WO2014020190A1 - Procedimiento para evaluar antiincrustantes para procedimientos de desalinización - Google Patents

Procedimiento para evaluar antiincrustantes para procedimientos de desalinización Download PDF

Info

Publication number
WO2014020190A1
WO2014020190A1 PCT/ES2012/070598 ES2012070598W WO2014020190A1 WO 2014020190 A1 WO2014020190 A1 WO 2014020190A1 ES 2012070598 W ES2012070598 W ES 2012070598W WO 2014020190 A1 WO2014020190 A1 WO 2014020190A1
Authority
WO
WIPO (PCT)
Prior art keywords
sow
concentration
nitrate
process according
solution
Prior art date
Application number
PCT/ES2012/070598
Other languages
English (en)
French (fr)
Other versions
WO2014020190A9 (es
Inventor
Ricardo SANDIN RODRIGUEZ
Clara SANROMÀ
Enrique FERRERO POLO
Jorge Juan MALFEITO
Original Assignee
Acciona Agua, S.A.U.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acciona Agua, S.A.U. filed Critical Acciona Agua, S.A.U.
Priority to PCT/ES2012/070598 priority Critical patent/WO2014020190A1/es
Priority to ES201390058A priority patent/ES2441250B1/es
Publication of WO2014020190A1 publication Critical patent/WO2014020190A1/es
Publication of WO2014020190A9 publication Critical patent/WO2014020190A9/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/14Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing phosphorus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/82Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a precipitate or turbidity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B5/00Water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/12Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/11Turbidity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/534Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke by measuring transmission alone, i.e. determining opacity

