WO2014021033A1 - Information processing device, information processing method, and electrical product comprising information processing device - Google Patents

Information processing device, information processing method, and electrical product comprising information processing device Download PDF

Info

Publication number
WO2014021033A1
WO2014021033A1 PCT/JP2013/067666 JP2013067666W WO2014021033A1 WO 2014021033 A1 WO2014021033 A1 WO 2014021033A1 JP 2013067666 W JP2013067666 W JP 2013067666W WO 2014021033 A1 WO2014021033 A1 WO 2014021033A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
threshold
heat source
detection
information processing
Prior art date
Application number
PCT/JP2013/067666
Other languages
French (fr)
Japanese (ja)
Inventor
匡史 牧田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014021033A1 publication Critical patent/WO2014021033A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V9/00Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00
    • G01V9/005Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00 by thermal methods, e.g. after generation of heat by chemical reactions

Definitions

  • the present invention relates to an information processing device and an information processing method provided with a thermal sensor, and an electric product provided with the information processing device.
  • Patent Document 1 As an information processing apparatus including a thermal sensor, a human body detection sensor disclosed in Japanese Patent Application Laid-Open No. 2011-247726 (Patent Document 1) and an infrared sensor device disclosed in Japanese Patent Application Laid-Open No. 2011-22118 (Patent Document 2) There is an object detection device disclosed in Japanese Patent No. 3443969 (Patent Document 3).
  • the detection area is divided into a short distance and a long distance, two optical units are installed at an angle, and a long distance detection sector and a short distance detection from each optical unit. A gap is provided between the sector.
  • the number of infrared sensor elements that detect the heat source is made plural, and the characteristics of the optical system
  • the sensitivity of each sensor element can be adjusted according to the intensity distribution of infrared rays reaching each determined sensor element.
  • the heat source can be reliably detected by one infrared sensor.
  • an infrared detection unit including an infrared sensor that detects infrared rays and a light collecting unit that divides the infrared detection area into light collection regions is scanned by the drive unit. Then, the position of the object is discriminated from the output waveform from each condensing area corresponding to the scanning speed controlled by the drive control means by the signal processing means.
  • the information processing apparatus provided with the conventional thermal sensor has a problem that a heat source other than a person (for example, an electric heater) is detected as noise, and the electric heater is erroneously detected as a stationary human body, for example.
  • a heat source other than a person for example, an electric heater
  • the human body detection sensor disclosed in Patent Document 1 is advantageous as a method for distinguishing between a standing person and a small animal crawling on the floor, but does not have a function to determine whether the heat source is stationary or moving. It is impossible to distinguish a stationary human body from a heat source other than a person such as a stove or an air conditioner.
  • the infrared sensor device disclosed in Patent Document 2 does not have a function for determining a human motion or a stationary state, and cannot distinguish a stationary human body from a heat source other than a person such as a stove.
  • the infrared detecting means can detect a stationary human body with little movement by scanning the left and right with the driving means.
  • a stationary human body and a person such as a stove can be detected. It cannot be distinguished from other heat sources.
  • an object of the present invention is to provide an information processing apparatus and an information processing method capable of distinguishing between a stationary human body and a heat source other than a person, and an electric product including the information processing apparatus.
  • an information processing apparatus provides: A first sensor that has a first viewing angle, detects a far infrared ray emitted from a heat source, and outputs a signal representing a detection amount; A second sensor disposed adjacent to the first sensor, having a second viewing angle wider than the first viewing angle, detecting far infrared rays emitted from the heat source, and outputting a signal representing a detection amount; A sensor, A detection unit that detects the position of the heat source and the operating state of the heat source based on the output signal from the first sensor and the output signal from the second sensor; The first sensor and the second sensor are arranged such that the detection area of the first sensor is included in the detection area of the second sensor at a position away from the installation position of the two sensors by a detection distance.
  • the detection unit is configured such that the output value of the first sensor is A, the output value of the second sensor is B, the output value of the second sensor before the elapse of a preset set time t is Bt1, and the second sensor When the output value after the elapse of the set time t is Bt2, the first threshold ⁇ the second threshold, When the relationship of A ⁇ first threshold, B ⁇ first threshold, and
  • the heat source is outside the detection area of the first sensor and the second It is characterized in that it is detected as a heat source other than the human body in the detection area of the sensor.
  • the sensor is mounted to distinguish whether the heat source is a stationary human body or an operating human body or a heat source other than a person or a person. This is impossible without an information processing method suitable for the electrical equipment and application to be used.
  • a process of detecting the position of the heat source by determining the magnitude of the output value of the first sensor and the output value of the second sensor; The difference between the output value of the first sensor and the second sensor and the second threshold value, or the change amount of the output value of the second sensor alone before and after the set time elapses and the second threshold value And detecting the movement of the heat source.
  • the position of the heat source and the movement of the heat source can be accurately detected by a simple size discrimination process, and it becomes possible to distinguish and detect a stationary human body and a heat source other than a person.
  • the detection unit is configured such that the output value of the first sensor is A, the output value of the second sensor is B, the output value of the second sensor before the elapse of a preset set time t is Bt1, and the second sensor When the output value after the elapse of the set time t is Bt2, the first threshold ⁇ the second threshold, When the relationship of A ⁇ first threshold, B ⁇ first threshold, and
  • the detection unit is configured such that the output value of the first sensor is A, the output value of the second sensor is B, the output value of the second sensor before the elapse of a preset set time t is Bt1, and the second sensor When the output value after the elapse of the set time t is Bt2, the first threshold ⁇ the second threshold, When the relationship of A ⁇ first threshold, B ⁇ first threshold, and
  • a heat source other than a human body outside the detection area of the first sensor and within the detection area of the second sensor, and detection of the first sensor It is possible to distinguish and detect a moving human body outside the area and within the detection area of the second sensor.
  • the detection unit is configured such that the output value of the first sensor is A, the output value of the second sensor is B, the output value of the second sensor before the elapse of a preset set time t is Bt1, and the second sensor When the output value after the elapse of the set time t is Bt2, the first threshold ⁇ the second threshold, When the relationship of A ⁇ first threshold value and B ⁇ first threshold value is established, it is detected that the heat source does not exist within the detection area of the second sensor.
  • the first viewing angle of the first sensor is a minimum angle at which the full width of a human face can be captured at a position that is separated from the installation position of the first sensor by a preset first set distance
  • the second viewing angle of the second sensor is a minimum angle at which the full width between both shoulders of a person can be captured at a position separated from the installation position of the second sensor by the first set distance.
  • an electrical product for example, a personal computer on which the first sensor and the second sensor are mounted.
  • the first set distance which is the optimum distance between the first sensor and the second sensor and the operator, is defined in accordance with the display), and the first set distance (for example, 50 cm) at the optimum is set.
  • the visual field width of the first sensor is set to the Japanese average face width (20 cm), and the visual field width of the second sensor is set to the Japanese average shoulder width (40 cm).
  • the face part having the highest temperature on the human body surface and the chest part including the shoulder width having the largest area are the parts where the amount of far infrared radiation is large and the person can be detected accurately. Therefore, by overlapping the detection areas of the two first and second sensors having the viewing angles set as described above and performing the detection process as described above by the detection unit, the face and the chest are If it moves within the detection area in front of the first and second sensors, the amount of change in the heat source can be detected accurately. Conversely, even when moving outside the detection area, the amount of change in the heat source can be accurately captured.
  • the installation interval between the first sensor and the second sensor is 20 cm or less.
  • the interval between the first sensor and the second sensor is set to an average face width of 20 cm or less for the Japanese, thereby preventing non-detection at the intermediate portion of the first and second sensors. It becomes possible to reduce the area. Therefore, the face portion having a high surface temperature can be surely placed in the detection area, and the front stationary human body can be accurately detected.
  • the first viewing angle of the first sensor is a minimum angle capable of capturing the full width of a person's palm at a position separated from the installation position of the first sensor by a preset second set distance.
  • the second viewing angle of the second sensor is wider than the first viewing angle of the first sensor.
  • TVs televisions
  • game machines or personal computers with gestures. Therefore, it is necessary to detect far infrared rays from the hand, distinguishing them from far infrared rays from the face and both shoulders.
  • an electrical product for example, a TV in which the first sensor and the second sensor are mounted is used.
  • the second set distance that is the optimum distance between the first sensor and the second sensor and the operator is defined, and the first sensor at the optimum second set distance (for example, 200 cm) is defined.
  • the field of view of the Japanese is set to the average Japanese hand width (8cm), and the field of view of the second sensor is set to be greater than the width of the Japanese average hand (for example, 3 times the hand width of 8cm).
  • the palm of the palm is , If it moves into the detection area in front of the second sensor, the amount of change of the heat source can be detected accurately. Conversely, even when moving outside the detection area, the amount of change in the heat source can be accurately captured.
  • the viewing angle it is possible to accurately detect the far-infrared light of the palm that is radiated by a person in a detection area where there are few heat sources other than the person, so that it is possible to accurately detect stillness and movement patterns of the hand. It is.
  • the information processing method of the present invention is A first sensor having a first viewing angle detects a far-infrared ray emitted from a heat source and outputs a signal representing a detection amount; A signal having a second viewing angle wider than the first viewing angle and detecting a far infrared ray emitted from the heat source by a second sensor disposed adjacent to the first sensor and representing a detection amount.
  • the detection unit Based on the output signal from the first sensor and the output signal from the second sensor, the detection unit sets the output value of the first sensor to A, the output value of the second sensor to B, and the second sensor.
  • the heat source is a stationary human body in front of the first and second sensors. Detect When the relationship of A ⁇ first threshold, B ⁇ first threshold, and
  • a process of detecting the position of the heat source by determining the magnitude of the output signal of the first sensor and the output value of the second sensor; The difference between the output value of the first sensor and the second sensor and the second threshold value, or the change amount of the output value of the second sensor alone before and after the set time elapses and the second threshold value And detecting the movement of the heat source.
  • the position of the heat source and the movement of the heat source can be accurately detected by a simple size discrimination process, and it becomes possible to distinguish and detect a stationary human body and a heat source other than a person.
  • the electrical product of the present invention is The information processing apparatus of the present invention.
  • the main body The information processing apparatus includes a control unit that controls the operation of the main body unit according to a detection result of the detection unit.
  • the heat source position and the movement of the heat source can be accurately detected by a simple size discrimination process, and the information processing apparatus capable of distinguishing and detecting a stationary human body and a heat source other than a person is provided.
  • the operation of the main body is controlled by the control unit according to the detection result of the detection unit in the information processing apparatus. Therefore, when controlling the power on / off, brightness, etc. depending on the presence or absence of the human body, or when controlling the volume, brightness, brightness, program, etc. according to the movement pattern of the human hand, it is caused by heat source noise other than humans. Malfunctions can be prevented.
  • the information processing apparatus and information processing method of the present invention are used for the size discrimination process between the output values of the first and second sensors and the first threshold as a method for detecting whether or not there is a heat source.
  • a process of detecting the position of the heat source by determining the magnitude of the output value of the first sensor and the output value of the second sensor; The difference between the output value of the first sensor and the second sensor and the second threshold value, or the change amount of the output value of the second sensor alone before and after the set time elapses and the second threshold value And detecting the movement of the heat source.
  • the position of the heat source and the movement of the heat source can be accurately detected by a simple size discrimination process, and it becomes possible to distinguish and detect a stationary human body and a heat source other than a person.
  • the electrical product of the present invention can accurately detect the position of the heat source and the movement of the heat source by a simple size discrimination process, and can detect and distinguish between a stationary human body and a heat source other than a person.
  • An apparatus is provided, and the operation of the main body is controlled by the control unit according to the detection result of the detection unit in the information processing apparatus. Therefore, when controlling the power on / off, brightness, etc. depending on the presence or absence of the human body, or when controlling the volume, brightness, brightness, program, etc. according to the movement pattern of the human hand, it is caused by heat source noise other than humans. Malfunctions can be prevented.
  • FIG. 7 It is a schematic block diagram in the information processing apparatus of this invention. It is explanatory drawing of the viewing angle setting method of the 1st thermopile sensor in FIG. It is explanatory drawing of the viewing angle setting method of the 2nd thermopile sensor in FIG. It is explanatory drawing of the space
  • FIG. 16 is a diagram illustrating a state in which a stationary human body is present in the first detection area of the stationary human body detection sensor in FIG. 15. It is a figure which shows the state which has a stationary hand in the 1st detection area of the sensor for remote control. It is a figure which shows the state which has the moving hand in the 1st detection area of the sensor for remote control. It is a figure which shows the movement of the hand for changing a selection program to an ascending order, and the example of a display of a terrestrial digital broadcasting program change screen. It is a figure which shows the state of the hand for changing a selection program in descending order, and the example of a display of a terrestrial digital broadcasting program change screen. It is a flowchart of the volume change processing operation of TV. It is a flowchart of TV program guide confirmation change processing operation. It is a flowchart of the terrestrial digital channel change processing operation of TV. It is a flowchart of BS channel change processing operation of TV.
  • FIG. 1 is a schematic block diagram in the information processing apparatus of this Embodiment.
  • two sensors 1 and 2 for detecting far infrared rays are arranged adjacent to each other in the horizontal direction.
  • thermopile sensors are used as the sensors 1 and 2 that detect far infrared rays.
  • the outputs of the first and second thermopile sensors 1 and 2 are input to the detection unit 3, and a detection process as described in detail later is performed to detect a stationary human body, a moving human body, and a heat source other than a human.
  • the first thermopile sensor 1 and the second thermopile sensor 2 have different viewing angles. That is, as shown in FIG. 1A, the viewing angle (first viewing angle) of the first thermopile sensor 1 is narrower than the viewing angle (second viewing angle) of the second thermopile sensor 2 and is 22 °. On the other hand, the viewing angle (second viewing angle) of the second thermopile sensor 2 is 44 °.
  • the viewing angle of the first thermopile sensor 1 and the second thermopile sensor 2 assumes that the information processing apparatus is mounted on a display, and the distance between the display and a person is 50 cm to 150 cm. It is set so that the human body can be recognized accurately.
  • the viewing angle is set to “22 °” so that the full width of a Japanese face with an average face width of 20 cm located 50 cm away can be captured. Has been.
  • the viewing angle is set to “44 °” so that the full width between the shoulders of the Japanese who is 50 cm away and whose average shoulder width is 40 cm can be captured. Has been.
  • thermopile sensors 1 and 2 are not limited to “22 °” or “44 °”, but may be changed depending on the size of the detection target. That is, the viewing angle may be changed according to the chest, waist, head, etc., in addition to the face width and shoulder width, in accordance with the electrical equipment on which both thermopile sensors 1 and 2 are mounted.
  • the method for setting the viewing angle in the first thermopile sensor 1 and the second thermopile sensor 2 is not particularly limited. For example, it may be performed as follows.
  • a cylindrical first thermopile sensor 1 is used. Then, the first thermopile sensor 1 is inserted into a cylindrical light shielding member 5 having an inner diameter substantially the same as the outer diameter of the first thermopile sensor 1, and the light incident end of the light shielding member 5 is connected to the light incident surface of the first thermopile sensor 1. Further, the light incident angle to the first thermopile sensor 1 is limited by projecting. In this case, for example, when the outer diameter d of the light incident surface of the first thermopile sensor 1 is 4 mm, the first light shielding member 5 in the case where the viewing angle ⁇ 1 is 22 ° is represented by the relationship shown in FIG. The protrusion length L1 from the light incident surface of the one thermopile sensor 1 is found to be 10.21 mm.
  • the cylindrical second thermopile sensor 2 is inserted into the cylindrical light shielding member 6, and the light incident end of the light shielding member 6 is connected to the light incident surface of the second thermopile sensor 2.
  • the outer diameter d of the light incident surface of the second thermopile sensor 2 is 4 mm
  • the light-shielding member when the viewing angle ⁇ 2 is 44 ° according to the relationship shown in FIG.
  • the protrusion length L2 from the light incident surface of the second thermopile sensor 2 is determined to be 4.95 mm.
  • the viewing angle of the first thermopile sensor 1 can be set to “22 °” by mounting the first thermopile sensor 1 on the light shielding member 5 formed so that the protruding length L1 is 10.21 mm. it can.
  • the viewing angle of the second thermopile sensor 2 can be set to “44 °” by mounting the second thermopile sensor 2 on the light shielding member 6 formed so that the protruding length L2 is 4.95 mm. It can be done.
  • thermopile sensor 1 and the second thermopile sensor 2 it is possible to accurately capture infrared rays from the human body in the light receiving spots of both the thermopile sensors 1 and 2.
  • the noise from the heat source other than the person and the person who crosses behind can be reduced. Therefore, the stationary human body in front of both thermopile sensors 1 and 2 can be accurately determined.
  • the first thermopile sensor 1 and the second thermopile sensor 2 in which the viewing angle is set as described above are arranged such that the distance between them in the horizontal direction is 20 cm or less, which is the average face width of the Japanese. Are arranged in parallel.
  • the distance between the horizontal direction is 20 cm or less, which is the average face width of the Japanese.
  • the area 9 that is not detected can be narrowed.
  • thermopile sensors 1 and 2 when mounted on a display, a non-detection area having a width equal to or larger than the face width does not occur in the center at a position 50 cm from the front. Therefore, a stationary human body that is directly in front of both thermopile sensors 1 and 2 can be accurately detected.
  • the detection area by the first thermopile sensor 1 at the position where the detection distance, which is the distance from both the thermopile sensors 1 and 2 is 150 cm, is 60 cm in both the horizontal and vertical directions.
  • the detection area by the second thermopile sensor 2 is 120 cm in both the horizontal direction and the vertical direction.
  • thermopile sensor 1 As described above, the viewing angle of the first thermopile sensor 1 is set to the minimum angle “22 °” that can capture the full width of the face of a person with a face width of 20 cm located 50 cm away, and the second thermopile sensor Let the viewing angle of 2 be the minimum angle “44 °” that can capture the full width between the shoulders of a person with a shoulder width of 40 cm located 50 cm away.
  • the thermopile sensors 1 and 2 are arranged side by side in the horizontal direction with a distance of 20 cm or less between them. Therefore, as shown in FIGS. 5 (a) and 5 (b), when the information processing apparatus is mounted on a display on a desk 70 cm from the floor, both thermopile sensors 1 and 2 are located 40 cm on the desk. Therefore, it is difficult for heat sources other than people such as the air conditioner 10 and the stove 11 to enter the detection area, and the air conditioner 10 and the stove 11 are prevented from being erroneously recognized as a stationary human body.
  • thermopile sensor 1 a region where the detection area of the first thermopile sensor 1 and the detection area of the second thermopile sensor 2 overlap is designated as a first area. This is called a detection area 7. Further, an area of only the detection area of the second thermopile sensor 2 is referred to as a second detection area 8. A non-detection area that is neither the detection area of the first thermopile sensor 1 nor the detection area of the second thermopile sensor 2 is referred to as a third detection area 9.
  • the detection unit 3 detects a stationary human body, a moving human body, and a heat source other than a human by the following detection process based on the outputs from both the thermopile sensors 1 and 2. is there.
  • 6 and 7 are flowcharts of the human body detection processing operation performed by the detection unit 3.
  • the human body detection process will be described with reference to FIGS. 6 and 7.
  • the first sensor 1 is the voltage (output voltage) of the output signal of the first thermopile sensor 1
  • the second sensor 2 is the output voltage of the second thermopile sensor 2. It is.
  • step S1 output signals from the first thermopile sensor 1 and the second thermopile sensor 2 are acquired, and an output voltage is acquired.
  • step S2 it is determined whether “output voltage of first thermopile sensor 1 ⁇ first threshold (650 mV)” and “output voltage of second thermopile sensor 2 ⁇ first threshold”. As a result, if any output voltage is equal to or higher than the first threshold (650 mV), it is determined that there is a human body (heat source) in the first detection area 7 (front), and the process proceeds to step S3. Otherwise, the process proceeds to step S6.
  • FIG. 8 is an explanatory diagram of a method for setting the first threshold value.
  • FIG. 8A is a diagram showing the relationship between the detection distance and the thermopile sensor output.
  • FIG. 8B is an explanatory diagram of the human best position. As shown in FIG. 8B, when it is assumed that the information processing apparatus is mounted on a display, the best position from both human thermopile sensors 1 and 2 is 50 cm to 150 cm. Further, as shown in FIG. 8A, the thermopile sensors 1 and 2 have higher output voltages as a person approaches.
  • step S3 it is determined whether or not “
  • FIG. 9 shows a state where there is a stationary human body in the first detection area 7 (front).
  • FIG. 9A shows an area where a human body is present.
  • FIG. 9B shows a change with time of the output voltages of the sensors 1 and 2 when a stationary human body is present in the first detection area 7 (front).
  • step S2 it is determined that the output voltages of both thermopile sensors 1 and 2 are equal to or higher than the first threshold (650 mV), so that the human body (heat source) is placed in the first detection area 7 (front). ) Is determined. Further, in step S3, it is determined that the value of
  • the human body in the area 7 (front) is determined to be a stationary human body.
  • FIG. 10 is an explanatory diagram of a method for setting the second threshold value.
  • FIG. 10A is a diagram showing the relationship between the detection distance and the thermopile sensor output.
  • FIG. 10B is an explanatory diagram of an operating human body.
  • FIG. 10C is a diagram showing changes in the thermopile sensor output when the face and body are moved to the left and right.
  • thermopile sensor when it is determined that a person is moving (that is, when the moving distance exceeds 20 cm) is required.
  • thermopile sensors 1 As shown in FIG. 10B, when it is assumed that the information processing apparatus is mounted on a display and the best position from both human thermopile sensors 1 and 2 is 50 cm to 150 cm, both thermopile sensors 1 As shown in FIG. 10 (a), when the small dwarf moves 20 cm forward, the output voltage of both thermopile sensors 1 and 2 increases by 50 mV. Further, as can be seen from FIG. 10 (c), when the dwarf moves his / her body left and right, the output voltage drops by 50 mV.
  • the output voltage difference 50 mV between the two thermopile sensors 1 and 2 is set as the second threshold value used for determining whether or not there is a stationary human body.
  • the second threshold value setting method when the movement of a person is determined, the second threshold value cannot be detected even when a child is present based on the fluctuation of the sensor output value of a small person. This is useful for reducing false positives.
  • the second threshold value may be changed according to the electrical equipment on which the information processing apparatus is mounted. For example, when it is desired to capture the movement of a person smaller than 20 cm, the movement distance of the person serving as a criterion may be defined to be smaller than 20 cm. When it is desired to capture the movement of a person larger than 20 cm, the determination is performed. A reference person's moving distance may be defined to be larger than 20 cm.
  • step S5 in the flowchart of the human body detection processing operation shown in FIG. 6, it is determined that the human body in the first detection area 7 (front) is an operating human body. After that, the process proceeds to step S14.
  • FIG. 11 shows a state where there is a moving human body in the first detection area 7 (front).
  • Fig.11 (a) shows the area where a human body exists.
  • FIG. 11B shows a change with time of the output voltages of the sensors 1 and 2 when an operating human body is present in the first detection area 7 (front).
  • step S2 it is determined that the output voltages of both thermopile sensors 1 and 2 are equal to or higher than the first threshold (650 mV), so that a human body (heat source) is placed in the first detection area 7 (front). ) Is determined. Further, in step S3, it is determined that the value of
  • the human body in the detection area 7 (front) is determined to be an operating human body.
  • step S6 in the flowchart of the human body detection processing operation shown in FIG. 6, “output voltage of the first thermopile sensor 1 ⁇ first threshold (650 mV)” and “output voltage of the second thermopile sensor 2 ⁇ the first It is determined whether or not it is “threshold”. As a result, if so, it is determined that there is a human body (heat source) in the second detection area 8, and the process proceeds to step S7. On the other hand, if not, the process proceeds to step S12. In step S7, the output voltage value of the second thermopile sensor 2 taken in in step S1 is stored in the memory 4 (see FIG. 1A) as “Vt1”.
  • step S8 after the elapse of 1000 msec as an example of the set time t after the output voltage of the second thermopile sensor 2 is taken in in step S1, the output voltage of the second thermopile sensor 2 is taken in as “Vt2”. Stored in the memory 4.
  • step S9 it is determined whether or not “
  • step S3 the output voltage of the first thermopile sensor 1 is compared with the output voltage of the second thermopile sensor 2, whereas in this step S9, the second voltage before and after the time of 1000 msec is compared. The output voltage of the thermopile sensor 2 is compared. This is because it has already been determined in step S6 that there is a heat source in the second detection area 8.
  • step S10 it is determined that the heat source in the second detection area 8 (periphery) is a heat source other than the human body. After that, the process proceeds to step S14.
  • FIG. 12 shows a state in which there is a heat source other than a non-moving human body in the second detection area 8 (periphery).
  • FIG. 12A shows an area where the stove 11 as a heat source other than a human body without movement is present.
  • FIG. 12B shows the change with time of the output voltages of both thermopile sensors 1 and 2 when there is a heat source other than the non-moving human body in the second detection area 8 (periphery).
  • step S6 it is determined that “the output voltage of the first thermopile sensor 1 ⁇ the first threshold (650 mV)” and “the output voltage of the second thermopile sensor 2 ⁇ the first threshold”. Therefore, it is determined that there is a heat source in the second detection area 8 (periphery).
