WO2014023176A1 - 荧光成像系统及其应用 - Google Patents

荧光成像系统及其应用 Download PDF

Info

Publication number
WO2014023176A1
WO2014023176A1 PCT/CN2013/080481 CN2013080481W WO2014023176A1 WO 2014023176 A1 WO2014023176 A1 WO 2014023176A1 CN 2013080481 W CN2013080481 W CN 2013080481W WO 2014023176 A1 WO2014023176 A1 WO 2014023176A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence
imaging system
fluorescent
excitation unit
imaging
Prior art date
Application number
PCT/CN2013/080481
Other languages
English (en)
French (fr)
Inventor
王懋
李敏
吴东岷
翟晓敏
王强斌
Original Assignee
中国科学院苏州纳米技术与纳米仿生研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院苏州纳米技术与纳米仿生研究所 filed Critical 中国科学院苏州纳米技术与纳米仿生研究所
Publication of WO2014023176A1 publication Critical patent/WO2014023176A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging

Definitions

  • the present invention relates to the field of optical technologies, and in particular to a fluorescence imaging system having an operating wavelength range in the near infrared range and an application thereof.
  • in vivo imaging of living small animals mainly uses two techniques of bioluminescence and fluorescence imaging.
  • Bioluminescence uses the luciferase gene to label cells or DNA
  • in vivo fluorescence imaging has three main methods of labeling: fluorescent protein labeling, fluorescent dye labeling, and quantum dot labeling.
  • quantum dots as a novel nano-fluorescent probe, have many advantages such as wide excitation spectrum, narrow fluorescence emission spectrum, adjustable fluorescence spectrum, high quantum yield, high photochemical stability and low decomposition.
  • the absorption of near-infrared wavelength by hemoglobin, fat and water is kept at a relatively low level. Therefore, biological tissues have a "near-infrared window" in the near-infrared region, which has a high penetration. Penetration depth. Therefore, for in vivo imaging, the selection of excitation and emission spectra in the near-infrared region of the fluorescent labeling method will facilitate the optical imaging of living organisms, especially for deep tissue fluorescence imaging. Therefore, the near-infrared fluorescence quantum dot imaging system has great application prospects, especially for the deep-tissue near-infrared fluorescence imaging of living small animals.
  • a fluorescence imaging system comprising: a fluorescence excitation unit that generates a light beam that is irradiated onto a fluorescent substance to cause the fluorescent substance to excite fluorescence; a filter set, The fluorescence excited by the fluorescent substance is filtered to filter out the light in the non-fluorescent band; the imaging objective receives the fluorescence filtered by the filter set; and the detector detects the effective wavelength range of 800 ⁇ 1700 nm, The imaging objective captures imaging of the fluorescent substance.
  • the detector is an InGaAs detector.
  • the fluorescent excitation unit generates a light beam having a wavelength of 780 to 1100 nm.
  • the wavelength of the light beam generated by the fluorescence excitation unit is 808 nm
  • the fluorescent substance is an Ag 2 S quantum dot.
  • the fluorescent excitation unit includes: a laser, a coupler, an optical fiber, and a beam expanding module, wherein a laser beam emitted by the laser obtains a Gaussian beam through the coupler and the optical fiber, respectively, and then the Gaussian is passed through the beam expanding module The range of the spot of the beam is amplified.
  • the laser has an operating power greater than 0 W and no greater than 15 W.
  • the beam expander module is a plano-concave lens that transmits more than 90% of near-infrared light.
  • the path of the light beam generated by the fluorescent excitation unit coincides with the path of the fluorescence excited by the fluorescent substance entering the detector.
  • the imaging system further includes a three-dimensional stage for carrying the fluorescent substance.
  • the imaging system further includes an illumination unit that provides an illumination beam to illuminate the phosphor.
  • the imaging system further includes an anesthesia system.
  • the imaging system further includes a computer processing system respectively coupled to the fluorescence excitation unit, the imaging objective, and the detector, wherein the computer processing system is configured to control and adjust an optical path of the light beam generated by the fluorescence excitation unit, and an imaging objective lens. And acquiring an imaging signal of the detector and processing the imaging signal.
