at least two sheets are provided outside the crown portion of the carcass ply 6 And a belt layer 7 consisting of plies.
  • the belt layer 7 usually crosses two plies made of cords such as steel cords or aramid fibers between the plies so that the cords usually form an angle of 5 to 30 ° with respect to the tire circumferential direction.
  • a topping rubber layer can be provided on the outer sides of both ends of the belt layer to reduce the peeling of both ends of the belt layer.
  • organic fiber cords such as polyester, nylon, and aramid are arranged at approximately 90 ° in the tire circumferential direction, and in the region surrounded by the carcass ply and its turn, from the upper end of the bead core 5 to the sidewall direction
  • An extending bead apex 8 is arranged.
  • an inner liner 9 extending from one bead portion 4 to the other bead portion 4 is disposed on the inner side in the tire radial direction of the carcass ply 6.
  • the position, distance and width in the inner liner 9 are defined as follows.
  • ⁇ Shoulder position Pe> In the tire meridional section, a normal L is drawn from the ground contact end Te of the tread portion to the tire inner radial direction with respect to the boundary line of the carcass ply and the inner liner, and an intersection point with the boundary line is defined as a shoulder position Pe.
  • the ground contact end Te of the tread portion is defined as a line extending the outer contour of the tread portion and an intersection point extending the outer contour of the shoulder portion.
  • ⁇ Inner liner thickness> The thickness of the crown center position Pc of the inner liner is Gc, the thickness at the shoulder position Pe is Ge, and the thickness at the maximum width position Ps is Gs.
  • the thick portion of the inner liner is preferably formed in a region having a width of at least 10% of the shoulder distance Wc from the shoulder position Pe toward the crown center position Pc.
  • the thick portion is preferably formed in a region having a width of 100% or less of the shoulder distance Wc.
  • the thick portion is preferably formed in a region having a width of at least 50% of the shoulder distance Wc.
  • the thick portion of the inner liner has a width of at least 20% of the side distance Ws and is formed in a region of 100% or less of the side distance Ws on the side of the maximum width position Ps from the shoulder position Pe. preferable.
  • the thick portion By setting the thick portion in the range of 20% or more and 100% or less of the side distance Ws from the shoulder position Pe, deformation of the shoulder portion where bending deformation is severed during tire running is suppressed, and stress relaxation in this region is effectively effective. Can be achieved.
  • the thick portion be formed in a range of 20% to 80% of the side distance Ws from the shoulder position Pe.
  • the thickness Ge of the shoulder position Pe is larger than the thickness Gc at the crown center position Pc. For this reason, the durability of the inner liner at the shoulder portion is improved, and it is possible to suppress tearing, deformation, and adhesion decrease due to the strength reduction of the inner liner, and as a result, the air leakage of the tire can be effectively suppressed. it can.
  • the thickness Ge of the shoulder position Pe is 0.2 mm or more and 1.9 mm or less.
  • the Ge is more preferably 0.3 mm or more and 1.9 mm or less.
  • the thickness Ge of the shoulder position Pe is preferably 120% or more and 500% or less of the thickness Gc at the crown central position Pc. When the thickness Ge of the shoulder position Pe is less than 120%, suppression of bending deformation and shearing deformation of the shoulder portion is not sufficient, and when it exceeds 500%, the effect of reducing the weight of the inner liner can not be expected sufficiently.
  • the thickness Ge of the shoulder position Pe is more preferably 200% or more and 500% or less of the thickness Gc at the crown central position Pc.
  • the thickness Ge of the shoulder position Pe is preferably 120% or more and 500% or less of the thickness Gs of the maximum width position Ps.
  • the thick portion is configured to gradually decrease in thickness in the direction of the crown center position Pc and the direction of the maximum width position Ps around the shoulder position Pe.
  • the stress can be relieved even if bending deformation and shearing deformation are caused due to repeated deformation in this region during running of the tire, and the inner liner Generation of cracks can be prevented.
  • the polymer laminate used for the inner liner is formed of at least two polymer laminates.
  • the first layer is made of the first A polymer composition containing styrene-isobutylene-styrene triblock copolymer (hereinafter also referred to as SIBS), and has a thickness of 0.05 mm or more and 0.8 mm or less.
  • SIBS styrene-isobutylene-styrene triblock copolymer
  • the second layer is composed of a second A polymer composition containing at least one of a styrene-isoprene-styrene triblock copolymer (hereinafter also referred to as SIS) and a styrene-isobutylene diblock copolymer (hereinafter also referred to as SIB).
  • the thickness is 0.01 mm or more and 0.8 mm or less.
  • At least one of the first A polymer composition and the second A polymer composition comprises an epoxidized styrene-butadiene-styrene triblock copolymer.
  • the first layer consists of the first A polymer composition comprising styrene-isobutylene-styrene triblock copolymer (SIBS). Due to the isobutylene block origin of SIBS, polymer films containing SIBS have excellent resistance to air permeation. Therefore, when the polymer film containing SIBS is used for the inner liner, a pneumatic tire excellent in air permeation resistance can be obtained.
  • SIBS styrene-isobutylene-styrene triblock copolymer
  • SIBS is inhibited from deterioration and hardening and has excellent durability. Therefore, when a polymer film containing SIBS is used for the inner liner, a pneumatic tire excellent in durability can be obtained.
  • the molecular weight of SIBS is not particularly limited, it is preferable that the weight average molecular weight by GPC measurement is 50,000 or more and 400,000 or less from the viewpoint of flowability, molding process, rubber elasticity and the like. If the weight average molecular weight is less than 50,000, the tensile strength and the tensile elongation may be lowered, and if it exceeds 400,000, the extrusion processability may be deteriorated, which is not preferable. From the viewpoint of improving air permeability and durability, SIBS preferably contains 10% by mass to 30% by mass, and more preferably 14% by mass to 23% by mass of the styrene component in SIBS. .
  • the degree of polymerization of each block of the SIBS is about 10,000 to 150,000 for isobutylene from the viewpoints of rubber elasticity and handling (the degree of polymerization is less than 10,000 becomes liquid), and styrene And preferably about 5,000 to 30,000.
  • SIBS can be obtained by a common living cationic polymerization method of vinyl compounds.
  • living cationic polymerization of isobutylene with another vinyl compound is possible, and by using isobutylene and another compound as the vinyl compound. It is disclosed that polyisobutylene-based block copolymers can be produced.
  • SIBS has no double bond other than aromatic in the molecule, it has higher stability to ultraviolet light than polymers having double bond in the molecule, for example, polybutadiene, and therefore has weatherability It is good. Furthermore, despite having no double bond in the molecule, and despite being a saturated rubber-like polymer, the refractive index (nD) at 20 ° C. of light at a wavelength of 589 nm is given by Polymer Handbook (1989: Wiley) According to (Polymer Handbook, Willy, 1989)), it is 1.506. This is significantly higher than other saturated rubbery polymers, such as ethylene-butene copolymers.
  • the content of SIBS in the 1A polymer composition is preferably 60% by mass or more and 100% by mass or less. If the content of SIBS is less than 60% by mass, sufficient air permeation resistance can not be obtained.
  • the content of SIBS is more preferably 80% by mass or more and 99.5% by mass or less.
  • the first polymer composition may further include an epoxidized styrene-butadiene-styrene triblock copolymer (hereinafter also referred to as epoxidized SBS).
  • epoxidized SBS epoxidized styrene-butadiene-styrene triblock copolymer
  • Epoxidized SBS is a thermoplastic elastomer in which the hard segment is a polystyrene block and the soft segment is a butadiene block, and the unsaturated double bond portion contained in the butadiene block is epoxidized.
  • epoxidized SBS Since epoxidized SBS has a styrene block, it has excellent melt adhesion to the second layer containing SIS and SIB having a styrene block as well. Therefore, when the first layer containing epoxidized SBS and the second layer containing SIS or SIB are disposed adjacent to each other and vulcanized, a polymer laminate in which the first layer and the second layer adhere well is obtained. Can.
  • the molecular weight of the epoxidized SBS is not particularly limited, but from the viewpoint of rubber elasticity and moldability, the weight average molecular weight by GPC method is preferably 10,000 or more and 400,000 or less. If the weight average molecular weight is less than 10,000, it may be too soft to be stable in size, and if it exceeds 400,000, it may be too hard to be extruded thin, which is not preferable.
  • the content of the styrene component in the epoxidized SBS is preferably 10% by mass or more and 30% by mass or less from the viewpoints of tackiness, adhesiveness and rubber elasticity.
  • the molar ratio of butadiene unit to styrene unit is preferably 90/10 to 70/30.
  • the polymerization degree of each block is preferably about 500 to 5,000 for butadiene block and about 50 to 1,500 for styrene block from the viewpoint of rubber elasticity and handling.
  • the epoxy equivalent of epoxidized SBS is preferably 50 or more and 1,000 or less from the viewpoint of adhesion.
  • the content of epoxidized SBS in the first A polymer composition can be 0.5% by mass or more and 40% by mass or less. If the content of epoxidized SBS is less than 0.5% by mass, sufficient adhesion can not be obtained. On the other hand, if it exceeds 40% by mass, the productivity is significantly deteriorated due to over-adhesion, which is not preferable.
  • the content of epoxidized SBS is more preferably 5% by mass or more and 30% by mass or less.
  • the thickness of the first layer including SIBS is 0.05 mm or more and 0.8 mm or less.
  • the thickness of the first layer means the average thickness of the first layer.
  • the thickness of the first layer is less than 0.05 mm, at the time of vulcanization of a green tire in which the polymer laminate is applied to the inner liner, the first layer is broken by the press pressure, and the air leak phenomenon in the obtained tire May occur.
  • the thickness of the first layer exceeds 0.8 mm, the weight of the tire increases and the fuel economy performance is reduced.
  • the thickness of the first layer is more preferably 0.05 mm or more and 0.4 mm or less.
  • the first layer can be obtained by film-forming the first A polymer composition containing SIBS by a conventional method of film-forming a thermoplastic resin such as extrusion, calendar molding, or a thermoplastic elastomer.
  • the second layer comprises a second A polymer composition comprising at least one of styrene-isoprene-styrene triblock copolymer (SIS) and styrene-isobutylene diblock copolymer (SIB) become.
  • SIS styrene-isoprene-styrene triblock copolymer
  • SIB styrene-isobutylene diblock copolymer
  • the isoprene block of the styrene-isoprene-styrene triblock copolymer (SIS) is a soft segment, the polymer film containing SIS is easy to cure and adhere to the rubber component. Therefore, when a polymer film containing SIS is used for the inner liner, the inner liner is excellent in, for example, the adhesion with the rubber layer of the carcass ply, so that a pneumatic tire excellent in durability can be obtained.
  • the molecular weight of the SIS is not particularly limited, but in view of rubber elasticity and moldability, it is preferable that the weight average molecular weight by GPC measurement is 100,000 to 290,000. If the weight average molecular weight is less than 100,000, the tensile strength may be lowered, and if it exceeds 290,000, the extrusion processability is unfavorably deteriorated.
  • the content of the styrene component in SIS is preferably 10 to 30% by mass from the viewpoints of tackiness, adhesiveness and rubber elasticity.
  • the degree of polymerization of each block in the SIS is preferably about 500 to 5,000 for isoprene and about 50 to 1,500 for styrene from the viewpoint of rubber elasticity and handling.
  • the SIS can be obtained by a general polymerization method of a vinyl compound, and can be obtained, for example, by a living cationic polymerization method.
  • the isobutylene block of the styrene-isobutylene diblock copolymer (SIB) is a soft segment, the polymer film made of SIB is easy to cure and adhere to the rubber component. Therefore, when a polymer film containing SIB is used for the inner liner, the inner liner is excellent in adhesion to the adjacent rubber forming, for example, the carcass and the insulation, so that a pneumatic tire excellent in durability is obtained. be able to.
  • SIB it is preferable to use a linear one from the viewpoint of rubber elasticity and adhesiveness.
  • the molecular weight of SIB is not particularly limited, but from the viewpoint of rubber elasticity and moldability, it is preferable that the weight average molecular weight by GPC measurement is 40,000 to 120,000. If the weight average molecular weight is less than 40,000, the tensile strength may be lowered, and if it exceeds 120,000, the extrusion processability may be deteriorated, which is not preferable.
  • the content of the styrene component in the SIB is preferably 10 to 35% by mass from the viewpoints of tackiness, adhesiveness and rubber elasticity.
  • the degree of polymerization of each block in SIB is preferably about 300 to 3,000 for isobutylene and about 10 to 1,500 for styrene from the viewpoint of rubber elasticity and handling.
  • the SIB can be obtained by a general polymerization method of a vinyl compound, and can be obtained, for example, by a living cationic polymerization method.
  • a living cationic polymerization method For example, according to WO 2005/033035, methylcyclohexane, n-butyl chloride and cumyl chloride are added to a stirrer, cooled to -70 ° C, reacted for 2 hours, and then a large amount of methanol is added.
  • a process is disclosed in which the reaction is stopped and vacuum dried at 60 ° C. to obtain SIB.
  • the second polymer composition may further include epoxidized styrene-butadiene-styrene triblock copolymer (also referred to as epoxidized SBS).
  • epoxidized SBS epoxidized styrene-butadiene-styrene triblock copolymer
  • the epoxidized SBS can be the same as the first A polymer composition. Since epoxidized SBS has a soft segment consisting of butadiene block, it is easy to cure and adhere to the rubber component. Therefore, when the second layer containing epoxidized SBS is placed adjacent to, for example, the rubber layer forming the carcass or insulation and vulcanized, the second layer and the rubber layer can be well adhered. Therefore, when the polymer laminate including the epoxidized SBS layer is used for the inner liner, the adhesion between the polymer laminate and the adjacent rubber layer can be improved.
  • the thickness T2 of the second layer can be 0.01 mm or more and 0.8 mm or less.
  • the thickness of the second layer means the average thickness of the second layer. If the thickness of the second layer is less than 0.01 mm, the second layer may be broken by the press pressure during vulcanization of a green tire in which the polymer laminate is applied to the inner liner, and the vulcanization adhesion may be reduced. There is. On the other hand, if the thickness of the second layer exceeds 0.8 mm, the weight of the tire increases and the low fuel consumption performance decreases.
  • the thickness of the second layer is more preferably 0.05 mm or more and 0.2 mm or less.
  • the second layer can be obtained by film-forming the second A polymer composition by a conventional method of film-forming a thermoplastic resin such as extrusion molding, calendar molding, or a thermoplastic elastomer.
  • the polymer laminate PL is composed of a first layer PL1 and a second layer PL2 as shown in FIG.
  • the second layer PL2 is installed outward in the tire radial direction so as to be in contact with the carcass ply 61, in the tire vulcanization step, the second layer PL2 And the adhesion strength between the two and the carcass 61 can be enhanced. Therefore, the obtained pneumatic tire can have excellent air permeation resistance and durability because the inner liner and the rubber layer of the carcass ply 61 are well adhered.
  • the polymer laminate in one embodiment of the present invention can be produced, for example, by the following method.
  • the first layer and the second layer are produced by extrusion molding, calendar molding or the like.
  • the first layer and the second layer are pasted together to prepare a polymer laminate.
  • the pellets of each of the first A polymer composition and the second A polymer composition can also be produced by lamination extrusion such as lamination extrusion or coextrusion.
  • the pneumatic tire according to an embodiment of the present invention can be manufactured, for example, by the following method.
  • a green tire is manufactured by applying the polymer laminate of the present invention to an inner liner portion.
  • the polymer laminate is disposed with the second layer directed radially outward so as to contact the carcass and the insulation.
  • the second layer and the adjacent rubber layer such as the carcass or insulation can be vulcanized and bonded in the tire vulcanization step. Therefore, in the obtained pneumatic tire, since the inner liner is well adhered to the adjacent rubber layer, it can have excellent air permeation resistance and durability.
  • the thickness Ge of the shoulder position Pe the thickness Gc of the crown center position Pc, and the thickness Gs of the maximum width position Ps are the conditions under which the first and second layers are extruded
  • the desired thickness can be obtained by adjusting the extrusion speed and the extrusion rotation speed).
  • the rubber layer of the carcass ply used in the pneumatic tire according to the present invention comprises generally used rubber components such as natural rubber, polyisoprene, styrene-butadiene rubber, polybutadiene rubber, etc., fillers such as carbon black and silica. It is possible to use a mixture of
  • the green tire is mounted on a mold and heated while being pressurized by a bladder at 150 to 180 ° C. for 3 to 50 minutes to obtain a vulcanized tire.
  • a pneumatic tire uses a polymer laminate for an inner liner. Since SIBS, SIS, SIB and epoxidized SBS constituting the polymer laminate are thermoplastic elastomers, they are softened in the mold when heated to, for example, 150 to 180 ° C. in the process of obtaining a vulcanized tire. Become. The thermoplastic elastomer in the softened state is more reactive than the solid state, and thus fuses with the adjacent member. That is, the inner liner in contact with the outer surface of the expanded bladder is softened by heat and fused to the bladder.
  • the inner liner peels off from the adjacent insulation or carcass, causing an air-in phenomenon.
  • the shape of the tire may be deformed.
  • thermoplastic elastomer used in the inner liner can be solidified by immediately quenching the obtained vulcanized tire at 120 ° C. or less for 10 seconds or more.
  • the thermoplastic elastomer solidifies, the fusion between the inner liner and the bladder disappears, and the releasability at the time of removing the vulcanized tire from the mold is improved.
  • the cooling temperature is preferably 50 to 120.degree. If the cooling temperature is lower than 50 ° C., it is necessary to prepare a special cooling medium, which may deteriorate productivity. When the cooling temperature exceeds 120 ° C., the thermoplastic elastomer is not sufficiently cooled, and the inner liner remains fused to the bladder when the mold is opened, which may cause an air-in phenomenon.
  • the cooling temperature is more preferably 70 to 100 ° C.
  • the cooling time is preferably 10 to 300 seconds. If the cooling time is shorter than 10 seconds, the thermoplastic elastomer is not sufficiently cooled, and the inner liner remains fused to the bladder when the mold is opened, which may cause an air-in phenomenon. If the cooling time exceeds 300 seconds, productivity will deteriorate.
  • the cooling time is more preferably 30 to 180 seconds.
  • the step of cooling the vulcanized tire is preferably performed by cooling the inside of the bladder. Since the inside of the bladder is hollow, it is possible to introduce a cooling medium adjusted to the cooling temperature into the bladder after the completion of the vulcanization process.
  • the step of cooling the vulcanized tire can be implemented by installing a cooling structure on the mold together with cooling the inside of the bladder.
  • cooling medium it is preferable to use one or more selected from the group consisting of air, water vapor, water and oil. Above all, it is preferable to use water which is excellent in cooling efficiency.
  • the pneumatic tire comprises an inner liner on the inner side of a carcass ply tire mounted between a pair of bead portions, the inner liner is made of a polymer laminate, and the polymer laminate is styrene-isobutylene- A thickness comprising a first layer having a thickness of 0.05 mm or more and 0.6 mm or less comprising a first B polymer composition containing a styrene triblock copolymer, and a second B polymer composition comprising a styrene-isobutylene diblock copolymer 0.1 parts by mass of a tackifier per 100 parts by mass of the polymer component, including at least one of the first B polymer composition and the second B polymer composition, including a second layer of 0.01 mm or more and 0.3 mm or less
  • the second layer is disposed to be in contact with the rubber layer of the carcass ply, and the inner liner It is thicker Ge shoulder position Pe than
  • the pneumatic tire according to the second embodiment can basically have the same structure as that of the first embodiment.
  • the thick portion of the inner liner is preferably formed in the range of 10% to 60% of the shoulder distance Wc.
  • the thickness Ge of the shoulder position Pe is preferably 0.2 mm or more and 1.9 mm or less.
  • the Ge is more preferably 0.3 mm or more and 1.9 mm or less.
  • the polymer laminate used for the inner liner is formed of at least two polymer laminates.
  • the first layer is made of a first B polymer composition containing styrene-isobutylene-styrene triblock copolymer (hereinafter also referred to as SIBS), and has a thickness of 0.05 mm or more and 0.6 mm or less.
  • the second layer is composed of a second B polymer composition containing a styrene-isobutylene diblock copolymer (hereinafter also referred to as SIB), and has a thickness of 0.01 mm or more and 0.3 mm or less. At least one of the first B polymer composition and the second B polymer composition comprises a tackifier.
  • the first layer consists of a first B polymer composition comprising styrene-isobutylene-styrene triblock copolymer (SIBS).
  • SIBS styrene-isobutylene-styrene triblock copolymer
  • the same SIBS as in Embodiment 1 can be used.
  • the content of SIBS in the first B polymer composition is preferably 60% by mass or more and 100% by mass or less. If the content of SIBS is less than 60% by mass, sufficient air permeation resistance can not be obtained.
  • the content of SIBS is more preferably 80% by mass or more and 99.5% by mass or less.
  • the first B polymer composition may further comprise a tackifier.
  • the tackifier refers to a compounding agent for promoting the tackiness of the polymer composition, and, for example, the following can be used.
  • C9 petroleum resin is pyrolyzing naphtha to obtain useful compounds such as ethylene, propylene and butadiene, but the remaining C5-C9 fraction (mainly C9 fraction) from which they are removed is mixed and mixed
  • Alcon P70, P90, P100, P125, P140, M90, M100, M115, and M135 all manufactured by Arakawa Chemical Industries, Ltd., softening point 70 to 145 ° C.
  • Imarb S100 and S110 as trade names.
  • P100, P125, P140 (all manufactured by Idemitsu Petrochemical Co., Ltd., aromatic copolymer hydrogenated petroleum resin, softening point 100 to 140 ° C., weight average molecular weight 700 to 900, bromine number 2.0 to 6.0 g / 100 g) and Petcoal XL (manufactured by Tosoh Corporation).
  • C5 petroleum resin naphtha is pyrolyzed to obtain useful compounds such as ethylene, propylene and butadiene, but the remaining C4-C5 fraction (mainly C5 fraction) from which they are removed is mixed
  • Hilets G100 made by Mitsui Petrochemicals Co., Ltd., softening point is 100 ° C
  • Malkaletz T100AS made by Maruzen Sekiyu Co., Ltd., softening point 100 ° C
  • Escorez 1102 made by Tonex Co., Ltd., softened There is a point of 110 ° C).
  • Terpene resin is, for example, trade name: YS resin PX800N, PX1000, PX1150, PX1250, PXN1150N, Clearon P85, P105, P115, P125, P135, P150, M105, M115, K100 (all manufactured by Yasuhara Chemical Co., Ltd., softened) The point is 75-160 ° C.).
  • the aromatic-modified terpene resin is, for example, commercially available as YS resin TO85, TO105, TO115, or TO125 (all are manufactured by Yasuhara Chemical Co., Ltd., and have a softening point of 75 to 165 ° C.).
  • Terpene phenol resin is, for example, commercially available as Tamanor 803L, 901 (Arakawa Chemical Industries, Ltd., softening point 120 ° C. to 160 ° C.), YS polystar U115, U130, T80, T100, T100, T115, T145, T160 (any one)
  • the softening point is also 75-165 ° C., manufactured by Yasuhara Chemical Co., Ltd.
  • the coumarone resin is, for example, coumarone resin having a softening point of 90 ° C. (manufactured by Kobe Oil Chemical Industry Co., Ltd.).
  • coumarone-indene oil is 15E (manufactured by Kobe Oil Chemical Industry Co., Ltd .; pour point 15 ° C.).
  • Rosin ester is, for example, commercially available as ester gum AAL, A, AAV, 105, AT, H, HP, HD (all by Arakawa Chemical Industries Co., Ltd., softening point 68 ° C. to 110 ° C.), and Haliester TF , S, C, DS70L, DS90, DS130 (all are Harima Chemicals Co., Ltd., softening point: 68 ° C. to 138 ° C.).
  • As hydrogenated rosin esters for example, Super Ester A 75, A 100, A 115, A 125 (all manufactured by Arakawa Chemical Industries, Ltd., softening point 70 ° C. to 130 ° C.) are available as trade names.
  • the alkylphenol resin has, for example, TAMANOR 510 (manufactured by Arakawa Chemical Industries, Ltd., softening point 75 ° C. to 95 ° C.) as a trade name.
  • TAMANOR 510 manufactured by Arakawa Chemical Industries, Ltd., softening point 75 ° C. to 95 ° C.
  • DCPD Escholez 5300 (manufactured by Tonex Co., Ltd., softening point 105 ° C.) is available as a trade name.
  • the tackifier can enhance the adhesion without causing the fully hydrogenated petroleum resin of C9 petroleum resin to be compatible with SIBS and without lowering the gas barrier property. It also has the effect of lowering the viscosity, and can be advantageously used for film extrusion.
  • the tackifier preferably has a weight average molecular weight of 1 ⁇ 10 2 or more and 1 ⁇ 10 6 or less. If the weight average molecular weight is less than 1 ⁇ 10 2 , the viscosity may be reduced, and the formability of the sheet may be disadvantageous. On the other hand, when the weight average molecular weight exceeds 1 ⁇ 10 6 , there is a possibility that the adhesion of the polymer sheet with tackiness may be insufficient. Furthermore, the tackifier preferably has a softening point of 50 ° C. or more and 150 ° C. or less.
  • the tackifier is blended in a range of 0.1 parts by mass to 100 parts by mass, preferably 1 part by mass to 50 parts by mass, with respect to 100 parts by mass of the polymer component of the 1B polymer composition.
  • the tackifier is less than 0.1 parts by mass, the vulcanization adhesion with the second layer is not sufficient, while when it exceeds 100 parts by mass, the tackiness becomes too high, and the processability and productivity are increased.
  • the gas barrier property is further reduced.
  • the thickness of the first layer is 0.05 mm or more and 0.6 mm or less.
  • the thickness of the first layer means the average thickness of the first layer.
  • the thickness of the first layer is less than 0.05 mm, at the time of vulcanization of a green tire in which the polymer laminate is applied to the inner liner, the first layer is broken by the press pressure, and the air leak phenomenon in the obtained tire May occur.
  • the thickness of the first layer exceeds 0.6 mm, the weight of the tire increases and the fuel economy performance is reduced.
  • the thickness of the first layer is more preferably 0.05 mm or more and 0.4 mm or less.
  • the first layer can be obtained by film-forming the 1B polymer composition containing SIBS by a conventional method of film-forming a thermoplastic resin such as extrusion, calendering, or a thermoplastic elastomer.
  • the second layer consists of a second B polymer composition comprising styrene-isobutylene diblock copolymer (SIB).
  • SIB styrene-isobutylene diblock copolymer
  • the second B polymer composition may further include epoxidized styrene-butadiene-styrene triblock copolymer (also referred to as epoxidized SBS).
  • epoxidized SBS epoxidized styrene-butadiene-styrene triblock copolymer
  • the second B polymer composition may further comprise a tackifier.
  • the tackifier may be the same as in the first layer.
  • the tackifier is blended in a range of 0.1 parts by mass to 100 parts by mass, preferably 1 part by mass to 50 parts by mass, with respect to 100 parts by mass of the polymer component of the second B polymer composition.
  • the tackifier is less than 0.1 part by mass, the vulcanization adhesion with the first layer is not sufficient, while when it exceeds 100 parts by mass, the tackiness becomes too high, resulting in processability and productivity.
  • the gas barrier property is further reduced.
  • the thickness of the second layer can be 0.01 mm or more and 0.3 mm or less.
  • the thickness of the second layer means the average thickness of the second layer. If the thickness of the second layer is less than 0.01 mm, the second layer may be broken by the press pressure during vulcanization of a green tire in which the polymer laminate is applied to the inner liner, and the vulcanization adhesion may be reduced. There is. On the other hand, if the thickness of the second layer exceeds 0.3 mm, the weight of the tire increases and the fuel economy performance decreases.
  • the thickness of the second layer is more preferably 0.05 mm or more and 0.2 mm or less.
  • the second layer can be obtained by film-forming the second B polymer composition by a conventional method of film-forming a thermoplastic resin such as extrusion molding, calendar molding, or a thermoplastic elastomer.
  • the polymer laminate PL is composed of a first layer PL1 and a second layer PL2 as shown in FIG.
  • the second layer PL2 When the polymer laminate PL is applied to the inner liner of a pneumatic tire, when the second layer PL2 is installed outward in the tire radial direction so as to be in contact with the carcass ply 61, in the tire vulcanization step, the second layer PL2 And the adhesion strength between the two and the carcass 61 can be enhanced. Therefore, the obtained pneumatic tire can have excellent air permeation resistance and durability because the inner liner and the rubber layer of the carcass ply 61 are well adhered.
  • the polymer laminate in Embodiment 2 can be produced using the same production method as in Embodiment 1.
  • the pneumatic tire according to the second embodiment can be manufactured using the same manufacturing method as that of the first embodiment.
  • the pneumatic tire includes an inner liner on the tire inner side of a carcass ply mounted between a pair of bead portions, and the inner liner is a styrene-isobutylene-styrene triblock copolymer having a polymer component.
  • a first layer with a thickness of 0.05 mm or more and 0.6 mm or less comprising a first C polymer composition containing 75% by mass to 99.5% by mass and isobutylene-based modified copolymer 0.5% by mass to 25% by mass
  • a second C polymer composition comprising a polymer component containing 10% by mass to 100% by mass of a styrene-isobutylene block copolymer and 0% by mass to 90% by mass of a styrene-isobutylene-styrene triblock copolymer
  • the isobutylene-based modified copolymer comprises a second layer of 0.01 mm or more and 0.3 mm or less, and A rubber copolymer composed mainly of butylene and a polymer block composed mainly of an aromatic vinyl compound, wherein at least one block is a random copolymer including ⁇ -pinene, and the second layer is a carcass ply rubber
  • the inner liner is disposed in contact
  • the thick portion of the inner liner is preferably formed in the range of 10% to 60% of the shoulder distance Wc from the shoulder position Pe to the crown center position Pc side.
  • the inner liner of the pneumatic tire includes a first layer and a second layer.
  • the polymer component is 75% by mass to 99.5% by mass of styrene-isobutylene-styrene triblock copolymer (hereinafter also referred to as SIBS) and 0.5% by mass to 25% by mass of isobutylene-based modified copolymer % C or less and having a thickness of 0.05 mm or more and 0.6 mm or less.
  • the same SIBS as in Embodiment 1 can be used.
  • the content of SIBS in the first C polymer composition is preferably 75% by mass or more and 99.5% by mass or less in the polymer component. If the content of SIBS is less than 75% by mass, the air permeation resistance may not be sufficiently obtained. On the other hand, when the content of SIBS exceeds 99.5% by mass, the vulcanization adhesion may be reduced.
  • the content of SIBS is more preferably 80% by mass or more and 95% by mass or less.
  • the isobutylene-based modified copolymer is an isobutylene-based modified copolymer composed of a polymer block mainly composed of isobutylene and a polymer block mainly composed of an aromatic vinyl compound, One block is a random copolymer containing ⁇ -pinene.
  • the isobutylene-based modified copolymer is typically a styrene-isobutylene-styrene block copolymer (SIBS), a styrene-isoprene-styrene block copolymer (SIS) or a styrene-isobutylene block copolymer (SIB) Copolymers in which ⁇ -pinene is contained in the styrene block of
  • SIBS styrene-isobutylene-styrene block copolymer
  • SIB styrene-isobutylene block copolymer
  • the polymer block mainly composed of isobutylene is a polymer block composed of 80% by mass or more of units whose soft segment is derived from isobutylene.
  • the polymer block can be produced using, as a monomer component, aliphatic olefins, dienes, vinyl ethers, silanes, vinyl carbazole, acenaphthylene and the like.
  • the polymer block mainly composed of an aromatic vinyl compound is a polymer block in which the hard segment is composed of 80% by mass or more of units derived from the aromatic vinyl compound.
  • aromatic vinyl compounds examples include styrene, methylstyrene, ⁇ -methylstyrene, ⁇ -methylstyrene, 2,6-dimethylstyrene, 2,4-dimethylstyrene, ⁇ -methyl-o-methylstyrene and ⁇ -methyl- m-methylstyrene, ⁇ -methyl-p-methylstyrene, ⁇ -methyl-o-methylstyrene, ⁇ -methyl-m-methylstyrene, ⁇ -methyl-p-methylstyrene, 2,4,6-trimethylstyrene, ⁇ -Methyl-2,6-dimethylstyrene, ⁇ -methyl-2,4-dimethylstyrene, ⁇ -methyl-2,6-dimethylstyrene, ⁇ -methyl-2,4-dimethylstyrene, chlorostyrene, 2,6 -Dichlorostyrene, 2,4-
  • the isobutylene-based modified copolymer is a random copolymer of ⁇ -pinene and at least one of a polymer block mainly composed of isobutylene and a polymer block mainly composed of an aromatic vinyl compound. From the viewpoint of low temperature properties, it is preferable that ⁇ -pinene is copolymerized with a polymer block mainly composed of an aromatic vinyl compound.
  • ⁇ -pinene is copolymerized with a polymer block mainly composed of isobutylene.
  • the content of ⁇ -pinene is preferably 0.5% by mass or more and 25% by mass or less, and more preferably 2% by mass or more and 25% by mass or less of the isobutylene-based modified copolymer.
  • the content of ⁇ -pinene is less than 0.5% by mass, the adhesion is not sufficient, and when it exceeds 25% by mass, the composition becomes brittle and rubber elasticity tends to decrease.
  • the structure of the isobutylene-based modified copolymer there is no particular limitation on the structure of the isobutylene-based modified copolymer, and any block copolymer having a linear, branched or star molecular chain structure, triblock copolymer, multiblock copolymer, etc. It is selectable. From the point of balance of physical properties and molding processability, a polymer block mainly composed of isobutylene (hereinafter also referred to as block (A)) and a polymer block mainly composed of an aromatic vinyl compound (hereinafter also referred to as block (B) What has a structure of a diblock copolymer ((A)-(B)) and a triblock copolymer ((B)-(A)-(B)) can be employ
  • the molecular weight of the isobutylene-based modified copolymer is preferably 30,000 or more and 300,000 or less in terms of weight average molecular weight by GPC measurement, from the viewpoint of flowability, moldability, rubber elasticity, etc., 30,000 or more It is particularly preferable that it is 150,000 or less.
  • the weight average molecular weight is less than 30,000, mechanical physical properties tend not to be sufficiently expressed, while when it exceeds 300,000, the flowability and processability tend to be deteriorated.
  • the value (weight average molecular weight / number average molecular weight) of the molecular weight distribution of the isobutylene-based modified copolymer is 1.3 or less from the viewpoint of processing stability.
  • the content of the isobutylene-based modified copolymer in the first C polymer composition is preferably 0.5% by mass to 25% by mass in the polymer component, and more preferably 5% by mass to 20% by mass. If the content of the isobutylene-based modified copolymer is less than 0.5% by mass, the vulcanization adhesion with the second layer may be reduced.
  • the method for producing the isobutylene-based modified copolymer is disclosed, for example, in JP-A-2010-195969.
  • it can be produced by polymerizing monomer components in the presence of a polymerization initiator represented by the following general formula (I).
  • X is a halogen atom, a substituent selected from an alkoxy group having 1 to 6 carbon atoms, or an acyloxy group
  • R 1 and R 2 each represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms
  • R 1 R 2 may be the same or different
  • R 3 is a monovalent or polyvalent aromatic hydrocarbon group or a monovalent or polyvalent aliphatic hydrocarbon group
  • n is a natural number of 1 to 6 .
  • the compound represented by the above general formula (1) is to be an initiator and forms a carbon cation in the presence of a Lewis acid or the like to be a starting point of cationic polymerization.
  • a Lewis acid catalyst can also be made to coexist.
  • the Lewis acid can be used for cationic polymerization, for example, metal halides such as TiCl 4 , TiBr 4 , BCl 3 , BF 3 , BF 3 ⁇ OEt 2 , ZnBr 2 , AlCl 3 and the like; Et 2 AlCl, EtAlCl 2 etc.
  • the following organometallic halides can be used.
  • the Lewis acid can be used at 0.1 to 100 molar equivalents relative to the compound represented by the general formula (1).
  • an electron donor component can also be made to coexist in the case of manufacture of an isobutylene type modified copolymer.
  • the electron donor component is, for example, pyridines, amines, amides or sulfoxides.
  • the polymerization of the isobutylene-based modified copolymer can be carried out in an organic solvent, and as the organic solvent, one that does not inhibit cationic polymerization can be used.
  • organic solvent one that does not inhibit cationic polymerization
  • halogenated hydrocarbons such as methyl chloride, dichloromethane, chloroform, ethyl chloride and dichloroethane
  • alkylbenzenes such as benzene, toluene, xylene and ethylbenzene
  • linear aliphatic carbonization such as ethane, propane, butane, pentane, hexane and heptane Hydrogens
  • branched aliphatic hydrocarbons such as 2-methylpropane and 2-methylbutane
  • cyclic aliphatic hydrocarbons such as cyclohexane, methylcyclohexane and ethylcyclohexane can be used.
  • the amount of the organic solvent is adjusted so that the concentration of the copolymer becomes 5 to 40% by mass from the viewpoint of adjusting the viscosity of the copolymer solution to be produced and the heat dissipation.
  • the copolymerization reaction is preferably in the range of ⁇ 20 ° C. to ⁇ 70 ° C. (Other ingredients)
  • the first C polymer composition used for the first layer of the inner liner can contain a crosslinking agent and a coagent.
  • the crosslinking agent sulfur, tetramethylthiuram disulfide, 4,4-dithiobismorpholine, organic peroxide, phenolformaldehyde resin, halomethylphenol can be used.
  • crosslinking assistants examples include metal oxides such as sulfenamide, benzothiazole, guanidine, dithiocarbamic acid and zinc oxide, fatty acids such as stearic acid, nitrogen-containing compounds, triallyl isocyanurate, ethylene glycol dimethacrylate and trimethylolpropane methacrylate It can be used.
  • the compounding amounts of the crosslinking agent and the crosslinking aid are each 0.3 part by mass or more and 6 parts by mass or less with respect to 100 parts by mass of the elastomer component.
  • the first C polymer composition may further contain fillers, anti-aging agents, softeners, processing aids and the like.
  • filler carbon black, wet silica, dry silica, calcium carbonate, kaolin, talc, clay and the like can be used.
  • Anti-aging agents include antioxidants, ultraviolet light absorbers, light stabilizers.
  • softener paraffin oil, naphthene oil, aroma oil, rapeseed oil, dioctyl phthalate and the like can be used.
  • processing aid higher fatty acids, fatty acid esters, fatty acid metal salts, fatty acid amides, paraffin waxes, fatty alcohols, fluorine / silicone resins and the like can be used.
  • the thickness of the first layer can be 0.05 mm or more and 0.6 mm or less.
  • the thickness of the first layer means the average thickness of the first layer. If the thickness of the first layer is less than 0.05 mm, the first layer may be broken by the press pressure during vulcanization of the green tire on which the inner liner is disposed, and the air leak may occur in the obtained tire. is there. On the other hand, when the thickness of the first layer exceeds 0.6 mm, the weight of the tire increases and the fuel economy performance is reduced.
  • the thickness of the first layer is more preferably 0.05 mm or more and 0.4 mm or less.
  • the first layer can be obtained by film-forming the first C polymer composition by a conventional method of film-forming a thermoplastic resin such as extrusion molding, calendar molding, or a thermoplastic elastomer.
  • the polymer component is 10% by mass or more and 100% by mass or less of styrene-isobutylene block copolymer (hereinafter also referred to as SIB) and 0 mass of styrene-isobutylene-styrene triblock copolymer (hereinafter also referred to as SIBS) And a thickness of 0.01 mm or more and 0.3 mm or less.
  • the same SIB as that of the first embodiment can be used.
  • the content of SIB in the second C polymer composition is 10% by mass or more and 100% by mass or less in the polymer component. If the content of SIB is less than 10% by mass, the vulcanization adhesion may be reduced.
  • the content of SIB is more preferably 10% by mass or more and 30% by mass or less.
  • SIBS The same SIBS as that of the first C polymer composition can be used in the second C polymer composition.
  • the second C polymer composition may include a crosslinking agent, a coagent, a filler, an antiaging agent, a softener, a processing aid, and the like.
  • the thickness of the second layer can be 0.01 mm or more and 0.3 mm or less.
  • the thickness of the second layer means the average thickness of the second layer.
  • the second layer may be broken by the press pressure at the time of vulcanization of the green tire on which the inner liner is disposed, and the vulcanization adhesion may be reduced.
  • the thickness of the second layer exceeds 0.3 mm, the weight of the tire increases and the fuel economy performance decreases.
  • the thickness of the second layer is more preferably 0.05 mm or more and 0.2 mm or less.
  • the second layer can be obtained by film-forming the second C polymer composition by a conventional method of film-forming a thermoplastic resin such as extrusion molding, calendar molding, or a thermoplastic elastomer.
  • Inner liner PL is comprised from 1st layer PL1 and 2nd layer PL2, as shown in FIG.
  • the second layer PL2 and the carcass 61 are Bond strength can be increased. Therefore, the obtained pneumatic tire can have excellent air permeation resistance and durability because the inner liner and the rubber layer of the carcass ply 61 are well adhered.
  • the inner liner can be manufactured, for example, by the following method.
  • the first layer and the second layer are produced by extrusion molding, calendar molding or the like.
  • the first layer and the second layer are laminated to produce an inner liner.
  • the pellets of each of the first C polymer composition and the second C polymer composition can also be produced by lamination extrusion such as lamination extrusion or coextrusion.
  • the pneumatic tire according to the third embodiment can be manufactured using the same manufacturing method as that of the first embodiment.
  • the pneumatic tire includes an inner liner on the tire inner side of a carcass ply mounted between a pair of bead portions, and the inner liner includes a styrene-isobutylene-styrene triblock copolymer.
  • the first layer having a thickness of 0.05 mm to 0.6 mm made of the polymer composition
  • the second layer D having a styrene-isobutylene diblock copolymer having a thickness of 0.01 mm to 0.3 mm
  • at least one of the first D polymer composition and the second D polymer composition comprises an acidation having an unsaturated bond in the styrene block portion of the styrene-isobutylene-styrene triblock copolymer in the polymer component.
  • the pneumatic tire according to the fourth embodiment can basically have the same structure as that of the first embodiment.
  • the thick portion of the inner liner is preferably formed in the range of 10% to 60% of the shoulder distance Wc from the shoulder position Pe to the crown center position Pc side.
  • the thickness Ge of the shoulder position Pe is preferably 0.2 mm or more and 1.9 mm or less.
  • the Ge is more preferably 0.3 mm or more and 1.9 mm or less.
  • the first layer is made of a first D polymer composition containing styrene-isobutylene-styrene triblock copolymer (hereinafter also referred to as SIBS), and has a thickness of 0.05 mm or more and 0.6 mm or less.
  • SIBS styrene-isobutylene-styrene triblock copolymer
  • the same SIBS as in Embodiment 1 can be used.
  • SIBS modified copolymer The first D polymer composition can include an SIBS modified copolymer in which a styrene block portion of a styrene-isobutylene-styrene block copolymer is modified with an acid chloride or an acid anhydride having an unsaturated bond.
  • the SIBS modified copolymer is one in which the styrene block portion is modified with an acid chloride or an acid anhydride having an unsaturated bond, and contains a chemical structure of the following formula (1) in a molecular chain.
  • R 1 is a monovalent organic group having a functional group.
  • the acid chloride having an unsaturated bond used for modification include methacrylic acid chloride, methacrylic acid bromide, methacrylic acid iodide, acrylic acid chloride, acrylic acid bromide, acrylic acid iodide, crotonyl chloride and crotonyl acid bromide. .
  • methacrylic acid chloride and acrylic acid chloride are preferable.
  • an acetic anhydride a maleic anhydride, a phthalic anhydride etc. are illustrated with an acid anhydride, an acetic anhydride is especially preferable. These compounds can also be used in combination of two or more. Since the unsaturated group is introduced into SIBS by such modification, crosslinking using a crosslinking agent can be enabled.
  • the content of acid chloride and acid anhydride having unsaturated bonds in the SIBS modified copolymer is 1% by weight or more, preferably 5% by weight or more, and 30% by weight or less.
  • a conventional method can be used for crosslinking the SIBS modified copolymer, and for example, thermal crosslinking by heating and crosslinking by a crosslinking agent can be performed.
  • organic peroxides such as dicumyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane, etc. can be used as a crosslinking agent.
  • the compounding amount of the organic peroxide is preferably in the range of 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer component.
  • the first D polymer composition is a multifunctional vinyl monomer such as divinylbenzene, triallyl cyanurate, or a multifunctional methacrylate monomer such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, Trimethylolpropane trimethacrylate and allyl methacrylate can be used in combination as a crosslinking agent. In this case, the improvement of the flex crack characteristics of the composition after crosslinking can be expected.
  • the SIBS modified copolymer is derived from an isobutylene block, and the film containing the SIBS modified copolymer has excellent air permeation resistance.
  • SIBS-modified copolymers can be thermally crosslinked and crosslinked by a crosslinking agent because unsaturated groups are introduced into SIBS, and they have bending crack characteristics and basic properties such as tensile strength, elongation at break and permanent strain. The air permeation resistance is improved and the properties as an inner liner are improved.
  • the blending amount of the SIBS modified copolymer is preferably 10% by mass to 99.5% by mass in the polymer component of the first D polymer composition, and more preferably 30% by mass to 99.5% by mass. If the compounding amount of the SIBS modified copolymer is less than 10% by mass of the polymer component, there is a possibility that the vulcanization adhesion with the second layer is not sufficient.
  • At least one of the first D polymer composition and the second D polymer composition described later contains the SIBS modified copolymer.
  • the compounding amount of the SIBS modified copolymer is 10% by mass to 99.5% by mass in the polymer component of the first D polymer composition, or 10% by mass to 99.5% in the polymer component of the second D polymer composition. It is less than mass.
  • the molecular weight of the SIBS modified copolymer is not particularly limited, but it is preferable that the weight average molecular weight by GPC measurement is 50,000 or more and 400,000 or less, from the viewpoint of flowability, molding process, rubber elasticity and the like. If the weight average molecular weight is less than 50,000, the tensile strength and the tensile elongation may be lowered, and if it exceeds 400,000, the extrusion processability may be deteriorated, which is not preferable.
  • the content of the styrene component in SIBS is preferably 10% by mass or more and 30% by mass or less, and more preferably 14% by mass or more and 23% by mass or less, from the viewpoint of making the air permeation resistance and durability better. Is preferred.
  • the following method can be adopted for the production of the SIBS modified copolymer.
  • the inside of the polymerization vessel is replaced with nitrogen.
  • organic solvents eg, n-hexane and butyl chloride
  • methacrylic acid chloride is added.
  • the solution is reacted while adding aluminum trichloride while stirring.
  • a predetermined amount of water is added to the reaction solution and stirred to terminate the reaction.
  • the reaction solution is washed with a large amount of water several times and further slowly dropped into a large amount of a mixed solvent of methanol and acetone to precipitate a polymer, and the resulting polymer is dried under vacuum.
  • the method of producing the SIBS modified copolymer is disclosed, for example, in Japanese Patent No. 4551005.
  • the 1st D polymer composition can contain polymers other than SIBS and SIBS modified copolymer as a polymer component.
  • thermoplastic elastomers in particular styrenic thermoplastic elastomers, are preferably used.
  • the styrene-based thermoplastic elastomer refers to a copolymer containing a styrene block as a hard segment.
  • styrene-isoprene-styrene block copolymer SIB
  • SIB styrene-isobutylene diblock copolymer
  • SIB styrene-butadiene-styrene block copolymer
  • SEBS styrene-ethylene-butene-styrene block copolymer Combination
  • SEEPS styrene-ethylene-propylene-styrene block copolymer
  • SEEPS styrene-ethylene-ethylene-propylene-styrene block copolymer
  • SEEPS styrene-butadiene-butylene-styrene block copolymer
  • SBBS styrene-butadiene-butylene-s
  • the styrenic thermoplastic elastomer may have an epoxy group in its molecular structure.
  • Epofriend A 1020 made by Daicel Chemical Industries, Ltd., weight average molecular weight is 100,000, epoxy equivalent is 500
  • Epoxy modified styrene-butadiene-styrene copolymer epoxidized SBS
  • the first D polymer composition can be mixed with a rubber component as a polymer component.
  • the rubber component preferably contains at least one selected from the group consisting of natural rubber, isoprene rubber, chloroprene rubber and butyl rubber.
  • the blending amount of the rubber component is preferably in the range of 5 to 20 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer component.
  • the first D polymer composition used for the first layer of the inner liner can contain a crosslinking agent and a coagent.
  • As the crosslinking agent sulfur, tetramethylthiuram disulfide, 4,4-dithiobismorpholine, organic peroxide, phenolformaldehyde resin, halomethylphenol can be used.
  • crosslinking assistants examples include metal oxides such as sulfenamide, benzothiazole, guanidine, dithiocarbamic acid and zinc oxide, fatty acids such as stearic acid, nitrogen-containing compounds, triallyl isocyanurate, ethylene glycol dimethacrylate and trimethylolpropane methacrylate It can be used.
  • the compounding amounts of the crosslinking agent and the crosslinking aid are each 0.3 part by mass or more and 6 parts by mass or less with respect to 100 parts by mass of the elastomer component.
  • the first D polymer composition may further contain a filler, an antiaging agent, a softener, a processing aid, a vulcanization accelerator, an antiblocking agent, and the like.
  • a filler carbon black, wet silica, dry silica, calcium carbonate, kaolin, talc, clay and the like can be used.
  • Anti-aging agents include antioxidants, ultraviolet light absorbers, light stabilizers.
  • the softener paraffin oil, naphthene oil, aroma oil, rapeseed oil, dioctyl phthalate, stearic acid and the like can be used.
  • the thickness of the first layer can be 0.05 mm or more and 0.6 mm or less.
  • the thickness of the first layer means the average thickness of the first layer. If the thickness of the first layer is less than 0.05 mm, the first layer may be broken by the press pressure during vulcanization of the green tire on which the inner liner is disposed, and the air leak may occur in the obtained tire. is there. On the other hand, when the thickness of the first layer exceeds 0.6 mm, the weight of the tire increases and the fuel economy performance is reduced.
  • the thickness of the first layer is more preferably 0.05 mm or more and 0.4 mm or less.
  • the first layer can be obtained by film-forming the first D polymer composition by a conventional method of film-forming a thermoplastic resin such as extrusion molding or calendar molding, or a thermoplastic elastomer.
  • the second layer is composed of a second D polymer composition containing a styrene-isobutylene diblock copolymer (hereinafter also referred to as SIB), and has a thickness of 0.01 mm or more and 0.3 mm or less.
  • SIB styrene-isobutylene diblock copolymer
  • the content of SIB in the second D polymer composition is preferably 60% by mass or more and 100% by mass or less in the polymer component. If the content of SIB is less than 60% by mass, the viscosity may be high, and extrusion processability may be deteriorated. The content of SIB is more preferably 80% by mass or more and 100% by mass or less.
  • SIBS modified copolymer Similarly to the first layer, the second D polymer composition is an acid chloride or acid anhydride-modified SIBS modified copolymer in which the styrene block portion of the styrene-isobutylene-styrene block copolymer has an unsaturated bond. Can be included.
  • the content of the SIBS modified copolymer is preferably 10% by mass to 99.5% by mass, more preferably 10% by mass to 80% by mass, and still more preferably 30% by mass to 70% by mass in the polymer component of the second D polymer composition.
  • the following are particularly preferred. If the compounding amount of the SIBS modified copolymer is less than 10% by mass of the polymer component, the performance improvement effect by the SIBS modified copolymer is small, while if it exceeds 99.5% by mass, the inner liner and the carcass ply rubber There is a possibility that the vulcanization adhesion with is not sufficient.
  • the second D polymer composition can contain, as a polymer component, polymers other than SIB and SIBS modified copolymers. For example, as with the first D polymer composition, thermoplastic elastomers, particularly styrenic thermoplastic elastomers, are suitably used.
  • the second D polymer composition can mix a rubber component as a polymer component.
  • the rubber component preferably contains at least one selected from the group consisting of natural rubber, isoprene rubber, chloroprene rubber and butyl rubber.
  • the blending amount of the rubber component is preferably in the range of 5 to 20 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer component.
  • the second D polymer composition can contain a crosslinking agent, a coagent, a filler, an antiaging agent, a softener, a processing aid, and the like.
  • Thi thickness of second layer The thickness of the second layer can be 0.01 mm or more and 0.3 mm or less.
  • the thickness of the second layer means the average thickness of the second layer.
  • the second layer may be broken by the press pressure at the time of vulcanization of the green tire on which the inner liner is disposed, and the vulcanization adhesion may be reduced.
  • the thickness of the second layer exceeds 0.3 mm, the weight of the tire increases and the fuel economy performance decreases.
  • the thickness of the second layer is more preferably 0.05 mm or more and 0.2 mm or less.
  • the second layer can be obtained by film-forming the second D polymer composition by a conventional method of film-forming a thermoplastic resin such as extrusion molding, calendar molding, or a thermoplastic elastomer.
  • Inner liner PL is comprised from 1st layer PL1 and 2nd layer PL2, as shown in FIG.
  • the second layer PL2 and the carcass 61 are Bond strength can be increased. Therefore, the obtained pneumatic tire can have excellent air permeation resistance and durability because the inner liner and the rubber layer of the carcass ply 61 are well adhered.
  • the inner liner can be manufactured, for example, by the following method.
  • the first layer and the second layer are produced by extrusion molding, calendar molding or the like.
  • the first layer and the second layer are laminated to produce an inner liner.
  • pellets of each of the first D polymer composition and the second D polymer composition can be produced by lamination extrusion such as lamination extrusion or coextrusion.
  • the pneumatic tire according to the fourth embodiment can be manufactured using the same manufacturing method as that of the first embodiment.
  • Styrene component content 15% by mass Weight average molecular weight: 70,000 (SIBS) “Sibustar SIBSTAR 102 (Shore A hardness 25; styrene component content 25 mass%, weight average molecular weight: 100,000)” manufactured by Kaneka Co., Ltd. was used.
  • Epoxidized SBS Epoxidized SBS
  • Epofriend A1020 epoxidized styrene-butadiene-styrene triblock copolymer, weight average molecular weight 100,000, styrene content 40 mass%, epoxy equivalent 500 manufactured by Daicel Chemical Industries, Ltd. .
  • each of the raw material of said 1st layer and 2nd layer was pelletized with the twin-screw extruder (screw diameter: (phi) 50 mm, L / D: 30, cylinder temperature: 220 degreeC).
  • the obtained pellets are co-extruded using a T-die extruder (screw diameter: ⁇ 80 mm, L / D: 50, die grip width: 500 mm, cylinder temperature: 220 ° C.), and the thicknesses shown in Tables 1 to 3
  • a polymer laminate having the first and second layers of A polymer sheet consisting of only the first layer was prepared as Comparative Example 1-1.
  • ⁇ Production of pneumatic tire> In order to adjust the thickness Ge of the shoulder position Pe of the inner liner and the thickness Gc of the crown center position Pc, a profile is attached to the extrusion port of the polymer sheet to reduce the thickness Gc of the crown center position Pc.
  • the body was made.
  • the obtained polymer laminate was applied to the inner liner portion of the tire to prepare a green tire. This was disposed on the inner surface of the tire as an inner liner.
  • the polymer laminate was disposed such that the first layer of the polymer laminate was disposed on the innermost side in the radial direction of the green tire, and the second layer was in contact with the carcass layer of the green tire.
  • the green tire was press molded in a mold at 170 ° C. for 20 minutes to produce a 195 / 65R15 size vulcanized tire.
  • the vulcanized tire was cooled at 100 ° C. for 3 minutes, the vulcanized tire was removed from the mold to obtain a pneumatic tire.
  • (Adhesive index) (Adhesive power of each polymer laminate) / (Adhesive power of Comparative Example 1-1) ⁇ 100 ⁇ Rolling resistance>
  • tan ⁇ of each polymer laminate is measured under the conditions of a temperature of 70 ° C., an initial strain of 10%, and a dynamic strain of 2% using a viscoelasticity spectrometer VES (IWAMOTO MFG. Co., Ltd.). Assuming that tan ⁇ of -1 is 100, the index is displayed according to the following formula. The larger the index, the lower the rolling resistance.
  • (Rolling resistance index) (tan ⁇ of Comparative Example 1-1) / (tan ⁇ of each polymer laminate) ⁇ 100 ⁇ Low temperature durability>
  • the low-temperature durability is measured by measuring the distance traveled when a crack occurs in the inner liner under the conditions of an ambient temperature of -20 ° C, a tire pressure of 120 kPa, a load load ratio of 60% and a velocity of 80 Km / h. Based on the travel distance of the above, the index is displayed by the following formula. The higher the value, the better the low temperature durability.
  • A The number of air-ins is zero.
  • B The number of air-ins having a diameter of 5 mm or less is 1 to 3.
  • the number of air-ins having a diameter of 5 mm or less is 4 or more, or the number of air-ins having a diameter of 5 mm or more is 1 or more.
  • Comparative Example 1-1 is a polymer sheet made of SIBS and was used as a reference.
  • the first layer contains SIBS and epoxidized SBS. While having the air permeability resistance equivalent to Comparative Example 1-1, the adhesion and the low temperature durability were improved, and the rolling resistance was reduced.
  • the second layer comprises SIS and epoxidized SBS. While having the air permeability resistance equivalent to Comparative Example 1-1, the adhesion and the low temperature durability were improved, and the rolling resistance was reduced.
  • the second layer comprises SIB and epoxidized SBS. While having the air permeability resistance equivalent to Comparative Example 1-1, the adhesion and the low temperature durability were improved, and the rolling resistance was reduced.
  • Styrene component content 15% by mass Weight average molecular weight: 70,000 (SIBS) “Sibustar SIBSTAR 102 (Shore A hardness 25; styrene component content 25 mass%, weight average molecular weight: 100,000)” manufactured by Kaneka Co., Ltd. was used.
  • Tackifier A "Arcon P 140 (C9 petroleum resin, softening point 140 ° C., weight average molecular weight 900)" manufactured by Arakawa Chemical Industries, Ltd. was used.
  • Tackifier B “YS resin PX1250 (terpene resin, softening point 125 ° C., weight average molecular weight 700)” manufactured by Yasuhara Chemical Co., Ltd. was used.
  • Tackifier C "Superester A 125 (hydrogenated rosin ester, softening point 125 ° C., weight average molecular weight 700)" manufactured by Arakawa Chemical Industries, Ltd. was used.
  • Each of the raw material of said 1st layer and 2nd layer was pelletized with the twin-screw extruder (screw diameter: (phi) 50 mm, L / D: 30, cylinder temperature: 220 degreeC).
  • the obtained pellets were co-extruded using a T-die extruder (screw diameter: ⁇ 80 mm, L / D: 50, die grip width: 500 mm, cylinder temperature: 220 ° C.), and the thicknesses shown in Tables 4 to 8
  • a polymer laminate having a first layer and a second layer was prepared.
  • ⁇ Production of pneumatic tire> In order to adjust the thickness Ge of the shoulder position Pe of the inner liner and the thickness Gc of the crown center position Pc, a profile is attached to the extrusion port of the polymer sheet to reduce the thickness Gc of the crown center position Pc.
  • the body was made.
  • the obtained polymer laminate was applied to the inner liner portion of the tire to prepare a green tire. This was disposed on the inner surface of the tire as an inner liner.
  • the polymer laminate was disposed such that the first layer of the polymer laminate was disposed on the innermost side in the radial direction of the green tire, and the second layer was in contact with the carcass layer of the green tire.
  • the green tire was press molded in a mold at 170 ° C. for 20 minutes to produce a 195 / 65R15 size vulcanized tire.
  • the vulcanized tire was cooled at 100 ° C. for 3 minutes, the vulcanized tire was removed from the mold to obtain a pneumatic tire.
  • the size of the test piece was 25 mm wide, and was performed under a room temperature condition of 23 ° C.
  • the vulcanized adhesion index was calculated by the following formula using the obtained numerical value as a reference (100) for Comparative Example 2-1. The larger the value, the better the adhesion.
  • (Vulcanized adhesion index) (adhesive strength of each polymer laminate) / (adhesive strength of comparative example 2-1) ⁇ 100 ⁇ Rolling resistance>
  • tan ⁇ of each polymer laminate is measured under the conditions of a temperature of 70 ° C., an initial strain of 10%, and a dynamic strain of 2% using a visco-elastic spectrometer VES (manufactured by Iwamoto Seisakusho Co., Ltd.). Assuming that tan ⁇ of -1 is 100, the index is displayed according to the following formula. The larger the index, the lower the rolling resistance.
  • (Bending crack growth index) (the number of cracks in Comparative Example 2-1) / (the number of cracks in each tire) ⁇ 100 ⁇ Static air pressure reduction rate>
  • a 195 / 65R15 steel radial PC tire is assembled on a JIS standard rim 15 ⁇ 6JJ, sealed with an initial air pressure of 300 KPa, left at room temperature for 90 days, and the reduction rate of the air pressure is calculated.
  • the static air pressure drop rate of each composition was indicated as an index. The higher the value of the index, the lower the air pressure reduction rate and the better.
  • A The number of air-ins is zero.
  • B The number of air-ins having a diameter of 5 mm or less is 1 to 3.
  • the number of air-ins having a diameter of 5 mm or less is 4 or more, or the number of air-ins having a diameter of 5 mm or more is 1 or more.
  • Comparative Example 2-1 is a polymer laminate having a first layer made of SIBS and a second layer made of SIB, and a pneumatic tire, which was used as a reference.
  • Examples 2-1 to 2-21 are a polymer laminate and a pneumatic tire in which the first layer or the second layer contains 20 parts by mass of a tackifier. In all cases, while maintaining the rolling resistance equivalent to that of Comparative Example 2-1, the vulcanization adhesion, the resistance to flex crack growth, the air permeability, and the air-in did not occur.
  • Comparative Example 2-50 is a polymer laminate having a first layer of 8 mm in thickness made of SIBS, and a second layer of 8 mm in thickness containing SIB, SIBS, and a tackifier, and was used as a reference.
  • Examples 2-22 and 2-23 are a polymer laminate and a pneumatic tire in which the thickness of the first layer and the second layer is 0.05 mm, respectively. As compared with Comparative Example 2-50, the vulcanized adhesive strength and the air permeation resistance were improved, and the generation of air-in could be suppressed.
  • ⁇ Preparation of polymer component> The polymer components used for the first and second layers were prepared as follows. ⁇ Isobutylene-based modified copolymer> (Component A-1) Component A-1: (styrene / ⁇ -pinene) -isobutylene- (styrene / ⁇ -pinene) block copolymer ( ⁇ -pinene content: 9.7% by mass, number average molecular weight (Mn): 103,000).
  • component A-1 The production method of component A-1 is as follows. After replacing the inside of a 2 L separable flask with nitrogen, add 31.0 mL of n-hexane and 294.6 mL of similarly dried butyl chloride, which were dried with molecular sieves using a syringe, After being placed in a mixed bath of dry ice and methanol at 0 ° C and cooled, the pressure tube made of Teflon (registered trademark) is transferred to a pressure collecting glass made of pressure glass with 88.9 mL (941.6 mmol) of isobutylene monomer. Were connected, and the isobutylene monomer was fed into the polymerization vessel by nitrogen pressure.
  • Teflon registered trademark
  • Component A-2 Component A-2: (styrene / ⁇ -pinene) -isobutylene- (styrene / ⁇ -pinene) block copolymer ( ⁇ -pinene content: 5.3% by mass, number average molecular weight: 107,000).
  • component A-2 The production method of component A-2 is as follows. After replacing the inside of a 2 L separable flask with nitrogen, 31.0 mL of n-hexane and 294.6 mL of similarly dried butyl chloride, which were dried with molecular sieves using a syringe, were added, and the polymerization container was heated to -70 ° C. The mixture was placed in a mixed bath of dry ice and methanol and cooled, and a Teflon (registered trademark) liquid transfer tube was placed in a pressure glass liquefaction sampling tube with a three-way cock containing 88.9 mL (941.6 mmol) of isobutylene monomer.
  • Teflon registered trademark
  • the block copolymer has a number average molecular weight (Mn) of 107,000 and Mw / Mn of 1.23.
  • Component A-3 Component A-3: Styrene- (isobutylene / ⁇ -pinene) -styrene block copolymer ( ⁇ -pinene content 5.3% by mass, number average molecular weight 109,000).
  • component A-3 The production method of component A-3 is as follows. After replacing the inside of the polymerization vessel of a 2 L separable flask with nitrogen, add 31.0 mL of n-hexane and 294.6 mL of butyl chloride dried with molecular sieves, which are dried with molecular sieves using a syringe, After cooling in a mixed bath of dry ice and methanol at ⁇ 70 ° C., 3.6 g (26.3 mmol) of ⁇ -pinene was added.
  • the number average molecular weight (Mn) of the block copolymer is 109,000, and Mw / Mn is 1.21.
  • ⁇ SIB> In a 2 L reaction vessel equipped with a stirrer, 589 mL of methylcyclohexane (dried with molecular sieves), 613 ml of n-butyl chloride (dried with molecular sieves), and 0.550 g of cumyl chloride were added. The reaction vessel was cooled to ⁇ 70 ° C., and then 0.35 mL of ⁇ -picoline (2-methylpyridine) and 179 mL of isobutylene were added.
  • styrene-isobutylene diblock copolymer (styrene component content: 15% by mass) , Weight average molecular weight: 70,000).
  • styrene component content: 15% by mass styrene component content: 15% by mass
  • Weight average molecular weight: 70,000 Weight average molecular weight: 70,000.
  • ⁇ SIBS> “Sibustar SIBSTAR 102T (styrene-isobutylene-styrene block copolymer, Shore A hardness: 25, content of styrene component: 25% by mass, weight average molecular weight: 100,000)” manufactured by Kaneka Co., Ltd. was used.
  • ⁇ Production of inner liner> Prepare a polymer component according to the formulation shown in Tables 9 to 16, and add the following components, and then add a Banbury mixer, a kneader, a twin screw extruder (screw diameter: ⁇ 50 mm, L / D: 30, cylinder temperature: Blending at 220 ° C.) gave a polymer composition. Then, after producing the polymer sheet of the 1st layer and the 2nd layer with T die extrusion machine (screw diameter: ⁇ 80 mm, L / D: 50, die lip width: 500 mm, cylinder temperature: 220 ° C), they are pasted together and inner A liner was made.
  • the thickness of the polymer sheet of a 1st layer and a 2nd layer shows average thickness.
  • the compounding amount is described as an amount based on 100 parts by weight in total of SIBS and the isobutylene-based modified copolymer.
  • Alcon P 140 softening point: 140 ° C, weight average molecular weight: 900: 5 parts by mass (compounding agents and amounts of the second layer) The compounding amount is described as an amount based on 100 parts by mass of SIB and SIBS in total.
  • Examples 3-1 to 3-24 and Comparative Examples 3-1 to 3-47 are based on Comparative Example 3-1, and Examples 3-25 and 3-26, and Comparative Examples 3-48 to 3-50. Was evaluated based on Comparative Example 3-48. Details of each test are shown below.
  • ⁇ Vulcanization adhesive strength> Tests were conducted in accordance with JIS-K-6256 “How to Determine Adhesion of Vulcanized Rubber and Thermoplastic Rubber”. Specifically, the inner liner and the rubber sheet are laminated and vulcanized at 170 ° C. for 20 minutes. The adhesion was measured at the bonding interface after vulcanization. The results are expressed as an index, and the higher the value, the greater the adhesion and the better.
  • Vulcanizing adhesive strength (index) (vulcanizing adhesive strength of each composition) / (vulcanizing adhesive strength of Comparative Example 3-1 or Comparative Example 3-48) ⁇ 100
  • the composition of the rubber sheet is as follows.
  • Natural rubber 100 parts by mass Carbon black (Note 2) 50 parts by mass Zinc white (Note 3) 3 parts by mass Antidegradant (Note 4) 0.2 parts by mass Sulfur (Note 5) 1 part by mass Vulcanization acceleration Agent (Note 6) 1 part by mass Vulcanization auxiliary (Note 7) 1 part by mass (Note 1) TSR 20 (Note 2) “Seast V” manufactured by Tokai Carbon Co., Ltd. (N 660, N 2 SA: 27 m 2 / g) (Note 3) Zinc oxide (ZnO): "Zinc flower No. 1" manufactured by Mitsui Mining & Smelting Co., Ltd.
  • Flexural crack growth (index) (number of cracks in Comparative Example 3-1 or Comparative Example 3-48) / (number of cracks in each composition) ⁇ 100 ⁇ Static air pressure reduction rate>
  • a 195 / 65R15 steel radial PC tire was assembled on a JIS standard rim 15 ⁇ 6JJ, sealed with an initial air pressure of 300 KPa, left at room temperature for 90 days, and the decrease rate of the air pressure was calculated. The results are expressed as an index, and the higher the value, the lower the rate of decrease in air pressure and the better.
  • Static air pressure reduction rate (index) (Static air pressure reduction rate of Comparative Example 3-1 or Comparative Example 3-48) / (Static air pressure reduction rate of each composition) ⁇ 100 ⁇ With or without air in>
  • the inside of the vulcanized tire was inspected, and in terms of appearance, the air-in was A for one tire, B for one or more and three or less, and C for four or more.
  • the size of the air-in was 5 mm or less in diameter, and when there was air-in exceeding 5 mm in diameter, even one air-in was C.
  • the uneven thickness range (CL (%) / SW (%)) indicates the following.
  • CL (%) the distance from the shoulder position Pe of the thick portion to the crown center position Pc side / shoulder distance Wc ⁇ 100
  • SW (%) the distance from the shoulder position Pe of the thick portion to the maximum width position Ps side / side distance Ws ⁇ 100
  • Evaluation result> Examples 3-1 to 3-26 in which the polymer component of the first layer contains 0.5% by mass or more and 25% by mass of the component A-1, A-2 or A-3 (isobutylene-based modified copolymer) are It was found that the vulcanized adhesion, the resistance to flex crack growth, the static air pressure reduction rate were excellent, and the air-in was also suppressed. Furthermore, when the second layer had the same composition and the tire structure was also the same, comparing the example with the comparative example, it was found that the example had a low rolling resistance.
  • the pneumatic tires of the comparative example and the example were manufactured according to the specifications shown in Tables 17 to 19, and the performance was evaluated.
  • the polymer components SIBS, SIBS modified copolymer and SIB were prepared as follows. [SIBS] "SHIBSTER SIBSTAR 102T (Shore A hardness 25, Styrene content: 15% by mass, weight average molecular weight: 100,000)" manufactured by Kaneka Co., Ltd. was used.
  • SIBS modified copolymer In a 2 liter separable flask, 75 g of styrene-isobutylene block copolymer (styrene content: 30%, mole number of styrene unit: 0.216 mol) was placed, and the inside of the container was replaced with nitrogen. Using a syringe, 1200 mL of n-hexane dried with molecular sieves and 1800 mL of n-butyl chloride dried with molecular sieves were added.
  • SIBS modified copolymer weight average molecular weight: 150,000, styrene component content: 20% by mass, acid chloride: 1.0% by mass.
  • SIB In a 2 L reaction vessel equipped with a stirrer, 589 mL of methylcyclohexane (dried with molecular sieves), 613 ml of n-butyl chloride (dried with molecular sieves), and 0.550 g of cumyl chloride were added. The reaction vessel was cooled to ⁇ 70 ° C., and then 0.35 mL of ⁇ -picoline (2-methylpyridine) and 179 mL of isobutylene were added.
  • styrene component content 15% by mass
  • Weight average molecular weight 70,000.
  • inner liner Prepare a polymer component according to the formulation shown in Tables 17-19, and add the following ingredients, and then add a Banbury mixer, kneader, twin-screw extruder (screw diameter: ⁇ 50 mm, L / D: 30, cylinder temperature: Blending at 220 ° C.) gave a polymer composition.
  • the thickness of the polymer sheet of a 1st layer and a 2nd layer shows average thickness.
  • the compounding amount is described as an amount based on a total of 100 parts by mass of SIBS and SIBS modified copolymer.
  • Vulcanizing adhesive strength (index) (vulcanizing adhesive strength of each composition) / (vulcanizing adhesive strength of Comparative Example 4-1) ⁇ 100
  • the composition of the rubber sheet is as follows.
  • Natural rubber 100 parts by mass Carbon black (Note 2) 50 parts by mass Zinc white (Note 3) 3 parts by mass Antidegradant (Note 4) 0.2 parts by mass Sulfur (Note 5) 1 part by mass Vulcanization acceleration Agent (Note 6) 1 part by mass Vulcanization auxiliary (Note 7) 1 part by mass (Note 1) TSR 20 (Note 2) “Seast V” manufactured by Tokai Carbon Co., Ltd. (N 660, N 2 SA: 27 m 2 / g) (Note 3) Zinc oxide (ZnO): "Zinc flower No. 1" manufactured by Mitsui Mining & Smelting Co., Ltd.
  • Rolling resistance (index) (Comparative example 4-1) / (tan ⁇ of each composition) ⁇ 100 ⁇ Bending crack growth property>
  • Flexural crack growth was evaluated by whether the inner liner was broken or peeled off.
  • the prototype tire is assembled on a JIS standard rim 15 x 6 JJ, the internal pressure of the tire is set to 150 KPa lower than usual, the load is 600 kg, the speed is 100 km / h, the inside of the tire is observed with a traveling distance of 20,000 km, The number of peels was measured.
  • the crack growth of each composition was indicated by an index. The larger the index value, the smaller the flex crack growth is.
  • Flexural crack growth (index) (number of cracks of Comparative Example 4-1) / (number of cracks of each composition) ⁇ 100 ⁇ Static air pressure reduction rate>
  • a 195 / 65R15 steel radial PC tire was assembled on a JIS standard rim 15 ⁇ 6JJ, sealed with an initial air pressure of 300 KPa, left at room temperature for 90 days, and the decrease rate of the air pressure was calculated. The results are expressed as an index, and the higher the value, the lower the rate of decrease in air pressure and the better.
  • Static air pressure decrease rate (index) (Static air pressure decrease rate of each composition) / (Static air pressure decrease rate of Comparative Example 4-1) ⁇ 100 ⁇ With or without air in>
  • the inside of the vulcanized tire was inspected, and in terms of appearance, the air-in was A for one tire, B for one or more and three or less, and C for four or more.
  • the size of the air-in was 5 mm or less in diameter, and when there was air-in exceeding 5 mm in diameter, even one air-in was C.
  • the uneven thickness range (CL (%) / SW (%)) indicates the following.
  • CL (%) the distance from the shoulder position Pe of the thick portion to the crown center position Pc side / shoulder distance Wc ⁇ 100
  • SW (%) the distance from the shoulder position Pe of the thick portion to the maximum width position Ps side / side distance Ws ⁇ 100 ⁇ Evaluation result>
  • the polymer component of at least one of the first layer and the second layer contains 10% by mass or more and 99.5% by mass or less of the SIBS modified copolymer
  • the pneumatic tire of the present invention can be used as a pneumatic tire for trucks, buses, heavy machinery, etc. besides pneumatic tires for passenger cars.