  • step S9 since it is determined that “
  • Vt1 and Vt2 are output voltages of the second thermopile sensor 2 measured with a time interval, and the time interval is set to 1 second.
  • the time interval is not limited to 1 second, and may be changed in accordance with the electronic device in which the information processing apparatus is mounted.
  • step S11 in the flowchart of the human body detection processing operation shown in FIG. 6, it is determined that there is an operating human body in the second detection area 8 (periphery). After that, the process proceeds to step S14.
  • FIG. 13 shows a state where there is an operating human body in the second detection area 8 (periphery).
  • FIG. 13A shows an area where an operating human body is present.
  • FIG. 13B shows a change with time of the output voltages of both thermopile sensors 1 and 2 when an operating human body is present in the second detection area 8 (periphery).
  • step S6 it is determined that “the output voltage of the first thermopile sensor 1 ⁇ the first threshold (650 mV)” and “the output voltage of the second thermopile sensor 2 ⁇ the first threshold”. Therefore, it is determined that there is a heat source in the second detection area 8 (periphery). Further, in step S9, it is determined that
  • step S12 in the flowchart of the human body detection processing operation shown in FIG. 7, “output voltage of first thermopile sensor 1 ⁇ first threshold value (650 mV)” and “output voltage of second thermopile sensor 2 ⁇ first threshold value” are satisfied. It is determined whether or not there is. As a result, if any output voltage falls below the first threshold value (650 mV), the process proceeds to step S13. Otherwise, the process returns to step S1 and proceeds to the next human body detection processing operation. In step S13, it is determined that there is no human body (heat source) in the first and second detection areas 7 and 8, and there is no heat source other than the human body. After that, the process proceeds to step S14.
  • first threshold value 650 mV
  • FIG. 14 shows a state in which the first and second detection areas 7 and 8 have neither a human body nor a heat source other than the human body.
  • FIG. 14A shows an area where a human body or a heat source other than the human body is present.
  • FIG. 14B shows changes with time in the output voltages of both thermopile sensors 1 and 2 when the first and second detection areas 7 and 8 have neither a human body nor a heat source other than the human body.
  • step S12 it is determined that “the output voltage of the first thermopile sensor 1 ⁇ the first threshold value (650 mV)” and “the output voltage of the second thermopile sensor 2 ⁇ the above first threshold value”. Therefore, it is determined that the first and second detection areas 7 and 8 have neither a human body nor a heat source other than the human body.
  • step S14 in the flowchart of the human body detection processing operation shown in FIG. 6, it is determined whether or not the power is turned off. As a result, if it is not turned off, the process returns to step S1 and shifts to the next detection processing operation. On the other hand, if it is off, the human body detection processing operation is terminated.
  • the two first and second thermopile sensors 1 and 2 that detect far infrared rays are arranged adjacent to each other in the horizontal direction, and the first and second thermopile sensors 1 and 2 are arranged.
  • 2 is input to the detection unit 3, and the detection process is performed to detect a stationary human body, a moving human body, and a heat source other than a human.
  • the viewing angle of the first thermopile sensor 1 is set to the minimum angle “22 °” that can capture the full width of a Japanese face with an average face width of 20 cm at a position 50 cm away.
  • the viewing angle of the second thermopile sensor 2 is set to a minimum angle “44 °” that can capture the entire width between both shoulders of a Japanese person with an average shoulder width of 40 cm located 50 cm away.
  • thermopile sensor 1 and the second thermopile sensor 2 are set to 20 cm or less, which is the average face width of Japanese people, and is 50 cm from the front at the center of both thermopile sensors 1 and 2.
  • the third detection area 9 which is a non-detection area having a width equal to or larger than the face width is not generated at the position, so that the stationary human body directly in front of both the thermopile sensors 1 and 2 can be accurately detected.
  • the first threshold value for determining the presence or absence of a human body from the output voltage 650 mV of both thermopile sensors 1 and 2 when the detection distance of a small person (small person) is 150 cm, which is the longest best position. And set. If the moving distance of the human body exceeds 20 cm, it is defined as “moving”, and a short dwarf moves forward at the position of 150 cm which is the detection area limit of both thermopile sensors 1 and 2.
  • the output voltage difference 50 mV between the two thermopile sensors 1 and 2 when moving 20 cm to the second is set as the second threshold value for determining the presence or absence of a stationary human body.
  • thermopile sensors 1 and 2 It is determined that the output voltage of both thermopile sensors 1 and 2 is not less than the first threshold (650 mV) and the absolute value of the output voltage difference between both thermopile sensors 1 and 2 is not more than the second threshold (50 mV). If it is determined that there is a stationary human body in the first detection area 7 (front). (2) It was determined that the output voltage of both thermopile sensors 1, 2 is equal to or higher than the first threshold (650 mV), and the absolute value of the output voltage difference between both thermopile sensors 1, 2 exceeds the second threshold (50 mV). In this case, it is determined that there is an operating human body in the first detection area 7 (front).
  • thermopile sensor 1 “Output voltage of first thermopile sensor 1 ⁇ first threshold (650 mV)” and “output voltage of second thermopile sensor 2 ⁇ first threshold”, If it is determined that the amount of change in the output voltage of the second thermopile sensor 2 before and after 1 second has exceeded the second threshold (50 mV), it is determined that there is an operating human body in the second detection area 8 (periphery). . (5) If it is determined that the output voltages of both the thermopile sensors 1 and 2 are lower than the first threshold (650 mV), the first and second detection areas 7 and 8 have neither a human body nor a heat source other than the human body. judge.
  • the position of the heat source (first, second and third detection areas) and the operation state (stationary, operation) of the heat source can be detected by the detection unit 3.
  • thermopile sensor 1 with a viewing angle of “22 °” and the second thermopile sensor 2 with a viewing angle of “44 °” are arranged adjacent to each other in the horizontal direction at intervals of 20 cm or less.
  • the heat source between the front and the periphery of the first and second thermopile sensors 1 and 2 is detected. It is possible to distinguish and detect a stationary human body and a heat source other than a person from the position information and the operation information of the heat source at the front and the periphery of the first and second thermopile sensors 1 and 2. Therefore, it is possible to accurately determine a stationary human body, a moving human body, a heat source other than a human, and no heat source.
  • the viewing angle of the first thermopile sensor 1 is set to the minimum angle that can capture the full width of a Japanese face with an average face width of 20 cm at a position 50 cm away.
  • the viewing angle of the second thermopile sensor 2 is set to the minimum angle that can capture the full width between both shoulders of a Japanese person with an average shoulder width of 40 cm located 50 cm away.
  • the sensors 1 and 2 are matched to the electrical products (for example, personal computer displays) on which the sensors 1 and 2 are mounted.
  • the optimal distance between the person and the person, and at the optimal position (for example, 50 cm) the visual field width of the first thermopile sensor 1 is the average Japanese face width (20 cm), and the visual field width of the second thermopile sensor 2
  • the viewing angle is set so that the average shoulder width (40cm) is Japanese.
  • the face part with the highest temperature on the human body surface and the chest part including the shoulder width which has the largest area, have a large amount of far-infrared radiation, and can be detected accurately by far-infrared rays. Therefore, if the detection areas of the two sensors 1 and 2 set to the above-described viewing angles are used in an overlapping manner, if the face and chest move into the detection area in front of the sensors 1 and 2, the heat source can be accurately detected. The amount of change can be detected. Conversely, when the face and chest move out of the detection area from the front of the sensors 1 and 2, it is possible to accurately capture the amount of change that has moved.
  • the viewing angle is set as described above, it is possible to accurately detect far-infrared rays of the face and chest radiated by a person in a detection area where there are few heat sources other than humans. This is very useful for distinguishing from heat sources other than people.
  • the horizontal distance between the first thermopile sensor 1 and the second thermopile sensor 2 is set to 20 cm or less, which is the average face width of the Japanese.
  • the horizontal distance between the first thermopile sensor 1 and the second thermopile sensor 2 is set to 20 cm or less, which is the average face width of Japanese people, the non-detection area in front of the sensors 1 and 2 is narrowed. This makes it possible to reliably put a face portion having a high surface temperature within the detection area, which is useful for accurately detecting a stationary human body in front.
  • the present embodiment relates to an electrical product that includes the information processing apparatus according to the first embodiment.
  • FIG. 15 is a diagram showing a schematic configuration of a TV as an example of the electrical product.
  • the TV in the present embodiment performs remote operation without using a remote controller.
  • a stationary human body detection sensor 18 is installed at the center of the upper edge of the edge 17 of the display screen 16 of the TV main body 15 (hereinafter referred to as TV 15). Further, a volume changing sensor 19 is installed at the upper left corner of the edge 17. Further, a program guide confirmation change sensor 20 is installed at the lower left corner of the edge 17. A terrestrial digital (terrestrial digital) channel changing sensor 21 is installed at the upper right corner of the edge 17. A BS channel changing sensor 22 is installed at the lower right corner of the edge 17.
  • the sensors 18 to 22 are composed of two first and second thermopile sensors that detect far-infrared rays, as in the case of the first embodiment. Outputs from the two first and second thermopile sensors constituting each of the sensors 18 to 22 are input to the detection unit 23. Then, the detection result of the detection unit 23 is input to the control unit 24, and control processing as will be described in detail later is performed to control the TV 15 volume change, program table confirmation change, terrestrial digital channel change, BS channel change, and the like. Do. However, in FIG. 15, to avoid complication, the wiring from the first and second thermopile sensors to the detection unit 23 is represented by a single wiring.
  • control such as volume change, program guide confirmation change, terrestrial digital channel change and BS channel change by the control unit 24 is performed based on the presence / absence of a stationary human body, the position of the hand, and the movement pattern of the hand. That is, the detection unit 23 detects the presence / absence of a stationary human body, the position of the hand, and the movement pattern of the hand in the same manner as the detection unit 3 in the first embodiment. And the control part 24 performs the above-mentioned control according to the presence or absence of the stationary human body detected by the detection part 3, the position of the hand, and the movement pattern of the hand.
  • thermopile sensor In order to remotely control the TV 15 based on the presence / absence of a stationary human body, the position of the hand, and the movement pattern of the hand using the thermopile sensor, detection of the presence / absence of a stationary human body, detection of the position of the hand, Detection of hand movement patterns is required. For this purpose, the following measures are taken for each of the sensors 18-22.
  • the stationary human body detection sensor 18 is a sensor for detecting whether or not there is a stationary human body in front of the TV 15. Therefore, the smallest field of view that can capture the full width of a Japanese face with an average face width of 20 cm located 200 cm away from the TV 15 so that it can accurately detect the presence of a stationary human body in front of the TV 15
  • the second thermopile sensor 18b (2 viewing angles) is set to have a horizontal interval of 20 cm or less, which is the average face width of Japanese people.
  • FIG. 16 shows a state in which a stationary human body is present in the first detection area 23 (front). However, FIG. 16A shows an area where a human body is present. FIG. 16B shows a change with time of the output voltage of both thermopile sensors 18a and 18b when a stationary human body is present in the first detection area 25 (front).
  • the setting method of the 1st detection area 25 and the 2nd detection area 26 in Fig.16 (a) is the same as that of the said 1st Embodiment.
  • the first threshold value for determining that there is a stationary human body in the first detection area 25 is also “650 mV” as in the case of the first embodiment.
  • the second threshold value of the output voltage difference between the two thermopile sensors 18a and 18b for determining the presence or absence of a stationary human body is also “50 mV”, similar to the case of the first embodiment.
  • thermopile sensors 18a, 18b As shown in FIG. 16 (b), the output voltage of both thermopile sensors 18a, 18b is equal to or higher than the first threshold (650 mV), and the absolute value of the output voltage difference between both thermopile sensors 18a, 18b is the second threshold. When it is (50 mV) or less, it is determined that there is a stationary human body in the first detection area 25 (in front of the TV 15).
  • the volume changing sensor 19, the program guide confirmation changing sensor 20, the terrestrial digital channel changing sensor 21 and the BS channel changing sensor 22 are sensors for detecting hand movement patterns. Therefore, in order to be able to accurately detect the movement of a human hand, the minimum viewing angle that can capture the full width of a Japanese palm with an average palm width of 8 cm located 200 cm away from the TV 15 (first view) (Viewing angle)
  • the first thermopile sensor 19a, 20a, 20a, and the first thermopile sensor 19a, 20a so that the movement of a Japanese hand located 200 cm away from the TV 15 can be captured.
  • FIG. 17 shows a state where there is a stationary hand in the first detection area 27 (front). However, FIG. 17A shows an area with a hand. FIG. 17B shows a change with time of the output voltages of the sensors 19 to 22 when there is a stationary hand in the first detection area 27 (front).
  • the setting method of the 1st detection area 27 and the 2nd detection area 28 in Fig.17 (a) is the same as that of the said 1st Embodiment.
  • the first threshold value for determining that the first detection area 27 has a hand is also “650 mV”, which is the same as in the case of the first embodiment.
  • the second threshold value of the output voltage difference between the two thermopile sensors 19a to 22a and 19b to 22b for determining the presence / absence of a stationary hand is also “50 mV” as in the case of the first embodiment.
  • the output voltage of the sensors 19 to 22 is equal to or higher than the first threshold (650 mV), and the absolute value of the output voltage difference between the first and second thermopile sensors of the sensors 19 to 22 Is less than or equal to the second threshold value (50 mV), it is determined that there is a stationary hand in the first detection area 27 (front of the TV 15).
  • FIG. 18 shows a state where there is a moving hand in the first detection area 27 (front). However, FIG. 18A shows an area where there is a moving hand.
  • FIG. 18B shows the change over time in the output voltages of the sensors 19 to 22 when there is a moving hand in the first detection area 27 (front). As shown in FIG. 18B, the output voltage of the sensors 19 to 22 is equal to or higher than the first threshold (650 mV), and the absolute value of the output voltage difference between the first and second thermopile sensors of the sensors 19 to 22 When the value exceeds the second threshold value (50 mV), it is determined that there is a moving hand in the first detection area 27 (in front of the TV 15).
  • the first threshold 650 mV
  • 50 mV the absolute value of the output voltage difference between the first and second thermopile sensors of the sensors 19 to 22
  • the detecting unit 23 When changing the volume, program guide, or channel of the TV 15 by remote control using a hand, the detecting unit 23 first detects that a stationary human body is in front of the TV 15. Next, when there is a hand in the detection area of the volume change sensor 19, the program guide confirmation change sensor 20, the terrestrial digital channel change sensor 21 or the BS channel change sensor 22, the movement of the hand is detected. Is detected to match the hand movement pattern. Then, the control unit 24 displays a volume change screen, a program guide screen, a terrestrial digital broadcast program change screen, or a BS broadcast program change screen on the display screen 16 of the TV 15 and enables remote operation by hand.
  • the movement pattern of the hand is a movement in which the hand is stopped for 5 seconds or more in front of the sensors 19 to 22 and then moved left and right five times.
  • the control unit 23 can accurately detect that the movement is a human hand, and prevents malfunction due to a heat source other than the operator who performs the remote operation. It can be done.
  • the hand movement pattern is not limited to the above-described movement pattern, and may be changed as appropriate.
  • the terrestrial digital broadcast program change screen 29 displayed on the display screen 16 of the TV 15 in the case of matching is shown.
  • the hatched portion indicates the currently selected channel.
  • the selected program is changed in ascending order as indicated by an arrow by moving the hand left and right within the detection area of the sensor 21 as shown in FIG.
  • the selected program is changed in descending order as indicated by the arrows. Also, when 5 seconds or more have passed after the hand is lowered and moved out of the detection area of the sensor 21, the terrestrial digital broadcast program change screen 29 disappears and the remote operation is terminated.
  • the set values of the stationary time and the number of left and right movements in the movement pattern of the hand can be arbitrarily changed on the display screen 16 of the TV 15.
  • FIG. 21 is a flowchart of the volume change processing operation of the TV 15. When the power source of the TV 15 is turned on, the volume change processing operation starts.
  • step S21 the detection unit 23 takes in output signals from the first thermopile sensor 18a and the second thermopile sensor 18b of the sensor 18 for detecting a stationary human body.
  • step S22 based on the output voltages from the first thermopile sensor 18a and the second thermopile sensor 18b, the detection unit 23 determines whether or not there is a stationary human body in front of the TV 15 as shown in FIG. . As a result, if it is present, the process proceeds to step S23, and if it is not present, the volume change processing operation is terminated.
  • step S23 the detection unit 23 takes in output signals from the first thermopile sensor 19a and the second thermopile sensor 19b of the volume change sensor 19.
  • step S24 based on the output voltages from the first thermopile sensor 19a and the second thermopile sensor 19b, the detection unit 23 determines whether or not there is a hand in the detection area of the sensor 19 as shown in FIGS. Is determined. As a result, if present, the process proceeds to step S25, and if not, the process returns to step S21.
  • step S25 the detection unit 23 determines whether or not the hand movement matches the “hand movement pattern”. As a result, if they do match, the process proceeds to step S26, and if they do not match, the process returns to step S23.
  • step S26 the volume change screen is displayed on the display screen 16 of the TV 15 by the control unit 24.
  • step S27 the detection unit 23 takes in output signals from the first thermopile sensor 19a and the second thermopile sensor 19b of the volume change sensor 19.
  • step S28 the detection unit 23 determines again whether or not there is a hand in the detection area of the sensor 19 based on the output voltages from the first thermopile sensor 19a and the second thermopile sensor 19b. As a result, if present, the process proceeds to step S29, and if not, the process proceeds to step S34.
  • step S29 the detection unit 23 takes in output signals from the first thermopile sensor 19a and the second thermopile sensor 19b of the volume changing sensor 19.
  • step S30 based on the output voltages from the first thermopile sensor 19a and the second thermopile sensor 19b, the detection unit 23 moves the hand to the left and right in front of the detection area of the sensor 19 as shown in FIG. It is determined whether or not it exists. As a result, if it is moving, the process proceeds to step S31, and if it is not moving, the process proceeds to step S32.
  • step S31 the control unit 24 changes the selected volume by one level. After that, the process proceeds to step S33.
  • step S32 the control unit 24 changes the selected volume by one step.
  • step S33 the control unit 24 updates the display of the volume change screen to the currently selected volume. After that, the process returns to step S27 and the volume change is continued.
  • step S34 the control unit 24 deletes the volume change screen displayed on the display screen 16 of the TV 15. After that, the volume change processing operation is terminated.
  • FIG. 22 is a flowchart of the program table confirmation change processing operation of the TV 15.
  • the sensor used is the sensor 20 for program guide confirmation change
  • the control operations performed by the control unit 24 are “display program guide” and “change program guide”. Except for this point, the operation is basically the same as the volume change processing operation shown in FIG. A brief description is given below.
  • step S41 and step S42 it is determined that there is a stationary human body in front of the TV 15 in the same manner as the sound volume change processing operation shown in FIG. If it is determined that the hand movement matches the “hand movement pattern”, the program guide is displayed on the display screen 16 of the TV 15 by the control unit 24 in step S46.
  • step S51 If it is determined in steps S47 to S50 that there is a moving hand in the detection area of the program guide confirmation changing sensor 20 in the same manner as the sound volume changing processing operation shown in FIG. 21, the control unit 24 in step S51.
  • the displayed program guide is changed to the future side.
  • step S52 If it is determined that there is no moving hand (there is a stationary hand) within the detection area of the program change sensor 20, in step S52, the displayed program table is displayed on the past side by the control unit 24. Changed to
  • FIG. 23 is a flowchart of the terrestrial digital channel change processing operation of the TV 15.
  • the sensor used is the terrestrial digital channel change sensor 21, and the control performed by the control unit 24 is “display of terrestrial digital broadcast program change screen” and “program change”. Except for this point, it is basically the same as the volume change processing operation shown in FIG. A brief description is given below.
  • steps S61 and S62 it is determined that there is a stationary human body in front of the TV 15 in the same manner as the sound volume changing processing operation shown in FIG. 21, and in steps S63 to S65, the output voltage of the terrestrial digital channel changing sensor 21 is obtained. If it is determined that the hand movement matches the “hand movement pattern”, the terrestrial digital broadcast program change screen is displayed on the display screen 16 of the TV 15 by the control unit 24 in step S66.
  • step S71 If it is determined in steps S67 to S70 that there is a moving hand in the detection area of the terrestrial digital channel changing sensor 21 in the same manner as the sound volume changing processing operation shown in FIG. 21, the control unit 24 in step S71. As a result, the displayed program is changed to the ascending side. On the other hand, if it is determined that there is no moving hand (there is a stationary hand) in the detection area of the terrestrial digital channel changing sensor 21, the control unit 24 lowers the displayed program in step S72. Is changed to the side.
  • the above terrestrial digital broadcast program change screen is displayed. Thereafter, the program is changed to the ascending side or the descending side depending on whether or not the hand is moving. Therefore, the remote operation for changing the terrestrial digital channel can be performed without using the remote controller.
  • FIG. 24 is a flowchart of the BS channel BS channel change processing operation of the TV 15.
  • the sensor used is the BS channel change sensor 22, and the control performed by the control unit 24 is "display BS program change screen" and "change program”. Is basically the same as the volume change processing operation shown in FIG. A brief description is given below.
  • step S81 and step S82 it is determined that there is a stationary human body in front of the TV 15 in the same manner as the sound volume change processing operation shown in FIG. 21, and based on the output voltage of the BS channel change sensor 22 in steps S83 to S85. If it is determined that the hand movement matches the “hand movement pattern”, the BS broadcast program change screen is displayed on the display screen 16 of the TV 15 by the control unit 24 in step S86.
  • steps S87 to S90 If it is determined in steps S87 to S90 that there is a moving hand in the detection area of the BS channel changing sensor 22 in the same manner as the sound volume changing processing operation shown in FIG.
  • the displayed program is changed to the ascending side.
  • the control unit 24 displays the displayed program on the descending side in step S92. Changed to
  • the BS broadcast program change screen is displayed. Thereafter, the program is changed to the ascending side or the descending side depending on whether or not the hand is moving. Therefore, the remote operation for changing the BS channel can be performed without using the remote controller.
  • stationary human body detection including the first thermopile sensor 18a and the second thermopile sensor 18b is provided at the center of the upper edge of the edge 17 of the display screen 16 of the TV 15.
  • Sensor 18 is installed.
  • a volume change sensor 19 is provided at the upper left corner of the edge 17
  • a program guide confirmation change sensor 20 is provided at the lower left corner
  • a terrestrial digital channel change sensor 21 is provided at the upper right corner.
  • the BS channel changing sensor 22 is installed in the lower right corner, and each sensor 19 to 22 is connected to the first thermopile sensor 19a, 20a, 21a, 22a and the second thermopile sensor 19b, 20b, 21b, 22b.
  • the viewing angle of the first thermopile sensor 18a is set to a viewing angle of 6 ° capable of capturing the full width of a Japanese face having an average face width of 20 cm located 200 cm away from the TV 15.
  • the viewing angle of the second thermopile sensor 18b is set to a viewing angle of 12 ° capable of capturing the full width between the shoulders of the Japanese who has an average shoulder width of 40 cm located 200 cm away from the TV 15.
  • the viewing angle of the first thermopile sensor 19a, 20a, 21a, 22a is a viewing angle 2 that can capture the full width of a Japanese palm that is 200 cm away from the TV 15 and whose average palm width is 8 cm. °.
  • the viewing angle of the second thermopile sensors 19b, 20b, 21b, and 22b is set to 6 °.
  • the detection unit 23 detects whether there is a stationary human body in front of the TV 15 based on the output voltage from the stationary human body detection sensor 18 in the same manner as in the first embodiment. To do. Further, based on output voltages from the volume change sensor 19, the program guide confirmation change sensor 20, the terrestrial digital channel change sensor 21 and the BS channel change sensor 22, the front of each of the sensors 19-22. It has a hand in it, and it is made to detect whether the hand is moving.
  • thermopile sensors 18a, 19a, 20a, 21a, 22a and the second thermopile sensors 18b, 19b, 20b, 21b, 22b are set as described above. Therefore, it can accurately detect far-infrared rays from the face, chest and hands radiated by people in a detection area with few heat sources other than humans such as stoves, air conditioners and floor heating. It is possible to accurately distinguish between a heat source other than a person and between a face and a hand.
  • a TV is illustrated as an electrical product on which the information processing apparatus of the first embodiment is mounted.
  • the present invention is not limited to the TV, and any device that can control the operation of the main body unit based on the detection result of the position of the heat source from the detection unit and the operation state of the heat source may be used. It can be used for remote control of various electric products such as personal computers.
  • thermopile sensors 1, 18a, 19a, 20a, 21a, 22a and the second thermopile sensors 2, 18b, 19b, 20b, 21b, 22b are arranged in the horizontal direction. is doing. However, this is not always necessary in the present invention, and the arrangement direction may be changed according to the moving direction of the heat source such as the face, hand, or body.
  • thermopile sensor 1, 18a, 19a, 20a, 21a, 22a ... 1st thermopile sensor, 2, 18b, 19b, 20b, 21b, 22b ... the second thermopile sensor, 3, 23 ... detection part, 4 ... Memory, 5, 6 ... light shielding member, 7, 25, 27 ... first detection area, 8, 26, 28 ... second detection area, 9 ... Third detection area, 10 ... Air conditioner, 11 ... Stove, 15 ... TV, 16 ... display screen, 17 ... edge, 18 ... A sensor for detecting a stationary human body, 19 ... A sensor for changing the volume, 20 ... Sensor for changing the program guide confirmation, 21 ... Sensor for terrestrial digital channel change, 22 ... BS channel change sensor, 24 ... control unit, 29 ... Terrestrial digital broadcast program change screen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

A first thermopile sensor (1) with an angle of view of 22° and a second thermopile sensor (2) with an angle of view of 44° are positioned with a gap in the horizontal direction of 20cm or less therebetween. A first threshold of output voltages of the thermopile sensors (1, 2) for assessing whether a person is present is set at 650mV, and a second threshold of an output voltage difference of the thermopile sensors (1, 2) for determining a stationary person is set at 50mV. A sensing process is carried out with a sensing unit (3) on the basis of the output voltages of the thermopile sensors (1, 2), the first threshold, and the second threshold, and stationary persons, operating persons, and heat sources other than persons are sensed. Thus, not only is the presence of a heat source sensed, but a stationary person and heat sources other than persons are sensed and distinguished, from the location of the heat source, the difference in output between the first and second thermopile sensors (1, 2), and the difference in output of the second thermopile sensor (2) over a given temporal axis.

