WO2014019488A1 - 波长分光式太阳能综合利用系统 - Google Patents

波长分光式太阳能综合利用系统 Download PDF

Info

Publication number
WO2014019488A1
WO2014019488A1 PCT/CN2013/080359 CN2013080359W WO2014019488A1 WO 2014019488 A1 WO2014019488 A1 WO 2014019488A1 CN 2013080359 W CN2013080359 W CN 2013080359W WO 2014019488 A1 WO2014019488 A1 WO 2014019488A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
utilization system
solar energy
light
comprehensive utilization
Prior art date
Application number
PCT/CN2013/080359
Other languages
English (en)
French (fr)
Inventor
刘阳
Original Assignee
北京兆阳能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京兆阳能源技术有限公司 filed Critical 北京兆阳能源技术有限公司
Publication of WO2014019488A1 publication Critical patent/WO2014019488A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0549Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising spectrum splitting means, e.g. dichroic mirrors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to the field of solar energy utilization technologies, and in particular to a wavelength splitting solar energy comprehensive utilization system. Background technique
  • the current solar energy utilization one is photoelectric conversion, converts solar radiation into solar energy through solar cells; the second is photothermal conversion, that is, using solar energy collection devices to convert solar radiation energy into thermal energy utilization, such as solar thermal power generation and solar water heaters.
  • photothermal conversion that is, using solar energy collection devices to convert solar radiation energy into thermal energy utilization, such as solar thermal power generation and solar water heaters.
  • photovoltaic photovoltaic cells mainly include monocrystalline silicon, polycrystalline silicon, amorphous silicon, cadmium telluride, gallium arsenide, etc.
  • the spectral response curves of solar photovoltaic cells are not exactly the same, and the peaks of different photovoltaic cell quantum efficiency spectral curves
  • the position of the silicon battery is different, for example, the peak wavelength of the silicon battery is about 0.9 ⁇ ⁇ , and the selenium battery is about 0. 54 ⁇ ⁇ .
  • the spectral range of the silicon battery is wide, between 0. 45 ⁇ 1. ⁇ ⁇ ⁇ , the spectral range of the selenium battery is between 0. 34 ⁇ 0.
  • the photovoltaic cell for long wavelengths Part of the spectrum is not sensitive, resulting in photon energy hv less than the forbidden band width E of the photovoltaic cell.
  • the electrons in the valence band cannot migrate to the conduction band, but only convert the spectral energy into heat energy, causing the temperature of the photovoltaic cell itself to rise.
  • the power generation efficiency is reduced; the current selective photothermal absorption coating technology can effectively convert solar radiation into heat energy, and the absorption rate is as high as 95%.
  • the object of the present invention is to overcome the problem that the photovoltaic cell described above utilizes solar energy in some wavelength ranges to cause low efficiency of photovoltaic power generation, and provides a system for more efficient utilization of solar spectrum efficient integrated power generation.
  • the invention provides a wavelength spectroscopic solar energy comprehensive utilization system, comprising: one or more a wavelength splitting device, a single concentrating device disposed in a front stage of the wavelength splitting device in the optical path, and a composite receiving device composed of two or more receivers in a subsequent stage; the single concentrating device is incident on each The wavelength of the wavelength splitting device is less than or equal to 90 degrees.
  • the composite receiving device is divided into a photothermal receiver and at least one photovoltaic receiver according to different receiving wavelengths, the photovoltaic receiver receives light energy corresponding to a high conversion efficiency wavelength, and the photothermal receiver receives other band light energy.
  • At least one of the composite receiving devices is a photovoltaic receiver of a single crystal silicon battery.
  • the plurality of wavelength splitting devices form a certain angular arrangement, and each receives incident light rays having an angle of convergence of less than or equal to 90 degrees.
  • the light concentrating angle of the single concentrating device incident on each wavelength concentrating device is less than or equal to 60 degrees; to ensure that the light enters the wavelength concentrating device in a small angular range, and the solar energy can be more effectively and effectively
  • the spectrum is separated by wavelength to achieve efficient use in each spectral range.
  • the light concentrating angle of the single concentrating device incident on each wavelength concentrating device is less than or equal to 40 degrees.