  • the fluorescence imaging system and the application thereof of the invention use a near-infrared laser beam to illuminate a small animal, stimulate the quantum dots in the small animal to emit fluorescence, and can observe the deep tissues, organs and cells in the living small animal body in real time quickly, efficiently and without loss. It provides efficient technical support for future research on tumor cells, stem cells, etc., and can observe the morphology of other materials in the near-infrared band.
  • FIG. 1 is a schematic structural view of a fluorescence imaging system according to an embodiment of the present invention.
  • the invention is completed by utilizing the principle that near-infrared light excites quantum dots to emit fluorescence. This is because the hemoglobin widely distributed in the blood has a strong absorption of light signals having a wavelength of less than 600 nm, and the optical signal having a wavelength of more than 100 nm is absorbed by the water in a large amount, so that an optical signal having a wavelength of less than 600 nm and greater than 100 nm is worn. There is a significant attenuation in the process of solubilizing somatic cells, which greatly reduces the sensitivity of imaging and is not suitable for in vivo imaging.
  • the 650-850nm band can solve the problem of penetration in vivo.
  • FIG. 1 is a schematic structural view of a fluorescence imaging system according to an embodiment of the present invention. As shown in FIG.
  • a fluorescence imaging system may include a detector 110, an imaging objective 120, a filter set 130, a three-dimensional stage 180, and illumination units respectively disposed on both sides of the detector 110.
  • the 140 and fluorescent excitation unit 150 may also include an anesthesia system 160 coupled to the three-dimensional stage 180, and a computer processing system 170 coupled to the detector 110, the imaging objective 120, and the fluorescence excitation unit 150, respectively.
  • the fluorescence excitation unit 150, the illumination unit 140, and the detector 110 are as close as possible, so that the beam generated by the fluorescence excitation unit 150 and the light beam generated by the illumination unit 140 are both vertical.
  • the stage 180 is irradiated such that the center of illumination of each beam is as uniform as possible with the detection center of the detector 110. Therefore, the path of the beam generated by the fluorescence excitation unit 150 coincides with the path of the fluorescence excited by the fluorescent substance entering the detector 110.
  • the illumination unit 140 can be, for example, a wide spectrum of halogen lamps that emit white light just to see the signal at the near infrared detector 110. Further, the constituent elements in the fluorescence excitation unit 150 of the present embodiment can both operate in the near-infrared band.
  • the fluorescent excitation unit 150 can include a laser 151, a coupler 152, an optical fiber 153, and a beam expander module 154.
  • the excitation beam (ie, the laser beam) emitted by the laser 151 in this embodiment is a near-infrared short-wave beam having a wavelength of 808 nm; the fluorescence emission spectrum corresponding to a fluorescent substance (such as an Ag 2 S quantum dot) marked on a small animal sample is at 932 ⁇ Between 1250nm.
  • the optical fiber 153 is a single mode optical fiber having a coupling efficiency of 50% or more.
  • the beam expander module 154 is a plano-concave lens that can transmit more than 90% of near-infrared light, and can make the range of the excitation beam irradiated onto the surface of the small animal body much larger than the body of the small animal (or the surface area of the object to be measured).
  • the imaging objective 120 has an operating range of 700-1900 nm; the detector 110 is a near-infrared detector, which can be an InGaAs detector, and the InGaAs detector detects an effective wavelength range of 800 to 1700 nm.
  • the filter set 130 of the present embodiment may be composed of two filters, the main function of which is to filter out the background light, which in this embodiment is a light of a fluorescent band for emitting non-quantum dots (for example, a wavelength emitted by the laser 151). Filtered out for the 808 nm near-infrared short-wave beam, only the fluorescence emitted by the quantum dots enters the detector 110. However, the number of filters constituting the filter group 130 is not as large as possible.