Abstract

This pneumatic tire has an inner liner that is formed of a polymer laminate. The polymer laminate comprises a first layer which is formed of a first polymer A composition containing SIBS and has a thickness of from 0.05 mm to 0.8 mm (inclusive) and a second layer that is formed of a second polymer A composition containing SIS and/or SIB and has a thickness of from 0.01 mm to 0.8 mm (inclusive). The first polymer A composition and/or the second polymer A composition contains an epoxidized styrene-butadiene-styrene triblock copolymer in an amount of from 0.5% by mass to 40% by mass (inclusive). The second layer is arranged so as to be in contact with a rubber layer of a carcass ply. With respect to the inner liner, the thickness (Ge) thereof at the shoulder position (Pe) is larger than the thickness (Gc) thereof at the crown center position (Pc), and the thickness (Ge) is from 0.2 mm to 1.9 mm (inclusive).

Description

空気入りタイヤPneumatic tire
 本発明は、インナーライナーを備えた空気入りタイヤに関する。 The present invention relates to a pneumatic tire provided with an inner liner.
 インナーライナーはタイヤの内側に配置され、空気入りタイヤ内部から外部への空気の漏れを低減してタイヤ内圧を一定に維持する機能を有する。このような機能を有する材料として、従来からブチル系ゴムなどの気体透過性の低いゴム組成物が使用されている。一方、タイヤの軽量化を図るために、ブチル系ゴム組成物にかえて熱可塑性樹脂を含む材料からなるフィルムが使用される場合がある。 The inner liner is disposed on the inside of the tire, and has a function of reducing air leakage from the inside to the outside of the pneumatic tire to maintain the tire internal pressure constant. As a material having such a function, rubber compositions having low gas permeability such as butyl-based rubber are conventionally used. On the other hand, in order to reduce the weight of the tire, a film made of a material containing a thermoplastic resin may be used instead of the butyl rubber composition.
 ここでインナーライナーは、タイヤ使用時にショルダー部近傍に大きなせん断歪が作用する。熱可塑性樹脂を含む材料をインナーライナーとして使用した場合、このせん断歪みによって、インナーライナーとカーカスプライの接着界面で剥離が発生しやすくなり、タイヤの空気漏れが発生するという問題があった。 Here, in the inner liner, a large shear strain acts in the vicinity of the shoulder portion when the tire is used. When a material containing a thermoplastic resin is used as an inner liner, there is a problem that this shear strain easily causes peeling at the bonding interface between the inner liner and the carcass ply, which causes air leakage of the tire.
 一方、空気入りタイヤは、低燃費化の要請があり、タイヤの軽量化により転がり抵抗を軽減する課題がある。そのため、インナーライナーに熱可塑性エラストマーを用いる技術も提案されているが、ブチル系ゴムのインナーライナーよりも厚さを薄くすると、インナーライナーの強度は低下し、加硫工程時のブラダーの熱と圧力でインナーライナーが破壊または変形する問題があった。 On the other hand, pneumatic tires are required to have low fuel consumption, and there is a problem of reducing rolling resistance by reducing the weight of the tires. Therefore, a technology using a thermoplastic elastomer for the inner liner is also proposed, but if the thickness is made thinner than the butyl rubber inner liner, the strength of the inner liner decreases and the heat and pressure of the bladder during the vulcanization process There was a problem that the inner liner was broken or deformed.
 さらに、高い耐空気透過性を有する熱可塑性エラストマーは、インナーライナーに隣接するインスレーションゴムやカーカスゴムとの加硫接着力がブチル系ゴムよりも劣ることが分かっている。インナーライナーの加硫接着力が低いと、インナーライナーとインスレーションゴム、またはカーカスゴムとの間に空気が混入し、小さな風船のようなものが現れる、いわゆるエアイン現象が生じる。エアインの有無は、タイヤの性能上は問題ないものの、ユーザーには外観が悪いという印象を与えてしまう。 Furthermore, it has been found that the thermoplastic elastomer having high air permeation resistance is inferior in vulcanization adhesion to insulation rubber and carcass rubber adjacent to the inner liner than butyl rubber. If the vulcanization adhesion of the inner liner is low, air is entrapped between the inner liner and insulation rubber or carcass rubber, causing a so-called air-in phenomenon in which something like a small balloon appears. Although there is no problem in the performance of the tire, the presence of the air-in gives the user the impression that the appearance is bad.
 特開平9-019987号公報(特許文献1)には、空気圧を一定に保持する、インナーライナー層等の空気透過防止層を有する空気入りタイヤに好適な積層体として、ポリアミド系樹脂、ポリエステル系樹脂、ポリアリレート系樹脂、ポリアミド系アロイ及びポリエステル系アロイからなる群より選ばれた少なくとも1種のガスバリヤー層(A)と接着層(B)とが少なくとも2層に積層されると共に、少なくとも一方の表面から電子線照射された積層フィルムを備えてなり、且つ上記接着層(B)がゴム層(R)と加熱接着されてなる積層フィルムとゴム層との積層体が開示されている。 JP-A-9-019987 (Patent Document 1) discloses a polyamide-based resin and a polyester-based resin as a laminate suitable for a pneumatic tire having an air permeation preventing layer such as an inner liner layer or the like, which keeps air pressure constant. And at least one of a gas barrier layer (A) and an adhesive layer (B) selected from the group consisting of polyarylate resins, polyamide alloys and polyester alloys, in at least two layers, There is disclosed a laminate of a laminate film and a rubber layer, which comprises a laminate film irradiated with an electron beam from the surface, and the adhesive layer (B) is heat-bonded to the rubber layer (R).
 該積層体は、接着層が加硫工程においてブラダーと加熱状態で接触することになり、ブラダーに粘着するという問題がある。 The laminate has a problem in that the adhesive layer comes into contact with the bladder in a heated state in the vulcanization step and adheres to the bladder.
 特許第2999188号公報(特開2000-159936号公報、特許文献2)には、耐空気透過性を有する熱可塑性エラストマー組成物として、エラストマー組成物(A)を分散相、熱可塑性樹脂組成物(B)をマトリックスとし、かつ熱可塑性樹脂組成物が2種以上の熱可塑性樹脂のブレンドよりなる熱可塑性エラストマー組成物が開示されている。実施例では、熱可塑性樹脂組成物としてナイロン樹脂を用いているが、ナイロン樹脂は室温では硬くタイヤ用インナーライナーとしては不向きである。さらに、該熱可塑性エラストマー組成物はゴム層との加硫接着はしない。したがって、該熱可塑性エラストマーをインナーライナーに用いると、さらに加硫用接着層が必要となり、生産性の観点から不利である。 Japanese Patent No. 2999188 (Japanese Patent Laid-Open No. 2000-159936, Patent Document 2) describes a thermoplastic elastomer composition (A) as a dispersed phase, a thermoplastic resin composition (a thermoplastic resin composition (A) as a thermoplastic elastomer composition having air resistance. A thermoplastic elastomer composition is disclosed in which B) is a matrix and the thermoplastic resin composition is a blend of two or more thermoplastic resins. In the examples, nylon resin is used as the thermoplastic resin composition, but nylon resin is hard at room temperature and unsuitable as an inner liner for tires. Furthermore, the thermoplastic elastomer composition does not adhere to the rubber layer by vulcanization. Therefore, when the thermoplastic elastomer is used for the inner liner, an adhesive layer for vulcanization is further required, which is disadvantageous from the viewpoint of productivity.
 特開2008-024219号公報(特許文献3)には、空気遮断性の良好なエチレン-ビニルアルコール共重合体中に無水マレイン酸変性水素添加スチレン-エチレン-ブタジエン-スチレンブロック共重合体を分散させた、柔軟なガスバリア層が開示されている。また、該ガスバリア層を熱可塑性ポリウレタン層で挟み込み、さらにタイヤゴムと接着する面にゴム糊(ブチルゴム/天然ゴムの70/30をトルエンに溶解させる)を塗布させて作製されたインナーライナー層が開示されている。 JP-A 2008-024219 (patent document 3) discloses that maleic anhydride modified hydrogenated styrene-ethylene-butadiene-styrene block copolymer is dispersed in a good air-blocking ethylene-vinyl alcohol copolymer. Also, a flexible gas barrier layer is disclosed. Also disclosed is an inner liner layer produced by sandwiching the gas barrier layer with a thermoplastic polyurethane layer and further applying a rubber paste (70/30 of butyl rubber / natural rubber dissolved in toluene) on the surface to be adhered to the tire rubber. ing.
 しかし、柔軟樹脂分散の変性エチレン-ビニルアルコール共重合体は接着力が低く、熱可塑性ポリウレタン層と剥離するおそれがある。また柔軟樹脂分散の変性エチレン-ビニルアルコール共重合体は柔軟樹脂が分散されているが、マトリックスの変性エチレン-ビニルアルコール共重合体は屈曲疲労性に乏しく、タイヤ走行中に破壊してしまう。さらにタイヤゴムと接着する面にゴム糊を塗布しているが、通常のインナーライナーの製造工程とは別の工程が必要となり、生産性が劣ることになる。 However, the soft resin-dispersed modified ethylene-vinyl alcohol copolymer has low adhesion and may peel off from the thermoplastic polyurethane layer. In addition, although the flexible resin is dispersed in the modified ethylene-vinyl alcohol copolymer of the flexible resin, the modified ethylene-vinyl alcohol copolymer in the matrix is poor in bending fatigue and is broken during running of the tire. Furthermore, although a rubber paste is applied to the surface to be bonded to the tire rubber, a process different from the normal inner liner manufacturing process is required, resulting in poor productivity.
 特開2005-343379号公報(特許文献4)には、インナーライナー層におけるクラックの発生を効果的に抑制するために、ショルダー部における厚さがタイヤクラウン部における厚さよりも大きく設計されたインナーライナー層が開示されている。しかしながら厚さ寸法を大きくすると重量が増加するため、タイヤの低燃費化の観点から問題がある。 JP-A-2005-343379 (Patent Document 4) discloses an inner liner designed to have a thickness at a shoulder portion larger than a thickness at a tire crown portion in order to effectively suppress the occurrence of a crack in the inner liner layer. Layers are disclosed. However, when the thickness dimension is increased, the weight is increased, which causes a problem from the viewpoint of reducing the fuel consumption of the tire.
 特開2010-013646号公報(特許文献5)には、熱可塑性エラストマーであるSIBSに粘着付与剤として石油樹脂、テルペン樹脂を用いて接着力を向上することが提案されている。しかしSIBSのほかにポリアミド系ポリマーをブレンドしており、耐屈曲亀裂性が低下するという問題がある。 JP-A-2010-013646 (Patent Document 5) proposes to improve adhesion by using a petroleum resin or terpene resin as a tackifier for SIBS which is a thermoplastic elastomer. However, in addition to SIBS, a polyamide-based polymer is blended, and there is a problem that the resistance to flex cracking is lowered.
 特開2010-100675号公報(特許文献6)には、SIBSと硫黄架橋可能な重合体のブレンド物に粘着付与剤として、天然ロジン、テルペン、クロマンインデン樹脂、石油樹脂またはアルキルフェノール樹脂などを用いて、カーカスプライゴムの接着性を向上することが提案されている。 JP-A-2010-100675 (patent document 6) uses natural rosin, terpene, chroman indene resin, petroleum resin or alkylphenol resin as a tackifier in a blend of SIBS and a sulfur-crosslinkable polymer. It has been proposed to improve the adhesion of carcass ply rubber.
 しかしSIBSの100重量部に対して硫黄架橋可能な重合体を10~300重量部ブレンドする技術では、硫黄架橋可能な重合体が100重量部以下の場合、SIBSがマトリックス(海部分)で、硫黄架橋可能な重合体がドメイン構造(島部分)となり、カーカスゴムへの接触界面での接着力が向上しない。また硫黄架橋可能な重合体が100重量部以上の場合、ブチルゴム以外ではガスバリア性が低下し、ブチルゴムでは接着力が低下し、更にはブレンドする重合体によっては、粘着性が高くなり厚さ600μm以下のフィルムを作製できないという問題がある。 However, in the technology of blending 10 to 300 parts by weight of a sulfur-crosslinkable polymer to 100 parts by weight of SIBS, SIBS is a matrix (sea portion) and sulfur if the amount of the sulfur-crosslinkable polymer is 100 parts by weight or less The crosslinkable polymer forms a domain structure (island portion) and adhesion at the contact interface with the carcass rubber is not improved. When the amount of sulfur-crosslinkable polymer is 100 parts by weight or more, the gas barrier property is lowered except for butyl rubber, and the adhesive strength is lowered in butyl rubber, and the adhesiveness is increased depending on the blended polymer, and the thickness is 600 μm or less There is a problem that the film of can not be produced.
 国際公開第2008/029781号(特許文献7)は、熱可塑性樹脂と熱可塑性エラストマーをブレンドしたフィルム積層体のストリップでタイヤを製造している。積層体にすることで、ガスバリア性、接着性を改善することができ、リボン状のストリップ間の接合を可能にしている。しかし、この技術はフィルム積層体の未加硫生カバーでのゲージは一定であり、ゲージを薄くするとバットレス部などで加硫後のタイヤ仕上がりが薄くなってしまう可能性がある。 WO 2008/029781 produces tires with strips of film laminates in which a thermoplastic resin and a thermoplastic elastomer are blended. By forming a laminate, gas barrier properties and adhesion can be improved, and bonding between ribbon-like strips is enabled. However, in this technology, the gauge at the unvulcanized green cover of the film laminate is constant, and if the gauge is made thin, there is a possibility that the finished tire after vulcanization at the buttress portion and the like may become thin.
特開平9-019987号公報Japanese Patent Laid-Open No. 9-019987 特許第2999188号公報(特開2000-159936号公報)Patent No. 2999188 (Unexamined-Japanese-Patent No. 2000-159936) 特開2008-024219号公報JP, 2008-024219, A 特開2005-343379号公報JP, 2005-343379, A 特開2010-013646号公報JP, 2010-013646, A 特開2010-100675号公報Unexamined-Japanese-Patent No. 2010-100675 国際公開第2008/029781号WO 2008/029781
 本発明の第1の目的は、優れた耐空気透過性とともに、隣接ゴムとの良好な接着性を有するインナーライナーを備えた空気入りタイヤ、および転がり抵抗が低減され、低温耐久性に優れた空気入りタイヤを提供することである。 A first object of the present invention is a pneumatic tire provided with an inner liner having excellent air permeability and good adhesion to adjacent rubber, and air having reduced rolling resistance and excellent low temperature durability. It is to provide a tire.
 本発明の第2の目的は、隣接ゴムとの良好な加硫接着力を有するとともに、転がり抵抗の増加が抑制されたポリマー積層体および、優れた耐空気透過性および耐屈曲亀裂成長性を有する空気入りタイヤを提供することである。 A second object of the present invention is to provide a polymer laminate having good vulcanization adhesion with adjacent rubber and suppressing an increase in rolling resistance, and having excellent air permeability resistance and flex crack growth resistance. It is providing a pneumatic tire.
 本発明の第3の目的は、隣接ゴムとの良好な加硫接着力を有するとともに、転がり抵抗の増加が抑制されたインナーライナーを備え、優れた耐空気透過性および耐屈曲亀裂成長性を有し、さらにエアインの発生が抑制された空気入りタイヤを提供することである。 A third object of the present invention is to provide an inner liner having excellent vulcanization adhesion with adjacent rubber and at the same time suppressing an increase in rolling resistance, and having excellent air permeability resistance and flex crack growth resistance. Another object of the present invention is to provide a pneumatic tire in which the occurrence of air-in is suppressed.
 本発明の第4の目的は、隣接ゴムとの良好な加硫接着力を有するとともに、転がり抵抗の増加が抑制されたインナーライナーを備え、優れた耐空気透過性および耐屈曲亀裂成長性を有し、さらにエアインの発生が抑制された空気入りタイヤを提供することである。 A fourth object of the present invention is to provide an inner liner having excellent vulcanization adhesion with adjacent rubber and at the same time suppressing an increase in rolling resistance, and having excellent air permeability resistance and flex crack growth resistance. Another object of the present invention is to provide a pneumatic tire in which the occurrence of air-in is suppressed.
 本発明は、一対のビード部の間に装架されたカーカスプライのタイヤ内側にインナーライナーを備えた空気入りタイヤであって、インナーライナーはポリマー積層体からなり、ポリマー積層体は、スチレン-イソブチレン-スチレントリブロック共重合体を含む第1Aポリマー組成物からなる厚さ0.05mm以上0.8mm以下の第1層と、スチレン-イソプレン-スチレントリブロック共重合体およびスチレン-イソブチレンジブロック共重合体の少なくともいずれかを含む第2Aポリマー組成物からなる厚さ0.01mm以上0.8mm以下の第2層とを含み、第1Aポリマー組成物および第2Aポリマー組成物の少なくともいずれかが、エポキシ化スチレン-ブタジエン-スチレントリブロック共重合体を0.5質量%以上40質量%以下含み、第2層がカーカスプライのゴム層と接するように配置されており、インナーライナーはクラウン中央位置Pcにおける厚さGcよりもショルダー位置Peの厚さGeが厚く、厚さGeが0.2mm以上1.9mm以下である。 The present invention is a pneumatic tire comprising an inner liner on the inner side of a carcass ply tire mounted between a pair of bead portions, the inner liner comprising a polymer laminate, the polymer laminate comprising styrene-isobutylene -A first layer comprising a first A polymer composition containing a styrene-triblock copolymer, a first layer having a thickness of 0.05 mm or more and 0.8 mm or less, a styrene-isoprene-styrene triblock copolymer, and a styrene-isobutylene diblock copolymer And a second layer having a thickness of 0.01 mm or more and 0.8 mm or less comprising the second A polymer composition containing at least one of the combination, and at least one of the first A polymer composition and the second A polymer composition is epoxy 0.5% or more by mass of hydrogenated styrene-butadiene-styrene triblock copolymer %, And the second layer is disposed in contact with the rubber layer of the carcass ply, and the inner liner is thicker at the shoulder position Pe than the thickness Gc at the crown center position Pc and has a thickness Ge of 0 .2 mm or more and 1.9 mm or less.
 本発明の空気入りタイヤは、エポキシ化スチレン-ブタジエン-スチレントリブロック共重合体は、重量平均分子量が1万以上40万以下であり、スチレン成分含有量が10質量%以上30質量%以下であり、かつエポキシ当量が50以上1,000以下であることが好ましい。 In the pneumatic tire according to the present invention, the epoxidized styrene-butadiene-styrene triblock copolymer has a weight average molecular weight of 10,000 or more and 400,000 or less, and a styrene component content of 10% by mass or more and 30% by mass or less And the epoxy equivalent is preferably 50 or more and 1,000 or less.
 本発明は、一対のビード部の間に装架されたカーカスプライのタイヤ内側にインナーライナーを備えた空気入りタイヤであって、インナーライナーはポリマー積層体からなり、ポリマー積層体は、スチレン-イソブチレン-スチレントリブロック共重合体を含む第1Bポリマー組成物からなる厚さ0.05mm以上0.6mm以下の第1層と、スチレン-イソブチレンジブロック共重合体を含む第2Bポリマー組成物からなる厚さ0.01mm以上0.3mm以下の第2層とを含み、第1Bポリマー組成物および第2Bポリマー組成物の少なくともいずれかが、ポリマー成分100質量部に対して粘着付与剤を0.1質量部以上100質量部以下含み、第2層がカーカスプライのゴム層と接するように配置されており、インナーライナーはクラウン中央位置Pcにおける厚さGcよりもショルダー位置Peの厚さGeが厚い。 The present invention is a pneumatic tire comprising an inner liner on the inner side of a carcass ply tire mounted between a pair of bead portions, the inner liner comprising a polymer laminate, the polymer laminate comprising styrene-isobutylene -A thickness consisting of a first layer comprising a first B polymer composition containing a styrene triblock copolymer and a second layer B containing a styrene-isobutylene diblock copolymer and having a thickness of 0.05 mm or more and 0.6 mm or less At least one of the first B polymer composition and the second B polymer composition containing a second layer having a thickness of 0.01 mm or more and 0.3 mm or less, and 0.1 mass of a tackifier per 100 mass parts of the polymer component And the second layer is disposed in contact with the rubber layer of the carcass ply, and the inner liner is It is thicker Ge shoulder position Pe than the thickness Gc at round the center position Pc.
 本発明の空気入りタイヤは、粘着付与剤は、重量平均分子量が1×102以上1×106以下であり、軟化点が50℃以上150℃以下であることが好ましい。 In the pneumatic tire of the present invention, the tackifier preferably has a weight average molecular weight of 1 × 10 2 or more and 1 × 10 6 or less and a softening point of 50 ° C. or more and 150 ° C. or less.
 本発明は、一対のビード部の間に装架されたカーカスプライのタイヤ内側にインナーライナーを備えた空気入りタイヤであって、インナーライナーは、ポリマー成分がスチレン-イソブチレン-スチレントリブロック共重合体75質量%以上99.5質量%以下およびイソブチレン系変性共重合体0.5質量%以上25質量%以下を含む第1Cポリマー組成物からなる厚さ0.05mm以上0.6mm以下の第1層と、ポリマー成分がスチレン-イソブチレンブロック共重合体10質量%以上100質量%以下およびスチレン-イソブチレン-スチレントリブロック共重合体0質量%以上90質量%以下を含む第2Cポリマー組成物からなる厚さ0.01mm以上0.3mm以下の第2層とを含み、イソブチレン系変性共重合体は、イソブチレンを主体とする重合体ブロックと芳香族ビニル系化合物を主体とする重合体ブロックとからなり、少なくとも一つのブロックがβ-ピネンを含むランダム共重合体であり、第2層がカーカスプライのゴム層と接するように配置されており、インナーライナーはクラウン中央位置Pcにおける厚さGcよりもショルダー位置Peにおける厚さGeが厚い。 The present invention is a pneumatic tire having an inner liner on the inner side of a carcass ply tire mounted between a pair of bead portions, the inner liner comprising a styrene-isobutylene-styrene triblock copolymer having a polymer component. A first layer with a thickness of 0.05 mm or more and 0.6 mm or less comprising a first C polymer composition containing 75% by mass to 99.5% by mass and isobutylene-based modified copolymer 0.5% by mass to 25% by mass And a second C polymer composition comprising a polymer component containing 10% by mass to 100% by mass of a styrene-isobutylene block copolymer and 0% by mass to 90% by mass of a styrene-isobutylene-styrene triblock copolymer The isobutylene-based modified copolymer includes an isobu-based modified copolymer including a second layer of 0.01 mm or more and 0.3 mm or less. A random copolymer consisting of a polymer block mainly composed of len and a polymer block mainly composed of an aromatic vinyl compound, wherein at least one block is a random copolymer containing β-pinene and the second layer is a carcass ply rubber The inner liner is disposed in contact with the layer, and the inner liner has a thickness Ge at the shoulder position Pe that is greater than the thickness Gc at the crown center position Pc.
 本発明の空気入りタイヤは、イソブチレン系変性共重合体の芳香族ビニル系化合物がスチレンであることが好ましい。 In the pneumatic tire of the present invention, the aromatic vinyl compound of the isobutylene-based modified copolymer is preferably styrene.
 本発明は、一対のビード部の間に装架されたカーカスプライのタイヤ内側にインナーライナーを備えた空気入りタイヤであって、インナーライナーは、スチレン-イソブチレン-スチレントリブロック共重合体を含む第1Dポリマー組成物からなる厚さ0.05mm以上0.6mm以下の第1層と、スチレン-イソブチレンジブロック共重合体を含む第2Dポリマー組成物からなる厚さ0.01mm以上0.3mm以下の第2層とを備え、第1Dポリマー組成物および第2Dポリマー組成物の少なくともいずれかは、ポリマー成分中、スチレン-イソブチレン-スチレントリブロック共重合体のスチレンブロック部分が、不飽和結合を有する酸塩化物または酸無水物で変性されたSIBS変性共重合体を10質量%以上99.5質量%以下含み、第2層がカーカスプライのゴム層と接するように配置されており、インナーライナーはクラウン中央位置Pcにおける厚さGcよりもショルダー位置Peの厚さGeが厚い。 The present invention is a pneumatic tire comprising an inner liner on the tire inner side of a carcass ply mounted between a pair of bead portions, the inner liner comprising a styrene-isobutylene-styrene triblock copolymer. A thickness of 0.01 mm or more and 0.3 mm or less, which comprises a first layer having a thickness of 0.05 mm or more and 0.6 mm or less made of a 1D polymer composition, and a second D polymer composition containing a styrene-isobutylene diblock copolymer And the second D polymer composition and at least one of the first D polymer composition and the second D polymer composition is an acid having an unsaturated bond in the styrene block portion of the styrene-isobutylene-styrene triblock copolymer in the polymer component. 10% by weight or more and 99.5% by weight or less of a chloride or acid anhydride-modified SIBS modified copolymer See, and the second layer are arranged in contact with the rubber layer of the carcass ply, an inner liner thickness Ge shoulder position Pe is greater than the thickness Gc at the crown center position Pc.
 本発明の空気入りタイヤは、SIBS変性共重合体は、スチレン成分含有量が10質量%以上30質量%以下であり、重量平均分子量が50,000以上400,000以下であることが好ましい。 In the pneumatic tire of the present invention, the SIBS modified copolymer preferably has a styrene component content of 10% by mass to 30% by mass, and a weight average molecular weight of 50,000 to 400,000.
 本発明の空気入りタイヤは、タイヤ子午断面において、カーカスプライとインナーライナーとの境界線に対してトレッド部の接地端Teからタイヤ内径方向に法線Lを引き境界線との交点をショルダー位置Peとし、カーカスプライとインナーライナーとの境界線とタイヤ中心線CLとの交点をクラウン中心位置Pcとし、さらにショルダー位置Peからクラウン中心位置Pcまでのインナーライナーの輪郭線に沿った距離をショルダー距離Wcとしたとき、インナーライナーの肉厚部は、ショルダー位置Peからクラウン中心位置Pc側に、ショルダー距離Wcの少なくとも10%の幅を有する領域に形成されていることが好ましい。 In the pneumatic tire according to the present invention, in the tire meridional section, the normal L is drawn from the ground contact end Te of the tread portion to the tire inner diameter direction with respect to the boundary line between the carcass ply and the inner liner The intersection point of the boundary line between the carcass ply and the inner liner and the tire center line CL is a crown center position Pc, and the distance along the contour of the inner liner from the shoulder position Pe to the crown center position Pc is a shoulder distance Wc In this case, the thick portion of the inner liner is preferably formed in a region having a width of at least 10% of the shoulder distance Wc from the shoulder position Pe to the crown center position Pc side.
 本発明の空気入りタイヤは、インナーライナーの肉厚部は、ショルダー位置Peからクラウン中心位置Pc側に、ショルダー距離Wcの少なくとも50%の幅を有する領域に形成されていることが好ましい。 In the pneumatic tire of the present invention, the thick portion of the inner liner is preferably formed in a region having a width of at least 50% of the shoulder distance Wc from the shoulder position Pe to the crown center position Pc.
 本発明の空気入りタイヤは、インナーライナーのショルダー位置Peからタイヤ最大幅位置Psまでのインナーライナーの輪郭線に沿った距離をサイド距離Wsとしたとき、インナーライナーの肉厚部は、ショルダー位置Peから最大幅位置Ps側に、サイド距離Wsの少なくとも20%の幅を有する領域に形成されていることが好ましい。 In the pneumatic tire of the present invention, when the distance along the contour of the inner liner from the shoulder position Pe of the inner liner to the tire maximum width position Ps is a side distance Ws, the thick portion of the inner liner is the shoulder position Pe It is preferable to form in the area | region which has a width | variety of at least 20% of the side distance Ws in the largest width position Ps side from this.
 本発明の空気入りタイヤは、インナーライナーの肉厚部は、ショルダー位置Peからタイヤ最大幅位置Ps側に、サイド距離Wsの100%以下の幅を有する領域に形成されていることが好ましい。 In the pneumatic tire of the present invention, the thick portion of the inner liner is preferably formed in a region having a width of 100% or less of the side distance Ws on the tire maximum width position Ps side from the shoulder position Pe.
 本発明の空気入りタイヤは、インナーライナーは、クラウン中央位置Pcにおける厚さGcに対し、ショルダー位置Peの厚さGeは120%以上500%以下であることが好ましい。 In the pneumatic tire according to the present invention, the thickness Ge of the shoulder position Pe is preferably 120% or more and 500% or less of the thickness Gc at the crown center position Pc of the inner liner.
 本発明の空気入りタイヤは、スチレン-イソブチレン-スチレントリブロック共重合体は、スチレン成分含有量が10質量%以上30質量%以下であり、重量平均分子量が5万以上40万以下であることが好ましい。 In the pneumatic tire according to the present invention, the styrene-isobutylene-styrene triblock copolymer has a styrene component content of 10% by mass to 30% by mass, and a weight average molecular weight of 50,000 to 400,000 preferable.
 本発明の空気入りタイヤは、エポキシ化スチレン-ブタジエン-スチレントリブロック共重合体は、重量平均分子量が1万以上40万以下であり、スチレン成分含有量が10質量%以上30質量%以下であり、かつエポキシ当量が50以上1,000以下であることが好ましい。 In the pneumatic tire according to the present invention, the epoxidized styrene-butadiene-styrene triblock copolymer has a weight average molecular weight of 10,000 or more and 400,000 or less, and a styrene component content of 10% by mass or more and 30% by mass or less And the epoxy equivalent is preferably 50 or more and 1,000 or less.
 本発明の第1の目的に関して、本発明によれば、優れた耐空気透過性とともに、隣接ゴムとの良好な接着性を有するインナーライナーを備えた空気入りタイヤ、および転がり抵抗が低減され、低温耐久性に優れた空気入りタイヤを得ることができる。 Regarding the first object of the present invention, according to the present invention, a pneumatic tire provided with an inner liner having good air permeability and good adhesion to adjacent rubber, and reduced rolling resistance, low temperature It is possible to obtain a pneumatic tire excellent in durability.
 本発明の第2の目的に関して、本発明によれば、隣接ゴムとの良好な加硫接着力を有するとともに、転がり抵抗の増加が抑制されたポリマー積層体および、優れた耐空気透過性および耐屈曲亀裂成長性を有する空気入りタイヤを得ることができる。 Regarding the second object of the present invention, according to the present invention, a polymer laminate having good vulcanization adhesion with adjacent rubber and in which the increase in rolling resistance is suppressed, and excellent air permeability and resistance to air It is possible to obtain a pneumatic tire having flex crack growth properties.
 本発明の第3の目的に関して、本発明によれば、隣接ゴムとの良好な加硫接着力を有するとともに、転がり抵抗の増加が抑制されたインナーライナーを備え、優れた耐空気透過性および耐屈曲亀裂成長性を有し、さらにエアインの発生が抑制された空気入りタイヤを得ることができる。 Regarding the third object of the present invention, according to the present invention, it has an inner liner having good vulcanization adhesion with the adjacent rubber and suppressing an increase in rolling resistance, and has excellent air permeability and resistance to air. It is possible to obtain a pneumatic tire having flex crack growth properties and in which the occurrence of air-in is suppressed.
 本発明の第4の目的に関して、本発明によれば、隣接ゴムとの良好な加硫接着力を有するとともに、転がり抵抗の増加が抑制されたインナーライナーを備え、優れた耐空気透過性および耐屈曲亀裂成長性を有し、さらにエアインの発生が抑制された空気入りタイヤを提供することができる。 Regarding the fourth object of the present invention, according to the present invention, it has an inner liner having good vulcanization adhesion with the adjacent rubber and suppressing an increase in rolling resistance, and has excellent air permeability and resistance to air. It is possible to provide a pneumatic tire having flex crack growth properties and further suppressing the occurrence of air-in.
 さらに本発明では、インナーライナーのショルダー部における厚さ寸法が、タイヤクラウン部における厚さ寸法よりも大きく成るように構成されるので、ショルダー部におけるインナーライナーの耐久性が向上する。このため、インナーライナーの強度低下による破れや変形、および剥離力の低下を効果的に抑制でき、空気漏れを効果的に抑制することができる。 Furthermore, in the present invention, since the thickness dimension at the shoulder portion of the inner liner is configured to be larger than the thickness dimension at the tire crown portion, the durability of the inner liner at the shoulder portion is improved. For this reason, it is possible to effectively suppress tearing and deformation due to the strength reduction of the inner liner and the reduction of the peeling force, and it is possible to effectively suppress the air leakage.
 また第1層にSIBS、第2層にSIBを用い、第1層および第2層の少なくともいずれかにSIBS変性共重合体を用いているので、ショルダー部を肉厚に設計しても、ブチル系ゴムを使用する場合に比べて、タイヤの重量増加を抑制することができ、転がり抵抗の悪化を防ぐことできる。 In addition, since the SIBS is used in the first layer, the SIB is used in the second layer, and the SIBS modified copolymer is used in at least one of the first layer and the second layer, even if the shoulder portion is designed to be thick, butyl Compared to the case where a rubber system is used, the increase in weight of the tire can be suppressed, and the deterioration of rolling resistance can be prevented.
本発明の一実施の形態における空気入りタイヤの右半分の概略断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic sectional drawing of the right half of the pneumatic tire in one embodiment of this invention. 図1のトレッド部の拡大概略断面図である。It is an expansion schematic sectional drawing of the tread part of FIG. 本発明の一実施の形態における空気入りタイヤのインナーライナーの概略断面図である。It is a schematic sectional drawing of the inner liner of the pneumatic tire in one embodiment of this invention.
 [実施の形態1]
 実施の形態1において、空気入りタイヤは、一対のビード部の間に装架されたカーカスプライのタイヤ内側にインナーライナーを備え、インナーライナーはポリマー積層体からなり、ポリマー積層体は、スチレン-イソブチレン-スチレントリブロック共重合体を含む第1Aポリマー組成物からなる厚さ0.05mm以上0.8mm以下の第1層と、スチレン-イソプレン-スチレントリブロック共重合体およびスチレン-イソブチレンジブロック共重合体の少なくともいずれかを含む第2Aポリマー組成物からなる厚さ0.01mm以上0.8mm以下の第2層とを含み、第1Aポリマー組成物および第2Aポリマー組成物の少なくともいずれかが、エポキシ化スチレン-ブタジエン-スチレントリブロック共重合体を0.5質量%以上40質量%以下含み、第2層がカーカスプライのゴム層と接するように配置されており、インナーライナーはクラウン中央位置Pcにおける厚さGcよりもショルダー位置Peの厚さGeが厚く、厚さGeが0.2mm以上1.9mm以下である。
First Embodiment
In the first embodiment, the pneumatic tire includes an inner liner on the inner side of a carcass ply tire mounted between a pair of bead portions, the inner liner is made of a polymer laminate, and the polymer laminate is styrene-isobutylene. -A first layer comprising a first A polymer composition containing a styrene-triblock copolymer, a first layer having a thickness of 0.05 mm or more and 0.8 mm or less, a styrene-isoprene-styrene triblock copolymer, and a styrene-isobutylene diblock copolymer And a second layer having a thickness of 0.01 mm or more and 0.8 mm or less comprising the second A polymer composition containing at least one of the combination, and at least one of the first A polymer composition and the second A polymer composition is epoxy 0.5% by mass or more of fluorinated styrene-butadiene-styrene triblock copolymer 4 The second layer is disposed to be in contact with the rubber layer of the carcass ply, and the inner liner is thicker at the shoulder position Pe than at the crown center position Pc and has a thickness Ge It is 0.2 mm or more and 1.9 mm or less.
 <空気入りタイヤ>
 本発明の一実施の形態における空気入りタイヤを、図に基づき説明する。図1は、空気入りタイヤの右半分の概略断面図であり、図2は、そのトレッド部の拡大概略断面図である。図1において空気入りタイヤ1は、トレッド部2と、該トレッド部両端からトロイド形状を形成するようにサイドウォール部3とビード部4とを有している。さらに、ビード部4にはビードコア5が埋設される。また、一方のビード部4から他方のビード部に亘って設けられ、両端をビードコア5のまわりに折り返して係止されるカーカスプライ6と、該カーカスプライ6のクラウン部外側には、少なくとも2枚のプライよりなるベルト層7とが配置されている。
<Pneumatic tire>
A pneumatic tire according to an embodiment of the present invention will be described based on the drawings. FIG. 1 is a schematic cross-sectional view of the right half of the pneumatic tire, and FIG. 2 is an enlarged schematic cross-sectional view of its tread portion. In FIG. 1, the pneumatic tire 1 has a tread portion 2 and sidewall portions 3 and bead portions 4 so as to form a toroidal shape from both ends of the tread portion. Furthermore, the bead core 5 is embedded in the bead portion 4. Further, a carcass ply 6 is provided from one bead portion 4 to the other bead portion, and both ends are folded around and locked around the bead core 5, and at least two sheets are provided outside the crown portion of the carcass ply 6 And a belt layer 7 consisting of plies.
 前記ベルト層7は、通常、スチールコードまたはアラミド繊維等のコードよりなるプライの2枚をタイヤ周方向に対して、コードが通常5~30°の角度になるようにプライ間で相互に交差するように配置される。なおベルト層の両端外側には、トッピングゴム層を設け、ベルト層両端の剥離を軽減することができる。またカーカスプライはポリエステル、ナイロン、アラミド等の有機繊維コードがタイヤ周方向にほぼ90°に配列されており、カーカスプライとその折り返し部に囲まれる領域には、ビードコア5の上端からサイドウォール方向に延びるビードエーペックス8が配置される。また前記カーカスプライ6のタイヤ半径方向内側には一方のビード部4から他方のビード部4に亘るインナーライナー9が配置されている。 The belt layer 7 usually crosses two plies made of cords such as steel cords or aramid fibers between the plies so that the cords usually form an angle of 5 to 30 ° with respect to the tire circumferential direction. Arranged as. A topping rubber layer can be provided on the outer sides of both ends of the belt layer to reduce the peeling of both ends of the belt layer. In the carcass ply, organic fiber cords such as polyester, nylon, and aramid are arranged at approximately 90 ° in the tire circumferential direction, and in the region surrounded by the carcass ply and its turn, from the upper end of the bead core 5 to the sidewall direction An extending bead apex 8 is arranged. Further, an inner liner 9 extending from one bead portion 4 to the other bead portion 4 is disposed on the inner side in the tire radial direction of the carcass ply 6.
 ここで本発明においてインナーライナー9における位置、距離および幅を次のように定義する。 Here, in the present invention, the position, distance and width in the inner liner 9 are defined as follows.
 <ショルダー位置Pe>
 タイヤ子午断面において、前記カーカスプライとインナーライナーの境界線に対してトレッド部の接地端Teからタイヤ内径方向に法線Lを引き前記境界線との交点をショルダー位置Peと定義する。ここでトレッド部の接地端Teは、トレッド部の外側輪郭線を延長した線と、ショルダー部の外側輪郭線を延長した交点として定義される。
<Shoulder position Pe>
In the tire meridional section, a normal L is drawn from the ground contact end Te of the tread portion to the tire inner radial direction with respect to the boundary line of the carcass ply and the inner liner, and an intersection point with the boundary line is defined as a shoulder position Pe. Here, the ground contact end Te of the tread portion is defined as a line extending the outer contour of the tread portion and an intersection point extending the outer contour of the shoulder portion.
 <クラウン中心位置Pc>
 カーカスプライとインナーライナーの境界線とタイヤ中心線CLとの交点をクラウン中心位置Pcとする。
<Crown center position Pc>
An intersection point between the boundary line of the carcass ply and the inner liner and the tire center line CL is taken as a crown center position Pc.
 <タイヤ最大幅位置Ps>
 タイヤに規定内圧を充填し標準リムを装着したときの外側輪郭線の最大幅位置Leをとおるタイヤ回転軸に平行な線とカーカスプライとインナーライナーの境界線との交点をタイヤ最大幅位置Psとする。
<Tire maximum width position Ps>
When the tire is filled with the specified internal pressure and the standard rim is fitted, the intersection point of the line parallel to the tire rotation axis passing through the maximum width position Le of the outer contour line and the boundary between the carcass ply and the inner liner is the tire maximum width position Ps Do.
 <ショルダー距離Wc>
 前記ショルダー位置Peからクラウン中心位置Pcまでのインナーライナーの輪郭線に沿った距離をショルダー距離Wcとする。
<Shoulder distance Wc>
A distance along the contour of the inner liner from the shoulder position Pe to the crown center position Pc is taken as a shoulder distance Wc.
 <サイド距離Ws>
 前記ショルダー位置Peからタイヤ最大幅位置Psまでのインナーライナーの輪郭線に沿った距離をサイド距離Wsとする。
<Side distance Ws>
A distance along the contour of the inner liner from the shoulder position Pe to the tire maximum width position Ps is taken as a side distance Ws.
 <インナーライナー厚さ>
 インナーライナーのクラウン中心位置Pcの厚さをGc、ショルダー位置Peにおける厚さをGe、最大幅位置Psにおける厚さをGsとする。
<Inner liner thickness>
The thickness of the crown center position Pc of the inner liner is Gc, the thickness at the shoulder position Pe is Ge, and the thickness at the maximum width position Ps is Gs.
 前記インナーライナーの肉厚部は、前記ショルダー位置Peからクラウン中心位置Pc側に、前記ショルダー距離Wcの少なくとも10%の幅を有する領域に形成されていることが好ましい。一方、肉厚部は前記ショルダー距離Wcの100%以下の幅を有する領域に形成することが好ましい。さらに、肉厚部はショルダー距離Wcの少なくとも50%の幅を有する領域に形成されていることが好ましい。 The thick portion of the inner liner is preferably formed in a region having a width of at least 10% of the shoulder distance Wc from the shoulder position Pe toward the crown center position Pc. On the other hand, the thick portion is preferably formed in a region having a width of 100% or less of the shoulder distance Wc. Furthermore, the thick portion is preferably formed in a region having a width of at least 50% of the shoulder distance Wc.
 前記インナーライナーの肉厚部は、前記ショルダー位置Peから前記最大幅位置Ps側に、前記サイド距離Wsの少なくとも20%の幅を有し、100%以下の幅の領域に形成されていることが好ましい。肉厚部がショルダー位置Peからサイド距離Wsの20%以上100%以下の範囲に設定することで、タイヤ走行時に屈曲変形の激しいショルダー部の変形を抑制するとともに、この領域の応力緩和を効果的に達成することができる。さらに、前記肉厚部はショルダー位置Peからサイド距離Wsの20%以上80%以下の範囲に形成されることが好ましい。 The thick portion of the inner liner has a width of at least 20% of the side distance Ws and is formed in a region of 100% or less of the side distance Ws on the side of the maximum width position Ps from the shoulder position Pe. preferable. By setting the thick portion in the range of 20% or more and 100% or less of the side distance Ws from the shoulder position Pe, deformation of the shoulder portion where bending deformation is severed during tire running is suppressed, and stress relaxation in this region is effectively effective. Can be achieved. Furthermore, it is preferable that the thick portion be formed in a range of 20% to 80% of the side distance Ws from the shoulder position Pe.
 本発明において前記インナーライナーは、クラウン中央位置Pcにおける厚さGcよりも、ショルダー位置Peの厚さGeが厚い。このため、ショルダー部におけるインナーライナーの耐久性が向上し、インナーライナーの強度低下による破れや変形、接着力の低下を抑制することができ、結果としてタイヤの空気漏れを効果的に抑制することができる。 In the present invention, in the inner liner, the thickness Ge of the shoulder position Pe is larger than the thickness Gc at the crown center position Pc. For this reason, the durability of the inner liner at the shoulder portion is improved, and it is possible to suppress tearing, deformation, and adhesion decrease due to the strength reduction of the inner liner, and as a result, the air leakage of the tire can be effectively suppressed. it can.
 ショルダー位置Peの厚さGeは0.2mm以上1.9mm以下である。Geが0.2mm未満であると、タイヤ走行時に破れや変形が起こりやすい。Geが1.9mmを超えると、インナーライナーの軽量化の効果を十分に得ることができない。Geはさらに0.3mm以上1.9mm以下が好ましい。 The thickness Ge of the shoulder position Pe is 0.2 mm or more and 1.9 mm or less. When Ge is less than 0.2 mm, breakage or deformation is likely to occur during running of the tire. If Ge exceeds 1.9 mm, the effect of reducing the weight of the inner liner can not be obtained sufficiently. The Ge is more preferably 0.3 mm or more and 1.9 mm or less.