  • the single concentrating device is a parabolic trough concentrating, a Fresnel array concentrating concentrating device or a long focal length transmissive concentrating device.
  • the single concentrating device is a long focal length transmissive concentrating device, such as a long focal length convex lens or a long focal length Fresnel lens.
  • the mirror strips in the Fresnel array reflective concentrating device array are trough curved mirror strips, and the plurality of arrayed trough curved mirror strips are uniformly tracked to converge and reflect sunlight into the wavelength splitting device. .
  • the wavelength spectroscopic device uses a wavelength splitting film spectroscope to transmit and reflect the concentrated incident light.
  • the wavelength splitting device uses a prism beam splitter or a prism beam splitter group to refract incident light to select wavelength splitting.
  • the wavelength splitting device is movably adjustable to modulate the light receiving ratio of each receiver.
  • each receiver in the composite receiving device receives the optical path length of the spectroscopic light That is, each of the receivers in the composite receiving device has a close optical path length from a single concentrating device or a wavelength splitter to each receiver surface, has similar tracking tolerance accuracy, has good tracking uniformity, and can The light in the spectral range separated by the wavelength splitting device is well received.
  • the composite receiving device includes a secondary concentrating device (auxiliary optical device), and the secondary concentrating device is disposed around the photovoltaic receiver or the photothermal receiver, and the secondary concentrating light
  • the device is used to collect divergent or divergent rays.
  • the secondary concentrating device disposed on both sides of the photovoltaic cell; when the photothermal receiver uses the collector, the secondary concentrating device disposed around the collector; the secondary concentrating device
  • the device can reflect light that is not directly incident on the receiver (such as sunlight from a photovoltaic cell) to the surface of the photovoltaic cell for good reception efficiency.
  • the thermal energy obtained by the photothermal receiver is used to push the heat engine for photothermal power generation or industrial and domestic use.
  • the integrated utilization system includes a thermal storage device, and the photothermal receiver stores the received heat into the thermal storage device for use.
  • the integrated utilization system implements combined operation of the photothermal power generation and the photovoltaic power generation; the daytime sunlight passes through the photovoltaic receiver for photovoltaic power generation, and the heat storage device is used to store the heat absorbed by the photothermal receiver; when the photovoltaic power generation cannot be stably outputted
  • the heat inside the heat storage device is used to supplement the photothermal power generation to ensure the stability of the power generation output of the integrated utilization system.
  • the wavelength splitting solar energy comprehensive utilization system has the following advantages over the existing solar energy utilization technology: 1.
  • the solar energy comprehensive utilization system reduces the main heat receiving of the photovoltaic cell compared with the single photovoltaic power generation system, so that the heat dissipation pressure and the working temperature are lowered, and the power generation efficiency is improved; 2.
  • the photovoltaic power generation system directly generates electricity during the day; the solar thermal power generation system receives the energy of the wavelength band other than the high-efficiency absorption wavelength for efficient reception, conversion and storage of heat during the day, and can absorb solar energy efficiently in the whole spectrum, and improve the comprehensive utilization efficiency of energy; Turbine power generation compensation adjustment in cloud, cloudy or nighttime, effectively complementing the photovoltaic power generation system, stabilizing the power output, reducing the impact on the power grid, and realizing the peak shaving function; 3.
  • Using the solar energy comprehensive utilization system capable of solar spectrum Efficient use of the full band, at the same concentrating system cost, more energy can be obtained, thereby reducing energy costs.
  • DRAWINGS Figure la is a schematic structural view of a first embodiment of a wavelength splitting solar energy comprehensive utilization system of the present invention.
  • Figure lb is a corresponding transmission ratio curve of different wavelengths of the wavelength splitting device
  • FIG. 2 is a cross-sectional structural view of a composite receiving device and a wavelength splitting device of the first embodiment
  • FIG. 3 is a schematic structural view of a second embodiment of the wavelength splitting solar energy comprehensive utilization system of the present invention
  • Figure 4 is a structural schematic view showing a third embodiment of the wavelength spectroscopic solar energy comprehensive utilization system of the present invention.
  • FIG. 5 is a schematic illustration of a process route of an embodiment of the present invention.
