WO2014021623A1 - Method and device for measuring internal quantum efficiency of an optical element - Google Patents

Method and device for measuring internal quantum efficiency of an optical element Download PDF

Info

Publication number
WO2014021623A1
WO2014021623A1 PCT/KR2013/006869 KR2013006869W WO2014021623A1 WO 2014021623 A1 WO2014021623 A1 WO 2014021623A1 KR 2013006869 W KR2013006869 W KR 2013006869W WO 2014021623 A1 WO2014021623 A1 WO 2014021623A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation current
ref
efficiency
internal quantum
quantum efficiency
Prior art date
Application number
PCT/KR2013/006869
Other languages
French (fr)
Korean (ko)
Inventor
심종인
한동표
정현돈
Original Assignee
주식회사 에타맥스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130090436A external-priority patent/KR101513242B1/en
Application filed by 주식회사 에타맥스 filed Critical 주식회사 에타맥스
Priority to US14/443,518 priority Critical patent/US9945898B2/en
Publication of WO2014021623A1 publication Critical patent/WO2014021623A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2632Circuits therefor for testing diodes
    • G01R31/2635Testing light-emitting diodes, laser diodes or photodiodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4247Photometry, e.g. photographic exposure meter using electric radiation detectors for testing lamps or other light sources

Definitions

  • the present invention relates to an optical device, and more particularly, to a method and apparatus for measuring the internal quantum efficiency of a light emitting diode.
  • a light emitting diode In general, a light emitting diode (LED) is widely used as a light source because of its small size, low power consumption, and high reliability.
  • the light emitting diode uses compound semiconductors such as InGaSaP, AlGaAs, GaAlP, GaP, InGaAlP, GaN.
  • the light emitting diode includes an N-type semiconductor layer composed of a compound semiconductor, an active layer on the N-type semiconductor layer, and a P-type semiconductor layer on the active layer.
  • a light-emitting diode (LED) is a kind of p-n junction diode, and is a semiconductor device using electroluminescence, a phenomenon in which light is emitted when a voltage is applied in a forward direction.
  • the central wavelength of light emitted from the light emitting diode is determined by the bandgap energy (Eg) of the semiconductor used.
  • TDEL temperature dependent electroluminescence
  • any excitation current for example, at room temperature
  • the cryogenic temperature can be assumed to be 100% internal quantum efficiency is limited to the case where the maximum value of the relative luminous efficiency gradually increases to a specific maximum value as the temperature is lowered.
  • changing the temperature from cryogenic to room temperature takes a very long time (about 5-6 hours) and requires expensive equipment for temperature testing.
  • the present invention is to provide a method and / or apparatus capable of measuring the internal quantum efficiency of the light emitting diode.
  • the present invention provides a method for measuring the efficiency of an optical device.
  • the method includes applying an excitation current ( I ) to an optical device to measure the intensity P of emitted light from the optical device; Calculating a relative luminous efficiency ⁇ from the ratio P / I of the intensity P of the emitted light to the excitation current I ; Obtaining a maximum relative luminous efficiency and a maximum excitation current corresponding to the maximum relative luminous efficiency; From the data of the excitation current below the maximum excitation current and the data of the relative luminous efficiency below the maximum relative luminous efficiency, the change amount of the recombination coefficient in the active layer of the optical element is small with respect to the carrier concentration change in the active layer of the optical element.
  • the extracting of the reference excitation current may include a curve of the second parameter y with respect to the first parameter x. Extracting the reference excitation current I ref from the second parameter y at the point where the derivative of b with respect to x becomes the minimum, wherein the first parameter x is ,
  • the second parameter (y) is Where I is the excitation current, I normal is the standard excitation current below the maximum excitation current, P is the intensity of the emitted light, and P normal is the intensity of the standard emitted light at I normal .
  • ⁇ IQE, ref of the optical device at the reference excitation current I ref is ,
  • a ref is the reference excitation current (I ref) the value of a
  • b ref is the b value of the in the reference excitation current (I ref)
  • P ref are (I ref) the reference exciting current in The intensity of the emitted light at
  • ⁇ IQE The internal quantum efficiency ⁇ IQE of the optical device at the various excitation currents I
  • is the relative luminous efficiency calculated by P / I at the excitation current I
  • ⁇ ref is the relative luminous efficiency calculated by P ref / I ref at the reference excitation current I ref .
  • the present invention provides an apparatus for measuring efficiency of an optical device.
  • the apparatus includes an optical measuring unit for applying an excitation current to the optical device to measure the intensity of the emitted light from the optical device; And extracting a reference excitation current at which the second derivative value of the second parameter y curve is minimized relative to the first parameter x, calculating an internal quantum efficiency of the optical device at the reference excitation current, and calculating the reference excitation current.
  • the second parameter (y) is Where I is the excitation current, I normal is the standard excitation current below the maximum excitation current, P is the intensity of the emitted light, and P normal is the intensity of the standard emitted light at I normal .
  • the reference excitation current I ref is a curve of the second parameter y with respect to the first parameter x. Is the excitation current at the point where the derivative of b with respect to x becomes the minimum.
  • the internal quantum efficiency ⁇ IQE, ref of the optical element at the reference excitation current I is ,
  • a ref is the reference excitation current (I ref) the value of a
  • b ref is the b value of the in the reference excitation current (I ref)
  • P ref are (I ref) the reference exciting current in The intensity of the emitted light at
  • ⁇ IQE The internal quantum efficiency ⁇ IQE of the optical device at the various excitation currents I
  • is the relative luminous efficiency calculated by P / I at the excitation current I
  • ⁇ ref is the relative luminous efficiency calculated by P ref / I ref at the reference excitation current I ref .
  • the internal quantum efficiency can be measured nondestructively within a short time (about 5 minutes) immediately after the production of the light emitting diode, and the internal quantum efficiency can be separated from the external quantum efficiency in the chip or package state Can be. Since the efficiencies of the light emitting diodes can be separated, it is possible to easily diagnose the cause of defects in the production of the light emitting diodes.
  • FIG. 1 is a view for explaining an efficiency measuring device of an optical device according to an embodiment of the present invention.
  • FIG. 2 is a flow chart for calculating the internal quantum efficiency according to an embodiment of the present invention.
  • 3 is a graph of the intensity of emitted light measured by injecting an excitation current into a light emitting diode.
  • FIG. 4A is a graph of relative light emission efficiency ⁇ with respect to the excitation current obtained from FIG. 3.
  • FIG. 4B is a conceptual diagram corresponding to FIG. 4A.
  • 5 is an x-y graph according to a model of the present invention.
  • Figure 7 shows the results of a and b for x and the derivatives therefor.
  • FIG. 9 is a view for explaining the details of the operation unit according to an embodiment of the present invention.
  • Embodiments according to the spirit of the present invention discloses a method for nondestructively measuring the internal quantum efficiency of the optical device (for example, a light emitting diode) at room temperature or constant temperature.
  • the carrier of the light emitting diode is excited by the excitation current and loses energy in the form of emitted light through recombination.
  • the apparatus 100 for measuring internal quantum efficiency of an optical device includes a central control unit 110, a current supply unit 120 for applying an excitation current to the optical device 140, and an optical measuring unit 130. Include.
  • the optical measuring unit 130 may include an optical sensor 131 and an optical fiber 132.
  • the optical device 140 may be a light emitting diode chip or a packaged light emitting diode.
  • the central controller 110 controls the operation of the optical measuring unit 130 and collects the intensity of the emitted light from the optical device 140 according to the application of the excitation current through the current supply unit 120 to improve the internal quantum efficiency of the optical device. Can be calculated
  • the central controller 110 may include a calculator 111 for calculating the internal quantum efficiency of the optical device.
  • the optical measuring unit 130 may exchange necessary data with the central control unit 110.
  • the central controller 110 may transmit a control signal to the current supply unit 120 so that a current having a required intensity can be injected into the optical device 140.
  • the light measuring unit 130 may detect the emitted light from the optical device 140, generate a predetermined electrical signal corresponding to the intensity of the emitted light, and transmit it to the central controller 110.
  • FIG. 2 is a flow chart for calculating the internal quantum efficiency according to an embodiment of the present invention.
  • the intensity P of the emission light of the light emitting diode may be measured by injecting an excitation current I into the light emitting diode.
  • an external quantum efficiency ⁇ EQE is mainly used.
  • the external quantum efficiency may be expressed as a product of light extraction efficiency ( ⁇ extaction ), injection efficiency ( ⁇ injection ) and radiative efficiency ( ⁇ radiative ), as shown in Equation 1 below.
  • the product of the luminous efficiency ( ⁇ radiative ) and the injection efficiency ( ⁇ injection ) is defined as an internal quantum efficiency ( ⁇ IQE ), and the luminous efficiency ( ⁇ radiative ) is generally a carrier-rate square as in Equation (2). expressed as a carrier rate equation. Therefore, the external quantum efficiency ⁇ EQE may be expressed as a product of the internal quantum efficiency ⁇ IQE and the light extraction efficiency ⁇ extaction , as in Equation 2.
  • the external quantum efficiency ⁇ EQE is (the number of photons escaped into free space per unit time) / (the number of electrons injected into the optical element per unit time), and the internal quantum efficiency ( ⁇ IQE ) is (active layer of the optical element per unit time).
  • the number of photons generated by / in the number of electrons injected into the optical device per unit time, and the injection efficiency ( ⁇ injection ) are (the number of electrons injected into the active layer of the optical device per unit time) / (injected into the optical device per unit time)
  • the number of electrons), the luminous efficiency ( ⁇ radiative ) is the number of photons generated in the active layer of the optical device per unit time / the number of electrons injected into the active layer of the optical device per unit time
  • the light extraction efficiency ( ⁇ extaction ) The number of photons that escaped into the free space per hour) / (the number of photons generated in the active layer of the optical device per unit time).
  • A is the non-luminescence recombination coefficient
  • B is the luminescence recombination coefficient
  • N is the carrier concentration of the active layer.
  • a and B are expressed as functions of N.
  • the relative luminous efficiency ⁇ can be calculated by (intensity of emitted light) / (excitation current), that is, P / I. (S20) From FIG. 4B, the maximum relative luminous efficiency ( ⁇ max ) and the maximum excitation current I max corresponding to the maximum relative luminous efficiency are obtained (S30).
  • the considered excitation current ( I ) Is the maximum relative luminous efficiency ( ⁇ max ) Corresponding to the maximum excitation current ( I max ) That is, the range of data considered first in the present invention is 0 ⁇ I ⁇ I max Is the range (hereinafter considered).
  • the emission light intensity P represents the light emission recombination process as a dichotomous recombination process of the free carrier as shown in Equation 3
  • the emission light intensity P may be expressed as a product of the square of the emission recombination coefficient B and the carrier concentration N of the active layer. Can be.
  • V a Is the volume of the light emitting diode active layer
  • q Is the charge of the electron
  • ⁇ c Denotes the optical coupling efficiency between the light emitting element and the light receiving element.
  • Standard excitation current I normal Is the maximum excitation current ( I max ) Excitation current as a standard for normalization required for analysis below.
  • N normal is the carrier concentration at the standard excitation current I normal .
  • the carrier concentration N may be expressed by only the intensity P of emission light and the emission recombination coefficient B , which is expressed as Equation 5 below.
  • the excitation current I can be expressed as shown in the following equation (6).
  • Equation 8 the excitation current I can be expressed by an expression relating to the emission recombination coefficient B , the non-emission recombination coefficient A , and the carrier concentration N. This is expressed as in Equation 8.
  • Equation 9 is simply expressed, it is expressed as Equation 10.
  • both a and b are variables depending on the carrier concentration N. From equations (3) and (10), the x-axis is monotonically proportional to the carrier concentration ( N ).
  • a is one appropriate to be represented as a function of the carrier concentration (N)
  • b is to be represented by a constant which does not depend on the carrier concentration (N).
  • the reference point is a point where the rate of change of the carrier concentration N of b is the smallest (the point that can be expressed as a constant), that is, the point where the derivative of b with respect to x becomes the minimum (that is, the point close to zero).
  • Equation 2 the model presented in Equation 2 may best fit.
  • the excitation current I at the reference point is defined as the reference excitation current I ref .
  • S40 the reference excitation current I ref .
  • the reference internal quantum efficiency ⁇ IQE, ref is represented by the model shown in Equation 2.
  • Equation 11 (S50) Can be expressed by Equation 11 (S50).
  • a ref , b ref , and P ref are the intensity a of the parameter a , the parameter b and the emission light P at the reference excitation current I ref , respectively.
  • ⁇ and ⁇ ref is the relative luminous efficiency are measured at each excitation current (I) and a reference excitation current (I ref).
  • 8 is a graph of the excitation current-internal quantum efficiency calculated by Equation (12). Very consistent with the graph of FIG. 2 actually measured.
  • FIG. 9 is a view for explaining the details of the operation unit according to an embodiment of the present invention.
  • the calculation unit 111 may perform the above-described steps of FIG. 2.
  • the calculation unit 111 may include a data input unit 112, an external quantum efficiency calculator 113, a maximum excitation current calculator 114, a reference excitation current strength extractor 115, a reference internal quantum efficiency calculator 116, and The internal quantum efficiency calculation unit 117 may be included.
  • the data input unit 112 collects the intensity P of the emitted light output from the light measuring unit 130.
  • the relative light emission efficiency calculator 113 calculates the relative light emission efficiency from the ratio P / I of the intensity P of the emitted light to the excitation current I as in S20.
  • the maximum excitation current calculator 114 obtains the maximum relative light emission efficiency and the corresponding maximum excitation current I max from the relative light emission efficiency data in the relative light emission efficiency calculator 113 as in S30.
  • the reference excitation current extractor 115 extracts the reference excitation current I ref as in S40.
  • the reference internal quantum efficiency calculation unit 116 calculates the internal quantum efficiency ⁇ IQE.ref of the optical element at the intensity of the reference excitation current as in S50.
  • the internal quantum efficiency calculator 117 calculates the internal quantum efficiency ⁇ IQE at various excitation currents as in S60.
  • 10 shows the ratio of relative luminous efficiencies at multiple temperatures to relative luminous efficiencies near an absolute temperature.
  • Relative luminous efficiency saturates at or near absolute temperature. Accordingly, the energy loss due to the non-luminescent recombination ( A ) is very small compared to the light emitting recombination of the carrier near the absolute temperature means that the internal quantum efficiency can be assumed to be 100%.
  • 10 is a measurement result of the internal quantum efficiency obtained for a plurality of temperatures through the temperature dependent electroluminescent efficiency (TDEL) method based on the above point.
  • TDEL temperature dependent electroluminescent efficiency
  • FIG. 11 shows internal quantum efficiencies at multiple temperatures obtained according to the model of the present invention.
  • the results obtained in FIG. 8 are very consistent with the actual measurement data of FIG. 10.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