 クラウン中央位置Pcにおける厚さGcに対し、ショルダー位置Peの厚さGeは120%以上500%以下であることが好ましい。ショルダー位置Peの厚さGeが120%未満の場合は、ショルダー部の屈曲変形およびせん断変形の抑制が十分でなく、また500%を超えるとインナーライナーの軽量化の効果は十分期待できない。クラウン中央位置Pcにおける厚さGcに対し、ショルダー位置Peの厚さGeは、より好ましくは200%以上500%以下である。 The thickness Ge of the shoulder position Pe is preferably 120% or more and 500% or less of the thickness Gc at the crown central position Pc. When the thickness Ge of the shoulder position Pe is less than 120%, suppression of bending deformation and shearing deformation of the shoulder portion is not sufficient, and when it exceeds 500%, the effect of reducing the weight of the inner liner can not be expected sufficiently. The thickness Ge of the shoulder position Pe is more preferably 200% or more and 500% or less of the thickness Gc at the crown central position Pc.
 また、最大幅位置Psの厚さGsに対し、ショルダー位置Peの厚さGeは120%以上500%以下であることが好ましい。 The thickness Ge of the shoulder position Pe is preferably 120% or more and 500% or less of the thickness Gs of the maximum width position Ps.
 なお、肉厚部は、ショルダー位置Peを中心に、クラウン中央位置Pc方向と、最大幅位置Ps方向に厚さを漸減する構成とすることが好ましい。インナーライナーの肉厚部を上述のように形成することで、タイヤ走行時における、この領域での繰り返し変形に伴う屈曲変形およびせん断変形が生じても、その応力を緩和することができ、インナーライナーのクラックの発生を防止することができる。 Preferably, the thick portion is configured to gradually decrease in thickness in the direction of the crown center position Pc and the direction of the maximum width position Ps around the shoulder position Pe. By forming the thick part of the inner liner as described above, the stress can be relieved even if bending deformation and shearing deformation are caused due to repeated deformation in this region during running of the tire, and the inner liner Generation of cracks can be prevented.
 <ポリマー積層体>
 本発明の一実施の形態において、インナーライナーに用いられるポリマー積層体は、少なくとも2層のポリマー積層体で形成される。第1層は、スチレン-イソブチレン-スチレントリブロック共重合体(以下、SIBSともいう)を含む第1Aポリマー組成物からなり、厚さが0.05mm以上0.8mm以下である。第2層は、スチレン-イソプレン-スチレントリブロック共重合体(以下、SISともいう)およびスチレン-イソブチレンジブロック共重合体(以下、SIBともいう)の少なくともいずれかを含む第2Aポリマー組成物からなり、厚さが0.01mm以上0.8mm以下である。前記第1Aポリマー組成物および前記第2Aポリマー組成物の少なくともいずれかは、エポキシ化スチレン-ブタジエン-スチレントリブロック共重合体を含む。
<Polymer laminate>
In one embodiment of the present invention, the polymer laminate used for the inner liner is formed of at least two polymer laminates. The first layer is made of the first A polymer composition containing styrene-isobutylene-styrene triblock copolymer (hereinafter also referred to as SIBS), and has a thickness of 0.05 mm or more and 0.8 mm or less. The second layer is composed of a second A polymer composition containing at least one of a styrene-isoprene-styrene triblock copolymer (hereinafter also referred to as SIS) and a styrene-isobutylene diblock copolymer (hereinafter also referred to as SIB). The thickness is 0.01 mm or more and 0.8 mm or less. At least one of the first A polymer composition and the second A polymer composition comprises an epoxidized styrene-butadiene-styrene triblock copolymer.
 <第1層>
 本発明の一実施の形態において、第1層は、スチレン-イソブチレン-スチレントリブロック共重合体(SIBS)を含む第1Aポリマー組成物からなる。SIBSのイソブチレンブロック由来により、SIBSを含むポリマーフィルムは優れた耐空気透過性を有する。したがって、SIBSを含むポリマーフィルムをインナーライナーに用いた場合、耐空気透過性に優れた空気入りタイヤを得ることができる。
<First layer>
In one embodiment of the present invention, the first layer consists of the first A polymer composition comprising styrene-isobutylene-styrene triblock copolymer (SIBS). Due to the isobutylene block origin of SIBS, polymer films containing SIBS have excellent resistance to air permeation. Therefore, when the polymer film containing SIBS is used for the inner liner, a pneumatic tire excellent in air permeation resistance can be obtained.
 さらに、SIBSは芳香族以外の分子構造が完全飽和であることにより、劣化硬化が抑制され、優れた耐久性を有する。したがって、SIBSを含むポリマーフィルムをインナーライナーに用いた場合、耐久性に優れた空気入りタイヤを得ることができる。 Furthermore, due to complete saturation of molecular structures other than aromatics, SIBS is inhibited from deterioration and hardening and has excellent durability. Therefore, when a polymer film containing SIBS is used for the inner liner, a pneumatic tire excellent in durability can be obtained.
 SIBSからなるポリマーフィルムをインナーライナーに適用して空気入りタイヤを製造した場合には、耐空気透過性を確保できる。したがってハロゲン化ブチルゴム等の、従来耐空気透過性を付与するために使用されてきた高比重のハロゲン化ゴムを使用する必要がなく、使用する場合にも使用量の低減が可能である。これによってタイヤの軽量化が可能であり、燃費の向上効果が得られる。 When a pneumatic tire is manufactured by applying a polymer film made of SIBS to the inner liner, the air permeation resistance can be secured. Therefore, it is not necessary to use a high specific gravity halogenated rubber, which has been conventionally used to impart air resistance, such as halogenated butyl rubber, and the amount can be reduced even when used. Thus, the weight of the tire can be reduced, and the fuel efficiency can be improved.
 SIBSの分子量は特に制限はないが、流動性、成形化工程、ゴム弾性などの観点から、GPC測定による重量平均分子量が5万以上40万以下であることが好ましい。重量平均分子量が5万未満であると引張強度、引張伸びが低下するおそれがあり、40万を超えると押出加工性が悪くなるおそれがあるため好ましくない。SIBSは耐空気透過性と耐久性をより良好にする観点から、SIBS中のスチレン成分の含有量は10質量%以上30質量%以下、好ましくは14質量%以上23質量%以下であることが好ましい。 Although the molecular weight of SIBS is not particularly limited, it is preferable that the weight average molecular weight by GPC measurement is 50,000 or more and 400,000 or less from the viewpoint of flowability, molding process, rubber elasticity and the like. If the weight average molecular weight is less than 50,000, the tensile strength and the tensile elongation may be lowered, and if it exceeds 400,000, the extrusion processability may be deteriorated, which is not preferable. From the viewpoint of improving air permeability and durability, SIBS preferably contains 10% by mass to 30% by mass, and more preferably 14% by mass to 23% by mass of the styrene component in SIBS. .
 該SIBSは、その共重合体において、各ブロックの重合度は、ゴム弾性と取り扱い(重合度が10,000未満では液状になる)の点からイソブチレンでは10,000~150,000程度、またスチレンでは5,000~30,000程度であることが好ましい。 In the copolymer, the degree of polymerization of each block of the SIBS is about 10,000 to 150,000 for isobutylene from the viewpoints of rubber elasticity and handling (the degree of polymerization is less than 10,000 becomes liquid), and styrene And preferably about 5,000 to 30,000.
 SIBSは、一般的なビニル系化合物のリビングカチオン重合法により得ることができ。例えば、特開昭62-48704号公報および特開昭64-62308号公報には、イソブチレンと他のビニル化合物とのリビングカチオン重合が可能であり、ビニル化合物にイソブチレンと他の化合物を用いることでポリイソブチレン系のブロック共重合体を製造できることが開示されている。 SIBS can be obtained by a common living cationic polymerization method of vinyl compounds. For example, in JP-A-62-48704 and JP-A-64-62308, living cationic polymerization of isobutylene with another vinyl compound is possible, and by using isobutylene and another compound as the vinyl compound. It is disclosed that polyisobutylene-based block copolymers can be produced.
 SIBSは分子内に芳香族以外の二重結合を有していないために、分子内に二重結合を有している重合体、例えばポリブタジエンに比べて紫外線に対する安定性が高く、従って耐候性が良好である。さらに分子内に二重結合を有しておらず、飽和系のゴム状ポリマーであるにも関わらず、波長589nmの光の20℃での屈折率(nD)は、ポリマーハンドブック(1989年:ワイリー(Polymer Handbook, Willy,1989))によると、1.506である。これは他の飽和系のゴム状ポリマー、例えば、エチレン-ブテン共重合体に比べて有意に高い。 Since SIBS has no double bond other than aromatic in the molecule, it has higher stability to ultraviolet light than polymers having double bond in the molecule, for example, polybutadiene, and therefore has weatherability It is good. Furthermore, despite having no double bond in the molecule, and despite being a saturated rubber-like polymer, the refractive index (nD) at 20 ° C. of light at a wavelength of 589 nm is given by Polymer Handbook (1989: Wiley) According to (Polymer Handbook, Willy, 1989)), it is 1.506. This is significantly higher than other saturated rubbery polymers, such as ethylene-butene copolymers.
 第1Aポリマー組成物中のSIBSの含有量は、60質量%以上100質量%以下が好ましい。SIBSの含有量が60質量%未満であると、耐空気透過性能を十分に得ることができない。SIBSの含有量は、さらに80質量%以上99.5質量%以下が好ましい。 The content of SIBS in the 1A polymer composition is preferably 60% by mass or more and 100% by mass or less. If the content of SIBS is less than 60% by mass, sufficient air permeation resistance can not be obtained. The content of SIBS is more preferably 80% by mass or more and 99.5% by mass or less.
 前記第1Aポリマー組成物は、さらにエポキシ化スチレン-ブタジエン-スチレントリブロック共重合体(以下、エポキシ化SBSともいう)を含むことができる。 The first polymer composition may further include an epoxidized styrene-butadiene-styrene triblock copolymer (hereinafter also referred to as epoxidized SBS).
 エポキシ化SBSは、ハードセグメントがポリスチレンブロック、ソフトセグメントがブタジエンブロックであり、ブタジエンブロックに含まれる不飽和二重結合部分をエポキシ化した熱可塑性エラストマーである。 Epoxidized SBS is a thermoplastic elastomer in which the hard segment is a polystyrene block and the soft segment is a butadiene block, and the unsaturated double bond portion contained in the butadiene block is epoxidized.
 エポキシ化SBSはスチレンブロックを有するため、同様にスチレンブロックを有するSISやSIBを含む第2層との溶融接着性に優れている。したがって、エポキシ化SBSを含む第1層とSISやSIBを含む第2層とを隣接して配置して加硫すると、第1層と第2層とが良好に接着したポリマー積層体を得ることができる。 Since epoxidized SBS has a styrene block, it has excellent melt adhesion to the second layer containing SIS and SIB having a styrene block as well. Therefore, when the first layer containing epoxidized SBS and the second layer containing SIS or SIB are disposed adjacent to each other and vulcanized, a polymer laminate in which the first layer and the second layer adhere well is obtained. Can.
 エポキシ化SBSの分子量は特に制限はないが、ゴム弾性および成形性の観点から、GPC法による重量平均分子量が1万以上40万以下であることが好ましい。重量平均分子量が1万未満であると柔らかすぎて寸法が安定しないおそれがあり、40万を超えると硬すぎて薄く押出しできないおそれがあるため好ましくない。 The molecular weight of the epoxidized SBS is not particularly limited, but from the viewpoint of rubber elasticity and moldability, the weight average molecular weight by GPC method is preferably 10,000 or more and 400,000 or less. If the weight average molecular weight is less than 10,000, it may be too soft to be stable in size, and if it exceeds 400,000, it may be too hard to be extruded thin, which is not preferable.
 エポキシ化SBS中のスチレン成分の含有量は、粘着性、接着性およびゴム弾性の観点から10質量%以上30質量%以下であることが好ましい。 The content of the styrene component in the epoxidized SBS is preferably 10% by mass or more and 30% by mass or less from the viewpoints of tackiness, adhesiveness and rubber elasticity.
 エポキシ化SBSは、ブタジエン単位とスチレン単位のモル比(ブタジエン単位/スチレン単位)が、90/10~70/30であることが好ましい。エポキシ化SBSにおいて、各ブロックの重合度は、ゴム弾性と取り扱いの観点からブタジエンブロックでは500~5,000程度、またスチレンブロックでは50~1,500程度であることが好ましい。 In the epoxidized SBS, the molar ratio of butadiene unit to styrene unit (butadiene unit / styrene unit) is preferably 90/10 to 70/30. In the epoxidized SBS, the polymerization degree of each block is preferably about 500 to 5,000 for butadiene block and about 50 to 1,500 for styrene block from the viewpoint of rubber elasticity and handling.
 エポキシ化SBSのエポキシ当量は、接着性の観点から50以上1,000以下が好ましい。 The epoxy equivalent of epoxidized SBS is preferably 50 or more and 1,000 or less from the viewpoint of adhesion.
 第1Aポリマー組成物中のエポキシ化SBSの含有量は、0.5質量%以上40質量%以下とすることができる。エポキシ化SBSの含有量が0.5質量%未満であると、十分な接着力を得ることができない。一方、40質量%を超えると過接着のため生産性が大幅に悪化するため好ましくない。エポキシ化SBSの含有量は、さらに5質量%以上30質量%以下が好ましい。 The content of epoxidized SBS in the first A polymer composition can be 0.5% by mass or more and 40% by mass or less. If the content of epoxidized SBS is less than 0.5% by mass, sufficient adhesion can not be obtained. On the other hand, if it exceeds 40% by mass, the productivity is significantly deteriorated due to over-adhesion, which is not preferable. The content of epoxidized SBS is more preferably 5% by mass or more and 30% by mass or less.
 SIBSを含む第1層の厚さは、0.05mm以上0.8mm以下である。第1層の厚さとは、第1層の平均厚さを意味する。第1層の厚さが0.05mm未満であると、ポリマー積層体をインナーライナーに適用した生タイヤの加硫時に、第1層がプレス圧力で破れてしまい、得られたタイヤにおいてエアーリーク現象が生じる恐れがある。一方、第1層の厚さが0.8mmを超えるとタイヤ重量が増加し、低燃費性能が低下する。第1層の厚さは、さらに0.05mm以上0.4mm以下であることが好ましい。 The thickness of the first layer including SIBS is 0.05 mm or more and 0.8 mm or less. The thickness of the first layer means the average thickness of the first layer. When the thickness of the first layer is less than 0.05 mm, at the time of vulcanization of a green tire in which the polymer laminate is applied to the inner liner, the first layer is broken by the press pressure, and the air leak phenomenon in the obtained tire May occur. On the other hand, when the thickness of the first layer exceeds 0.8 mm, the weight of the tire increases and the fuel economy performance is reduced. The thickness of the first layer is more preferably 0.05 mm or more and 0.4 mm or less.
 第1層は、SIBSを含む第1Aポリマー組成物を押出成形、カレンダー成形といった熱可塑性樹脂、熱可塑性エラストマーをフィルム化する通常の方法によってフィルム化して得ることができる。 The first layer can be obtained by film-forming the first A polymer composition containing SIBS by a conventional method of film-forming a thermoplastic resin such as extrusion, calendar molding, or a thermoplastic elastomer.
 <第2層>
 本発明の一実施の形態において、第2層はスチレン-イソプレン-スチレントリブロック共重合体(SIS)およびスチレン-イソブチレンジブロック共重合体(SIB)の少なくともいずれかを含む第2Aポリマー組成物からなる。
<Second layer>
In one embodiment of the present invention, the second layer comprises a second A polymer composition comprising at least one of styrene-isoprene-styrene triblock copolymer (SIS) and styrene-isobutylene diblock copolymer (SIB) Become.
 スチレン-イソプレン-スチレントリブロック共重合体(SIS)のイソプレンブロックはソフトセグメントであるため、SISを含むポリマーフィルムはゴム成分と加硫接着しやすい。したがって、SISを含むポリマーフィルムをインナーライナーに用いた場合、該インナーライナーは、たとえばカーカスプライのゴム層との接着性に優れているため、耐久性に優れた空気入りタイヤを得ることができる。 Since the isoprene block of the styrene-isoprene-styrene triblock copolymer (SIS) is a soft segment, the polymer film containing SIS is easy to cure and adhere to the rubber component. Therefore, when a polymer film containing SIS is used for the inner liner, the inner liner is excellent in, for example, the adhesion with the rubber layer of the carcass ply, so that a pneumatic tire excellent in durability can be obtained.
 前記SISの分子量は特に制限はないが、ゴム弾性および成形性の観点から、GPC測定による重量平均分子量が100,000~290,000であることが好ましい。重量平均分子量が100,000未満であると引張強度が低下するおそれがあり、290,000を超えると押出加工性が悪くなるため好ましくない。SIS中のスチレン成分の含有量は、粘着性、接着性およびゴム弾性の観点から10~30質量%であることが好ましい。 The molecular weight of the SIS is not particularly limited, but in view of rubber elasticity and moldability, it is preferable that the weight average molecular weight by GPC measurement is 100,000 to 290,000. If the weight average molecular weight is less than 100,000, the tensile strength may be lowered, and if it exceeds 290,000, the extrusion processability is unfavorably deteriorated. The content of the styrene component in SIS is preferably 10 to 30% by mass from the viewpoints of tackiness, adhesiveness and rubber elasticity.
 前記SISにおける、各ブロックの重合度は、ゴム弾性と取り扱いの観点からイソプレンでは500~5,000程度、またスチレンでは50~1,500程度であることが好ましい。 The degree of polymerization of each block in the SIS is preferably about 500 to 5,000 for isoprene and about 50 to 1,500 for styrene from the viewpoint of rubber elasticity and handling.
 前記SISは、一般的なビニル系化合物の重合法により得ることができ、例えば、リビングカチオン重合法により得ることができる。 The SIS can be obtained by a general polymerization method of a vinyl compound, and can be obtained, for example, by a living cationic polymerization method.
 スチレン-イソブチレンジブロック共重合体(SIB)のイソブチレンブロックはソフトセグメントであるため、SIBからなるポリマーフィルムはゴム成分と加硫接着しやすい。したがって、SIBを含むポリマーフィルムをインナーライナーに用いた場合、該インナーライナーは、たとえばカーカスやインスレーションを形成する隣接ゴムとの接着性に優れているため、耐久性に優れた空気入りタイヤを得ることができる。 Since the isobutylene block of the styrene-isobutylene diblock copolymer (SIB) is a soft segment, the polymer film made of SIB is easy to cure and adhere to the rubber component. Therefore, when a polymer film containing SIB is used for the inner liner, the inner liner is excellent in adhesion to the adjacent rubber forming, for example, the carcass and the insulation, so that a pneumatic tire excellent in durability is obtained. be able to.
 SIBとしては、直鎖状のものを用いることがゴム弾性および接着性の観点から好ましい。SIBの分子量は特に制限はないが、ゴム弾性および成形性の観点から、GPC測定による重量平均分子量が40,000~120,000であることが好ましい。重量平均分子量が40,000未満であると引張強度が低下するおそれがあり、120,000を超えると押出加工性が悪くなるおそれがあるため好ましくない。 As SIB, it is preferable to use a linear one from the viewpoint of rubber elasticity and adhesiveness. The molecular weight of SIB is not particularly limited, but from the viewpoint of rubber elasticity and moldability, it is preferable that the weight average molecular weight by GPC measurement is 40,000 to 120,000. If the weight average molecular weight is less than 40,000, the tensile strength may be lowered, and if it exceeds 120,000, the extrusion processability may be deteriorated, which is not preferable.
 SIB中のスチレン成分の含有量は、粘着性、接着性およびゴム弾性の観点から10~35質量%であることが好ましい。 The content of the styrene component in the SIB is preferably 10 to 35% by mass from the viewpoints of tackiness, adhesiveness and rubber elasticity.
 本発明において、SIBにおける、各ブロックの重合度は、ゴム弾性と取り扱いの観点からイソブチレンでは300~3,000程度、またスチレンでは10~1,500程度であることが好ましい。 In the present invention, the degree of polymerization of each block in SIB is preferably about 300 to 3,000 for isobutylene and about 10 to 1,500 for styrene from the viewpoint of rubber elasticity and handling.
 前記SIBは、一般的なビニル系化合物の重合法により得ることができ、例えば、リビングカチオン重合法により得ることができる。たとえば、国際公開第2005/033035号には、攪拌機にメチルシクロヘキサン、n-ブチルクロライド、クミルクロライドを加え、-70℃に冷却した後、2時間反応させ、その後に大量のメタノールを添加して反応を停止させ、60℃で真空乾燥してSIBを得るという製造方法が開示されている。 The SIB can be obtained by a general polymerization method of a vinyl compound, and can be obtained, for example, by a living cationic polymerization method. For example, according to WO 2005/033035, methylcyclohexane, n-butyl chloride and cumyl chloride are added to a stirrer, cooled to -70 ° C, reacted for 2 hours, and then a large amount of methanol is added. A process is disclosed in which the reaction is stopped and vacuum dried at 60 ° C. to obtain SIB.
 前記第2Aポリマー組成物は、さらにエポキシ化スチレン-ブタジエン-スチレントリブロック共重合体(エポキシ化SBSともいう)を含むことができる。 The second polymer composition may further include epoxidized styrene-butadiene-styrene triblock copolymer (also referred to as epoxidized SBS).
 エポキシ化SBSは、第1Aポリマー組成物と同様のものを用いることができる。
 エポキシ化SBSはブタジエンブロックからなるソフトセグメントを有するため、ゴム成分と加硫接着しやすい。したがって、エポキシ化SBSを含む第2層を、たとえばカーカスやインスレーションを形成するゴム層と隣接して配置して加硫すると、第2層とゴム層とが良好に接着することができる。したがって、エポキシ化SBS層を含むポリマー積層体をインナーライナーに用いた場合、ポリマー積層体と隣接ゴム層との接着性を向上させることができる。
The epoxidized SBS can be the same as the first A polymer composition.
Since epoxidized SBS has a soft segment consisting of butadiene block, it is easy to cure and adhere to the rubber component. Therefore, when the second layer containing epoxidized SBS is placed adjacent to, for example, the rubber layer forming the carcass or insulation and vulcanized, the second layer and the rubber layer can be well adhered. Therefore, when the polymer laminate including the epoxidized SBS layer is used for the inner liner, the adhesion between the polymer laminate and the adjacent rubber layer can be improved.
 第2層の厚さT2は、0.01mm以上0.8mm以下とすることができる。第2層の厚さとは、第2層の平均厚さを意味する。第2層の厚さが0.01mm未満であると、ポリマー積層体をインナーライナーに適用した生タイヤの加硫時に、第2層がプレス圧力で破れてしまい、加硫接着力が低下する恐れがある。一方、第2層の厚さが0.8mmを超えるとタイヤ重量が増加し低燃費性能が低下する。第2層の厚さは、さらに0.05mm以上0.2mm以下であることが好ましい。 The thickness T2 of the second layer can be 0.01 mm or more and 0.8 mm or less. The thickness of the second layer means the average thickness of the second layer. If the thickness of the second layer is less than 0.01 mm, the second layer may be broken by the press pressure during vulcanization of a green tire in which the polymer laminate is applied to the inner liner, and the vulcanization adhesion may be reduced. There is. On the other hand, if the thickness of the second layer exceeds 0.8 mm, the weight of the tire increases and the low fuel consumption performance decreases. The thickness of the second layer is more preferably 0.05 mm or more and 0.2 mm or less.
 第2層は、第2Aポリマー組成物を押出成形、カレンダー成形といった熱可塑性樹脂、熱可塑性エラストマーをフィルム化する通常の方法によってフィルム化して得ることができる。 The second layer can be obtained by film-forming the second A polymer composition by a conventional method of film-forming a thermoplastic resin such as extrusion molding, calendar molding, or a thermoplastic elastomer.
 <ポリマー積層体の配置>
 ポリマー積層体PLは、図3に示すように、第1層PL1および第2層PL2から構成される。該ポリマー積層体PLを空気入りタイヤのインナーライナーに適用する場合、第2層PL2がカーカスプライ61に接するようにタイヤ半径方向外側に向けて設置すると、タイヤの加硫工程において、第2層PL2とカーカス61との接着強度を高めることができる。したがって得られた空気入りタイヤは、インナーライナーとカーカスプライ61のゴム層とが良好に接着しているため、優れた耐空気透過性および耐久性を有することができる。
<Arrangement of polymer laminate>
The polymer laminate PL is composed of a first layer PL1 and a second layer PL2 as shown in FIG. When the polymer laminate PL is applied to the inner liner of a pneumatic tire, when the second layer PL2 is installed outward in the tire radial direction so as to be in contact with the carcass ply 61, in the tire vulcanization step, the second layer PL2 And the adhesion strength between the two and the carcass 61 can be enhanced. Therefore, the obtained pneumatic tire can have excellent air permeation resistance and durability because the inner liner and the rubber layer of the carcass ply 61 are well adhered.
 <ポリマー積層体の製造方法>
 本発明の一実施の形態におけるポリマー積層体は、たとえば以下の方法で製造することができる。押出成形やカレンダー成形などによって第1層および第2層を作製する。第1層と第2層とを貼り合わせて、ポリマー積層体を作製する。また、第1Aポリマー組成物および第2Aポリマー組成物のそれぞれのペレットをラミネート押出や共押出などの積層押出をして作製することもできる。
<Method of producing polymer laminate>
The polymer laminate in one embodiment of the present invention can be produced, for example, by the following method. The first layer and the second layer are produced by extrusion molding, calendar molding or the like. The first layer and the second layer are pasted together to prepare a polymer laminate. The pellets of each of the first A polymer composition and the second A polymer composition can also be produced by lamination extrusion such as lamination extrusion or coextrusion.
 <空気入りタイヤの製造方法>
 本発明の一実施の形態における空気入りタイヤは、たとえば以下の方法で製造することができる。
<Method of manufacturing pneumatic tire>
The pneumatic tire according to an embodiment of the present invention can be manufactured, for example, by the following method.
 本発明のポリマー積層体をインナーライナー部に適用して生タイヤを作製する。ポリマー積層体は、第2層をカーカスやインスレーションに接するようにタイヤ半径方向外側に向けて配置する。このように配置すると、タイヤ加硫工程において、第2層とカーカスまたはインスレーションなどの隣接ゴム層とが加硫接着することができる。したがって得られた空気入りタイヤにおいて、インナーライナーが隣接ゴム層と良好に接着しているため、優れた耐空気透過性および耐久性を有することができる。 A green tire is manufactured by applying the polymer laminate of the present invention to an inner liner portion. The polymer laminate is disposed with the second layer directed radially outward so as to contact the carcass and the insulation. With this arrangement, the second layer and the adjacent rubber layer such as the carcass or insulation can be vulcanized and bonded in the tire vulcanization step. Therefore, in the obtained pneumatic tire, since the inner liner is well adhered to the adjacent rubber layer, it can have excellent air permeation resistance and durability.
 なお、インナーライナーの厚さについて、ショルダー位置Peの厚さGe、クラウン中心位置Pcの厚さGc、最大幅位置Psの厚さGsは、第1層、第2層を押出すときの条件(押出速度、押出回転数)を調整することで、所望の厚さとすることができる。 With regard to the thickness of the inner liner, the thickness Ge of the shoulder position Pe, the thickness Gc of the crown center position Pc, and the thickness Gs of the maximum width position Ps are the conditions under which the first and second layers are extruded The desired thickness can be obtained by adjusting the extrusion speed and the extrusion rotation speed).
 本発明の空気入りタイヤに用いられるカーカスプライのゴム層の配合は、一般に用いられるゴム成分、例えば、天然ゴム、ポリイソプレン、スチレンーブタジエンゴム、ポリブタジエンゴムなどに、カーボンブラック、シリカなどの充填剤を配合したものを用いることができる。 The rubber layer of the carcass ply used in the pneumatic tire according to the present invention comprises generally used rubber components such as natural rubber, polyisoprene, styrene-butadiene rubber, polybutadiene rubber, etc., fillers such as carbon black and silica. It is possible to use a mixture of
 次に、前記生タイヤを金型に装着し、ブラダーにより150~180℃で3~50分間、加圧しつつ加熱して加硫タイヤを得る。次に、得られた加硫タイヤを50~120℃で10~300秒間冷却することが好ましい。 Next, the green tire is mounted on a mold and heated while being pressurized by a bladder at 150 to 180 ° C. for 3 to 50 minutes to obtain a vulcanized tire. Next, it is preferable to cool the obtained vulcanized tire at 50 to 120 ° C. for 10 to 300 seconds.
 空気入りタイヤは、ポリマー積層体をインナーライナーに用いている。該ポリマー積層体を構成するSIBS、SIS、SIBおよびエポキシ化SBSは熱可塑性エラストマーであるため、加硫タイヤを得る工程において、たとえば150~180℃に加熱されると、金型内で軟化状態となる。軟化状態の熱可塑性エラストマーは、固体状態よりも反応性が向上するため、隣接部材と融着する。すなわち、膨張したブラダーの外側表面と接するインナーライナーは、加熱により軟化してブラダーに融着してしまう。インナーライナーとブラダーの外側表面が融着した状態で加硫タイヤを金型から取り出そうとすると、インナーライナーが、隣接するインスレーションやカーカスから剥離してしまい、エアイン現象が生じてしまう。また、タイヤの形状自体が変形してしまう場合もある。 A pneumatic tire uses a polymer laminate for an inner liner. Since SIBS, SIS, SIB and epoxidized SBS constituting the polymer laminate are thermoplastic elastomers, they are softened in the mold when heated to, for example, 150 to 180 ° C. in the process of obtaining a vulcanized tire. Become. The thermoplastic elastomer in the softened state is more reactive than the solid state, and thus fuses with the adjacent member. That is, the inner liner in contact with the outer surface of the expanded bladder is softened by heat and fused to the bladder. If it is attempted to take out the vulcanized tire from the mold in a state in which the inner liner and the outer surface of the bladder are fused, the inner liner peels off from the adjacent insulation or carcass, causing an air-in phenomenon. In addition, the shape of the tire may be deformed.
 そこで、得られた加硫タイヤを直ちに120℃以下で10秒以上急冷することにより、インナーライナーに用いられている熱可塑性エラストマーを固化させることができる。熱可塑性エラストマーが固化すると、インナーライナーとブラダーとの融着が解消し、加硫タイヤを金型から取り出す際の離型性が向上する。 Therefore, the thermoplastic elastomer used in the inner liner can be solidified by immediately quenching the obtained vulcanized tire at 120 ° C. or less for 10 seconds or more. When the thermoplastic elastomer solidifies, the fusion between the inner liner and the bladder disappears, and the releasability at the time of removing the vulcanized tire from the mold is improved.
 冷却温度は50~120℃が好ましい。冷却温度が50℃より低いと、特別な冷却媒体を準備する必要があり、生産性を悪化させるおそれがある。冷却温度が120℃を超えると、熱可塑性エラストマーが十分に冷却されず、金型開放時にインナーライナーがブラダーに融着したままとなり、エアイン現象が発生するおそれがある。冷却温度は、70~100℃であることがさらに好ましい。 The cooling temperature is preferably 50 to 120.degree. If the cooling temperature is lower than 50 ° C., it is necessary to prepare a special cooling medium, which may deteriorate productivity. When the cooling temperature exceeds 120 ° C., the thermoplastic elastomer is not sufficiently cooled, and the inner liner remains fused to the bladder when the mold is opened, which may cause an air-in phenomenon. The cooling temperature is more preferably 70 to 100 ° C.
 冷却時間は10~300秒間が好ましい。冷却時間が10秒より短いと熱可塑性エラストマーが十分に冷却されず、金型開放時にインナーライナーがブラダーに融着したままとなり、エアイン現象が発生する恐れがある。冷却時間が300秒を超えると生産性が悪くなる。冷却時間は、30~180秒であることがさらに好ましい。 The cooling time is preferably 10 to 300 seconds. If the cooling time is shorter than 10 seconds, the thermoplastic elastomer is not sufficiently cooled, and the inner liner remains fused to the bladder when the mold is opened, which may cause an air-in phenomenon. If the cooling time exceeds 300 seconds, productivity will deteriorate. The cooling time is more preferably 30 to 180 seconds.
 加硫タイヤを冷却する工程は、ブラダー内を冷却して行うことが好ましい。ブラダー内は空洞であるため、加硫工程終了後にブラダー内に前記冷却温度に調整された冷却媒体を導入することができる。 The step of cooling the vulcanized tire is preferably performed by cooling the inside of the bladder. Since the inside of the bladder is hollow, it is possible to introduce a cooling medium adjusted to the cooling temperature into the bladder after the completion of the vulcanization process.
 なお、加硫タイヤを冷却する工程は、ブラダー内を冷却することと併せて、金型に冷却構造を設置して実施することも可能である。 The step of cooling the vulcanized tire can be implemented by installing a cooling structure on the mold together with cooling the inside of the bladder.
 冷却媒体としては、空気、水蒸気、水およびオイルよりなる群から選択される1種以上を用いることが好ましい。なかでも、冷却効率に優れている水を用いることが好ましい。 As the cooling medium, it is preferable to use one or more selected from the group consisting of air, water vapor, water and oil. Above all, it is preferable to use water which is excellent in cooling efficiency.
 [実施の形態2]
 実施の形態2において、空気入りタイヤは一対のビード部の間に装架されたカーカスプライのタイヤ内側にインナーライナーを備え、インナーライナーはポリマー積層体からなり、ポリマー積層体は、スチレン-イソブチレン-スチレントリブロック共重合体を含む第1Bポリマー組成物からなる厚さ0.05mm以上0.6mm以下の第1層と、スチレン-イソブチレンジブロック共重合体を含む第2Bポリマー組成物からなる厚さ0.01mm以上0.3mm以下の第2層とを含み、第1Bポリマー組成物および第2Bポリマー組成物の少なくともいずれかが、ポリマー成分100質量部に対して粘着付与剤を0.1質量部以上100質量部以下含み、第2層がカーカスプライのゴム層と接するように配置されており、インナーライナーはクラウン中央位置Pcにおける厚さGcよりもショルダー位置Peの厚さGeが厚い。
Second Embodiment
In Embodiment 2, the pneumatic tire comprises an inner liner on the inner side of a carcass ply tire mounted between a pair of bead portions, the inner liner is made of a polymer laminate, and the polymer laminate is styrene-isobutylene- A thickness comprising a first layer having a thickness of 0.05 mm or more and 0.6 mm or less comprising a first B polymer composition containing a styrene triblock copolymer, and a second B polymer composition comprising a styrene-isobutylene diblock copolymer 0.1 parts by mass of a tackifier per 100 parts by mass of the polymer component, including at least one of the first B polymer composition and the second B polymer composition, including a second layer of 0.01 mm or more and 0.3 mm or less The second layer is disposed to be in contact with the rubber layer of the carcass ply, and the inner liner It is thicker Ge shoulder position Pe than the thickness Gc at the crown center position Pc.
 <空気入りタイヤ>
 実施の形態2における空気入りタイヤは、基本的に実施の形態1と同様の構造とすることができる。
<Pneumatic tire>
The pneumatic tire according to the second embodiment can basically have the same structure as that of the first embodiment.
 実施の形態2において、インナーライナーの肉厚部は、ショルダー距離Wcの10%以上60%以下の範囲に形成されていることが好ましい。 In the second embodiment, the thick portion of the inner liner is preferably formed in the range of 10% to 60% of the shoulder distance Wc.
 ショルダー位置Peの厚さGeは0.2mm以上1.9mm以下が好ましい。Geが0.2mm未満であると、タイヤ走行時に破れや変形が起こりやすい。Geが1.9mmを超えると、インナーライナーの軽量化の効果を十分に得ることができない。Geはさらに0.3mm以上1.9mm以下が好ましい。 The thickness Ge of the shoulder position Pe is preferably 0.2 mm or more and 1.9 mm or less. When Ge is less than 0.2 mm, breakage or deformation is likely to occur during running of the tire. If Ge exceeds 1.9 mm, the effect of reducing the weight of the inner liner can not be obtained sufficiently. The Ge is more preferably 0.3 mm or more and 1.9 mm or less.
 <ポリマー積層体>
 実施の形態2において、インナーライナーに用いられるポリマー積層体は、少なくとも2層のポリマー積層体で形成される。第1層は、スチレン-イソブチレン-スチレントリブロック共重合体(以下、SIBSともいう)を含む第1Bポリマー組成物からなり、厚さが0.05mm以上0.6mm以下である。第2層は、スチレン-イソブチレンジブロック共重合体(以下、SIBともいう)を含む第2Bポリマー組成物からなり、厚さが0.01mm以上0.3mm以下である。前記第1Bポリマー組成物および前記第2Bポリマー組成物の少なくともいずれかは、粘着付与剤を含む。
<Polymer laminate>
In Embodiment 2, the polymer laminate used for the inner liner is formed of at least two polymer laminates. The first layer is made of a first B polymer composition containing styrene-isobutylene-styrene triblock copolymer (hereinafter also referred to as SIBS), and has a thickness of 0.05 mm or more and 0.6 mm or less. The second layer is composed of a second B polymer composition containing a styrene-isobutylene diblock copolymer (hereinafter also referred to as SIB), and has a thickness of 0.01 mm or more and 0.3 mm or less. At least one of the first B polymer composition and the second B polymer composition comprises a tackifier.
 <第1層>
 本発明の一実施の形態において、第1層は、スチレン-イソブチレン-スチレントリブロック共重合体(SIBS)を含む第1Bポリマー組成物からなる。
<First layer>
In one embodiment of the present invention, the first layer consists of a first B polymer composition comprising styrene-isobutylene-styrene triblock copolymer (SIBS).
 SIBSは実施の形態1と同様のものを用いることができる。
 第1Bポリマー組成物中のSIBSの含有量は、60質量%以上100質量%以下が好ましい。SIBSの含有量が60質量%未満であると、耐空気透過性能を十分に得ることができない。SIBSの含有量は、さらに80質量%以上99.5質量%以下が好ましい。
The same SIBS as in Embodiment 1 can be used.
The content of SIBS in the first B polymer composition is preferably 60% by mass or more and 100% by mass or less. If the content of SIBS is less than 60% by mass, sufficient air permeation resistance can not be obtained. The content of SIBS is more preferably 80% by mass or more and 99.5% by mass or less.
 前記第1Bポリマー組成物は、さらに粘着付与剤を含むことができる。
 粘着付与剤とは、ポリマー組成物の粘着性を増進するための配合剤をいい、たとえば以下のものを用いることができる。
The first B polymer composition may further comprise a tackifier.
The tackifier refers to a compounding agent for promoting the tackiness of the polymer composition, and, for example, the following can be used.
 典型的には、C9石油樹脂、C5石油樹脂がある。ここでC9石油樹脂は、ナフサを熱分解して、エチレン、プロピレン、ブタジエンなどの有用な化合物を得ているが、それらを取り去った残りのC5~C9留分(主としてC9留分)を混合状態のまま重合して得られた芳香族石油樹脂である。例えば、商品名として、アルコンP70、P90、P100、P125、P140、M90、M100、M115、M135(いずれも、荒川化学工業(株)社製、軟化点70~145℃)、またアイマーブS100、S110、P100、P125、P140(いずれも出光石油化学(株)製、芳香族共重合系水添石油樹脂、軟化点100~140℃、重量平均分子量700~900、臭素価2.0~6.0g/100g)、さらに、ペトコールXL(東ソー(株)製)がある。 Typically, there are C9 petroleum resin and C5 petroleum resin. Here, C9 petroleum resin is pyrolyzing naphtha to obtain useful compounds such as ethylene, propylene and butadiene, but the remaining C5-C9 fraction (mainly C9 fraction) from which they are removed is mixed and mixed It is an aromatic petroleum resin obtained by polymerizing as it is. For example, Alcon P70, P90, P100, P125, P140, M90, M100, M115, and M135 (all manufactured by Arakawa Chemical Industries, Ltd., softening point 70 to 145 ° C.), and Imarb S100 and S110 as trade names. P100, P125, P140 (all manufactured by Idemitsu Petrochemical Co., Ltd., aromatic copolymer hydrogenated petroleum resin, softening point 100 to 140 ° C., weight average molecular weight 700 to 900, bromine number 2.0 to 6.0 g / 100 g) and Petcoal XL (manufactured by Tosoh Corporation).
 またC5石油樹脂とは、ナフサを熱分解して、エチレン、プロピレンやブタジエンなどの有用な化合物を得ているが、それらを取り去った残りのC4~C5留分(主としてC5留分)を混合状態のまま重合して、得られた脂肪族石油樹脂である。商品名として、ハイレッツG100(三井石油化学(株)製、軟化点が100℃)、またマルカレッツT100AS(丸善石油(株)製、軟化点100℃)、さらにエスコレッツ1102(トーネックス(株)製、軟化点が110℃)がある。 With C5 petroleum resin, naphtha is pyrolyzed to obtain useful compounds such as ethylene, propylene and butadiene, but the remaining C4-C5 fraction (mainly C5 fraction) from which they are removed is mixed It is the aliphatic petroleum resin obtained by polymerizing as it is. As trade name, Hilets G100 (made by Mitsui Petrochemicals Co., Ltd., softening point is 100 ° C), Malkaletz T100AS (made by Maruzen Sekiyu Co., Ltd., softening point 100 ° C), further Escorez 1102 (made by Tonex Co., Ltd., softened There is a point of 110 ° C).
 テルペン樹脂は、例えば、商品名として、YSレジンPX800N、PX1000、PX1150、PX1250、PXN1150N、クリアロンP85、P105、P115、P125、P135、P150、M105、M115、K100(いずれもヤスハラケミカル(株)製、軟化点は75~160℃)がある。 Terpene resin is, for example, trade name: YS resin PX800N, PX1000, PX1150, PX1250, PXN1150N, Clearon P85, P105, P115, P125, P135, P150, M105, M115, K100 (all manufactured by Yasuhara Chemical Co., Ltd., softened) The point is 75-160 ° C.).
 芳香族変性テルペン樹脂は、例えば、商品名として、YSレジンTO85、TO105、TO115、TO125(いずれもヤスハラケミカル(株)製、軟化点75~165℃)がある。 The aromatic-modified terpene resin is, for example, commercially available as YS resin TO85, TO105, TO115, or TO125 (all are manufactured by Yasuhara Chemical Co., Ltd., and have a softening point of 75 to 165 ° C.).
 テルペンフェノール樹脂は、例えば商品名として、タマノル803L、901(荒川化学工業(株)製、軟化点120℃~160℃)、またYSポリスターU115、U130、T80、T100、T115、T145、T160(いずれもヤスハラケミカル(株)製、軟化点75~165℃)がある。 Terpene phenol resin is, for example, commercially available as Tamanor 803L, 901 (Arakawa Chemical Industries, Ltd., softening point 120 ° C. to 160 ° C.), YS polystar U115, U130, T80, T100, T100, T115, T145, T160 (any one) The softening point is also 75-165 ° C., manufactured by Yasuhara Chemical Co., Ltd.
 クマロン樹脂は、例えば、軟化点90℃のクマロン樹脂(神戸油化学工業(株)製)がある。クマロンインデンオイルは、例えば商品名として、15E(神戸油化学工業(株)製、流動点15℃)がある。 The coumarone resin is, for example, coumarone resin having a softening point of 90 ° C. (manufactured by Kobe Oil Chemical Industry Co., Ltd.). For example, as a trade name, coumarone-indene oil is 15E (manufactured by Kobe Oil Chemical Industry Co., Ltd .; pour point 15 ° C.).
 ロジンエステルは、例えば商品名として、エステルガムAAL、A、AAV、105、AT、H、HP、HD(いずれも荒川化学工業(株)製、軟化点68℃~110℃)、またハリエスターTF、S、C、DS70L、DS90、DS130(いずれもハリマ化成(株)製、軟化点68℃~138℃)がある。水添ロジンエステルは、例えば商品名として、スーパーエステルA75、A100、A 115、A125(いずれも荒川化学工業(株)製、軟化点70℃~130℃)がある。 Rosin ester is, for example, commercially available as ester gum AAL, A, AAV, 105, AT, H, HP, HD (all by Arakawa Chemical Industries Co., Ltd., softening point 68 ° C. to 110 ° C.), and Haliester TF , S, C, DS70L, DS90, DS130 (all are Harima Chemicals Co., Ltd., softening point: 68 ° C. to 138 ° C.). As hydrogenated rosin esters, for example, Super Ester A 75, A 100, A 115, A 125 (all manufactured by Arakawa Chemical Industries, Ltd., softening point 70 ° C. to 130 ° C.) are available as trade names.
 アルキルフェノール樹脂は、例えば商品名として、タマノル510(荒川化学工業(株)製、軟化点75℃~95℃)がある。DCPDは、商品名として、エスコレッツ5300(トーネックス(株)製、軟化点105℃)がある。 The alkylphenol resin has, for example, TAMANOR 510 (manufactured by Arakawa Chemical Industries, Ltd., softening point 75 ° C. to 95 ° C.) as a trade name. As DCPD, Escholez 5300 (manufactured by Tonex Co., Ltd., softening point 105 ° C.) is available as a trade name.
 粘着付与剤は、C9石油樹脂の完全水添系石油樹脂がSIBSと相溶性がよく、またガスバリア性も低下することなく、接着性を高めることができる。また粘度も下げる効果もあり、フィルム押出成形にも有利に使用できる。 The tackifier can enhance the adhesion without causing the fully hydrogenated petroleum resin of C9 petroleum resin to be compatible with SIBS and without lowering the gas barrier property. It also has the effect of lowering the viscosity, and can be advantageously used for film extrusion.
 粘着付与剤は、重量平均分子量が1×102以上1×106以下であることが好ましい。重量平均分子量が1×102未満であると、粘度が小さくなり、シートの成形性が不利になるおそれがある。一方、重量平均分子量が1×106超えると、ポリマーシートへの粘着性の付与が不十分になるおそれがある。さらに、粘着付与剤は、軟化点が50℃以上150℃以下であることが好ましい。 The tackifier preferably has a weight average molecular weight of 1 × 10 2 or more and 1 × 10 6 or less. If the weight average molecular weight is less than 1 × 10 2 , the viscosity may be reduced, and the formability of the sheet may be disadvantageous. On the other hand, when the weight average molecular weight exceeds 1 × 10 6 , there is a possibility that the adhesion of the polymer sheet with tackiness may be insufficient. Furthermore, the tackifier preferably has a softening point of 50 ° C. or more and 150 ° C. or less.