  • the wavelength splitting solar energy comprehensive utilization system of the present embodiment includes a wavelength splitting device 1 1 and is placed in a wavelength splitting light.
  • the device 1 1 has a single concentrating device 12 in the optical path front stage and a composite receiving device 13 composed of two or more receivers disposed in the subsequent stage of the optical path of the wavelength splitting device 1 1 .
  • the light concentrating angle of the single concentrating device 12 incident on each of the wavelength splitting devices 1 1 is less than or equal to 90 degrees.
  • the relative positional relationship of the main components is defined by the incident direction of the optical path, and the solar ray is incident on the single concentrating device 12 (the optical path front stage), passes through the wavelength splitting device 1 1 (the optical path intermediate stage), and then reaches the composite receiving device 13 (After the optical path) Complete the comprehensive utilization;
  • the single process is defined as the reflection concentrating process of the incident sunlight passing through only one reflection concentrating device or the transmission concentrating process of only one transmission concentrating device, and the above process is defined as basic aggregation.
  • secondary concentrating (assisted concentrating) design for the purpose of receiving divergent rays and tracking deviation ray is not defined as basic concentrating.
  • the reflection or transmission process of reflective or transmissive auxiliary optics is not defined as basic concentrating.
  • a single concentrating device adopts a small angle single-concentrating device, and a small angle is defined as an angle of light incident on each wavelength splitting device 1 1 when two or more wavelength splitting devices 1 1 are used
  • the angle of total incident light obtained by summing the angles of the respective incident rays may be relatively large, for example, more than 120 degrees, or even more;
  • the strip 19 and the outer edge of the mirror strip 10 are formed by the reflected light incident on the composite receiving device 13, as indicated by the angle A; preferably, the angle of the single concentrating device 12 is less than or equal to 60 degrees, most preferably less than Or equal to 40 degrees, the incident ray angle of the wavelength splitting device 11 is near the angle of incidence of the designed light (for
  • the single concentrating device 12 is a Fresnel array concentrating device, wherein the reflective concentrating device array is a mirror mirror field, and each of the mirror mirror strips is in the mirror mirror field.
  • the mirror strip 19 in the array of reflective concentrating devices may be a flat mirror strip; preferably, the mirror strip 19 in the array of reflective concentrating devices is a trough curved mirror strip, and multiple reflections in the array
  • the mirror strip 19 performs unified tracking to converge and reflect the sunlight into the composite receiving device 13; further, each of the receivers in the composite receiving device 13 receives the optical path length of the spectroscopic light close to the one; that is, from the single concentrating device 12 ( Or the distance from the wavelength splitting device 11 to the surface of each receiver in the composite receiving device 13 is the same as the optical path length, the actual optical path length is close, the tracking tolerance accuracy is good, the tracking uniformity is good, and the receiving is good.
  • the composite receiving device 13 includes a photothermal receiver 15 and at least one photovoltaic receiver 14, which realizes high-efficiency utilization of solar thermal and photovoltaic systems in respective spectral ranges; (another embodiment)
  • the composite receiving device 13 includes at least one of the photovoltaic receivers 14 according to different receiving wavelengths, and each of the plurality of photovoltaic receivers 14 has a corresponding high-efficiency solar spectral response range, respectively, to achieve efficient power generation in respective spectral ranges);
  • the receiver 15 includes a heat collector 17 and a secondary concentrating device (i.e., a parabolic concentrating device in the figure) distributed around the heat collector 17, and a secondary concentrating device around the collector 17 for scattering
  • the light and the light that has not been irradiated onto the heat collector 17 by the wavelength splitting device 11 are reflected onto the heat collector 17;
  • the photovoltaic receiver 14 includes the photovoltaic cell 16 and a secondary concentrating device distributed on both sides of the photovoltaic cell 16 (ie
  • the photovoltaic receiver 14 includes a photovoltaic cell 16, which may be a multi-junction photovoltaic cell, such as a gallium arsenide triple junction cell, which absorbs light of different spectral ranges in different layers of the multi-junction photovoltaic cell layer, and can efficiently utilize the spectrum of the solar spectrum. Response rate, improve photovoltaic cell efficiency; light
  • the volt battery can be a single junction photovoltaic cell, such as single crystal silicon, polycrystalline silicon, amorphous silicon, etc., only receiving a specific spectral range of reflection or transmission, a plurality of single junction photovoltaic cells are arranged closely, and the receiving wavelength spectroscopy device 11 performs selective spectroscopy to obtain Light.