  • Excessive filters may attenuate the imaging effect of the fluorescence emitted by the quantum dots after reaching the detector 110, so the signal intensity according to the quantum dots is strong. Weakly adjust the composition of the filter set appropriately. In other embodiments, if the signal of the quantum dot is strong, the number and wavelength of the filter can be increased, which is advantageous for improving the imaging effect; otherwise, the number of filters should be reduced.
  • the operation of the fluorescence imaging system of the present embodiment will be described below. First, in this embodiment, a mouse is used as a test sample. The necessary processing is required before the excitation beam is scanned by the mouse.
  • the mouse hair on the back of the body of the mouse is removed with a depilatory agent, or a nude mouse is used to prevent it from affecting the collection of fluorescence data.
  • a fluorescent substance such as an Ag 2 S quantum dot is intravenously injected from the tail of the mouse into the mouse.
  • the quantum dot fluorescence emission spectrum used in this embodiment ranges from 932 to 1250 nm.
  • the mice were placed in an anesthesia system 160 and pre-anesthetized in a mixed gas pre-cavage box containing 5% isoflurane anesthesia and 95% oxygen.
  • the completely anesthetized mouse was transferred to the stage 180, and the anesthesia mask was worn on the face of the mouse, and preparation was made to start the fluorescence imaging system of the present embodiment for living observation.
  • the fluorescence imaging system of this embodiment was activated.
  • the excitation beam is emitted from the laser 151 in the fluorescence excitation unit 150 through the coupler 152, and then introduced into the single mode fiber 153 to obtain a Gaussian beam having a wavelength of 808 nm, and then the range of the spot of the obtained Gaussian beam is amplified by the beam expanding module 154. Then, the back of the mouse on the stage 180 is irradiated.
  • the Ag 2 S quantum dots previously implanted into the mouse will be excited to emit fluorescent photons, which will escape through the surface of the tissue, and filter the background light and other stray light through the filter set 130. After that, it reaches the detector 110 through the imaging objective 120 to obtain imaging of the Ag 2 S quantum dots.
  • the computer processing system 170 controls and collects the illuminating signals of the quantum dots through the detector 110.
  • the white light emitted by the illumination unit 140 is also directly irradiated to the mouse on the stage 180.
  • the reflected light from the back of the mouse passes through the filter set 130, and then passes through the imaging objective 120 to reach the detector 110.
  • the primary function of illumination unit 140 is to provide illumination to the mouse.
  • Detector 110 delivers the imaged signals of the acquired Ag 2 S quantum dots to computer processing system 170, which combines the computer software with the fluorescent signals of the quantum dots. Together, accurately mark the position of the quantum dot in the mouse.
  • the power of the laser 151 and the laser switch are controlled by the computer processing system 170, and the laser 151 is turned on only when the photograph is taken, and the other is to ensure the imaging effect is good.
  • a fluorescence imaging system can be applied to near-infrared quantum dot imaging, which irradiates a small animal with a near-infrared laser beam, excites quantum dots in a small animal and emits fluorescence, which can be quickly High-efficiency, non-invasive real-time observation of deep tissues, organs and cells in living small animals, providing efficient technical support for future research on tumor cells, stem cells, etc., and observing the shape of other materials in the near-infrared band Appearance.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种荧光成像系统包括:荧光激发单元(150),其产生的光束照射在荧光物质上,使所述荧光物质激发荧光;滤光片组(130),对由所述荧光物质激发出的荧光进行过滤,以将非荧光波段的光过滤掉;成像物镜(120),接收被所述滤光片组(130)过滤后的荧光;探测器(110),其探测的有效波长范围为800〜1700nm,通过所述成像物镜(120)获取所述荧光物质的成像。该荧光成像系统采用近红外激光光束照射到小动物上,激发小动物体内的量子点发出荧光,能快速、高效无损地实时观察活体小动物体内的深层组织、器官和细胞,为将来的肿瘤细胞、干细胞等方面的研究提供了高效的技术支持,而且可以观察近红外波段的其他材料的形貌特征。