 前記粘着付与剤は、第1Bポリマー組成物のポリマー成分100質量部に対して、0.1質量部以上100質量部以下、好ましくは、1質量部以上50質量部以下の範囲で配合される。粘着付与剤が0.1質量部未満の場合は、第2層との加硫接着力が十分でなく、一方、100質量部を超えると粘着性が高くなりすぎて、加工性、生産性を低下し、更にガスバリア性が低下することになる。 The tackifier is blended in a range of 0.1 parts by mass to 100 parts by mass, preferably 1 part by mass to 50 parts by mass, with respect to 100 parts by mass of the polymer component of the 1B polymer composition. When the tackifier is less than 0.1 parts by mass, the vulcanization adhesion with the second layer is not sufficient, while when it exceeds 100 parts by mass, the tackiness becomes too high, and the processability and productivity are increased. The gas barrier property is further reduced.
 第1層の厚さは、0.05mm以上0.6mm以下である。第1層の厚さとは、第1層の平均厚さを意味する。第1層の厚さが0.05mm未満であると、ポリマー積層体をインナーライナーに適用した生タイヤの加硫時に、第1層がプレス圧力で破れてしまい、得られたタイヤにおいてエアーリーク現象が生じる恐れがある。一方、第1層の厚さが0.6mmを超えるとタイヤ重量が増加し、低燃費性能が低下する。第1層の厚さは、さらに0.05mm以上0.4mm以下であることが好ましい。 The thickness of the first layer is 0.05 mm or more and 0.6 mm or less. The thickness of the first layer means the average thickness of the first layer. When the thickness of the first layer is less than 0.05 mm, at the time of vulcanization of a green tire in which the polymer laminate is applied to the inner liner, the first layer is broken by the press pressure, and the air leak phenomenon in the obtained tire May occur. On the other hand, when the thickness of the first layer exceeds 0.6 mm, the weight of the tire increases and the fuel economy performance is reduced. The thickness of the first layer is more preferably 0.05 mm or more and 0.4 mm or less.
 第1層は、SIBSを含む第1Bポリマー組成物を押出成形、カレンダー成形といった熱可塑性樹脂、熱可塑性エラストマーをフィルム化する通常の方法によってフィルム化して得ることができる。 The first layer can be obtained by film-forming the 1B polymer composition containing SIBS by a conventional method of film-forming a thermoplastic resin such as extrusion, calendering, or a thermoplastic elastomer.
 <第2層>
 本発明の一実施の形態において、第2層はスチレン-イソブチレンジブロック共重合体(SIB)を含む第2Bポリマー組成物からなる。
<Second layer>
In one embodiment of the present invention, the second layer consists of a second B polymer composition comprising styrene-isobutylene diblock copolymer (SIB).
 SIBは実施の形態1と同様のものを用いることができる。
 前記第2Bポリマー組成物は、さらにエポキシ化スチレン-ブタジエン-スチレントリブロック共重合体(エポキシ化SBSともいう)を含むことができる。
The same SIB as that of the first embodiment can be used.
The second B polymer composition may further include epoxidized styrene-butadiene-styrene triblock copolymer (also referred to as epoxidized SBS).
 前記第2Bポリマー組成物は、さらに粘着付与剤を含むことができる。粘着付与剤は第1層と同様のものを用いることができる。 The second B polymer composition may further comprise a tackifier. The tackifier may be the same as in the first layer.
 前記粘着付与剤は、第2Bポリマー組成物のポリマー成分100質量部に対して、0.1質量部以上100質量部以下、好ましくは、1質量部以上50質量部以下の範囲で配合される。粘着付与剤が0.1質量部未満の場合は、第1層との加硫接着力が十分でなく、一方、100質量部を超えると粘着性が高くなりすぎて、加工性、生産性を低下し、更にガスバリア性が低下することになる。 The tackifier is blended in a range of 0.1 parts by mass to 100 parts by mass, preferably 1 part by mass to 50 parts by mass, with respect to 100 parts by mass of the polymer component of the second B polymer composition. When the tackifier is less than 0.1 part by mass, the vulcanization adhesion with the first layer is not sufficient, while when it exceeds 100 parts by mass, the tackiness becomes too high, resulting in processability and productivity. The gas barrier property is further reduced.
 第2層の厚さは、0.01mm以上0.3mm以下とすることができる。第2層の厚さとは、第2層の平均厚さを意味する。第2層の厚さが0.01mm未満であると、ポリマー積層体をインナーライナーに適用した生タイヤの加硫時に、第2層がプレス圧力で破れてしまい、加硫接着力が低下する恐れがある。一方、第2層の厚さが0.3mmを超えるとタイヤ重量が増加し低燃費性能が低下する。第2層の厚さは、さらに0.05mm以上0.2mm以下であることが好ましい。 The thickness of the second layer can be 0.01 mm or more and 0.3 mm or less. The thickness of the second layer means the average thickness of the second layer. If the thickness of the second layer is less than 0.01 mm, the second layer may be broken by the press pressure during vulcanization of a green tire in which the polymer laminate is applied to the inner liner, and the vulcanization adhesion may be reduced. There is. On the other hand, if the thickness of the second layer exceeds 0.3 mm, the weight of the tire increases and the fuel economy performance decreases. The thickness of the second layer is more preferably 0.05 mm or more and 0.2 mm or less.
 第2層は、第2Bポリマー組成物を押出成形、カレンダー成形といった熱可塑性樹脂、熱可塑性エラストマーをフィルム化する通常の方法によってフィルム化して得ることができる。
<ポリマー積層体の配置>
 ポリマー積層体PLは、図3に示すように、第1層PL1および第2層PL2から構成される。該ポリマー積層体PLを空気入りタイヤのインナーライナーに適用する場合、第2層PL2がカーカスプライ61に接するようにタイヤ半径方向外側に向けて設置すると、タイヤの加硫工程において、第2層PL2とカーカス61との接着強度を高めることができる。したがって得られた空気入りタイヤは、インナーライナーとカーカスプライ61のゴム層とが良好に接着しているため、優れた耐空気透過性および耐久性を有することができる。
The second layer can be obtained by film-forming the second B polymer composition by a conventional method of film-forming a thermoplastic resin such as extrusion molding, calendar molding, or a thermoplastic elastomer.
<Arrangement of polymer laminate>
The polymer laminate PL is composed of a first layer PL1 and a second layer PL2 as shown in FIG. When the polymer laminate PL is applied to the inner liner of a pneumatic tire, when the second layer PL2 is installed outward in the tire radial direction so as to be in contact with the carcass ply 61, in the tire vulcanization step, the second layer PL2 And the adhesion strength between the two and the carcass 61 can be enhanced. Therefore, the obtained pneumatic tire can have excellent air permeation resistance and durability because the inner liner and the rubber layer of the carcass ply 61 are well adhered.
 <ポリマー積層体の製造方法>
 実施の形態2におけるポリマー積層体は、実施の形態1と同様の製造方法を用いて作製することができる。
<Method of producing polymer laminate>
The polymer laminate in Embodiment 2 can be produced using the same production method as in Embodiment 1.
 <空気入りタイヤの製造方法>
 実施の形態2における空気入りタイヤは、実施の形態1と同様の製造方法を用いて製造することができる。
<Method of manufacturing pneumatic tire>
The pneumatic tire according to the second embodiment can be manufactured using the same manufacturing method as that of the first embodiment.
 [実施の形態3]
 実施の形態3において、空気入りタイヤは、一対のビード部の間に装架されたカーカスプライのタイヤ内側にインナーライナーを備え、インナーライナーは、ポリマー成分がスチレン-イソブチレン-スチレントリブロック共重合体75質量%以上99.5質量%以下およびイソブチレン系変性共重合体0.5質量%以上25質量%以下を含む第1Cポリマー組成物からなる厚さ0.05mm以上0.6mm以下の第1層と、ポリマー成分がスチレン-イソブチレンブロック共重合体10質量%以上100質量%以下およびスチレン-イソブチレン-スチレントリブロック共重合体0質量%以上90質量%以下を含む第2Cポリマー組成物からなる厚さ0.01mm以上0.3mm以下の第2層とを含み、イソブチレン系変性共重合体は、イソブチレンを主体とする重合体ブロックと芳香族ビニル系化合物を主体とする重合体ブロックとからなり、少なくとも一つのブロックがβ-ピネンを含むランダム共重合体であり、第2層がカーカスプライのゴム層と接するように配置されており、インナーライナーはクラウン中央位置Pcにおける厚さGcよりもショルダー位置Peにおける厚さGeが厚い。
<空気入りタイヤ>
 実施の形態3における空気入りタイヤは、基本的に実施の形態1と同様の構造とすることができる。
Third Embodiment
In the third embodiment, the pneumatic tire includes an inner liner on the tire inner side of a carcass ply mounted between a pair of bead portions, and the inner liner is a styrene-isobutylene-styrene triblock copolymer having a polymer component. A first layer with a thickness of 0.05 mm or more and 0.6 mm or less comprising a first C polymer composition containing 75% by mass to 99.5% by mass and isobutylene-based modified copolymer 0.5% by mass to 25% by mass And a second C polymer composition comprising a polymer component containing 10% by mass to 100% by mass of a styrene-isobutylene block copolymer and 0% by mass to 90% by mass of a styrene-isobutylene-styrene triblock copolymer The isobutylene-based modified copolymer comprises a second layer of 0.01 mm or more and 0.3 mm or less, and A rubber copolymer composed mainly of butylene and a polymer block composed mainly of an aromatic vinyl compound, wherein at least one block is a random copolymer including β-pinene, and the second layer is a carcass ply rubber The inner liner is disposed in contact with the layer, and the inner liner has a thickness Ge at the shoulder position Pe that is greater than the thickness Gc at the crown center position Pc.
<Pneumatic tire>
The pneumatic tire according to the third embodiment can basically have the same structure as that of the first embodiment.
 実施の形態3において、インナーライナーの肉厚部は、ショルダー位置Peからクラウン中心位置Pc側に、ショルダー距離Wcの10%以上60%以下の範囲に形成されていることが好ましい。
<インナーライナー>
 実施の形態3において、空気入りタイヤのインナーライナーは第1層および第2層を含む。
(第1層)
 第1層は、ポリマー成分がスチレン-イソブチレン-スチレントリブロック共重合体(以下、SIBSともいう)75質量%以上99.5質量%以下およびイソブチレン系変性共重合体0.5質量%以上25質量%以下を含む第1Cポリマー組成物からなり、厚さ0.05mm以上0.6mm以下である。
In the third embodiment, the thick portion of the inner liner is preferably formed in the range of 10% to 60% of the shoulder distance Wc from the shoulder position Pe to the crown center position Pc side.
<Inner liner>
In the third embodiment, the inner liner of the pneumatic tire includes a first layer and a second layer.
(First layer)
In the first layer, the polymer component is 75% by mass to 99.5% by mass of styrene-isobutylene-styrene triblock copolymer (hereinafter also referred to as SIBS) and 0.5% by mass to 25% by mass of isobutylene-based modified copolymer % C or less and having a thickness of 0.05 mm or more and 0.6 mm or less.
 SIBSは実施の形態1と同様のものを用いることができる。
 第1Cポリマー組成物中のSIBSの含有量は、ポリマー成分中75質量%以上99.5質量%以下が好ましい。SIBSの含有量が75質量%未満であると、耐空気透過性能を十分に得ることができないおそれがある。一方、SIBSの含有量が99.5質量%を超えると、加硫接着力が低下するおそれがある。SIBSの含有量は、さらに80質量%以上95質量%以下が好ましい。
(イソブチレン系変性共重合体)
 本明細書において、イソブチレン系変性共重合体とは、イソブチレンを主体とする重合体ブロックと芳香族ビニル系化合物を主体とする重合体ブロックとからなるイソブチレン系変性共重合体であって、少なくとも1つのブロックがβ-ピネンを含むランダム共重合体である。
The same SIBS as in Embodiment 1 can be used.
The content of SIBS in the first C polymer composition is preferably 75% by mass or more and 99.5% by mass or less in the polymer component. If the content of SIBS is less than 75% by mass, the air permeation resistance may not be sufficiently obtained. On the other hand, when the content of SIBS exceeds 99.5% by mass, the vulcanization adhesion may be reduced. The content of SIBS is more preferably 80% by mass or more and 95% by mass or less.
(Isobutylene-based modified copolymer)
In the present specification, the isobutylene-based modified copolymer is an isobutylene-based modified copolymer composed of a polymer block mainly composed of isobutylene and a polymer block mainly composed of an aromatic vinyl compound, One block is a random copolymer containing β-pinene.
 ここでイソブチレン系変性共重合体は、典型的には、スチレン-イソブチレン-スチレンブロック共重合体(SIBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)またはスチレン-イソブチレンブロック共重合体(SIB)のスチレンブロックにβ-ピネンが含まれている共重合体である。 Here, the isobutylene-based modified copolymer is typically a styrene-isobutylene-styrene block copolymer (SIBS), a styrene-isoprene-styrene block copolymer (SIS) or a styrene-isobutylene block copolymer (SIB) Copolymers in which β-pinene is contained in the styrene block of
 イソブチレンを主成分とする重合体ブロックは、ソフトセグメントがイソブチレンに由来するユニットが80質量%以上から構成される重合体ブロックである。かかる重合体ブロックは、単量体成分として、脂肪族オレフィン類、ジエン類、ビニルエーテル類、シラン類、ビニルカルバゾール、アセナフチレン等を用いて製造できる。 The polymer block mainly composed of isobutylene is a polymer block composed of 80% by mass or more of units whose soft segment is derived from isobutylene. The polymer block can be produced using, as a monomer component, aliphatic olefins, dienes, vinyl ethers, silanes, vinyl carbazole, acenaphthylene and the like.
 一方、芳香族ビニル系化合物を主体とする重合体ブロックは、ハードセグメントが芳香族ビニル系化合物に由来するユニットが80質量%以上から構成される重合体ブロックである。 On the other hand, the polymer block mainly composed of an aromatic vinyl compound is a polymer block in which the hard segment is composed of 80% by mass or more of units derived from the aromatic vinyl compound.
 芳香族ビニル系化合物としては、スチレン、メチルスチレン、α-メチルスチレン、β-メチルスチレン、2,6-ジメチルスチレン、2,4-ジメチルスチレン、α-メチル-o-メチルスチレン、α-メチル-m-メチルスチレン、α-メチル-p-メチルスチレン、β-メチル-o-メチルスチレン、β-メチル-m-メチルスチレン、β-メチル-p-メチルスチレン、2,4,6-トリメチルスチレン、α-メチル-2,6-ジメチルスチレン、α-メチル-2,4-ジメチルスチレン、β-メチル-2,6-ジメチルスチレン、β-メチル-2,4-ジメチルスチレン、クロロスチレン、2,6-ジクロロスチレン、2,4-ジクロロスチレン、α-クロロ-o-クロロスチレン、α-クロロ-m-クロロスチレン、α-クロロ-p-クロロスチレン、β-クロロ-o-クロロスチレン、β-クロロ-m-クロロスチレン、β-クロロ-p-クロロスチレン、2,4,6-トリクロロスチレン、α-クロロ-2,6-ジクロロスチレン、α-クロロ-2,4-ジクロロスチレン、β-クロロ-2,6-ジクロロスチレン、β-クロロ-2,4-ジクロロスチレン、t-ブチルスチレン、メトキシスチレン、クロロメチルスチレン、ブロモメチルスチレンなどが例示される。特にコストの観点から、スチレン、α-メチルスチレンが好ましい。 Examples of the aromatic vinyl compounds include styrene, methylstyrene, α-methylstyrene, β-methylstyrene, 2,6-dimethylstyrene, 2,4-dimethylstyrene, α-methyl-o-methylstyrene and α-methyl- m-methylstyrene, α-methyl-p-methylstyrene, β-methyl-o-methylstyrene, β-methyl-m-methylstyrene, β-methyl-p-methylstyrene, 2,4,6-trimethylstyrene, α-Methyl-2,6-dimethylstyrene, α-methyl-2,4-dimethylstyrene, β-methyl-2,6-dimethylstyrene, β-methyl-2,4-dimethylstyrene, chlorostyrene, 2,6 -Dichlorostyrene, 2,4-dichlorostyrene, α-chloro-o-chlorostyrene, α-chloro-m-chlorostyrene, α-chloro-p-k Rosystyrene, β-chloro-o-chlorostyrene, β-chloro-m-chlorostyrene, β-chloro-p-chlorostyrene, 2,4,6-trichlorostyrene, α-chloro-2,6-dichlorostyrene, α -Chloro-2,4-dichlorostyrene, β-chloro-2,6-dichlorostyrene, β-chloro-2,4-dichlorostyrene, t-butylstyrene, methoxystyrene, chloromethylstyrene, bromomethylstyrene etc. Be done. Particularly, from the viewpoint of cost, styrene and α-methylstyrene are preferable.
 イソブチレン系変性共重合体は、イソブチレンを主体とする重合体ブロックと芳香族ビニル系化合物を主体とする重合体ブロックのうち少なくとも一つのブロックがβ-ピネンとのランダム共重合体である。低温特性の観点からは芳香族ビニル系化合物を主体とする重合体ブロックにβ-ピネンが共重合していることが好ましい。 The isobutylene-based modified copolymer is a random copolymer of β-pinene and at least one of a polymer block mainly composed of isobutylene and a polymer block mainly composed of an aromatic vinyl compound. From the viewpoint of low temperature properties, it is preferable that β-pinene is copolymerized with a polymer block mainly composed of an aromatic vinyl compound.
 一方、接着性の観点からはイソブチレンを主体とする重合体ブロックにβ-ピネンが共重合しているのが好ましい。この場合、β-ピネンの含有量はイソブチレン系変性共重合体の0.5質量%以上25質量%以下が好ましく、2質量%以上25質量%以下がさらに好ましい。β-ピネンの含有量が0.5質量%を未満の場合には接着性が十分でなく、25質量%を超えると脆くなり、ゴム弾性が低下する傾向にある。 On the other hand, from the viewpoint of adhesiveness, it is preferable that β-pinene is copolymerized with a polymer block mainly composed of isobutylene. In this case, the content of β-pinene is preferably 0.5% by mass or more and 25% by mass or less, and more preferably 2% by mass or more and 25% by mass or less of the isobutylene-based modified copolymer. When the content of β-pinene is less than 0.5% by mass, the adhesion is not sufficient, and when it exceeds 25% by mass, the composition becomes brittle and rubber elasticity tends to decrease.
 イソブチレン系変性共重合体の構造には特に制限はなく、直鎖状、分岐状、スター状の分子鎖構造を有するブロック共重合体、トリブロック共重合体、マルチブロック共重合体等のいずれも選択可能である。物性バランス及び成形加工性の点から、イソブチレンを主体とする重合体ブロック(以下、ブロック(A)ともいう)と芳香族ビニル系化合物を主体とする重合体ブロック(以下、ブロック(B)ともいう)がジブロック共重合体((A)-(B))、トリブロック共重合体((B)-(A)-(B))の構造を有するものを採用できる。これらは所望の物性・成形加工性を得る為に、それぞれ単独でまたは2種以上を組み合わせて使用することができる。 There is no particular limitation on the structure of the isobutylene-based modified copolymer, and any block copolymer having a linear, branched or star molecular chain structure, triblock copolymer, multiblock copolymer, etc. It is selectable. From the point of balance of physical properties and molding processability, a polymer block mainly composed of isobutylene (hereinafter also referred to as block (A)) and a polymer block mainly composed of an aromatic vinyl compound (hereinafter also referred to as block (B) What has a structure of a diblock copolymer ((A)-(B)) and a triblock copolymer ((B)-(A)-(B)) can be employ | adopted. These can be used alone or in combination of two or more in order to obtain desired physical properties and molding processability.
 またイソブチレン系変性共重合体の分子量は、流動性、成形加工性、ゴム弾性等の面から、GPC測定による重量平均分子量で30,000以上300,000以下であることが好ましく、30,000以上150,000以下であることが特に好ましい。重量平均分子量が30,000よりも小さい場合には機械的な物性が十分に発現されない傾向があり、一方300,000を超える場合には流動性、加工性が悪化する傾向がある。さらには加工安定性の観点からイソブチレン系変性共重合体の分子量分布の値(重量平均分子量/数平均分子量)が1.3以下であることが好ましい。 The molecular weight of the isobutylene-based modified copolymer is preferably 30,000 or more and 300,000 or less in terms of weight average molecular weight by GPC measurement, from the viewpoint of flowability, moldability, rubber elasticity, etc., 30,000 or more It is particularly preferable that it is 150,000 or less. When the weight average molecular weight is less than 30,000, mechanical physical properties tend not to be sufficiently expressed, while when it exceeds 300,000, the flowability and processability tend to be deteriorated. Furthermore, it is preferable that the value (weight average molecular weight / number average molecular weight) of the molecular weight distribution of the isobutylene-based modified copolymer is 1.3 or less from the viewpoint of processing stability.
 第1Cポリマー組成物中のイソブチレン系変性共重合体の含有量は、ポリマー成分中0.5質量%以上25質量%以下が好ましく、さらに5質量%以上20質量%以下が好ましい。イソブチレン系変性共重合体の含有量が0.5質量%未満であると、第2層との加硫接着力が低下するおそれがある。 The content of the isobutylene-based modified copolymer in the first C polymer composition is preferably 0.5% by mass to 25% by mass in the polymer component, and more preferably 5% by mass to 20% by mass. If the content of the isobutylene-based modified copolymer is less than 0.5% by mass, the vulcanization adhesion with the second layer may be reduced.
 イソブチレン系変性共重合体の製造方法は、例えば、特開2010-195969号公報に開示されている。例えば、次の一般式(I)で表される重合開始剤の存在下に、単量体成分を重合させて製造できる。 The method for producing the isobutylene-based modified copolymer is disclosed, for example, in JP-A-2010-195969. For example, it can be produced by polymerizing monomer components in the presence of a polymerization initiator represented by the following general formula (I).
    (CR12X)nR3      (1)
 (式中Xはハロゲン原子、炭素数1~6のアルコキシ基またはアシロキシ基から選ばれる置換基、R1、R2はそれぞれ水素原子または炭素数1~6の1価炭化水素基でR1、R2は同一であっても異なっていても良く、R3は一価若しくは多価芳香族炭化水素基または一価若しくは多価脂肪族炭化水素基であり、nは1~6の自然数を示す。)
 上記一般式(1)で表わされる化合物は開始剤となるものでルイス酸等の存在下で炭素陽イオンを生成し、カチオン重合の開始点になる。上記一般式(1)の化合物の例として、ビス(1-クロル-1-メチルエチル)ベンゼン[C64(C(CH32Cl)2]、トリス(1-クロル-1-メチルエチル)ベンゼン[(ClC(CH32363]が例示される。
(CR 1 R 2 X) n R 3 (1)
(Wherein X is a halogen atom, a substituent selected from an alkoxy group having 1 to 6 carbon atoms, or an acyloxy group, R 1 and R 2 each represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms, R 1 R 2 may be the same or different, R 3 is a monovalent or polyvalent aromatic hydrocarbon group or a monovalent or polyvalent aliphatic hydrocarbon group, and n is a natural number of 1 to 6 .)
The compound represented by the above general formula (1) is to be an initiator and forms a carbon cation in the presence of a Lewis acid or the like to be a starting point of cationic polymerization. As an example of the compound of the above general formula (1), bis (1-chloro-1-methylethyl) benzene [C 6 H 4 (C (CH 3 ) 2 Cl) 2 ], tris (1-chloro-1-methyl) ethyl) benzene [(ClC (CH 3) 2 ) 3 C 6 H 3] can be exemplified.
 イソブチレン系変性共重合体を製造する際には、さらにルイス酸触媒を共存させることもできる。ルイス酸としては、カチオン重合に使用できるもので、例えばTiCl4、TiBr4、BCl3、BF3、BF3・OEt2、ZnBr2、AlCl3等の金属ハロゲン化物;Et2AlCl、EtAlCl2等の有機金属ハロゲン化物が使用できる。前記ルイス酸は、一般式(1)で示される化合物に対して0.1~100モル当量使用することができる。 When producing the isobutylene-based modified copolymer, a Lewis acid catalyst can also be made to coexist. The Lewis acid can be used for cationic polymerization, for example, metal halides such as TiCl 4 , TiBr 4 , BCl 3 , BF 3 , BF 3 · OEt 2 , ZnBr 2 , AlCl 3 and the like; Et 2 AlCl, EtAlCl 2 etc. The following organometallic halides can be used. The Lewis acid can be used at 0.1 to 100 molar equivalents relative to the compound represented by the general formula (1).
 また、イソブチレン系変性共重合体の製造に際しては、電子供与体成分を共存させることもできる。この電子供与体成分は、例えば、ピリジン類、アミン類、アミド類またはスルホキシド類がある。 Moreover, an electron donor component can also be made to coexist in the case of manufacture of an isobutylene type modified copolymer. The electron donor component is, for example, pyridines, amines, amides or sulfoxides.
 イソブチレン系変性共重合体の重合は有機溶媒中で行うことができ、ここで有機溶媒はカチオン重合を阻害しないものが使用できる。たとえば塩化メチル、ジクロロメタン、クロロホルム、塩化エチル、ジクロロエタン等のハロゲン化炭化水素、ベンゼン、トルエン、キシレン、エチルベンゼン等のアルキルベンゼン類、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン等の直鎖式脂肪族炭化水素類、2-メチルプロパン、2-メチルブタン等の分岐式脂肪族炭化水素類、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の環式脂肪族炭化水素類などが使用できる。 The polymerization of the isobutylene-based modified copolymer can be carried out in an organic solvent, and as the organic solvent, one that does not inhibit cationic polymerization can be used. For example, halogenated hydrocarbons such as methyl chloride, dichloromethane, chloroform, ethyl chloride and dichloroethane, alkylbenzenes such as benzene, toluene, xylene and ethylbenzene, linear aliphatic carbonization such as ethane, propane, butane, pentane, hexane and heptane Hydrogens, branched aliphatic hydrocarbons such as 2-methylpropane and 2-methylbutane, and cyclic aliphatic hydrocarbons such as cyclohexane, methylcyclohexane and ethylcyclohexane can be used.
 上記有機溶媒の量は、生成する共重合体溶液の粘度調整および放熱性の観点から、共重合体の濃度が5~40質量%となるように調整される。なお共重合反応は、-20℃~-70℃の範囲が好ましい。
(その他の配合剤)
 インナーライナーの第1層に用いられる第1Cポリマー組成物は、架橋剤、架橋助剤を含むことができる。架橋剤は硫黄、テトラメチルチウラムジスルフィド、4,4-ジチオビスモルホリン、有機過酸化物、フェノールホルムアルデヒド樹脂、ハロメチルフェノールが使用できる。
The amount of the organic solvent is adjusted so that the concentration of the copolymer becomes 5 to 40% by mass from the viewpoint of adjusting the viscosity of the copolymer solution to be produced and the heat dissipation. The copolymerization reaction is preferably in the range of −20 ° C. to −70 ° C.
(Other ingredients)
The first C polymer composition used for the first layer of the inner liner can contain a crosslinking agent and a coagent. As the crosslinking agent, sulfur, tetramethylthiuram disulfide, 4,4-dithiobismorpholine, organic peroxide, phenolformaldehyde resin, halomethylphenol can be used.
 架橋助剤として、スルフェンアミド、ベンゾチアゾール、グアニジン、ジチオカルバミン酸、酸化亜鉛などの金属酸化物、ステアリン酸などの脂肪酸、含窒素化合物、トリアリルイソシアヌレート、エチレングリコールジメタクリレート、トリメチロールプロパンメタクリレートが使用できる。架橋剤、架橋助剤の配合量は、エラストマー成分100質量部に対してそれぞれ0.3質量部以上6質量部以下である。 Examples of crosslinking assistants include metal oxides such as sulfenamide, benzothiazole, guanidine, dithiocarbamic acid and zinc oxide, fatty acids such as stearic acid, nitrogen-containing compounds, triallyl isocyanurate, ethylene glycol dimethacrylate and trimethylolpropane methacrylate It can be used. The compounding amounts of the crosslinking agent and the crosslinking aid are each 0.3 part by mass or more and 6 parts by mass or less with respect to 100 parts by mass of the elastomer component.
 第1Cポリマー組成物は、さらに充填剤、老化防止剤、軟化剤、加工助剤などを含むことができる。充填剤は、カーボンブラック、湿式シリカ、乾式シリカ、炭酸カルシウム、カオリン、タルク、クレー等が使用できる。老化防止剤は酸化防止剤、紫外線吸収剤、光安定剤を包含する。軟化剤はパラフィン系オイル、ナフテン系オイル、アロマ系オイル、ナタネ油、ジオクチルフタレートなどが使用できる。また、加工助剤は高級脂肪酸、脂肪酸エステル、脂肪酸金属塩、脂肪酸アミド、パラフィンワックス、脂肪アルコール、フッ素・シリコーン系樹脂などが使用できる。
(第1層の厚さ)
 第1層の厚さは、0.05mm以上0.6mm以下とすることができる。ここで第1層の厚さとは、第1層の平均厚さを意味する。第1層の厚さが0.05mm未満であると、インナーライナーを配置した生タイヤの加硫時に、第1層がプレス圧力で破れてしまい、得られたタイヤにおいてエアーリーク現象が生じる虞がある。一方、第1層の厚さが0.6mmを超えるとタイヤ重量が増加し、低燃費性能が低下する。第1層の厚さは、さらに0.05mm以上0.4mm以下であることが好ましい。
The first C polymer composition may further contain fillers, anti-aging agents, softeners, processing aids and the like. As the filler, carbon black, wet silica, dry silica, calcium carbonate, kaolin, talc, clay and the like can be used. Anti-aging agents include antioxidants, ultraviolet light absorbers, light stabilizers. As the softener, paraffin oil, naphthene oil, aroma oil, rapeseed oil, dioctyl phthalate and the like can be used. As the processing aid, higher fatty acids, fatty acid esters, fatty acid metal salts, fatty acid amides, paraffin waxes, fatty alcohols, fluorine / silicone resins and the like can be used.
(Thickness of first layer)
The thickness of the first layer can be 0.05 mm or more and 0.6 mm or less. Here, the thickness of the first layer means the average thickness of the first layer. If the thickness of the first layer is less than 0.05 mm, the first layer may be broken by the press pressure during vulcanization of the green tire on which the inner liner is disposed, and the air leak may occur in the obtained tire. is there. On the other hand, when the thickness of the first layer exceeds 0.6 mm, the weight of the tire increases and the fuel economy performance is reduced. The thickness of the first layer is more preferably 0.05 mm or more and 0.4 mm or less.
 第1層は、第1Cポリマー組成物を押出成形、カレンダー成形といった熱可塑性樹脂、熱可塑性エラストマーをフィルム化する通常の方法によってフィルム化して得ることができる。
(第2層)
 第2層は、ポリマー成分がスチレン-イソブチレンブロック共重合体(以下、SIBともいう)10質量%以上100質量%以下およびスチレン-イソブチレン-スチレントリブロック共重合体(以下、SIBSともいう)0質量%以上90質量%以下を含む第2Cポリマー組成物からなり、厚さ0.01mm以上0.3mm以下である。
(スチレン-イソブチレンブロック共重合体)
 スチレン-イソブチレンジブロック共重合体(SIB)のイソブチレンブロックはソフトセグメントであるため、SIBを含むポリマーフィルムはゴム成分と加硫接着しやすい。したがって、SIBを含むポリマーフィルムをインナーライナーに用いた場合、該インナーライナーは、たとえばカーカスやインスレーションを形成する隣接ゴムとの接着性に優れているため、耐久性に優れた空気入りタイヤを得ることができる。
The first layer can be obtained by film-forming the first C polymer composition by a conventional method of film-forming a thermoplastic resin such as extrusion molding, calendar molding, or a thermoplastic elastomer.
(2nd layer)
In the second layer, the polymer component is 10% by mass or more and 100% by mass or less of styrene-isobutylene block copolymer (hereinafter also referred to as SIB) and 0 mass of styrene-isobutylene-styrene triblock copolymer (hereinafter also referred to as SIBS) And a thickness of 0.01 mm or more and 0.3 mm or less.
(Styrene-isobutylene block copolymer)
Since the isobutylene block of the styrene-isobutylene diblock copolymer (SIB) is a soft segment, the polymer film containing SIB is easy to cure and adhere to the rubber component. Therefore, when a polymer film containing SIB is used for the inner liner, the inner liner is excellent in adhesion to the adjacent rubber forming, for example, the carcass and the insulation, so that a pneumatic tire excellent in durability is obtained. be able to.
 SIBは実施の形態1と同様のものを用いることができる。
 第2Cポリマー組成物中のSIBの含有量は、ポリマー成分中10質量%以上100質量%以下である。SIBの含有量が10質量%未満であると、加硫接着力が低下するおそれがある。SIBの含有量は、さらに10質量%以上30質量%以下が好ましい。
(SIBS)
 第2Cポリマー組成物に配合されるSIBSは、第1Cポリマー組成物と同様のものを用いることができる。
(その他の配合剤)
 第2Cポリマー組成物は、第1Cポリマー組成物と同様に、架橋剤、架橋助剤、充填剤、老化防止剤、軟化剤、加工助剤などを含むことができる。
(第2層の厚さ)
 第2層の厚さは、0.01mm以上0.3mm以下とすることができる。ここで第2層の厚さとは、第2層の平均厚さを意味する。第2層の厚さが0.01mm未満であると、インナーライナーを配置した生タイヤの加硫時に、第2層がプレス圧力で破れてしまい、加硫接着力が低下する恐れがある。一方、第2層の厚さが0.3mmを超えるとタイヤ重量が増加し低燃費性能が低下する。第2層の厚さは、さらに0.05mm以上0.2mm以下であることが好ましい。
The same SIB as that of the first embodiment can be used.
The content of SIB in the second C polymer composition is 10% by mass or more and 100% by mass or less in the polymer component. If the content of SIB is less than 10% by mass, the vulcanization adhesion may be reduced. The content of SIB is more preferably 10% by mass or more and 30% by mass or less.
(SIBS)
The same SIBS as that of the first C polymer composition can be used in the second C polymer composition.
(Other ingredients)
Similar to the first C polymer composition, the second C polymer composition may include a crosslinking agent, a coagent, a filler, an antiaging agent, a softener, a processing aid, and the like.
(Thickness of second layer)
The thickness of the second layer can be 0.01 mm or more and 0.3 mm or less. Here, the thickness of the second layer means the average thickness of the second layer. When the thickness of the second layer is less than 0.01 mm, the second layer may be broken by the press pressure at the time of vulcanization of the green tire on which the inner liner is disposed, and the vulcanization adhesion may be reduced. On the other hand, if the thickness of the second layer exceeds 0.3 mm, the weight of the tire increases and the fuel economy performance decreases. The thickness of the second layer is more preferably 0.05 mm or more and 0.2 mm or less.
 第2層は、第2Cポリマー組成物を押出成形、カレンダー成形といった熱可塑性樹脂、熱可塑性エラストマーをフィルム化する通常の方法によってフィルム化して得ることができる。
<インナーライナーの配置>
 インナーライナーPLは、図3に示すように、第1層PL1および第2層PL2から構成される。該インナーライナーPLを空気入りタイヤに適用する場合、第2層PL2がカーカスプライ61に接するようにタイヤ半径方向外側に向けて設置すると、タイヤの加硫工程において、第2層PL2とカーカス61との接着強度を高めることができる。したがって得られた空気入りタイヤは、インナーライナーとカーカスプライ61のゴム層とが良好に接着しているため、優れた耐空気透過性および耐久性を有することができる。
The second layer can be obtained by film-forming the second C polymer composition by a conventional method of film-forming a thermoplastic resin such as extrusion molding, calendar molding, or a thermoplastic elastomer.
<Placement of inner liner>
Inner liner PL is comprised from 1st layer PL1 and 2nd layer PL2, as shown in FIG. In the case of applying the inner liner PL to a pneumatic tire, when the second layer PL2 is installed outward in the tire radial direction such that the second layer PL2 contacts the carcass ply 61, the second layer PL2 and the carcass 61 are Bond strength can be increased. Therefore, the obtained pneumatic tire can have excellent air permeation resistance and durability because the inner liner and the rubber layer of the carcass ply 61 are well adhered.
 <インナーライナーの製造方法>
 インナーライナーは、たとえば以下の方法で製造することができる。押出成形やカレンダー成形などによって第1層および第2層を作製する。第1層と第2層とを貼り合わせて、インナーライナーを作製する。また、第1Cポリマー組成物および第2Cポリマー組成物のそれぞれのペレットをラミネート押出や共押出などの積層押出をして作製することもできる。
<Method of manufacturing inner liner>
The inner liner can be manufactured, for example, by the following method. The first layer and the second layer are produced by extrusion molding, calendar molding or the like. The first layer and the second layer are laminated to produce an inner liner. The pellets of each of the first C polymer composition and the second C polymer composition can also be produced by lamination extrusion such as lamination extrusion or coextrusion.
 <空気入りタイヤの製造方法>
 実施の形態3における空気入りタイヤは、実施の形態1と同様の製造方法を用いて製造することができる。
<Method of manufacturing pneumatic tire>
The pneumatic tire according to the third embodiment can be manufactured using the same manufacturing method as that of the first embodiment.
 [実施の形態4]
 実施の形態4において、空気入りタイヤは一対のビード部の間に装架されたカーカスプライのタイヤ内側にインナーライナーを備え、インナーライナーは、スチレン-イソブチレン-スチレントリブロック共重合体を含む第1Dポリマー組成物からなる厚さ0.05mm以上0.6mm以下の第1層と、スチレン-イソブチレンジブロック共重合体を含む第2Dポリマー組成物からなる厚さ0.01mm以上0.3mm以下の第2層とを備え、第1Dポリマー組成物および第2Dポリマー組成物の少なくともいずれかは、ポリマー成分中、スチレン-イソブチレン-スチレントリブロック共重合体のスチレンブロック部分が、不飽和結合を有する酸塩化物または酸無水物で変性されたSIBS変性共重合体を10質量%以上99.5質量%以下含み、第2層がカーカスプライのゴム層と接するように配置されており、インナーライナーはクラウン中央位置Pcにおける厚さGcよりもショルダー位置Peの厚さGeが厚い。
<空気入りタイヤ>
 実施の形態4における空気入りタイヤは、基本的に実施の形態1と同様の構造とすることができる。
Fourth Embodiment
In the fourth embodiment, the pneumatic tire includes an inner liner on the tire inner side of a carcass ply mounted between a pair of bead portions, and the inner liner includes a styrene-isobutylene-styrene triblock copolymer. The first layer having a thickness of 0.05 mm to 0.6 mm made of the polymer composition, and the second layer D having a styrene-isobutylene diblock copolymer having a thickness of 0.01 mm to 0.3 mm In the polymer component, at least one of the first D polymer composition and the second D polymer composition comprises an acidation having an unsaturated bond in the styrene block portion of the styrene-isobutylene-styrene triblock copolymer in the polymer component. 10% by weight or more and 99.5% by weight or more of SIBS modified copolymer modified with Wherein, and a second layer arranged in contact with the rubber layer of the carcass ply, an inner liner thickness Ge shoulder position Pe is greater than the thickness Gc at the crown center position Pc.
<Pneumatic tire>
The pneumatic tire according to the fourth embodiment can basically have the same structure as that of the first embodiment.
 実施の形態4において、インナーライナーの肉厚部は、ショルダー位置Peからクラウン中心位置Pc側に、ショルダー距離Wcの10%以上60%以下の範囲に形成されていることが好ましい。 In the fourth embodiment, the thick portion of the inner liner is preferably formed in the range of 10% to 60% of the shoulder distance Wc from the shoulder position Pe to the crown center position Pc side.
 ショルダー位置Peの厚さGeは0.2mm以上1.9mm以下が好ましい。Geが0.2mm未満であると、タイヤ走行時に破れや変形が起こりやすい。Geが1.9mmを超えると、インナーライナーの軽量化の効果を十分に得ることができない。Geはさらに0.3mm以上1.9mm以下が好ましい。
<インナーライナー>
 本発明の一実施の形態において、インナーライナーは第1層と第2層とを備える。
(第1層)
 第1層は、スチレン-イソブチレン-スチレントリブロック共重合体(以下、SIBSともいう)を含む第1Dポリマー組成物からなり、厚さが0.05mm以上0.6mm以下である。
The thickness Ge of the shoulder position Pe is preferably 0.2 mm or more and 1.9 mm or less. When Ge is less than 0.2 mm, breakage or deformation is likely to occur during running of the tire. If Ge exceeds 1.9 mm, the effect of reducing the weight of the inner liner can not be obtained sufficiently. The Ge is more preferably 0.3 mm or more and 1.9 mm or less.
<Inner liner>
In one embodiment of the present invention, the inner liner comprises a first layer and a second layer.
(First layer)
The first layer is made of a first D polymer composition containing styrene-isobutylene-styrene triblock copolymer (hereinafter also referred to as SIBS), and has a thickness of 0.05 mm or more and 0.6 mm or less.
 SIBSは実施の形態1と同様のものを用いることができる。
(SIBS変性共重合体)
 第1Dポリマー組成物は、スチレン-イソブチレン-スチレンブロック共重合体のスチレンブロック部分が不飽和結合を有する酸塩化物または酸無水物で変性されたSIBS変性共重合体を含むことができる。
The same SIBS as in Embodiment 1 can be used.
(SIBS modified copolymer)
The first D polymer composition can include an SIBS modified copolymer in which a styrene block portion of a styrene-isobutylene-styrene block copolymer is modified with an acid chloride or an acid anhydride having an unsaturated bond.
 SIBS変性共重合体は、そのスチレンブロック部分が不飽和結合を有する酸塩化物もしくは酸無水物で変性されたものであり、分子鎖中に次の式(1)の化学構造を含んでいる。 The SIBS modified copolymer is one in which the styrene block portion is modified with an acid chloride or an acid anhydride having an unsaturated bond, and contains a chemical structure of the following formula (1) in a molecular chain.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)において、R1は官能基を有する一価の有機基である。
 変性に用いられる不飽和結合を有する酸塩化物とは、メタクリル酸クロライド、メタクリル酸ブロマイド、メタクリル酸ヨウダイド、アクリル酸クロライド、アクリル酸ブロマイド、アクリル酸ヨウダイド、クロトニル酸クロライドおよびクロトニル酸ブロマイドが例示される。特にメタクリル酸クロライド、アクリル酸クロライドが好適である。
In Formula (1), R 1 is a monovalent organic group having a functional group.
Examples of the acid chloride having an unsaturated bond used for modification include methacrylic acid chloride, methacrylic acid bromide, methacrylic acid iodide, acrylic acid chloride, acrylic acid bromide, acrylic acid iodide, crotonyl chloride and crotonyl acid bromide. . In particular, methacrylic acid chloride and acrylic acid chloride are preferable.
 また酸無水物とは、無水酢酸、無水マレイン酸、無水フタル酸等が例示されるが、特に、無水酢酸が好適である。これの化合物は、二種類以上を併用することも可能である。係る変性により不飽和基がSIBSに導入されるため、架橋剤を用いた架橋を可能とすることができる。 Moreover, although an acetic anhydride, a maleic anhydride, a phthalic anhydride etc. are illustrated with an acid anhydride, an acetic anhydride is especially preferable. These compounds can also be used in combination of two or more. Since the unsaturated group is introduced into SIBS by such modification, crosslinking using a crosslinking agent can be enabled.
 SIBS変性共重合体における、不飽和結合を有する酸塩化物及び酸無水物の含量は、1%重量以上、好ましくは5重量%以上であり、30重量%以下である。 The content of acid chloride and acid anhydride having unsaturated bonds in the SIBS modified copolymer is 1% by weight or more, preferably 5% by weight or more, and 30% by weight or less.
 SIBS変性共重合体の架橋には、従来の方法を用いることができ、例えば、加熱による熱架橋、架橋剤による架橋を行うことができる。ここで架橋剤としては、有機パーオキサイド、例えば、ジクミルパーオキサイド、ジ‐tert‐ブチルパーオキサイド、2,5‐ジメチル‐2,5‐ジ‐(tert‐ブチルパーオキシ)ヘキサンなどが使用できる。有機パーオキサイドの配合量は、熱可塑性エラストマー成分100質量部に対して0.1~3.0質量部の範囲が好ましい。 A conventional method can be used for crosslinking the SIBS modified copolymer, and for example, thermal crosslinking by heating and crosslinking by a crosslinking agent can be performed. Here, organic peroxides such as dicumyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane, etc. can be used as a crosslinking agent. . The compounding amount of the organic peroxide is preferably in the range of 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer component.
 第1Dポリマー組成物は、多官能性ビニルモノマー、例えばジビニルベンゼン、トリアリルシアヌレート、又は多官能性メタクリレートモノマー、例えばエチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、アリルメタクリレートを架橋剤として併用することができる。この場合、架橋後における組成物の屈曲亀裂特性の向上が期待できる。 The first D polymer composition is a multifunctional vinyl monomer such as divinylbenzene, triallyl cyanurate, or a multifunctional methacrylate monomer such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, Trimethylolpropane trimethacrylate and allyl methacrylate can be used in combination as a crosslinking agent. In this case, the improvement of the flex crack characteristics of the composition after crosslinking can be expected.
 SIBS変性共重合体は、イソブチレンブロック由来により、SIBS変性共重合体を含むフィルムは優れた耐空気透過性を有する。またSIBS変性共重合体は、不飽和基がSIBSに導入されているため、熱架橋および架橋剤による架橋が可能となり、引張強度、破断時伸および永久歪などの基本特性とともに、屈曲亀裂特性および耐空気透過性が改善されインナーライナーとしての特性が改善される。 The SIBS modified copolymer is derived from an isobutylene block, and the film containing the SIBS modified copolymer has excellent air permeation resistance. In addition, SIBS-modified copolymers can be thermally crosslinked and crosslinked by a crosslinking agent because unsaturated groups are introduced into SIBS, and they have bending crack characteristics and basic properties such as tensile strength, elongation at break and permanent strain. The air permeation resistance is improved and the properties as an inner liner are improved.