  • At least one of the composite receiving devices 13 is a photovoltaic receiver of a single crystal silicon cell.
  • the wavelength splitting device 11 uses a wavelength splitting film splitter to transmit and reflect the concentrated incident light, wherein the transmitted light passes through the wavelength splitting device 11 and continues to be concentrated on the collector 17 to be converted into heat, and the reflected light is split by the beam splitter. After reflection, it is concentrated on the photovoltaic cell 16 and converted into electrical energy.
  • the wavelength splitting device 11 can be adjusted to adjust the light receiving ratio of each receiver. When the wavelength splitting device 11 is placed at the position of the map, the concentrated light is reflected by the spectroscopic beam, and the light of a part of the wavelength is reflected.
  • the ratio of the photothermal photovoltaic is related to the ratio determined by the spectral spectrum; when the wavelength splitting device 11 rotates and leaves the concentrated light, all the concentrated light is irradiated. To the photothermal receiver 15, all are used to generate thermal energy.
  • the reflected light of the wavelength splitting film spectroscope is a specific wavelength spectrum range, for example, a part of the ultraviolet spectrum and a part of the visible spectrum range, and is reflected to the photovoltaic receiver 14; the transmitted light of the wavelength splitting film beam splitter is divided
  • the spectral range outside the reflected light such as the partial ultraviolet spectrum, the partially visible spectrum, the near infrared spectrum, the far infrared spectral range, transmits light to the photothermal receiver 15 (in another embodiment, the selective spectral radiation can also be transmitted To the photovoltaic receiver 14, the rest of the spectral radiation is reflected to the photothermal receiver 15); the efficient use of the solar spectrum separation is implemented as a whole, and the photovoltaic cell power generation efficiency is improved (reducing the spectrum reception of the low spectral response rate range, that is, reducing the photovoltaic cell)
  • the conversion of power generation energy to heat ensures efficient power generation of photovoltaic cells and has an ideal operating temperature), and converts the rest of the spect
  • Figure lb is a transmission ratio curve of different wavelengths of the wavelength splitting device; referring to the spectrogram of Figure lb, the spectroscopic design has a high reflectance between 650 nm and 900 nm, and the rest of the bands are transmitted, and the optical absorption is very low.
  • the single crystal silicon cell receives light of 650-900 nm wavelength. In this wavelength range, the single crystal silicon cell has high conversion efficiency (for example, the ratio of the output electric power to the optical power input to the wavelength is more than 40% or even 50%)
  • the solar radiation energy in this band is about 300W/m2, which accounts for 30% of the total radiation.
  • the photothermal receiver 15 includes a heat collector 17, and the heat transfer medium inside the heat collector 17 is heat transfer oil or water for transferring heat, storing or transferring heat, and directly generating superheated steam to enter the power generation system.
  • the heat engine performs power generation; the right position in Fig. 1a shows a schematic diagram of a partial enlargement of the composite receiving device 13.
  • the photovoltaic receiver 14 converts the spectral radiation into electrical energy, through an inverter, a transformer, an electrical transmission device, for output or grid connection;
  • the integrated utilization system of the present invention includes a thermal storage device;
  • the photothermal receiver 15 receives the daylight The heat generated by the radiation is sent to the heat storage device, and is exchanged to the superheated steam through the heat exchanger at night, so that the heat energy obtained by the photothermal receiver 15 is used to push the heat engine for photothermal power generation or industrial and domestic utilization.
  • the composite receiving device includes a photovoltaic receiver 14 and a photothermal receiver 15, and the two are separated by the wavelength splitting device 11.
  • the photothermal receiver 15 converts the spectral radiation into heat through the collector 17;
  • the angle of convergence of the light of the single collecting device is less than or equal to 90 degrees, preferably, the angle of convergence of the light is less than 60 degrees, and most preferably less than 40 degrees; wherein the angle of convergence of the light is defined as the outer edge of the outermost end of the mirror mirror unit is incident on the composite receiving
  • the angle at which the device reflects light is as shown by angle A in Figure 2.
  • the integrated utilization system includes a wavelength splitting device 31 and a single spotlight disposed in front of the optical path of the wavelength splitting device 31.
  • the device 32 and the composite receiving device consisting of two or more receivers in the latter stage of the optical path.
  • the single concentrating device 32 is a small-angle single-shot direct concentrating device (that is, incident sun rays are incident on the composite receiving device at a small angle after being reflected by the concentrating device); incident angle of the single concentrating device 32
  • the incident angle of the single concentrating device 32 is less than or equal to 60 degrees, and the solar spectrum can be well separated to achieve efficient utilization in each spectral range; specifically, single time
  • the concentrating device 32 is a tower concentrating device, and a plurality of heliostat systems are arranged around the receiving tower to converge the sunlight at a central position for composite receiving.
  • the composite receiving device includes a photovoltaic receiver 34 and a photothermal receiver 35, which are integrally disposed at an upper portion of the central receiving tower; the photovoltaic receiver 34 and the photothermal receiver 35 of the composite receiving device of FIG. 3 are disposed at the optical path of the wavelength splitting device 31.
  • the wavelength splitting device 31 uses a wavelength splitting film splitter to transmit and reflect the split incident light (the wavelength splitting device 31 may also use a prism beam splitter or a prism beam splitter group to refract incident light to select a wavelength.
  • the second embodiment has the same or similar composite receiving device and joint running system as the first embodiment, and will not be described in detail herein.
  • the integrated utilization system of the present embodiment includes a first wavelength splitting device 411 and a second wavelength splitting device 412, a single concentrating device 420 in front of the optical path of the beam splitting device, a composite receiving device composed of two or more receivers disposed in a subsequent stage of the optical path of the beam splitting device; wherein the composite receiving device includes a first photovoltaic receiver 441 And the second photovoltaic receiver 442 and the photothermal receiver 450; the first photovoltaic receiver 441 and the second photovoltaic receiver 442 correspond to the first wavelength splitting device 411 and the second wavelength splitting device 412, respectively, the first wavelength splitting device 411 and The second wavelength splitting device 412 separates the solar spectrum by reflection, and the photothermal receiver 450 receives the light transmitted by both the first wavelength splitting device 411 and the second wavelength splitting device 412; the composite receiving device is at least one type of single crystal silicon.
  • At least one of the photovoltaic receivers of the battery namely photovoltaic cell 461 or photovoltaic cell 462, is a single crystal silicon cell.
  • the angle of convergence of the light incident on the wavelength concentrating device of the single concentrating device 420 is less than or equal to 90 degrees; preferably, the angle of convergence of the light of the single concentrating device 420 is less than or equal to 60 degrees, and is optimized to be less than or equal to Equal to 40 degrees.
  • the incident ray angle of the first wavelength splitting device 411 or the second wavelength splitting device 412 is near the design incident angle (for example, 45 degrees), and the incident angle difference is small (for example, plus or minus 20 degrees, plus or minus 30 degrees, plus or minus 45 degrees).
  • the single-concentrating device 420 is a parabolic trough-type reflective concentrating device, wherein Each of the receivers in the composite receiving device receives the optical path length of the spectroscopic light close to; that is, from the single concentrating device 420 (or from the wavelength splitting)
  • the light path lengths of the surfaces of the receivers reaching the composite receiving device are close, have similar tracking tolerance accuracy, have good tracking uniformity, and can receive the first wavelength splitting device 411 and the second wavelength splitting device well. 412 separate light in the spectral range.
  • Fig. 5 is a schematic view of the process route of the embodiment of the present invention.
  • the thin solid line is the running route of the integrated utilization system during the day
  • the dotted line is the night running route
  • the double dashed line is the short-lived no-light irradiation running route.
  • the single concentrating device 512 receives the sunlight, and the reflected light is incident on the wavelength spectroscopy device 511 to process the spectrum; wherein the photovoltaic receiver 514 receives the specific spectroscopy spectrum separated by the wavelength spectroscopy device 511 and generates the generated electric energy.
  • the electric energy is stably outputted or connected to the grid via the electric transmission device 516 (shown by the solid line); the photothermal receiver 515 receives the light outside the absorption spectrum of the photovoltaic cell during the day, and the photothermal receiver 515 generates heat and stores the heat in the heat.
  • the storage device 517 shown by the solid line
  • heat is exchanged into water vapor through the heat exchanger 519 at night, and the heat engine is driven to generate solar thermal power (shown by a broken line); when the solar integrated power generation system is short during the day, there is no light or low light.
  • the heat engine can be started to generate electricity, and continuous power generation during the day (shown by double dashed lines) can be implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种波长分光式太阳能综合利用系统,包括波长分光装置(11)、置于光路前级的单次聚光装置(12),以及光路后级的由光热接受器和光伏接受器组成的复合接收装置(13);单次聚光装置入射到每个波长分光装置的光线汇聚夹角小于或等于90度。该太阳能综合利用系统根据不同接收器对不同光谱的响应特性,利用光伏电池高效响应太阳光的部分频段辐射进行光伏发电,利用其余频段的辐射进行光热发电,从而实现太阳能在全频段范围内的高效综合利用,另外还可以避免光伏接收器的温度上升。

Description

波长分光式太阳能综合利用系统
技术领域 本发明涉及太阳能利用技术领域, 具体涉及一种波长分光式太阳能综合 利用系统。 背景技术
目前的太阳能利用, 一是光电转换, 将太阳能辐射光通过太阳能电池 转换为电能; 二是光热转换, 即利用太阳能收集装置, 把太阳能辐射能转 换成热能利用, 如太阳能热发电、 太阳能热水器。 但是光电、 光热系统大 多是独立的。
目前光电光伏电池主要有单晶硅、 多晶硅、 非晶硅、 锑化镉、 砷化镓 等等, 每种光伏电池对于太阳光光谱响应曲线并不完全一样, 不同的光伏 电池量子效率光谱曲线峰值的位置不同, 例如硅电池峰值波长在 0. 9 μ ιιι 左右, 硒电池在 0. 54 μ ιιι左右。 硅电池的光谱范围宽, 在 0. 45〜1. Ι μ ιιι 之间, 硒电池的光谱范围在 0. 34〜0. 75 μ ιιι之间, 只对可见光敏感; 而光 伏电池对于包括长波长范围在内的部分光谱并不敏感, 导致光子能量 hv 小于光伏电池的禁带宽度 E, 价带中的电子无法迁移到导带, 只是将光谱 能量转化成热能, 造成光伏电池本身的温度上升, 发电效率下降; 而目前 的选择性光热吸收涂层技术可以对太阳辐射进行有效吸收转化为热能, 吸 收率高达 95%。 如何更加高效地利用太阳光谱响应范围, 同时避免非响应 范围或低效率响应波段的辐射造成光伏电池本身温度上升的弊端(导致整 体光伏电池效率下降) 已成为研究的焦点。 发明内容