Description

说 明 书 荧光成像系统及其应用 技术领域
本发明涉及光学技术领域, 尤其涉及一种工作波长范围在近红外波段的荧 光成像系统及其应用。
背景技术
目前, 活体小动物体内成像主要采用生物发光与荧光成像两种技术。 生物 发光是用荧光素酶基因标记细胞或者 DNA, 而活体荧光成像技术主要有三种 标记方法: 荧光蛋白标记、 荧光染料标记和量子点标记。 相比较而言, 量子点 作为一种新型的纳米荧光探针, 具有激发光谱宽、 荧光发射光谱窄、 荧光光谱 可调、 量子产率高、 光化学稳定性高和不易分解等诸多优点。
由于不同波长的组织穿透力不同, 血红蛋白、 脂肪和水对近红外波长的吸 收保持在一个比较低的水平,所以,生物组织在近红外波段存在 "近红外窗口", 具有较高的穿透穿透深度。 因此, 对活体成像而言, 选择激发和发射光谱位于 近红外光区的荧光标记方法, 将有利于活体的光学成像, 特别是深层组织的荧 光成像。 所以, 近红外荧光量子点成像系统有着很大的应用前景, 尤其对活体 小动物进行深层组织的近红外荧光成像有着重要的意义, 除了被标记的快速的 测量各种癌症模型中肿瘤的生长, 并可对癌症治疗中癌细胞的变化进行实时观 测评估, 还可以无创伤地定量检测小动物整体的原位瘤、 转移瘤及自发瘤; 利 用活体生物荧光成像技术可以检测到, 并能连续观察其对机体的浸染过程以及 抗病毒药物和抗生素对其病理过程的影响; 还可应用到免疫细胞、 干细胞、细 胞凋亡等研究领域, 如对标记在其他研究物质上进行观察, 如药物、 特定的生 物分子等, 示踪其活动及作用, 在长时间生命活动检测及活体示踪方面具有独 特的应用优势, 然而, 目前国内外极少有用近红外量子点的活体小动物荧光成 像系统。
发明内容
为解决上述问题, 填补该领域的技术空白, 本发明提供了一种工作波长范 围在近红外波段的荧光成像系统及其应用。 根据本发明的一方面,提供了一种荧光成像系统,其包括:荧光激发单元, 其产生的光束照射在荧光物质上, 使所述荧光物质激发出荧光; 滤光片组,对 由所述荧光物质激发出的荧光进行过滤, 以将非荧光波段的光过滤掉; 成像物 镜, 接收被所述滤光片组过滤后的荧光; 探测器, 其探测的有效波长范围为 800~1700nm, 通过所述成像物镜获取所述荧光物质的成像。
此外, 所述探测器为 InGaAs探测器。
此外, 所述荧光激发单元产生的光束的波长为 780~1100nm。
进一步地, 所述荧光激发单元产生的光束的波长为 808nm, 所述荧光物质 为 Ag2S量子点。
此外, 所述荧光激发单元包括: 激光器、 耦合器、 光纤和扩束模块, 所述 激光器发出的激光光束分别经过所述耦合器和光纤获得高斯光束, 然后通过所 述扩束模块将所述高斯光束的光斑的范围放大。
此外, 所述激光器的工作功率大于 0W且不大于 15W。
此外, 所述扩束模块为透过近红外光 90%以上的平凹透镜。
此外, 所述荧光激发单元产生的光束的路径与所述荧光物质激发出的荧光 进入所述探测器的路径重合。
此外, 所述成像系统还包括三维载物台, 用于承载所述荧光物质。
此外, 所述成像系统还包括照明单元, 其提供照明光束照射在所述荧光物 质上。
此外, 所述成像系统还包括麻醉系统。 此外, 所述成像系统还包括分别与所述荧光激发单元、 成像物镜、 探测器 连接的计算机处理系统, 所述计算机处理系统用于控制与调整所述荧光激发单 元产生的光束的光路、 成像物镜及采集探测器的成像信号, 并对所述成像信号 进行处理。
根据本发明的另一方面, 还提供了一种上述的荧光成像系统在近红外量子 点成像中的应用。