Definitions

  • the invention relates to a method for evaluating antifouling for desalination plants. Therefore, the invention pertains to the field of desalination procedures, in particular desalination procedures with reverse osmosis membranes.
  • induction time measurement is a well established parameter used by many researchers to evaluate the efficacy of antifouling. For example, Austin (Desalination, 16 (1975), p. 345) investigated the precipitation of calcium sulfate.
  • the precipitation process is affected by the presence of other frequent ions and the conductivity of the water.
  • Seawater is a complex mixture of many salts, for example, between sulfate salts with bivalent cations, calcium, magnesium and strontium sulfates are found in significant concentrations. Therefore, the kinetics of scale formation when antifouling are introduced into the system is not easily understandable and the prediction could fail very frequently if the antifouling is not evaluated correctly.
  • the invention relates to a method for evaluating different antifouling in a complex water matrix based on the well-established induction time parameter to evaluate its effectiveness.
  • a first aspect of the present invention is a method for analyzing antifouling which comprises the following steps: a) preparation of a seawater substituted (English, SOW) with a concentration factor between 1 and 10,
  • a second aspect of the present invention is a kit for analyzing antifouling through the procedure described previously, comprising:
  • a solution 1 comprising MgCI 2 , CaCI 2 and SrCI 2 ,
  • a solution 2 comprising KCI, NaHC0 3 , KBr, H 3 B0 3 , NaF,
  • a solution comprising Ba (N0 3 ) 2, Mn (N0 3 ) 2 , Cu (N0 3 ) 2 , Zn (N0 3 ) 2 , Pb (N0 3 ) 2 and Ag (N0 3 ) 2 .
  • antifouling comprises chemical substances that are added to the water in order to delay the incrustations of salts, such as calcium carbonate, calcium sulfate and magnesium sulfate.
  • the antifouling agents can be acids, chelating agents, phosphonates, polyacrylates and polymers with amino groups.
  • the definition of Antifouling also includes known or unknown chemicals that have not yet been analyzed as antifouling for reverse osmosis membranes.
  • Substituted seawater is water that can be used for laboratory analysis in which a reproducible solution that simulates seawater is required. Water has been prepared following the instructions of the American Society for Testing and Materials (ASTM).
  • ASTM American Society for Testing and Materials
  • SOW comprises seawater substituted with different concentration factors, preferably with a concentration factor between 1 and 10, that is, the proportion of different salts is the same as that suggested by ASTM but with a concentration factor of 1 to 10.
  • cloudiness is a well known parameter in the field of technology.
  • the cloudiness is the fog or mistiness of a fluid caused by individual particles (suspended solids) that are generally not visible to the naked eye, similar to smoke in the air.
  • the measurement of cloudiness is a key test of water quality. It is measured in units of nephelometric illusion (from English, NTU).
  • the measurement to indicate the cloudiness is based on the use of a standardized formazine suspension (prepared by mixing sulfaium of hydrazine and hexamethylene diamine).
  • the cloudiness measured in NTU uses nephelometrical procedures that depend on passing specific light from a specific wavelength to the notch. It is measured with a nephelomer, which measures the suspended particles using a light beam (beam beam) and a light beam on one side (often at 90 °) of the beam beam.
  • a first aspect of the present invention is a procedure for evaluating aniincrusianids comprising the following e ⁇ apas: a) preparation of a sus ⁇ i ⁇ ia sea water (SOW) with a factor of concentration between 1 and 10,
  • the concentration factor of the SOW is between 2 and 9, preferably between 5 and 8.
  • concentration factor 7 provides induction times in the range of 2-7 minutes, which is a reasonable scale for the object of the invention.
  • the term "induction time" comprises the delay in nucleation of the crystal achieved by the addition of an antifouling.
  • the preparation of the SOW comprises a step (a1) of dissolving NaCl and Na 2 SO 4 .
  • This solution can take place simultaneously or separately at the same volume of water. Since the concentration of cations and anions has to be controlled considerably, the water used is preferably MilliQ water.
  • the NaCI solution will take place first. In order to aid complete dissolution, agitation can be used. Then, Na 2 SO can be added to the solution comprising NaCl.
  • the concentration of NaCI in the SOW is between 150 and 180 g / l, more preferably between 165 and 175 g / l.
  • the concentration of Na 2 SO 4 in the SOW is between 20 and 35 g / l, more preferably between 25 and 30 g / l.
  • the preparation of the SOW also comprises a step (a2) after the step (a1) of addition to the solution of the Mg 2+ , Ca 2+ and Sr 2-1 " cations.
  • This addition can be carried out by adding the salts directly to the solution obtained after step (a1) or by adding a solution comprising Mg 2+ , Ca 2+ and Sr 2+ .
  • the addition of the Mg 2+ , Ca 2+ and Sr 2+ cations is carried out by adding a solution of soluble compounds of said cations, preferably MgC ⁇ , CaC ⁇ and SrC ⁇