Description

情報処理装置、情報処理方法、および、情報処理装置を備えた電気製品Information processing apparatus, information processing method, and electrical product including information processing apparatus
 この発明は、熱型センサを備えた情報処理装置および情報処理方法、並びに、上記情報処理装置を備えた電気製品に関する。 The present invention relates to an information processing device and an information processing method provided with a thermal sensor, and an electric product provided with the information processing device.
 熱型センサを備えた情報処理装置として、特開2011‐247726号公報(特許文献1)に開示された人体検知センサ、特開2011‐22118号公報(特許文献2)に開示された赤外線センサ装置、および、特許第3443969号公報(特許文献3)に開示された物体検出装置がある。 As an information processing apparatus including a thermal sensor, a human body detection sensor disclosed in Japanese Patent Application Laid-Open No. 2011-247726 (Patent Document 1) and an infrared sensor device disclosed in Japanese Patent Application Laid-Open No. 2011-22118 (Patent Document 2) There is an object detection device disclosed in Japanese Patent No. 3443969 (Patent Document 3).
 上記人体検知センサにおいては、検知エリアを近距離と遠距離とに分割し、2つの光学ユニットを斜めに角度をつけて設置し、夫々の光学ユニットからの遠距離用検知セクタと近距離用検知セクタとの間にすき間を設ける。そして、2つの遠距離用検知セクタが共に検知した場合には、立っている人体として検知する一方、1つの遠距離用検知セクタのみが検知した場合には、人間以外(小動物)として検知することによって、小動物と人体とを区別するようにしている。 In the human body detection sensor, the detection area is divided into a short distance and a long distance, two optical units are installed at an angle, and a long distance detection sector and a short distance detection from each optical unit. A gap is provided between the sector. When two long-distance detection sectors are detected together, it is detected as a standing human body, while when only one long-distance detection sector is detected, it is detected as a non-human (small animal). Is used to distinguish small animals from the human body.
 また、上記赤外線センサ装置においては、人から放射される遠赤外線を集光する光学レンズの集光量ばらつきを低減するために、熱源を検知する赤外線のセンサ素子数を複数化し、光学系の特性によって決まる各センサ素子に到達する赤外線の強度分布に応じて、各センサ素子の感度を調節可能にしている。こうして、1つの赤外線センサで熱源を確実に検知可能にしている。 Further, in the infrared sensor device, in order to reduce the variation in the amount of collected light of the optical lens that collects far infrared rays emitted from a person, the number of infrared sensor elements that detect the heat source is made plural, and the characteristics of the optical system The sensitivity of each sensor element can be adjusted according to the intensity distribution of infrared rays reaching each determined sensor element. Thus, the heat source can be reliably detected by one infrared sensor.
 また、上記物体検出装置においては、赤外線を検出する赤外線センサと、赤外線検出エリアを集光領域に分割する集光部とを含む赤外線検出手段を、駆動手段によって走査させる。そして、信号処理手段によって、駆動制御手段が制御する走査速度に対応する各集光領域からの出力波形から物体の位置を判別するようにしている。 Further, in the object detection apparatus, an infrared detection unit including an infrared sensor that detects infrared rays and a light collecting unit that divides the infrared detection area into light collection regions is scanned by the drive unit. Then, the position of the object is discriminated from the output waveform from each condensing area corresponding to the scanning speed controlled by the drive control means by the signal processing means.
 しかしながら、上記従来の熱型センサを備えた情報処理装置には、人以外の熱源(例えば電気ストーブ等)がノイズとして検知され、例えば電気ストーブを静止人体として誤検知すると言う問題がある。 However, the information processing apparatus provided with the conventional thermal sensor has a problem that a heat source other than a person (for example, an electric heater) is detected as noise, and the electric heater is erroneously detected as a stationary human body, for example.
 上記特許文献1の人体検知センサにおいては、立っている人と床を這う小動物とを区別する手法としては優位であるが、その熱源が静止しているのか動いているのかを判断する機能が無く、静止人体とストーブやエアコン等の人以外の熱源とを区別することができない。 The human body detection sensor disclosed in Patent Document 1 is advantageous as a method for distinguishing between a standing person and a small animal crawling on the floor, but does not have a function to determine whether the heat source is stationary or moving. It is impossible to distinguish a stationary human body from a heat source other than a person such as a stove or an air conditioner.
 また、上記特許文献2の赤外線センサ装置においても、人の動作や静止の状態を判断する機能は無く、静止人体とストーブ等の人以外の熱源とを区別することができない。 Also, the infrared sensor device disclosed in Patent Document 2 does not have a function for determining a human motion or a stationary state, and cannot distinguish a stationary human body from a heat source other than a person such as a stove.
 また、上記特許文献3の物体検出装置においても、上記赤外線検出手段を、上記駆動手段により左右に走査することで、動きの少ない静止人体を検知できるのではあるが、静止人体とストーブ等の人以外の熱源とを区別することができない。 Also, in the object detection device of Patent Document 3, the infrared detecting means can detect a stationary human body with little movement by scanning the left and right with the driving means. However, a stationary human body and a person such as a stove can be detected. It cannot be distinguished from other heat sources.
特開2011‐247726号公報JP 2011-247726 A 特開2011‐22118号公報JP 2011-22118 A 特許第3443969号公報Japanese Patent No. 3443969
 そこで、この発明の課題は、静止人体と人以外の熱源とを区別することができる情報処理装置および情報処理方法、並びに、上記情報処理装置を備えた電気製品を提供することにある。 Therefore, an object of the present invention is to provide an information processing apparatus and an information processing method capable of distinguishing between a stationary human body and a heat source other than a person, and an electric product including the information processing apparatus.
 上記課題を解決するため、この発明の情報処理装置は、
 第1視野角を有すると共に、熱源から放出される遠赤外線を検知して、検知量を表す信号を出力する第1センサと、
 上記第1センサに隣接して配置され、上記第1視野角よりも広い第2視野角を有すると共に、上記熱源から放出される遠赤外線を検知して、検知量を表す信号を出力する第2センサと、
 上記第1センサからの出力信号と上記第2センサからの出力信号とに基づいて、上記熱源の位置と上記熱源の動作状態とを検知する検知部と
を備え、
 上記第1センサと上記第2センサとは、上記両センサの設置位置から検知距離だけ離れた位置において、上記第2センサの検知エリア内に上記第1センサの検知エリアが包含されるように配置されており、
 上記検知部は、上記第1センサの出力値をA、上記第2センサの出力値をB、上記第2センサにおける予め設定された設定時間tの経過前の出力値をBt1、上記第2センサの上記設定時間tの経過後の出力値をBt2、第1閾値≠第2閾値とした場合に、
 A≧第1閾値、B≧第1閾値、且つ|A-B|≦第2閾値
の関係が成立する場合には、上記熱源は上記第1,第2センサの正面に居る静止人体であると検知し、
 A<第1閾値、B≧第1閾値、且つ|Bt1-Bt2|≦第2閾値
の関係が成立する場合には、上記熱源は上記第1センサの検知エリアの外であって且つ上記第2センサの検知エリア内にある人体以外の熱源であると検知する
ようになっている
ことを特徴としている。
In order to solve the above problems, an information processing apparatus according to the present invention provides:
A first sensor that has a first viewing angle, detects a far infrared ray emitted from a heat source, and outputs a signal representing a detection amount;
A second sensor disposed adjacent to the first sensor, having a second viewing angle wider than the first viewing angle, detecting far infrared rays emitted from the heat source, and outputting a signal representing a detection amount; A sensor,
A detection unit that detects the position of the heat source and the operating state of the heat source based on the output signal from the first sensor and the output signal from the second sensor;
The first sensor and the second sensor are arranged such that the detection area of the first sensor is included in the detection area of the second sensor at a position away from the installation position of the two sensors by a detection distance. Has been
The detection unit is configured such that the output value of the first sensor is A, the output value of the second sensor is B, the output value of the second sensor before the elapse of a preset set time t is Bt1, and the second sensor When the output value after the elapse of the set time t is Bt2, the first threshold ≠ the second threshold,
When the relationship of A ≧ first threshold, B ≧ first threshold, and | A−B | ≦ second threshold holds, the heat source is a stationary human body in front of the first and second sensors. Detect
When the relationship of A <first threshold, B ≧ first threshold, and | Bt1−Bt2 | ≦ second threshold holds, the heat source is outside the detection area of the first sensor and the second It is characterized in that it is detected as a heat source other than the human body in the detection area of the sensor.
 人と人以外の熱源とを区別するには、熱源の有無の情報と、熱源の位置の情報と、熱源の動きの情報と、上記各情報を処理する情報処理とが必要になる。 In order to distinguish between a heat source other than a person and a heat source other than a person, information on the presence or absence of the heat source, information on the position of the heat source, information on the movement of the heat source, and information processing for processing each of the above information are required.
 単に熱源の有無を検知するには、従来のセンサを使用すれば検知は可能である。しかしながら、熱源の位置と熱源の動きとを検知するには、単に1つのセンサの出力信号のみでは検知エリアの何れの位置に熱源が存在し、且つ静止しているか動作しているかの区別ができない。 * To detect the presence or absence of a heat source, it is possible to detect using a conventional sensor. However, in order to detect the position of the heat source and the movement of the heat source, it is not possible to distinguish whether the heat source exists in the detection area and is stationary or operating only by the output signal of one sensor. .
 また、上記センサの搭載数や受光部や光学レンズやフィルター等を複数化しても、熱源が、静止人体か動作人体か、人か人以外の熱源かを区別するためには、上記センサが搭載される電気機器やアプリケーションに適した情報処理方法がなければ不可能である。 In addition, even if the number of sensors mounted, the number of light receiving units, optical lenses, filters, etc. are multiple, the sensor is mounted to distinguish whether the heat source is a stationary human body or an operating human body or a heat source other than a person or a person. This is impossible without an information processing method suitable for the electrical equipment and application to be used.
 上記構成によれば、熱源が有るか無いかを区別する方法としての上記第1,第2センサの出力値と上記第1閾値との大小判別処理に加えて、
・上記第1センサの出力値と上記第2センサの出力値との大小判別によって熱源の位置を検知する処理と、
・上記第1センサと上記第2センサとの出力値の差と第2閾値との大小判別、あるいは、上記第2センサ単体の出力値の上記設定時間経過の前後の変化量と上記第2閾値との大小判別によって、熱源の動きを検知する処理と
を行うようにしている。
According to the above configuration, in addition to the size discrimination process between the output values of the first and second sensors and the first threshold as a method for distinguishing whether or not there is a heat source,
A process of detecting the position of the heat source by determining the magnitude of the output value of the first sensor and the output value of the second sensor;
The difference between the output value of the first sensor and the second sensor and the second threshold value, or the change amount of the output value of the second sensor alone before and after the set time elapses and the second threshold value And detecting the movement of the heat source.
 したがって、簡単な大小判別処理によって熱源の位置および熱源の動きを精度よく検知することができ、静止人体と人以外の熱源とを区別して検知することが可能になるのである。 Therefore, the position of the heat source and the movement of the heat source can be accurately detected by a simple size discrimination process, and it becomes possible to distinguish and detect a stationary human body and a heat source other than a person.
 また、1実施の形態の情報処理装置では、
 上記検知部は、上記第1センサの出力値をA、上記第2センサの出力値をB、上記第2センサにおける予め設定された設定時間tの経過前の出力値をBt1、上記第2センサの上記設定時間tの経過後の出力値をBt2、第1閾値≠第2閾値とした場合に、
 A≧第1閾値、B≧第1閾値、且つ|A-B|>第2閾値
の関係が成立する場合には、上記熱源は上記第1,第2センサの正面に居る動作人体であると検知するようになっている。
In the information processing apparatus according to one embodiment,
The detection unit is configured such that the output value of the first sensor is A, the output value of the second sensor is B, the output value of the second sensor before the elapse of a preset set time t is Bt1, and the second sensor When the output value after the elapse of the set time t is Bt2, the first threshold ≠ the second threshold,
When the relationship of A ≧ first threshold, B ≧ first threshold, and | AB |> second threshold is satisfied, the heat source is an operating human body in front of the first and second sensors. It comes to detect.
 この実施の形態によれば、簡単な大小判別処理によって、上記第1,第2センサの正面に居る静止人体と動作人体とを区別して検知することが可能になる。 According to this embodiment, it is possible to distinguish and detect the stationary human body and the moving human body in front of the first and second sensors by simple size discrimination processing.
 また、1実施の形態の情報処理装置では、
 上記検知部は、上記第1センサの出力値をA、上記第2センサの出力値をB、上記第2センサにおける予め設定された設定時間tの経過前の出力値をBt1、上記第2センサの上記設定時間tの経過後の出力値をBt2、第1閾値≠第2閾値とした場合に、
 A<第1閾値、B≧第1閾値、且つ|Bt1-Bt2|>第2閾値
の関係が成立する場合には、上記熱源は上記第1センサの検知エリアの外であって且つ上記第2センサの検知エリア内に居る動作人体であると検知するようになっている。
In the information processing apparatus according to one embodiment,
The detection unit is configured such that the output value of the first sensor is A, the output value of the second sensor is B, the output value of the second sensor before the elapse of a preset set time t is Bt1, and the second sensor When the output value after the elapse of the set time t is Bt2, the first threshold ≠ the second threshold,
When the relationship of A <first threshold, B ≧ first threshold, and | Bt1−Bt2 |> second threshold holds, the heat source is outside the detection area of the first sensor and the second It is detected that the moving human body is within the detection area of the sensor.
 この実施の形態によれば、簡単な大小判別処理によって、上記第1センサの検知エリアの外であって且つ上記第2センサの検知エリア内にある人体以外の熱源と、上記第1センサの検知エリアの外であって且つ上記第2センサの検知エリア内に居る動作人体とを、区別して検知することが可能になる。 According to this embodiment, by a simple size discrimination process, a heat source other than a human body outside the detection area of the first sensor and within the detection area of the second sensor, and detection of the first sensor It is possible to distinguish and detect a moving human body outside the area and within the detection area of the second sensor.
 また、1実施の形態の情報処理装置では、
 上記検知部は、上記第1センサの出力値をA、上記第2センサの出力値をB、上記第2センサにおける予め設定された設定時間tの経過前の出力値をBt1、上記第2センサの上記設定時間tの経過後の出力値をBt2、第1閾値≠第2閾値とした場合に、
 A<第1閾値、B<第1閾値
の関係が成立する場合には、上記熱源は上記第2センサの検知エリア内に存在しないと検知するようになっている。
In the information processing apparatus according to one embodiment,
The detection unit is configured such that the output value of the first sensor is A, the output value of the second sensor is B, the output value of the second sensor before the elapse of a preset set time t is Bt1, and the second sensor When the output value after the elapse of the set time t is Bt2, the first threshold ≠ the second threshold,
When the relationship of A <first threshold value and B <first threshold value is established, it is detected that the heat source does not exist within the detection area of the second sensor.
 この実施の形態によれば、簡単な大小判別処理によって、上記第2センサの検知エリア内に熱源が存在しないことを検知することが可能になる。 According to this embodiment, it is possible to detect the absence of a heat source in the detection area of the second sensor by a simple size discrimination process.
 また、1実施の形態の情報処理装置では、
 上記第1センサの上記第1視野角は、上記第1センサの設置位置から予め設定された第1設定距離だけ離れた位置において人の顔の全幅を捉えることが可能な最小角度であり、
 上記第2センサの上記第2視野角は、上記第2センサの設置位置から上記第1設定距離だけ離れた位置において人の両肩間の全幅を捉えることが可能な最小角度である。
In the information processing apparatus according to one embodiment,
The first viewing angle of the first sensor is a minimum angle at which the full width of a human face can be captured at a position that is separated from the installation position of the first sensor by a preset first set distance,
The second viewing angle of the second sensor is a minimum angle at which the full width between both shoulders of a person can be captured at a position separated from the installation position of the second sensor by the first set distance.
 熱源の有無と熱源の位置と熱源の動きとを正確に判別するためには、
  ・人以外の熱源の影響を受け難くするセンサ視野角の設定
  ・人体表面において遠赤外線の放射量が最も多い顔や肩を含む胸部の遠   赤外線量を正確に捉えるためのセンサ視野角の設定
が必要である。
To accurately determine the presence or absence of the heat source, the position of the heat source and the movement of the heat source,
・ Setting the sensor viewing angle to make it less susceptible to heat sources other than humans ・ Setting the sensor viewing angle to accurately capture the far-infrared amount of the chest, including the face and shoulders, where the amount of far-infrared radiation is the highest is necessary.
 センサの搭載数を複数化し、個々のセンサの視野角を大きくして、検知エリアを広げれば、その分だけ、電気ストーブやエアコン等の人以外の熱源ノイズの検知量も大きくなるので誤検知が増え、人体を正確に検知することができない。その逆に、センサの視野角を狭くすれば、少しでも人が動くと検知エリアから外れてしまい、正確な人体検知を行うことができない。 Increasing the number of sensors mounted, increasing the viewing angle of each sensor, and expanding the detection area increases the detection amount of heat source noise other than humans such as electric stoves and air conditioners, so false detection Increasingly, the human body cannot be detected accurately. On the other hand, if the viewing angle of the sensor is narrowed, if the person moves even a little, the person moves out of the detection area, and accurate human body detection cannot be performed.
 この実施の形態によれば、人以外の熱源(例えば、電気ストーブ)からの熱源ノイズの影響を少なくするために、上記第1センサおよび上記第2センサが搭載される電気製品(例えば、パソコンのディスプレイ)に合わせて、上記第1センサおよび上記第2センサと操作者との最適な距離である上記第1設定距離を定義し、その最適な上記第1設定距離(例えば、50cm)での上記第1センサの視野幅が日本人平均の顔幅(20cm)となり、上記第2センサの視野幅が日本人平均の肩幅(40cm)となるように設定している。 According to this embodiment, in order to reduce the influence of heat source noise from a heat source other than a person (for example, an electric heater), an electrical product (for example, a personal computer) on which the first sensor and the second sensor are mounted. The first set distance, which is the optimum distance between the first sensor and the second sensor and the operator, is defined in accordance with the display), and the first set distance (for example, 50 cm) at the optimum is set. The visual field width of the first sensor is set to the Japanese average face width (20 cm), and the visual field width of the second sensor is set to the Japanese average shoulder width (40 cm).
 人体表面で温度が最も高い顔部と、面積が最も多い肩幅を含んだ胸部とは、遠赤外線の放射量が多く、人を正確に検知できる部位である。そこで、上述のように設定された視野角を有する2つの上記第1,第2センサの検知エリアを重ね合わせて、上記検知部による上述したような検知処理を行うことによって、顔と胸とが上記第1,第2センサの正面の検知エリア内に移動すれば、正確に熱源の変化量を検知できる。逆に、上記検知エリア外に移動した場合も、熱源の変化量を正確に捉えることが可能になる。 The face part having the highest temperature on the human body surface and the chest part including the shoulder width having the largest area are the parts where the amount of far infrared radiation is large and the person can be detected accurately. Therefore, by overlapping the detection areas of the two first and second sensors having the viewing angles set as described above and performing the detection process as described above by the detection unit, the face and the chest are If it moves within the detection area in front of the first and second sensors, the amount of change in the heat source can be detected accurately. Conversely, even when moving outside the detection area, the amount of change in the heat source can be accurately captured.
 したがって、上記視野角に設定することによって、ストーブやエアコンや床暖房等の人以外の熱源が少ない検知エリア内で人が放射する顔や胸の遠赤外線を正確に検知できるので、人体の静止・動作や人と人以外の熱源との区別を、精度よく行うことができるのである。 Therefore, by setting the above viewing angle, it is possible to accurately detect the far infrared rays of the face and chest radiated by people in the detection area where there are few heat sources other than humans such as stoves, air conditioners, floor heating, etc. The operation and the heat source other than the person can be distinguished with high accuracy.
 また、1実施の形態の情報処理装置では、
 上記第1センサと上記第2センサとの設置間隔が20cm以下である。
In the information processing apparatus according to one embodiment,
The installation interval between the first sensor and the second sensor is 20 cm or less.
 視野角を狭くした上記第1,第2センサを隣接させて検知エリアを重ね合わせて設置する場合、上記第1,第2センサの中間部に熱源を検知できない非検知エリアが発生しないように、上記第1,第2センサ間の距離を設定する必要である。 When the first and second sensors having a narrow viewing angle are installed adjacent to each other and the detection areas are overlapped, a non-detection area in which a heat source cannot be detected does not occur in the middle of the first and second sensors. It is necessary to set the distance between the first and second sensors.
 この実施の形態によれば、上記第1センサと上記第2センサとの設置間隔を、日本人の平均顔幅20cm以下に設定することによって、上記第1,第2センサの中間部における非検知エリアを少なくすることが可能になる。したがって、表面温度が高い顔の部分を確実に上記検知エリア内に入れることができ、正面の静止人体を正確に検知することが可能になる。 According to this embodiment, the interval between the first sensor and the second sensor is set to an average face width of 20 cm or less for the Japanese, thereby preventing non-detection at the intermediate portion of the first and second sensors. It becomes possible to reduce the area. Therefore, the face portion having a high surface temperature can be surely placed in the detection area, and the front stationary human body can be accurately detected.
 また、1実施の形態の情報処理装置では、
 上記第1センサの上記第1視野角は、上記第1センサの設置位置から予め設定された第2設定距離だけ離れた位置において、人の手のひらの全幅を捉えることが可能な最小角度であり、
 上記第2センサの上記第2視野角は、上記第1センサの上記第1視野角よりも広い角度である。
In the information processing apparatus according to one embodiment,
The first viewing angle of the first sensor is a minimum angle capable of capturing the full width of a person's palm at a position separated from the installation position of the first sensor by a preset second set distance.
The second viewing angle of the second sensor is wider than the first viewing angle of the first sensor.
 テレビジョン(以下、単にTVと言う)やゲーム機あるいはパソコン等の情報機器の操作をジェスチャで行う場合に、手を用いるのが最も一般的である。そこで、上記顔や上記両肩からの遠赤外線と区別して、手からの遠赤外線を検知する必要がある。 It is most common to use hands when operating information devices such as televisions (hereinafter simply referred to as TVs), game machines or personal computers with gestures. Therefore, it is necessary to detect far infrared rays from the hand, distinguishing them from far infrared rays from the face and both shoulders.
 この実施の形態によれば、手以外の熱源(例えば、顔)からの熱源ノイズの影響を少なくするために、上記第1センサおよび上記第2センサが搭載される電気製品(例えば、TV)に合わせて、上記第1センサおよび上記第2センサと操作者との最適な距離である上記第2設定距離を定義し、その最適な上記第2設定距離(例えば、200cm)での上記第1センサの視野幅が日本人平均の手の幅(8cm)となり、上記第2センサの視野幅が日本人平均の手の幅以上(例えば、手の幅8cmの3倍)になるように設定している。 According to this embodiment, in order to reduce the influence of heat source noise from a heat source other than the hand (for example, the face), an electrical product (for example, a TV) in which the first sensor and the second sensor are mounted is used. In addition, the second set distance that is the optimum distance between the first sensor and the second sensor and the operator is defined, and the first sensor at the optimum second set distance (for example, 200 cm) is defined. The field of view of the Japanese is set to the average Japanese hand width (8cm), and the field of view of the second sensor is set to be greater than the width of the Japanese average hand (for example, 3 times the hand width of 8cm). Yes.
 そして、上述のように設定された視野角を有する2つの上記第1,第2センサの検知エリアを重ね合わせて、上記検知部による上述したような検知処理を行うことによって、手のひらが上記第1,第2センサの正面の検知エリア内に移動すれば、正確に熱源の変化量を検知できる。逆に、上記検知エリア外に移動した場合も、熱源の変化量を正確に捉えることが可能になる。 Then, by overlapping the detection areas of the two first and second sensors having the viewing angles set as described above and performing the detection process as described above by the detection unit, the palm of the palm is , If it moves into the detection area in front of the second sensor, the amount of change of the heat source can be detected accurately. Conversely, even when moving outside the detection area, the amount of change in the heat source can be accurately captured.
 したがって、上記視野角に設定することによって、人以外の熱源が少ない検知エリア内で人が放射する手のひらの遠赤外線を正確に検知できるので、手の静止や動作パターンを精度よく検知することができるのである。 Therefore, by setting the viewing angle to the above, it is possible to accurately detect the far-infrared light of the palm that is radiated by a person in a detection area where there are few heat sources other than the person, so that it is possible to accurately detect stillness and movement patterns of the hand. It is.
 また、この発明の情報処理方法は、
 第1視野角を有する第1センサによって、熱源から放出される遠赤外線を検知して検知量を表す信号を出力し、
 上記第1視野角よりも広い第2視野角を有すると共に、上記第1センサに隣接して配置された第2センサによって、上記熱源から放出される遠赤外線を検知して検知量を表す信号を出力し、
 検知部によって、上記第1センサからの出力信号と上記第2センサからの出力信号とに基づいて、上記第1センサの出力値をA、上記第2センサの出力値をB、上記第2センサにおける予め設定された設定時間tの経過前の出力値をBt1、上記第2センサの上記設定時間tの経過後の出力値をBt2、第1閾値≠第2閾値とした場合に、
 A≧第1閾値、B≧第1閾値、且つ|A-B|≦第2閾値
の関係が成立する場合には、上記熱源は上記第1,第2センサの正面に居る静止人体であると検知し、
 A≧第1閾値、B≧第1閾値、且つ|A-B|>第2閾値
の関係が成立する場合には、上記熱源は上記第1,第2センサの正面に居る動作人体であると検知し、
 A<第1閾値、B≧第1閾値、且つ|Bt1-Bt2|≦第2閾値
の関係が成立する場合には、上記熱源は上記第1センサの検知エリアの外であって且つ上記第2センサの検知エリア内にある人体以外の熱源であると検知し、
 A<第1閾値、B≧第1閾値、且つ|Bt1-Bt2|>第2閾値
の関係が成立する場合には、上記熱源は上記第1センサの検知エリアの外であって且つ上記第2センサの検知エリア内に居る動作人体であると検知し、
 A<第1閾値、B<第1閾値
の関係が成立する場合には、上記熱源は上記第2センサの検知エリア内に存在しないと検知する
ことを特徴としている。
The information processing method of the present invention is
A first sensor having a first viewing angle detects a far-infrared ray emitted from a heat source and outputs a signal representing a detection amount;
A signal having a second viewing angle wider than the first viewing angle and detecting a far infrared ray emitted from the heat source by a second sensor disposed adjacent to the first sensor and representing a detection amount. Output,
Based on the output signal from the first sensor and the output signal from the second sensor, the detection unit sets the output value of the first sensor to A, the output value of the second sensor to B, and the second sensor. When the output value before the elapse of the preset set time t is Bt1, the output value after the set time t of the second sensor is Bt2, and the first threshold ≠ the second threshold,
When the relationship of A ≧ first threshold, B ≧ first threshold, and | A−B | ≦ second threshold holds, the heat source is a stationary human body in front of the first and second sensors. Detect
When the relationship of A ≧ first threshold, B ≧ first threshold, and | AB |> second threshold is satisfied, the heat source is an operating human body in front of the first and second sensors. Detect
When the relationship of A <first threshold, B ≧ first threshold, and | Bt1−Bt2 | ≦ second threshold holds, the heat source is outside the detection area of the first sensor and the second Detect that it is a heat source other than the human body in the detection area of the sensor,
When the relationship of A <first threshold, B ≧ first threshold, and | Bt1−Bt2 |> second threshold holds, the heat source is outside the detection area of the first sensor and the second Detects that the human body is in the detection area of the sensor,
When the relationship of A <first threshold value and B <first threshold value is established, the heat source is detected as not existing in the detection area of the second sensor.
 上記構成によれば、熱源が有るか無いかを区別する方法としての上記第1,第2センサの出力値と上記第1閾値との大小判別処理に加えて、
・上記第1センサの出力信号と上記第2センサの出力値との大小判別によって熱源の位置を検知する処理と、
・上記第1センサと上記第2センサとの出力値の差と第2閾値との大小判別、あるいは、上記第2センサ単体の出力値の上記設定時間経過の前後の変化量と上記第2閾値との大小判別によって、熱源の動きを検知する処理と
を行うようにしている。
According to the above configuration, in addition to the size discrimination process between the output values of the first and second sensors and the first threshold as a method for distinguishing whether or not there is a heat source,
A process of detecting the position of the heat source by determining the magnitude of the output signal of the first sensor and the output value of the second sensor;
The difference between the output value of the first sensor and the second sensor and the second threshold value, or the change amount of the output value of the second sensor alone before and after the set time elapses and the second threshold value And detecting the movement of the heat source.
 したがって、簡単な大小判別処理によって熱源の位置および熱源の動きを精度よく検知することができ、静止人体と人以外の熱源とを区別して検知することが可能になるのである。 Therefore, the position of the heat source and the movement of the heat source can be accurately detected by a simple size discrimination process, and it becomes possible to distinguish and detect a stationary human body and a heat source other than a person.
 また、この発明の電気製品は、
 上記この発明の情報処理装置と、
 本体部と、
 上記情報処理装置における上記検知部の検知結果に応じて、上記本体部の動作を制御する制御部と
を備えたことを特徴としている。
The electrical product of the present invention is
The information processing apparatus of the present invention;
The main body,
The information processing apparatus includes a control unit that controls the operation of the main body unit according to a detection result of the detection unit.
 上記構成によれば、簡単な大小判別処理によって熱源の位置および熱源の動きを精度よく検知することができ、静止人体と人以外の熱源とを区別して検知することが可能な情報処理装置を備え、上記情報処理装置における上記検知部の検知結果に応じて、制御部によって、本体部の動作を制御するようにしている。したがって、人体の有無によって電源のオンオフ,明るさ等の制御を行う場合や、人の手の動作パターンに応じて音量,明るさ,輝度,番組等を制御する場合に、人以外の熱源ノイズによる誤動作を防止できる。 According to the above configuration, the heat source position and the movement of the heat source can be accurately detected by a simple size discrimination process, and the information processing apparatus capable of distinguishing and detecting a stationary human body and a heat source other than a person is provided. The operation of the main body is controlled by the control unit according to the detection result of the detection unit in the information processing apparatus. Therefore, when controlling the power on / off, brightness, etc. depending on the presence or absence of the human body, or when controlling the volume, brightness, brightness, program, etc. according to the movement pattern of the human hand, it is caused by heat source noise other than humans. Malfunctions can be prevented.