A method for measuring the efficiency of an optical element is disclosed. The intensity of the light emitted from the optical element is measured by applying an injection current to the optical element, a relative radiative efficiency is calculated from a ratio of the intensity of the emitted light to the injection current, the maximum relative radiative efficiency and the maximum injection current corresponding to the maximum relative radiative efficiency are obtained, a reference injection current for minimizing an amount of change of a recombination coefficient in an active layer of the optical element in correspondence with a carrier density change in the active layer of the optical element is extracted from data of injection currents that are equal to or less than the maximum injection current and data of relative radiative efficiencies that are equal to or less than the maximum relative radiative efficiency, a reference internal quantum efficiency of the optical element is calculated from the reference injection current, and internal quantum efficiencies of the optical element in various injection currents are calculated from the reference internal quantum efficiency.

Description

광소자의 내부양자효율을 측정하는 방법 및 장치Method and device for measuring internal quantum efficiency of optical device
본 발명은 광소자에 관한 것으로, 보다 상세하게는 발광 다이오드의 내부양자효율을 측정하는 방법 및 장치에 관한 것이다. The present invention relates to an optical device, and more particularly, to a method and apparatus for measuring the internal quantum efficiency of a light emitting diode.
일반적으로 발광 다이오드(Light Emitting Diode: LED)는 소형, 저소비 전력, 고신뢰성의 특징을 구비하여 광원으로서 널리 이용되고 있다. 발광 다이오드는 InGaSaP, AlGaAs, GaAlP, GaP, InGaAlP, GaN 등의 화합물 반도체를 이용한다. 발광 다이오드는 화합물 반도체로 구성된 N형 반도체층, N형 반도체층 상의 활성층, 상기 활성층 상의 P형 반도체층을 포함한다. 발광 다이오드(light-emitting diode: LED)는 p-n 접합 다이오드의 일종으로, 순방향으로 전압이 인가될 때 빛이 방출되는 현상인 전기발광효과(electroluminescence)를 이용한 반도체 소자이다. 발광 다이오드로부터 방출되는 빛의 중심파장은 사용되는 반도체의 밴드 갭 에너지(bandgap energy: Eg)에 의해 결정된다. In general, a light emitting diode (LED) is widely used as a light source because of its small size, low power consumption, and high reliability. The light emitting diode uses compound semiconductors such as InGaSaP, AlGaAs, GaAlP, GaP, InGaAlP, GaN. The light emitting diode includes an N-type semiconductor layer composed of a compound semiconductor, an active layer on the N-type semiconductor layer, and a P-type semiconductor layer on the active layer. A light-emitting diode (LED) is a kind of p-n junction diode, and is a semiconductor device using electroluminescence, a phenomenon in which light is emitted when a voltage is applied in a forward direction. The central wavelength of light emitted from the light emitting diode is determined by the bandgap energy (Eg) of the semiconductor used.
발광다이오드의 특정온도 (예컨데, 상온)에서의 내부양자효율의 측정 방법으로서는 온도의존전기발광효율(TDEL; Temperature Dependent Electroluminescence) 방법이 가장 일반적으로 통용되고 있다. 이 방법은 극저온(약 10K 이하)에서 여기전류(I)에 따른 방출광의 세기(P)의 비율로 정의된 상대발광효율(η)(즉, η=P/I)이 최대가 되는 조건, 즉 최대 상대발광효율(η max ) (즉, η max =P max /I max ) 값을 갖는 최대 여기전류(I max )에서, 내부양자효율(η IQE )이 100%가 된다고 가정한다. 또한 특정 온도(예컨대, 상온)에서 임의의 여기전류(I)에서의 내부양자효율(η IQE )은 동일한 조건에서의 상대발광효율(η=P/I)과 극저온에서의 최대 상대발광효율(η max =P max /I max )의 비, 즉 (P/I)/( P max /I max )로부터 얻어진다. 그러나, 극저온일수록 내부양자효율을 100%로 가정할 수 있는 경우는 온도가 낮아짐에 따라 상대발광효율의 최대값이 특정 최대값으로 점점 증가하는 경우에 제한된다. 또한, 온도를 극저온에서 상온까지 변화시키는 것에 매우 장시간 (약 5 ~ 6 시간)이 소요되며 온도 테스트를 위한 고가의 장치가 필요하다. 온도 테스트를 위한 장치의 챔버의 크기 한계로 인하여 웨이퍼의 극히 일부분만을 잘라 측정하여야 하므로 전체 웨이퍼의 내부양자효율을 측정할 수 없다. (단위시간당 자유공간으로 빠져나온 광자의 수)/(단위시간당 광소자에 주입된 전자의 수)로 정의되는 외부양자효율(η EQE )은 실험적 측정이 가능하다. 외부양자효율(η EQE )은 내부양자효율 (η IQE )과 광추출효율(η extraction )의 곱으로 정의되기 때문에, 내부양자효율을 측정할 수 있다면 내부양자효율과 광추출효율의 분리 측정이 가능하다. As a method of measuring internal quantum efficiency at a specific temperature (eg, room temperature) of a light emitting diode, a temperature dependent electroluminescence (TDEL) method is most commonly used. This method uses the excitation current at cryogenic temperatures (approx.IIntensity of emitted light according toPRelative luminous efficacy defined as the ratio ofη)(In other words,η = P / I) Is the maximum, that is, the maximum relative luminous efficiency (η                  max ) (In other words,η                  max                 = P                  max                 / I                  max Maximum excitation current withI                  max ), The internal quantum efficiency (η                  IQE ) Is assumed to be 100%. Also, any excitation current (for example, at room temperature)IInternal quantum efficiency atη                  IQE ) Is the relative luminous efficiency (η = P / I) And maximum relative luminous efficacy at cryogenic temperatures (η                  max                 = P                  max                 / I                  max ) Ratio, i.e. (P / I) / (                 P                  max                 / I                  max ) Is obtained. However, the cryogenic temperature can be assumed to be 100% internal quantum efficiency is limited to the case where the maximum value of the relative luminous efficiency gradually increases to a specific maximum value as the temperature is lowered. In addition, changing the temperature from cryogenic to room temperature takes a very long time (about 5-6 hours) and requires expensive equipment for temperature testing. Due to the size limitation of the chamber of the device for temperature testing, only a small portion of the wafer has to be cut and measured, so the internal quantum efficiency of the entire wafer cannot be measured. External quantum efficiency defined by (number of photons exiting into free space per unit time) / (number of electrons injected into an optical element per unit time)η                  EQE ) Can be measured experimentally. External quantum efficiencyη                  EQE ) Is the internal quantum efficiency (η                  IQE ) And light extraction efficiencyη                  extraction Since the internal quantum efficiency can be measured, it is possible to separately measure the internal quantum efficiency and the light extraction efficiency.
본 발명은 발광 다이오드의 내부양자효율을 측정할 수 있는 방법 및/또는 장치를 제공하기 위한 것이다.The present invention is to provide a method and / or apparatus capable of measuring the internal quantum efficiency of the light emitting diode.
본 발명은 광소자의 효율 측정방법을 제공한다. 상기 방법은 광소자에 여기전류(I)를 인가하여 상기 광소자로부터의 방출광의 세기(P)를 측정하는 단계; 상기 여기전류(I)에 대한 상기 방출광의 세기(P)의 비(P/I)로부터 상대발광효율(η)을 계산하는 단계; 최대 상대발광효율 및 상기 최대 상대발광효율에 대응하는 최대 여기전류를 획득하는 단계; 상기 최대 여기전류 이하의 상기 여기전류의 데이터들 및 상기 최대 상대발광효율 이하의 상기 상대발광효율의 데이터들로부터, 상기 광소자의 활성층 내의 캐리어 농도 변화에 대하여 상기 광소자의 활성층 내의 재결합 계수의 변화량이 최소가 되는 기준 여기전류(I ref )를 추출하는 단계; 상기 기준 여기전류에서의 상기 광소자의 기준 내부양자효율(η IQE,ref )을 계산하는 단계; 및 상기 기준 내부양자효율(η IQE,ref )로부터, 다양한 여기전류에서의 상기 광소자의 내부양자효율(η IQE )을 계산하는 단계를 포함한다.The present invention provides a method for measuring the efficiency of an optical device. The method includes applying an excitation current ( I ) to an optical device to measure the intensity P of emitted light from the optical device; Calculating a relative luminous efficiency η from the ratio P / I of the intensity P of the emitted light to the excitation current I ; Obtaining a maximum relative luminous efficiency and a maximum excitation current corresponding to the maximum relative luminous efficiency; From the data of the excitation current below the maximum excitation current and the data of the relative luminous efficiency below the maximum relative luminous efficiency, the change amount of the recombination coefficient in the active layer of the optical element is small with respect to the carrier concentration change in the active layer of the optical element. Extracting a reference excitation current I ref to be; Calculating a reference internal quantum efficiency η IQE, ref of the optical device at the reference excitation current; And calculating, from the reference internal quantum efficiency η IQE, ref , the internal quantum efficiency η IQE of the optical device at various excitation currents.