有益效果: 本发明的荧光成像系统及其应用, 采用近红外激光光束照射到小动物上, 激发小动物体内的量子点发出荧光, 能快速、 高效无损的实时观察活体小动物 体内的深层组织、 器官和细胞, 为将来的肿瘤细胞, 干细胞等方面的研究提供 了高效的技术支持, 而且可以观察近红外波段的其他材料的形貌特征。
附图说明
通过下面结合附图进行的详细描述, 本发明的上述和其它目的、 特点和优 点将会变得更加清楚, 附图中:
图 1是根据本发明的实施例的荧光成像系统的结构示意图。
具体实施方式
本发明是利用了近红外光激发量子点发射荧光的原理完成的。这是因为血 液中广泛分布的血红蛋白对波长为 600nm以下的光信号有很强的吸收,而波长 为 lOOOnm以上的光信号又被水大量吸收,因此波长低于 600nm和大于 lOOOnm 的光信号在穿透活体细胞的过程中有很明显的衰减, 这大大降低了成像的灵敏 度, 不适合做活体成像。 而 650- 850nm的波段, 则可以很好的解决活体内穿 透率的问题。 这个波段的光束与 Ag2S量子点结合, 可以出色的完成荧光成像 的研究。 现在对本发明的实施例进行详细的描述, 其示例表示在附图中, 其中, 相 同的标号始终表示相同部件。下面通过参照附图对实施例进行描述以解释本发 明。 在附图中, 为了清晰起见, 可以夸大层和区域的厚度。 在下面的描述中, 为了避免公知结构和 /或功能的不必要的详细描述所导致的本发明构思的混淆, 可省略公知结构和 /或功能的不必要的详细描述。 图 1是根据本发明的实施例的荧光成像系统的结构示意图。 如图 1所示, 根据本发明的实施例的荧光成像系统可包括探测器 110、 成 像物镜 120、 滤光片组 130、 三维载物台 180, 以及分别设于探测器 110两侧的 照明单元 140和荧光激发单元 150, 还可包括与三维载物台 180连接的麻醉系 统 160, 以及分别与探测器 110、 成像物镜 120和荧光激发单元 150连接的计 算机处理系统 170。 其中, 荧光激发单元 150、 照明单元 140以及探测器 110 尽量靠近, 使荧光激发单元 150产生的光束和照明单元 140产生的光束均垂直 照射载物台 180, 进而使得各光束的照射中心与探测器 110的探测中心尽量保 持一致, 因此, 荧光激发单元 150产生的光束的路径和荧光物质激发出的荧光 进入探测器 110的路径重合。 照明单元 140可例如是采用宽光谱的卤素灯, 其 发出的白光正好能在近红外探测器 110看到信号。 进一步地,本实施例的荧光激发单元 150中的组成元件均可在近红外波段 工作。 荧光激发单元 150可包括激光器 151、 耦合器 152、 光纤 153和扩束模 块 154。本实施例中激光器 151发出的激发光束(即激光光束)是波长为 808nm 的近红外短波光束; 对应标记在小动物样品上的荧光物质(诸如 Ag2S量子点) 的荧光发射光谱在 932~1250nm之间。 光纤 153是一种单模光纤, 其耦合效率 在 50%以上。扩束模块 154是可以透过近红外光 90%以上的平凹透镜, 它能使 照射到小动物体表面的激发光束的光斑的范围要远大于小动物的身体(或者说 是被测物体的表面积。) 所述成像物镜 120的工作范围在 700-1900nm波段; 所述探测器 110是一 种近红外探测器,其可为 InGaAs探测器, 该 InGaAs探测器探测的有效波长范 围为 800~1700nm。 本实施例的滤光片组 130可由两个滤光片构成, 主要功能是滤掉背景光, 在本实施例中是用于将非量子点发射的荧光波段的光(例如激光器 151发出的 波长为 808nm的近红外短波光束)过滤掉,只让量子点发射的荧光进入探测器 110中。 但是, 构成滤光片组 130的滤光片的数量并非越多越好, 过多的滤光 片会减弱量子点发射的荧光到达探测器 110后的成像效果, 所以要根据量子点 的信号强弱适当调整滤光片组的构成。在其他实施例中,如果量子点的信号强, 可以增加滤光片的数量和波段,有利于提高成像效果;反之应减少滤光片数量。 下面介绍本实施例的荧光成像系统的工作过程: 首先, 本实施例以小白鼠为试验样品。在激发光束对小白鼠扫描前需要对 其进行必要的处理。 具体而言, 将小白鼠身体背部鼠毛用脱毛剂去除, 或者采 用裸鼠, 以防止其影响荧光数据的采集。 然后, 将例如可是 Ag2S量子点的荧 光物质从小白鼠的尾部静脉注射到小白鼠体内。本实施例采用的量子点荧光发 射光谱的范围在 932~1250nm之间。 接下来将小白鼠先置于麻醉系统 160中, 在含有 5%异氟垸麻醉和 95%氧气的混合气体预麻箱中进行预麻醉。大约 30秒 之后, 将已经完全麻醉的小白鼠转置于载物台 180, 并将麻醉面罩佩戴在小白 鼠的面部, 开始准备启动本实施例的荧光成像系统进行活体观察。 启动本实施例的荧光成像系统。 由荧光激发单元 150中的激光器 151发出 激发光束通过耦合器 152后,导入单模光纤 153中,获得波长为 808nm的高斯 光束, 然后通过扩束模块 154, 将获得的高斯光束的光斑的范围放大, 再照射 到载物台 180上的小白鼠背部。 此时, 预先被植入小白鼠体内的 Ag2S量子点 将会被激发, 发射出荧光光子, 这些荧光光子穿透组织表面逸出, 通过滤光片 组 130将背景光及其他杂光滤掉, 再通过成像物镜 120到达探测器 110, 获得 Ag2S量子点的成像。 当然, 也有部分荧光是小白鼠自身发出的, 这些属于近 红外光短波部分都可以被捕捉进入探测器 110。 然后计算机处理系统 170通过 探测器 110控制和采集量子点的发光信号。 同时, 照明单元 140发出的白光也 直接照射到载物台 180上的小白鼠, 小白鼠背部的反射光通过滤光片组 130, 再通过成像物镜 120后到达探测器 110。 照明单元 140的主要作用是对小白鼠 提供照明, 探测器 110将获得的 Ag2S量子点的成像的信号输送到计算机处理 系统 170,计算机处理系统 170将计算机软件与量子点的荧光信号结合在一起, 准确标记出量子点在小白鼠体内的位置。 另外, 为降低近红外激光对小白鼠的热损伤, 通过计算机处理系统 170控 制激光器 151的功率和激光的开关,在只有拍摄照片的时候才打开激光器 151, 另外就是在保证成像效果好的前提下尽可能使激光器 151的工作功率低, 本实 施例的激光器工作功率为在 0-15W连续可调。 此外, 根据本发明的实施例的荧光成像系统可应用在近红外量子点成像 中, 其通过采用近红外激光光束照射到小动物上, 激发小动物体内的量子点并 使其发出荧光, 能快速、 高效、 无损伤地实时观察到活体小动物体内的深层组 织、 器官和细胞, 为将来的肿瘤细胞、 干细胞等方面的研究提供了高效的技术 支持, 而且可以观察近红外波段的其他材料的形貌特征。 以上述依据本发明的理想实施为启示, 通过上述的说明内容, 相关工作人 员完全可以在不偏离本项发明技术思想的范围内, 进行多样的变更以及修改。 本项发明的技术性范围并不局限于说明书上的内容, 必须根据权利要求范围来 确定其技术性范围。