 以上より明らかなように、この発明の情報処理装置および情報処理方法は、熱源が有るか無いかを検知する方法としての第1,第2センサの出力値と第1閾値との大小判別処理に加えて、
・上記第1センサの出力値と上記第2センサの出力値との大小判別によって熱源の位置を検知する処理と、
・上記第1センサと上記第2センサとの出力値の差と第2閾値との大小判別、あるいは、上記第2センサ単体の出力値の上記設定時間経過の前後の変化量と上記第2閾値との大小判別によって、熱源の動きを検知する処理と
を行うようにしている。
As is clear from the above, the information processing apparatus and information processing method of the present invention are used for the size discrimination process between the output values of the first and second sensors and the first threshold as a method for detecting whether or not there is a heat source. in addition,
A process of detecting the position of the heat source by determining the magnitude of the output value of the first sensor and the output value of the second sensor;
The difference between the output value of the first sensor and the second sensor and the second threshold value, or the change amount of the output value of the second sensor alone before and after the set time elapses and the second threshold value And detecting the movement of the heat source.
 したがって、簡単な大小判別処理によって熱源の位置および熱源の動きを精度よく検知することができ、静止人体と人以外の熱源とを区別して検知することが可能になるのである。 Therefore, the position of the heat source and the movement of the heat source can be accurately detected by a simple size discrimination process, and it becomes possible to distinguish and detect a stationary human body and a heat source other than a person.
 また、この発明の電気製品は、簡単な大小判別処理によって熱源の位置および熱源の動きを精度よく検知することができ、静止人体と人以外の熱源とを区別して検知することが可能な情報処理装置を備えて、制御部によって、上記情報処理装置における上記検知部の検知結果に応じて、本体部の動作を制御するようにしている。したがって、人体の有無によって電源のオンオフ,明るさ等の制御を行う場合や、人の手の動作パターンに応じて音量,明るさ,輝度,番組等を制御する場合に、人以外の熱源ノイズによる誤動作を防止できる。 In addition, the electrical product of the present invention can accurately detect the position of the heat source and the movement of the heat source by a simple size discrimination process, and can detect and distinguish between a stationary human body and a heat source other than a person. An apparatus is provided, and the operation of the main body is controlled by the control unit according to the detection result of the detection unit in the information processing apparatus. Therefore, when controlling the power on / off, brightness, etc. depending on the presence or absence of the human body, or when controlling the volume, brightness, brightness, program, etc. according to the movement pattern of the human hand, it is caused by heat source noise other than humans. Malfunctions can be prevented.
この発明の情報処理装置における概略構成図である。It is a schematic block diagram in the information processing apparatus of this invention. 図1における第1サーモパイルセンサの視野角設定方法の説明図である。It is explanatory drawing of the viewing angle setting method of the 1st thermopile sensor in FIG. 図1における第2サーモパイルセンサの視野角設定方法の説明図である。It is explanatory drawing of the viewing angle setting method of the 2nd thermopile sensor in FIG. 第1,第2サーモパイルセンサの水平方向への間隔の説明図である。It is explanatory drawing of the space | interval to the horizontal direction of a 1st, 2nd thermopile sensor. 人以外の熱源が存在する検知エリアの説明図である。It is explanatory drawing of the detection area where heat sources other than a person exist. 図1における検知部による人体検知処理動作のフローチャートである。It is a flowchart of the human body detection processing operation by the detection part in FIG. 図6に続く人体検知処理動作のフローチャートである。7 is a flowchart of human body detection processing operation following FIG. 6. 第1閾値の設定方法の説明図である。It is explanatory drawing of the setting method of a 1st threshold value. 第1検知エリアに静止した人体が居る状態を示す図である。It is a figure which shows the state in which the stationary human body exists in a 1st detection area. 第2閾値の設定方法の説明図である。It is explanatory drawing of the setting method of a 2nd threshold value. 第1検知エリアに動作人体が居る状態を示す図である。It is a figure which shows the state in which an operation | movement human body exists in a 1st detection area. 第2検知エリアに人体以外の熱源がある状態を示す図である。It is a figure which shows the state which has heat sources other than a human body in a 2nd detection area. 第2検知エリアに動作人体が居る状態を示す図である。It is a figure which shows the state in which an operation | movement human body exists in a 2nd detection area. 第1,第2検知エリアに人体および人体以外の熱源が無い状態を示す図である。It is a figure which shows the state which does not have a heat source other than a human body and a human body in a 1st, 2nd detection area. 図1に示す情報処理装置を備えたTVの概略構成を示す図である。It is a figure which shows schematic structure of TV provided with the information processing apparatus shown in FIG. 図15における静止人体検知用のセンサの第1検知エリアに、静止した人体が居る状態を示す図である。FIG. 16 is a diagram illustrating a state in which a stationary human body is present in the first detection area of the stationary human body detection sensor in FIG. 15. 遠隔操作用のセンサの第1検知エリアに、静止した手がある状態を示す図である。It is a figure which shows the state which has a stationary hand in the 1st detection area of the sensor for remote control. 遠隔操作用のセンサの第1検知エリアに、動いている手がある状態を示す図である。It is a figure which shows the state which has the moving hand in the 1st detection area of the sensor for remote control. 選択番組を昇順に変更するための手の動きと地デジ放送番組変更画面の表示例とを示す図である。It is a figure which shows the movement of the hand for changing a selection program to an ascending order, and the example of a display of a terrestrial digital broadcasting program change screen. 選択番組を降順に変更するための手の状態と地デジ放送番組変更画面の表示例とを示す図である。It is a figure which shows the state of the hand for changing a selection program in descending order, and the example of a display of a terrestrial digital broadcasting program change screen. TVの音量変更処理動作のフローチャートである。It is a flowchart of the volume change processing operation of TV. TVの番組表確認変更処理動作のフローチャートである。It is a flowchart of TV program guide confirmation change processing operation. TVの地デジチャンネル変更処理動作のフローチャートである。It is a flowchart of the terrestrial digital channel change processing operation of TV. TVのBSチャンネル変更処理動作のフローチャートである。It is a flowchart of BS channel change processing operation of TV.
 以下、この発明を図示の実施の形態により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.
 ・第1実施の形態
 図1は、本実施の形態の情報処理装置における概略構成図である。図1において、遠赤外線を検知する二つのセンサ1,2を水平方向に互いに隣接させて配置している。尚、本実施の形態においては、遠赤外線を検知するセンサ1,2として、サーモパイルセンサをを用いている。第1,第2サーモパイルセンサ1,2の出力は、検知部3に入力され、後に詳述するような検知処理を行って、静止人体,動作人体および人以外の熱源を検知する。
-1st Embodiment FIG. 1: is a schematic block diagram in the information processing apparatus of this Embodiment. In FIG. 1, two sensors 1 and 2 for detecting far infrared rays are arranged adjacent to each other in the horizontal direction. In the present embodiment, thermopile sensors are used as the sensors 1 and 2 that detect far infrared rays. The outputs of the first and second thermopile sensors 1 and 2 are input to the detection unit 3, and a detection process as described in detail later is performed to detect a stationary human body, a moving human body, and a heat source other than a human.
 上記第1サーモパイルセンサ1と第2サーモパイルセンサ2とは視野角が異なるようになっている。すなわち、図1(a)に示すように、第1サーモパイルセンサ1の視野角(第1視野角)は第2サーモパイルセンサ2の視野角(第2視野角)よりも狭く、22°である。これに対して、第2サーモパイルセンサ2の視野角(第2視野角)は44°である。第1サーモパイルセンサ1と第2サーモパイルセンサ2との視野角は、本情報処理装置をディスプレイに搭載することを想定して、上記ディスプレイと人間との間の距離を50cm~150cmとした場合に、人体を精度よく認識できるように設定されている。 The first thermopile sensor 1 and the second thermopile sensor 2 have different viewing angles. That is, as shown in FIG. 1A, the viewing angle (first viewing angle) of the first thermopile sensor 1 is narrower than the viewing angle (second viewing angle) of the second thermopile sensor 2 and is 22 °. On the other hand, the viewing angle (second viewing angle) of the second thermopile sensor 2 is 44 °. The viewing angle of the first thermopile sensor 1 and the second thermopile sensor 2 assumes that the information processing apparatus is mounted on a display, and the distance between the display and a person is 50 cm to 150 cm. It is set so that the human body can be recognized accurately.
 例えば、上記第1サーモパイルセンサ1の場合には、50cm離れた位置に居る平均顔幅が20cmである日本人の顔の全幅を捉えることが可能なように、視野角が「22°」に設定されている。また、第2サーモパイルセンサ2の場合には、50cm離れた位置に居る平均肩幅が40cmである日本人の両肩間の全幅を捉えることが可能なように、視野角が「44°」に設定されている。 For example, in the case of the first thermopile sensor 1, the viewing angle is set to “22 °” so that the full width of a Japanese face with an average face width of 20 cm located 50 cm away can be captured. Has been. In the case of the second thermopile sensor 2, the viewing angle is set to “44 °” so that the full width between the shoulders of the Japanese who is 50 cm away and whose average shoulder width is 40 cm can be captured. Has been.
 そのため、上記両サーモパイルセンサ1,2の視野角は、上記「22°」や「44°」に限定されるものではなく、検知対象のサイズによって変更してもよいことが分かる。すなわち、両サーモパイルセンサ1,2が搭載される電気機器に合わせて、顔幅や肩幅に限らず、胸,腰,頭部等に応じて視野角を変更してもよい。 Therefore, it can be seen that the viewing angles of both the thermopile sensors 1 and 2 are not limited to “22 °” or “44 °”, but may be changed depending on the size of the detection target. That is, the viewing angle may be changed according to the chest, waist, head, etc., in addition to the face width and shoulder width, in accordance with the electrical equipment on which both thermopile sensors 1 and 2 are mounted.
 上記第1サーモパイルセンサ1および第2サーモパイルセンサ2における視野角の設定方法は、特に限定するものではない。例えば、以下のようにして行えばよい。 The method for setting the viewing angle in the first thermopile sensor 1 and the second thermopile sensor 2 is not particularly limited. For example, it may be performed as follows.
 図2(a)に示すように、円柱状の第1サーモパイルセンサ1を用いる。そして、第1サーモパイルセンサ1の外径と略同じ内径を有する円筒状の遮光部材5に第1サーモパイルセンサ1を挿入し、遮光部材5の光入射端を第1サーモパイルセンサ1の光入射面よりも突出させることによって、第1サーモパイルセンサ1への光入射角を制限するのである。その場合、例えば、第1サーモパイルセンサ1の光入射面の外径dが4mmであるとすると、図2(b)に示す関係により、視野角θ1が22°となる場合の遮光部材5の第1サーモパイルセンサ1の光入射面からの突出長L1は、10.21mmと求まる。 As shown in FIG. 2 (a), a cylindrical first thermopile sensor 1 is used. Then, the first thermopile sensor 1 is inserted into a cylindrical light shielding member 5 having an inner diameter substantially the same as the outer diameter of the first thermopile sensor 1, and the light incident end of the light shielding member 5 is connected to the light incident surface of the first thermopile sensor 1. Further, the light incident angle to the first thermopile sensor 1 is limited by projecting. In this case, for example, when the outer diameter d of the light incident surface of the first thermopile sensor 1 is 4 mm, the first light shielding member 5 in the case where the viewing angle θ1 is 22 ° is represented by the relationship shown in FIG. The protrusion length L1 from the light incident surface of the one thermopile sensor 1 is found to be 10.21 mm.
 同様に、図3(a)に示すように、円柱状の第2サーモパイルセンサ2を円筒状の遮光部材6に挿入し、遮光部材6の光入射端を第2サーモパイルセンサ2の光入射面よりも突出させる場合に、例えば、第2サーモパイルセンサ2の光入射面の外径dが4mmであるとすると、図3(b)に示す関係により、視野角θ2が44°となる場合の遮光部材6の第2サーモパイルセンサ2の光入射面からの突出長L2は、4.95mmと求まる。 Similarly, as shown in FIG. 3A, the cylindrical second thermopile sensor 2 is inserted into the cylindrical light shielding member 6, and the light incident end of the light shielding member 6 is connected to the light incident surface of the second thermopile sensor 2. For example, if the outer diameter d of the light incident surface of the second thermopile sensor 2 is 4 mm, the light-shielding member when the viewing angle θ2 is 44 ° according to the relationship shown in FIG. The protrusion length L2 from the light incident surface of the second thermopile sensor 2 is determined to be 4.95 mm.
 したがって、上記突出長L1が10.21mmとなるように形成された遮光部材5に第1サーモパイルセンサ1を装着することにより、第1サーモパイルセンサ1の視野角を「22°」に設定することができる。同様に、突出長L2が4.95mmとなるように形成された遮光部材6に第2サーモパイルセンサ2を装着することによって、第2サーモパイルセンサ2の視野角を「44°」に設定することができるのである。 Therefore, the viewing angle of the first thermopile sensor 1 can be set to “22 °” by mounting the first thermopile sensor 1 on the light shielding member 5 formed so that the protruding length L1 is 10.21 mm. it can. Similarly, the viewing angle of the second thermopile sensor 2 can be set to “44 °” by mounting the second thermopile sensor 2 on the light shielding member 6 formed so that the protruding length L2 is 4.95 mm. It can be done.
 このように、上記第1サーモパイルセンサ1と第2サーモパイルセンサ2との視野角を設定することによって、両サーモパイルセンサ1,2の受光スポット内に居る人体からの赤外線を正確に捉えることが可能になり、人以外の熱源や後ろを横切る人からのノイズを低減できる。そのため、両サーモパイルセンサ1,2の正面に居る静止人体を正確に判断することができるのである。 In this way, by setting the viewing angle of the first thermopile sensor 1 and the second thermopile sensor 2, it is possible to accurately capture infrared rays from the human body in the light receiving spots of both the thermopile sensors 1 and 2. The noise from the heat source other than the person and the person who crosses behind can be reduced. Therefore, the stationary human body in front of both thermopile sensors 1 and 2 can be accurately determined.
 こうして上記視野角が設定された第1サーモパイルセンサ1と第2サーモパイルセンサ2とは、図4に示すように、水平方向への互いの間隔が日本人の平均顔幅である20cm以下になるように並列に配置される。このように、水平方向への互いの間隔を20cm以下にすることによって、両サーモパイルセンサ1,2の近傍において、第1サーモパイルセンサ1と第2サーモパイルセンサ2との間に形成される何れにも検知されないエリア9を狭くすることができるのである。 As shown in FIG. 4, the first thermopile sensor 1 and the second thermopile sensor 2 in which the viewing angle is set as described above are arranged such that the distance between them in the horizontal direction is 20 cm or less, which is the average face width of the Japanese. Are arranged in parallel. Thus, by setting the distance between the horizontal direction to 20 cm or less, in the vicinity of both the thermopile sensors 1 and 2, any one formed between the first thermopile sensor 1 and the second thermopile sensor 2. The area 9 that is not detected can be narrowed.
 すなわち、上記両サーモパイルセンサ1,2の設置間隔を20cm以下にすることによって、ディスプレイに搭載した場合に、中央部に正面から50cmの位置に、顔幅以上の幅の非検知エリアが発生しない。そのために、両サーモパイルセンサ1,2の真正面に居る静止人体を正確に検知できるのである。 That is, by setting the interval between the two thermopile sensors 1 and 2 to 20 cm or less, when mounted on a display, a non-detection area having a width equal to or larger than the face width does not occur in the center at a position 50 cm from the front. Therefore, a stationary human body that is directly in front of both thermopile sensors 1 and 2 can be accurately detected.
 以上の結果、図1に示すように、上記両サーモパイルセンサ1,2からの距離である検知距離が150cmの位置での第1サーモパイルセンサ1による検知エリアは水平方向および垂直方向共に60cmとなる。また、第2サーモパイルセンサ2による検知エリアは水平方向および垂直方向共に120cmとなる。 As a result, as shown in FIG. 1, the detection area by the first thermopile sensor 1 at the position where the detection distance, which is the distance from both the thermopile sensors 1 and 2 is 150 cm, is 60 cm in both the horizontal and vertical directions. The detection area by the second thermopile sensor 2 is 120 cm in both the horizontal direction and the vertical direction.
 上述したように、上記第1サーモパイルセンサ1の視野角を、50cm離れた位置に居る顔幅が20cmの人の顔の全幅を捉えることが可能な最小角「22°」とし、第2サーモパイルセンサ2の視野角を、50cm離れた位置に居る肩幅が40cmの人の両肩間の全幅を捉えることが可能な最小角「44°」とする。そして、両サーモパイルセンサ1,2を、互いの間隔を20cm以下にして水平方向に並べて設置するようにしている。したがって、図5(a)および図5(b)に示すように、本情報処理装置を床面から70cmの机上のディスプレイに搭載して、机上40cmの位置に両サーモパイルセンサ1,2がある場合には、エアコン10やストーブ11等のノイズとなる人以外の熱源が検知エリア内に入り難く、エアコン10やストーブ11等を静止人体と誤認識することが防止されるのである。 As described above, the viewing angle of the first thermopile sensor 1 is set to the minimum angle “22 °” that can capture the full width of the face of a person with a face width of 20 cm located 50 cm away, and the second thermopile sensor Let the viewing angle of 2 be the minimum angle “44 °” that can capture the full width between the shoulders of a person with a shoulder width of 40 cm located 50 cm away. The thermopile sensors 1 and 2 are arranged side by side in the horizontal direction with a distance of 20 cm or less between them. Therefore, as shown in FIGS. 5 (a) and 5 (b), when the information processing apparatus is mounted on a display on a desk 70 cm from the floor, both thermopile sensors 1 and 2 are located 40 cm on the desk. Therefore, it is difficult for heat sources other than people such as the air conditioner 10 and the stove 11 to enter the detection area, and the air conditioner 10 and the stove 11 are prevented from being erroneously recognized as a stationary human body.
 以下、図1(a)に示す平面視および図1(b)に示す側面視において、上記第1サーモパイルセンサ1の検知エリアと第2サーモパイルセンサ2の検知エリアとが重なっている領域を第1検知エリア7と称する。また、第2サーモパイルセンサ2の検知エリアのみの領域を第2検知エリア8と称する。また、第1サーモパイルセンサ1の検知エリアと第2サーモパイルセンサ2の検知エリアとの何れでもない非検知エリアを第3検知エリア9と称する。 Hereinafter, in the plan view shown in FIG. 1 (a) and the side view shown in FIG. 1 (b), a region where the detection area of the first thermopile sensor 1 and the detection area of the second thermopile sensor 2 overlap is designated as a first area. This is called a detection area 7. Further, an area of only the detection area of the second thermopile sensor 2 is referred to as a second detection area 8. A non-detection area that is neither the detection area of the first thermopile sensor 1 nor the detection area of the second thermopile sensor 2 is referred to as a third detection area 9.
 以上のごとく構成された情報処理装置において、検知部3は、両サーモパイルセンサ1,2からの出力に基づいて、以下のような検知処理によって静止人体,動作人体および人以外の熱源を検知するのである。 In the information processing apparatus configured as described above, the detection unit 3 detects a stationary human body, a moving human body, and a heat source other than a human by the following detection process based on the outputs from both the thermopile sensors 1 and 2. is there.
 図6および図7は、上記検知部3によって行われる人体検知処理動作のフローチャートである。以下、図6および図7に従って人体検知処理について説明する。尚、図6および図7中において第1センサ1とは第1サーモパイルセンサ1の出力信号の電圧(出力電圧)のことであり、第2センサ2とは第2サーモパイルセンサ2の出力電圧のことである。 6 and 7 are flowcharts of the human body detection processing operation performed by the detection unit 3. Hereinafter, the human body detection process will be described with reference to FIGS. 6 and 7. 6 and 7, the first sensor 1 is the voltage (output voltage) of the output signal of the first thermopile sensor 1, and the second sensor 2 is the output voltage of the second thermopile sensor 2. It is.
 上記検知部3の電源がオンされると、人体検知処理動作がスタートする。 When the power of the detection unit 3 is turned on, the human body detection processing operation starts.
 ステップS1で、上記第1サーモパイルセンサ1および第2サーモパイルセンサ2からの出力信号が取り込まれて、出力電圧が取得される。ステップS2で、「第1サーモパイルセンサ1の出力電圧≧第1閾値(650mV)」であり、且つ「第2サーモパイルセンサ2の出力電圧≧上記第1閾値」であるか否かが判別される。その結果、何れの出力電圧も第1閾値(650mV)以上であれば、第1検知エリア7(正面)に人体(熱源)が居ると判別して、ステップS3に進む。一方、そうでなければステップS6に進む。 In step S1, output signals from the first thermopile sensor 1 and the second thermopile sensor 2 are acquired, and an output voltage is acquired. In step S2, it is determined whether “output voltage of first thermopile sensor 1 ≧ first threshold (650 mV)” and “output voltage of second thermopile sensor 2 ≧ first threshold”. As a result, if any output voltage is equal to or higher than the first threshold (650 mV), it is determined that there is a human body (heat source) in the first detection area 7 (front), and the process proceeds to step S3. Otherwise, the process proceeds to step S6.
 ここで、上記人体の有無の判定に用いられる上記第1閾値(650mV)の設定について説明する。図8は、上記第1閾値の設定方法の説明図である。但し、図8(a)は、検知距離とサーモパイルセンサ出力との関係を示す図である。また、図8(b)は、人間のベストポジションの説明図である。図8(b)に示すように、本情報処理装置をディスプレイに搭載することを想定した場合に、人間の両サーモパイルセンサ1,2からのベストポジションは50cm~150cmである。また、図8(a)に示すように、両サーモパイルセンサ1,2は、人間が近付くほど出力電圧が高くなる。また、人間の体格の大小に依存して出力電圧値が変わり、体の小さい人(小人)の方が体の大きい人(大人)に比して出力電圧は低い。そこで、図8(a)から分かるように、小人の検知距離が上記ベストポジションにおける最も長い150cmである場合における両サーモパイルセンサ1,2の出力電圧(=650mV)を、人体(熱源)の有無を判別するための上記第1閾値と設定するのである。 Here, the setting of the first threshold value (650 mV) used for determining the presence or absence of the human body will be described. FIG. 8 is an explanatory diagram of a method for setting the first threshold value. However, FIG. 8A is a diagram showing the relationship between the detection distance and the thermopile sensor output. FIG. 8B is an explanatory diagram of the human best position. As shown in FIG. 8B, when it is assumed that the information processing apparatus is mounted on a display, the best position from both human thermopile sensors 1 and 2 is 50 cm to 150 cm. Further, as shown in FIG. 8A, the thermopile sensors 1 and 2 have higher output voltages as a person approaches. Also, the output voltage value changes depending on the size of the human body, and the output voltage is lower for a person with a small body (small person) than for a person with a large body (adult). Therefore, as can be seen from FIG. 8A, the output voltage (= 650 mV) of both thermopile sensors 1 and 2 when the detection distance of the dwarf is the longest 150 cm at the best position is the presence or absence of the human body (heat source). This is set as the first threshold value for discriminating.
 ステップS3で、「|(第1サーモパイルセンサ1の出力電圧)-(第2サーモパイルセンサ2の出力電圧)|≦第2閾値(50mV)」であるか否かが判別される。その結果、第2閾値(50mV)以下であればステップS4に進む。一方、そうでなければステップS5に進む。ステップS4で、第1検知エリア7(正面)に居る人体は静止人体であると判定する。そうした後に、ステップS14に進む。 In step S3, it is determined whether or not “| (output voltage of the first thermopile sensor 1) − (output voltage of the second thermopile sensor 2) | ≦ second threshold (50 mV)”. If the result is less than or equal to the second threshold (50 mV), the process proceeds to step S4. Otherwise, the process proceeds to step S5. In step S4, it is determined that the human body in the first detection area 7 (front) is a stationary human body. After that, the process proceeds to step S14.
 図9は、上記第1検知エリア7(正面)に静止した人体が居る状態を示す。尚、図9(a)は、人体が居るエリアを示す。また、図9(b)は、第1検知エリア7(正面)に静止した人体が居る場合における両センサ1,2の出力電圧の経時変化を示す。 FIG. 9 shows a state where there is a stationary human body in the first detection area 7 (front). FIG. 9A shows an area where a human body is present. FIG. 9B shows a change with time of the output voltages of the sensors 1 and 2 when a stationary human body is present in the first detection area 7 (front).
 図9から分かるように、上記ステップS2において、両サーモパイルセンサ1,2の出力電圧が上記第1閾値(650mV)以上であると判別されたので、第1検知エリア7(正面)に人体(熱源)が居ると判定する。さらに、ステップS3で、|(第1サーモパイルセンサ1の出力電圧)-(第2サーモパイルセンサ2の出力電圧)|の値が第2閾値(50mV)以下であると判別されたので、第1検知エリア7(正面)に居る人体は静止人体であると判定するのである。 As can be seen from FIG. 9, in step S2, it is determined that the output voltages of both thermopile sensors 1 and 2 are equal to or higher than the first threshold (650 mV), so that the human body (heat source) is placed in the first detection area 7 (front). ) Is determined. Further, in step S3, it is determined that the value of | (output voltage of the first thermopile sensor 1) − (output voltage of the second thermopile sensor 2) | is equal to or less than the second threshold value (50 mV). The human body in the area 7 (front) is determined to be a stationary human body.
 ここで、上記静止人体の有無の判定に用いられる上記第2閾値(50mV)の設定について説明する。図10は、上記第2閾値の設定方法の説明図である。但し、図10(a)は、検知距離とサーモパイルセンサ出力との関係を示す図である。また、図10(b)は、動作人体の説明図である。また、図10(c)は、顔と体を左右に動かした場合のサーモパイルセンサ出力の変化を示す図である。 Here, the setting of the second threshold value (50 mV) used for the determination of the presence or absence of the stationary human body will be described. FIG. 10 is an explanatory diagram of a method for setting the second threshold value. However, FIG. 10A is a diagram showing the relationship between the detection distance and the thermopile sensor output. FIG. 10B is an explanatory diagram of an operating human body. FIG. 10C is a diagram showing changes in the thermopile sensor output when the face and body are moved to the left and right.
 人が静止しているのか動いているのかを判断するためには、先ず人の動きに対する定義付けが必要である。そこで、本実施の形態においては、
    ・人体の移動距離が20cmを超えている場合には「動いている」
    ・人体の移動距離が20cm以下の場合には「静止している」
と定義付けする。
In order to determine whether a person is stationary or moving, it is first necessary to define the movement of the person. Therefore, in this embodiment,
・ If the moving distance of the human body exceeds 20cm, it is “moving”
・ If the moving distance of the human body is 20 cm or less, it is “still”
Is defined.
 次に、人が動いていると判定する(つまり、移動距離が20cmを超えた)場合のサーモパイルセンサの出力電圧の変化量が必要となる。 Next, the amount of change in the output voltage of the thermopile sensor when it is determined that a person is moving (that is, when the moving distance exceeds 20 cm) is required.
 図10(b)に示すように、本情報処理装置をディスプレイに搭載することを想定し、人間の両サーモパイルセンサ1,2からのベストポジションは50cm~150cmであるとした場合、両サーモパイルセンサ1,2の検知エリア限界である150cmの位置で、図10(a)から分かるように背の低い小人が前方に20cm移動すると両サーモパイルセンサ1,2の出力電圧は50mV上昇する。さらに、図10(c)から分かるように小人が体を左右に動かすと出力電圧は50mV下降する。 As shown in FIG. 10B, when it is assumed that the information processing apparatus is mounted on a display and the best position from both human thermopile sensors 1 and 2 is 50 cm to 150 cm, both thermopile sensors 1 As shown in FIG. 10 (a), when the small dwarf moves 20 cm forward, the output voltage of both thermopile sensors 1 and 2 increases by 50 mV. Further, as can be seen from FIG. 10 (c), when the dwarf moves his / her body left and right, the output voltage drops by 50 mV.
 そこで、上記両サーモパイルセンサ1,2の出力電圧差50mVを、静止人体の有無の判定に用いられる上記第2閾値と設定するのである。 Therefore, the output voltage difference 50 mV between the two thermopile sensors 1 and 2 is set as the second threshold value used for determining whether or not there is a stationary human body.
 このように、上記第2閾値の設定方法によれば、人の動きを判断する場合に、上記第2閾値を小さい人のセンサ出力値の変動に基づくことによって、子供が居るのに検知できない等の誤検知を低減するのに有益である。 As described above, according to the second threshold value setting method, when the movement of a person is determined, the second threshold value cannot be detected even when a child is present based on the fluctuation of the sensor output value of a small person. This is useful for reducing false positives.
 また、本情報処理装置が搭載される電気機器等に合わせて、上記第2閾値を変更することも可能である。例えば、20cmよりも微小の人の動きを捉えたい場合には、判定基準となる人の動く距離を20cmよりも小さく定義しても良く、20cmよりも大きな人の動きを捉えたい場合は、判定基準となる人の動く距離を20cmよりも大きく定義しても良い。 Also, it is possible to change the second threshold value according to the electrical equipment on which the information processing apparatus is mounted. For example, when it is desired to capture the movement of a person smaller than 20 cm, the movement distance of the person serving as a criterion may be defined to be smaller than 20 cm. When it is desired to capture the movement of a person larger than 20 cm, the determination is performed. A reference person's moving distance may be defined to be larger than 20 cm.
 図6に示す人体検知処理動作のフローチャートにおけるステップS5で、第1検知エリア7(正面)に居る人体は動作人体であると判定する。そうした後、ステップS14に進む。 In step S5 in the flowchart of the human body detection processing operation shown in FIG. 6, it is determined that the human body in the first detection area 7 (front) is an operating human body. After that, the process proceeds to step S14.
 図11は、上記第1検知エリア7(正面)に動く人体が居る状態を示す。尚、図11(a)は、人体が居るエリアを示す。また、図11(b)は、第1検知エリア7(正面)に動作人体が居る場合における両センサ1,2の出力電圧の経時変化を示す。 FIG. 11 shows a state where there is a moving human body in the first detection area 7 (front). In addition, Fig.11 (a) shows the area where a human body exists. FIG. 11B shows a change with time of the output voltages of the sensors 1 and 2 when an operating human body is present in the first detection area 7 (front).
 図11から分かるように、上記ステップS2において、両サーモパイルセンサ1,2の出力電圧が上記第1閾値(650mV)以上であると判別されたので、第1検知エリア7(正面)に人体(熱源)が居ると判定する。さらに、ステップS3で、|(第1サーモパイルセンサ1の出力電圧)-(第2サーモパイルセンサ2の出力電圧)|の値が第2閾値(50mV)を超えていると判別されたので、第1検知エリア7(正面)に居る人体は動作人体であると判定するのである。 As can be seen from FIG. 11, in step S2, it is determined that the output voltages of both thermopile sensors 1 and 2 are equal to or higher than the first threshold (650 mV), so that a human body (heat source) is placed in the first detection area 7 (front). ) Is determined. Further, in step S3, it is determined that the value of | (output voltage of the first thermopile sensor 1) − (output voltage of the second thermopile sensor 2) | exceeds the second threshold (50 mV). The human body in the detection area 7 (front) is determined to be an operating human body.