  • the concentration of Mg 2+ in the SOW is preferably between 30 and 45 g / l, more preferably between 35 and 40 g / l.
  • the concentration of Ca 2+ in the SOW is preferably between 5 and 15 g / l, more preferably between 7 and 10 g / l.
  • the concentration of Sr 2+ in the SOW is preferably between 0.1 and 0.25 g / l, more preferably, between 0.15 and 0.20 g / l.
  • the preparation of the SOW also comprises a step (a3) after the step (a2) of addition to the solution obtained after the step (a2) of KCI, KBr, NaF, NaHCO 3 , H 3 BO 3 or mixtures thereof, preferably of KCI, KBr, NaF, NaHCO3 and H3BO3.
  • This addition can be carried out by adding the salts directly to the solution obtained after step (2) or by adding a solution comprising said compounds.
  • step (a3) is carried out by adding a solution comprising KCI, KBr, NaF, NaHCO3, H3BO3 or mixtures thereof, preferably a solution comprising KCI, KBr, NaF, NaHCO 3 and H3BO3.
  • the concentration of KCI in the SOW is preferably between 3 and 7 g / l, more preferably between 4 and 5 g / l.
  • the concentration of KBr in the SOW is preferably between 0.25 and 2 g / l, more preferably between 0.5 and 1 g / l.
  • the concentration of NaF in the SOW is preferably between 0.005 and 0.1 g / l, more preferably between 0.015 and 0.03 g / l.
  • the concentration of NaHCOs in the solution obtained after step (a3) is preferably between 0.5 and 3 g / l, more preferably between 1 and 2 g / l.
  • the concentration of H3BO3 in the SOW is preferably between 0.05 and 0.4 g / l, more preferably between 0.1 and 0.25 g / l.
  • the preparation of the SOW also comprises a step (a4) after step (a3) of the addition of at least one nitrate compound, preferably a bivalent nitrate compound.
  • the bivalent nitrate compound is preferably barium nitrate, manganese nitrate, copper nitrate, zinc nitrate, lead nitrate, silver nitrate or mixtures thereof, more preferably barium nitrate, manganese nitrate, nitrate. copper, zinc nitrate, lead nitrate and silver nitrate.
  • the concentration of barium nitrate in the SOW is preferably between 3x10 "4 and 9x10 " 4 g / l, more preferably between 5x10 "4 and 8x10 " 4 g / l.
  • the concentration of copper nitrate in the SOW is preferably between 1x10 "4 and 4x10 " 4 g / l, more preferably between 2x10 "4 and 3x10 " 4 g / l.
  • the concentration of zinc nitrate in the SOW is preferably 3x10 "5 to 8x10 " 5 g / l, more preferably between 5x10 "5 and 7 x 10 ⁇ 5 g / l.
  • the concentration of lead nitrate in the SOW is preferably 1 x10 "5 to 7x10 " 5 g / l, more preferably between 3x10 "5 and 5x10 " 5 g / l.
  • the concentration of silver nitrate in the SOW is preferably 1 x10 "6 to 6x10 " 6 g / l , more preferably between 3x10 "6 and 5x10 " 6 g / l.
  • the step (b) of adding the antifouling to be analyzed is added between steps (a1) and (a2).
  • the antifouling is preferably added in an amount of 5 to 10,000 ppm, more preferably 10 to 5,000 ppm.
  • time is measured until turbidity reaches 2 to 5 NTU, preferably 3. This time may be referred to as "induction time”. Time is measured from the moment of adding the last solution to the SOW in step a4.
  • the SOW has a concentration factor of 8.
  • the chemical composition of said is:
  • concentration factor of 8. In particular embodiment of the first aspect of the present invention, it has a concentration factor of 7.
  • the chemical composition of said is:
  • concentration factor of 6 In particular embodiment of the first aspect of the present invention, it has a concentration factor of 6.
  • the chemical composition of said is:
  • a second aspect of the present invention is a kit for analyzing antifouling through the procedure described previously, comprising:
  • a solution 1 comprising MgCI 2 , CaCI 2 and SrCI 2 ,
  • a solution 2 comprising KCI, NaHCO 3 , KBr, H 3 BO 3 , NaF,
  • a solution comprising Ba (NO 3 ) 2 , Mn (NO 3 ) 2 , Cu (NO 3 ) 2 , Zn (NO 3 ) 2 , Pb (NO 3 ) 2 and Ag (NO 3 ) 2 .
  • the kit may include instructions on how to prepare the SOW to evaluate the different antifoulants to be analyzed.
  • Fig. 1. EDTA, ATMP and PMA structures.
  • a 150 ml glass reactor was charged with 70 ml of Milli-Q water with magnetic stirring at 400 rpm (revolutions per minute). The following salts or solutions were added in sequential order. i) 17,1738 g of sodium chloride (under stirring until completely dissolved), i) 2,8658 g of NaS0 4 (under stirring until completely dissolved), iii) 0.01 g of antifouling, iv) 14 ml of a solution comprising 555.6 g / l of MgCl 2 .6H 2 0, 57.9 g / l of CaCI 2 (anhydrous) and 2.1 g / l of SrCI 2 .6H 2 0, v) 7 ml of a solution comprising 69.5 g / l of KCI, 20.1 g / l of NaHC03, 10.0 g / l of KBr, 2.7 g / l of H 3 B0 3 and 0.3 of NaF , vi) 0.7
  • the measurement of the induction time began once the last solution was added.
  • the induction time was determined when the turbidity of the solution reached 3 NTU.
  • ATMP Aminotrimethylene phosphonic acid
  • Polymeric compounds such as PMA and PAMAM, showed better performance as antifouling because the polymeric compounds have crystalline distortion and a dispersion effect.
  • most phosphonates such as ATMP, suffer chelation and threshold effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

