WO2014021793A1 - Cuve de séparation d'hydrogène de type hpc1 dotée d'un système de refroidissement de liquide - Google Patents

Cuve de séparation d'hydrogène de type hpc1 dotée d'un système de refroidissement de liquide Download PDF

Info

Publication number
WO2014021793A1
WO2014021793A1 PCT/TH2012/000030 TH2012000030W WO2014021793A1 WO 2014021793 A1 WO2014021793 A1 WO 2014021793A1 TH 2012000030 W TH2012000030 W TH 2012000030W WO 2014021793 A1 WO2014021793 A1 WO 2014021793A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
cooling
hydrogen separation
liquid
hpcl
Prior art date
Application number
PCT/TH2012/000030
Other languages
English (en)
Inventor
Sukij Tridsadeerak
Original Assignee
Sukij Tridsadeerak
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sukij Tridsadeerak filed Critical Sukij Tridsadeerak
Priority to PCT/TH2012/000030 priority Critical patent/WO2014021793A1/fr
Publication of WO2014021793A1 publication Critical patent/WO2014021793A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/10Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone
    • F02M25/12Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone the apparatus having means for generating such gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • HPC l Hydrogen Separation Tank with Liquid Cooling System consists of 2 main parts; the Hydrogen Separation Tahk and the Cooling System.
  • the Hydrogen Separation Tank is sealed inside the closed Liquid Cooling System which circulates cooling liquid and control the temperature of the Hydrogen Separation Tank. Since nearly all cars in Thailand relying on fossil fuel, HPC 1 Hydrogen Separation Tank with Liquid Cooling System aims to reduce fossil fuel usage and harmful gases, including CO and C0 2 , produced from it.
  • the hydrogen produced by HPCl Hydrogen Separation Tank with Liquid Cooling System can be used together with petrol or gas in any combustion engines and helps make them more environmental friendly.
  • Fig. 1 shows the round cornered rectangle cylinder, or round cylinder, stainless steel HPCl Liquid Cooling System tank.
  • the cooling tank is big enough to hold the Hydrogen Separation Tank inside.
  • the top of the cooling tank contains a lid with a cooling liquid refill pipe (2), a cooling liquid checking pipe (3), and an electrolyte solution level meter (16).
  • the cooling tank is designed to hold the Hydrogen Separation Tank (7) and the cooling liquid.
  • Two holes are made on the side of the cooling tank for installing round stainless steel pipes (4) and rubber tubes for cooling liquid circulation which circulate the heat generated from the Hydrogen Separation Tank.
  • 3-4 holders (5) are attached to the bottom of the cooling tank for holding the tank tightly to a structure.
  • the stainless steel bottom plate (6) is welded tightly to the cooling tank and prevents cooling liquid leakage.
  • Fig. 2 shows the round cylinder stainless steel Hydrogen Separation Tank (7) for holding electrolyte solution and hydrogen separation unit, and supply electrical current from a DC power supply to the apparatus.
  • the stainless steel Hydrogen Separation Tank lid (8) is welded to the tank (7).
  • the top of the lid contains 6 holes for installing an anode shaft (9), cathode shaft (10), electrolyte solution temperature sensor (14), hydrogen pipe connector (1 1 ), hydrogen gas pipe (12), electrolyte solution refill pipe (13), and a pressure safety valve (15).
  • the cathode shaft is connected to the lid, which connects to the tank, and it supplies negative electrical current from a DC power supply to the tank and the lid of the Hydrogen Separation Tank, while the anode shaft supplies positive electrical current from a DC power supply to the cell plate set (17).
  • Anode shaft (9) is a stainless steel shaft for holding and supplying positive electrical current from a DC power supply to the cell plates and the permanent magnet.
  • Cathode shaft (10) is a stainless steel shaft for supplying negative electrical current from a DC power supply.
  • Hydrogen pipe connector (1 1) is a stainless steel pipe that leads the hydrogen gas produced into the hydrogen gas pipe (12) and into the engine combustion chamber.
  • Hydrogen gas pipe ( ⁇ 2) is a Teflon pipe that leads the hydrogen gas produced into the engine combustion chamber.
  • Electrolyte solution refill pipe (13) is a stainless steel pipe for refilling electrolyte solution when signaled by the electrolyte solution level sensor (16).
  • Electrolyte solution temperature sensor (14) is a sensor for measuring the temperature of the electrolyte solution.
  • Pressure safety valve (15) is a safety device for keeping the pressure inside the tank within safety limit.