 図6に示す人体検知処理動作のフローチャートにおけるステップS6で、「第1サーモパイルセンサ1の出力電圧<第1閾値(650mV)」であって、且つ「第2サーモパイルセンサ2の出力電圧≧上記第1閾値」であるか否かが判別される。その結果、そうであれば、第2検知エリア8に人体(熱源)が居ると判別してステップS7に進む。一方、そうでなければステップS12に進む。ステップS7で、上記ステップS1において取り込まれた上記第2サーモパイルセンサ2の出力電圧値が、「Vt1」としてメモリ4(図1(a)参照)に記憶される。ステップS8で、上記ステップS1において第2サーモパイルセンサ2の出力電圧が取り込まれてから上記設定時間tの一例としての1000msec経過後に、第2サーモパイルセンサ2の出力電圧が取り込まれて、「Vt2」としてメモリ4に記憶される。 In step S6 in the flowchart of the human body detection processing operation shown in FIG. 6, “output voltage of the first thermopile sensor 1 <first threshold (650 mV)” and “output voltage of the second thermopile sensor 2 ≧ the first It is determined whether or not it is “threshold”. As a result, if so, it is determined that there is a human body (heat source) in the second detection area 8, and the process proceeds to step S7. On the other hand, if not, the process proceeds to step S12. In step S7, the output voltage value of the second thermopile sensor 2 taken in in step S1 is stored in the memory 4 (see FIG. 1A) as “Vt1”. In step S8, after the elapse of 1000 msec as an example of the set time t after the output voltage of the second thermopile sensor 2 is taken in in step S1, the output voltage of the second thermopile sensor 2 is taken in as “Vt2”. Stored in the memory 4.
 ステップS9で、「|Vt1-Vt2|≦ 第2閾値(50mV)」であるか否かが判別される。その結果、第2閾値(50mV)以下であればステップS10に進み、そうでなければステップS11に進む。 In step S9, it is determined whether or not “| Vt1-Vt2 | ≦ second threshold value (50 mV)”. As a result, if it is equal to or less than the second threshold value (50 mV), the process proceeds to step S10, and if not, the process proceeds to step S11.
 ここで、上記ステップS3の場合には第1サーモパイルセンサ1の出力電圧と第2サーモパイルセンサ2の出力電圧とを比較しているのに対して、本ステップS9においては時間1000msecの前後における第2サーモパイルセンサ2の出力電圧を比較している。これは、上記ステップS6において既に第2検知エリア8に熱源があると判定されているためである。 Here, in the case of step S3, the output voltage of the first thermopile sensor 1 is compared with the output voltage of the second thermopile sensor 2, whereas in this step S9, the second voltage before and after the time of 1000 msec is compared. The output voltage of the thermopile sensor 2 is compared. This is because it has already been determined in step S6 that there is a heat source in the second detection area 8.
 ステップS10で、上記第2検知エリア8(周辺)にある熱源は、人体以外の熱源であると判定する。そうした後、ステップS14に進む。 In step S10, it is determined that the heat source in the second detection area 8 (periphery) is a heat source other than the human body. After that, the process proceeds to step S14.
 図12は、上記第2検知エリア8(周辺)に、動きの無い人体以外の熱源がある状態を示す。尚、図12(a)は、動きの無い人体以外の熱源としてのストーブ11があるエリアを示す。また、図12(b)は、第2検知エリア8(周辺)に動きの無い人体以外の熱源がある場合における両サーモパイルセンサ1,2の出力電圧の経時変化を示す。 FIG. 12 shows a state in which there is a heat source other than a non-moving human body in the second detection area 8 (periphery). FIG. 12A shows an area where the stove 11 as a heat source other than a human body without movement is present. FIG. 12B shows the change with time of the output voltages of both thermopile sensors 1 and 2 when there is a heat source other than the non-moving human body in the second detection area 8 (periphery).
 図12から分かるように、上記ステップS6において、「第1サーモパイルセンサ1の出力電圧<第1閾値(650mV)」、且つ「第2サーモパイルセンサ2の出力電圧≧上記第1閾値」であると判別されたので、第2検知エリア8(周辺)に熱源があると判定する。さらに、上記ステップS9において、「|Vt1-Vt2|≦第2閾値(50mV)」であると判別されたので、第2サーモパイルセンサ2の出力電圧の変化量が少なく、第2検知エリア8(周辺)にある熱源は殆ど動きの無い人体以外の熱源であると判定するのである。 As can be seen from FIG. 12, in step S6, it is determined that “the output voltage of the first thermopile sensor 1 <the first threshold (650 mV)” and “the output voltage of the second thermopile sensor 2 ≧ the first threshold”. Therefore, it is determined that there is a heat source in the second detection area 8 (periphery). In step S9, since it is determined that “| Vt1−Vt2 | ≦ second threshold value (50 mV)”, the amount of change in the output voltage of the second thermopile sensor 2 is small, and the second detection area 8 (peripheral area) ) Is determined to be a heat source other than the human body that hardly moves.
 ここで、上記「Vt1」と「Vt2」とは時間の間隔を開けて測定した第2サーモパイルセンサ2の出力電圧であり、上記時間の間隔を1秒に設定している。しかしながら、時間の間隔は1秒に限定されるものではなく、本情報処理装置が搭載される電子機器に合わせて変更しても一向に差し支えない。 Here, “Vt1” and “Vt2” are output voltages of the second thermopile sensor 2 measured with a time interval, and the time interval is set to 1 second. However, the time interval is not limited to 1 second, and may be changed in accordance with the electronic device in which the information processing apparatus is mounted.
 図6に示す人体検知処理動作のフローチャートにおけるステップS11で、第2検知エリア8(周辺)に動作人体が居ると判定する。そうした後、ステップS14に進む。 In step S11 in the flowchart of the human body detection processing operation shown in FIG. 6, it is determined that there is an operating human body in the second detection area 8 (periphery). After that, the process proceeds to step S14.
 図13は、上記第2検知エリア8(周辺)に動作人体が居る状態を示す。尚、図13(a)は、動作人体が居るエリアを示す。また、図13(b)は、第2検知エリア8(周辺)に動作人体が居る場合における両サーモパイルセンサ1,2の出力電圧の経時変化を示す。 FIG. 13 shows a state where there is an operating human body in the second detection area 8 (periphery). FIG. 13A shows an area where an operating human body is present. FIG. 13B shows a change with time of the output voltages of both thermopile sensors 1 and 2 when an operating human body is present in the second detection area 8 (periphery).
 図13から分かるように、上記ステップS6において、「第1サーモパイルセンサ1の出力電圧<第1閾値(650mV)」、且つ「第2サーモパイルセンサ2の出力電圧≧上記第1閾値」であると判別されたので、第2検知エリア8(周辺)に熱源があると判定する。さらに、上記ステップS9において、|Vt1-Vt2|>第2閾値(50mV)であると判別されたので、第2サーモパイルセンサ2の出力電圧の変化量が大きく、第2検知エリア8(周辺)には動作人体が居ると判定するのである。 As can be seen from FIG. 13, in step S6, it is determined that “the output voltage of the first thermopile sensor 1 <the first threshold (650 mV)” and “the output voltage of the second thermopile sensor 2 ≧ the first threshold”. Therefore, it is determined that there is a heat source in the second detection area 8 (periphery). Further, in step S9, it is determined that | Vt1-Vt2 |> second threshold value (50 mV), so that the amount of change in the output voltage of the second thermopile sensor 2 is large, and the second detection area 8 (periphery) Determines that there is a moving human body.
 図7に示す人体検知処理動作のフローチャートにおけるステップS12で、「第1サーモパイルセンサ1の出力電圧<第1閾値(650mV)」、且つ「第2サーモパイルセンサ2の出力電圧<上記第1閾値」であるか否かが判別される。その結果、何れの出力電圧も第1閾値(650mV)を下回ればステップS13に進み、そうでなければ上記ステップS1にリターンして、次の人体検知処理動作に移行する。ステップS13で、第1,第2検知エリア7,8に人体(熱源)は居らず、人体以外の熱源もないと判定する。そうした後、ステップS14に進む。 In step S12 in the flowchart of the human body detection processing operation shown in FIG. 7, “output voltage of first thermopile sensor 1 <first threshold value (650 mV)” and “output voltage of second thermopile sensor 2 <first threshold value” are satisfied. It is determined whether or not there is. As a result, if any output voltage falls below the first threshold value (650 mV), the process proceeds to step S13. Otherwise, the process returns to step S1 and proceeds to the next human body detection processing operation. In step S13, it is determined that there is no human body (heat source) in the first and second detection areas 7 and 8, and there is no heat source other than the human body. After that, the process proceeds to step S14.
 図14は、上記第1,第2検知エリア7,8に人体も人体以外の熱源も無い状態を示す。但し、図14(a)は、人体あるいは人体以外の熱源があるエリアを示す。また、図14(b)は、第1,第2検知エリア7,8に人体も人体以外の熱源も無い場合における両サーモパイルセンサ1,2の出力電圧の経時変化を示す。 FIG. 14 shows a state in which the first and second detection areas 7 and 8 have neither a human body nor a heat source other than the human body. However, FIG. 14A shows an area where a human body or a heat source other than the human body is present. FIG. 14B shows changes with time in the output voltages of both thermopile sensors 1 and 2 when the first and second detection areas 7 and 8 have neither a human body nor a heat source other than the human body.
 図14から分かるように、上記ステップS12において、「第1サーモパイルセンサ1の出力電圧<第1閾値(650mV)」、且つ「第2サーモパイルセンサ2の出力電圧<上記第1閾値」であると判別されたので、第1,第2検知エリア7,8に人体も人体以外の熱源も無いと判定するのである。 As can be seen from FIG. 14, in step S12, it is determined that “the output voltage of the first thermopile sensor 1 <the first threshold value (650 mV)” and “the output voltage of the second thermopile sensor 2 <the above first threshold value”. Therefore, it is determined that the first and second detection areas 7 and 8 have neither a human body nor a heat source other than the human body.
 図6に示す人体検知処理動作のフローチャートにおけるステップS14で、電源がオフされたか否かが判別される。その結果、オフされていなければ上記ステップS1に戻って、次の検知処理動作に移行する。一方、オフされていれば、人体検知処理動作を終了する。 In step S14 in the flowchart of the human body detection processing operation shown in FIG. 6, it is determined whether or not the power is turned off. As a result, if it is not turned off, the process returns to step S1 and shifts to the next detection processing operation. On the other hand, if it is off, the human body detection processing operation is terminated.
 以上のごとく、本第1実施の形態においては、遠赤外線を検知する2つの第1,第2サーモパイルセンサ1,2を水平方向に互いに隣接させて配置し、第1,第2サーモパイルセンサ1,2の出力を検知部3に入力し、上記検知処理を行って静止人体,動作人体および人以外の熱源を検知するようにしている。その場合に、第1サーモパイルセンサ1の視野角を、50cm離れた位置に居る平均顔幅が20cmである日本人の顔の全幅を捉えることが可能な最小角「22°」に設定している。さらに、第2サーモパイルセンサ2の視野角を、50cm離れた位置に居る平均肩幅が40cmの日本人の両肩間の全幅を捉えることが可能な最小角「44°」に設定している。 As described above, in the first embodiment, the two first and second thermopile sensors 1 and 2 that detect far infrared rays are arranged adjacent to each other in the horizontal direction, and the first and second thermopile sensors 1 and 2 are arranged. 2 is input to the detection unit 3, and the detection process is performed to detect a stationary human body, a moving human body, and a heat source other than a human. In that case, the viewing angle of the first thermopile sensor 1 is set to the minimum angle “22 °” that can capture the full width of a Japanese face with an average face width of 20 cm at a position 50 cm away. . Further, the viewing angle of the second thermopile sensor 2 is set to a minimum angle “44 °” that can capture the entire width between both shoulders of a Japanese person with an average shoulder width of 40 cm located 50 cm away.
 さらに、上記第1サーモパイルセンサ1と第2サーモパイルセンサ2との水平方向への間隔を日本人の平均顔幅である20cm以下にして、両サーモパイルセンサ1,2の中央部であって正面から50cmの位置に、顔幅以上の幅の非検知エリアである第3検知エリア9が発生しないようにして、両サーモパイルセンサ1,2の真正面に居る静止人体を正確に検知できるようにしている。 Further, the horizontal distance between the first thermopile sensor 1 and the second thermopile sensor 2 is set to 20 cm or less, which is the average face width of Japanese people, and is 50 cm from the front at the center of both thermopile sensors 1 and 2. The third detection area 9 which is a non-detection area having a width equal to or larger than the face width is not generated at the position, so that the stationary human body directly in front of both the thermopile sensors 1 and 2 can be accurately detected.
 さらに、体の小さい人(小人)の検知距離がベストポジションの最も長い150cmである場合における両サーモパイルセンサ1,2の出力電圧650mVを、人体(熱源)の有無を判別するための第1閾値と設定する。また、人体の移動距離が20cmを超えている場合には「動いている」と定義付けた場合、両サーモパイルセンサ1,2の検知エリア限界である150cmの位置で、背の低い小人が前方に20cm移動する場合の両サーモパイルセンサ1,2の出力電圧差50mVを、静止人体の有無を判定するための第2閾値と設定する。 Furthermore, the first threshold value for determining the presence or absence of a human body (heat source) from the output voltage 650 mV of both thermopile sensors 1 and 2 when the detection distance of a small person (small person) is 150 cm, which is the longest best position. And set. If the moving distance of the human body exceeds 20 cm, it is defined as “moving”, and a short dwarf moves forward at the position of 150 cm which is the detection area limit of both thermopile sensors 1 and 2. The output voltage difference 50 mV between the two thermopile sensors 1 and 2 when moving 20 cm to the second is set as the second threshold value for determining the presence or absence of a stationary human body.
 そして、上記検知部3によって、
(1)両サーモパイルセンサ1,2の出力電圧が上記第1閾値(650mV)以上であり、両サーモパイルセンサ1,2の出力電圧差の絶対値が第2閾値(50mV)以下である
と判別された場合には、第1検知エリア7(正面)に静止人体が居ると判定する。
(2)両サーモパイルセンサ1,2の出力電圧が上記第1閾値(650mV)以上であり、両サーモパイルセンサ1,2の出力電圧差の絶対値が第2閾値(50mV)を上回る
と判別された場合には、第1検知エリア7(正面)に動作人体が居ると判定する。
(3)「第1サーモパイルセンサ1の出力電圧<第1閾値(650mV)」、且つ「第2サーモパイルセンサ2の出力電圧≧上記第1閾値」であり、
第2サーモパイルセンサ2の出力電圧の1秒経過の前後の変化量が第2閾値(50mV)以下である
と判別された場合には、第2検知エリア8(周辺)に殆ど動きの無い人体以外の熱源があると判定する。
(4)「第1サーモパイルセンサ1の出力電圧<第1閾値(650mV)」、且つ「第2サーモパイルセンサ2の出力電圧≧上記第1閾値」であり、
第2サーモパイルセンサ2の出力電圧の1秒経過の前後の変化量が第2閾値(50mV)を上回る
と判別された場合には、第2検知エリア8(周辺)に動作人体が居ると判定する。
(5)両サーモパイルセンサ1,2の出力電圧が上記第1閾値(650mV)を下回る
と判別された場合には、第1,第2検知エリア7,8に人体も人体以外の熱源も無いと判定する。
And by the detection unit 3,
(1) It is determined that the output voltage of both thermopile sensors 1 and 2 is not less than the first threshold (650 mV) and the absolute value of the output voltage difference between both thermopile sensors 1 and 2 is not more than the second threshold (50 mV). If it is determined that there is a stationary human body in the first detection area 7 (front).
(2) It was determined that the output voltage of both thermopile sensors 1, 2 is equal to or higher than the first threshold (650 mV), and the absolute value of the output voltage difference between both thermopile sensors 1, 2 exceeds the second threshold (50 mV). In this case, it is determined that there is an operating human body in the first detection area 7 (front).
(3) “Output voltage of first thermopile sensor 1 <first threshold (650 mV)” and “output voltage of second thermopile sensor 2 ≧ first threshold”,
If it is determined that the amount of change in the output voltage of the second thermopile sensor 2 before and after the passage of 1 second is less than or equal to the second threshold (50 mV), other than a human body with little movement in the second detection area 8 (periphery) It is determined that there is a heat source.
(4) “Output voltage of first thermopile sensor 1 <first threshold (650 mV)” and “output voltage of second thermopile sensor 2 ≧ first threshold”,
If it is determined that the amount of change in the output voltage of the second thermopile sensor 2 before and after 1 second has exceeded the second threshold (50 mV), it is determined that there is an operating human body in the second detection area 8 (periphery). .
(5) If it is determined that the output voltages of both the thermopile sensors 1 and 2 are lower than the first threshold (650 mV), the first and second detection areas 7 and 8 have neither a human body nor a heat source other than the human body. judge.
 すなわち、本実施の形態においては、上記検知部3によって、熱源の位置(第1,2,3検知エリア)と上記熱源の動作状態(静止,動作)とを検知することができるのである。 That is, in the present embodiment, the position of the heat source (first, second and third detection areas) and the operation state (stationary, operation) of the heat source can be detected by the detection unit 3.
 このように、視野角が「22°」の第1サーモパイルセンサ1と、視野角が「44°」の第2サーモパイルセンサ2とを、20cm以下の間隔で水平方向に隣接させて配置し、第1,第2サーモパイルセンサ1,2の出力に基づいて上記検知処理を行うことによって、熱源の有無を検知するだけではなく、第1,第2サーモパイルセンサ1,2の正面と周辺との熱源の位置情報と、第1,第2サーモパイルセンサ1,2の正面と周辺とでの熱源の動作情報とから、静止人体と人以外の熱源とを区別して検知することが可能になる。したがって、静止人体,動いている人体,人以外の熱源および熱源無しの判断を的確に行うことができるのである。 In this way, the first thermopile sensor 1 with a viewing angle of “22 °” and the second thermopile sensor 2 with a viewing angle of “44 °” are arranged adjacent to each other in the horizontal direction at intervals of 20 cm or less. By performing the above detection process based on the outputs of the first and second thermopile sensors 1 and 2, not only the presence or absence of the heat source is detected, but also the heat source between the front and the periphery of the first and second thermopile sensors 1 and 2 is detected. It is possible to distinguish and detect a stationary human body and a heat source other than a person from the position information and the operation information of the heat source at the front and the periphery of the first and second thermopile sensors 1 and 2. Therefore, it is possible to accurately determine a stationary human body, a moving human body, a heat source other than a human, and no heat source.
 また、本実施の形態においては、上記第1サーモパイルセンサ1の視野角を、50cm離れた位置に居る平均顔幅が20cmである日本人の顔の全幅を捉えることが可能な最小角に設定している。また、第2サーモパイルセンサ2の視野角を、50cm離れた位置に居る平均肩幅が40cmの日本人の両肩間の全幅を捉えることが可能な最小角に設定している。 Further, in the present embodiment, the viewing angle of the first thermopile sensor 1 is set to the minimum angle that can capture the full width of a Japanese face with an average face width of 20 cm at a position 50 cm away. ing. In addition, the viewing angle of the second thermopile sensor 2 is set to the minimum angle that can capture the full width between both shoulders of a Japanese person with an average shoulder width of 40 cm located 50 cm away.
 このように、人以外の熱源(例えば電気ストーブ)からの熱源ノイズの影響を少なくするために、センサ1,2が搭載される電気製品(例えば、パソコンのディスプレイ)に合わせて、センサ1,2と人との最適な距離を設定し、その最適な位置(例えば、50cm)において、第1サーモパイルセンサ1の視野幅が日本人平均の顔幅(20cm)に、第2サーモパイルセンサ2の視野幅が日本人平均の肩幅(40cm)になるように、視野角を設定している。 In this way, in order to reduce the influence of heat source noise from heat sources other than humans (for example, electric heaters), the sensors 1 and 2 are matched to the electrical products (for example, personal computer displays) on which the sensors 1 and 2 are mounted. Set the optimal distance between the person and the person, and at the optimal position (for example, 50 cm), the visual field width of the first thermopile sensor 1 is the average Japanese face width (20 cm), and the visual field width of the second thermopile sensor 2 The viewing angle is set so that the average shoulder width (40cm) is Japanese.
 人体表面で温度が最も高い顔部と、面積が最も多い肩幅を含んだ胸部とは、遠赤外線の放射量が多く、遠赤外線によって人間を正確に検知できる部位である。したがって、上述の視野角に設定された2つのセンサ1,2の検知エリアを重ね合わせて用いることによって、顔と胸とがセンサ1,2の正面の検知エリア内に移動すれば、正確に熱源の変化量を検知することができる。その逆に、顔と胸とがセンサ1,2の正面から検知エリア外に動いた場合も、動いた変化量を正確に捉えることが可能になる。 The face part with the highest temperature on the human body surface and the chest part including the shoulder width, which has the largest area, have a large amount of far-infrared radiation, and can be detected accurately by far-infrared rays. Therefore, if the detection areas of the two sensors 1 and 2 set to the above-described viewing angles are used in an overlapping manner, if the face and chest move into the detection area in front of the sensors 1 and 2, the heat source can be accurately detected. The amount of change can be detected. Conversely, when the face and chest move out of the detection area from the front of the sensors 1 and 2, it is possible to accurately capture the amount of change that has moved.
 すなわち、上述のごとく視野角を設定すれば、人以外の熱源が少ない検知エリア内で人が放射する顔や胸の遠赤外線を正確に検知できるので、人体の静止・動作の区別や、人と人以外の熱源との区別に、非常に有益となる。 In other words, if the viewing angle is set as described above, it is possible to accurately detect far-infrared rays of the face and chest radiated by a person in a detection area where there are few heat sources other than humans. This is very useful for distinguishing from heat sources other than people.
 また、本実施の形態においては、上記第1サーモパイルセンサ1と第2サーモパイルセンサ2との水平方向への間隔を日本人の平均顔幅である20cm以下にしている。 In the present embodiment, the horizontal distance between the first thermopile sensor 1 and the second thermopile sensor 2 is set to 20 cm or less, which is the average face width of the Japanese.
 上述のように、上記視野角を狭く設定した二つのセンサ1,2を互いに水平方向に隣接させて、互いの検知エリアを重ね合わせて用いる場合、両センサ1,2の中間部に熱源を検知できない非検知エリアが発生しないよう、両センサ1,2間の距離を設定することが必要である。 As described above, when the two sensors 1 and 2 having a narrow viewing angle are adjacent to each other in the horizontal direction and the detection areas are overlapped with each other, a heat source is detected at an intermediate portion between the sensors 1 and 2. It is necessary to set the distance between the sensors 1 and 2 so that a non-detectable area that cannot be generated does not occur.
 上記第1サーモパイルセンサ1と第2サーモパイルセンサ2との水平方向への間隔を日本人の平均顔幅である20cm以下に設定することによって、両センサ1,2間の正面における非検知エリアを狭くすることが可能になり、表面温度が高い顔の部分を確実に検知エリア内入れることが可能になり、正面の静止人体を正確に検知するのに有益となる。 By setting the horizontal distance between the first thermopile sensor 1 and the second thermopile sensor 2 to 20 cm or less, which is the average face width of Japanese people, the non-detection area in front of the sensors 1 and 2 is narrowed. This makes it possible to reliably put a face portion having a high surface temperature within the detection area, which is useful for accurately detecting a stationary human body in front.
 ・第2実施の形態
 本実施の形態は、上記第1実施の形態の情報処理装置を備えた電気製品に関する。
Second Embodiment The present embodiment relates to an electrical product that includes the information processing apparatus according to the first embodiment.
 図15は、本電気製品の一例としてのTVの概略構成を示す図である。本実施の形態におけるTVは、遠隔操作をリモコンを使用せずに行うものである。 FIG. 15 is a diagram showing a schematic configuration of a TV as an example of the electrical product. The TV in the present embodiment performs remote operation without using a remote controller.
 図15において、TVの本体部15(以下、TV15と言う)の表示画面16の縁部17における上縁の中央部には、静止人体検知用のセンサ18が設置されている。また、縁部17における左上の角部には、音量変更用のセンサ19が設置されている。また、縁部17における左下の角部には、番組表確認変更用のセンサ20が設置されている。また、縁部17における右上の角部には、地上デジタル(地デジ)チャンネル変更用のセンサ21が設置されている。また、縁部17における右下の角部には、BSチャンネル変更用のセンサ22が設置されている。 15, a stationary human body detection sensor 18 is installed at the center of the upper edge of the edge 17 of the display screen 16 of the TV main body 15 (hereinafter referred to as TV 15). Further, a volume changing sensor 19 is installed at the upper left corner of the edge 17. Further, a program guide confirmation change sensor 20 is installed at the lower left corner of the edge 17. A terrestrial digital (terrestrial digital) channel changing sensor 21 is installed at the upper right corner of the edge 17. A BS channel changing sensor 22 is installed at the lower right corner of the edge 17.
 上記各センサ18~22は、上記第1実施の形態の場合と同様に、遠赤外線を検知する2つの第1,第2サーモパイルセンサで構成されている。そして、各センサ18~22を構成する2つの第1,第2サーモパイルセンサからの出力は検知部23に入力される。そして、検知部23の検知結果が制御部24に入力され、後に詳述するような制御処理を行って、TV15の音量変更,番組表確認変更,地デジチャンネル変更およびBSチャンネル変更等の制御を行う。但し、図15においては、煩雑になるのを避けるため、第1,第2サーモパイルセンサから検知部23への配線は、1本の配線で代表して表現している。 The sensors 18 to 22 are composed of two first and second thermopile sensors that detect far-infrared rays, as in the case of the first embodiment. Outputs from the two first and second thermopile sensors constituting each of the sensors 18 to 22 are input to the detection unit 23. Then, the detection result of the detection unit 23 is input to the control unit 24, and control processing as will be described in detail later is performed to control the TV 15 volume change, program table confirmation change, terrestrial digital channel change, BS channel change, and the like. Do. However, in FIG. 15, to avoid complication, the wiring from the first and second thermopile sensors to the detection unit 23 is represented by a single wiring.
 ここで、上記制御部24による音量変更,番組表確認変更,地デジチャンネル変更およびBSチャンネル変更等の制御は、静止人体の有無と手の位置と手の動作パターンとに基づいて行われる。すなわち、検知部23は、上記第1実施の形態における検知部3の場合と同様にして、静止人体の有無と手の位置と手の動作パターンとを検知する。そして、制御部24は、検知部3で検知された静止人体の有無,手の位置および手の動作パターンに応じて上述の制御を行うのである。 Here, control such as volume change, program guide confirmation change, terrestrial digital channel change and BS channel change by the control unit 24 is performed based on the presence / absence of a stationary human body, the position of the hand, and the movement pattern of the hand. That is, the detection unit 23 detects the presence / absence of a stationary human body, the position of the hand, and the movement pattern of the hand in the same manner as the detection unit 3 in the first embodiment. And the control part 24 performs the above-mentioned control according to the presence or absence of the stationary human body detected by the detection part 3, the position of the hand, and the movement pattern of the hand.
 上記サーモパイルセンサを使用して、静止人体の有無と手の位置と手の動作パターンとに基づいてTV15の遠隔操作を行うためには、静止人体の有無の検知と、手の位置の検知と、手の動作パターンの検知とが必要である。そのために、各センサ18~22には、以下のような工夫を行う。 In order to remotely control the TV 15 based on the presence / absence of a stationary human body, the position of the hand, and the movement pattern of the hand using the thermopile sensor, detection of the presence / absence of a stationary human body, detection of the position of the hand, Detection of hand movement patterns is required. For this purpose, the following measures are taken for each of the sensors 18-22.
 上記静止人体検知用のセンサ18は、TV15の正面に静止人体が居るか否かを検知するためのセンサである。そのため、TV15の正面に静止人体が居ることを正確に検知可能なように、TV15から200cm離れた位置に居る平均顔幅が20cmである日本人の顔の全幅を捉えることが可能な最小の視野角(第1視野角)6°の第1サーモパイルセンサ18aと、TV15から200cm離れた位置に居る平均肩幅40cmである日本人の両肩間の全幅を捉えることが可能な最小の視野角(第2視野角)12°の第2サーモパイルセンサ18bとを、水平方向への間隔を日本人の平均顔幅である20cm以下になるように設置して構成している。 The stationary human body detection sensor 18 is a sensor for detecting whether or not there is a stationary human body in front of the TV 15. Therefore, the smallest field of view that can capture the full width of a Japanese face with an average face width of 20 cm located 200 cm away from the TV 15 so that it can accurately detect the presence of a stationary human body in front of the TV 15 The first viewing angle (first viewing angle) 6 ° and the smallest viewing angle (first viewing angle) that can capture the full width between the shoulders of Japanese people with an average shoulder width of 40 cm located 200 cm away from the TV 15 The second thermopile sensor 18b (2 viewing angles) is set to have a horizontal interval of 20 cm or less, which is the average face width of Japanese people.
 図16は、第1検知エリア23(正面)に、静止した人体が居る状態を示す。但し、図16(a)は、人体が居るエリアを示す。また、図16(b)は、第1検知エリア25(正面)に静止した人体が居る場合における両サーモパイルセンサ18a,18bの出力電圧の経時変化を示す。 FIG. 16 shows a state in which a stationary human body is present in the first detection area 23 (front). However, FIG. 16A shows an area where a human body is present. FIG. 16B shows a change with time of the output voltage of both thermopile sensors 18a and 18b when a stationary human body is present in the first detection area 25 (front).
 尚、図16(a)における第1検知エリア25および第2検知エリア26の設定方法は、上記第1実施の形態の場合と同様である。また、第1検知エリア25に静止した人体が居ると判定するための第1閾値も、上記第1実施の形態の場合と同様の「650mV」である。さらに、静止人体の有無を判定するための両サーモパイルセンサ18a,18bの出力電圧差の第2閾値も、上記第1実施の形態の場合と同様の「50mV」である。 In addition, the setting method of the 1st detection area 25 and the 2nd detection area 26 in Fig.16 (a) is the same as that of the said 1st Embodiment. The first threshold value for determining that there is a stationary human body in the first detection area 25 is also “650 mV” as in the case of the first embodiment. Furthermore, the second threshold value of the output voltage difference between the two thermopile sensors 18a and 18b for determining the presence or absence of a stationary human body is also “50 mV”, similar to the case of the first embodiment.
 そして、図16(b)に示すように、両サーモパイルセンサ18a,18bの出力電圧が上記第1閾値(650mV)以上であり、両サーモパイルセンサ18a,18bの出力電圧差の絶対値が第2閾値(50mV)以下である場合に、第1検知エリア25(TV15の正面)に静止人体が居ると判定するのである。 As shown in FIG. 16 (b), the output voltage of both thermopile sensors 18a, 18b is equal to or higher than the first threshold (650 mV), and the absolute value of the output voltage difference between both thermopile sensors 18a, 18b is the second threshold. When it is (50 mV) or less, it is determined that there is a stationary human body in the first detection area 25 (in front of the TV 15).
 また、上記音量変更用のセンサ19,番組表確認変更用のセンサ20,地デジチャンネル変更用のセンサ21およびBSチャンネル変更用のセンサ22は、手の動作パターンを検知するためのセンサである。そのため、人の手の動きを正確に検知可能なように、TV15から200cm離れた位置に居る平均の手のひら幅が8cmである日本人の手のひらの全幅を捉えることが可能な最小視野角(第1視野角)2°の第1サーモパイルセンサ19a,20a,21a,22aと、TV15から200cm離れた位置に居る日本人の手の動きを捉えることが可能なように、上記第1サーモパイルセンサ19a,20a,21a,22aの視野角2°の3倍の視野角(第2視野角)6°の第2サーモパイルセンサ19b,20b,21b,22bとを、水平方向への間隔を日本人の平均の手のひらの幅である8cm以下になるように設置して構成している。 Also, the volume changing sensor 19, the program guide confirmation changing sensor 20, the terrestrial digital channel changing sensor 21 and the BS channel changing sensor 22 are sensors for detecting hand movement patterns. Therefore, in order to be able to accurately detect the movement of a human hand, the minimum viewing angle that can capture the full width of a Japanese palm with an average palm width of 8 cm located 200 cm away from the TV 15 (first view) (Viewing angle) The first thermopile sensor 19a, 20a, 20a, and the first thermopile sensor 19a, 20a so that the movement of a Japanese hand located 200 cm away from the TV 15 can be captured. , 21a, 22a and a second thermopile sensor 19b, 20b, 21b, 22b with a viewing angle of 6 times the second viewing angle (second viewing angle) 6 °, the horizontal spacing of the average Japanese palm It is installed and configured to be 8 cm or less, which is the width of.