Claims

权利要求书
1、 一种荧光成像系统, 其中, 包括:
荧光激发单元, 其产生的光束照射在荧光物质上, 使所述荧光物质激发出 荧光;
滤光片组, 对由所述荧光物质激发出的荧光进行过滤, 以将非荧光波段的 光过滤掉;
成像物镜, 接收被所述滤光片组过滤后的荧光;
探测器, 其探测的有效波长范围为 800~1700nm, 通过所述成像物镜获取 所述荧光物质的成像。
2、 根据权利要求 1所述的荧光成像系统, 其中, 所述探测器为 InGaAs探
3、 根据权利要求 1所述的荧光成像系统, 其中, 所述荧光激发单元产生 的光束的波长为 780~1100nm。
4、 根据权利要求 2所述的荧光成像系统, 其中, 所述荧光激发单元产生 的光束的波长为 780~1100nm。
5、 根据权利要求 3所述的荧光成像系统, 其中, 所述荧光激发单元产生 的光束的波长为 808nm, 所述荧光物质为 Ag2S量子点。
6、 根据权利要求 4所述的荧光成像系统, 其中, 所述荧光激发单元产生 的光束的波长为 808nm, 所述荧光物质为 Ag2S量子点。
7、 根据权利要求 1所述的荧光成像系统, 其中, 所述荧光激发单元包括: 激光器、 耦合器、 光纤和扩束模块, 所述激光器发出的激光光束分别经过所述 耦合器和光纤获得高斯光束, 然后通过所述扩束模块将所述高斯光束的光斑范 围放大。
8、 根据权利要求 2所述的荧光成像系统, 其中, 所述荧光激发单元包括: 激光器、 耦合器、 光纤和扩束模块, 所述激光器发出的激光光束分别经过所述 耦合器和光纤获得高斯光束, 然后通过所述扩束模块将所述高斯光束的光斑范 围放大。
9、 根据权利要求 7所述的荧光成像系统, 其中, 所述激光器的工作功率 大于 0W且不大于 15W。
10、 根据权利要求 8
Figure imgf000009_0001
所述激光器的工作功率 大于 0W且不大于 15W。
11、 根据权利要求 7所述的荧光成像 :、统,
Figure imgf000009_0002
所述扩束模块为透过近 红外光 90%以上的平凹透镜。
12、 根据权利要求 8
Figure imgf000009_0003
所述扩束模块为透过近 红外光 90%以上的平凹透镜。
13、 根据权利要求 1
Figure imgf000009_0004
所述荧光激发单元产生 的光束的路径与所述荧光物质激发出的荧光进入所述 ^测器的路径重合。
14、 根据权利要求 1所述的荧光成像系统, 其中 所述成像系统还包括三 维载物台, 用于承载所述荧光物质。
15、 根据权利要求 1所述的荧光成像系统, 其中 所述成像系统还包括照 明单元, 其提供照明光束照射在所述荧光物质上。
16、 根据权利要求 1
Figure imgf000009_0005
所述成像系统还包括麻
■M o
17、 根据权利要求 1所述的荧光成像系统, 其中 所述成像系统还包括分 别与所述荧光激发单元、 成像物镜、 探测器连接的计 机处理系统, 所述计算 机处理系统用于控制与调整所述荧光激发单元产生的光束的光路、成像物镜及 采集探测器的成像信号, 并对所述成像信号进行处理。
18、 权利要求 1所述的荧光成像系统在近红外量子点成像中的应用。
PCT/CN2013/080481 2012-08-09 2013-07-31 荧光成像系统及其应用 WO2014023176A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN 201210282679 CN102793533A (zh) 2012-08-09 2012-08-09 一种短波近红外量子点成像系统
CN201210282679.9 2012-08-09
CN2013103251952A CN103385698A (zh) 2012-08-09 2013-07-30 荧光成像系统及其应用
CN201310325195.2 2013-07-30

Publications (1)

Publication Number Publication Date
WO2014023176A1 true WO2014023176A1 (zh) 2014-02-13

Family

ID=47193026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080481 WO2014023176A1 (zh) 2012-08-09 2013-07-31 荧光成像系统及其应用

Country Status (2)