상기 기준 여기전류를 추출하는 단계는, 제 1 파라메타(x) 대한 제 2 파라메타(y)의 곡선
Figure PCTKR2013006869-appb-I000001
에서 x에 대한 b의 미분이 최소가 되는 지점에서의 상기 제 2 파라메타(y)로부터, 상기 기준 여기전류(I ref )를 추출하는 단계를 포함하고, 상기 제 1 파라메타(x)는
Figure PCTKR2013006869-appb-I000002
, 상기 제 2 파라메타(y)는
Figure PCTKR2013006869-appb-I000003
이고, 여기서, I는 상기 여기전류, I normal 는 상기 최대 여기전류 이하의 표준 여기전류, P는 상기 방출광의 세기, P normal I normal 에서의 표준 방출광의 세기이다.
The extracting of the reference excitation current may include a curve of the second parameter y with respect to the first parameter x.
Figure PCTKR2013006869-appb-I000001
Extracting the reference excitation current I ref from the second parameter y at the point where the derivative of b with respect to x becomes the minimum, wherein the first parameter x is
Figure PCTKR2013006869-appb-I000002
, The second parameter (y) is
Figure PCTKR2013006869-appb-I000003
Where I is the excitation current, I normal is the standard excitation current below the maximum excitation current, P is the intensity of the emitted light, and P normal is the intensity of the standard emitted light at I normal .
상기 기준 여기전류(I ref )에서의 상기 광소자의 내부양자효율(η IQE,ref )은
Figure PCTKR2013006869-appb-I000004
이고, 여기서, a ref 는 상기 기준 여기전류(I ref )에서의 a의 값, b ref 는 상기 기준 여기전류(I ref )에서의 b의 값, 및 P ref 는 상기 기준 여기전류(I ref )에서의 방출광의 세기이다.
The internal quantum efficiency η IQE, ref of the optical device at the reference excitation current I ref is
Figure PCTKR2013006869-appb-I000004
, Wherein, a ref is the reference excitation current (I ref) the value of a, b ref is the b value of the in the reference excitation current (I ref), and P ref are (I ref) the reference exciting current in The intensity of the emitted light at
상기 다양한 여기전류(I)에서의 상기 광소자의 내부양자효율(η IQE )은
Figure PCTKR2013006869-appb-I000005
이고, 여기서 η는 상기 여기전류(I)에서의 P/I로 계산되는 상대발광효율, η ref 은 상기 기준 여기전류(I ref )에서의 P ref /I ref 로 계산되는 상대발광효율이다.
The internal quantum efficiency η IQE of the optical device at the various excitation currents I
Figure PCTKR2013006869-appb-I000005
Where η is the relative luminous efficiency calculated by P / I at the excitation current I , η ref is the relative luminous efficiency calculated by P ref / I ref at the reference excitation current I ref .
본 발명은 광소자의 효율 측정장치를 제공한다. 상기 장치는 광소자에 여기전류를 인가하여 상기 광소자로부터의 방출광의 세기를 측정하는 광 측정부; 및 제 1 파라메타(x) 대비 제 2 파라메타(y) 곡선의 이차 미분값이 최소가 되는 기준 여기전류를 추출하고, 상기 기준 여기전류에서의 상기 광소자의 내부양자효율을 계산하고, 상기 기준 여기전류에서의 상기 광소자의 내부양자효율로부터 다양한 여기전류에서의 상기 광소자의 내부양자효율을 계산하는 연산부를 포함하고, 상기 제 1 파라메타(x)는
Figure PCTKR2013006869-appb-I000006
, 상기 제 2 파라메타(y)는
Figure PCTKR2013006869-appb-I000007
이고, 여기서, I는 상기 여기전류, I normal 는 상기 최대 여기전류 이하의 표준 여기전류, P는 상기 방출광의 세기, P normal I normal 에서의 표준 방출광의 세기이다.
The present invention provides an apparatus for measuring efficiency of an optical device. The apparatus includes an optical measuring unit for applying an excitation current to the optical device to measure the intensity of the emitted light from the optical device; And extracting a reference excitation current at which the second derivative value of the second parameter y curve is minimized relative to the first parameter x, calculating an internal quantum efficiency of the optical device at the reference excitation current, and calculating the reference excitation current. And an operation unit for calculating the internal quantum efficiency of the optical device at various excitation currents from the internal quantum efficiency of the optical device in (1), wherein the first parameter (x)
Figure PCTKR2013006869-appb-I000006
, The second parameter (y) is
Figure PCTKR2013006869-appb-I000007
Where I is the excitation current, I normal is the standard excitation current below the maximum excitation current, P is the intensity of the emitted light, and P normal is the intensity of the standard emitted light at I normal .
상기 기준 여기전류(I ref )는, 제 1 파라메타(x) 대한 제 2 파라메타(y)의 곡선
Figure PCTKR2013006869-appb-I000008
에서 x에 대한 b의 미분이 최소가 되는 지점에서의 여기전류이다.
The reference excitation current I ref is a curve of the second parameter y with respect to the first parameter x.
Figure PCTKR2013006869-appb-I000008
Is the excitation current at the point where the derivative of b with respect to x becomes the minimum.
상기 기준 여기전류(I)에서의 상기 광소자의 내부양자효율(η IQE,ref )은
Figure PCTKR2013006869-appb-I000009
이고, 여기서, a ref 는 상기 기준 여기전류(I ref )에서의 a의 값, b ref 는 상기 기준 여기전류(I ref )에서의 b의 값, 및 P ref 는 상기 기준 여기전류(I ref )에서의 방출광의 세기이다.
The internal quantum efficiency η IQE, ref of the optical element at the reference excitation current I is
Figure PCTKR2013006869-appb-I000009
, Wherein, a ref is the reference excitation current (I ref) the value of a, b ref is the b value of the in the reference excitation current (I ref), and P ref are (I ref) the reference exciting current in The intensity of the emitted light at
상기 다양한 여기전류(I)에서의 상기 광소자의 내부양자효율(η IQE )은
Figure PCTKR2013006869-appb-I000010
이고, 여기서 η는 상기 여기전류(I)에서의 P/I로 계산되는 상대발광효율, η ref 은 상기 기준 여기전류(I ref )에서의 P ref /I ref 로 계산되는 상대발광효율이다.
The internal quantum efficiency η IQE of the optical device at the various excitation currents I
Figure PCTKR2013006869-appb-I000010
Where η is the relative luminous efficiency calculated by P / I at the excitation current I , η ref is the relative luminous efficiency calculated by P ref / I ref at the reference excitation current I ref .
본 발명의 개념을 이용하면, 발광다이오드의 생산 직후 단시간 내(약 5분)에 비파괴적으로 내부양자효율을 측정할 수 있으며, 칩 또는 패키지 상태에서의 외부양자효율로부터 내부양자효율을 분리 측정할 수 있다. 발광다이오드의 효율들을 분리 가능하므로, 발광다이오드 생산 시의 불량의 원인을 간단하게 진단할 수 있다.Using the concept of the present invention, the internal quantum efficiency can be measured nondestructively within a short time (about 5 minutes) immediately after the production of the light emitting diode, and the internal quantum efficiency can be separated from the external quantum efficiency in the chip or package state Can be. Since the efficiencies of the light emitting diodes can be separated, it is possible to easily diagnose the cause of defects in the production of the light emitting diodes.
도 1은 본 발명의 실시예에 따른 광소자의 효율 측정장치를 설명하기 위한 도면이다.1 is a view for explaining an efficiency measuring device of an optical device according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 내부양자효율을 구하는 흐름도이다.2 is a flow chart for calculating the internal quantum efficiency according to an embodiment of the present invention.
도 3은 발광 다이오드에 여기전류를 주입하여 측정된 방출광의 세기의 그래프이다.3 is a graph of the intensity of emitted light measured by injecting an excitation current into a light emitting diode.
도 4a는 도 3으로부터 얻어진 여기전류에 대한 상대발광효율(η)의 그래프이다.FIG. 4A is a graph of relative light emission efficiency η with respect to the excitation current obtained from FIG. 3.
도 4b는 도 4a에 대응하는 개념도이다.4B is a conceptual diagram corresponding to FIG. 4A.
도 5는 본 발명의 모델에 따른 x-y 그래프이다. 5 is an x-y graph according to a model of the present invention.
도 6은 바로 인접하게 측정된 두 지점들 A1 및 A2에서의 데이터들로부터 두 개의 1차 방정식들을 도시한다.6 shows two linear equations from the data at two points A1 and A2 measured immediately adjacent.
도 7은 x에 대한 a b의 결과 및 이에 대한 미분을 도시한다.Figure 7 shows the results of a and b for x and the derivatives therefor.
도 8은 계산된 여기전류-내부양자효율의 그래프이다. 8 is a graph of the calculated excitation current-internal quantum efficiency.
도 9는 본 발명의 실시예에 따른 연산부의 상세를 설명하기 위한 도면이다.9 is a view for explaining the details of the operation unit according to an embodiment of the present invention.
도 10은 절대온도 근처에서의 최대 상대발광효율 대비 다수의 온도들에서의 상대발광효율들의 비를 도시한다. 10 shows the ratio of the relative luminous efficiencies at multiple temperatures to the maximum relative luminous efficiency near the absolute temperature.
도 11은 본 발명의 모델에 따라 얻어진 다수의 온도들에서의 내부양자효율들을 도시한다.11 shows internal quantum efficiencies at multiple temperatures obtained according to the model of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 또한, 바람직한 실시예에 따른 것이기 때문에, 설명의 순서에 따라 제시되는 참조 부호는 그 순서에 반드시 한정되지는 않는다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosure may be made thorough and complete, and to fully convey the spirit of the invention to those skilled in the art. In addition, since it is in accordance with the preferred embodiment, reference numerals presented in the order of description are not necessarily limited to the order.