 図17は、上記第1検知エリア27(正面)に、静止した手がある状態を示す。但し、図17(a)は、手があるエリアを示す。また、図17(b)は、第1検知エリア27(正面)に静止した手がある場合のセンサ19~22の出力電圧の経時変化を示す。 FIG. 17 shows a state where there is a stationary hand in the first detection area 27 (front). However, FIG. 17A shows an area with a hand. FIG. 17B shows a change with time of the output voltages of the sensors 19 to 22 when there is a stationary hand in the first detection area 27 (front).
 尚、図17(a)における第1検知エリア27および第2検知エリア28の設定方法は、上記第1実施の形態の場合と同様である。また、第1検知エリア27に手があると判定するための第1閾値も、上記第1実施の形態の場合と同様の「650mV」である。また、静止した手の有無を判定するための両サーモパイルセンサ19a~22a,19b~22bの出力電圧差の第2閾値も、上記第1実施の形態の場合と同様の「50mV」である。 In addition, the setting method of the 1st detection area 27 and the 2nd detection area 28 in Fig.17 (a) is the same as that of the said 1st Embodiment. Further, the first threshold value for determining that the first detection area 27 has a hand is also “650 mV”, which is the same as in the case of the first embodiment. Further, the second threshold value of the output voltage difference between the two thermopile sensors 19a to 22a and 19b to 22b for determining the presence / absence of a stationary hand is also “50 mV” as in the case of the first embodiment.
 そして、図17(b)に示すように、センサ19~22の出力電圧が上記第1閾値(650mV)以上であり、センサ19~22の第1,第2サーモパイルセンサの出力電圧差の絶対値が第2閾値(50mV)以下である場合に、第1検知エリア27(TV15の正面)に静止した手があると判定するのである。 Then, as shown in FIG. 17B, the output voltage of the sensors 19 to 22 is equal to or higher than the first threshold (650 mV), and the absolute value of the output voltage difference between the first and second thermopile sensors of the sensors 19 to 22 Is less than or equal to the second threshold value (50 mV), it is determined that there is a stationary hand in the first detection area 27 (front of the TV 15).
 図18は、上記第1検知エリア27(正面)に、動いている手がある状態を示す。但し、図18(a)は、動いている手があるエリアを示す。また、図18(b)は、第1検知エリア27(正面)に動いている手がある場合におけるセンサ19~22の出力電圧の経時変化を示す。そして、図18(b)に示すように、センサ19~22の出力電圧が上記第1閾値(650mV)以上であり、センサ19~22の第1,第2サーモパイルセンサの出力電圧差の絶対値が第2閾値(50mV)を超えている場合に、第1検知エリア27(TV15の正面)に動いている手があると判定するのである。 FIG. 18 shows a state where there is a moving hand in the first detection area 27 (front). However, FIG. 18A shows an area where there is a moving hand. FIG. 18B shows the change over time in the output voltages of the sensors 19 to 22 when there is a moving hand in the first detection area 27 (front). As shown in FIG. 18B, the output voltage of the sensors 19 to 22 is equal to or higher than the first threshold (650 mV), and the absolute value of the output voltage difference between the first and second thermopile sensors of the sensors 19 to 22 When the value exceeds the second threshold value (50 mV), it is determined that there is a moving hand in the first detection area 27 (in front of the TV 15).
 次に、上記検知部23および制御部24で行われるTV15の音量変更,番組表確認変更,地デジチャンネル変更およびBSチャンネル変更の制御処理について説明する。 Next, a description will be given of the control processing of the volume change of TV 15, the program guide confirmation change, the terrestrial digital channel change and the BS channel change performed by the detection unit 23 and the control unit 24.
 手を使った遠隔操作でTV15の音量や番組表やチャンネルを変更する場合には、上記検知部23によって、先ず、TV15の正面に静止人体が居ることが検知される。次に、音量変更用のセンサ19,番組表確認変更用のセンサ20,地デジチャンネル変更用のセンサ21またはBSチャンネル変更用のセンサ22の検知エリアに手があると検知されて、手の動きが手の動作パターンに合致したことが検知される。そうすると、制御部24によって、TV15の表示画面16に音量変更画面,番組表画面,地デジ放送番組変更画面あるいはBS放送番組変更画面が表示されて、手による遠隔操作が可能になる。 When changing the volume, program guide, or channel of the TV 15 by remote control using a hand, the detecting unit 23 first detects that a stationary human body is in front of the TV 15. Next, when there is a hand in the detection area of the volume change sensor 19, the program guide confirmation change sensor 20, the terrestrial digital channel change sensor 21 or the BS channel change sensor 22, the movement of the hand is detected. Is detected to match the hand movement pattern. Then, the control unit 24 displays a volume change screen, a program guide screen, a terrestrial digital broadcast program change screen, or a BS broadcast program change screen on the display screen 16 of the TV 15 and enables remote operation by hand.
 ここで、上記手の動作パターンとは、上記センサ19~22の前で手を5秒間以上静止し、続いて左右に5回動かす動作である。このような手の動作パターンを設定しておくことにより、制御部23は人の手の動作であることを正確に検知することができ、遠隔操作を行う操作者以外の熱源による誤動作を防止することができるのである。尚、手の動作パターンは、上述した動作パターンに限定されるものではなく、適宜変更しても差し支えない。 Here, the movement pattern of the hand is a movement in which the hand is stopped for 5 seconds or more in front of the sensors 19 to 22 and then moved left and right five times. By setting such a movement pattern of the hand, the control unit 23 can accurately detect that the movement is a human hand, and prevents malfunction due to a heat source other than the operator who performs the remote operation. It can be done. The hand movement pattern is not limited to the above-described movement pattern, and may be changed as appropriate.
 図19および図20は、上記地デジチャンネル変更用のセンサ21の検知エリアに手があると検知され、且つ手の動きが「5秒間以上静止した後に左右に5回動かす」上記手の動作パターンに合致した場合に、TV15の表示画面16に表示される、地デジ放送番組変更画面29を示す。尚、図中ハッチングの箇所が、現在選択されているチャンネルを示す。この地デジ放送番組変更画面29が表示された状態で、図19に示すように、センサ21の検知エリア内で手を左右に動かすことによって、選択番組が矢印のごとく昇順に変更される。 19 and 20 show the movement pattern of the hand when it is detected that there is a hand in the detection area of the terrestrial digital channel changing sensor 21 and the movement of the hand is "moved left and right five times after being stationary for 5 seconds or more" The terrestrial digital broadcast program change screen 29 displayed on the display screen 16 of the TV 15 in the case of matching is shown. In the figure, the hatched portion indicates the currently selected channel. With the terrestrial digital broadcast program change screen 29 displayed, the selected program is changed in ascending order as indicated by an arrow by moving the hand left and right within the detection area of the sensor 21 as shown in FIG.
 これに対し、図20に示すように、センサ21の検知エリア内で手を静止した状態を維持することによって、選択番組が矢印のごとく降順に変更される。また、手を下ろしてセンサ21の検知エリア外に移動させて5秒以上が経過すると、地デジ放送番組変更画面29が消えて遠隔操作が終了されるのである。 On the other hand, as shown in FIG. 20, by keeping the hand still in the detection area of the sensor 21, the selected program is changed in descending order as indicated by the arrows. Also, when 5 seconds or more have passed after the hand is lowered and moved out of the detection area of the sensor 21, the terrestrial digital broadcast program change screen 29 disappears and the remote operation is terminated.
 尚、上記音量変更,番組表確認変更およびBSチャンネル変更の際の昇順変更および降順変更を指示する場合の手を動作も、上述した地デジ放送番組変更の場合と全く同様である。 It should be noted that the operation in the case of instructing the ascending order change and descending order change at the time of the volume change, program guide confirmation change, and BS channel change is exactly the same as the above-described terrestrial digital broadcast program change.
 また、詳しくは述べないが、上記手の動作パターンにおける静止時間や左右の動作回数の設定値は、TV15の表示画面16上で任意に変更可能になっている。 Although not described in detail, the set values of the stationary time and the number of left and right movements in the movement pattern of the hand can be arbitrarily changed on the display screen 16 of the TV 15.
 以下、上記検知部23および制御部24によって実行されるTV15の音量変更,番組表確認変更,地デジチャンネル変更およびBSチャンネル変更のフローチャートについて説明する。 Hereinafter, a flowchart of the volume change of the TV 15, the program guide confirmation change, the terrestrial digital channel change, and the BS channel change executed by the detection unit 23 and the control unit 24 will be described.
 図21は、上記TV15の音量変更処理動作のフローチャートである。TV15の電源がオンされると音量変更処理動作がスタートする。 FIG. 21 is a flowchart of the volume change processing operation of the TV 15. When the power source of the TV 15 is turned on, the volume change processing operation starts.
 ステップS21で、上記検知部23によって、静止人体検知用のセンサ18の第1サーモパイルセンサ18aと第2サーモパイルセンサ18bとからの出力信号が取り込まれる。ステップS22で、検知部23によって、第1サーモパイルセンサ18aと第2サーモパイルセンサ18bとからの出力電圧に基づいて、図16のようにしてTV15の正面に静止人体が居るか否かが判別される。その結果、居る場合にはステップS23に進み、居ない場合には音量変更処理動作を終了する。 In step S21, the detection unit 23 takes in output signals from the first thermopile sensor 18a and the second thermopile sensor 18b of the sensor 18 for detecting a stationary human body. In step S22, based on the output voltages from the first thermopile sensor 18a and the second thermopile sensor 18b, the detection unit 23 determines whether or not there is a stationary human body in front of the TV 15 as shown in FIG. . As a result, if it is present, the process proceeds to step S23, and if it is not present, the volume change processing operation is terminated.
 ステップS23で、上記検知部23によって、音量変更用のセンサ19の第1サーモパイルセンサ19aと第2サーモパイルセンサ19bとからの出力信号が取り込まれる。ステップS24で、検知部23によって、第1サーモパイルセンサ19aと第2サーモパイルセンサ19bとからの出力電圧に基づいて、図17および図18のようにしてセンサ19の検知エリアに手があるか否かが判別される。その結果、ある場合にはステップS25に進み、ない場合には上記ステップS21にリターンする。 In step S23, the detection unit 23 takes in output signals from the first thermopile sensor 19a and the second thermopile sensor 19b of the volume change sensor 19. In step S24, based on the output voltages from the first thermopile sensor 19a and the second thermopile sensor 19b, the detection unit 23 determines whether or not there is a hand in the detection area of the sensor 19 as shown in FIGS. Is determined. As a result, if present, the process proceeds to step S25, and if not, the process returns to step S21.
 ステップS25で、上記検知部23によって、手の動きが上記「手の動作パターン」に合致しているか否かが判別される。その結果、合致していればステップS26に進み、合致していなければ上記ステップS23にリターンする。ステップS26で、制御部24によって、TV15の表示画面16に上記音量変更画面が表示される。ステップS27で、検知部23によって、音量変更用のセンサ19の第1サーモパイルセンサ19aと第2サーモパイルセンサ19bとからの出力信号が取り込まれる。ステップS28で、検知部23によって、第1サーモパイルセンサ19aと第2サーモパイルセンサ19bとからの出力電圧に基づいて、再度センサ19の検知エリアに手があるか否かが判別される。その結果、ある場合にはステップS29に進み、ない場合には上記ステップS34に進む。 In step S25, the detection unit 23 determines whether or not the hand movement matches the “hand movement pattern”. As a result, if they do match, the process proceeds to step S26, and if they do not match, the process returns to step S23. In step S26, the volume change screen is displayed on the display screen 16 of the TV 15 by the control unit 24. In step S27, the detection unit 23 takes in output signals from the first thermopile sensor 19a and the second thermopile sensor 19b of the volume change sensor 19. In step S28, the detection unit 23 determines again whether or not there is a hand in the detection area of the sensor 19 based on the output voltages from the first thermopile sensor 19a and the second thermopile sensor 19b. As a result, if present, the process proceeds to step S29, and if not, the process proceeds to step S34.
 ステップS29で、上記検知部23によって、音量変更用のセンサ19の第1サーモパイルセンサ19aと第2サーモパイルセンサ19bとからの出力信号が取り込まれる。ステップS30で、検知部23によって、第1サーモパイルセンサ19aと第2サーモパイルセンサ19bとからの出力電圧に基づいて、図18のようにして、センサ19の検知エリアの正面で手が左右に動いているか否かが判別される。その結果、動いている場合にはステップS31に進み、動いていない場合にはステップS32に進む。 In step S29, the detection unit 23 takes in output signals from the first thermopile sensor 19a and the second thermopile sensor 19b of the volume changing sensor 19. In step S30, based on the output voltages from the first thermopile sensor 19a and the second thermopile sensor 19b, the detection unit 23 moves the hand to the left and right in front of the detection area of the sensor 19 as shown in FIG. It is determined whether or not it exists. As a result, if it is moving, the process proceeds to step S31, and if it is not moving, the process proceeds to step S32.
 ステップS31で、上記制御部24によって、選択音量が1段階大きく変更される。そうした後にステップS33に進む。ステップS32で、制御部24によって、選択音量が1段階小さく変更される。ステップS33で、制御部24によって、上記音量変更画面の表示が現在の選択音量に更新される。そうした後、上記ステップS27にリターンして音量変更が継続される。 In step S31, the control unit 24 changes the selected volume by one level. After that, the process proceeds to step S33. In step S32, the control unit 24 changes the selected volume by one step. In step S33, the control unit 24 updates the display of the volume change screen to the currently selected volume. After that, the process returns to step S27 and the volume change is continued.
 ステップS34で、上記制御部24によって、TV15の表示画面16に表示されている上記音量変更画面が消去される。そうした後、音量変更処理動作を終了する。 In step S34, the control unit 24 deletes the volume change screen displayed on the display screen 16 of the TV 15. After that, the volume change processing operation is terminated.
 このようにして、上記TV15の正面に静止人体が居り、センサ19の検知エリアに手があり、且つ手の動きが上記「手の動作パターン」に合致している場合に、TV15の表示画面16に上記音量変更画面が表示される。その後、手が動いているか否かに応じて音量が上昇側あるいは下降側に変更される。したがって、音量変更の遠隔操作をリモコンを使用せずに行うことができるのである
 図22は、上記TV15の番組表確認変更処理動作のフローチャートである。この番組表確認変更処理動作は、使用されるセンサが番組表確認変更用のセンサ20である点、制御部24が行う制御動作は「番組表の表示」と「番組表の変更」とである点を除いて、基本的には図21に示す音量変更処理動作と同じである。以下、簡単に説明する。TV15の電源がオンされると番組表確認変更処理動作がスタートする。
In this way, when there is a stationary human body in front of the TV 15, there is a hand in the detection area of the sensor 19, and the movement of the hand matches the “hand movement pattern”, the display screen 16 of the TV 15. The above volume change screen is displayed. Thereafter, the volume is changed to the rising side or the lowering side depending on whether or not the hand is moving. Therefore, the remote control for changing the volume can be performed without using the remote control. FIG. 22 is a flowchart of the program table confirmation change processing operation of the TV 15. In this program guide confirmation change processing operation, the sensor used is the sensor 20 for program guide confirmation change, and the control operations performed by the control unit 24 are “display program guide” and “change program guide”. Except for this point, the operation is basically the same as the volume change processing operation shown in FIG. A brief description is given below. When the power of the TV 15 is turned on, the program guide confirmation change processing operation starts.
 ステップS41およびステップS42で、図21に示す音量変更処理動作と同様にしてTV15の正面に静止人体が居ると判別され、ステップS43~ステップS45で、番組表確認変更用のセンサ20の出力電圧に基づいて、手の動きが上記「手の動作パターン」に合致していると判別されると、ステップS46で、制御部24によって、TV15の表示画面16に上記番組表が表示される。 In step S41 and step S42, it is determined that there is a stationary human body in front of the TV 15 in the same manner as the sound volume change processing operation shown in FIG. If it is determined that the hand movement matches the “hand movement pattern”, the program guide is displayed on the display screen 16 of the TV 15 by the control unit 24 in step S46.
 ステップS47~ステップS50で、図21に示す音量変更処理動作と同様にして番組表確認変更用のセンサ20の検知エリア内に動く手があると判別されると、ステップS51で、制御部24によって、表示されている番組表が未来側に変更される。これに対し、番組変更用のセンサ20の検知エリア内に動く手はない(静止した手がある)と判別されると、ステップS52で、制御部24によって、表示されている番組表が過去側に変更される。 If it is determined in steps S47 to S50 that there is a moving hand in the detection area of the program guide confirmation changing sensor 20 in the same manner as the sound volume changing processing operation shown in FIG. 21, the control unit 24 in step S51. The displayed program guide is changed to the future side. On the other hand, if it is determined that there is no moving hand (there is a stationary hand) within the detection area of the program change sensor 20, in step S52, the displayed program table is displayed on the past side by the control unit 24. Changed to
 このようにして、上記TV15の正面に静止人体が居り、センサ20の検知エリアに手があり、且つ手の動きが上記「手の動作パターン」に合致している場合に、TV15の表示画面16に上記番組表が表示される。その後、手が動いているか否かに応じて番組表が未来側あるいは過去側に変更される。したがって、番組表の確認変更の遠隔操作をリモコンを使用せずに行うことができるのである。 In this way, when there is a stationary human body in front of the TV 15, there is a hand in the detection area of the sensor 20, and the movement of the hand matches the “hand movement pattern”, the display screen 16 of the TV 15. The above program table is displayed. Thereafter, the program guide is changed to the future side or the past side depending on whether or not the hand is moving. Therefore, the remote control of the confirmation change of the program guide can be performed without using the remote control.
 図23は、上記TV15の地デジチャンネル変更処理動作のフローチャートである。この地デジチャンネル変更処理動作は、使用されるセンサが地デジチャンネル変更用のセンサ21である点、制御部24が行う制御は「地デジ放送番組変更画面の表示」と「番組の変更」とである点を除いて、基本的には図21に示す音量変更処理動作と同じである。以下、簡単に説明する。TV15の電源がオンされると地デジチャンネル変更処理動作がスタートする。 FIG. 23 is a flowchart of the terrestrial digital channel change processing operation of the TV 15. In this terrestrial digital channel change processing operation, the sensor used is the terrestrial digital channel change sensor 21, and the control performed by the control unit 24 is “display of terrestrial digital broadcast program change screen” and “program change”. Except for this point, it is basically the same as the volume change processing operation shown in FIG. A brief description is given below. When the TV 15 is turned on, the terrestrial digital channel change processing operation starts.
 ステップS61およびステップS62で、図21に示す音量変更処理動作と同様にしてTV15の正面に静止人体が居ると判別され、ステップS63~ステップS65で、地デジチャンネル変更用のセンサ21の出力電圧に基づいて、手の動きが上記「手の動作パターン」に合致していると判別されると、ステップS66で、制御部24によって、TV15の表示画面16に上記地デジ放送番組変更画面が表示される。 In steps S61 and S62, it is determined that there is a stationary human body in front of the TV 15 in the same manner as the sound volume changing processing operation shown in FIG. 21, and in steps S63 to S65, the output voltage of the terrestrial digital channel changing sensor 21 is obtained. If it is determined that the hand movement matches the “hand movement pattern”, the terrestrial digital broadcast program change screen is displayed on the display screen 16 of the TV 15 by the control unit 24 in step S66. The
 ステップS67~ステップS70で、図21に示す音量変更処理動作と同様にして、地デジチャンネル変更用のセンサ21の検知エリア内に動く手があると判別されると、ステップS71で、制御部24によって、表示されている番組が上昇側に変更される。これに対し、地デジチャンネル変更用のセンサ21の検知エリア内に動く手はない(静止した手がある)と判別されると、ステップS72で、制御部24によって、表示されている番組が下降側に変更される。 If it is determined in steps S67 to S70 that there is a moving hand in the detection area of the terrestrial digital channel changing sensor 21 in the same manner as the sound volume changing processing operation shown in FIG. 21, the control unit 24 in step S71. As a result, the displayed program is changed to the ascending side. On the other hand, if it is determined that there is no moving hand (there is a stationary hand) in the detection area of the terrestrial digital channel changing sensor 21, the control unit 24 lowers the displayed program in step S72. Is changed to the side.
 このようにして、上記TV15の正面に静止人体が居り、センサ21の検知エリアに手があり、且つ手の動きが上記「手の動作パターン」に合致している場合に、TV15の表示画面16に上記地デジ放送番組変更画面が表示される。その後、手が動いているか否かに応じて番組が上昇側あるいは下降側に変更される。したがって、地デジチャンネル変更の遠隔操作をリモコンを使用せずに行うことができるのである。 In this way, when there is a stationary human body in front of the TV 15, there is a hand in the detection area of the sensor 21, and the movement of the hand matches the “hand movement pattern”, the display screen 16 of the TV 15. The above terrestrial digital broadcast program change screen is displayed. Thereafter, the program is changed to the ascending side or the descending side depending on whether or not the hand is moving. Therefore, the remote operation for changing the terrestrial digital channel can be performed without using the remote controller.
 図24は、上記TV15のBSチャンネル変更処理動作のフローチャートである。このBSチャンネル変更処理動作は、使用されるセンサがBSチャンネル変更用のセンサ22である点、制御部24が行う制御は「BS放送番組変更画面の表示」と「番組の変更」とである点を除いて、基本的には図21に示す音量変更処理動作と同じである。以下、簡単に説明する。TV15の電源がオンされると、BSチャンネル変更処理動作がスタートする。 FIG. 24 is a flowchart of the BS channel BS channel change processing operation of the TV 15. In this BS channel change processing operation, the sensor used is the BS channel change sensor 22, and the control performed by the control unit 24 is "display BS program change screen" and "change program". Is basically the same as the volume change processing operation shown in FIG. A brief description is given below. When the power of the TV 15 is turned on, the BS channel change processing operation starts.
 ステップS81およびステップS82で、図21に示す音量変更処理動作と同様にしてTV15の正面に静止人体が居ると判別され、ステップS83~ステップS85で、BSチャンネル変更用のセンサ22の出力電圧に基づいて、手の動きが上記「手の動作パターン」に合致していると判別されると、ステップS86で、制御部24によって、TV15の表示画面16に上記BS放送番組変更画面が表示される。 In step S81 and step S82, it is determined that there is a stationary human body in front of the TV 15 in the same manner as the sound volume change processing operation shown in FIG. 21, and based on the output voltage of the BS channel change sensor 22 in steps S83 to S85. If it is determined that the hand movement matches the “hand movement pattern”, the BS broadcast program change screen is displayed on the display screen 16 of the TV 15 by the control unit 24 in step S86.
 ステップS87~ステップS90で、図21に示す音量変更処理動作と同様にしてBSチャンネル変更用のセンサ22の検知エリア内に動く手があると判別されると、ステップS91で、制御部24によって、表示されている番組が上昇側に変更される。これに対し、BSチャンネル変更用のセンサ22の検知エリア内に動く手はない(静止した手がある)と判別されると、ステップS92で、制御部24によって、表示されている番組が下降側に変更される。 If it is determined in steps S87 to S90 that there is a moving hand in the detection area of the BS channel changing sensor 22 in the same manner as the sound volume changing processing operation shown in FIG. The displayed program is changed to the ascending side. On the other hand, if it is determined that there is no moving hand (there is a stationary hand) within the detection area of the BS channel change sensor 22, the control unit 24 displays the displayed program on the descending side in step S92. Changed to
 このようにして、上記TV15の正面に静止人体が居り、センサ22の検知エリアに手があり、且つ手の動きが上記「手の動作パターン」に合致している場合に、TV15の表示画面16に上記BS放送番組変更画面が表示される。その後、手が動いているか否かに応じて番組が上昇側あるいは下降側に変更される。したがって、BSチャンネル変更の遠隔操作をリモコンを使用せずに行うことができるのである。 In this way, when there is a stationary human body in front of the TV 15, there is a hand in the detection area of the sensor 22, and the movement of the hand matches the “hand movement pattern”, the display screen 16 of the TV 15. The BS broadcast program change screen is displayed. Thereafter, the program is changed to the ascending side or the descending side depending on whether or not the hand is moving. Therefore, the remote operation for changing the BS channel can be performed without using the remote controller.
 以上のごとく、本第2実施の形態によれば、上記TV15の表示画面16の縁部17における上縁の中央部には、第1サーモパイルセンサ18aと第2サーモパイルセンサ18bとで成る静止人体検知用のセンサ18を設置している。また、縁部17における左上の角部には音量変更用のセンサ19を、左下の角部には番組表確認変更用のセンサ20を、右上の角部には地デジチャンネル変更用のセンサ21を、右下の角部にはBSチャンネル変更用のセンサ22を設置して、各センサ19~22を、第1サーモパイルセンサ19a,20a,21a,22aと第2サーモパイルセンサ19b,20b,21b,22bとで構成している。 As described above, according to the second embodiment, stationary human body detection including the first thermopile sensor 18a and the second thermopile sensor 18b is provided at the center of the upper edge of the edge 17 of the display screen 16 of the TV 15. Sensor 18 is installed. Also, a volume change sensor 19 is provided at the upper left corner of the edge 17, a program guide confirmation change sensor 20 is provided at the lower left corner, and a terrestrial digital channel change sensor 21 is provided at the upper right corner. The BS channel changing sensor 22 is installed in the lower right corner, and each sensor 19 to 22 is connected to the first thermopile sensor 19a, 20a, 21a, 22a and the second thermopile sensor 19b, 20b, 21b, 22b.
 そして、上記第1サーモパイルセンサ18aの視野角を、TV15から200cm離れた位置に居る平均顔幅20cmである日本人の顔の全幅を捉えることが可能な視野角6°とする。一方、第2サーモパイルセンサ18bの視野角を、TV15から200cm離れた位置に居る平均肩幅40cmである日本人の両肩間の全幅を捉えることが可能な視野角12°としている。 Then, the viewing angle of the first thermopile sensor 18a is set to a viewing angle of 6 ° capable of capturing the full width of a Japanese face having an average face width of 20 cm located 200 cm away from the TV 15. On the other hand, the viewing angle of the second thermopile sensor 18b is set to a viewing angle of 12 ° capable of capturing the full width between the shoulders of the Japanese who has an average shoulder width of 40 cm located 200 cm away from the TV 15.
 また、上記第1サーモパイルセンサ19a,20a,21a,22aの視野角を、TV15から200cm離れた位置に居る平均の手のひら幅が8cmである日本人の手のひらの全幅を捉えることが可能な視野角2°とする。一方、第2サーモパイルセンサ19b,20b,21b,22bの視野角を6°としている。 In addition, the viewing angle of the first thermopile sensor 19a, 20a, 21a, 22a is a viewing angle 2 that can capture the full width of a Japanese palm that is 200 cm away from the TV 15 and whose average palm width is 8 cm. °. On the other hand, the viewing angle of the second thermopile sensors 19b, 20b, 21b, and 22b is set to 6 °.
 そして、上記検知部23によって、上記第1実施の形態の場合と同様にして、上記静止人体検知用のセンサ18からの出力電圧に基づいて、TV15の正面に静止人体が居るか否かを検知する。さらに、音量変更用のセンサ19,番組表確認変更用のセンサ20,地デジチャンネル変更用のセンサ21およびBSチャンネル変更用のセンサ22からの出力電圧に基づいて、夫々のセンサ19~22の前に手があって、その手が動いているか否かを検知するようにしている。 Then, the detection unit 23 detects whether there is a stationary human body in front of the TV 15 based on the output voltage from the stationary human body detection sensor 18 in the same manner as in the first embodiment. To do. Further, based on output voltages from the volume change sensor 19, the program guide confirmation change sensor 20, the terrestrial digital channel change sensor 21 and the BS channel change sensor 22, the front of each of the sensors 19-22. It has a hand in it, and it is made to detect whether the hand is moving.
 したがって、上記TV15の正面に静止人体が居るか否か、および、夫々の遠隔操作用のセンサ19~22の前に手があって、その手が動作パターンに合致した動きをしているか否かを、人以外の熱源と区別して正しく検知することができる。その結果、各遠隔操作を誤作動無く行うことが可能になるのである。 Therefore, whether or not there is a stationary human body in front of the TV 15 and whether or not there is a hand in front of each of the remote control sensors 19 to 22 and the hand moves in accordance with the operation pattern. Can be detected correctly by distinguishing from other heat sources. As a result, each remote operation can be performed without malfunction.
 その場合、上記第1サーモパイルセンサ18a,19a,20a,21a,22aおよび第2サーモパイルセンサ18b,19b,20b,21b,22bの視野角を、上述したように設定している。したがって、ストーブやエアコンや床暖房等の人以外の熱源が少ない検知エリア内で人が放射する顔や胸や手からの遠赤外線を正確に検知でき、人体の静止と動作との区別や、人と人以外の熱源との区別や、顔と手との区別等を精度よく行うことができるのである。 In this case, the viewing angles of the first thermopile sensors 18a, 19a, 20a, 21a, 22a and the second thermopile sensors 18b, 19b, 20b, 21b, 22b are set as described above. Therefore, it can accurately detect far-infrared rays from the face, chest and hands radiated by people in a detection area with few heat sources other than humans such as stoves, air conditioners and floor heating. It is possible to accurately distinguish between a heat source other than a person and between a face and a hand.
 尚、上記第2実施の形態においては、上記第1実施の形態の情報処理装置を搭載した電気製品としてTVを例示している。しかしながら、TVに限定されるものではなく、上記検知部からの熱源の位置と熱源の動作状態との検知結果に基づいて、本体部の動作を制御可能なものであればよく、照明器具やエアコンやパソコン等の種々の電気製品の遠隔操作等に利用することができる。 In the second embodiment, a TV is illustrated as an electrical product on which the information processing apparatus of the first embodiment is mounted. However, the present invention is not limited to the TV, and any device that can control the operation of the main body unit based on the detection result of the position of the heat source from the detection unit and the operation state of the heat source may be used. It can be used for remote control of various electric products such as personal computers.
 また、上記各実施の形態においては、上記第1サーモパイルセンサ1,18a,19a,20a,21a,22aと、第2サーモパイルセンサ2,18b,19b,20b,21b,22bとを、水平方向に配置している。しかしながら、この発明においては必ずしもその必要はなく、顔や手や身体等の熱源の移動方向に応じて配列方向を変更しても、一向に差し支えない。 In each of the above embodiments, the first thermopile sensors 1, 18a, 19a, 20a, 21a, 22a and the second thermopile sensors 2, 18b, 19b, 20b, 21b, 22b are arranged in the horizontal direction. is doing. However, this is not always necessary in the present invention, and the arrangement direction may be changed according to the moving direction of the heat source such as the face, hand, or body.
 1,18a,19a,20a,21a,22a…第1サーモパイルセンサ、
 2,18b,19b,20b,21b,22b…第2サーモパイルセンサ、
 3,23…検知部、
 4…メモリ、
 5,6…遮光部材、
 7,25,27…第1検知エリア、
 8,26,28…第2検知エリア、
 9…第3検知エリア、
10…エアコン、
11…ストーブ、
15…TV、
16…表示画面、
17…縁部、
18…静止人体検知用のセンサ、
19…音量変更用のセンサ、
20…番組表確認変更用のセンサ、
21…地デジチャンネル変更用のセンサ、
22…BSチャンネル変更用のセンサ、
24…制御部、
29…地デジ放送番組変更画面。
1, 18a, 19a, 20a, 21a, 22a ... 1st thermopile sensor,
2, 18b, 19b, 20b, 21b, 22b ... the second thermopile sensor,
3, 23 ... detection part,
4 ... Memory,
5, 6 ... light shielding member,
7, 25, 27 ... first detection area,
8, 26, 28 ... second detection area,
9 ... Third detection area,
10 ... Air conditioner,
11 ... Stove,
15 ... TV,
16 ... display screen,
17 ... edge,
18 ... A sensor for detecting a stationary human body,
19 ... A sensor for changing the volume,
20 ... Sensor for changing the program guide confirmation,
21 ... Sensor for terrestrial digital channel change,
22 ... BS channel change sensor,
24 ... control unit,
29 ... Terrestrial digital broadcast program change screen.