Country Link
CN (2) CN102793533A (zh)
WO (1) WO2014023176A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102793533A (zh) * 2012-08-09 2012-11-28 中国科学院苏州纳米技术与纳米仿生研究所 一种短波近红外量子点成像系统
CN103654700B (zh) * 2013-12-31 2016-08-31 中国人民武装警察部队总医院 荧光内窥成像系统及成像方法
CN111786260A (zh) * 2016-06-03 2020-10-16 通用医疗公司 用于微激光器粒子的系统和方法
CN106841155A (zh) * 2017-04-14 2017-06-13 苏州影睿光学科技有限公司 一种宽光谱荧光成像设备
CN106937884A (zh) * 2017-04-14 2017-07-11 苏州影睿光学科技有限公司 基于近红外成像的手术导航系统
CN106950686A (zh) * 2017-04-14 2017-07-14 苏州影睿光学科技有限公司 一种近红外荧光倒置显微镜系统及其应用
CN106943193A (zh) * 2017-04-27 2017-07-14 华中科技大学 共定位手术导航系统和相机头
CN108937849A (zh) * 2017-05-29 2018-12-07 王虎 一种用于肿瘤纳米靶向探针荧光成像及手术导航指示系统
CN107647852B (zh) * 2017-11-16 2020-05-12 重庆医科大学 一种在生物体组织内成像的系统与方法
CN107802239B (zh) * 2017-11-16 2020-07-31 重庆医科大学 一种在生物体组织内成像的系统
CN107907519A (zh) * 2017-12-12 2018-04-13 佛山科学技术学院 一种荧光分子信号的成像方法及其装置
CN108836262B (zh) * 2018-04-11 2021-08-31 秦少平 一种诱导荧光光谱图像融合影像光路
CN110141208A (zh) * 2019-04-12 2019-08-20 上海健康医学院 一种动态静态图像相结合的血流成像系统和方法
CN114919717A (zh) * 2022-05-26 2022-08-19 应急管理部天津消防研究所 用于消防救援的水下搜寻系统
CN116473512B (zh) * 2023-03-22 2024-05-03 上海交通大学 一种动物循环系统中外泌体的监测装置及监测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070073159A1 (en) * 2005-09-26 2007-03-29 Thomas Ehben Apparatus for recording a tissue containing a fluorescent dye
CN1953701A (zh) * 2004-03-11 2007-04-25 通用医院有限公司 使用荧光蛋白进行断层摄影成像的方法和系统
US20080253968A1 (en) * 2007-04-13 2008-10-16 Olympus Corporation In vivo examination method
CN101825570A (zh) * 2010-05-07 2010-09-08 中国医学科学院生物医学工程研究所 量子点编码荧光免疫分析仪
CN102793533A (zh) * 2012-08-09 2012-11-28 中国科学院苏州纳米技术与纳米仿生研究所 一种短波近红外量子点成像系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102277157B (zh) * 2011-05-30 2014-06-11 中国科学院苏州纳米技术与纳米仿生研究所 近红外硫化银量子点、其制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1953701A (zh) * 2004-03-11 2007-04-25 通用医院有限公司 使用荧光蛋白进行断层摄影成像的方法和系统
US20070073159A1 (en) * 2005-09-26 2007-03-29 Thomas Ehben Apparatus for recording a tissue containing a fluorescent dye
US20080253968A1 (en) * 2007-04-13 2008-10-16 Olympus Corporation In vivo examination method
CN101825570A (zh) * 2010-05-07 2010-09-08 中国医学科学院生物医学工程研究所 量子点编码荧光免疫分析仪
CN102793533A (zh) * 2012-08-09 2012-11-28 中国科学院苏州纳米技术与纳米仿生研究所 一种短波近红外量子点成像系统

Also Published As

Publication number Publication date
CN103385698A (zh) 2013-11-13
CN102793533A (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
WO2014023176A1 (zh) 荧光成像系统及其应用
Talari et al. Raman spectroscopy of biological tissues
Zacharakis et al. Fluorescent protein tomography scanner for small animal imaging
CN108885173A (zh) 用于时间分辨荧光光谱法的系统、装置和方法
EP3911919B1 (en) Systems, methods, and devices for three-dimensional imaging, measurement, and display of wounds and tissue specimens
WO2005089637A2 (en) Method and system for tomographic imaging using fluorescent proteins
JP2011115658A (ja) 周辺光条件下のインビボ誘導信号の光学画像化
Jo et al. In vivo simultaneous morphological and biochemical optical imaging of oral epithelial cancer
Li et al. Multiscale photoacoustic tomography of a genetically encoded near‐infrared FRET biosensor
US20080253968A1 (en) In vivo examination method
CN109276230A (zh) 一种短波红外肿瘤成像系统及方法
US20220108461A1 (en) Multi-Modal System for Visualization and Analysis of Surgical Specimens
Coquoz et al. Determination of depth of in vivo bioluminescent signals using spectral imaging techniques
Tseng et al. Optical imaging on the IVIS SpectrumCT system: general and technical considerations for 2D and 3D imaging
CN115096863A (zh) 光敏剂空间分布定量检测系统及其工作方法
WO2004063683A1 (ja) リアルタイム分光画像分析装置及び分析方法
Zeng et al. Fluorescence spectroscopy and imaging for skin cancer detection and evaluation
Mahato et al. Application of modulated optical excitation in the investigation and cure of diseases
CN113786170B (zh) 基于超光谱成像的肿瘤成像方法、装置、设备及存储介质
CN216823420U (zh) 一种可见-近红外i/ii区成像装置
Turchin et al. Frequency-domain optical diffusion tomography of fluorescent proteins
JPWO2021181484A5 (zh)
Pogue et al. Comparison of techniques for quantification of fluorescence from tissue
CN110720895A (zh) 一种基于fmt成像原理的小动物活体特征检测方法
CN113786170A (zh) 基于超光谱成像的肿瘤成像方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13827739

Country of ref document: EP

Kind code of ref document: A1