본 발명의 기술적 사상에 의한 실시예들은 광소자(예를 들어, 발광 다이오드)의 내부양자효율을 상온 또는 항온에서 비파괴적으로 측정하는 방법을 개시한다. 발광 다이오드의 캐리어는 여기전류에 의하여 여기되고, 재결합을 통하여 방출광의 형태로 에너지를 잃는다. Embodiments according to the spirit of the present invention discloses a method for nondestructively measuring the internal quantum efficiency of the optical device (for example, a light emitting diode) at room temperature or constant temperature. The carrier of the light emitting diode is excited by the excitation current and loses energy in the form of emitted light through recombination.
도 1은 본 발명의 기술적 사상에 의한 실시예에 따른 광소자의 내부양자효율 측정장치(100)를 설명하기 위한 도면이다. 도 1을 참조하여, 광소자의 내부양자효율 측정장치(100)는, 중앙 제어부(110), 광소자(140)에 여기 전류를 인가하기 위한 전류 공급부(120), 및 광 측정부(130)를 포함한다. 광 측정부(130)는 광 센서(131) 및 광 섬유(132)를 포함할 수 있다. 광소자(140)는 발광다이오드 칩 또는 패키지된 발광다이오드일 수 있다. 1 is a view illustrating an internal quantum efficiency measuring apparatus 100 of an optical device according to an embodiment of the inventive concept. Referring to FIG. 1, the apparatus 100 for measuring internal quantum efficiency of an optical device includes a central control unit 110, a current supply unit 120 for applying an excitation current to the optical device 140, and an optical measuring unit 130. Include. The optical measuring unit 130 may include an optical sensor 131 and an optical fiber 132. The optical device 140 may be a light emitting diode chip or a packaged light emitting diode.
중앙 제어부(110)는 광 측정부(130)의 동작을 제어하고, 전류 공급부(120)를 통한 여기전류의 인가에 따라 광소자(140)로부터의 방출 광의 세기를 수집하여 광소자의 내부양자효율을 계산할 수 있다. 중앙 제어부(110)는 광소자의 내부양자효율을 계산하기 위한 연산부(111)를 포함할 수 있다. 광 측정부(130)는 중앙 제어부(110)와 필요한 데이터를 주고 받을 수 있다. 중앙 제어부(110)는 전류 공급부(120)에 제어 신호를 전달하여 필요한 세기의 전류가 광소자(140)에 주입될 수 있도록 할 수 있다. 또한, 광 측정부(130)는 광소자(140)로부터의 방출 광을 검출하여 방출 광의 세기에 해당하는 소정 전기적 신호를 발생시켜 중앙 제어부(110)로 전달할 수 있다.The central controller 110 controls the operation of the optical measuring unit 130 and collects the intensity of the emitted light from the optical device 140 according to the application of the excitation current through the current supply unit 120 to improve the internal quantum efficiency of the optical device. Can be calculated The central controller 110 may include a calculator 111 for calculating the internal quantum efficiency of the optical device. The optical measuring unit 130 may exchange necessary data with the central control unit 110. The central controller 110 may transmit a control signal to the current supply unit 120 so that a current having a required intensity can be injected into the optical device 140. In addition, the light measuring unit 130 may detect the emitted light from the optical device 140, generate a predetermined electrical signal corresponding to the intensity of the emitted light, and transmit it to the central controller 110.
도 2는 본 발명의 실시예에 따른 내부양자효율을 구하는 흐름도이다.2 is a flow chart for calculating the internal quantum efficiency according to an embodiment of the present invention.
도 3 내지 도 8을 참조하여, 도 1의 연산부에서의 여기전류의 세기의 변화에 따른 광소자의 내부양자효율을 계산하는 방법이 설명된다.3 to 8, a method of calculating the internal quantum efficiency of the optical device according to the change of the intensity of the excitation current in the calculation unit of FIG. 1 will be described.
도 2 및 도 3을 참조하여, 발광 다이오드의 방출광의 세기(P)는 발광 다이오드에 여기전류(I)를 주입하여 측정될 수 있다. (S10)2 and 3, the intensity P of the emission light of the light emitting diode may be measured by injecting an excitation current I into the light emitting diode. (S10)
발광 다이오드의 성능의 지표로서 외부양자효율(external quantum efficiency, η EQE )이 주로 사용된다. 외부양자효율은 다음의 수학식 1과 같이 광추출효율(light extraction efficiency, η extaction )과 주입효율(injection efficiency, η injection )과 발광효율(radiative efficiency, η radiative )의 곱으로 표현될 수 있다. As an indicator of the performance of the light emitting diode, an external quantum efficiency η EQE is mainly used. The external quantum efficiency may be expressed as a product of light extraction efficiency ( η extaction ), injection efficiency ( η injection ) and radiative efficiency ( η radiative ), as shown in Equation 1 below.
수학식 1
Figure PCTKR2013006869-appb-M000001
Equation 1
Figure PCTKR2013006869-appb-M000001
여기서, 발광효율(η radiative )과 주입효율(η injection )의 곱을 내부양자효율(internal quantum efficiency, η IQE )로 정의하며, 발광효율(η radiative )은 일반적으로 수학식 2와 같은 캐리어 율 방정직(carrier rate equation)으로 표현된다. 따라서, 외부양자효율(η EQE )은, 수학식 2와 같이, 내부양자효율(η IQE )과 광추출효율(η extaction )의 곱으로 표현될 수 있다.Here, the product of the luminous efficiency ( η radiative ) and the injection efficiency ( η injection ) is defined as an internal quantum efficiency ( η IQE ), and the luminous efficiency ( η radiative ) is generally a carrier-rate square as in Equation (2). expressed as a carrier rate equation. Therefore, the external quantum efficiency η EQE may be expressed as a product of the internal quantum efficiency η IQE and the light extraction efficiency η extaction , as in Equation 2.
수학식 2
Figure PCTKR2013006869-appb-M000002
Equation 2
Figure PCTKR2013006869-appb-M000002
여기서, 외부양자효율(η EQE )은 (단위시간당 자유공간으로 빠져나온 광자의 수)/(단위시간당 광소자에 주입된 전자의 수), 내부양자효율(η IQE )은 (단위시간당 광소자의 활성층에서 생성된 광자의 수)/(단위시간당 광소자에 주입된 전자의 수), 주입효율(η injection )은 (단위시간당 광소자의 활성층으로 주입되는 전자의 수)/(단위시간당 광소자에 주입된 전자의 수), 발광효율(η radiative )은 (단위시간당 광소자의 활성층에서 생성된 광자의 수)/(단위시간당 광소자의 활성층으로 주입된 전자의 수), 광추출효율(η extaction )은 (단위시간당 자유공간으로 빠져나온 광자의 수)/(단위시간당 광소자의 활성층에서 생성된 광자의 수)로 정의될 수 있다. 수학식 2의 발광효율을 나타내는 캐리어 율방정식 (carrier rate equation)에서 A는 비발광재결합 계수, B는 발광재결합 계수, N은 활성층의 캐리어 농도를 나타낸다. ABN에 대한 함수로 표현된다. 이하에서는, 전술한 절대 광량에 의한 외부양자효율 대신 상대 광량의 증가 비율를 이용한 상대발광효율의 개념을 사용한다.Here, the external quantum efficiency η EQE is (the number of photons escaped into free space per unit time) / (the number of electrons injected into the optical element per unit time), and the internal quantum efficiency ( η IQE ) is (active layer of the optical element per unit time). The number of photons generated by / in the number of electrons injected into the optical device per unit time, and the injection efficiency ( η injection ) are (the number of electrons injected into the active layer of the optical device per unit time) / (injected into the optical device per unit time) The number of electrons), the luminous efficiency ( η radiative ) is the number of photons generated in the active layer of the optical device per unit time / the number of electrons injected into the active layer of the optical device per unit time, and the light extraction efficiency ( η extaction ) The number of photons that escaped into the free space per hour) / (the number of photons generated in the active layer of the optical device per unit time). In the carrier rate equation representing the luminous efficiency of Equation 2, A is the non-luminescence recombination coefficient, B is the luminescence recombination coefficient, N is the carrier concentration of the active layer. A and B are expressed as functions of N. Hereinafter, the concept of relative light emission efficiency using an increase rate of the relative light amount instead of the external quantum efficiency by the absolute light amount described above is used.
도 2 및 도 4a를 참조하여, (방출광의 세기)/(여기전류), 즉 P/I에 의하여 상대발광효율(η)이 계산될 수 있다.(S20) 도 4b로부터, 최대 상대발광효율(η max ) 및 최대 상대발광효율에 대응하는 최대 여기전류(I max )를 획득한다.(S30)Referring to FIGS. 2 and 4A, the relative luminous efficiency η can be calculated by (intensity of emitted light) / (excitation current), that is, P / I. (S20) From FIG. 4B, the maximum relative luminous efficiency ( η max ) and the maximum excitation current I max corresponding to the maximum relative luminous efficiency are obtained (S30).