Las incrustaciones producen reducción en el rendimiento de los procedimientos de desalinización: reducen la productividad, aumentan los costes y proporcionan agua de mala calidad. La cinética de la formación de incrustaciones cuando se introducen antiincrustantes en el sistema no es fácilmente comprensible y la predicción podría fallar con mucha frecuencia si el antiincrustante no se analiza del modo correcto. La presente invención se refiere a un procedimiento para evaluar antiincrustantes que comprende las etapas siguientes: a) preparación de un agua de mar sustituta (SOW) con un factor de concentración entre 1 y 10; b) adición del antiincrustante a evaluar; c) medición de la turbidez con el tiempo.

Description

PROCEDIMIENTO PARA EVALUAR ANTIINCRUSTANTES PARA PROCEDIMIENTOS DE DESALINEACIÓN
DESCRIPCIÓN
La invención se refiere a un procedimiento para evaluar antiincrustantes para plantas de desalinización. Por tanto, la invención pertenece al campo de los procedimientos de desalinización, en particular procedimientos de desalinización con membranas de osmosis inversa.
ESTADO DE LA TÉCNICA
En operaciones de desalinización en membrana a proporciones de recuperación alta, la concentración de sulfato de calcio a menudo supera los niveles de saturación. Además, el tiempo de residencia del fluido cerca de la superficie de la membrana en la capa de polarización de la concentración es mayor que el tiempo de residencia de convección medio. Como consecuencia se produce cristalización de estas sales sobre las superficies de la membrana. Las incrustaciones producen reducción en el rendimiento de los procedimientos de desalinización: reduce la productividad, aumenta los costes y proporciona agua de mala calidad.
Se han utilizado productos químicos para el tratamiento del agua durante más de un siglo aunque cálcico fue Rosenstein en 1936 (US2038316) el primero en dejar constancia de la aplicación de productos químicos aplicados para la supresión de las incrustaciones de sulfato. La capacidad para inhibir las incrustaciones de los antiincrustantes está relacionada con la estructura química, el peso molecular, los grupos funcionales activos y el pH de la solución.
Se sabe que en soluciones supersaturadas tratadas con antiincrustantes existe un retraso significativo de la nucleación de cristales que se conoce como tiempo de inducción. La medición del tiempo de inducción es un parámetro bien establecido usado por muchos investigadores para evaluar la eficacia de los antiincrustantes. Por ejemplo, Austin (Desalination, 16 (1975), pág. 345) investigó la precipitación del sulfato cálcico.
El proceso de precipitación se ve afectado por la presencia de otros iones frecuentes y la conductividad del agua. El agua del mar es una mezcla compleja de muchas sales, por ejemplo entre las sales de sulfato con cationes bivalentes, los sulfatos de calcio, magnesio y estroncio se encuentran en concentraciones importantes. Por tanto, la cinética de la formación de incrustaciones cuando se introducen antiincrustantes en el sistema no es fácilmente comprensible y la predicción podría fallar con mucha frecuencia si el antiincrustante no se evalúa del modo correcto.
Por todos estos motivos es necesario un procedimiento para evaluar diferentes antiincrustantes en una matriz de agua compleja que refleje la complejidad del agua marina real.
DESCRIPCIÓN DE LA INVENCIÓN
La invención se refiere a un procedimiento para evaluar diferentes antiincrustantes en una matriz de agua compleja en base al parámetro bien establecido del tiempo de inducción para evaluar su eficacia.
Las ventajas de la presente invención son:
- Este procedimiento proporciona un modo fácil y rápido para evaluar diferentes antiincrustantes antes de usarlos en la planta de osmosis inversa,
- El análisis de los antiincrustantes a menor escala evita daños en las membranas de la planta, - Los resultados obtenidos son más fiables que los resultados obtenidos con los procedimientos presentes en la técnica porque la matriz de agua usada refleja la complejidad del agua del mar.
En consecuencia, un primer aspecto de la presente invención es un procedimiento para analizar antiincrustantes que comprende las siguientes etapas: a) preparación de un agua de mar sustituía (del inglés, SOW) con un factor de concentración entre 1 y 10,
b) adición del antiincrustante a evaluar,
c) medición de la turbidez con el tiempo.
Un segundo aspecto de la presente invención es un kit para analizar antiincrustantes a través del procedimiento que se ha descrito previamente, que comprende:
- NaCI,
- NaS04,
- Una solución 1 que comprende MgCI2, CaCI2 y SrCI2,
- Una solución 2 que comprende KCI, NaHC03, KBr, H3B03, NaF,
- Una solución que comprende Ba(N03)2, Mn(N03)2, Cu(N03)2, Zn(N03)2, Pb(N03)2 y Ag(N03)2.
Definiciones
El término "antiincrustante" comprende sustancias químicas que se añaden al agua con el fin de retrasar las incrustaciones de sales, tales como carbonato cálcico, sulfato cálcico y sulfato magnésico. Los antiincrustantes pueden ser ácidos, agentes quelantes, fosfonatos, poliacrilatos y polímeros con grupos amino. No obstante, dado que el objeto de la invención es evaluar la capacidad antiincrustante de una amplia gama de sustancias, la definición de antiincrustante también incluye sustancias químicas conocidas o desconocidas que no se han analizado todavía como antiincrustantes para membranas de osmosis inversa.
El agua de mar sustituía (SOW) es agua que se puede usar para análisis de laboratorio en los que se requiere una solución reproducible que simula al agua de mar. El agua se ha preparado siguiendo las instrucciones de la Sociedad Americana para Pruebas y Materiales (del inglés, ASTM). En el contexto de la invención, el término SOW comprende agua de mar sustituía con diferentes facíores de conceníración, prefereníemeníe con un facíor de conceníración eníre 1 y 10, es decir, la proporción de difereníes sales es la misma que la sugerida por la ASTM pero con un facíor de conceníración de 1 a 10.
El íérmino "íurbidez" es un parámeíro bien conocido en el campo de la íécnica. La íurbidez es la neblina o nebulosidad de un fluido causado por partículas individuales (sólidos suspendidos) que generalmeníe no son visibles a simple visía, similar al humo en el aire. La medición de la íurbidez es una prueba clave de la calidad del agua. Se mide en unidades de íurbidez nefeloméírica (del inglés, NTU). La medición para la indicar la íurbidez se basa en el uso de una suspensión esíándar de formazina (preparado mezclando sulfaío de hidrazina y hexameíileníeíramina). La íurbidez medida en NTU usa procedimieníos nefeloméíricos que dependen de pasar luz específica de una longiíud de onda específica a íravés de la muesíra. Se mide con un nefelómeíro, que mide las partículas suspendidas usando un haz de luz (haz fueníe) y un deíecíor de luz en un lado (a menudo a 90 °) del haz fueníe.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Un primer aspecío de la preseníe invención es un procedimienío para evaluar aníiincrusíaníes que comprende las siguieníes eíapas: a) preparación de un agua de mar susíiíuía (SOW) con un facíor de concentración entre 1 y 10,
b) adición del antiincrustante a evaluar,
c) medición de la turbidez con el tiempo.
En una primera realización del primer aspecto de la presente invención, el factor de concentración del SOW está entre 2 y 9, preferentemente entre 5 y 8. Los mejores resultados se han obtenido cuando el factor de concentración es 7. El factor de concentración se ha escogido tras un estudio del tiempo de inducción con un factor de concentración variable de cloruro sódico. El factor de concentración 7 proporciona tiempos de inducción en el intervalo de 2-7 minutos, que es una escala razonable para el objeto de la invención. La expresión "tiempo de inducción" comprende el retraso en la nucleación del cristal alcanzado mediante la adición de un antiincrustante.
En otra realización del primer aspecto de la presente invención, la preparación del SOW comprende una etapa (a1 ) de disolución de NaCI y Na2SO4. Esta disolución puede tener lugar de forma simultánea o por separado al mismo volumen de agua. Dado que la concentración de cationes y aniones tiene que controlarse considerablemente, el agua usada es, preferentemente, agua Milli- Q. Preferentemente, la disolución de NaCI tendrá lugar en primer lugar. Con el fin de ayudar a la disolución completa se puede usar agitación. Después, a la solución que comprende NaCI se puede añadir Na2SO .
Preferentemente, la concentración de NaCI en el SOW está entre 150 y 180 g/l, más preferentemente entre 165 y 175 g/l. Preferentemente, la concentración de Na2SO4 en el SOW está entre 20 y 35 g/l, más preferentemente entre 25 y 30 g/l.
En otra realización del primer aspecto de la presente invención, la preparación del SOW comprende también una etapa (a2) tras la etapa (a1 ) de adición a la solución de los cationes Mg2+, Ca2+ y Sr2-1". Esta adición se puede llevar a cabo añadiendo las sales directamente a la solución obtenida tras la etapa (a1 ) o mediante la adición de una solución que comprende Mg2+, Ca2+ y Sr2+. Preferentemente, la adición de los cationes Mg2+, Ca2+ y Sr2+ se lleva a cabo añadiendo una solución de compuestos solubles de dichos cationes, preferentemente MgC^, CaC^ y SrC^
Con el fin de simular el agua del mar con un factor de concentración entre 5 y 8, la concentración de Mg2+ en el SOW está, preferentemente, entre 30 y 45 g/l, más preferentemente entre 35 y 40 g/l. La concentración de Ca2+ en el SOW está, preferentemente, entre 5 y 15 g/l, más preferentemente entre 7 y 10 g/l. La concentración de Sr2+ en el SOW está, preferentemente, entre 0,1 y 0,25 g/l, más preferentemente, entre 0,15 y 0,20 g/l.
En otra realización del primer aspecto de la presente invención, la preparación del SOW comprende también una etapa (a3) tras la etapa (a2) de adición a la solución obtenida tras la etapa (a2) de KCI, KBr, NaF, NaHCO3, H3BO3 o mezclas de los mismos, preferentemente de KCI, KBr, NaF, NaHCO3 y H3BO3 . Esta adición se puede llevar a cabo añadiendo las sales directamente a la solución obtenida tras la etapa (2) o mediante la adición de una solución que comprende dichos compuestos. Preferentemente, la etapa (a3) se lleva a cabo añadiendo una solución que comprende KCI, KBr, NaF, NaHCO3, H3BO3 o mezclas de los mismos, preferentemente una solución que comprende KCI, KBr, NaF, NaHCO3 y H3BO3.
La concentración de KCI en el SOW está, preferentemente, entre 3 y 7 g/l, más preferentemente entre 4 y 5 g/l. La concentración de KBr en el SOW está preferentemente entre 0,25 y 2 g/l, más preferentemente entre 0,5 y 1 g/l. La concentración de NaF en el SOW está preferentemente entre 0,005 y 0,1 g/l, más preferentemente entre 0,015 y 0,03 g/l. La concentración de NaHCOs en la solución obtenida tras la etapa (a3) está, preferentemente, entre 0,5 y 3 g/l, más preferentemente entre 1 y 2 g/l. La concentración de H3BO3 en el SOW está preferentemente entre 0,05 y 0,4 g/l, más preferentemente entre 0,1 y 0,25 g/l. En otra realización del primer aspecto de la presente invención, la preparación del SOW comprende también una etapa (a4) tras la etapa (a3) de la adición de al menos un compuesto de nitrato, preferentemente de un compuesto de nitrato bivalente. El compuesto de nitrato bivalente es, preferentemente, nitrato de bario, nitrato de manganeso, nitrato de cobre, nitrato de cinc, nitrato de plomo, nitrato de plata o mezclas de los mismos, más preferentemente nitrato de bario, nitrato de manganeso, nitrato de cobre, nitrato de cinc, nitrato de plomo y nitrato de plata.
La concentración de nitrato de bario en el SOW está, preferentemente, entre 3x10"4 y 9x10"4 g/l, más preferentemente entre 5x10"4 y 8x10"4 g/l. La concentración de nitrato de cobre en el SOW está preferentemente entre 1x10"4 y 4x10"4 g/l, más preferentemente entre 2x10"4 y 3x10"4 g/l. La concentración de nitrato de cinc en el SOW está preferentemente de 3x10"5 a 8x10"5 g/l, más preferentemente entre 5x10"5 y 7 x 10~5 g/l. La concentración de nitrato de plomo en el SOW está preferentemente de 1 x10"5 a 7x10"5 g/l, más preferentemente entre 3x10"5 y 5x10"5 g/l. La concentración de nitrato de plata en el SOW está preferentemente de 1 x10"6 a 6x10"6 g/l, más preferentemente entre 3x10"6 y 5x10"6 g/l.
En otra realización del primer aspecto de la presente invención, la etapa (b) de adición del antiincrustante que se va a analizar se añade entre las etapas (a1 ) y (a2). Además, el antiincrustante se añade, preferentemente, en una cantidad de 5 a 10.000 ppm, más preferentemente de 10 a 5.000 ppm.
En otra realización del primer aspecto de la presente invención, el tiempo se mide hasta que la turbidez alcanza de 2 a 5 NTU, preferentemente 3. Este tiempo se puede denominar "tiempo de inducción". El tiempo se mide desde el momento de la adición de la última solución al SOW en la etapa a4.
En una realización particular del primer aspecto de la presente invención, el SOW tiene un factor de concentración de 8. La composición química de dicha es:
Figure imgf000009_0001
Tabla 1 . Composición de SOW con un factor de concentración de 8. a realización particular del primer aspecto de la presente invención, el tiene un factor de concentración de 7. La composición química de dicha es:
Compuesto Concentración
(g/i)
NaCI 171 ,71
MgCI2 36,4
Na2SO4 28,63
CaCI2 8,12
Figure imgf000010_0001
Tabla 2. Composición de SOW con un factor de concentración de 7. a realización particular del primer aspecto de la presente invención, el tiene un factor de concentración de 6. La composición química de dicha es:
Figure imgf000010_0002
Figure imgf000011_0001
Tabla 3. Composición de SOW con un factor de concentración de 6.
Un segundo aspecto de la presente invención es un kit para analizar antiincrustantes a través del procedimiento que se ha descrito previamente, que comprende:
- NaCI,
- NaSO4,
- Una solución 1 que comprende MgCI2, CaCI2 y SrCI2,
- Una solución 2 que comprende KCI, NaHCO3, KBr, H3BO3, NaF,
- Una solución que comprende Ba(NO3)2, Mn(NO3)2, Cu(NO3)2, Zn(NO3)2, Pb(NO3)2 y Ag(NO3)2.
El kit puede incluir instrucciones sobre cómo preparar el SOW para evaluar los diferentes antiincrustantes que se van a analizar.
Breve descripción de las figuras
Fig. 1 . Estructuras de EDTA, ATMP y PMA.
Fig. 2. Estructura de PAMAM.
EJEMPLOS
Ejemplo 1. Preparación de SOW con un factor de concentración de 7 y análisis de antiincrustantes
Un reactor de cristal de 150 mi se cargó con 70 mi de agua Milli-Q con agitación magnética a 400 rpm (revoluciones por minuto). Las siguientes sales o soluciones se añadieron en orden secuencial. i) 17,1738 g de cloruro sódico (en agitación hasta que se disuelvan completamente), i) 2,8658 g de NaS04 (en agitación hasta que se disuelvan completamente), iii) 0,01 g de antiincrustante, iv) 14 mi de una solución que comprende 555,6 g/l de MgCl2.6H20, 57,9 g/l de CaCI2 (anhidro) y 2,1 g/l de SrCI2.6H20, v) 7 mi de una solución que comprende 69,5 g/l de KCI, 20,1 g/l de NaHC03, 10,0 g/l de KBr, 2,7 g/l de H3B03 y 0,3 de NaF, vi) 0,7 mi de una solución que comprende 0,994 g/l de Ba(N03)2, 0,546 g/l de Mn(N03)2, 0,396 g/l de Cu(N03)2, 0,151 g/l de Zn(N03)2, 0,066 g/l de Pb(N03)2 y 0,0049 g/l de Ag(N03)2.
La medida del tiempo de inducción comenzó una vez que se añadió la última solución. El tiempo de inducción se determinó cuando la turbidez de la solución alcanzó 3 NTU.
Los antiincrustantes comerciales analizados con este procedimiento fueron cuatro:
- Ácido etilendiaminotetraacético (EDTA)
- Ácido aminotrimetilenfosfónico (ATMP) como ejemplo de fosfonatos
- Ácido polimaleico (PMA) como ejemplo de ácidos policarboxílicos (Fig. 1 )
- Poli (amidoamina) (PAMAM) como dendrímero (4 generaciones) (Fig. 1 ) Como son bien conocidos en la técnica, los datos obtenidos serán útiles para validar el procedimiento. Los tiempos de inducción con 100 ppm de antiincrustantes y a 25 °C se muestran en la tabla siguiente:
Figure imgf000013_0001
Tabla 4. Tiempos de inducción obtenidos con el procedimiento de la invención de diferentes antiincrustantes.
Los compuestos poliméricos, tales como PMA y PAMAM, mostraron mejor comportamiento como antiincrustantes porque los compuestos poliméricos tienen distorsión cristalina y un efecto de dispersión. Por otro lado, la mayoría de los fosfonatos, tales como ATMP, sufren quelación y efecto umbral. El agente quelante clásico, EDTA, en este caso no presentó ningún efecto antiincrustante.

Claims

REIVINDICACIONES
1 . Un procedimiento para analizar antiincrustantes que comprende las etapas siguientes: a) preparación de un agua de mar sustituía (SOW) con un factor de concentración entre 1 y 10,
b) adición del antiincrustante a evaluar,
c) medición de la turbidez con el tiempo.
2. El procedimiento según la reivindicación anterior, donde el factor de concentración del SOW está entre 2 y 9, preferentemente entre 5 y 8.
3. El procedimiento según cualquiera de las reivindicaciones anteriores, donde la preparación del SOW comprende una etapa (a1 ) de disolución de NaCI y Na2SO4.
4. El procedimiento según la reivindicación anterior, donde la concentración de NaCI en el SOW está entre 150 y 180 g/l, preferentemente entre 165 y 175 g/l.
5. El procedimiento según cualquiera de las reivindicaciones 3 a 4, donde la concentración de Na2SO4 en el SOW está entre 20 y 35 g/l, preferentemente entre 25 y 30 g/l.
6. El procedimiento según cualquiera de las reivindicaciones 3 a 5, donde la preparación del SOW comprende también una etapa (a2) tras la etapa (a1 ) de adición a la solución de los cationes Mg2+, Ca2+ y Si"2*.
7. El procedimiento según la reivindicación anterior, donde la adición de los cationes Mg2+, Ca2+ y Sr2+ se lleva a cabo añadiendo una solución de compuestos solubles de dichos cationes, preferentemente MgCI2, CaCI2 y SrCI2.
8. El procedimiento según cualquiera de las reivindicaciones 6 a 7, donde la concentración de Mg2+ en el SOW está entre 30 y 45 g/l, preferentemente entre 35 y 40 g/l.
9. El procedimiento según cualquiera de las reivindicaciones 6 a 8, donde la concentración de Ca2+ en el SOW está entre 5 y 15 g/l, preferentemente entre 7 y 10 g/l.
10. El procedimiento según cualquiera de las reivindicaciones 6 a 9, donde la concentración de Sr2+ en el SOW está entre 0,1 y 0,25 g/l, preferentemente entre 0,15 y 0,20 g/l.
1 1 . El procedimiento según cualquiera de las reivindicaciones 6 a 10, donde la preparación del SOW comprende también una etapa (a3) tras la etapa (a2) de adición a la solución obtenida tras la etapa (a2) de KCI, KBr, NaF, NaHCO3, H3BO3 o mezclas de los mismos, preferentemente de KCI, KBr, NaF, NaHCO3 y
12. El procedimiento según la reivindicación precedente, donde la etapa (a3) se lleva a cabo añadiendo una solución que comprende KCI, KBr, NaF, NaHCO3, H3BO3 o mezclas de los mismos, preferentemente que comprende KCI, KBr, NaF, NaHCO3 y H3BO3.
13. El procedimiento según cualquiera de las reivindicaciones 1 1 a 12, donde la concentración de KCI en el SOW está entre 3 y 7 g/l, preferentemente entre 4 y 5 g/l.
14. El procedimiento según cualquiera de las reivindicaciones 1 1 a 13, donde la concentración de KBr en el SOW está entre 0,25 y 2 g/l, preferentemente entre 0,5 y 1 g/l.
15. El procedimiento de acuerdo con cualquiera de las reivindicaciones precedentes 1 1 a 14, en el que la concentración de NaF en el SOW está entre 0,005 y 0,1 g/l, preferentemente entre 0,015 y 0,03 g/l.
16. El procedimiento según cualquiera de las reivindicaciones 1 1 a 15, en el que la concentración de NaHCO3 en la solución obtenida tras la etapa (a3) está entre 0,5 y 3 g/l, preferentemente entre 1 y 2 g/l.
17. El procedimiento según cualquiera de las reivindicaciones 1 1 a 16, donde la concentración de H3BO3 en el SOW está entre 0,05 y 0,4 g/l, preferentemente entre 0,1 y 0,25 g/l.
18. El procedimiento según cualquiera de las reivindicaciones 1 1 a 17, donde la preparación del SOW comprende también una etapa (a4) tras la etapa (a3) de la adición de al menos un compuesto de nitrato, preferentemente de un compuesto de nitrato bivalente.
19. El procedimiento según la reivindicación precedente, donde el compuesto de nitrato bivalente es nitrato de bario, nitrato de manganeso, nitrato de cobre, nitrato de cinc, nitrato de plomo, nitrato de plata o mezclas de los mismos, preferentemente nitrato de bario, nitrato de manganeso, nitrato de cobre, nitrato de cinc, nitrato de plomo y nitrato de plata.
20. El procedimiento según la reivindicación precedente, donde la concentración de nitrato de bario en el SOW está entre 3x10"4 y 9x10"4 g/l, preferentemente entre 5x10"4 y 8x10"4 g/l.
21 . El procedimiento según cualquiera de las reivindicaciones 19 a 20, donde la concentración de nitrato de manganeso en el SOW está entre 1 x10"4 y 4x10"4 g/l, preferentemente entre 2x10"4 y 3x10"4 g/l.
22. El procedimiento según cualquiera de las reivindicaciones 19 a 21 , donde la concentración de nitrato de cobre en el SOW está entre -1 x10"4 y 4x10"4 g/l, preferentemente entre 2x10"4 y 3x10"4 g/l.
23. El procedimiento según cualquiera de las reivindicaciones 19 a 22, donde la concentración de nitrato de cinc en el SOW está entre 3x10"5 y 8x10"5 g/l, preferentemente entre 5x10"5 y 7x10"5 g/l.
24. El procedimiento según cualquiera de las reivindicaciones 19 a 23, donde la concentración de nitrato de plomo en el SOW está entre 1 x10"5 y 7x10"5 g/l, preferentemente entre 3x10"5 y 5x10"5 g/l.
25. El procedimiento según cualquiera de las reivindicaciones 19 a 24, donde la concentración de nitrato de plata en el SOW está entre 1 x10"6 y 6x10"6 g/l, preferentemente entre 3x10"6 y 5x10"6 g/l.
26. El procedimiento según cualquiera de las reivindicaciones 6 a 25, donde la etapa (b) de adición del antiincrustante a evaluar se añade entre las etapas (a1 ) y (a2).
27. El procedimiento según cualquiera de las reivindicaciones precedentes, donde el antiincrustante se añade en una cantidad de 5 y 10.000 ppm, preferentemente entre 10 y 5.000 ppm.
28. El procedimiento según cualquiera de las reivindicaciones precedentes, donde el tiempo se mide hasta que la turbidez alcanza de 2 a 5 NTU, preferentemente 3.
29. Un kit para evaluar antiincrustantes a través del procedimiento según cualquiera de las reivindicaciones precedentes, que comprende
- NaCI,
- NaSO4,
- Una solución 1 que comprende MgCI2, CaCI2 y SrCI2, - Una solución 2 que comprende KCI, NaHC03, KBr, H3B03, NaF,
- Una solución que comprende Ba(N03)2, Mn(N03)2, Cu(N03)2, Zn(N03)2, Pb(N03)2 y Ag(N03)2.
PCT/ES2012/070598 2012-07-31 2012-07-31 Procedimiento para evaluar antiincrustantes para procedimientos de desalinización WO2014020190A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/ES2012/070598 WO2014020190A1 (es) 2012-07-31 2012-07-31 Procedimiento para evaluar antiincrustantes para procedimientos de desalinización
ES201390058A ES2441250B1 (es) 2012-07-31 2012-07-31 Procedimiento para evaluar antiincrustantes para procedimientos de desalinizacion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2012/070598 WO2014020190A1 (es) 2012-07-31 2012-07-31 Procedimiento para evaluar antiincrustantes para procedimientos de desalinización

Publications (2)

Publication Number Publication Date
WO2014020190A1 true WO2014020190A1 (es) 2014-02-06
WO2014020190A9 WO2014020190A9 (es) 2014-04-17

Family

ID=47018236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070598 WO2014020190A1 (es) 2012-07-31 2012-07-31 Procedimiento para evaluar antiincrustantes para procedimientos de desalinización

Country Status (2)

Country Link
ES (1) ES2441250B1 (es)
WO (1) WO2014020190A1 (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2454515B1 (es) 2011-03-08 2015-04-06 Abengoa Solar, Inc. Módulo colector de concentración solar

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2038316A (en) 1935-08-30 1936-04-21 Shell Dev Process of treating water
EP0033557A1 (en) * 1980-01-31 1981-08-12 Shell Internationale Researchmaatschappij B.V. A method and apparatus for testing the effectiveness of chemicals such as scale inhibitors or scale removers
EP0266779A2 (en) * 1986-11-07 1988-05-11 Katayama Chemical Works Co., Ltd. Scale inhibitor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3631814A1 (de) * 1986-09-19 1988-03-31 Basf Ag Geringfuegig vernetzte, wasserloesliche polymaleinsaeure, verfahren zu deren herstellung und verwendung
GB9614581D0 (en) * 1996-07-11 1996-09-04 Fmc Corp Uk Ltd Scale inhibition process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2038316A (en) 1935-08-30 1936-04-21 Shell Dev Process of treating water
EP0033557A1 (en) * 1980-01-31 1981-08-12 Shell Internationale Researchmaatschappij B.V. A method and apparatus for testing the effectiveness of chemicals such as scale inhibitors or scale removers
EP0266779A2 (en) * 1986-11-07 1988-05-11 Katayama Chemical Works Co., Ltd. Scale inhibitor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AUSTIN, DESALINATION, vol. 16, 1975, pages 345
HASSON ET AL: "Induction times induced in an RO system by antiscalants delaying CaSO4 precipitation", DESALINATION, ELSEVIER, AMSTERDAM, NL, vol. 157, no. 1-3, 1 August 2003 (2003-08-01), pages 193 - 207, XP005330303, ISSN: 0011-9164, DOI: 10.1016/S0011-9164(03)00399-0 *
TANTAYAKOM V ET AL: "Scale inhibition study by turbidity measurement", JOURNAL OF COLLOID AND INTERFACE SCIENCE, ACADEMIC PRESS, NEW YORK, NY, US, vol. 284, no. 1, 1 April 2005 (2005-04-01), pages 57 - 65, XP004775443, ISSN: 0021-9797, DOI: 10.1016/J.JCIS.2004.10.007 *

Also Published As

Publication number Publication date
ES2441250B1 (es) 2015-03-09
WO2014020190A9 (es) 2014-04-17
ES2441250A2 (es) 2014-02-03
ES2441250R1 (es) 2014-04-11

Similar Documents

Publication Publication Date Title
Esmaeilnezhad et al. Characteristics and applications of magnetized water as a green technology
Al Omari et al. Calcium carbonate
ES2601883T3 (es) Remineralización de agua desalinizada y dulce dosificando una solución de carbonato de calcio en agua blanda
ES2609090T3 (es) Proceso para la preparación de una solución acuosa que comprende al menos un carbonato de hidrógeno alcalinotérreo y su uso
Waly et al. The role of inorganic ions in the calcium carbonate scaling of seawater reverse osmosis systems
de Morais et al. Effect of pH on the efficiency of sodium hexametaphosphate as calcium carbonate scale inhibitor at high temperature and high pressure
ES2584602T3 (es) Procedimiento para la preparación de una disolución acuosa que comprende al menos un hidrogenocarbonato de metal alcalinotérreo y su uso
KR101817548B1 (ko) 포스폰산과 중합체를 포함하는 역삼투막 스케일방지제
Mady et al. Synthesis and characterization of modified aliphatic polycarbonates as environmentally friendly oilfield scale inhibitors
Prywer et al. Influence of disodium EDTA on the nucleation and growth of struvite and carbonate apatite
Sousa et al. Fast evaluation of inhibitors for calcium carbonate scale based on pH continuous measurements in jar test at high salinity condition
BR112013002969B1 (pt) Processo para remineralização da água, e, uso de um carbonato de cálcio micronizado
Shiraishi Chemical conditions favoring photosynthesis-induced CaCO3 precipitation and implications for microbial carbonate formation in the ancient ocean
Karabelas et al. Experimental study on the effect of polysaccharides on incipient membrane scaling during desalination
Prisciandaro et al. PBTC as an antiscalant for gypsum precipitation: Interfacial tension and activation energy estimation
Amjad Mineral scales in biological and industrial systems
CN102115265A (zh) 热法海水淡化专用复合型阻垢剂
JP2018515419A (ja) 安定な塩基性電解質材料およびこれを含む溶媒材料
Dai et al. Two-stage model reveals barite crystallization kinetics from solution turbidity
ES2430830T3 (es) Biodegradabilidad mejorada de formulaciones antiincrustantes
Sancho-Tomás et al. Exploring coral biomineralization in gelling environments by means of a counter diffusion system
US2400863A (en) Algaecide
Liu et al. Review of phosphorus-based polymers for mineral scale and corrosion control in oilfield
Spinthaki et al. Chemical methods for scaling control
WO2014020190A1 (es) Procedimiento para evaluar antiincrustantes para procedimientos de desalinización

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: P201390058

Country of ref document: ES

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12772345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12772345

Country of ref document: EP

Kind code of ref document: A1