Claims (9)

  1.  第1視野角を有すると共に、熱源から放出される遠赤外線を検知して、検知量を表す信号を出力する第1センサ(1,18a,19a,20a,21a,22a)と、
     上記第1センサ(1,18a,19a,20a,21a,22a)に隣接して配置され、上記第1視野角よりも広い第2視野角を有すると共に、上記熱源から放出される遠赤外線を検知して、検知量を表す信号を出力する第2センサ(2,18b,19b,20b,21b,22b)と、
     上記第1センサ(1,18a,19a,20a,21a,22a)からの出力信号と上記第2センサ(2,18b,19b,20b,21b,22b)からの出力信号とに基づいて、上記熱源の位置と上記熱源の動作状態とを検知する検知部(3,23)と
    を備え、
     上記第1センサ(1,18a,19a,20a,21a,22a)と上記第2センサ(2,18b,19b,20b,21b,22b)とは、上記両センサの設置位置から検知距離だけ離れた位置において、上記第2センサ(2,18b,19b,20b,21b,22b)の検知エリア内に上記第1センサ(1,18a,19a,20a,21a,22a)の検知エリアが包含されるように配置されており、
     上記検知部(3,23)は、上記第1センサ(1,18a,19a,20a,21a,22a)の出力値をA、上記第2センサ(2,18b,19b,20b,21b,22b)の出力値をB、上記第2センサ(2,18b,19b,20b,21b,22b)における予め設定された設定時間tの経過前の出力値をBt1、上記第2センサ(2,18b,19b,20b,21b,22b)の上記設定時間tの経過後の出力値をBt2、第1閾値≠第2閾値とした場合に、
     A≧第1閾値、B≧第1閾値、且つ|A-B|≦第2閾値
    の関係が成立する場合には、上記熱源は上記第1センサ(1,18a,19a,20a,21a,22a)および上記第2センサ(2,18b,19b,20b,21b,22b)の正面に居る静止人体であると検知し、
     A<第1閾値、B≧第1閾値、且つ|Bt1-Bt2|≦第2閾値
    の関係が成立する場合には、上記熱源は上記第1センサ(1,18a,19a,20a,21a,22a)の検知エリアの外であって且つ上記第2センサ(2,18b,19b,20b,21b,22b)の検知エリア内にある人体以外の熱源であると検知する
    ようになっている
    ことを特徴とする情報処理装置。
    A first sensor (1, 18a, 19a, 20a, 21a, 22a) that has a first viewing angle, detects a far infrared ray emitted from a heat source, and outputs a signal representing a detection amount;
    The first sensor (1, 18a, 19a, 20a, 21a, 22a) is disposed adjacent to the first sensor, has a second viewing angle wider than the first viewing angle, and detects far infrared rays emitted from the heat source. A second sensor (2, 18b, 19b, 20b, 21b, 22b) that outputs a signal representing the detected amount;
    Based on the output signal from the first sensor (1, 18a, 19a, 20a, 21a, 22a) and the output signal from the second sensor (2, 18b, 19b, 20b, 21b, 22b), the heat source And a detection part (3, 23) for detecting the position of the heat source and the operating state of the heat source,
    The first sensor (1, 18a, 19a, 20a, 21a, 22a) and the second sensor (2, 18b, 19b, 20b, 21b, 22b) are separated from the installation positions of both sensors by a detection distance. At the position, the detection area of the first sensor (1, 18a, 19a, 20a, 21a, 22a) is included in the detection area of the second sensor (2, 18b, 19b, 20b, 21b, 22b). Are located in
    The detection unit (3, 23) outputs the output value of the first sensor (1, 18a, 19a, 20a, 21a, 22a) as A, and the second sensor (2, 18b, 19b, 20b, 21b, 22b). Output value B, the output value of the second sensor (2, 18b, 19b, 20b, 21b, 22b) before the elapse of a preset set time t is Bt1, and the second sensor (2, 18b, 19b). , 20b, 21b, 22b) when the output value after the elapse of the set time t is Bt2, where the first threshold is not equal to the second threshold.
    When the relationship of A ≧ first threshold, B ≧ first threshold, and | A−B | ≦ second threshold is satisfied, the heat source is the first sensor (1, 18a, 19a, 20a, 21a, 22a). ) And the second sensor (2, 18b, 19b, 20b, 21b, 22b)
    When the relationship of A <first threshold, B ≧ first threshold, and | Bt1−Bt2 | ≦ second threshold is satisfied, the heat source is the first sensor (1, 18a, 19a, 20a, 21a, 22a). ) And a heat source other than a human body within the detection area of the second sensor (2, 18b, 19b, 20b, 21b, 22b). Information processing apparatus.
  2.  請求項1に記載の情報処理装置において、
     上記検知部(3,23)は、上記第1センサ(1,18a,19a,20a,21a,22a)の出力値をA、上記第2センサ(2,18b,19b,20b,21b,22b)の出力値をB、上記第2センサ(2,18b,19b,20b,21b,22b)における予め設定された設定時間tの経過前の出力値をBt1、上記第2センサ(2,18b,19b,20b,21b,22b)の上記設定時間tの経過後の出力値をBt2、第1閾値≠第2閾値とした場合に、
     A≧第1閾値、B≧第1閾値、且つ|A-B|>第2閾値
    の関係が成立する場合には、上記熱源は上記第1センサ(1,18a,19a,20a,21a,22a)および上記第2センサ(2,18b,19b,20b,21b,22b)の正面に居る動作人体であると検知するようになっている
    ことを特徴とする情報処理装置。
    The information processing apparatus according to claim 1,
    The detection unit (3, 23) outputs the output value of the first sensor (1, 18a, 19a, 20a, 21a, 22a) as A, and the second sensor (2, 18b, 19b, 20b, 21b, 22b). Output value B, the output value of the second sensor (2, 18b, 19b, 20b, 21b, 22b) before the elapse of a preset set time t is Bt1, and the second sensor (2, 18b, 19b). , 20b, 21b, 22b) when the output value after the elapse of the set time t is Bt2, where the first threshold is not equal to the second threshold.
    When the relationship of A ≧ first threshold, B ≧ first threshold, and | A−B |> second threshold is satisfied, the heat source is the first sensor (1, 18a, 19a, 20a, 21a, 22a). ) And the second sensor (2, 18b, 19b, 20b, 21b, 22b).
  3.  請求項1あるいは請求項2に記載の情報処理装置において、
     上記検知部(3,23)は、上記第1センサ(1,18a,19a,20a,21a,22a)の出力値をA、上記第2センサ(2,18b,19b,20b,21b,22b)の出力値をB、上記第2センサ(2,18b,19b,20b,21b,22b)における予め設定された設定時間tの経過前の出力値をBt1、上記第2センサ(2,18b,19b,20b,21b,22b)の上記設定時間tの経過後の出力値をBt2、第1閾値≠第2閾値とした場合に、
     A<第1閾値、B≧第1閾値、且つ|Bt1-Bt2|>第2閾値
    の関係が成立する場合には、上記熱源は上記第1センサ(1,18a,19a,20a,21a,22a)の検知エリアの外であって且つ上記第2センサ(2,18b,19b,20b,21b,22b)の検知エリア内に居る動作人体であると検知するようになっている
    ことを特徴とする情報処理装置。
    The information processing apparatus according to claim 1 or 2,
    The detection unit (3, 23) outputs the output value of the first sensor (1, 18a, 19a, 20a, 21a, 22a) as A, and the second sensor (2, 18b, 19b, 20b, 21b, 22b). Output value B, the output value of the second sensor (2, 18b, 19b, 20b, 21b, 22b) before the elapse of a preset set time t is Bt1, and the second sensor (2, 18b, 19b). , 20b, 21b, 22b) when the output value after the elapse of the set time t is Bt2, where the first threshold is not equal to the second threshold.
    When the relationship of A <first threshold, B ≧ first threshold, and | Bt1−Bt2 |> second threshold is satisfied, the heat source is the first sensor (1, 18a, 19a, 20a, 21a, 22a). ) Is detected outside the detection area and within the detection area of the second sensor (2, 18b, 19b, 20b, 21b, 22b). Information processing device.
  4.  請求項1から請求項3までの何れか一つに記載の情報処理装置において、
     上記検知部(3,23)は、上記第1センサ(1,18a,19a,20a,21a,22a)の出力値をA、上記第2センサ(2,18b,19b,20b,21b,22b)の出力値をB、上記第2センサ(2,18b,19b,20b,21b,22b)における予め設定された設定時間tの経過前の出力値をBt1、上記第2センサ(2,18b,19b,20b,21b,22b)の上記設定時間tの経過後の出力値をBt2、第1閾値≠第2閾値とした場合に、
     A<第1閾値、B<第1閾値
    の関係が成立する場合には、上記熱源は上記第2センサ(2,18b,19b,20b,21b,22b)の検知エリア内に存在しないと検知するようになっている
    ことを特徴とする情報処理装置。
    In the information processing apparatus according to any one of claims 1 to 3,
    The detection unit (3, 23) outputs the output value of the first sensor (1, 18a, 19a, 20a, 21a, 22a) as A, and the second sensor (2, 18b, 19b, 20b, 21b, 22b). Output value B, the output value of the second sensor (2, 18b, 19b, 20b, 21b, 22b) before the elapse of a preset set time t is Bt1, and the second sensor (2, 18b, 19b). , 20b, 21b, 22b) when the output value after the elapse of the set time t is Bt2, where the first threshold is not equal to the second threshold.
    When the relationship of A <first threshold and B <first threshold is satisfied, it is detected that the heat source does not exist within the detection area of the second sensor (2, 18b, 19b, 20b, 21b, 22b). An information processing apparatus characterized by that.
  5.  請求項1から請求項4までの何れか一つに記載の情報処理装置において、
     上記第1センサ(1,18a)の上記第1視野角は、上記第1センサ(1,18a)の設置位置から予め設定された第1設定距離だけ離れた位置において人の顔の全幅を捉えることが可能な最小角度であり、
     上記第2センサ(2,18b)の上記第2視野角は、上記第2センサ(2,18b)の設置位置から上記第1設定距離だけ離れた位置において人の両肩間の全幅を捉えることが可能な最小角度である
    ことを特徴とする情報処理装置。
    In the information processing apparatus according to any one of claims 1 to 4,
    The first viewing angle of the first sensor (1, 18a) captures the full width of the human face at a position that is a preset first set distance from the installation position of the first sensor (1, 18a). Is the smallest possible angle,
    The second viewing angle of the second sensor (2, 18b) captures the full width between the human shoulders at a position separated from the installation position of the second sensor (2, 18b) by the first set distance. Is the smallest possible angle.
  6.  請求項5に記載の情報処理装置において、
     上記第1センサ(1,18a)と上記第2センサ(2,18b)との設置間隔が20cm以下である
    ことを特徴とする情報処理装置。
    The information processing apparatus according to claim 5,
    An information processing apparatus, wherein an installation interval between the first sensor (1, 18a) and the second sensor (2, 18b) is 20 cm or less.
  7.  請求項1から請求項4までの何れか一つに記載の情報処理装置において、
     上記第1センサ(19a,20a,21a,22a)の上記第1視野角は、上記第1センサ(19a,20a,21a,22a)の設置位置から予め設定された第2設定距離だけ離れた位置において、人の手のひらの全幅を捉えることが可能な最小角度であり、
     上記第2センサ(19b,20b,21b,22b)の上記第2視野角は、上記第1センサ(19a,20a,21a,22a)の上記第1視野角よりも広い角度である
    ことを特徴とする情報処理装置。
    In the information processing apparatus according to any one of claims 1 to 4,
    The first viewing angle of the first sensor (19a, 20a, 21a, 22a) is a position separated from the installation position of the first sensor (19a, 20a, 21a, 22a) by a preset second set distance. Is the smallest angle that can capture the full width of a person's palm,
    The second viewing angle of the second sensor (19b, 20b, 21b, 22b) is wider than the first viewing angle of the first sensor (19a, 20a, 21a, 22a). Information processing apparatus.
  8.  第1視野角を有する第1センサ(1,18a,19a,20a,21a,22a)によって、熱源から放出される遠赤外線を検知して検知量を表す信号を出力し、
     上記第1視野角よりも広い第2視野角を有すると共に、上記第1センサ(1,18a,19a,20a,21a,22a)に隣接して配置された第2センサ(2,18b,19b,20b,21b,22b)によって、上記熱源から放出される遠赤外線を検知して検知量を表す信号を出力し、
     検知部(3,23)によって、上記第1センサ(1,18a,19a,20a,21a,22a)からの出力信号と上記第2センサ(2,18b,19b,20b,21b,22b)からの出力信号とに基づいて、上記第1センサ(1,18a,19a,20a,21a,22a)の出力値をA、上記第2センサ(2,18b,19b,20b,21b,22b)の出力値をB、上記第2センサ(2,18b,19b,20b,21b,22b)における予め設定された設定時間tの経過前の出力値をBt1、上記第2センサ(2,18b,19b,20b,21b,22b)の上記設定時間tの経過後の出力値をBt2、第1閾値≠第2閾値とした場合に、
     A≧第1閾値、B≧第1閾値、且つ|A-B|≦第2閾値
    の関係が成立する場合には、上記熱源は上記第1センサ(1,18a,19a,20a,21a,22a)および上記第2センサ(2,18b,19b,20b,21b,22b)の正面に居る静止人体であると検知し、
     A≧第1閾値、B≧第1閾値、且つ|A-B|>第2閾値
    の関係が成立する場合には、上記熱源は上記第1センサ(1,18a,19a,20a,21a,22a)および上記第2センサ(2,18b,19b,20b,21b,22b)の正面に居る動作人体であると検知し、
     A<第1閾値、B≧第1閾値、且つ|Bt1-Bt2|≦第2閾値
    の関係が成立する場合には、上記熱源は上記第1センサ(1,18a,19a,20a,21a,22a)の検知エリアの外であって且つ上記第2センサ(2,18b,19b,20b,21b,22b)の検知エリア内にある人体以外の熱源であると検知し、
     A<第1閾値、B≧第1閾値、且つ|Bt1-Bt2|>第2閾値
    の関係が成立する場合には、上記熱源は上記第1センサ(1,18a,19a,20a,21a,22a)の検知エリアの外であって且つ上記第2センサ(2,18b,19b,20b,21b,22b)の検知エリア内に居る動作人体であると検知し、
     A<第1閾値、B<第1閾値
    の関係が成立する場合には、上記熱源は上記第2センサ(2,18b,19b,20b,21b,22b)の検知エリア内に存在しないと検知する
    ことを特徴とする情報処理方法。
    The first sensor (1, 18a, 19a, 20a, 21a, 22a) having the first viewing angle detects far infrared rays emitted from the heat source and outputs a signal indicating the detection amount,
    A second sensor (2, 18b, 19b, having a second viewing angle wider than the first viewing angle and disposed adjacent to the first sensor (1, 18a, 19a, 20a, 21a, 22a). 20b, 21b, 22b) detects far-infrared rays emitted from the heat source and outputs a signal indicating the detection amount,
    An output signal from the first sensor (1, 18a, 19a, 20a, 21a, 22a) and a signal from the second sensor (2, 18b, 19b, 20b, 21b, 22b) are detected by the detection unit (3, 23). Based on the output signal, the output value of the first sensor (1, 18a, 19a, 20a, 21a, 22a) is A, and the output value of the second sensor (2, 18b, 19b, 20b, 21b, 22b). B, the output value of the second sensor (2, 18b, 19b, 20b, 21b, 22b) before the elapse of a preset set time t is Bt1, and the second sensor (2, 18b, 19b, 20b, 21b, 22b) when the output value after the elapse of the set time t is Bt2, the first threshold ≠ the second threshold,
    When the relationship of A ≧ first threshold, B ≧ first threshold, and | A−B | ≦ second threshold is satisfied, the heat source is the first sensor (1, 18a, 19a, 20a, 21a, 22a). ) And the second sensor (2, 18b, 19b, 20b, 21b, 22b)
    When the relationship of A ≧ first threshold, B ≧ first threshold, and | A−B |> second threshold is satisfied, the heat source is the first sensor (1, 18a, 19a, 20a, 21a, 22a). ) And the second human sensor (2, 18b, 19b, 20b, 21b, 22b).
    When the relationship of A <first threshold, B ≧ first threshold, and | Bt1−Bt2 | ≦ second threshold is satisfied, the heat source is the first sensor (1, 18a, 19a, 20a, 21a, 22a). ) And a heat source other than a human body within the detection area of the second sensor (2, 18b, 19b, 20b, 21b, 22b),
    When the relationship of A <first threshold, B ≧ first threshold, and | Bt1−Bt2 |> second threshold is satisfied, the heat source is the first sensor (1, 18a, 19a, 20a, 21a, 22a). ) That is outside the detection area and within the detection area of the second sensor (2, 18b, 19b, 20b, 21b, 22b),
    When the relationship of A <first threshold and B <first threshold is satisfied, it is detected that the heat source does not exist within the detection area of the second sensor (2, 18b, 19b, 20b, 21b, 22b). An information processing method characterized by the above.
  9.  請求項1から請求項7までの何れか一つに記載の情報処理装置と、
     本体部(15)と、
     上記情報処理装置における上記検知部(23)の検知結果に応じて、上記本体部(15)の動作を制御する制御部(24)と
    を備えたことを特徴とする電気製品。
    An information processing apparatus according to any one of claims 1 to 7,
    A main body (15);
    An electrical product comprising a control unit (24) for controlling the operation of the main body (15) in accordance with a detection result of the detection unit (23) in the information processing apparatus.
PCT/JP2013/067666 2012-07-31 2013-06-27 Information processing device, information processing method, and electrical product comprising information processing device WO2014021033A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-170000 2012-07-31
JP2012170000A JP2015180853A (en) 2012-07-31 2012-07-31 Information processing apparatus, information processing method, and electric product including information processing apparatus