本发明目的在于, 克服以上描述的光伏电池在有些波长段利用太阳能 光谱效率不高导致光伏发电效率低下的问题, 提供了更加有效利用太阳能 光谱高效综合发电的系统。
本发明提供的一种波长分光式太阳能综合利用系统, 包括: 一个或多 个波长分光装置、 置于光路中波长分光装置前级的单次聚光装置和后级的 由两种或两种以上接收器组成的复合接收装置; 所述单次聚光装置入射到 每个波长分光装置的光线汇聚夹角小于等于 90度。
进一步地, 所述复合接收装置根据接收波长的不同分为光热接收器和 至少一种光伏接收器, 光伏接收器接收对应高转换效率波长的光线能量, 光热接收器接收其它波段光线能量。
进一步地, 所述复合接收装置中至少有一种为单晶硅电池的光伏接收 器。
进一步地, 所述多个波长分光装置之间形成一定夹角布置, 各自接收 光线汇聚夹角小于或等于 90度的入射光线。
优选地, 所述单次聚光装置入射到每个波长分光装置的光线汇聚夹角 小于或等于 60度; 以保证光线在较小的角度变化范围进入波长分光装置, 能更加良好有效地将太阳光谱按波长进行分离, 实现各光谱范围内的高效 利用。
进一步地, 所述单次聚光装置入射到每个波长分光装置的光线汇聚夹 角小于或等于 40度。
进一步地, 所述单次聚光装置为抛物槽式反射聚光、 菲涅尔阵列式反 射聚光装置或长焦距透射式聚光装置。
进一步地, 所述单次聚光装置为长焦距透射式聚光装置, 如长焦距凸 透镜或长焦距菲涅尔透镜。
进一步地, 所述菲涅尔阵列式反射聚光装置阵列中的镜条为槽式曲面 镜条, 多个阵列的槽式曲面镜条实施统一跟踪, 将太阳光会聚并反射至波 长分光装置内。
进一步地, 所述波长分光装置采用波长分光薄膜分光镜对汇聚的入射 光进行透射、 反射选择分光。
进一步地, 所述波长分光装置采用棱镜分光镜或棱镜分光镜组对入射 光进行折射选择波长分光。
进一步地, 所述波长分光装置可活动调节, 对各接收器的受光比例进 行调配。
进一步地, 所述复合接收装置中各接收器接收分光光线的光程长度接 近; 即复合接收装置中各接收器从单次聚光装置或者从波长分光器到达各 接收器表面的光线光程长度接近, 具有相近的跟踪容差精度, 具有良好的 跟踪统一性, 且能良好地接收波长分光装置分离的光谱范围内的光。
进一步地, 所述复合接收装置包括二次聚光装置 (辅助光学装置) , 所述二次聚光装置设置于所述光伏接收器或所述光热接受器的周围, 所述 二次聚光装置用于对发散光线或者偏差光线进行收集。 例如, 光伏接收器 采用光伏电池时, 布置于光伏电池两侧的二次聚光装置; 光热接收器采用 集热器时, 布置于集热器周围的二次聚光装置; 二次聚光装置可以将未能 直接入射至接收器的光线 (例如光伏电池的太阳光) , 再次反射至光伏电 池的表面, 获得良好的接收效率。
进一步地, 所述光热接收器获得的热能用于推动热机进行光热发电或 者工业及生活利用。
进一步地, 所述综合利用系统中包含热存储装置, 光热接收器将所接 收的热量储入所述热存储装置内, 以备使用。
进一步地, 所述综合利用系统实施光热发电与光伏发电联合运行; 白 天太阳光通过光伏接收器进行光伏发电, 且利用热存储装置保存光热接收 器吸收的热量; 在光伏发电不能稳定输出时, 利用热存储装置内部的热量 来光热发电进行补充, 用于保证所述综合利用系统发电输出的稳定性。
波长分光式太阳能综合利用系统较现有太阳能利用技术有以下优点: 1、 该太阳能综合利用系统较单独光伏发电系统减少了光伏电池主要的热 接收, 使得散热压力和工作温度下降, 发电效率提高; 2、 光伏发电系统 白天直接发电; 光热发电系统白天接收光伏高效吸收波长以外的波段能量 进行热量的高效接收、 转换和存储, 可全光谱高效吸收太阳光能量, 提高 能量综合利用效率; 另外可以在有云、 阴天或夜间进行汽轮机发电补偿调 整, 与光伏发电系统有效互补, 使电力输出稳定, 减少对电网冲击, 并实 现调峰功能; 3、 利用本太阳能综合利用系统, 能够对太阳光谱全波段进 行高效利用, 在相同聚光系统成本下, 可获得更多的能源, 从而降低能源 成本。 附图说明 图 la是本发明的波长分光式太阳能综合利用系统的第一实施例结构示 意图;
图 lb是波长分光装置不同波长对应透射比例曲线图;