도 4b에서 최대 상대발광효율(η max ) 이하의 여기전류의 영역에서는 상대발광효율의 변화는 거의 발광효율(η radiative )의 변화에 의하여 결정된다. 광추출효율(η extaction )은 광소자 구조 모양에 의하여 정해지기 때문에 주입전류 량에 따라 변하지 않는 일정한 상수 값으로 취급될 수 있다. 또한, 광소자에 전류를 흘리기 시작하는 단계에서는 전극으로부터 여기 주입된 전자들은 우선적으로 위치에너지가 가장 낮은 활성층 영역에 도달하여 재결합하기 시작하기 때문에 주입효율은 100%에 가까운 상태가 된다. 아래의 수학식들의 전개는 전류변화에 따라 주입효율 및 광추출효율의 변화가 발광효율 변화 보다 충분히 작아서 상수로 취급할 수 있는 구간에서 고려된다. 이때, 고려되는 여기전류(I)는 최대 상대발광효율(η max )에 대응하는 최대 여기전류(I max ) 이하이다. 즉, 본 발명에서 우선적으로 고려되는 데이터들의 범위는 0 < I < I max 의 범위(이하, 고려 구간)이다. 4b shows the maximum relative luminous efficiency (η                  max In the region of excitation current below), the change in relative light emission efficiency is almostη                  radiative Is determined by Light extraction efficiencyη                  extaction ) Is determined by the shape of the optical device, so it can be treated as a constant value that does not change with the injection current. In addition, in the step of starting to flow a current to the optical device, the electrons injected from the electrode first reach the active layer region having the lowest potential energy and start to recombine, so the injection efficiency is close to 100%. The development of the following equations is considered in the section that can be treated as a constant because the change in the injection efficiency and the light extraction efficiency is sufficiently smaller than the change in the luminous efficiency according to the current change. At this time, the considered excitation current (I) Is the maximum relative luminous efficiency (η                  max ) Corresponding to the maximum excitation current (I                  max ) That is, the range of data considered first in the present invention is 0 <I<I                  max Is the range (hereinafter considered).
방출 광의 세기(P)는, 수학식 3과 같이 발광재결합과정을 자유캐리어의 이분자재결합 과정으로 나타낼 경우, 발광 재결합 계수(B)와 활성층의 캐리어 농도(N)의 제곱의 곱의 형태로 표현될 수 있다. When the light emission intensity P represents the light emission recombination process as a dichotomous recombination process of the free carrier as shown in Equation 3, the emission light intensity P may be expressed as a product of the square of the emission recombination coefficient B and the carrier concentration N of the active layer. Can be.
수학식 3
Figure PCTKR2013006869-appb-M000003
Equation 3
Figure PCTKR2013006869-appb-M000003
여기서, V a 는 발광다이오드 활성층의 체적, q는 전자의 전하량, η c 는 발광소자와 수광소자 사이의 광결합효율을 나타낸다. 표준 여기전류(I normal )는 최대 여기전류(I max ) 이하에서의 해석시 필요한 정규화의 기준이 되는 여기전류이다. 표준 여기전류(I normal )에서 측정한 방출광의 세기(P)를 표준 방출광의 세기(P normal ) 라 정의한다. 표준 여기전류(I normal )에서의 상대발광효율을 표준 상대발광효율(η normal ) (즉, η normal = P normal /I normal )이라 정의한다. 이하의 실시 예에서는, 최대 상대발광효율(η max )에 대응하는 최대 여기전류(I max )를 표준 여기전류(I normal )로 하여 (즉, I normal = I max ) 데이터를 얻었다. 표준 방출광의 세기(P normal )는 다음의 수학식 4로 표현될 수 있다.here,V                  a Is the volume of the light emitting diode active layer,qIs the charge of the electron,η                  c                  Denotes the optical coupling efficiency between the light emitting element and the light receiving element. Standard excitation currentI                  normal ) Is the maximum excitation current (I                  max ) Excitation current as a standard for normalization required for analysis below. Standard excitation currentI                  normal Intensity of emitted light measured inP) Is the standard emission intensity (P                  normal It is defined as Standard excitation currentI                  normal Relative luminous efficacy at)η                  normal ) (In other words,η                  normal                 = P                  normal                 / I                  normal Is defined as). In the following embodiments, the maximum relative luminous efficiency (η                  max ) Corresponding to the maximum excitation current (I                  max ) The standard excitation current (I                  normal )I                  normal =I                  max ) Data was obtained. Intensity of standard emission light (P                  normal ) Can be expressed by the following equation (4).
수학식 4
Figure PCTKR2013006869-appb-M000004
Equation 4
Figure PCTKR2013006869-appb-M000004
여기서, N normal은 표준 여기전류(I normal )에서의 캐리어 농도이다. 수학식 3을 수학식 4로 나누어, 캐리어 농도(N)를 방출 광의 세기(P)와 발광 재결합 계수(B)만으로 표현할 수 있으며, 이는 다시 아래의 수학식 5와 같이 표현된다.Here, N normal is the carrier concentration at the standard excitation current I normal . By dividing Equation 3 by Equation 4, the carrier concentration N may be expressed by only the intensity P of emission light and the emission recombination coefficient B , which is expressed as Equation 5 below.
Figure PCTKR2013006869-appb-I000011
Figure PCTKR2013006869-appb-I000011
수학식 5
Figure PCTKR2013006869-appb-M000005
Equation 5
Figure PCTKR2013006869-appb-M000005
한편, 수학식 2 및 수학식 3으로부터, 여기전류(I)는 다음의 수학식 6과 같이 표현될 수 있다.On the other hand, from the equations (2) and (3), the excitation current I can be expressed as shown in the following equation (6).
수학식 6
Figure PCTKR2013006869-appb-M000006
Equation 6
Figure PCTKR2013006869-appb-M000006
표준 여기전류(I normal )에서, 다음의 수학식 7로 표현된다.In the standard excitation current ( I normal ), it is represented by the following equation (7).
수학식 7
Figure PCTKR2013006869-appb-M000007
Equation 7
Figure PCTKR2013006869-appb-M000007
수학식 6을 수학식 7로 나누어, 여기전류(I)를 발광 재결합 계수(B), 비발광 재결합 계수(A)와 캐리어 농도(N)에 관한 식으로 표현할 수 있다. 이는 수학식 8과 같이 표현된다.By dividing Equation 6 by Equation 7, the excitation current I can be expressed by an expression relating to the emission recombination coefficient B , the non-emission recombination coefficient A , and the carrier concentration N. This is expressed as in Equation 8.
수학식 8
Figure PCTKR2013006869-appb-M000008
Equation 8
Figure PCTKR2013006869-appb-M000008
수학식 8에 수학식 5의 캐리어 농도(N)를 대입하면, 다음의 수학식 9로 표현된다.Substituting the carrier concentration N of equation (5) into equation (8), it is expressed by the following equation (9).
수학식 9
Figure PCTKR2013006869-appb-M000009
Equation 9
Figure PCTKR2013006869-appb-M000009
수학식 9를 간단히 표현하면 수학식 10과 같이 표현된다.If Equation 9 is simply expressed, it is expressed as Equation 10.
수학식 10
Figure PCTKR2013006869-appb-M000010
Equation 10
Figure PCTKR2013006869-appb-M000010
여기서,here,
Figure PCTKR2013006869-appb-I000012
,
Figure PCTKR2013006869-appb-I000012
,
Figure PCTKR2013006869-appb-I000013
Figure PCTKR2013006869-appb-I000013
여기서, a는 A(N), B(N)에 따라 변하는, 캐리어 농도(N)에 대한 함수이다. b는 캐리어 농도(N)에 따라 변하지 않는 상수이다. 다시 말하면, 수학식 10으로 표현된 수학적 모델이 적용 가능한 경우는 b의 계수가 상수가 되어야 함을 의미한다. 수학식 10에서 I/I normal
Figure PCTKR2013006869-appb-I000014
은 외부에서 측정 가능한 값들이다. 이때,
Figure PCTKR2013006869-appb-I000015
,
Figure PCTKR2013006869-appb-I000016
이다. 그러므로, 도 5를 참조하여, 발광다이오드의 여기전류-방출광의 세기 특성으로부터, y = I/I normal ,
Figure PCTKR2013006869-appb-I000017
로 정의되는 x-y 그래프를 얻을 수 있다.
Where a is a function of carrier concentration N , which varies with A (N), B (N). b is a constant that does not change with carrier concentration ( N ). In other words, when the mathematical model represented by Equation 10 is applicable, it means that the coefficient of b should be a constant. In Equation 10, I / I normal and
Figure PCTKR2013006869-appb-I000014
Are externally measurable values. At this time,
Figure PCTKR2013006869-appb-I000015
,
Figure PCTKR2013006869-appb-I000016
to be. Therefore, referring to FIG. 5, from the intensity characteristic of the excitation current-emission light of the light emitting diode, y = I / I normal ,
Figure PCTKR2013006869-appb-I000017
You can get the xy graph defined by.
ab의 변화율은 x와 y의 변화율에 비하여 매우 작다. 따라서, 도 6을 참조하여, 바로 인접하게 측정된 두 지점들 A1 및 A2에서의 데이터들(x1, y1, x2, y2)로부터 두 개의 1차 방정식들(y 1 = ax 1 + bx 1 2 y 2 = ax 2 + bx 2 2 )을 얻을 수 있다. 2원 1차 방정식을 풀면 두 지점들(A1과 A2) 사이의 구간에서의 a b가 얻어질 수 있다. 이러한 a b는 다른 지점들(즉, 0 < I < I max 의 범위)에서 또한 얻어질 수 있다. 도 7은 고려 구간에서의 x에 대한 a b의 결과를 도시한다. a AndbThe rate of change of is very small compared to the rate of change of x and y. Thus, referring to FIG. 6, two linear equations (from the data x1, y1, x2, y2) at two points A1 and A2 measured immediately adjacent (y                  One                 = ax                  One                 + bx                  One                  2                  Andy                  2                 = ax                  2                 + bx                  2                  2  ) Can be obtained. Solving the binary first-order equation, the interval between the two points A1 and A2aAndbCan be obtained. SuchaAndbIs another point (i.e. 0 <I<I                  max Can also be obtained. 7 is for x in the consideration intervalaAndbShows the result.
도 7을 참조하여, a b 모두 캐리어 농도(N)에 따른 변수이다. 수학식 3 및 수학식 10으로부터, x축은 캐리어 농도(N)에 단조 비례한다. 전술한 바와 같이, 본 발명의 모델에 따르면, a 는 캐리어 농도(N)에 대한 함수로 표현되는 것이 타당하나, b 는 캐리어 농도(N)에 의존하지 않는 상수로 표현되어야 한다. 여기서는 b의 캐리어 농도(N)에 대한 변화율이 가장 작은 지점(상수로 표현이 가능한 지점), 즉 x에 대한 b의 미분이 최소가 되는 지점(즉, zero에 근접한 지점)을 기준점으로 가정한다. 다른 말로, 제 1 파라메타(x) 대비 제 2 파라메타(y) 곡선의 이차 미분값이 최소가 된다. 이러한 기준점에서, 수학식 2에서 제시한 모델이 가장 잘 부합할 수 있다. 기준점에서의 여기전류(I)는 기준 여기전류(I ref )로 정의된다.(S40) 따라서, 기준 여기전류(I ref )에서, 수학식 2에서 제시된 모델로 기준 내부양자효율(η IQE,ref )을 계산하면, 수학식 11로 표현될 수 있다.(S50)Referring to FIG. 7, both a and b are variables depending on the carrier concentration N. From equations (3) and (10), the x-axis is monotonically proportional to the carrier concentration ( N ). As it described above, according to the model of the present invention, a is one appropriate to be represented as a function of the carrier concentration (N), b is to be represented by a constant which does not depend on the carrier concentration (N). Here, it is assumed that the reference point is a point where the rate of change of the carrier concentration N of b is the smallest (the point that can be expressed as a constant), that is, the point where the derivative of b with respect to x becomes the minimum (that is, the point close to zero). In other words, the second derivative of the second parameter y curve relative to the first parameter x is minimal. At this reference point, the model presented in Equation 2 may best fit. The excitation current I at the reference point is defined as the reference excitation current I ref . (S40) Therefore, at the reference excitation current I ref , the reference internal quantum efficiency η IQE, ref is represented by the model shown in Equation 2. ) Can be expressed by Equation 11 (S50).
수학식 11
Figure PCTKR2013006869-appb-M000011
Equation 11
Figure PCTKR2013006869-appb-M000011
여기서, a ref , b ref , 및 P ref 는 각각 기준 여기전류(I ref )에서의 파라메타 a, 파라메타 b 및 방출광의 세기(P)이다. Here, a ref , b ref , and P ref are the intensity a of the parameter a , the parameter b and the emission light P at the reference excitation current I ref , respectively.
기준 내부양자효율(η IQE,ref )을 이용하여, 나머지 다양한 여기전류(I)에서의 내부양자효율(η IQE )을 얻을 수 있다. 수학식 12 참조하여, 측정된 전체의 여기전류(I)-내부양자효율(η IQE ) 특성을 얻을 수 있다. (S60)By using the reference internal quantum efficiency η IQE, ref , the internal quantum efficiency η IQE at the remaining various excitation currents I can be obtained. Referring to Equation 12, it is possible to obtain the measured overall excitation current ( I ) -internal quantum efficiency ( η IQE ) characteristics. (S60)
수학식 12
Figure PCTKR2013006869-appb-M000012
Equation 12
Figure PCTKR2013006869-appb-M000012
여기서, ηη ref 는 각각 여기전류(I)와 기준 여기전류(I ref )에서 측정된 상대발광효율들이다. 도 8은 수학식 12에 의하여 계산된 여기전류-내부양자효율의 그래프이다. 실제로 측정된 도 2의 그래프와 매우 일치한다.Here, η and η ref is the relative luminous efficiency are measured at each excitation current (I) and a reference excitation current (I ref). 8 is a graph of the excitation current-internal quantum efficiency calculated by Equation (12). Very consistent with the graph of FIG. 2 actually measured.
도 9는 본 발명의 기술적 사상에 의한 실시예에 따른 연산부의 상세를 설명하기 위한 도면이다.9 is a view for explaining the details of the operation unit according to an embodiment of the present invention.
도 9를 참조하여, 도 1의 중앙 제어부를 구성하는 연산부(111)의 광소자의 효율의 계산이 설명된다. 본 발명의 기술적 사상에 의한 실시예에 따른 연산부(111)는 전술한 도 2의 단계들을 수행할 수 있다. 연산부(111)는 데이터 입력부(112), 외부양자효율 계산부(113), 최대 여기전류 계산부(114), 기준 여기전류 세기 추출부(115), 기준 내부양자 효율 계산부(116), 및 내부양자 효율 계산부(117)를 포함할 수 있다. Referring to FIG. 9, calculation of the efficiency of the optical element of the calculating unit 111 constituting the central control unit of FIG. 1 will be described. The calculation unit 111 according to the embodiment of the inventive concept may perform the above-described steps of FIG. 2. The calculation unit 111 may include a data input unit 112, an external quantum efficiency calculator 113, a maximum excitation current calculator 114, a reference excitation current strength extractor 115, a reference internal quantum efficiency calculator 116, and The internal quantum efficiency calculation unit 117 may be included.
데이터 입력부(112)는 광 측정부(130)로부터 출력되는 방출광의 세기(P)를 수집한다. 상대발광효율 계산부(113)는, S20에서와 같이, 여기전류(I)에 대한 방출광의 세기(P)의 비(P/I)로부터 상대발광효율을 계산한다. 최대 여기전류 계산부(114)는, S30에서와 같이, 상대발광효율 계산부(113)에서의 상대발광효율 데이터로부터 최대 상대발광효율 및 이에 대응하는 최대 여기전류(I max )를 획득한다. 기준 여기전류 추출부(115)는, S40에서와 같이, 기준 여기전류(I ref )를 추출한다. 기준 내부양자효율 계산부(116)는, S50에서와 같이, 기준 여기전류의 세기에서의 광소자의 내부양자효율(η IQE.ref )을 계산한다. 내부양자효율 계산부(117)는, S60에서와 같이, 다양한 여기전류들에서의 내부 양자효율(η IQE )을 계산한다. The data input unit 112 collects the intensity P of the emitted light output from the light measuring unit 130. The relative light emission efficiency calculator 113 calculates the relative light emission efficiency from the ratio P / I of the intensity P of the emitted light to the excitation current I as in S20. The maximum excitation current calculator 114 obtains the maximum relative light emission efficiency and the corresponding maximum excitation current I max from the relative light emission efficiency data in the relative light emission efficiency calculator 113 as in S30. The reference excitation current extractor 115 extracts the reference excitation current I ref as in S40. The reference internal quantum efficiency calculation unit 116 calculates the internal quantum efficiency η IQE.ref of the optical element at the intensity of the reference excitation current as in S50. The internal quantum efficiency calculator 117 calculates the internal quantum efficiency η IQE at various excitation currents as in S60.
도 10은 절대온도 근처에서의 상대발광효율 대비 다수의 온도들에서의 상대발광효율들의 비를 도시한다. 절대온도 근처에서 상대발광효율이 온도에 무관하게 포화된다. 이에 따라, 절대온도 근처에서의 캐리어의 발광재결합에 비하여 비발광재결합(A)에 의한 에너지 손실(loss)이 매우 작아 내부양자효율을 100%로 가정할 수 있음을 의미한다. 도 10은 상기의 관점에 근거한 온도의존전기발광효율(TDEL) 방법을 통하여 다수의 온도에 대하여 얻어진 내부양자효율 측정결과이다. 10 shows the ratio of relative luminous efficiencies at multiple temperatures to relative luminous efficiencies near an absolute temperature. Relative luminous efficiency saturates at or near absolute temperature. Accordingly, the energy loss due to the non-luminescent recombination ( A ) is very small compared to the light emitting recombination of the carrier near the absolute temperature means that the internal quantum efficiency can be assumed to be 100%. 10 is a measurement result of the internal quantum efficiency obtained for a plurality of temperatures through the temperature dependent electroluminescent efficiency (TDEL) method based on the above point.
도 11은 본 발명의 모델에 따라 얻어진 다수의 온도들에서의 내부양자효율들을 도시한다. 도 8에서 얻어진 결과는 도 10의 실제 측정 데이터와 매우 일치한다.11 shows internal quantum efficiencies at multiple temperatures obtained according to the model of the present invention. The results obtained in FIG. 8 are very consistent with the actual measurement data of FIG. 10.
본 발명의 개념을 이용하면, 발광다이오드의 생산 직후 단시간 내(약 5분)에 비파괴적으로 내부양자효율을 측정할 수 있으며, 칩 또는 패키지 상태에서의 상대발광효율(η)로부터 내부양자효율(η IQE.ref )을 분리 측정할 수 있다. With the concept of the present invention, a short period of time immediately after the production of the light emitting diode in which (about 5 minutes) to be measured the internal quantum efficiency nondestructively, the internal quantum efficiency from the external light emission efficiency (η) of the chip or package state ( η IQE.ref ) can be measured separately.
발광다이오드의 효율들을 분리해냄으로써, 발광다이오드 생산 시 어디가 잘못되어 불량이 발생한 것인지 등의 원인을 간단하게 진단할 수 있다.By separating the efficiencies of the light emitting diodes, it is possible to easily diagnose the cause, such as where the defects are caused when the light emitting diodes are produced.