  • Electrolyte solution checking pipe (16) is a stainless steel pipe for inserting the electrolyte solution checking device.
  • Fig. 3 shows cell plate set installation which includes a stainless steel anode shaft (9), the Hydrogen Separation Tank lid (8), cell plates (17), propeller (18), and a permanent magnet (19).
  • the top of the anode shaft is connected to the Hydrogen Separation Tank lid, while the cell plates, propeller, and permanent magnet are attached to the bottom end of the anode shaft.
  • the permanent magnet is completely covered in a stainless steel case and it is installed in between the cell plates.
  • the cell plates are made of round stainless steel plates with holes in them.
  • Fig. 4 shows the cell plate (17) which contains 2 different size circles, inner circle ( 17.1 ) and outer circle (17.2).
  • the radius of the circles and the position of the 10 holes on the cell plate are defined by the angle of the triangular pyramid.
  • the first hole (17.3) locates in the center of the cell plate.
  • the center hole defines the position of the other 9 holes on the cell plate and it is used for attaching the cell plate to the shaft (9) (See Fig. 3).
  • the second, third, and fourth holes (17.4, 17.5, and 17.6) are on the circumference of the inner circle (17.1). These holes are positioned in the triangular pyramid shape with the center hole (17.3). The holes help balancing the electrolysis process when the electrical current changes.
  • the fifth, sixth, seventh, eighth, ninth, and tenth holes (17.7, 17.8, 17.9, 17.10, 17.1 1 ,
  • the cell plate contains 10 holes.
  • the center hole is for connecting the cell plate to the shaft.
  • the other 9 holes are positioned on 2 circles, inner and outer circles.
  • the inner circle contains 3 holes on its circumference, while the outer circle contains 6 holes.
  • the bottom cell plate is identical to the top cell plate.
  • Cell plate set (Fig. 3) consists of a permanent magnet (19) which is completely covered in stainless steel case to prevent corrosion from electrolyte solution and prolong the life of the magnet.
  • the permanent magnet is attached to the propeller (18) and the anode shaft (9) between the cell plates (17).
  • the magnet is for creating electromagnetic field while the DC current passes through the electrolyte solution.
  • the propeller (18) slows down the electrolyte solution flow speed while the electrical current from a DC power supply reacts with the electrolyte solution.
  • the electrolyte solution flow is influence by the electrical current and the angle of the holes on the cell plates (17), causing the solution to flow clockwise.
  • Electromagnetic field helps double the hydrogen gas produced by acting similarly to the DC power supply in the form of an alternator inside the tank (7).
  • the permanent magnet (19) installed inside the tank (7) helps create electromagnetic field and strengthen electrical current without adding another battery. It is the method to increase hydrogen gas produced which can be said that the electrical energy is transformed into mechanical energy in the form of latent energy.
  • HPC1 Hydrogen Separation Tank with Liquid Cooling System works through electrolysis process by passing DC current into electrolyte solution and creates a chemical reaction, resulting in water and energy.
  • the device which separates the solution with electricity is called electrolyte cell and it consists of electrical nodes, electrolyte solution container, and a DC power supply (alternator, battery, and capacitor).
  • a DC power supply supplies the current through electrolyte solution inside the Hydrogen Separation Tank, it induces a reaction that causes hydrogen to separate from electrolyte solution.
  • the Liquid Cooling System circulates cooling liquid and transfer the heat away.
  • the cooling system works on the command from a temperature sensor.
  • the sensor signals the pump to circulate the cooling liquid to the car's radiator.
  • the cooling system also has a fan to help reduce heat. The cooling system only works when given a signal from the temperature sensor, and the cooling system will automatically stop after the temperature decrease to a certain degree.
  • FIG. 1 Shows the pieture of the HPC 1 Hydrogen Separation Tank with Liquid Cooling
  • FIG. 1 Shows the shape of HPC1 Hydrogen Separation Tank with Liquid Cooling System.
  • Figure 3 Shows how cell plates and permanent magnet are connected to the anode shaft.
  • Figure Shows the cell plate and hole positions.
  • HPCl Hydrogen Separation Tank with Liquid Cooling System should be constructed described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