 SIBS変性共重合体を含むポリマー組成物からなるポリマーフィルムをインナーライナーに適用して空気入りタイヤを製造した場合には、耐空気透過性を確保できる。したがってハロゲン化ブチルゴム等の、従来耐空気透過性を付与するために使用されてきた高比重のハロゲン化ゴムを使用する必要がなく、使用する場合にも使用量の低減が可能である。これによってタイヤの軽量化が可能であり、燃費の向上効果が得られる。 When a pneumatic tire is manufactured by applying a polymer film made of a polymer composition containing a SIBS modified copolymer to an inner liner, air permeation resistance can be secured. Therefore, it is not necessary to use a high specific gravity halogenated rubber, which has been conventionally used to impart air resistance, such as halogenated butyl rubber, and the amount can be reduced even when used. Thus, the weight of the tire can be reduced, and the fuel efficiency can be improved.
 SIBS変性共重合体の配合量は、第1Dポリマー組成物のポリマー成分中10質量%以上99.5質量%以下が好ましく、さらに30質量%以上99.5質量%以下が好ましい。SIBS変性共重合体の配合量が、ポリマー成分の10質量%未満の場合は、第2層との加硫接着が十分でないおそれがある。 The blending amount of the SIBS modified copolymer is preferably 10% by mass to 99.5% by mass in the polymer component of the first D polymer composition, and more preferably 30% by mass to 99.5% by mass. If the compounding amount of the SIBS modified copolymer is less than 10% by mass of the polymer component, there is a possibility that the vulcanization adhesion with the second layer is not sufficient.
 なお、本発明の一実施の形態において、第1Dポリマー組成物と、後述する第2Dポリマー組成物の少なくともいずれかが、SIBS変性共重合体を含む。この場合、SIBS変性共重合体の配合量は、第1Dポリマー組成物のポリマー成分中10質量%以上99.5質量以下、または、第2Dポリマー組成物のポリマー成分中10質量%以上99.5質量以下である。 In one embodiment of the present invention, at least one of the first D polymer composition and the second D polymer composition described later contains the SIBS modified copolymer. In this case, the compounding amount of the SIBS modified copolymer is 10% by mass to 99.5% by mass in the polymer component of the first D polymer composition, or 10% by mass to 99.5% in the polymer component of the second D polymer composition. It is less than mass.
 SIBS変性共重合体の分子量は特に制限はないが、流動性、成形化工程、ゴム弾性などの観点から、GPC測定による重量平均分子量が50,000以上400,000以下であることが好ましい。重量平均分子量が50,000未満であると引張強度、引張伸びが低下するおそれがあり、400,000を超えると押出加工性が悪くなるおそれがあるため好ましくない。SIBS変性共重合体は耐空気透過性と耐久性をより良好にする観点から、SIBS中のスチレン成分の含有量は10質量%以上30質量%以下が好ましく、さらに14質量%以上23質量%以下であることが好ましい。 The molecular weight of the SIBS modified copolymer is not particularly limited, but it is preferable that the weight average molecular weight by GPC measurement is 50,000 or more and 400,000 or less, from the viewpoint of flowability, molding process, rubber elasticity and the like. If the weight average molecular weight is less than 50,000, the tensile strength and the tensile elongation may be lowered, and if it exceeds 400,000, the extrusion processability may be deteriorated, which is not preferable. The content of the styrene component in SIBS is preferably 10% by mass or more and 30% by mass or less, and more preferably 14% by mass or more and 23% by mass or less, from the viewpoint of making the air permeation resistance and durability better. Is preferred.
 SIBS変性共重合体の製造は例えば次の方法が採用できる。セパラブルフラスコにスチレン-イソブチレンースチレントリブロック共重合体を入れた後、重合容器内を窒素置換する。その後モレキュラーシーブスで乾燥した、有機溶剤(例えば、n-ヘキサン及びブチルクロリド)を加え、さらにメタクリル酸クロライドを加える。最後に、溶液を攪拌しながら三塩化アルミニウムを加えて反応させる。反応開始から一定時間後に反応溶液に所定量の水を加えて攪拌して反応を終了させる。反応溶液を多量の水で数回以上水洗を行い、さらに大量のメタノールとアセトン混合溶媒にゆっくりと滴下して重合体を沈殿させ、得られた重合体を真空乾燥することにより得られる。なおSIBS変性共重合体の製法は、例えば特許第4551005号公報に開示されている。
(ポリマー成分)
 第1Dポリマー組成物は、ポリマー成分として、SIBS、SIBS変性共重合体以外のポリマーを含むことができる。たとえば、熱可塑性エラストマー、特にスチレン系熱可塑性エラストマーが好適に用いられる。ここでスチレン系熱可塑性エラストマーは、ハードセグメントとしてスチレンブロックを含む共重合体をいう。たとえば、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-イソブチレンジブロック共重合体(SIB)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-エチレン・ブテン-スチレンブロック共重合体(SEBS)、スチレン-エチレン・プロピレン-スチレンブロック共重合体(SEPS)、スチレン-エチレン・エチレン・プロピレン-スチレンブロック共重合体(SEEPS)、スチレン-ブタジエン・ブチレン-スチレンブロック共重合体(SBBS)が挙げられる。
For example, the following method can be adopted for the production of the SIBS modified copolymer. After placing the styrene-isobutylene-styrene triblock copolymer in a separable flask, the inside of the polymerization vessel is replaced with nitrogen. Thereafter, organic solvents (eg, n-hexane and butyl chloride) dried with molecular sieves are added, and further, methacrylic acid chloride is added. Finally, the solution is reacted while adding aluminum trichloride while stirring. After a predetermined time from the start of the reaction, a predetermined amount of water is added to the reaction solution and stirred to terminate the reaction. The reaction solution is washed with a large amount of water several times and further slowly dropped into a large amount of a mixed solvent of methanol and acetone to precipitate a polymer, and the resulting polymer is dried under vacuum. The method of producing the SIBS modified copolymer is disclosed, for example, in Japanese Patent No. 4551005.
(Polymer component)
The 1st D polymer composition can contain polymers other than SIBS and SIBS modified copolymer as a polymer component. For example, thermoplastic elastomers, in particular styrenic thermoplastic elastomers, are preferably used. Here, the styrene-based thermoplastic elastomer refers to a copolymer containing a styrene block as a hard segment. For example, styrene-isoprene-styrene block copolymer (SIS), styrene-isobutylene diblock copolymer (SIB), styrene-butadiene-styrene block copolymer (SBS), styrene-ethylene-butene-styrene block copolymer Combination (SEBS), styrene-ethylene-propylene-styrene block copolymer (SEPS), styrene-ethylene-ethylene-propylene-styrene block copolymer (SEEPS), styrene-butadiene-butylene-styrene block copolymer (SBBS) Can be mentioned.
 また、スチレン系熱可塑性エラストマーは、その分子構造において、エポキシ基を有してもよく、例えば、ダイセル化学工業(株)社製、エポフレンドA1020(重量平均分子量が10万、エポキシ当量が500)のエポキシ変性スチレン-ブタジエン-スチレン共重合体(エポキシ化SBS)が使用できる。 In addition, the styrenic thermoplastic elastomer may have an epoxy group in its molecular structure. For example, Epofriend A 1020 (made by Daicel Chemical Industries, Ltd., weight average molecular weight is 100,000, epoxy equivalent is 500) Epoxy modified styrene-butadiene-styrene copolymer (epoxidized SBS) can be used.
 第1Dポリマー組成物は、ポリマー成分としてゴム成分を混合することができる。ゴム成分は天然ゴム、イソプレンゴム、クロロプレンゴムおよびブチルゴムよりなる群から選択される少なくとも1種を含むことが好ましい。ゴム成分の配合量は、熱可塑性エラストマー成分100質量部に対し、5~20質量部の範囲が好ましい。
(その他の配合剤)
 インナーライナーの第1層に用いられる第1Dポリマー組成物は、架橋剤、架橋助剤を含むことができる。架橋剤は硫黄、テトラメチルチウラムジスルフィド、4,4-ジチオビスモルホリン、有機過酸化物、フェノールホルムアルデヒド樹脂、ハロメチルフェノールが使用できる。
The first D polymer composition can be mixed with a rubber component as a polymer component. The rubber component preferably contains at least one selected from the group consisting of natural rubber, isoprene rubber, chloroprene rubber and butyl rubber. The blending amount of the rubber component is preferably in the range of 5 to 20 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer component.
(Other ingredients)
The first D polymer composition used for the first layer of the inner liner can contain a crosslinking agent and a coagent. As the crosslinking agent, sulfur, tetramethylthiuram disulfide, 4,4-dithiobismorpholine, organic peroxide, phenolformaldehyde resin, halomethylphenol can be used.
 架橋助剤として、スルフェンアミド、ベンゾチアゾール、グアニジン、ジチオカルバミン酸、酸化亜鉛などの金属酸化物、ステアリン酸などの脂肪酸、含窒素化合物、トリアリルイソシアヌレート、エチレングリコールジメタクリレート、トリメチロールプロパンメタクリレートが使用できる。架橋剤、架橋助剤の配合量は、エラストマー成分100質量部に対してそれぞれ0.3質量部以上6質量部以下である。 Examples of crosslinking assistants include metal oxides such as sulfenamide, benzothiazole, guanidine, dithiocarbamic acid and zinc oxide, fatty acids such as stearic acid, nitrogen-containing compounds, triallyl isocyanurate, ethylene glycol dimethacrylate and trimethylolpropane methacrylate It can be used. The compounding amounts of the crosslinking agent and the crosslinking aid are each 0.3 part by mass or more and 6 parts by mass or less with respect to 100 parts by mass of the elastomer component.
 第1Dポリマー組成物は、さらに充填剤、老化防止剤、軟化剤、加工助剤、加硫促進剤、粘着防止剤などを含むことができる。充填剤は、カーボンブラック、湿式シリカ、乾式シリカ、炭酸カルシウム、カオリン、タルク、クレー等が使用できる。老化防止剤は酸化防止剤、紫外線吸収剤、光安定剤を包含する。軟化剤はパラフィン系オイル、ナフテン系オイル、アロマ系オイル、ナタネ油、ジオクチルフタレート、ステアリン酸などが使用できる。また、加工助剤は高級脂肪酸、脂肪酸エステル、脂肪酸金属塩、脂肪酸アミド、パラフィンワックス、脂肪アルコール、フッ素・シリコーン系樹脂などが使用できる。
(第1層の厚さ)
 第1層の厚さは、0.05mm以上0.6mm以下とすることができる。ここで第1層の厚さとは、第1層の平均厚さを意味する。第1層の厚さが0.05mm未満であると、インナーライナーを配置した生タイヤの加硫時に、第1層がプレス圧力で破れてしまい、得られたタイヤにおいてエアーリーク現象が生じる虞がある。一方、第1層の厚さが0.6mmを超えるとタイヤ重量が増加し、低燃費性能が低下する。第1層の厚さは、さらに0.05mm以上0.4mm以下であることが好ましい。
The first D polymer composition may further contain a filler, an antiaging agent, a softener, a processing aid, a vulcanization accelerator, an antiblocking agent, and the like. As the filler, carbon black, wet silica, dry silica, calcium carbonate, kaolin, talc, clay and the like can be used. Anti-aging agents include antioxidants, ultraviolet light absorbers, light stabilizers. As the softener, paraffin oil, naphthene oil, aroma oil, rapeseed oil, dioctyl phthalate, stearic acid and the like can be used. As the processing aid, higher fatty acids, fatty acid esters, fatty acid metal salts, fatty acid amides, paraffin waxes, fatty alcohols, fluorine / silicone resins and the like can be used.
(Thickness of first layer)
The thickness of the first layer can be 0.05 mm or more and 0.6 mm or less. Here, the thickness of the first layer means the average thickness of the first layer. If the thickness of the first layer is less than 0.05 mm, the first layer may be broken by the press pressure during vulcanization of the green tire on which the inner liner is disposed, and the air leak may occur in the obtained tire. is there. On the other hand, when the thickness of the first layer exceeds 0.6 mm, the weight of the tire increases and the fuel economy performance is reduced. The thickness of the first layer is more preferably 0.05 mm or more and 0.4 mm or less.
 第1層は、第1Dポリマー組成物を押出成形、カレンダー成形といった熱可塑性樹脂、熱可塑性エラストマーをフィルム化する通常の方法によってフィルム化して得ることができる。
(第2層)
 第2層は、スチレン-イソブチレンジブロック共重合体(以下、SIBともいう)を含む第2Dポリマー組成物からなり、厚さが0.01mm以上0.3mm以下である。
The first layer can be obtained by film-forming the first D polymer composition by a conventional method of film-forming a thermoplastic resin such as extrusion molding or calendar molding, or a thermoplastic elastomer.
(2nd layer)
The second layer is composed of a second D polymer composition containing a styrene-isobutylene diblock copolymer (hereinafter also referred to as SIB), and has a thickness of 0.01 mm or more and 0.3 mm or less.
 第2Dポリマー組成物中のSIBの含有量は、ポリマー成分中60質量%以上100質量%以下が好ましい。SIBの含有量が60質量%未満であると、粘度が高くなり、押出加工性が悪化するおそれがある。SIBの含有量は、さらに80質量%以上100質量%以下が好ましい。
(SIBS変性共重合体)
 第2Dポリマー組成物は、第1層と同様に、スチレン-イソブチレン-スチレンブロック共重合体のスチレンブロック部分が不飽和結合を有する酸塩化物または酸無水物で変性されたSIBS変性共重合体を含むことができる。
The content of SIB in the second D polymer composition is preferably 60% by mass or more and 100% by mass or less in the polymer component. If the content of SIB is less than 60% by mass, the viscosity may be high, and extrusion processability may be deteriorated. The content of SIB is more preferably 80% by mass or more and 100% by mass or less.
(SIBS modified copolymer)
Similarly to the first layer, the second D polymer composition is an acid chloride or acid anhydride-modified SIBS modified copolymer in which the styrene block portion of the styrene-isobutylene-styrene block copolymer has an unsaturated bond. Can be included.
 SIBS変性共重合体の配合量は、第2Dポリマー組成物のポリマー成分中10質量%以上99.5質量以下が好ましく、10質量%以上80質量%以下がさらに好ましく、30質量%以上70質量%以下が特に好ましい。SIBS変性共重合体の配合量が、ポリマー成分の10質量%未満の場合は、SIBS変性共重合体による性能向上効果が小さく、一方、99.5質量%を超えると、インナーライナーとカーカスプライゴムとの加硫接着が十分でないおそれがある。
(ポリマー成分)
 第2Dポリマー組成物は、ポリマー成分として、SIB、SIBS変性共重合体以外のポリマーを含むことができる。たとえば、第1Dポリマー組成物と同様に、熱可塑性エラストマー、特にスチレン系熱可塑性エラストマーが好適に用いられる。
The content of the SIBS modified copolymer is preferably 10% by mass to 99.5% by mass, more preferably 10% by mass to 80% by mass, and still more preferably 30% by mass to 70% by mass in the polymer component of the second D polymer composition. The following are particularly preferred. If the compounding amount of the SIBS modified copolymer is less than 10% by mass of the polymer component, the performance improvement effect by the SIBS modified copolymer is small, while if it exceeds 99.5% by mass, the inner liner and the carcass ply rubber There is a possibility that the vulcanization adhesion with is not sufficient.
(Polymer component)
The second D polymer composition can contain, as a polymer component, polymers other than SIB and SIBS modified copolymers. For example, as with the first D polymer composition, thermoplastic elastomers, particularly styrenic thermoplastic elastomers, are suitably used.
 第2Dポリマー組成物は、ポリマー成分としてゴム成分を混合することができる。ゴム成分は天然ゴム、イソプレンゴム、クロロプレンゴムおよびブチルゴムよりなる群から選択される少なくとも1種を含むことが好ましい。ゴム成分の配合量は、熱可塑性エラストマー成分100質量部に対し、5~20質量部の範囲が好ましい。
(その他の配合剤)
 第2Dポリマー組成物は、第1Dポリマー組成物と同様に、架橋剤、架橋助剤、充填剤、老化防止剤、軟化剤、加工助剤などを含むことができる。
(第2層の厚さ)
 第2層の厚さは、0.01mm以上0.3mm以下とすることができる。ここで第2層の厚さとは、第2層の平均厚さを意味する。第2層の厚さが0.01mm未満であると、インナーライナーを配置した生タイヤの加硫時に、第2層がプレス圧力で破れてしまい、加硫接着力が低下する恐れがある。一方、第2層の厚さが0.3mmを超えるとタイヤ重量が増加し低燃費性能が低下する。第2層の厚さは、さらに0.05mm以上0.2mm以下であることが好ましい。
The second D polymer composition can mix a rubber component as a polymer component. The rubber component preferably contains at least one selected from the group consisting of natural rubber, isoprene rubber, chloroprene rubber and butyl rubber. The blending amount of the rubber component is preferably in the range of 5 to 20 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer component.
(Other ingredients)
Similar to the first D polymer composition, the second D polymer composition can contain a crosslinking agent, a coagent, a filler, an antiaging agent, a softener, a processing aid, and the like.
(Thickness of second layer)
The thickness of the second layer can be 0.01 mm or more and 0.3 mm or less. Here, the thickness of the second layer means the average thickness of the second layer. When the thickness of the second layer is less than 0.01 mm, the second layer may be broken by the press pressure at the time of vulcanization of the green tire on which the inner liner is disposed, and the vulcanization adhesion may be reduced. On the other hand, if the thickness of the second layer exceeds 0.3 mm, the weight of the tire increases and the fuel economy performance decreases. The thickness of the second layer is more preferably 0.05 mm or more and 0.2 mm or less.
 第2層は、第2Dポリマー組成物を押出成形、カレンダー成形といった熱可塑性樹脂、熱可塑性エラストマーをフィルム化する通常の方法によってフィルム化して得ることができる。
<インナーライナーの配置>
 インナーライナーPLは、図3に示すように、第1層PL1および第2層PL2から構成される。該インナーライナーPLを空気入りタイヤに適用する場合、第2層PL2がカーカスプライ61に接するようにタイヤ半径方向外側に向けて設置すると、タイヤの加硫工程において、第2層PL2とカーカス61との接着強度を高めることができる。したがって得られた空気入りタイヤは、インナーライナーとカーカスプライ61のゴム層とが良好に接着しているため、優れた耐空気透過性および耐久性を有することができる。
The second layer can be obtained by film-forming the second D polymer composition by a conventional method of film-forming a thermoplastic resin such as extrusion molding, calendar molding, or a thermoplastic elastomer.
<Placement of inner liner>
Inner liner PL is comprised from 1st layer PL1 and 2nd layer PL2, as shown in FIG. In the case of applying the inner liner PL to a pneumatic tire, when the second layer PL2 is installed outward in the tire radial direction such that the second layer PL2 contacts the carcass ply 61, the second layer PL2 and the carcass 61 are Bond strength can be increased. Therefore, the obtained pneumatic tire can have excellent air permeation resistance and durability because the inner liner and the rubber layer of the carcass ply 61 are well adhered.
 <インナーライナーの製造方法>
 インナーライナーは、たとえば以下の方法で製造することができる。押出成形やカレンダー成形などによって第1層および第2層を作製する。第1層と第2層とを貼り合わせて、インナーライナーを作製する。また、第1Dポリマー組成物および第2Dポリマー組成物のそれぞれのペレットをラミネート押出や共押出などの積層押出をして作製することもできる。
<Method of manufacturing inner liner>
The inner liner can be manufactured, for example, by the following method. The first layer and the second layer are produced by extrusion molding, calendar molding or the like. The first layer and the second layer are laminated to produce an inner liner. In addition, pellets of each of the first D polymer composition and the second D polymer composition can be produced by lamination extrusion such as lamination extrusion or coextrusion.
 <空気入りタイヤの製造方法>
 実施の形態4における空気入りタイヤは、実施の形態1と同様の製造方法を用いて製造することができる。
<Method of manufacturing pneumatic tire>
The pneumatic tire according to the fourth embodiment can be manufactured using the same manufacturing method as that of the first embodiment.
 <ポリマー積層体の作製>
 表1~表3に示す仕様で、実施例および比較例のポリマー積層体を製造して、性能を評価した。第1層、第2層に用いるSIB、SIBS、SIS、エポキシ化SBSは以下のとおり調製した。
<Production of polymer laminate>
According to the specifications shown in Tables 1 to 3, the polymer laminates of Examples and Comparative Examples were produced to evaluate their performance. SIB, SIBS, SIS and epoxidized SBS used for the first layer and the second layer were prepared as follows.
 (SIB)
 攪拌機付き2L反応容器に、メチルシクロヘキサン(モレキュラーシーブスで乾燥したもの)589mL、n-ブチルクロライド(モレキュラーシーブスで乾燥したもの)613ml、クミルクロライド0.550gを加えた。反応容器を-70℃に冷却した後、α-ピコリン(2-メチルピリジン)0.35mL、イソブチレン179mLを添加した。さらに四塩化チタン9.4mLを加えて重合を開始し、-70℃で溶液を攪拌しながら2.0時間反応させた。次に反応容器にスチレン59mLを添加し、さらに60分間反応を続けた後、大量のメタノールを添加して反応を停止させた。反応溶液から溶剤などを除去した後に、重合体をトルエンに溶解して2回水洗した。このトルエン溶液をメタノール混合物に加えて重合体を沈殿させ、得られた重合体を60℃で24時間乾燥することによりスチレン-イソブチレンジブロック共重合体を得た。
(SIB)
In a 2 L reaction vessel equipped with a stirrer, 589 mL of methylcyclohexane (dried with molecular sieves), 613 ml of n-butyl chloride (dried with molecular sieves), and 0.550 g of cumyl chloride were added. The reaction vessel was cooled to −70 ° C., and then 0.35 mL of α-picoline (2-methylpyridine) and 179 mL of isobutylene were added. Further, 9.4 mL of titanium tetrachloride was added to initiate polymerization, and the solution was reacted at -70 ° C. for 2.0 hours with stirring. Next, 59 mL of styrene was added to the reaction vessel and the reaction was continued for further 60 minutes, and then the reaction was stopped by adding a large amount of methanol. After removing the solvent and the like from the reaction solution, the polymer was dissolved in toluene and washed twice with water. The toluene solution was added to a methanol mixture to precipitate a polymer, and the obtained polymer was dried at 60 ° C. for 24 hours to obtain a styrene-isobutylene diblock copolymer.
 スチレン成分含有量:15質量%
 重量平均分子量:70,000
 (SIBS)
 カネカ(株)社製の「シブスターSIBSTAR 102(ショアA硬度25、スチレン成分含有量25質量%、重量平均分子量:100,000)」を用いた。
Styrene component content: 15% by mass
Weight average molecular weight: 70,000
(SIBS)
“Sibustar SIBSTAR 102 (Shore A hardness 25; styrene component content 25 mass%, weight average molecular weight: 100,000)” manufactured by Kaneka Co., Ltd. was used.
 なお、実施例1-23では重量平均分子量が20万、実施例1-24では重量平均分子量が30万のSIBSを用いた。 In Examples 1-23, SIBS having a weight average molecular weight of 200,000 and a weight average molecular weight of 300,000 were used.
 (SIS)
 クレイトンポリマー社製のD1161JP(スチレン成分含有量15質量%、重量平均分子量:150,000)を用いた。
(SIS)
D1161 JP (content of styrene component: 15% by mass, weight average molecular weight: 150,000) manufactured by Kraton Polymer Ltd. was used.
 (エポキシ化SBS)
 ダイセル化学工業(株)社製の「エポフレンド A1020」(エポキシ化スチレン-ブタジエン-スチレントリブロック共重合体、重量平均分子量100,000、スチレン成分含有量40質量%、エポキシ当量500)を準備した。
(Epoxidized SBS)
Prepared “Epofriend A1020” (epoxidized styrene-butadiene-styrene triblock copolymer, weight average molecular weight 100,000, styrene content 40 mass%, epoxy equivalent 500) manufactured by Daicel Chemical Industries, Ltd. .
 上記の第1層および第2層の原料のそれぞれを、2軸押出機(スクリュ径:φ50mm、L/D:30、シリンダ温度:220℃)にてペレット化した。得られたペレットを、Tダイ押出機(スクリュ径:φ80mm、L/D:50、ダイグリップ幅:500mm、シリンダ温度:220℃)を用いて共押出しを行い、表1~表3に示す厚みの第1層および第2層を有するポリマー積層体を作製した。なお、比較例1-1として第1層のみからなるポリマーシートを準備した。 Each of the raw material of said 1st layer and 2nd layer was pelletized with the twin-screw extruder (screw diameter: (phi) 50 mm, L / D: 30, cylinder temperature: 220 degreeC). The obtained pellets are co-extruded using a T-die extruder (screw diameter: φ80 mm, L / D: 50, die grip width: 500 mm, cylinder temperature: 220 ° C.), and the thicknesses shown in Tables 1 to 3 A polymer laminate having the first and second layers of A polymer sheet consisting of only the first layer was prepared as Comparative Example 1-1.
 <空気入りタイヤの作製>
 インナーライナーのショルダー位置Peの厚さGeとクラウン中心位置Pcの厚さGcとを調整するために、ポリマーシートの押し出し口にプロファイルをつけて、クラウン中心位置Pcの厚さGcを薄くしたポリマー積層体を作製した。得られたポリマー積層体をタイヤのインナーライナー部分に適用して生タイヤを準備した。これをインナーライナーとしてタイヤ内面に配置した。なお、ポリマー積層体の第1層が生タイヤの半径方向の最も内側に配置され、第2層が生タイヤのカーカス層に接するように、ポリマー積層体を配置した。該生タイヤを金型内で170℃で20分間プレス成形して、195/65R15サイズの加硫タイヤを作製した。
<Production of pneumatic tire>
In order to adjust the thickness Ge of the shoulder position Pe of the inner liner and the thickness Gc of the crown center position Pc, a profile is attached to the extrusion port of the polymer sheet to reduce the thickness Gc of the crown center position Pc. The body was made. The obtained polymer laminate was applied to the inner liner portion of the tire to prepare a green tire. This was disposed on the inner surface of the tire as an inner liner. The polymer laminate was disposed such that the first layer of the polymer laminate was disposed on the innermost side in the radial direction of the green tire, and the second layer was in contact with the carcass layer of the green tire. The green tire was press molded in a mold at 170 ° C. for 20 minutes to produce a 195 / 65R15 size vulcanized tire.
 加硫タイヤを100℃で3分間冷却した後、加硫タイヤを金型から取り出し空気入りタイヤを得た。 After the vulcanized tire was cooled at 100 ° C. for 3 minutes, the vulcanized tire was removed from the mold to obtain a pneumatic tire.
 ポリマー積層体および空気入りタイヤについて以下の評価を行った。
 <接着性>
 JIS K 6256「加硫ゴム及び熱可塑性ゴム-接着性の求め方」に準じて剥離試験を行った。はじめに、ポリマー積層体およびゴムシート(配合:NR/BR/SBR=40/30/30)を、ポリマー積層体の第2層がゴムシートと接するように貼り合わせて加硫して、剥離用試験片を作製した。得られた試験片を用いて剥離試験を行い、ポリマー積層体とゴムシートの接着力を測定した。試験片の大きさは25mm幅で、23℃の室温条件下で行った。得られた数値を比較例1-1を基準(100)として以下の計算式により接着性指数を算出した。数値が大きいほど接着性に優れている。
The following evaluations were performed on the polymer laminate and the pneumatic tire.
<Adhesiveness>
A peeling test was conducted according to JIS K 6256 "Vulcanized rubber and thermoplastic rubber-How to determine adhesion". At first, the polymer laminate and the rubber sheet (compounding: NR / BR / SBR = 40/30/30) are bonded and vulcanized so that the second layer of the polymer laminate is in contact with the rubber sheet, and the peeling test A piece was made. The peeling test was done using the obtained test piece, and the adhesive force of the polymer laminated body and the rubber sheet was measured. The size of the test piece was 25 mm wide, and was performed under a room temperature condition of 23 ° C. The adhesion index was calculated according to the following formula using the obtained numerical value as a reference (100) for Comparative Example 1-1. The larger the value, the better the adhesion.
 (接着性指数)=(各ポリマー積層体の接着力)/(比較例1-1の接着力)×100
 <転がり抵抗>
 転がり抵抗は、粘弾性スペクトロメーターVES((株)岩本製作所)を用いて、温度70℃、初期歪10%、動歪2%の条件下で各ポリマー積層体のtanδを測定し、比較例1-1のtanδを100として、下記計算式により指数表示した。指数が大きいほど転がり抵抗が低減されている。
(Adhesive index) = (Adhesive power of each polymer laminate) / (Adhesive power of Comparative Example 1-1) × 100
<Rolling resistance>
For rolling resistance, tan δ of each polymer laminate is measured under the conditions of a temperature of 70 ° C., an initial strain of 10%, and a dynamic strain of 2% using a viscoelasticity spectrometer VES (IWAMOTO MFG. Co., Ltd.). Assuming that tan δ of -1 is 100, the index is displayed according to the following formula. The larger the index, the lower the rolling resistance.
 (転がり抵抗指数)=(比較例1-1のtanδ)/(各ポリマー積層体のtanδ)×100
 <低温耐久性>
 低温耐久性は、雰囲気温度-20℃、タイヤ空気圧を120kPa、荷重負荷率60%、速度80Km/hの条件で、インナーライナーにクラックが発生したときの走行距離を測定し、比較例1-1の走行距離を基準として、下記計算式により指数表示した。数値が大きいほど低温耐久性に優れている。
(Rolling resistance index) = (tan δ of Comparative Example 1-1) / (tan δ of each polymer laminate) × 100
<Low temperature durability>
The low-temperature durability is measured by measuring the distance traveled when a crack occurs in the inner liner under the conditions of an ambient temperature of -20 ° C, a tire pressure of 120 kPa, a load load ratio of 60% and a velocity of 80 Km / h. Based on the travel distance of the above, the index is displayed by the following formula. The higher the value, the better the low temperature durability.
 (低温耐久性指数)=(各空気入りタイヤの走行距離)/(比較例1-1の走行距離)×100
 <静的空気圧低下率>
 空気入りタイヤをJIS規格リム15×6JJに組み付け、初期空気圧300Kpaを封入し、90日間室温で放置し、空気圧の低下率を計算した。
(Low-temperature durability index) = (travel distance of each pneumatic tire) / (travel distance of comparative example 1-1) x 100
<Static air pressure reduction rate>
The pneumatic tire was assembled to a JIS standard rim 15 × 6 JJ, sealed with an initial air pressure of 300 Kpa, and left at room temperature for 90 days to calculate the reduction rate of the air pressure.
 <エアインの有無>
 加硫後のタイヤの内側を目視にて検査し、以下の基準に従って評価した。
<With or without air in>
The inside of the vulcanized tire was visually inspected and evaluated according to the following criteria.
 A:エアインの数が0個。
 B:直径5mm以下のエアインの数が1~3個。
A: The number of air-ins is zero.
B: The number of air-ins having a diameter of 5 mm or less is 1 to 3.
 C:直径5mm以下のエアインの数が4個以上、または直径5mmを超えるエアーインの数が1個以上。 C: The number of air-ins having a diameter of 5 mm or less is 4 or more, or the number of air-ins having a diameter of 5 mm or more is 1 or more.
 結果を表1~表3に示す。 The results are shown in Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (*1)偏肉範囲(CL(%)/SW(%))において、CL(%)、SW(%)とは以下を示している。 (* 1) In the uneven thickness range (CL (%) / SW (%)), CL (%) and SW (%) indicate the following.
 CL(%)=肉厚部のショルダー位置Peからクラウン中心位置Pc側への距離/ショルダー距離Wc×100
 SW(%)=肉厚部のショルダー位置Peから最大幅位置Ps側への距離/サイド距離Ws×100
 <評価結果>
 比較例1-1は、SIBSからなるポリマーシートであり、基準として用いた。
CL (%) = the distance from the shoulder position Pe of the thick portion to the crown center position Pc side / shoulder distance Wc × 100
SW (%) = the distance from the shoulder position Pe of the thick portion to the maximum width position Ps side / side distance Ws × 100
<Evaluation result>
Comparative Example 1-1 is a polymer sheet made of SIBS and was used as a reference.
 実施例1-1~1-3、1-10~1-24は、第1層がSIBSとエポキシ化SBSとを含む。比較例1-1と同等の耐空気透過性を有しながら、接着性、低温耐久性が向上し、転がり抵抗が低減した。 In Examples 1-1 to 1-3 and 1-10 to 1-24, the first layer contains SIBS and epoxidized SBS. While having the air permeability resistance equivalent to Comparative Example 1-1, the adhesion and the low temperature durability were improved, and the rolling resistance was reduced.
 実施例1-4~1-6は、第2層がSISとエポキシ化SBSとを含む。比較例1-1と同等の耐空気透過性を有しながら、接着性、低温耐久性が向上し、転がり抵抗が低減した。 Examples 1-4 to 1-6, the second layer comprises SIS and epoxidized SBS. While having the air permeability resistance equivalent to Comparative Example 1-1, the adhesion and the low temperature durability were improved, and the rolling resistance was reduced.
 実施例1-7~1-9は、第2層がSIBとエポキシ化SBSとを含む。比較例1-1と同等の耐空気透過性を有しながら、接着性、低温耐久性が向上し、転がり抵抗が低減した。 Examples 1-7 to 1-9, the second layer comprises SIB and epoxidized SBS. While having the air permeability resistance equivalent to Comparative Example 1-1, the adhesion and the low temperature durability were improved, and the rolling resistance was reduced.
 <ポリマー積層体の作製>
 表4~表8に示す仕様で、実施例および比較例のポリマー積層体を製造して、性能を評価した。第1層、第2層に用いるSIB、SIBS、粘着付与剤は以下のとおり準備した。
<Production of polymer laminate>
The polymer laminates of Examples and Comparative Examples were manufactured according to the specifications shown in Tables 4 to 8 to evaluate their performance. The SIB, SIBS, and tackifier used for the first layer and the second layer were prepared as follows.
 (SIB)
 攪拌機付き2L反応容器に、メチルシクロヘキサン(モレキュラーシーブスで乾燥したもの)589mL、n-ブチルクロライド(モレキュラーシーブスで乾燥したもの)613ml、クミルクロライド0.550gを加えた。反応容器を-70℃に冷却した後、α-ピコリン(2-メチルピリジン)0.35mL、イソブチレン179mLを添加した。さらに四塩化チタン9.4mLを加えて重合を開始し、-70℃で溶液を攪拌しながら2.0時間反応させた。次に反応容器にスチレン59mLを添加し、さらに60分間反応を続けた後、大量のメタノールを添加して反応を停止させた。反応溶液から溶剤などを除去した後に、重合体をトルエンに溶解して2回水洗した。このトルエン溶液をメタノール混合物に加えて重合体を沈殿させ、得られた重合体を60℃で24時間乾燥することによりスチレン-イソブチレンジブロック共重合体を得た。
(SIB)
In a 2 L reaction vessel equipped with a stirrer, 589 mL of methylcyclohexane (dried with molecular sieves), 613 ml of n-butyl chloride (dried with molecular sieves), and 0.550 g of cumyl chloride were added. The reaction vessel was cooled to −70 ° C., and then 0.35 mL of α-picoline (2-methylpyridine) and 179 mL of isobutylene were added. Further, 9.4 mL of titanium tetrachloride was added to initiate polymerization, and the solution was reacted at -70 ° C. for 2.0 hours with stirring. Next, 59 mL of styrene was added to the reaction vessel and the reaction was continued for further 60 minutes, and then the reaction was stopped by adding a large amount of methanol. After removing the solvent and the like from the reaction solution, the polymer was dissolved in toluene and washed twice with water. The toluene solution was added to a methanol mixture to precipitate a polymer, and the obtained polymer was dried at 60 ° C. for 24 hours to obtain a styrene-isobutylene diblock copolymer.
 スチレン成分含有量:15質量%
 重量平均分子量:70,000
 (SIBS)
 カネカ(株)社製の「シブスターSIBSTAR 102(ショアA硬度25、スチレン成分含有量25質量%、重量平均分子量:100,000)」を用いた。
Styrene component content: 15% by mass
Weight average molecular weight: 70,000
(SIBS)
“Sibustar SIBSTAR 102 (Shore A hardness 25; styrene component content 25 mass%, weight average molecular weight: 100,000)” manufactured by Kaneka Co., Ltd. was used.
 (粘着付与剤)
 粘着付与剤A:荒川化学工業(株)社製の「アルコンP140(C9石油樹脂、軟化点140℃、重量平均分子量900)」を用いた。
(Tackifier)
Tackifier A: "Arcon P 140 (C9 petroleum resin, softening point 140 ° C., weight average molecular weight 900)" manufactured by Arakawa Chemical Industries, Ltd. was used.
 粘着付与剤B:ヤスハラケミカル(株)社製の「YSレジンPX1250(テルペン樹脂、軟化点125℃、重量平均分子量700)」を用いた。 Tackifier B: “YS resin PX1250 (terpene resin, softening point 125 ° C., weight average molecular weight 700)” manufactured by Yasuhara Chemical Co., Ltd. was used.
 粘着付与剤C:荒川化学工業(株)社製の「スーパーエステルA125(水添ロジンエステル、軟化点125℃、重量平均分子量700)」を用いた。 Tackifier C: "Superester A 125 (hydrogenated rosin ester, softening point 125 ° C., weight average molecular weight 700)" manufactured by Arakawa Chemical Industries, Ltd. was used.
 上記の第1層および第2層の原料のそれぞれを、2軸押出機(スクリュ径:φ50mm、L/D:30、シリンダ温度:220℃)にてペレット化した。得られたペレットを、Tダイ押出機(スクリュ径:φ80mm、L/D:50、ダイグリップ幅:500mm、シリンダ温度:220℃)を用いて共押出しを行い、表4~表8に示す厚さの第1層および第2層を有するポリマー積層体を作製した。 Each of the raw material of said 1st layer and 2nd layer was pelletized with the twin-screw extruder (screw diameter: (phi) 50 mm, L / D: 30, cylinder temperature: 220 degreeC). The obtained pellets were co-extruded using a T-die extruder (screw diameter: φ80 mm, L / D: 50, die grip width: 500 mm, cylinder temperature: 220 ° C.), and the thicknesses shown in Tables 4 to 8 A polymer laminate having a first layer and a second layer was prepared.
 <空気入りタイヤの作製>
 インナーライナーのショルダー位置Peの厚さGeとクラウン中心位置Pcの厚さGcとを調整するために、ポリマーシートの押し出し口にプロファイルをつけて、クラウン中心位置Pcの厚さGcを薄くしたポリマー積層体を作製した。得られたポリマー積層体をタイヤのインナーライナー部分に適用して生タイヤを準備した。これをインナーライナーとしてタイヤ内面に配置した。なお、ポリマー積層体の第1層が生タイヤの半径方向の最も内側に配置され、第2層が生タイヤのカーカス層に接するように、ポリマー積層体を配置した。該生タイヤを金型内で170℃で20分間プレス成形して、195/65R15サイズの加硫タイヤを作製した。
<Production of pneumatic tire>
In order to adjust the thickness Ge of the shoulder position Pe of the inner liner and the thickness Gc of the crown center position Pc, a profile is attached to the extrusion port of the polymer sheet to reduce the thickness Gc of the crown center position Pc. The body was made. The obtained polymer laminate was applied to the inner liner portion of the tire to prepare a green tire. This was disposed on the inner surface of the tire as an inner liner. The polymer laminate was disposed such that the first layer of the polymer laminate was disposed on the innermost side in the radial direction of the green tire, and the second layer was in contact with the carcass layer of the green tire. The green tire was press molded in a mold at 170 ° C. for 20 minutes to produce a 195 / 65R15 size vulcanized tire.
 加硫タイヤを100℃で3分間冷却した後、加硫タイヤを金型から取り出し空気入りタイヤを得た。 After the vulcanized tire was cooled at 100 ° C. for 3 minutes, the vulcanized tire was removed from the mold to obtain a pneumatic tire.
 ポリマー積層体および空気入りタイヤについて以下の評価を行った。
 [実施例2-1~2-21、比較例2-1~2-49]
 <加硫接着力>
 JIS K 6256「加硫ゴム及び熱可塑性ゴム-接着性の求め方」に準じて剥離試験を行った。はじめに、ポリマー積層体およびゴムシート(配合:NR/BR/SBR=40/30/30)を、ポリマー積層体の第2層がゴムシートと接するように貼り合わせて加硫して、剥離用試験片を作製した。得られた試験片を用いて剥離試験を行い、ポリマー積層体とゴムシートの接着力を測定した。試験片の大きさは25mm幅で、23℃の室温条件下で行った。得られた数値を比較例2-1を基準(100)として以下の計算式により加硫接着力指数を算出した。数値が大きいほど接着性に優れている。
The following evaluations were performed on the polymer laminate and the pneumatic tire.
[Examples 2-1 to 2-21, Comparative Examples 2-1 to 2-49]
<Vulcanization adhesive strength>
A peeling test was conducted according to JIS K 6256 "Vulcanized rubber and thermoplastic rubber-How to determine adhesion". At first, the polymer laminate and the rubber sheet (compounding: NR / BR / SBR = 40/30/30) are bonded and vulcanized so that the second layer of the polymer laminate is in contact with the rubber sheet, and the peeling test A piece was made. The peeling test was done using the obtained test piece, and the adhesive force of the polymer laminated body and the rubber sheet was measured. The size of the test piece was 25 mm wide, and was performed under a room temperature condition of 23 ° C. The vulcanized adhesion index was calculated by the following formula using the obtained numerical value as a reference (100) for Comparative Example 2-1. The larger the value, the better the adhesion.
 (加硫接着力指数)=(各ポリマー積層体の接着力)/(比較例2-1の接着力)×100
 <転がり抵抗>
 転がり抵抗は、粘弾性スペクトロメーターVES((株)岩本製作所)を用いて、温度70℃、初期歪10%、動歪2%の条件下で各ポリマー積層体のtanδを測定し、比較例2-1のtanδを100として、下記計算式により指数表示した。指数が大きいほど転がり抵抗が低減されている。
(Vulcanized adhesion index) = (adhesive strength of each polymer laminate) / (adhesive strength of comparative example 2-1) × 100
<Rolling resistance>
For rolling resistance, tan δ of each polymer laminate is measured under the conditions of a temperature of 70 ° C., an initial strain of 10%, and a dynamic strain of 2% using a visco-elastic spectrometer VES (manufactured by Iwamoto Seisakusho Co., Ltd.). Assuming that tan δ of -1 is 100, the index is displayed according to the following formula. The larger the index, the lower the rolling resistance.
 (転がり抵抗指数)=(比較例2-1のtanδ)/(各ポリマー積層体のtanδ)×100
 <屈曲亀裂成長性>
 屈曲亀裂成長は、インナーライナーが割れたり剥がれたりするかどうかで評価した。試作タイヤをJIS規格リム15×6JJに組み付け、タイヤ内圧は150KPaで通常よりも低内圧に設定し、荷重は600kg、速度100km/h、走行距離20,000kmでタイヤの内部を観察し、亀裂、剥離の数を測定した。比較例2-1を基準として、各配合の亀裂成長性を指数で表示した。指数の値が大きいほど、屈曲亀裂成長が小さいことを示す。
(Rolling resistance index) = (tan δ of Comparative Example 2-1) / (tan δ of each polymer laminate) × 100
<Bending crack growth property>
Flexural crack growth was evaluated by whether the inner liner was broken or peeled off. The prototype tire is assembled on a JIS standard rim 15 x 6 JJ, the internal pressure of the tire is set to 150 KPa lower than usual, the load is 600 kg, the speed is 100 km / h, the inside of the tire is observed with a traveling distance of 20,000 km, The number of peels was measured. Based on Comparative Example 2-1, the crack growth of each composition was indicated by an index. The larger the index value, the smaller the flex crack growth is.
 (屈曲亀裂成長指数)=(比較例2-1の亀裂の数)/(各タイヤの亀裂の数)×100
 <静的空気圧低下率>
 195/65R15スチールラジアルPCタイヤをJIS規格リム15×6JJに組み付け、初期空気圧300KPaを封入し、90日間室温で放置し、空気圧の低下率を計算する。比較例2-1を基準として、各配合の静的空気圧低下率を指数で表示した。指数の値が大きいほど、空気圧低下率は低く良好である。
(Bending crack growth index) = (the number of cracks in Comparative Example 2-1) / (the number of cracks in each tire) × 100
<Static air pressure reduction rate>
A 195 / 65R15 steel radial PC tire is assembled on a JIS standard rim 15 × 6JJ, sealed with an initial air pressure of 300 KPa, left at room temperature for 90 days, and the reduction rate of the air pressure is calculated. Based on Comparative Example 2-1, the static air pressure drop rate of each composition was indicated as an index. The higher the value of the index, the lower the air pressure reduction rate and the better.
 (静的空気圧低下率指数)=(比較例2-1の静的空気圧低下率)/(各タイヤの静的空気圧低下率)×100
 <エアインの有無>
 加硫後のタイヤの内側を目視にて検査し、以下の基準に従って評価した。
(Static air pressure drop rate index) = (Static air pressure drop rate of Comparative Example 2-1) / (Static air pressure drop rate of each tire) × 100
<With or without air in>
The inside of the vulcanized tire was visually inspected and evaluated according to the following criteria.
 A:エアインの数が0個。
 B:直径5mm以下のエアインの数が1~3個。
A: The number of air-ins is zero.
B: The number of air-ins having a diameter of 5 mm or less is 1 to 3.
 C:直径5mm以下のエアインの数が4個以上、または直径5mmを超えるエアーインの数が1個以上。 C: The number of air-ins having a diameter of 5 mm or less is 4 or more, or the number of air-ins having a diameter of 5 mm or more is 1 or more.
 [実施例2-22,2-23、比較例2-50~2-52]
 実施例2-22,2-23、比較例2-50~2-52については、比較例2-50を基準として、上記の項目の評価を行った。
[Examples 2-22 and 2-23, Comparative Examples 2-50 to 2-52]
The above items were evaluated based on Comparative Example 2-50 in Examples 2-22 and 2-23, and Comparative Examples 2-50 to 2-52.
 結果を表4~表8に示す。 The results are shown in Tables 4-8.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 (*1)偏肉範囲(CL(%)/SW(%))とは以下を示している。
 CL(%)=肉厚部のショルダー位置Peからクラウン中心位置Pc側への距離/ショルダー距離Wc×100
 SW(%)=肉厚部のショルダー位置Peから最大幅位置Ps側への距離/サイド距離Ws×100
 <評価結果>
 比較例2-1は、SIBSからなる第1層およびSIBからなる第2層を有するポリマー積層体および空気入りタイヤであり、基準として用いた。
(* 1) The uneven thickness range (CL (%) / SW (%)) indicates the following.
CL (%) = the distance from the shoulder position Pe of the thick portion to the crown center position Pc side / shoulder distance Wc × 100