Publications (1)

Publication Number Publication Date
WO2014021033A1 true WO2014021033A1 (en) 2014-02-06

Family

ID=50027723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067666 WO2014021033A1 (en) 2012-07-31 2013-06-27 Information processing device, information processing method, and electrical product comprising information processing device

Country Status (2)

Country Link
JP (1) JP2015180853A (en)
WO (1) WO2014021033A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2554153A (en) * 2016-07-12 2018-03-28 Lenovo Singapore Pte Ltd Human detection system, electronic device, human detecting sensor, and human detection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244672A1 (en) * 2018-06-19 2019-12-26 オプテックス株式会社 Object detecting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205796A (en) * 2006-01-31 2007-08-16 Matsuda Micronics Corp Human body detector and human body detection method
JP2010040028A (en) * 2008-07-11 2010-02-18 Nec Personal Products Co Ltd Information processor, power saving program, and power saving method
JP2011028529A (en) * 2009-07-27 2011-02-10 Hitachi Consumer Electronics Co Ltd Information processing apparatus, information processing method and receiving apparatus
JP2011047740A (en) * 2009-08-26 2011-03-10 Nanao Corp Electronic device with function for discriminating moving body
JP2012078444A (en) * 2010-09-30 2012-04-19 Nec Personal Computers Ltd Display device and information processor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205796A (en) * 2006-01-31 2007-08-16 Matsuda Micronics Corp Human body detector and human body detection method
JP2010040028A (en) * 2008-07-11 2010-02-18 Nec Personal Products Co Ltd Information processor, power saving program, and power saving method
JP2011028529A (en) * 2009-07-27 2011-02-10 Hitachi Consumer Electronics Co Ltd Information processing apparatus, information processing method and receiving apparatus
JP2011047740A (en) * 2009-08-26 2011-03-10 Nanao Corp Electronic device with function for discriminating moving body
JP2012078444A (en) * 2010-09-30 2012-04-19 Nec Personal Computers Ltd Display device and information processor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2554153A (en) * 2016-07-12 2018-03-28 Lenovo Singapore Pte Ltd Human detection system, electronic device, human detecting sensor, and human detection method
US10656691B2 (en) 2016-07-12 2020-05-19 Lenovo (Singapore) Pte Ltd User detection apparatus, systems, and methods
GB2554153B (en) * 2016-07-12 2020-09-02 Lenovo Singapore Pte Ltd Human detection system, electronic device, human detecting sensor, and human detection method

Also Published As

Publication number Publication date
JP2015180853A (en) 2015-10-15

Similar Documents

Publication Publication Date Title
JP7417587B2 (en) Systems and methods for analyzing and displaying acoustic data
US8464160B2 (en) User interface device, user interface method, and recording medium
US8582037B2 (en) System and method for hand gesture recognition for remote control of an internet protocol TV
JP5286371B2 (en) Information display device and information display method
KR20120064070A (en) Display apparatus and control method
CN1738377A (en) Method and device for monitoring TV set watching distance
JP5629766B2 (en) Marker detection system, detection method, program, and computer-readable medium storing the program
US20050057491A1 (en) Private display system
WO2014021033A1 (en) Information processing device, information processing method, and electrical product comprising information processing device
CN103892793A (en) Control method and electronic device
CN105511691B (en) Optical touch sensing device and touch signal judgment method thereof
KR101961266B1 (en) Gaze Tracking Apparatus and Method
KR101134245B1 (en) Electronic device including 3-dimension virtualized remote controller and driving methed thereof
JP2016080620A (en) Person detection system and method
US8780220B2 (en) Sensing range selectable image sensor module
JPH05227578A (en) Remote controller
KR101476503B1 (en) Interaction providing apparatus and method for wearable display device
US9507462B2 (en) Multi-dimensional image detection apparatus
JP5996237B2 (en) Human body detection device
KR20070006390A (en) Tracking method and system for tracking with multiple point-of view
CN102981142A (en) Optical positioning system
JP2012103901A (en) Intrusion object detection device
CN103823560A (en) Control method and device
JP2000341675A (en) Composite monitoring device
KR20120038730A (en) Infrared intrusion detector and method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13824728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13824728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP