WO2014019578A1 - Procédé pour déterminer une position d'un moteur électrique, en particulier dans un système d'actionnement d'embrayage d'un véhicule automobile - Google Patents

Procédé pour déterminer une position d'un moteur électrique, en particulier dans un système d'actionnement d'embrayage d'un véhicule automobile Download PDF

Info

Publication number
WO2014019578A1
WO2014019578A1 PCT/DE2013/200054 DE2013200054W WO2014019578A1 WO 2014019578 A1 WO2014019578 A1 WO 2014019578A1 DE 2013200054 W DE2013200054 W DE 2013200054W WO 2014019578 A1 WO2014019578 A1 WO 2014019578A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
rotor
sensor
commutation
phases
Prior art date
Application number
PCT/DE2013/200054
Other languages
German (de)
English (en)
Inventor
Markus Dietrich
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to DE112013003773.4T priority Critical patent/DE112013003773A5/de
Priority to CN201380038652.8A priority patent/CN104604119B/zh
Publication of WO2014019578A1 publication Critical patent/WO2014019578A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/185Circuit arrangements for detecting position without separate position detecting elements using inductance sensing, e.g. pulse excitation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/064Control of electrically or electromagnetically actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/066Control of fluid pressure, e.g. using an accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/102Actuator
    • F16D2500/1021Electrical type
    • F16D2500/1023Electric motor
    • F16D2500/1024Electric motor combined with hydraulic actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/102Actuator
    • F16D2500/1021Electrical type
    • F16D2500/1023Electric motor
    • F16D2500/1025Electric motor with threaded transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3026Stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/501Relating the actuator
    • F16D2500/5012Accurate determination of the clutch positions, e.g. treating the signal from the position sensor, or by using two position sensors for determination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/7041Position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/7042Voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/03Determination of the rotor position, e.g. initial rotor position, during standstill or low speed operation

Definitions

  • the invention relates to a method for determining a position of an electric motor, in particular in a clutch actuation system of a motor vehicle, in which a position signal of a rotor of the electric motor is removed from a sensor arranged outside a rotation axis of the electric motor on a stator of the electric motor, which is measured by an evaluation unit the position of the electric motor is evaluated.
  • the electric motor has a sensor which detects the position of the electric motor during operation of the actuator.
  • the sensors are arranged outside the axis of rotation of the electric motor, a high position resolution is necessary.
  • the rotor of the electric motor has only a limited number of pole pairs, from which a predetermined number of edges can be used for position determination.
  • Various sensors can be used to determine the position, such as switch halls, linear sensors or incremental encoders.
  • a sensorless control of the electric motor is conceivable. However, all sensors have disadvantages.
  • the position of the rotor as measured by a sensor at the belt end of the production of the clutch actuation system must be adjusted.
  • the mechanical position of the sensor is matched to the rotor at the end of the tape.
  • the invention is therefore based on the object to provide a method for determining a position of an electric motor, in which can be dispensed with an adjustment of the sensor to the rotor of the electric motor at the end of the tape.
  • the object is achieved in that at standstill of the rotor, this is acted upon by a voltage and a position of the rotor corresponding response response of a commutation of the electric motor is assigned. Due to this procedure, the system automatically adjusts itself after the voltage has been applied, so that this adjustment can also be carried out in systems which are already installed in the motor vehicle. A band end setting of the sensors to the rotor of the electric motor can thus be omitted.
  • test pulses are applied to all three phases of the electric motor and the evaluation unit evaluates the response to all three phases of the electric motor, from which it is concluded that the current position of the electric motor.
  • the position of the rotor at standstill is reliably determined.
  • a dynamic control of the rotor can be omitted.
  • high-resolution incremental encoders can also be used to detect the position of the electric motor. The necessary information for the later regulation of the electric motor is used after the assignment of a dimensional body of the Inkrementalinformati- on.
  • Electric motor evaluated. On the basis of this current curve, it can be determined in which commutation situation the electric motor is located. Starting from this detected Commutation information, the control of the electric motor is set with a commutation pattern.
  • the response of the electric motor is assigned to a zero position of the sensor.
  • the described start routine which assignment the electric motor has at the commutation times.
  • the start routine simultaneously ensures referencing of the sensor signal. In the subsequent measurement operation of the electric motor commutation and the displacement measurement are performed only on the sensor signal due to the determination of the zero point.
  • the position of the electric motor is characterized by a measuring body arranged on the rotor whose position change is evaluated as a response signal, as a Jerusalem Eigensko preferably a, the rotor enclosing magnetic encoder ring is used with a predetermined number of magnets with alternating magnetization direction. Since this magnetic encoder ring is fixedly secured to the rotor in the axial direction, the position of the rotor can be uniquely determined by evaluating the alternating magnetization directions of the magnets.
  • an alignment of the electric motor in a preferred direction is enforced by a maximum energization of at least one of the three phases of the electric motor at standstill of the electric motor.
  • a so-called “hard energizing" of the phases of the electric motor is carried out in particular when the accuracy in determining the position of the rotor for commutation should be very high.
  • the three phases of the electric motor are energized at standstill of the rotor with an arbitrary Bestromungsmuster, whereby the electric motor occupies the preferred position and in this preferred position of the electric motor is assigned to the zero, preferably trained as incremental encoder sensor.
  • the Bestromungsmuster By applying the Bestromungsmuster the electric motor moves in any direction and remains in the position corresponding to the Bestromungsmuster the underlying commutation. This position is then recognized as zero position. Since the Bestromungsmuster is known, the further commutation can be set meaningful.
  • a block commutation is used as Bestromungsmuster.
  • the use of Blockkommut réelle as Bestromungsmuster has the advantage that the subsequent commutation patterns are known for the further operation of the electric motor.
  • the resolution of the sensor is freely selectable.
  • the number of pulses counted by the sensor for path change of the electric motor can be easily adjusted.
  • only a change in the software but no hardware change is necessary.
  • the assignment of the position of the rotor is carried out to a commutation in a learning routine, which takes place during the initialization of the built-in motor vehicle electric motor. Because of this teach-in routine, the assignment of the position of the electric motor for commutation can take place each time the ignition of the motor vehicle is switched on, so that it is ensured that always a highly accurate position assignment and thus path measurement is possible.
  • Figure 1 a simplified representation of a clutch actuation system for
  • Figure 2 section of a rotor of an electric motor with a magnetic encoder ring
  • Figure 3 an embodiment of the assignment of an incremental signal to
  • FIG. 1 shows in simplified form a clutch actuation system 1 for an automated clutch.
  • the clutch actuation system 1 is assigned to a friction clutch 2 in a drive train of a motor vehicle and comprises a master cylinder 3, which is connected to a slave cylinder 5 via a hydraulic line 4, also referred to as a pressure line.
  • a slave piston 6 is movable back and forth over an actuator 7 and the interposition of a bearing 8, the friction clutch 2 is actuated.
  • the master cylinder 3 is connectable via a connection opening with a surge tank 9.
  • a master piston 10 is movable. From the master piston 10 is a piston rod 1 1, which is translationally movable in the longitudinal extension of the master cylinder 3 together with the master piston 10.
  • the piston rod 1 1 of the master cylinder 3 is coupled via a threaded spindle 12 with an electric motor actuator 13.
  • the electromotive actuator 13 includes a commutated DC electric motor 14 and an evaluation unit 15.
  • the threaded spindle 12 sets a rotational movement of the electric motor 14 in a longitudinal movement of the piston rod 1 1 and the master cylinder piston 10 to.
  • the friction clutch 2 is thus automatically actuated by the electric motor 14, the threaded spindle 12 and the master cylinder 3 and the slave cylinder 5.
  • a sensor 16 is integrated.
  • Figure 2 shows a section of a rotor 17 of the electric motor 14, which is surrounded at its periphery by a magnetic encoder ring 18.
  • the magnetic encoder ring 18 represents a measuring body and comprises a predetermined number of magnetic poles N and S, which are arranged distributed over 360 ° to each other. In the presence of, for example, 1 1 magnetic poles 22 Polüber Vietnamese are given, which lead to the generation of switching signals of the trained as an incremental sensor 16 sensor.
  • the magnetic encoder ring 18 is rotatably connected to the rotor 17, while the sensor 16, which senses the magnetic encoder ring 18, for example, is attached to a not shown stator of the electric motor 14.
  • a fast incremental encoder such as an AMR sensor such as the AS531 1
  • the output signal of the sensor 16 is preferably transmitted via an A B signal track, as shown in Figure 3a.
  • Two Hall sensors scan the magnetic field changing through the magnetic field 18 and thereby emit sensor signals, each forming a signal track A and B respectively.
  • the signal tracks A, B are 90 ° out of phase with each other, which corresponds to half a pulse.
  • the use of these two signal tracks A and B has the advantage that disturbances in the signal transmission path can be avoided or, if disturbances occur, a plausibility check of the output signal of the sensor 16 is possible. In addition, it is easy to detect the direction of movement of the rotor.
  • the output signals of the sensor 16 are read directly to the interrupt inputs of a microprocessor, which is positioned in the evaluation unit 15 and the edges of the sensor signals of each signal track A, B counts. Every xth interrupt triggers a block commutation, the number of interrupts being dependent on the number of pulses that the sensor 16 delivers per commutation step. For a sinusoidal commutation, the number of pulses is converted into electrical degrees and from this the sinusoidal control is calculated.
  • Such an off-axis sensor system operates with very high resolution or accuracy and can enable a fast and secure data transmission through the use of standard sensors 16.
  • an inexpensive magnetic material is used, which reduces the manufacturing cost of the electric motor 14.
  • FIG. 3b shows the standard block commutation BK.
  • the three phases U, V, W of the electric motor 14 are detected by three Hall sensors, wherein the Hall sensors within the sensor 16 are arranged side by side with a distance of a pole width N, S of the magnetic encoder ring 18.
  • the sensor 16 counts at a Blockkommut istsperiode a predetermined fixed integer number of signal edges of either the signal track A or the signal track B.
  • the electric motor 14 is driven so that always one phase U, V, W is de-energized, while the other two phases U, V, W are energized.
  • a starting operation is used as a one-time rotor position detecting routine.
  • This training routine has no effect on the performance during normal operation of the motor vehicle, since during normal operation, only the sensor 16 is used, which evaluates the change of the magnetic field spanned by the magnetic encoder ring 18 as a result of the movement of the rotor.
  • the start routine is started at standstill of the rotor after switching on the power supply.
  • all three phases of the electric motor 13 are subjected to test voltage pulses.
  • the evaluation unit 15 the response functions in all three phases U, V, W of the electric motor 14 are evaluated.
  • the response function of the current waveform in the three phases U, V, W of the electric motor 14 detected.
  • a current measuring resistor in each phase U, V, W of the electric motor 14 is necessary. On the basis of the detected increase in current can thus be clearly determine which position the rotor 17 of the electric motor 14 has.
  • the position of the sensor 16 is set at this known position of the rotor 17 to start or provided with a calculated offset, so that an unambiguous assignment of the rotor position is ensured to the commutation. Thus, the ideal commutation point is found.
  • the distance in the flanks of the sensor signals to the next commutation step is physically predetermined by the construction described of the magnetic encoder ring 18 and the sensor 16. Thus, it can be determined on the basis of the described current measurement in which commutation phase is located and which position the electric motor 14 has, since, as shown in Figure 3b, the current flows between the different phases.
  • the accuracy with which the rotor position can be detected depends on various factors, such as the inductance of the motor phases, the accuracy of the test voltage pulse or their measurement.
  • a second method is used below.
  • the second method in which a so-called “hard energizing" of the phases U, V, W of the electric motor 14 is performed, it is necessary that the approximate position of the rotor 17 is known from the first method
  • hard energizing meaning that a maximum current is applied to at least one of the phases U, V, W, alignment of the rotor 17 of the electric motor 14 is enforced.
  • the three phases U, V, W are energized with an energization pattern, advantageously a block commutation.
  • one of the block commutation patterns is then arbitrarily applied and the reaction of the electric motor 14 is awaited.
  • the load-free electric motor 14 is thereby moved by small rotation angle in unknown direction. If there is a rotation of the electric motor 14 in an expected direction, the next block commutation pattern is applied and, in turn, it is assumed that the electric motor 14 is now in its preferred position. This preferred position is assigned in the sensor 16 as a zero position, whereby the ideal commutation point is known. If the expected direction of rotation does not occur, another block commutation pattern is applied until the expected direction sets.
  • the rotor 17 is covered with a first Kommut réellesmuster.
  • the phase U does not conduct electricity, while the phase V is supplied with a positive current and the phase W with a negative current. This means that the current flows from the phase V into the phase W.
  • the electric motor 14 is aligned in such a position at which the Hall sensors output a bit design 001 (FIG. 3b).
  • the commutation pattern is assigned to the rotor position reliable.
  • the resolution of the sensor via a magnetic pole N, S can be freely selected in certain steps, which is why the resolution of the sensor 16 can be adapted to the requirements of the existing application case without hardware changes being necessary. Due to the achieved high resolution and the rapid signal detection and transmission is in each operating state of the electric motor 14, both a sine and a block commutation possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

L'invention concerne un procédé pour la détermination d'une position d'un moteur électrique, en particulier dans un système d'actionnement d'embrayage d'un véhicule automobile, dans lequel un signal de position d'un rotor du moteur électrique est reçu par un capteur disposé en dehors de l'axe de rotation du moteur électrique sur un stator du moteur électrique et évalué par une unité d'évaluation en ce qui concerne la position du moteur électrique. Pour renoncer à un réglage de position du moteur électrique à la fin de la bande, celui-ci est soumis à une tension à l'arrêt du rotor et une réaction de réponse correspondant à la position du rotor est associée à une commutation du moteur électrique.
PCT/DE2013/200054 2012-08-02 2013-07-16 Procédé pour déterminer une position d'un moteur électrique, en particulier dans un système d'actionnement d'embrayage d'un véhicule automobile WO2014019578A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112013003773.4T DE112013003773A5 (de) 2012-08-02 2013-07-16 Verfahren zur Bestimmung einer Position eines Elektromotors insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges
CN201380038652.8A CN104604119B (zh) 2012-08-02 2013-07-16 用于确定在机动车离合器操纵系统中的电动机位置的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012213659.2 2012-08-02
DE102012213659 2012-08-02

Publications (1)

Publication Number Publication Date
WO2014019578A1 true WO2014019578A1 (fr) 2014-02-06

Family

ID=49033759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2013/200054 WO2014019578A1 (fr) 2012-08-02 2013-07-16 Procédé pour déterminer une position d'un moteur électrique, en particulier dans un système d'actionnement d'embrayage d'un véhicule automobile

Country Status (3)

Country Link
CN (1) CN104604119B (fr)
DE (2) DE102013213948A1 (fr)
WO (1) WO2014019578A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016023547A3 (fr) * 2014-08-15 2016-04-14 Schaeffler Technologies AG & Co. KG Procédé pour protéger un actionneur d'embrayage d'un système d'actionnement d'embrayage, de préférence pour un véhicule à moteur
WO2017162771A1 (fr) * 2016-03-24 2017-09-28 GETRAG B.V. & Co. KG Procédé et ensemble pour actionner un composant de chaîne cinématique
CN107529507A (zh) * 2016-06-20 2018-01-02 上海三菱电梯有限公司 电梯用永磁曳引机
DE102016217685A1 (de) 2016-09-15 2018-03-15 Continental Automotive Gmbh Erkennung des Austausches eines bürstenlosen Gleichstrommotors mit Rotorlagefeedback

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015001664A5 (de) * 2014-04-01 2016-12-29 Schaeffler Technologies AG & Co. KG Betätigungsaktuator
DE102014218544A1 (de) 2014-09-16 2016-03-17 Schaeffler Technologies AG & Co. KG Sensorikeinheit zur Bestimmung einer Rotorlage eines Elektromotors und ein Elektromotor, vozugsweise für einen Kupplungsaktor eines Kupplungsbetätigungssystems eines Kraftfahrzeuges
DE102014225964A1 (de) 2014-12-16 2016-06-16 Schaeffler Technologies AG & Co. KG Verfahren zur Bestimmung einer Position eines Rotors eines Elektromotors, insbesondere für ein Kupplungsbetätigungssystem eines Kraftfahrzeuges
DE102015014811B4 (de) 2015-11-14 2022-11-10 Audi Ag Sensoranordnung
DE102016207241A1 (de) 2016-04-28 2017-11-02 Schaeffler Technologies AG & Co. KG Verfahren zum Linearisieren von Signalen eines Magnetfeldaufnehmermoduls
DE102016207643A1 (de) * 2016-05-03 2017-11-09 Schaeffler Technologies AG & Co. KG Verfahren zum Bestimmen einer Position eines Läufers einer elektrischen Maschine
DE102016211837A1 (de) 2016-06-30 2018-01-04 Schaeffler Technologies AG & Co. KG Verfahren zur Bestimmung einer Position eines Rotors eines kommutierten Elektromotors, insbesondere für ein Kupplungsbetätigungssystem eines Fahrzeuges
DE102016214949A1 (de) 2016-08-11 2018-02-15 Schaeffler Technologies AG & Co. KG Verfahren zum justierten Befestigen einer Magnetsensorvorrichtung an einem Aktuator und Aktuatoreinrichtung mit einem Aktuator und einer Magnetsensorvorrichtung
DE102016214948A1 (de) 2016-08-11 2018-02-15 Schaeffler Technologies AG & Co. KG Verfahren zum Justieren einer Aktuatoreinrichtung mit einer Magnetsensorvorrichtung und einem Aktuator und Aktuatoreinrichtung mit einem Aktuator und einer Magnetsensorvorrichtung
DE102016214947A1 (de) 2016-08-11 2018-02-15 Schaeffler Technologies AG & Co. KG Verfahren zum gegenseitigen Justierten einer Magnetsensorvorrichtung und eines Aktuators und Aktuatoreinrichtung mit einem Aktuator und einer Magnetsensorvorrichtung
DE102016219623A1 (de) 2016-10-10 2018-04-12 Schaeffler Technologies AG & Co. KG Verfahren zur Störunterdrückung bei der Ermittlung einer Beschleunigung, Drehzahl und/oder einer Winkelposition eines drehenden Bauteils mittels eines Resolvers
DE102016220188A1 (de) 2016-10-17 2018-04-19 Schaeffler Technologies AG & Co. KG Verfahren zur Korrektur von Messabweichungen eines Sinus-Cosinus-Rotationssensors
DE102016223938B4 (de) 2016-12-01 2018-06-14 Schaeffler Technologies AG & Co. KG Verfahren zur Demodulation von Signalen eines Sinus-Cosinus-Rotationssensors
DE102017109403B4 (de) 2017-05-03 2023-06-22 Schaeffler Technologies AG & Co. KG Verfahren und Vorrichtung zur Absolutpositionsbestimmung eines sich um eine Drehachse drehenden Bauteiles eines Aktors, insbesondere eines Kupplungsaktors
DE102017111342B3 (de) 2017-05-24 2018-10-04 Schaeffler Technologies AG & Co. KG Vorrichtung zur Bestimmung eines Winkels eines sich drehenden Bauteiles
DE102017111862A1 (de) 2017-05-31 2018-12-06 Schaeffler Technologies AG & Co. KG Aktuator und Verfahren zum Referenzieren einer Nullposition
CN107763116B (zh) * 2017-11-23 2019-04-05 合肥工业大学 燃气轮机起动时离合器棘轮、棘爪分离测试系统及其测试方法
DE102018102329A1 (de) 2018-02-02 2019-08-08 Schaeffler Technologies AG & Co. KG Verfahren zur Steuerung eines Kupplungssystems
DE102018110075A1 (de) 2018-04-26 2019-10-31 Schaeffler Technologies AG & Co. KG Verfahren und Vorrichtung zur Einstellung einer Verstärkung an einem verbauten Magnetfeldsensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100253258A1 (en) * 2009-04-02 2010-10-07 Daimler Ag Method and Device for Calibrating a Position Sensor Placed on a Shaft of a Permanent Magnet Synchronous Motor
US20100327789A1 (en) * 2008-02-22 2010-12-30 Frederik De Belie Sensorless control of salient-pole machines
DE102011014936A1 (de) 2010-04-08 2011-12-15 Schaeffler Technologies Gmbh & Co. Kg Steuereinrichtung und Verfahren zum Steuern
EP2584693A2 (fr) * 2011-10-18 2013-04-24 Control Techniques Ltd Procédé d'étalonnage d'un système de commande

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101201908B1 (ko) * 2006-05-04 2012-11-16 엘지전자 주식회사 동기 릴럭턴스 모터의 제어 장치 및 방법
CN101247104B (zh) * 2008-03-27 2010-06-02 无锡市飞象电子有限公司 定子磁链定向的交流电机旋转速度和转子位置推测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100327789A1 (en) * 2008-02-22 2010-12-30 Frederik De Belie Sensorless control of salient-pole machines
US20100253258A1 (en) * 2009-04-02 2010-10-07 Daimler Ag Method and Device for Calibrating a Position Sensor Placed on a Shaft of a Permanent Magnet Synchronous Motor
DE102011014936A1 (de) 2010-04-08 2011-12-15 Schaeffler Technologies Gmbh & Co. Kg Steuereinrichtung und Verfahren zum Steuern
EP2584693A2 (fr) * 2011-10-18 2013-04-24 Control Techniques Ltd Procédé d'étalonnage d'un système de commande

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016023547A3 (fr) * 2014-08-15 2016-04-14 Schaeffler Technologies AG & Co. KG Procédé pour protéger un actionneur d'embrayage d'un système d'actionnement d'embrayage, de préférence pour un véhicule à moteur
WO2017162771A1 (fr) * 2016-03-24 2017-09-28 GETRAG B.V. & Co. KG Procédé et ensemble pour actionner un composant de chaîne cinématique
CN107529507A (zh) * 2016-06-20 2018-01-02 上海三菱电梯有限公司 电梯用永磁曳引机
CN107529507B (zh) * 2016-06-20 2019-10-18 上海三菱电梯有限公司 电梯用永磁曳引机
DE102016217685A1 (de) 2016-09-15 2018-03-15 Continental Automotive Gmbh Erkennung des Austausches eines bürstenlosen Gleichstrommotors mit Rotorlagefeedback

Also Published As

Publication number Publication date
CN104604119B (zh) 2018-01-16
DE112013003773A5 (de) 2015-07-16
DE102013213948A1 (de) 2014-02-06
CN104604119A (zh) 2015-05-06

Similar Documents

Publication Publication Date Title
WO2014019578A1 (fr) Procédé pour déterminer une position d'un moteur électrique, en particulier dans un système d'actionnement d'embrayage d'un véhicule automobile
EP2923103B1 (fr) Procédé de détermination et/ou de commande de la position d'un moteur électrique
EP1826533B1 (fr) Capteur magnétique
WO2013160075A2 (fr) Procédé et dispositif de détermination et/ou de commande de la position d'un moteur électrique, en particulier dans un système d'actionnement d'embrayage d'un véhicule à moteur
DE102007050173B3 (de) Verfahren und Vorrichtung zur Erhöhung der Genauigkeit der Positionsbestimmung eines motorgetriebenen Schließteiles eines Fahrzeugs
WO2013186001A1 (fr) Bague magnétique d'un système de détection de position de rotor d'un moteur électrique électriquement commuté
DE102015206678A1 (de) Aktuator für eine Hinterradlenkung eines Kraftfahrzeuges
DE102010063326A1 (de) Verfahren und Vorrichtung zum Betreiben eines Stellgebers mit einem bürstenlosen Elektromotor
DE19908036A1 (de) Verfahren und Vorrichtung zur Erfassung der rotatorischen und der translatorischen Bewegung einer Welle
DE102013211041A1 (de) Verfahren und Vorrichtung zur Bestimmung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges
WO2015086014A1 (fr) Dispositif et procédé de mesure d'un paramètre de rotor
DE102016212175A1 (de) Verfahren und Vorrichtung zur Bestimmung und/oder Ansteuerung einer Position eines elektrisch-kommutierbaren Elektromotors, insbesondere für ein Kupplungsbetätigungssystem eines Fahrzeuges
DE102021212470A1 (de) Steer-by-wire-Lenkung für ein Kraftfahrzeug
DE19623742A1 (de) Einrichtung zur Verschiebeweg- und/oder Positionserfassung bei einem Spindeltrieb
WO2018028739A1 (fr) Procédé de réglage interdépendant d'un dispositif de détection magnétique et d'un actionneur et disposition d'actionnement muni d'un actionneur et un dispositif de détection magnétique
EP2686537A1 (fr) Procédé et dispositif d'étalonnage d'un système de détection de position comprenant un mécanisme de commande commuté électroniquement
EP1381148A2 (fr) Capteur d'angle de rotation à haute résolution pour moteur DC
EP3645980B1 (fr) Procédé et dispositif d'ajustement de la position d'un aimant par rapport à un capteur gmr
WO2017162232A1 (fr) Procédé de fixation ajustée d'un système de capteur magnétique sur un actionneur et actionneur muni d'un moteur électrique et d'un système de capteur magnétique
WO2018050156A1 (fr) Procédé de réglage d'un système de détection comprenant un capteur multitour
DE102013212177B4 (de) Verfahren und System zum Bestimmen von Zustandsgrößen eines Elektromotors zum Antrieb eines Fahrzeugs
DE102014013429A1 (de) Verfahren zur genauen Positionsbestimmung
DE102016206714A1 (de) Verfahren zum Ermitteln einer absoluten Winkellage einer rotierenden Welle
DE102014225658A1 (de) Verfahren und Messsystem zur Sensierung einer Dreh- und Linearbewegung in einem Schaltaktor
DE102016211837A1 (de) Verfahren zur Bestimmung einer Position eines Rotors eines kommutierten Elektromotors, insbesondere für ein Kupplungsbetätigungssystem eines Fahrzeuges

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13752812

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112013003773

Country of ref document: DE

Ref document number: 1120130037734

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112013003773

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13752812

Country of ref document: EP

Kind code of ref document: A1