Claims (8)

  1. 광소자에 여기전류(I)를 인가하여 상기 광소자로부터의 방출광의 세기(P)를 측정하는 단계;Measuring an intensity P of the emitted light from the optical device by applying an excitation current I to the optical device;
    상기 여기전류(I)에 대한 상기 방출광의 세기(P)의 비(P/I)로부터 상대발광효율(η)을 계산하는 단계;Calculating a relative luminous efficiency η from the ratio P / I of the intensity P of the emitted light to the excitation current I ;
    최대 상대발광효율 및 상기 최대 상대발광효율에 대응하는 최대 여기전류를 획득하는 단계;Obtaining a maximum relative luminous efficiency and a maximum excitation current corresponding to the maximum relative luminous efficiency;
    상기 최대 여기전류 이하의 상기 여기전류의 데이터들 및 상기 최대 상대발광효율 이하의 상기 상대발광효율의 데이터들로부터, 상기 광소자의 활성층 내의 캐리어 농도 변화에 대하여 상기 광소자의 활성층 내의 재결합 계수의 변화량이 최소가 되는 기준 여기전류(I ref )를 추출하는 단계; From the data of the excitation current below the maximum excitation current and the data of the relative luminous efficiency below the maximum relative luminous efficiency, the change amount of the recombination coefficient in the active layer of the optical element is small with respect to the carrier concentration change in the active layer of the optical element. Extracting a reference excitation current I ref to be;
    상기 기준 여기전류에서의 상기 광소자의 기준 내부양자효율(η IQE,ref )을 계산하는 단계; 및Calculating a reference internal quantum efficiency η IQE, ref of the optical device at the reference excitation current; And
    상기 기준 내부양자효율(η IQE,ref )로부터, 다양한 여기전류에서의 상기 광소자의 내부양자효율(η IQE )을 계산하는 단계를 포함하는 광소자의 효율 측정방법.Calculating the internal quantum efficiency ( η IQE ) of the optical device at various excitation currents from the reference internal quantum efficiency ( η IQE, ref ).
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 기준 여기전류를 추출하는 단계는, 제 1 파라메타(x) 대한 제 2 파라메타(y)의 곡선
    Figure PCTKR2013006869-appb-I000018
    에서 x에 대한 b의 미분이 최소가 되는 지점에서의 상기 제 2 파라메타(y)로부터, 상기 기준 여기전류(I ref )를 추출하는 단계를 포함하고,
    The extracting of the reference excitation current may include a curve of the second parameter y with respect to the first parameter x.
    Figure PCTKR2013006869-appb-I000018
    Extracting the reference excitation current I ref from the second parameter y at the point where the derivative of b with respect to x becomes the minimum at
    상기 제 1 파라메타(x)는
    Figure PCTKR2013006869-appb-I000019
    , 상기 제 2 파라메타(y)는
    Figure PCTKR2013006869-appb-I000020
    이고, 여기서, I는 상기 여기전류, I normal 는 상기 최대 여기전류 이하의 표준 여기전류, P는 상기 방출광의 세기, P normal I normal 에서의 표준 방출광의 세기인 광소자의 효율 측정방법.
    The first parameter (x) is
    Figure PCTKR2013006869-appb-I000019
    , The second parameter (y) is
    Figure PCTKR2013006869-appb-I000020
    Where I is the excitation current, I normal is the standard excitation current below the maximum excitation current, P is the intensity of the emitted light, and P normal is the intensity of the standard emission light at I normal .
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 기준 여기전류(I ref )에서의 상기 광소자의 내부양자효율(η IQE,ref )은
    Figure PCTKR2013006869-appb-I000021
    이고, 여기서, a ref 는 상기 기준 여기전류(I ref )에서의 a의 값, b ref 는 상기 기준 여기전류(I ref )에서의 b의 값, 및 P ref 는 상기 기준 여기전류(I ref )에서의 방출광의 세기인 광소자의 효율 측정방법.
    The internal quantum efficiency η IQE, ref of the optical device at the reference excitation current I ref is
    Figure PCTKR2013006869-appb-I000021
    , Wherein, a ref is the reference excitation current (I ref) the value of a, b ref is the b value of the in the reference excitation current (I ref), and P ref are (I ref) the reference exciting current in Efficiency measurement method of optical element which is intensity of emitted light in
  4. 청구항 2에 있어서,The method according to claim 2,
    상기 다양한 여기전류(I)에서의 상기 광소자의 내부양자효율(η IQE )은
    Figure PCTKR2013006869-appb-I000022
    이고, 여기서 η는 상기 여기전류(I)에서의 P/I로 계산되는 상대발광효율, η ref 은 상기 기준 여기전류(I ref )에서의 P ref /I ref 로 계산되는 상대발광효율인 광소자의 효율 측정방법.
    The internal quantum efficiency η IQE of the optical device at the various excitation currents I
    Figure PCTKR2013006869-appb-I000022
    Where η is the relative luminous efficiency calculated by P / I at the excitation current I , η ref is the relative luminous efficiency calculated by P ref / I ref at the reference excitation current I ref Efficiency measurement method.
  5. 광소자에 여기전류를 인가하여 상기 광소자로부터의 방출광의 세기를 측정하는 광 측정부; 및An optical measuring unit measuring an intensity of emitted light from the optical device by applying an excitation current to the optical device; And
    제 1 파라메타(x) 대비 제 2 파라메타(y) 곡선의 이차 미분값이 최소가 되는 기준 여기전류를 추출하고, 상기 기준 여기전류에서의 상기 광소자의 내부양자효율을 계산하고, 상기 기준 여기전류에서의 상기 광소자의 내부양자효율로부터 다양한 여기전류에서의 상기 광소자의 내부양자효율을 계산하는 연산부를 포함하고, Extract the reference excitation current at which the second derivative of the second parameter (y) curve is minimized compared to the first parameter (x), calculate the internal quantum efficiency of the optical device at the reference excitation current, and at the reference excitation current A calculation unit for calculating the internal quantum efficiency of the optical device at various excitation currents from the internal quantum efficiency of the optical device of
    상기 제 1 파라메타(x)는
    Figure PCTKR2013006869-appb-I000023
    , 상기 제 2 파라메타(y)는
    Figure PCTKR2013006869-appb-I000024
    이고, 여기서, I는 상기 여기전류, I normal 는 상기 최대 여기전류 이하의 표준 여기전류, P는 상기 방출광의 세기, P normal I normal 에서의 표준 방출광의 세기인 광소자의 효율 측정장치.
    The first parameter (x) is
    Figure PCTKR2013006869-appb-I000023
    , The second parameter (y) is
    Figure PCTKR2013006869-appb-I000024
    Where I is the excitation current, I normal is the standard excitation current below the maximum excitation current, P is the intensity of the emitted light, and P normal is the intensity of the standard emission light at I normal .
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 기준 여기전류(I ref )는, 제 1 파라메타(x) 대한 제 2 파라메타(y)의 곡선
    Figure PCTKR2013006869-appb-I000025
    에서 x에 대한 b의 미분이 최소가 되는 지점에서의 여기전류인 광소자의 효율 측정장치.
    The reference excitation current I ref is a curve of the second parameter y with respect to the first parameter x.
    Figure PCTKR2013006869-appb-I000025
    The efficiency measuring device of an optical element which is an excitation current at a point where the derivative of b with respect to x becomes minimum.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 기준 여기전류(I)에서의 상기 광소자의 내부양자효율(η IQE,ref )은
    Figure PCTKR2013006869-appb-I000026
    이고, 여기서, a ref 는 상기 기준 여기전류(I ref )에서의 a의 값, b ref 는 상기 기준 여기전류(I ref )에서의 b의 값, 및 P ref 는 상기 기준 여기전류(I ref )에서의 방출광의 세기인 광소자의 효율 측정장치.
    The internal quantum efficiency η IQE, ref of the optical element at the reference excitation current I is
    Figure PCTKR2013006869-appb-I000026
    , Wherein, a ref is the reference excitation current (I ref) the value of a, b ref is the b value of the in the reference excitation current (I ref), and P ref are (I ref) the reference exciting current in Efficiency measuring device of optical element which is intensity of emitted light in
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 다양한 여기전류(I)에서의 상기 광소자의 내부양자효율(η IQE )은
    Figure PCTKR2013006869-appb-I000027
    이고, 여기서 η는 상기 여기전류(I)에서의 P/I로 계산되는 상대발광효율, η ref 은 상기 기준 여기전류(I ref )에서의 P ref /I ref 로 계산되는 상대발광효율인 광소자의 효율 측정장치.
    The internal quantum efficiency η IQE of the optical device at the various excitation currents I
    Figure PCTKR2013006869-appb-I000027
    Where η is the relative luminous efficiency calculated by P / I at the excitation current I , η ref is the relative luminous efficiency calculated by P ref / I ref at the reference excitation current I ref Efficiency measuring device.
PCT/KR2013/006869 2012-07-31 2013-07-31 Method and device for measuring internal quantum efficiency of an optical element WO2014021623A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/443,518 US9945898B2 (en) 2012-07-31 2013-07-31 Method and device for measuring internal quantum efficiency of an optical element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120084108 2012-07-31
KR10-2012-0084108 2012-07-31
KR10-2013-0090436 2013-07-30
KR1020130090436A KR101513242B1 (en) 2012-07-31 2013-07-30 Method and Apparatus for Measuring Internal Quantum Efficiency of LED