La présente invention se rapporte à une cuve de séparation d'hydrogène de type HPC1 qui est dotée d'un système de refroidissement de liquide et qui contient une cuve de séparation d'hydrogène agencée à l'intérieur d'une cuve à système de refroidissement de liquide. La cuve de refroidissement de liquide réduit de manière efficace la chaleur, ce qui aide à stabiliser le courant continu dans le procédé d'électrolyse. L'hydrogène produit peut être utilisé conjointement avec un combustible fossile et réduire de façon significative les gaz toxiques provenant d'un moteur. En particulier, il aide à réduire l'émission de monoxyde de carbone (CO) jusqu'à 95 %.
PCT/TH2012/000030 2012-08-01 2012-08-01 Cuve de séparation d'hydrogène de type hpc1 dotée d'un système de refroidissement de liquide WO2014021793A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/TH2012/000030 WO2014021793A1 (fr) 2012-08-01 2012-08-01 Cuve de séparation d'hydrogène de type hpc1 dotée d'un système de refroidissement de liquide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/TH2012/000030 WO2014021793A1 (fr) 2012-08-01 2012-08-01 Cuve de séparation d'hydrogène de type hpc1 dotée d'un système de refroidissement de liquide

Publications (1)

Publication Number Publication Date
WO2014021793A1 true WO2014021793A1 (fr) 2014-02-06

Family

ID=50028322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/TH2012/000030 WO2014021793A1 (fr) 2012-08-01 2012-08-01 Cuve de séparation d'hydrogène de type hpc1 dotée d'un système de refroidissement de liquide

Country Status (1)

Country Link
WO (1) WO2014021793A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1548583A (zh) * 2003-05-06 2004-11-24 金相南 包括直线型电解池的Brown气体批量生产设备
US20050217991A1 (en) * 2004-02-05 2005-10-06 Dahlquist David F Jr Fuel system for internal combustion engine
CN101012775A (zh) * 2001-06-04 2007-08-08 加拿大氢能源有限公司 一种电解槽及含有这种电解槽的内燃机成套部件
WO2011123075A1 (fr) * 2010-03-29 2011-10-06 Katanyoophatai Co., Ltd. Détail de l'invention

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101012775A (zh) * 2001-06-04 2007-08-08 加拿大氢能源有限公司 一种电解槽及含有这种电解槽的内燃机成套部件
CN1548583A (zh) * 2003-05-06 2004-11-24 金相南 包括直线型电解池的Brown气体批量生产设备
US20050217991A1 (en) * 2004-02-05 2005-10-06 Dahlquist David F Jr Fuel system for internal combustion engine
WO2011123075A1 (fr) * 2010-03-29 2011-10-06 Katanyoophatai Co., Ltd. Détail de l'invention

Similar Documents

Publication Publication Date Title
US20100206721A1 (en) On demand hydrogen enhancement system for internal and external combustion engine
EP3101158B1 (fr) Réacteur électrochimique pour la production de gaz oxyhydrogène
US9464553B2 (en) Power generation system
US20120299376A1 (en) Wind power plant comprising a battery device
CN203602727U (zh) 氢氧发生器
EP2762613A1 (fr) Système de carburant
JP2012122092A (ja) 燃焼補助装置
JP2012122383A (ja) 内燃機関システム
CN101915186A (zh) 一体化自循环内燃机微氢喷射节能降排装置
CN109267085B (zh) 一种水电解装置及设有该装置的除碳助燃系统
WO2014021793A1 (fr) Cuve de séparation d'hydrogène de type hpc1 dotée d'un système de refroidissement de liquide
WO2014021794A1 (fr) Cuve de séparation d'hydrogène de type hpc2 dotée d'un système de refroidissement de liquide
CN202493342U (zh) 氢氧除碳机
WO2014021792A1 (fr) Cuve de séparation d'hydrogène à solution électrolytique
KR101297985B1 (ko) 개방형 지열 교환 연결관의 이격장치
KR20090010090U (ko) 자동차용 산소/수소 혼합가스 발생장치
CN211573662U (zh) 一种船舶用燃油加热装置
CN203346482U (zh) 串并联组合高效氢氧气电解槽
WO2012169976A1 (fr) Détails de l'invention
CN202645780U (zh) 重机用氢气产生装置
CN108565373A (zh) 一种质子交换膜燃料电池减震箱
WO2012169977A1 (fr) Cuve de séparation d'hydrogène wdh3
WO2014035350A1 (fr) Cuve de séparation d'hydrogène de type 1
WO2012144961A1 (fr) Convertisseur catalytique destiné à un moteur alimenté en hydrogène
CN105509021A (zh) 高效醇类蒸汽发生器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12882390

Country of ref document: EP

Kind code of ref document: A1