SW (%) = the distance from the shoulder position Pe of the thick portion to the maximum width position Ps side / side distance Ws × 100
<Evaluation result>
Comparative Example 2-1 is a polymer laminate having a first layer made of SIBS and a second layer made of SIB, and a pneumatic tire, which was used as a reference.
 実施例2-1~2-21は、第1層または第2層が、粘着付与剤を20質量部含むポリマー積層体および空気入りタイヤである。いずれも、比較例2-1と同等の転がり抵抗を維持したまま、加硫接着力、耐屈曲亀裂成長性、耐空気透過性が向上し、エアインが生じなかった。 Examples 2-1 to 2-21 are a polymer laminate and a pneumatic tire in which the first layer or the second layer contains 20 parts by mass of a tackifier. In all cases, while maintaining the rolling resistance equivalent to that of Comparative Example 2-1, the vulcanization adhesion, the resistance to flex crack growth, the air permeability, and the air-in did not occur.
 比較例2-50は、SIBSからなる厚さ8mmの第1層、およびSIB、SIBS、粘着付与剤を含む厚さ8mmの第2層を有するポリマー積層体であり、基準として用いた。 Comparative Example 2-50 is a polymer laminate having a first layer of 8 mm in thickness made of SIBS, and a second layer of 8 mm in thickness containing SIB, SIBS, and a tackifier, and was used as a reference.
 実施例2-22、2-23は、第1層および第2層の厚みがそれぞれ0.05mmのポリマー積層体および空気入りタイヤである。比較例2-50より加硫接着力および耐空気透過性が向上し、エアインの発生も抑制できた。 Examples 2-22 and 2-23 are a polymer laminate and a pneumatic tire in which the thickness of the first layer and the second layer is 0.05 mm, respectively. As compared with Comparative Example 2-50, the vulcanized adhesive strength and the air permeation resistance were improved, and the generation of air-in could be suppressed.
<ポリマー成分の準備>
 第1層および第2層に用いるポリマー成分を以下のとおり準備した。
<イソブチレン系変性共重合体>
(成分A-1)
 成分A-1:(スチレン/β-ピネン)-イソブチレン-(スチレン/β-ピネン)ブロック共重合体(β-ピネン含量:9.7質量%、数平均分子量(Mn):103,000)。
<Preparation of polymer component>
The polymer components used for the first and second layers were prepared as follows.
<Isobutylene-based modified copolymer>
(Component A-1)
Component A-1: (styrene / β-pinene) -isobutylene- (styrene / β-pinene) block copolymer (β-pinene content: 9.7% by mass, number average molecular weight (Mn): 103,000).
 成分A-1の製造方法は、以下のとおりである。
 2Lのセパラブルフラスコの容器内を窒素で置換した後、注射器を用いて、モレキュラーシーブスで乾燥した、n-ヘキサン31.0mL及び同様に乾燥した塩化ブチル294.6mLを加え、重合容器を-70℃のドライアイスとメタノールの混合バス中につけて冷却した後、イソブチレンモノマー88.9mL(941.6mmol)が入っている三方コック付耐圧ガラス製液化採取管にテフロン(登録商標)製の送液チューブを接続し、重合容器内にイソブチレンモノマーを窒素圧により送液した。p-ジクミルクロライド0.148g(0.6mmol)及びα-ピコリン0.07g(0.8mmol)を加えた。さらに四塩化チタン0.87mL(7.9mmol)を加えて重合を開始した。重合開始から1.5時間に、同様な温度で撹拌を行った後、重合溶液から重合溶液の1mLをサンプルとして抜き取った。そして-70℃に冷却しておいたスチレンモノマー10.4g(99.4mmol)とβ-ピネン6.8g(49.7mmol)を均一に攪拌した後、重合容器内に添加した。スチレンとβ-ピネンを添加して45分後に約40mLのメタノールを加えて反応を終了させた。反応溶液から溶剤等を留去した後、トルエンに溶解し2回水洗を行った。そしてトルエン溶液を多量のメタノールに加えて重合体を沈殿させ、得られた生成物を60℃で24時間真空乾燥した。GPC法により得られたブロック共重合体の分子量を測定した。数平均分子量(Mn)は103,000、Mw/Mnは1.21である。
(成分A-2)
 成分A-2:(スチレン/β-ピネン)-イソブチレン-(スチレン/β-ピネン)ブロック共重合体(β-ピネン含量:5.3質量%、数平均分子量:107,000)。
The production method of component A-1 is as follows.
After replacing the inside of a 2 L separable flask with nitrogen, add 31.0 mL of n-hexane and 294.6 mL of similarly dried butyl chloride, which were dried with molecular sieves using a syringe, After being placed in a mixed bath of dry ice and methanol at 0 ° C and cooled, the pressure tube made of Teflon (registered trademark) is transferred to a pressure collecting glass made of pressure glass with 88.9 mL (941.6 mmol) of isobutylene monomer. Were connected, and the isobutylene monomer was fed into the polymerization vessel by nitrogen pressure. 0.148 g (0.6 mmol) of p-dicumyl chloride and 0.07 g (0.8 mmol) of α-picoline were added. Further, 0.87 mL (7.9 mmol) of titanium tetrachloride was added to initiate polymerization. Stirring was performed at the same temperature for 1.5 hours from the start of polymerization, and then 1 mL of the polymerization solution was withdrawn as a sample from the polymerization solution. Then, 10.4 g (99.4 mmol) of styrene monomer and 6.8 g (49.7 mmol) of β-pinene which had been cooled to -70 ° C. were uniformly stirred and then added to the polymerization vessel. After 45 minutes of addition of styrene and β-pinene, about 40 mL of methanol was added to complete the reaction. After evaporating the solvent and the like from the reaction solution, it was dissolved in toluene and washed twice with water. The toluene solution was then added to a large amount of methanol to precipitate the polymer, and the resulting product was vacuum dried at 60 ° C. for 24 hours. The molecular weight of the block copolymer obtained by the GPC method was measured. The number average molecular weight (Mn) is 103,000, and Mw / Mn is 1.21.
(Component A-2)
Component A-2: (styrene / β-pinene) -isobutylene- (styrene / β-pinene) block copolymer (β-pinene content: 5.3% by mass, number average molecular weight: 107,000).
 成分A-2の製造方法は以下のとおりである。
 2Lのセパラブルフラスコの容器内を窒素で置換した後、注射器を用いてモレキュラーシーブスで乾燥した、n-ヘキサン31.0mL及び同様に乾燥した塩化ブチル294.6mLを加え、重合容器を-70℃のドライアイスとメタノールの混合バス中につけて冷却した後、イソブチレンモノマー88.9mL(941.6mmol)が入っている三方コック付耐圧ガラス製液化採取管にテフロン(登録商標)製の送液チューブを接続し、重合容器内にイソブチレンモノマーを窒素圧により送液した。p-ジクミルクロライド0.148g(0.6mmol)及びα-ピコリン0.07g(0.8mmol)を加えた。
The production method of component A-2 is as follows.
After replacing the inside of a 2 L separable flask with nitrogen, 31.0 mL of n-hexane and 294.6 mL of similarly dried butyl chloride, which were dried with molecular sieves using a syringe, were added, and the polymerization container was heated to -70 ° C. The mixture was placed in a mixed bath of dry ice and methanol and cooled, and a Teflon (registered trademark) liquid transfer tube was placed in a pressure glass liquefaction sampling tube with a three-way cock containing 88.9 mL (941.6 mmol) of isobutylene monomer. It connected and the isobutylene monomer was sent by nitrogen pressure in the polymerization container. 0.148 g (0.6 mmol) of p-dicumyl chloride and 0.07 g (0.8 mmol) of α-picoline were added.
 次に四塩化チタン0.87mL(7.9mmol)を加えて重合を開始した。重合開始から1.5時間同じ温度で撹拌を行った後、重合溶液から重合溶液1mLをサンプルとして抜き取った。そして-70℃に冷却したスチレンモノマー10.4g(99.4mmol)とβ-ピネン3.6g(26.3mmol)を均一に攪拌したあと、重合容器内に添加した。スチレンとβ-ピネン添加45分後に約40mLのメタノールを加えて反応を終了させた。反応溶液から溶剤等を留去した後、トルエンに溶解し2回水洗を行った。さらにトルエン溶液を多量のメタノールに加えて重合体を沈殿させ、得られた重合体を60℃で24時間真空乾燥した。GPC法により得られたブロック重合体の分子量を測定した。ブロック共重合体の数平均分子量(Mn)が107,000、Mw/Mnが1.23である。
(成分A-3)
 成分A-3:スチレン-(イソブチレン/β-ピネン)-スチレンブロック共重合体(β-ピネン含量5.3質量%、数平均分子量109,000)。
Next, 0.87 mL (7.9 mmol) of titanium tetrachloride was added to initiate polymerization. After stirring at the same temperature for 1.5 hours from the start of polymerization, 1 mL of the polymerization solution was withdrawn as a sample from the polymerization solution. Then, 10.4 g (99.4 mmol) of styrene monomer and 3.6 g (26.3 mmol) of β-pinene cooled to -70 ° C. were uniformly stirred and then added to the polymerization vessel. After 45 minutes of addition of styrene and β-pinene, about 40 mL of methanol was added to complete the reaction. After evaporating the solvent and the like from the reaction solution, it was dissolved in toluene and washed twice with water. Further, the toluene solution was added to a large amount of methanol to precipitate a polymer, and the obtained polymer was vacuum dried at 60 ° C. for 24 hours. The molecular weight of the block polymer obtained by the GPC method was measured. The block copolymer has a number average molecular weight (Mn) of 107,000 and Mw / Mn of 1.23.
(Component A-3)
Component A-3: Styrene- (isobutylene / β-pinene) -styrene block copolymer (β-pinene content 5.3% by mass, number average molecular weight 109,000).
 成分A-3の製造方法は、以下のとおりである。
 2Lのセパラブルフラスコの重合容器内を窒素で置換した後、注射器を用いて、モレキュラーシーブスで乾燥した、n-ヘキサン31.0mL及びモレキュラーシーブスで乾燥した塩化ブチル294.6mLを加え、重合容器を-70℃のドライアイスとメタノール混合バス中につけて冷却した後、β-ピネン3.6g(26.3mmol)を添加した。
The production method of component A-3 is as follows.
After replacing the inside of the polymerization vessel of a 2 L separable flask with nitrogen, add 31.0 mL of n-hexane and 294.6 mL of butyl chloride dried with molecular sieves, which are dried with molecular sieves using a syringe, After cooling in a mixed bath of dry ice and methanol at −70 ° C., 3.6 g (26.3 mmol) of β-pinene was added.
 次にイソブチレンモノマー88.9mL(941.6mmol)が入っている三方コック付耐圧ガラス製液化採取管にテフロン(登録商標)製の送液チューブを接続し、重合容器内にイソブチレンモノマーを窒素圧により送液した。さらにp-ジクミルクロライド0.148g(0.6mmol)及びα-ピコリン0.07g(0.8mmol)を加えた。次にさらに四塩化チタン0.87mL(7.9mmol)を加えて重合を開始した。重合開始から45分後、そして-70℃に冷却したスチレンモノマー10.4g(99.4mmol)を重合容器内に添加した。スチレンを添加してから45分後に約40mLのメタノールを加えて反応を終了させた。反応溶液から溶剤等を留去した後、トルエンに溶解し2回水洗を行った。さらにトルエン溶液を多量のメタノールに加えて重合体を沈殿させ、得られた重合体を60℃で24時間真空乾燥した。GPC法により得られたブロック共重合体の分子量を測定した。ブロック共重合体の数平均分子量(Mn)は109,000、Mw/Mnは1.21である。
<SIB>
 攪拌機付き2L反応容器に、メチルシクロヘキサン(モレキュラーシーブスで乾燥したもの)589mL、n-ブチルクロライド(モレキュラーシーブスで乾燥したもの)613ml、クミルクロライド0.550gを加えた。反応容器を-70℃に冷却した後、α-ピコリン(2-メチルピリジン)0.35mL、イソブチレン179mLを添加した。さらに四塩化チタン9.4mLを加えて重合を開始し、-70℃で溶液を攪拌しながら2.0時間反応させた。次に反応容器にスチレン59mLを添加し、さらに60分間反応を続けた後、大量のメタノールを添加して反応を停止させた。反応溶液から溶剤などを除去した後に、重合体をトルエンに溶解して2回水洗した。このトルエン溶液をメタノール混合物に加えて重合体を沈殿させ、得られた重合体を60℃で24時間乾燥することによりスチレン-イソブチレンジブロック共重合体を得た(スチレン成分含有量:15質量%、重量平均分子量:70,000)。
<SIBS>
 カネカ(株)社製の「シブスターSIBSTAR 102T(スチレン-イソブチレン-スチレンブロック共重合体、ショアA硬度25、スチレン成分含有量25質量%、重量平均分子量:100,000)」を用いた。
<インナーライナーの作製>
 表9~16に示す配合処方にしたがってポリマー成分を準備し、さらに以下の配合剤を添加して、バンバリーミキサー、ニーダー、2軸押出機(スクリュ径:φ50mm、L/D:30、シリンダ温度:220℃)にてブレンドして、ポリマー組成物を得た。その後、Tダイ押出機(スクリュ径:φ80mm、L/D:50、ダイリップ幅:500mm、シリンダ温度:220℃)にて第1層および第2層のポリマーシートを作製した後、貼り合わせてインナーライナーを作製した。なお、第1層および第2層のポリマーシートの厚みは平均厚みを示す。
(第1層の配合剤および配合量)
 配合量は、SIBSおよびイソブチレン系変性共重合体の合計100質量部に対する量として記載する。
Next, connect a Teflon (registered trademark) liquid transfer tube to a pressure glass liquefied sampling tube with three-way cock containing 88.9 mL (941.6 mmol) of isobutylene monomer, and press the isobutylene monomer in the polymerization container with nitrogen pressure It was sent. Further, 0.148 g (0.6 mmol) of p-dicumyl chloride and 0.07 g (0.8 mmol) of α-picoline were added. Next, 0.87 mL (7.9 mmol) of titanium tetrachloride was further added to initiate polymerization. After 45 minutes from the start of polymerization, 10.4 g (99.4 mmol) of styrene monomer cooled to -70.degree. C. were added into the polymerization vessel. The reaction was terminated 45 minutes after the addition of styrene by adding about 40 mL of methanol. After evaporating the solvent and the like from the reaction solution, it was dissolved in toluene and washed twice with water. Further, the toluene solution was added to a large amount of methanol to precipitate a polymer, and the obtained polymer was vacuum dried at 60 ° C. for 24 hours. The molecular weight of the block copolymer obtained by the GPC method was measured. The number average molecular weight (Mn) of the block copolymer is 109,000, and Mw / Mn is 1.21.
<SIB>
In a 2 L reaction vessel equipped with a stirrer, 589 mL of methylcyclohexane (dried with molecular sieves), 613 ml of n-butyl chloride (dried with molecular sieves), and 0.550 g of cumyl chloride were added. The reaction vessel was cooled to −70 ° C., and then 0.35 mL of α-picoline (2-methylpyridine) and 179 mL of isobutylene were added. Further, 9.4 mL of titanium tetrachloride was added to initiate polymerization, and the solution was reacted at -70 ° C. for 2.0 hours with stirring. Next, 59 mL of styrene was added to the reaction vessel and the reaction was continued for further 60 minutes, and then the reaction was stopped by adding a large amount of methanol. After removing the solvent and the like from the reaction solution, the polymer was dissolved in toluene and washed twice with water. The toluene solution was added to a methanol mixture to precipitate a polymer, and the obtained polymer was dried at 60 ° C. for 24 hours to obtain a styrene-isobutylene diblock copolymer (styrene component content: 15% by mass) , Weight average molecular weight: 70,000).
<SIBS>
“Sibustar SIBSTAR 102T (styrene-isobutylene-styrene block copolymer, Shore A hardness: 25, content of styrene component: 25% by mass, weight average molecular weight: 100,000)” manufactured by Kaneka Co., Ltd. was used.
<Production of inner liner>
Prepare a polymer component according to the formulation shown in Tables 9 to 16, and add the following components, and then add a Banbury mixer, a kneader, a twin screw extruder (screw diameter: φ 50 mm, L / D: 30, cylinder temperature: Blending at 220 ° C.) gave a polymer composition. Then, after producing the polymer sheet of the 1st layer and the 2nd layer with T die extrusion machine (screw diameter: φ 80 mm, L / D: 50, die lip width: 500 mm, cylinder temperature: 220 ° C), they are pasted together and inner A liner was made. In addition, the thickness of the polymer sheet of a 1st layer and a 2nd layer shows average thickness.
(Compounding agent and amount of 1st layer)
The compounding amount is described as an amount based on 100 parts by weight in total of SIBS and the isobutylene-based modified copolymer.
 IIR(エクソンモービル(株)社製「エクソンクロロブチル1068」):70質量部
 カーボンブラック(東海カーボン(株)社製「シーストV」):70質量部
 酸化亜鉛(三井金属鉱業(株)社製「亜鉛華1号」):5質量部
 ステアリン酸(花王(株)社製「ステアリン酸ルナックS30」):2質量部
 老化防止剤(大内新興化学社製「ノクラック6C」):0.2質量部
 加硫促進剤(大内新興化学社製「ノクセラーDM」):2.5質量部
 硫黄(鶴見化学工業(株)社製「粉末硫黄」):1質量部
 粘着防止剤(C9石油樹脂、荒川化学工業(株)社製「アルコンP140」、軟化点:140℃、重量平均分子量:900):5質量部
(第2層の配合剤および配合量)
 配合量は、SIBおよびSIBSの合計100質量部に対する量として記載する。
IIR ("Exxon Mobil Co., Ltd." Exxon chlorobutyl 1068 "): 70 parts by mass Carbon black (" Toast Carbon Co., Ltd. "" Seat V "): 70 parts by mass Zinc oxide (Mitsui Metal Mining Co., Ltd.) "Zinc flower No. 1": 5 parts by mass Stearic acid ("Rannac S30 Stearate" manufactured by Kao Corporation): 2 parts by mass Anti-aging agent ("NOCRAC 6C" manufactured by Ouchi Emerging Chemical Co., Ltd.): 0.2 Parts by mass Vulcanization accelerator ("Noxusella DM" manufactured by Ouchi Emerging Chemical Co., Ltd.): 2.5 parts by mass Sulfur ("powder sulfur" manufactured by Tsurumi Chemical Industry Co., Ltd.): 1 part by mass Antiblocking agent (C9 petroleum resin) Arakawa Chemical Industries, Ltd. "Alcon P 140", softening point: 140 ° C, weight average molecular weight: 900: 5 parts by mass (compounding agents and amounts of the second layer)
The compounding amount is described as an amount based on 100 parts by mass of SIB and SIBS in total.
 IIR(エクソンモービル(株)社製「エクソンクロロブチル1068」):70質量部
 カーボンブラック(東海カーボン(株)社製「シーストV」):50質量部
 酸化亜鉛(三井金属鉱業(株)社製「亜鉛華1号」):5質量部
 ステアリン酸(花王(株)社製「ステアリン酸ルナックS30」):2質量部
 老化防止剤(大内新興化学社製「ノクラック6C」):0.2質量部
 加硫促進剤(大内新興化学社製「ノクセラーDM」):1質量部
 硫黄(鶴見化学工業(株)社製「粉末硫黄」):1質量部
 粘着防止剤(C9石油樹脂、荒川化学工業(株)社製「アルコンP140」、軟化点:140℃、重量平均分子量:900):5質量部
<タイヤの作製>
 インナーライナーを、タイヤのインナーライナー部分に適用して生タイヤを作製し、170℃で20分間プレス成形し、その後、100℃で3分間急冷して、195/65R15サイズのタイヤを作製した。
[評価試験]
 各配合について、インナーライナーの加硫接着力、転がり抵抗および空気入りタイヤの屈曲亀裂成長性、静的空気圧低下率、エアインの有無について試験を行った。なお、実施例3-1~3-24、比較例3-1~3-47は比較例3-1を基準とし、実施例3-25、3-26、比較例3-48~3-50は比較例3-48を基準として評価した。各試験の詳細を以下に示す。
<加硫接着力>
 JIS-K-6256「加硫ゴム及び熱可塑性ゴムの接着性の求め方」に準じて、試験を行った。具体的には、インナーライナーとゴムシートを貼り合わせ170℃で20分間加硫する。加硫後に貼り合わせ界面で接着力を測定した。結果は指数で表示し、数値が高いほど接着力が大きく良好である。
加硫接着力(指数)=(各配合の加硫接着力)/(比較例3-1または比較例3-48の加硫接着力)×100
 なお、ゴムシートの配合は以下のとおりである。
IIR ("Exxon Mobil Co., Ltd." Exxon chlorobutyl 1068 "): 70 parts by mass Carbon black (" Toast Carbon Co., Ltd. "" Seast V "): 50 parts by mass Zinc oxide (Mitsui Metal Mining Co., Ltd.) "Zinc flower No. 1": 5 parts by mass Stearic acid ("Rannac S30 Stearate" manufactured by Kao Corporation): 2 parts by mass Anti-aging agent ("NOCRAC 6C" manufactured by Ouchi Emerging Chemical Co., Ltd.): 0.2 Parts by mass Vulcanization accelerator ("Noxusella DM" manufactured by Ouchi Emerging Chemical Co., Ltd.): 1 part by mass Sulfur ("powder sulfur" manufactured by Tsurumi Chemical Industry Co., Ltd.): 1 part by mass Antiblocking agent (C9 petroleum resin, Arakawa Chemical Industry Co., Ltd. "Alcon P140", softening point: 140 ° C, weight average molecular weight: 900): 5 parts by mass <Preparation of tire>
The inner liner was applied to the inner liner portion of the tire to produce a green tire, which was press molded at 170 ° C. for 20 minutes and then quenched at 100 ° C. for 3 minutes to produce a 195 / 65R15 size tire.
[Evaluation test]
Each composition was tested for vulcanization adhesion of the inner liner, rolling resistance, flex crack growth of the pneumatic tire, static air pressure reduction rate, and presence of air-in. Examples 3-1 to 3-24 and Comparative Examples 3-1 to 3-47 are based on Comparative Example 3-1, and Examples 3-25 and 3-26, and Comparative Examples 3-48 to 3-50. Was evaluated based on Comparative Example 3-48. Details of each test are shown below.
<Vulcanization adhesive strength>
Tests were conducted in accordance with JIS-K-6256 “How to Determine Adhesion of Vulcanized Rubber and Thermoplastic Rubber”. Specifically, the inner liner and the rubber sheet are laminated and vulcanized at 170 ° C. for 20 minutes. The adhesion was measured at the bonding interface after vulcanization. The results are expressed as an index, and the higher the value, the greater the adhesion and the better.
Vulcanizing adhesive strength (index) = (vulcanizing adhesive strength of each composition) / (vulcanizing adhesive strength of Comparative Example 3-1 or Comparative Example 3-48) × 100
The composition of the rubber sheet is as follows.
  天然ゴム(注1)        100質量部
  カーボンブラック(注2)     50質量部
  亜鉛華(注3)           3質量部
  老化防止剤(注4)       0.2質量部
  硫黄(注5)            1質量部
  加硫促進剤(注6)         1質量部
  加硫助剤 (注7)         1質量部
 (注1)TSR20
 (注2)東海カーボン(株)社製「シーストV」(N660、N2SA:27m2/g)
 (注3)酸化亜鉛(ZnO):三井金属鉱業(株)社製「亜鉛華1号」
 (注4)大内新興化学社製「ノクラック6C」
 (注5)鶴見化学工業(株)社製「粉末硫黄」
 (注6)大内新興化学社製「ノクセラーDM」
 (注7)ステアリン酸:花王(株)社製、「ステアリン酸ルナックS30」
<転がり抵抗>
 粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度70℃、初期歪み10%、動歪み2%の条件下で各配合のtanδを測定し、比較例3-1または比較例3-48のtanδを100として、下記計算式により指数表示した。指数が大きいほど転がりが低減されている。
転がり抵抗(指数)=(比較例3-1または比較例3-48のtanδ)/(各配合のtanδ)×100
<屈曲亀裂成長性>
 屈曲亀裂成長性は、インナーライナーが割れたり剥がれたりするかどうかで評価した。試作タイヤをJIS規格リム15×6JJに組み付け、タイヤ内圧は150KPaで通常よりも低内圧に設定し、荷重は600kg、速度100km/h、走行距離20,000kmでタイヤの内部を観察し、亀裂、剥離の数を測定した。比較例3-1または比較例3-48を基準として、各配合の亀裂成長性を指数で表示した。指数の値が大きいほど、屈曲亀裂成長が小さいことを示す。
屈曲亀裂成長性(指数)=(比較例3-1または比較例3-48の亀裂の数)/(各配合の亀裂の数)×100
<静的空気圧低下率>
 195/65R15スチールラジアルPCタイヤをJIS規格リム15×6JJに組み付け、初期空気圧300KPaを封入し、90日間室温で放置し、空気圧の低下率を計算した。結果は指数で表示し、数値が大きいほど空気圧低下率は低く良好である。
静的空気圧低下率(指数)=(比較例3-1または比較例3-48の静的空気圧低下率)/(各配合の静的空気圧低下率)×100
<エアインの有無>
 加硫後のタイヤの内側を検査し、外観上エアインはタイヤ1本あたり0個をA、1個以上3個以下をB、4個以上をCとした。なお、エアインの大きさは直径5mm以下とし、直径5mmを超えるエアインがある場合は、エアインの数が1個でもCとした。
Natural rubber (Note 1) 100 parts by mass Carbon black (Note 2) 50 parts by mass Zinc white (Note 3) 3 parts by mass Antidegradant (Note 4) 0.2 parts by mass Sulfur (Note 5) 1 part by mass Vulcanization acceleration Agent (Note 6) 1 part by mass Vulcanization auxiliary (Note 7) 1 part by mass (Note 1) TSR 20
(Note 2) “Seast V” manufactured by Tokai Carbon Co., Ltd. (N 660, N 2 SA: 27 m 2 / g)
(Note 3) Zinc oxide (ZnO): "Zinc flower No. 1" manufactured by Mitsui Mining & Smelting Co., Ltd.
(Note 4) Nocchi 6C, made by Ouchi emerging chemical company
(Note 5) "Powder sulfur" manufactured by Tsurumi Chemical Industries, Ltd.
(Note 6) "Nocceller DM" manufactured by Ouchi Emerging Chemical Company
(Note 7) Stearic acid: Kao Corporation "Runac Stearate S30"
<Rolling resistance>
The tan δ of each formulation was measured under the conditions of a temperature of 70 ° C., an initial strain of 10%, and a dynamic strain of 2% using a viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho Co., Ltd.), and Comparative Example 3-1 or Comparative Example Assuming that tan δ of 3-48 is 100, index display is performed according to the following formula. As the index is larger, the rolling is reduced.
Rolling resistance (index) = (tan δ of Comparative Example 3-1 or Comparative Example 3-48) / (tan δ of each composition) × 100
<Bending crack growth property>
Flexural crack growth was evaluated by whether the inner liner was broken or peeled off. The prototype tire is assembled on a JIS standard rim 15 x 6 JJ, the internal pressure of the tire is set to 150 KPa lower than usual, the load is 600 kg, the speed is 100 km / h, the inside of the tire is observed with a traveling distance of 20,000 km, The number of peels was measured. Based on Comparative Example 3-1 or Comparative Example 3-48, the crack growth of each composition was indicated by an index. The larger the index value, the smaller the flex crack growth is.
Flexural crack growth (index) = (number of cracks in Comparative Example 3-1 or Comparative Example 3-48) / (number of cracks in each composition) × 100
<Static air pressure reduction rate>
A 195 / 65R15 steel radial PC tire was assembled on a JIS standard rim 15 × 6JJ, sealed with an initial air pressure of 300 KPa, left at room temperature for 90 days, and the decrease rate of the air pressure was calculated. The results are expressed as an index, and the higher the value, the lower the rate of decrease in air pressure and the better.
Static air pressure reduction rate (index) = (Static air pressure reduction rate of Comparative Example 3-1 or Comparative Example 3-48) / (Static air pressure reduction rate of each composition) × 100
<With or without air in>
The inside of the vulcanized tire was inspected, and in terms of appearance, the air-in was A for one tire, B for one or more and three or less, and C for four or more. The size of the air-in was 5 mm or less in diameter, and when there was air-in exceeding 5 mm in diameter, even one air-in was C.
 結果を表9~16に示す。 The results are shown in Tables 9-16.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表中、偏肉範囲(CL(%)/SW(%))とは以下を示している。
 CL(%)=肉厚部のショルダー位置Peからクラウン中心位置Pc側への距離/ショルダー距離Wc×100
 SW(%)=肉厚部のショルダー位置Peから最大幅位置Ps側への距離/サイド距離Ws×100
<評価結果>
 第1層のポリマー成分が成分A-1、A-2またはA-3(イソブチレン系変性共重合体)を0.5質量%以上25質量%含む実施例3-1~3-26は、加硫接着力、耐屈曲亀裂成長性、静的空気圧低下率に優れ、エアインも抑制されていることが分かった。さらに、第2層が同一配合であり、タイヤ構造も同一である実施例と比較例とを比べると、実施例は転がり抵抗が小さいことが分かった。
In the table, the uneven thickness range (CL (%) / SW (%)) indicates the following.
CL (%) = the distance from the shoulder position Pe of the thick portion to the crown center position Pc side / shoulder distance Wc × 100
SW (%) = the distance from the shoulder position Pe of the thick portion to the maximum width position Ps side / side distance Ws × 100
<Evaluation result>
Examples 3-1 to 3-26 in which the polymer component of the first layer contains 0.5% by mass or more and 25% by mass of the component A-1, A-2 or A-3 (isobutylene-based modified copolymer) are It was found that the vulcanized adhesion, the resistance to flex crack growth, the static air pressure reduction rate were excellent, and the air-in was also suppressed. Furthermore, when the second layer had the same composition and the tire structure was also the same, comparing the example with the comparative example, it was found that the example had a low rolling resistance.
 表17~表19に示す仕様で、比較例および実施例の空気入りタイヤを製造して、性能を評価した。ポリマー成分のSIBS、SIBS変性共重合体およびSIBは以下のとおり準備した。
[SIBS]
 カネカ(株)社製の「シブスターSIBSTAR 102T(ショアA硬度25、スチレン成分含有量15質量%、重量平均分子量:100,000)」を用いた。
[SIBS変性共重合体]
 2リットルのセパラブルフラスコにスチレン-イソブチレンブロック共重合体75g(スチレン含量30%、スチレンユニットのモル数0.216モル)を入れて、容器内を窒素で置換した。注射器を用いて、モレキュラーシーブスで乾燥したn-ヘキサン1200mL及びモレキュラーシーブスで乾燥したn-ブチルクロリド1800ミリリットルを加えた。
The pneumatic tires of the comparative example and the example were manufactured according to the specifications shown in Tables 17 to 19, and the performance was evaluated. The polymer components SIBS, SIBS modified copolymer and SIB were prepared as follows.
[SIBS]
"SHIBSTER SIBSTAR 102T (Shore A hardness 25, Styrene content: 15% by mass, weight average molecular weight: 100,000)" manufactured by Kaneka Co., Ltd. was used.
[SIBS modified copolymer]
In a 2 liter separable flask, 75 g of styrene-isobutylene block copolymer (styrene content: 30%, mole number of styrene unit: 0.216 mol) was placed, and the inside of the container was replaced with nitrogen. Using a syringe, 1200 mL of n-hexane dried with molecular sieves and 1800 mL of n-butyl chloride dried with molecular sieves were added.
 次に、シリンジを用いてメタクリル酸クロライド30g(0.291モル)を加えた。そして溶液を攪拌しながら三塩化アルミニウム39.4g(0.295モル)を加えて反応を開始した。30分の反応の後、反応溶液に約1000ミリリットルの水を加えて激しく攪拌し反応を終了させた。反応溶液を多量の水で数回水洗を行い、さらに大量のメタノールとアセトン混合溶媒(1:1)に徐々に滴下して反応生成物を沈殿させ、その後反応生成物を60℃で24時間真空乾燥して、SIBS変性共重合体(重量平均分子量:150,000、スチレン成分含有量:20質量%、酸塩化物:1.0重量%)を得た。
[SIB]
 攪拌機付き2L反応容器に、メチルシクロヘキサン(モレキュラーシーブスで乾燥したもの)589mL、n-ブチルクロライド(モレキュラーシーブスで乾燥したもの)613ml、クミルクロライド0.550gを加えた。反応容器を-70℃に冷却した後、α-ピコリン(2-メチルピリジン)0.35mL、イソブチレン179mLを添加した。さらに四塩化チタン9.4mLを加えて重合を開始し、-70℃で溶液を攪拌しながら2.0時間反応させた。次に反応容器にスチレン59mLを添加し、さらに60分間反応を続けた後、大量のメタノールを添加して反応を停止させた。反応溶液から溶剤などを除去した後に、重合体をトルエンに溶解して2回水洗した。このトルエン溶液をメタノール混合物に加えて重合体を沈殿させ、得られた重合体を60℃で24時間乾燥することによりスチレン-イソブチレンジブロック共重合体を得た(スチレン成分含有量:15質量%、重量平均分子量:70,000)。
<インナーライナーの作製>
 表17~19に示す配合処方にしたがってポリマー成分を準備し、さらに以下の配合剤を添加して、バンバリーミキサー、ニーダー、2軸押出機(スクリュ径:φ50mm、L/D:30、シリンダ温度:220℃)にてブレンドして、ポリマー組成物を得た。その後、Tダイ押出機(スクリュ径:φ80mm、L/D:50、ダイリップ幅:500mm、シリンダ温度:220℃)にて第1層および第2層のポリマーシートを作製した後、貼り合わせてインナーライナーを作製した。なお、第1層および第2層のポリマーシートの厚みは平均厚みを示す。
(第1層の配合剤および配合量)
 配合量は、SIBSおよびSIBS変性共重合体の合計100質量部に対する量として記載する。
Next, 30 g (0.291 mol) of methacrylic acid chloride was added using a syringe. The reaction was initiated by adding 39.4 g (0.295 mol) of aluminum trichloride while stirring the solution. After the reaction for 30 minutes, about 1000 ml of water was added to the reaction solution and the reaction was vigorously stirred to terminate the reaction. The reaction solution is washed with a large amount of water several times, and then gradually dropped into a large amount of methanol and acetone mixed solvent (1: 1) to precipitate a reaction product, and then the reaction product is vacuumed at 60 ° C. for 24 hours Drying gave a SIBS modified copolymer (weight average molecular weight: 150,000, styrene component content: 20% by mass, acid chloride: 1.0% by mass).
[SIB]
In a 2 L reaction vessel equipped with a stirrer, 589 mL of methylcyclohexane (dried with molecular sieves), 613 ml of n-butyl chloride (dried with molecular sieves), and 0.550 g of cumyl chloride were added. The reaction vessel was cooled to −70 ° C., and then 0.35 mL of α-picoline (2-methylpyridine) and 179 mL of isobutylene were added. Further, 9.4 mL of titanium tetrachloride was added to initiate polymerization, and the solution was reacted at -70 ° C. for 2.0 hours with stirring. Next, 59 mL of styrene was added to the reaction vessel and the reaction was continued for further 60 minutes, and then the reaction was stopped by adding a large amount of methanol. After removing the solvent and the like from the reaction solution, the polymer was dissolved in toluene and washed twice with water. The toluene solution was added to a methanol mixture to precipitate a polymer, and the obtained polymer was dried at 60 ° C. for 24 hours to obtain a styrene-isobutylene diblock copolymer (styrene component content: 15% by mass) , Weight average molecular weight: 70,000).
<Production of inner liner>
Prepare a polymer component according to the formulation shown in Tables 17-19, and add the following ingredients, and then add a Banbury mixer, kneader, twin-screw extruder (screw diameter: φ 50 mm, L / D: 30, cylinder temperature: Blending at 220 ° C.) gave a polymer composition. Then, after producing the polymer sheet of the 1st layer and the 2nd layer with T die extrusion machine (screw diameter: φ 80 mm, L / D: 50, die lip width: 500 mm, cylinder temperature: 220 ° C), they are pasted together and inner A liner was made. In addition, the thickness of the polymer sheet of a 1st layer and a 2nd layer shows average thickness.
(Compounding agent and amount of 1st layer)
The compounding amount is described as an amount based on a total of 100 parts by mass of SIBS and SIBS modified copolymer.
 カーボンブラック(東海カーボン(株)社製「シーストV」):70質量部
 酸化亜鉛(三井金属鉱業(株)社製「亜鉛華1号」):5質量部
 ステアリン酸(花王(株)社製「ステアリン酸ルナックS30」):2質量部
 老化防止剤(大内新興化学社製「ノクラック6C」):0.2質量部
 加硫促進剤(大内新興化学社製「ノクセラーDM」):2.5質量部
 硫黄(鶴見化学工業(株)社製「粉末硫黄」):1質量部
(第2層の配合剤および配合量)
 配合量は、SIBおよびSIBS変性共重合体の合計100質量部に対する量として記載する。
Carbon black ("Seat V" manufactured by Tokai Carbon Co., Ltd.): 70 parts by mass Zinc oxide ("Zinc flower No. 1" manufactured by Mitsui Mining & Smelting Co., Ltd.): 5 parts by mass Stearic acid (manufactured by Kao Corp.) "Stearate lunac S30": 2 parts by mass Antiaging agent ("NOCRAC 6C" manufactured by Ouchi Shinko Chemical Co., Ltd.): 0.2 parts by mass Vulcanization accelerator ("NOCSELER DM" manufactured by Ouchi Shinko Chemical Co., Ltd.): 2 .5 parts by mass Sulfur ("powdered sulfur" manufactured by Tsurumi Chemical Industry Co., Ltd.): 1 part by mass (compounding agents and amounts of the second layer)
The compounding amount is described as an amount based on a total of 100 parts by mass of the SIB and SIBS modified copolymer.
 カーボンブラック(東海カーボン(株)社製「シーストV」):50質量部
 酸化亜鉛(三井金属鉱業(株)社製「亜鉛華1号」):5質量部
 ステアリン酸(花王(株)社製「ステアリン酸ルナックS30」):2質量部
 老化防止剤(大内新興化学社製「ノクラック6C」):0.2質量部
 加硫促進剤(大内新興化学社製「ノクセラーDM」):1質量部
 硫黄(鶴見化学工業(株)社製「粉末硫黄」):1質量部
<タイヤの作製>
 インナーライナーを、タイヤのインナーライナー部分に適用して生タイヤを作製し、170℃で20分間プレス成形し、その後、100℃で3分間急冷して、195/65R15サイズのタイヤを作製した。
[評価試験]
 各配合について、インナーライナーの加硫接着力、転がり抵抗および空気入りタイヤの屈曲亀裂成長性、静的空気圧低下率、エアインの有無について試験を行った。
<加硫接着力>
 JIS-K-6256「加硫ゴム及び熱可塑性ゴムの接着性の求め方」に準じて、試験を行った。具体的には、インナーライナーとゴムシートを貼り合わせ170℃で20分間加硫する。加硫後に貼り合わせ界面で接着力を測定した。結果は指数で表示し、数値が高いほど接着力が大きく良好である。
加硫接着力(指数)=(各配合の加硫接着力)/(比較例4-1の加硫接着力)×100
 なお、ゴムシートの配合は以下のとおりである。
Carbon black ("Seast V" manufactured by Tokai Carbon Co., Ltd.): 50 parts by mass Zinc oxide ("Zinc flower No. 1" manufactured by Mitsui Mining & Smelting Co., Ltd.): 5 parts by mass Stearic acid (manufactured by Kao Corporation) "Stearate lunac S30": 2 parts by mass Antiaging agent ("NOCRAC 6C" manufactured by Ouchi Shinko Chemical Co., Ltd.): 0.2 parts by mass Vulcanization accelerator ("NOCSELER DM" manufactured by Ouchi Shinko Chemical Co., Ltd.): 1 Mass part Sulfur ("Powder sulfur" manufactured by Tsurumi Chemical Industry Co., Ltd.): 1 part by mass <Production of tire>
The inner liner was applied to the inner liner portion of the tire to produce a green tire, which was press molded at 170 ° C. for 20 minutes and then quenched at 100 ° C. for 3 minutes to produce a 195 / 65R15 size tire.
[Evaluation test]
Each composition was tested for vulcanization adhesion of the inner liner, rolling resistance, flex crack growth of the pneumatic tire, static air pressure reduction rate, and presence of air-in.
<Vulcanization adhesive strength>
Tests were conducted in accordance with JIS-K-6256 “How to Determine Adhesion of Vulcanized Rubber and Thermoplastic Rubber”. Specifically, the inner liner and the rubber sheet are laminated and vulcanized at 170 ° C. for 20 minutes. The adhesion was measured at the bonding interface after vulcanization. The results are expressed as an index, and the higher the value, the greater the adhesion and the better.
Vulcanizing adhesive strength (index) = (vulcanizing adhesive strength of each composition) / (vulcanizing adhesive strength of Comparative Example 4-1) × 100
The composition of the rubber sheet is as follows.
  天然ゴム(注1)        100質量部
  カーボンブラック(注2)     50質量部
  亜鉛華(注3)           3質量部
  老化防止剤(注4)       0.2質量部
  硫黄(注5)            1質量部
  加硫促進剤(注6)         1質量部
  加硫助剤 (注7)         1質量部
 (注1)TSR20
 (注2)東海カーボン(株)社製「シーストV」(N660、N2SA:27m2/g)
 (注3)酸化亜鉛(ZnO):三井金属鉱業(株)社製「亜鉛華1号」
 (注4)大内新興化学社製「ノクラック6C」
 (注5)鶴見化学工業(株)社製「粉末硫黄」
 (注6)大内新興化学社製「ノクセラーDM」
 (注7)ステアリン酸:花王(株)社製、「ステアリン酸ルナックS30」
<転がり抵抗>
 粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度70℃、初期歪み10%、動歪み2%の条件下で各配合のtanδを測定し、比較例4-1のtanδを100として、下記計算式により指数表示した。指数が大きいほど転がりが低減されている。
転がり抵抗(指数)=(比較例4-1)/(各配合のtanδ)×100
<屈曲亀裂成長性>
 屈曲亀裂成長性は、インナーライナーが割れたり剥がれたりするかどうかで評価した。試作タイヤをJIS規格リム15×6JJに組み付け、タイヤ内圧は150KPaで通常よりも低内圧に設定し、荷重は600kg、速度100km/h、走行距離20,000kmでタイヤの内部を観察し、亀裂、剥離の数を測定した。比較例4-1を基準として、各配合の亀裂成長性を指数で表示した。指数の値が大きいほど、屈曲亀裂成長が小さいことを示す。
屈曲亀裂成長性(指数)=(比較例4-1の亀裂の数)/(各配合の亀裂の数)×100
<静的空気圧低下率>
 195/65R15スチールラジアルPCタイヤをJIS規格リム15×6JJに組み付け、初期空気圧300KPaを封入し、90日間室温で放置し、空気圧の低下率を計算した。結果は指数で表示し、数値が大きいほど空気圧低下率は低く良好である。
静的空気圧低下率(指数)=(各配合の静的空気圧低下率)/(比較例4-1の静的空気圧低下率)×100
<エアインの有無>
 加硫後のタイヤの内側を検査し、外観上エアインはタイヤ1本あたり0個をA、1個以上3個以下をB、4個以上をCとした。なお、エアインの大きさは直径5mm以下とし、直径5mmを超えるエアインがある場合は、エアインの数が1個でもCとした。
Natural rubber (Note 1) 100 parts by mass Carbon black (Note 2) 50 parts by mass Zinc white (Note 3) 3 parts by mass Antidegradant (Note 4) 0.2 parts by mass Sulfur (Note 5) 1 part by mass Vulcanization acceleration Agent (Note 6) 1 part by mass Vulcanization auxiliary (Note 7) 1 part by mass (Note 1) TSR 20
(Note 2) “Seast V” manufactured by Tokai Carbon Co., Ltd. (N 660, N 2 SA: 27 m 2 / g)
(Note 3) Zinc oxide (ZnO): "Zinc flower No. 1" manufactured by Mitsui Mining & Smelting Co., Ltd.
(Note 4) Nocchi 6C, made by Ouchi emerging chemical company
(Note 5) "Powder sulfur" manufactured by Tsurumi Chemical Industries, Ltd.
(Note 6) "Nocceller DM" manufactured by Ouchi Emerging Chemical Company
(Note 7) Stearic acid: Kao Corporation "Runac Stearate S30"
<Rolling resistance>
The tan δ of each formulation was measured under the conditions of a temperature of 70 ° C., an initial strain of 10%, and a dynamic strain of 2% using a viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho Co., Ltd.), and tan δ of Comparative Example 4-1 was measured. The index is indicated by the following formula as 100. As the index is larger, the rolling is reduced.
Rolling resistance (index) = (Comparative example 4-1) / (tan δ of each composition) × 100
<Bending crack growth property>
Flexural crack growth was evaluated by whether the inner liner was broken or peeled off. The prototype tire is assembled on a JIS standard rim 15 x 6 JJ, the internal pressure of the tire is set to 150 KPa lower than usual, the load is 600 kg, the speed is 100 km / h, the inside of the tire is observed with a traveling distance of 20,000 km, The number of peels was measured. Based on Comparative Example 4-1, the crack growth of each composition was indicated by an index. The larger the index value, the smaller the flex crack growth is.
Flexural crack growth (index) = (number of cracks of Comparative Example 4-1) / (number of cracks of each composition) × 100
<Static air pressure reduction rate>
A 195 / 65R15 steel radial PC tire was assembled on a JIS standard rim 15 × 6JJ, sealed with an initial air pressure of 300 KPa, left at room temperature for 90 days, and the decrease rate of the air pressure was calculated. The results are expressed as an index, and the higher the value, the lower the rate of decrease in air pressure and the better.
Static air pressure decrease rate (index) = (Static air pressure decrease rate of each composition) / (Static air pressure decrease rate of Comparative Example 4-1) × 100
<With or without air in>
The inside of the vulcanized tire was inspected, and in terms of appearance, the air-in was A for one tire, B for one or more and three or less, and C for four or more. The size of the air-in was 5 mm or less in diameter, and when there was air-in exceeding 5 mm in diameter, even one air-in was C.
 結果を表17~19に示す The results are shown in Tables 17-19
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 表中、偏肉範囲(CL(%)/SW(%))とは以下を示している。
 CL(%)=肉厚部のショルダー位置Peからクラウン中心位置Pc側への距離/ショルダー距離Wc×100
 SW(%)=肉厚部のショルダー位置Peから最大幅位置Ps側への距離/サイド距離Ws×100
<評価結果>
 第1層のまたは第2層の少なくともいずれかのポリマー成分がSIBS変性共重合体を10質量%以上99.5質量%以下含む実施例4-1~4-19は、加硫接着力、耐屈曲亀裂成長性、静的空気圧低下率に優れ、エアインも抑制されていることが分かった。
In the table, the uneven thickness range (CL (%) / SW (%)) indicates the following.
CL (%) = the distance from the shoulder position Pe of the thick portion to the crown center position Pc side / shoulder distance Wc × 100
SW (%) = the distance from the shoulder position Pe of the thick portion to the maximum width position Ps side / side distance Ws × 100
<Evaluation result>
In Examples 4-1 to 4-19 in which the polymer component of at least one of the first layer and the second layer contains 10% by mass or more and 99.5% by mass or less of the SIBS modified copolymer, the vulcanization adhesion and the resistance to It was found that flex crack growth and static air pressure reduction rate were excellent, and air-in was also suppressed.
 本発明の空気入りタイヤは、乗用車用空気入りタイヤのほか、トラック・バス用、重機用等の空気入りタイヤとして用いることができる。 The pneumatic tire of the present invention can be used as a pneumatic tire for trucks, buses, heavy machinery, etc. besides pneumatic tires for passenger cars.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above description but by the scope of claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of claims.
 1 空気入りタイヤ、2 トレッド部、3 サイドウォール部、4 ビード部、5 ビードコア、6 カーカスプライ、7 ベルト層、8 ビードエーペックス、9 インナーライナー、PL ポリマー積層体、PL1 第1層、PL2 第2層、Pe ショルダー位置、Pc クラウン中心位置、Ps タイヤ最大幅位置、Te トレッド部の接地端、Wc ショルダー距離、Ws サイド距離。 Reference Signs List 1 pneumatic tire, 2 tread portion, 3 sidewall portion, 4 bead portion, 5 bead core, 6 carcass ply, 7 belt layer, 8 bead apex, 9 inner liner, PL polymer laminate, PL1 first layer, PL2 second Layer, Pe shoulder position, Pc crown center position, Ps tire maximum width position, Te tread contact edge, Wc shoulder distance, Ws side distance.