Publications (1)

Publication Number Publication Date
WO2014021623A1 true WO2014021623A1 (en) 2014-02-06

Family

ID=50028238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006869 WO2014021623A1 (en) 2012-07-31 2013-07-31 Method and device for measuring internal quantum efficiency of an optical element

Country Status (1)

Country Link
WO (1) WO2014021623A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116256322A (en) * 2023-02-28 2023-06-13 江苏第三代半导体研究院有限公司 Quantum efficiency test method and test system for miniature light-emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088389A (en) * 2005-09-26 2007-04-05 Yamaguchi Univ Equipment for measuring internal quantum efficiency of semiconductor light emitting device (led), and method therefor
JP2007263624A (en) * 2006-03-27 2007-10-11 Toyota Central Res & Dev Lab Inc Instrument and method for measuring internal quantum efficiency
KR20090053186A (en) * 2007-11-22 2009-05-27 삼성전기주식회사 Method for measuring internal quantum efficiency of nitride semiconductor device
KR20110083871A (en) * 2010-01-15 2011-07-21 한양대학교 산학협력단 Method and apparatus for measuring internal quantum well efficiency of led
KR20120081717A (en) * 2011-01-12 2012-07-20 한국과학기술원 Method for extracting internal quantum efficiency and recombination rates of optical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088389A (en) * 2005-09-26 2007-04-05 Yamaguchi Univ Equipment for measuring internal quantum efficiency of semiconductor light emitting device (led), and method therefor
JP2007263624A (en) * 2006-03-27 2007-10-11 Toyota Central Res & Dev Lab Inc Instrument and method for measuring internal quantum efficiency
KR20090053186A (en) * 2007-11-22 2009-05-27 삼성전기주식회사 Method for measuring internal quantum efficiency of nitride semiconductor device
KR20110083871A (en) * 2010-01-15 2011-07-21 한양대학교 산학협력단 Method and apparatus for measuring internal quantum well efficiency of led
KR20120081717A (en) * 2011-01-12 2012-07-20 한국과학기술원 Method for extracting internal quantum efficiency and recombination rates of optical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116256322A (en) * 2023-02-28 2023-06-13 江苏第三代半导体研究院有限公司 Quantum efficiency test method and test system for miniature light-emitting device

Similar Documents

Publication Publication Date Title
US9091721B2 (en) Multi-functional online testing system for semiconductor light-emitting devices or modules and method thereof
US20220011157A1 (en) Connected Epitaxial Optical Sensing Systems
CN201212842Y (en) Large power LED junction temperature measurement device
WO2014058150A1 (en) Random number generating method and apparatus using light source and single photon detector
US8593148B2 (en) System and method of testing high brightness LED (HBLED)
TWI345067B (en) Devices and methods for led life test
US8705023B2 (en) Testing apparatus and method for testing light emitting diode lamp
CN103217229B (en) A kind of junction temperature measurement method of light emitting diode and application
CN105829902B (en) The method and apparatus of non-cpntact measurement for the internal quantum in light emitting diode construction
CN100573173C (en) A kind of detection method of led chip
CN101699235A (en) Analysis and test system and test method for junction temperature of semiconductor lamp
WO2014021623A1 (en) Method and device for measuring internal quantum efficiency of an optical element
KR101513242B1 (en) Method and Apparatus for Measuring Internal Quantum Efficiency of LED
CN108140696A (en) Micro wire containing temperature measuring equipment or nanowire LED light source
US9847446B2 (en) Electroluminescent device with integrated sensor and method for controlling the emission of the device
KR101116840B1 (en) Method and Apparatus for Measuring Internal Quantum Well Efficiency of LED
Barroso et al. A characterization framework to optimize LED luminaire's luminous efficacy
Lock et al. LED junction temperature measurement using generated photocurrent
Li et al. In-situ measurement of junction temperature and light intensity of light emitting diodes with an internal sensor unit
KR101054512B1 (en) Measurement method of junction temperature of high efficiency light emitting diode module with analysis of single package properties in high efficiency light emitting diode
CN208063523U (en) A kind of LED battery voltage supervisory circuits
KR101284283B1 (en) Apparatus for inspection of electroluminescence sample
Muslu et al. Impact of electronics over localized hot spots in multi-chip white LED light engines
KR101552205B1 (en) Method for calculated thermal resistance of LED
CN112097911B (en) Method and device for judging thermal stability of micro LED array, computer equipment and medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14443518

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13825685

Country of ref document: EP

Kind code of ref document: A1