Claims (14)

  1.  一対のビード部の間に装架されたカーカスプライのタイヤ内側にインナーライナーを備えた空気入りタイヤであって、
     前記インナーライナーはポリマー積層体からなり、
     前記ポリマー積層体は、スチレン-イソブチレン-スチレントリブロック共重合体を含む第1Aポリマー組成物からなる厚さ0.05mm以上0.8mm以下の第1層と、
     スチレン-イソプレン-スチレントリブロック共重合体およびスチレン-イソブチレンジブロック共重合体の少なくともいずれかを含む第2Aポリマー組成物からなる厚さ0.01mm以上0.8mm以下の第2層とを含み、
     前記第1Aポリマー組成物および前記第2Aポリマー組成物の少なくともいずれかが、エポキシ化スチレン-ブタジエン-スチレントリブロック共重合体を0.5質量%以上40質量%以下含み、
     前記第2層がカーカスプライのゴム層と接するように配置されており、
     前記インナーライナーはクラウン中央位置Pcにおける厚さGcよりもショルダー位置Peの厚さGeが厚く、
     前記厚さGeが0.2mm以上1.9mm以下である、
     空気入りタイヤ。
    A pneumatic tire comprising an inner liner on the inner side of a carcass ply tire mounted between a pair of bead portions, comprising:
    The inner liner comprises a polymer laminate,
    The polymer laminate comprises a first layer of a first A polymer composition containing a styrene-isobutylene-styrene triblock copolymer, and a first layer having a thickness of 0.05 mm or more and 0.8 mm or less;
    And a second layer having a thickness of 0.01 mm or more and 0.8 mm or less comprising a second A polymer composition containing at least one of styrene-isoprene-styrene triblock copolymer and styrene-isobutylene diblock copolymer,
    At least one of the first A polymer composition and the second A polymer composition contains 0.5% by mass or more and 40% by mass or less of an epoxidized styrene-butadiene-styrene triblock copolymer,
    The second layer is disposed in contact with the rubber layer of the carcass ply,
    In the inner liner, the thickness Ge of the shoulder position Pe is larger than the thickness Gc at the crown center position Pc,
    The thickness Ge is 0.2 mm or more and 1.9 mm or less.
    Pneumatic tire.
  2.  前記エポキシ化スチレン-ブタジエン-スチレントリブロック共重合体は、重量平均分子量が1万以上40万以下であり、スチレン成分含有量が10質量%以上30質量%以下であり、かつエポキシ当量が50以上1,000以下である、請求項1に記載の空気入りタイヤ。 The epoxidized styrene-butadiene-styrene triblock copolymer has a weight average molecular weight of 10,000 or more and 400,000 or less, a styrene component content of 10% by mass or more and 30% by mass or less, and an epoxy equivalent of 50 or more The pneumatic tire according to claim 1, which is 1,000 or less.
  3.  一対のビード部の間に装架されたカーカスプライのタイヤ内側にインナーライナーを備えた空気入りタイヤであって、
     前記インナーライナーはポリマー積層体からなり、
     前記ポリマー積層体は、スチレン-イソブチレン-スチレントリブロック共重合体を含む第1Bポリマー組成物からなる厚さ0.05mm以上0.6mm以下の第1層と、
     スチレン-イソブチレンジブロック共重合体を含む第2Bポリマー組成物からなる厚さ0.01mm以上0.3mm以下の第2層とを含み、
     前記第1Bポリマー組成物および前記第2Bポリマー組成物の少なくともいずれかが、ポリマー成分100質量部に対して粘着付与剤を0.1質量部以上100質量部以下含み、
     前記第2層がカーカスプライのゴム層と接するように配置されており、
     前記インナーライナーはクラウン中央位置Pcにおける厚さGcよりもショルダー位置Peの厚さGeが厚い、
     空気入りタイヤ。
    A pneumatic tire comprising an inner liner on the inner side of a carcass ply tire mounted between a pair of bead portions, comprising:
    The inner liner comprises a polymer laminate,
    The polymer laminate comprises a first layer having a thickness of 0.05 mm or more and 0.6 mm or less, which is made of a first B polymer composition containing a styrene-isobutylene-styrene triblock copolymer,
    And a second layer having a thickness of 0.01 mm or more and 0.3 mm or less comprising a second B polymer composition containing a styrene-isobutylene diblock copolymer,
    At least one of the first B polymer composition and the second B polymer composition contains 0.1 parts by mass or more and 100 parts by mass or less of a tackifier with respect to 100 parts by mass of the polymer component,
    The second layer is disposed in contact with the rubber layer of the carcass ply,
    In the inner liner, the thickness Ge of the shoulder position Pe is thicker than the thickness Gc at the crown center position Pc,
    Pneumatic tire.
  4.  前記粘着付与剤は、重量平均分子量が1×102以上1×106以下であり、軟化点が50℃以上150℃以下である請求項3に記載の空気入りタイヤ。 The pneumatic tire according to claim 3, wherein the tackifier has a weight average molecular weight of 1 × 10 2 or more and 1 × 10 6 or less and a softening point of 50 ° C. or more and 150 ° C. or less.
  5.  一対のビード部の間に装架されたカーカスプライのタイヤ内側にインナーライナーを備えた空気入りタイヤであって、
     前記インナーライナーは、
     ポリマー成分がスチレン-イソブチレン-スチレントリブロック共重合体75質量%以上99.5質量%以下およびイソブチレン系変性共重合体0.5質量%以上25質量%以下を含む第1Cポリマー組成物からなる厚さ0.05mm以上0.6mm以下の第1層と、
     ポリマー成分がスチレン-イソブチレンブロック共重合体10質量%以上100質量%以下およびスチレン-イソブチレン-スチレントリブロック共重合体0質量%以上90質量%以下を含む第2Cポリマー組成物からなる厚さ0.01mm以上0.3mm以下の第2層とを含み、
     前記イソブチレン系変性共重合体は、イソブチレンを主体とする重合体ブロックと芳香族ビニル系化合物を主体とする重合体ブロックとからなり、少なくとも一つのブロックがβ-ピネンを含むランダム共重合体であり、
     前記第2層がカーカスプライのゴム層と接するように配置されており、
     前記インナーライナーはクラウン中央位置Pcにおける厚さGcよりもショルダー位置Peにおける厚さGeが厚い、空気入りタイヤ。
    A pneumatic tire comprising an inner liner on the inner side of a carcass ply tire mounted between a pair of bead portions, comprising:
    The inner liner is
    A thickness comprising the first C polymer composition in which the polymer component contains 75% by mass to 99.5% by mass of styrene-isobutylene-styrene triblock copolymer and 0.5% by mass to 25% by mass of isobutylene-based modified copolymer A first layer of 0.05 mm or more and 0.6 mm or less,
    Thickness of the polymer composition comprising a second C polymer composition comprising 10% by mass to 100% by mass of a styrene-isobutylene block copolymer and 0% by mass to 90% by mass of a styrene-isobutylene-styrene triblock copolymer. Including a second layer of 01 mm or more and 0.3 mm or less,
    The isobutylene-based modified copolymer is a random copolymer comprising a polymer block composed mainly of isobutylene and a polymer block composed mainly of an aromatic vinyl compound, and at least one block is composed of β-pinene. ,
    The second layer is disposed in contact with the rubber layer of the carcass ply,
    The pneumatic tire wherein the inner liner is thicker at a shoulder position Pe than at a crown center position Pc than at a thickness Gc.
  6.  前記イソブチレン系変性共重合体の芳香族ビニル系化合物がスチレンである請求項5に記載の空気入りタイヤ。 The pneumatic tire according to claim 5, wherein the aromatic vinyl compound of the isobutylene-based modified copolymer is styrene.
  7.  一対のビード部の間に装架されたカーカスプライのタイヤ内側にインナーライナーを備えた空気入りタイヤであって、
     前記インナーライナーは、
     スチレン-イソブチレン-スチレントリブロック共重合体を含む第1Dポリマー組成物からなる厚さ0.05mm以上0.6mm以下の第1層と、
     スチレン-イソブチレンジブロック共重合体を含む第2Dポリマー組成物からなる厚さ0.01mm以上0.3mm以下の第2層とを備え、
     前記第1Dポリマー組成物および前記第2Dポリマー組成物の少なくともいずれかは、ポリマー成分中、スチレン-イソブチレン-スチレントリブロック共重合体のスチレンブロック部分が、不飽和結合を有する酸塩化物または酸無水物で変性されたSIBS変性共重合体を10質量%以上99.5質量%以下含み、
     前記第2層がカーカスプライのゴム層と接するように配置されており、
     前記インナーライナーはクラウン中央位置Pcにおける厚さGcよりもショルダー位置Peの厚さGeが厚い、空気入りタイヤ。
    A pneumatic tire comprising an inner liner on the inner side of a carcass ply tire mounted between a pair of bead portions, comprising:
    The inner liner is
    A first layer having a thickness of 0.05 mm or more and 0.6 mm or less comprising a first D polymer composition containing a styrene-isobutylene-styrene triblock copolymer,
    And a second layer having a thickness of 0.01 mm or more and 0.3 mm or less comprising a second D polymer composition containing a styrene-isobutylene diblock copolymer,
    In at least one of the first D polymer composition and the second D polymer composition, an acid chloride or an acid anhydride having a unsaturated bond in the styrene block portion of the styrene-isobutylene-styrene triblock copolymer in the polymer component is used. 10% by weight or more and 99.5% by weight or less of the SIBS modified copolymer modified with
    The second layer is disposed in contact with the rubber layer of the carcass ply,
    The pneumatic tire wherein the inner liner is thicker at a shoulder position Pe than at a thickness Gc at a crown central position Pc.
  8.  前記SIBS変性共重合体は、スチレン成分含有量が10質量%以上30質量%以下であり、重量平均分子量が50,000以上400,000以下である、請求項7に記載の空気入りタイヤ。 The pneumatic tire according to claim 7, wherein the SIBS modified copolymer has a styrene component content of 10% by mass to 30% by mass, and a weight average molecular weight of 50,000 or more and 400,000 or less.
  9.  タイヤ子午断面において、前記カーカスプライと前記インナーライナーとの境界線に対してトレッド部の接地端Teからタイヤ内径方向に法線Lを引き前記境界線との交点をショルダー位置Peとし、前記カーカスプライと前記インナーライナーとの境界線とタイヤ中心線CLとの交点をクラウン中心位置Pcとし、さらに前記ショルダー位置Peからクラウン中心位置Pcまでの前記インナーライナーの輪郭線に沿った距離をショルダー距離Wcとしたとき、
     前記インナーライナーの肉厚部は、前記ショルダー位置Peからクラウン中心位置Pc側に、前記ショルダー距離Wcの少なくとも10%の幅を有する領域に形成されている請求項1~8のいずれか1項に記載の空気入りタイヤ。
    In the tire meridional section, a normal L is drawn from the ground contact end Te of the tread portion to the tire inner diameter direction with respect to the boundary between the carcass ply and the inner liner, and the intersection with the boundary is the shoulder position Pe. The intersection point between the boundary line between the inner liner and the tire center line CL and the tire center line CL is a crown center position Pc, and a distance along the contour of the inner liner from the shoulder position Pe to the crown center position Pc is a shoulder distance Wc When you
    The thick portion of the inner liner is formed in a region having a width of at least 10% of the shoulder distance Wc from the shoulder position Pe to the crown center position Pc side. The pneumatic tire of description.
  10.  前記インナーライナーの肉厚部は、前記ショルダー位置Peからクラウン中心位置Pc側に、前記ショルダー距離Wcの少なくとも50%の幅を有する領域に形成されている請求項9に記載の空気入りタイヤ。 The pneumatic tire according to claim 9, wherein the thick portion of the inner liner is formed in a region having a width of at least 50% of the shoulder distance Wc from the shoulder position Pe toward the crown center position Pc.
  11.  前記インナーライナーの前記ショルダー位置Peからタイヤ最大幅位置Psまでのインナーライナーの輪郭線に沿った距離をサイド距離Wsとしたとき、前記インナーライナーの肉厚部は、前記ショルダー位置Peから前記最大幅位置Ps側に、前記サイド距離Wsの少なくとも20%の幅を有する領域に形成されている請求項1~10のいずれか1項に記載の空気入りタイヤ。 When the distance along the contour of the inner liner from the shoulder position Pe of the inner liner to the tire maximum width position Ps is a side distance Ws, the thick portion of the inner liner is the maximum width from the shoulder position Pe The pneumatic tire according to any one of claims 1 to 10, which is formed in a region having a width of at least 20% of the side distance Ws on the position Ps side.
  12.  前記インナーライナーの肉厚部は、前記ショルダー位置Peから前記タイヤ最大幅位置Ps側に、前記サイド距離Wsの100%以下の幅を有する領域に形成されている請求項11に記載の空気入りタイヤ。 The pneumatic tire according to claim 11, wherein the thick portion of the inner liner is formed in a region having a width of 100% or less of the side distance Ws on the tire maximum width position Ps side from the shoulder position Pe. .
  13.  前記インナーライナーは、クラウン中央位置Pcにおける厚さGcに対し、ショルダー位置Peの厚さGeは120%以上500%以下である請求項1~12のいずれか1項に記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 12, wherein the thickness Ge of the shoulder position Pe is 120% or more and 500% or less of the thickness Gc at the crown center position Pc.
  14.  前記スチレン-イソブチレン-スチレントリブロック共重合体は、スチレン成分含有量が10質量%以上30質量%以下であり、重量平均分子量が5万以上40万以下である請求項1~13のいずれか1項に記載の空気入りタイヤ。 The styrene-isobutylene-styrene triblock copolymer has a styrene component content of 10% by mass to 30% by mass, and a weight average molecular weight of 50,000 to 400,000, according to any one of claims 1 to 13. The pneumatic tire as described in a term.
PCT/JP2013/064910 2012-08-07 2013-05-29 Pneumatic tire WO2014024547A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012-174857 2012-08-07
JP2012174857A JP5342683B1 (en) 2012-08-07 2012-08-07 Pneumatic tire
JP2012198216A JP5566430B2 (en) 2012-09-10 2012-09-10 Pneumatic tire
JP2012-198216 2012-09-10
JP2012249377A JP5466283B1 (en) 2012-11-13 2012-11-13 Pneumatic tire
JP2012-249377 2012-11-13
JP2012276792A JP5466288B1 (en) 2012-12-19 2012-12-19 Pneumatic tire
JP2012-276792 2012-12-19

Publications (1)

Publication Number Publication Date
WO2014024547A1 true WO2014024547A1 (en) 2014-02-13

Family

ID=50067790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064910 WO2014024547A1 (en) 2012-08-07 2013-05-29 Pneumatic tire

Country Status (1)

Country Link
WO (1) WO2014024547A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112739777A (en) * 2018-09-21 2021-04-30 横滨橡胶株式会社 Inner liner for tire and pneumatic tire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051544A (en) * 2010-08-06 2012-03-15 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2012066801A (en) * 2010-08-25 2012-04-05 Sumitomo Rubber Ind Ltd Polymer laminate for inner liner and pneumatic tire using the same
JP2012091627A (en) * 2010-10-26 2012-05-17 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2012102269A (en) * 2010-11-11 2012-05-31 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2012101751A (en) * 2010-11-12 2012-05-31 Sumitomo Rubber Ind Ltd Pneumatic tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051544A (en) * 2010-08-06 2012-03-15 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2012066801A (en) * 2010-08-25 2012-04-05 Sumitomo Rubber Ind Ltd Polymer laminate for inner liner and pneumatic tire using the same
JP2012091627A (en) * 2010-10-26 2012-05-17 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2012102269A (en) * 2010-11-11 2012-05-31 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2012101751A (en) * 2010-11-12 2012-05-31 Sumitomo Rubber Ind Ltd Pneumatic tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112739777A (en) * 2018-09-21 2021-04-30 横滨橡胶株式会社 Inner liner for tire and pneumatic tire

Similar Documents

Publication Publication Date Title
JP5138758B2 (en) Pneumatic tire
JP5330350B2 (en) Polymer sheet for inner liner and pneumatic tire using the same
WO2013069342A1 (en) Pneumatic tire
JP5781753B2 (en) Pneumatic tire
JP5603211B2 (en) Pneumatic tire
US20170239993A1 (en) Pneumatic tire
JP5466283B1 (en) Pneumatic tire
JP5143945B1 (en) Pneumatic tire
US20140048192A1 (en) Pneumatic tire
JP5497829B2 (en) Pneumatic tire
WO2014024547A1 (en) Pneumatic tire
JP5566430B2 (en) Pneumatic tire
JP5687974B2 (en) Pneumatic tire
JP5502834B2 (en) Pneumatic tire manufacturing method
JP5469155B2 (en) Pneumatic tire manufacturing method
JP5466288B1 (en) Pneumatic tire
JP5342683B1 (en) Pneumatic tire
JP5342636B2 (en) Pneumatic tire
JP5809118B2 (en) Pneumatic tire
JP5260716B2 (en) Manufacturing method of strip and pneumatic tire
JP2014040217A (en) Pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13828320

Country of ref document: EP

Kind code of ref document: A1