图 2是第一实施例复合接收装置及波长分光装置的截面结构示意图; 图 3是本发明的波长分光式太阳能综合利用系统的第二实施例结构示 意图;
图 4是本发明的波长分光式太阳能综合利用系统的第三实施例结构示 意图;
图 5是本发明的实施例的工艺路线示意图。 具体实施方式 下面参照附图对本实用新型的具体实施方案进行详细的说明。
图 l a是本发明的波长分光式太阳能综合利用系统的第一实施例结构 示意图; 如图 l a所示, 本实施例的波长分光式太阳能综合利用系统包括 一个波长分光装置 1 1、 置于波长分光装置 1 1光路前级的单次聚光装置 12 和置于波长分光装置 1 1光路后级的由两种及以上接收器组成的复合接收 装置 13。单次聚光装置 12入射到每个波长分光装置 1 1的光线汇聚夹角小 于或等于 90度。
本发明的描述中, 以光路入射方向定义主要部件相对位置关系, 太阳 光线入射单次聚光装置 12 (光路前级) , 经过波长分光装置 1 1后 (光路 中级) , 然后到达复合接收装置 13 (光路后级) 完成综合利用; 另外, 单 次定义为入射太阳光只经过一次反射聚光装置的反射聚光过程或只经过 一次透射聚光装置的透射聚光过程, 上述过程定义为基本聚光; 但是以接 收发散光线、 跟踪偏差光线为目的的二次聚光 (辅助聚光) 设计不定义为 基本聚光, 例如反射式或透射式辅助光学装置的反射或透射过程不定义为 基本聚光; 单次聚光装置采用小夹角单次聚光装置, 小夹角定义为入射到 每个波长分光装置 1 1上的光线夹角, 当波长分光装置 1 1为两个或者多个 时, 由各自入射光线夹角汇总而得到的总入射光线夹角可能比较大, 例如 超过 120度, 甚至更多; 该第一实施例中只有一个波长分光装置 1 1, 其小 夹角对应为入射光线汇聚夹角, 即反射镜镜场单元的最外两端部反射镜镜 条 19和反射镜镜条 10的外边缘入射至复合接收装置 13的反射光线所形 成, 如角度 A所示; 优选地, 该单次聚光装置 12的角度小于等于 60度, 最优选为小于或等于 40度, 波长分光装置 11的入射光线角度在设计的光 线入射角度 (如 45度) 的附近, 入射角度差别较小 (例如正负 20度、 正 负 30度、 正负 45度) , 以保证波长分光装置 11能良好地按照设计的分 光光谱曲线将太阳光谱进行分离, 实现各光谱范围段的高效利用。
具体地, 单次聚光装置 12为菲涅尔阵列式聚光装置, 其中, 反射聚 光装置阵列即为一个反射镜镜场, 其中的每个反射镜镜条即为反射镜镜场 中的一个单元, 反射聚光装置阵列中的反射镜镜条 19可以为平板反射镜 条; 优选地, 反射聚光装置阵列中的反射镜镜条 19为槽式曲面镜条, 阵 列中的多个反射镜镜条 19实施统一跟踪, 将太阳光汇聚、 反射至复合接 收装置 13内; 再者, 复合接收装置 13中各接收器接收分光光线的光程长 度接近; 即从单次聚光装置 12 (或者从波长分光装置 11 ) 到达复合接收 装置 13中各接收器表面的光线理论光程长度相同, 实际光程长度接近, 具有相近的跟踪容差精度和良好的跟踪统一性, 且能良好地接收波长分光 装置 11分离的光谱范围内的光。
图 la中, 复合接收装置 13包括光热接收器 15和至少一种光伏接收 器 14, 复合接收装置 13实现太阳能光热、 光伏系统在各自光谱范围内的 混合高效利用; (另一种实施例中, 复合接收装置 13根据接收波长的不同 包含至少一种光伏接收器 14, 多种光伏接收器 14各自具有对应的高效太 阳能光谱响应范围, 分别在各自的光谱范围内实现高效发电); 光热接收 器 15包括集热器 17和分布在集热器 17周围的二次聚光装置 (即图中的 抛物线形聚光装置) , 集热器 17周围的二次聚光装置用于将散射的光线 和经波长分光装置 11未照射到集热器 17上的光线反射至集热器 17上; 光伏接收器 14包括光伏电池 16和分布在光伏电池 16两侧的二次聚光装 置 (即图中光伏电池 16上下两侧的反射板) , 光伏电池 16两侧的二次聚 光装置用于将经波长分光装置 11未照射到光伏电池 16上的光线反射至光 伏电池 16上。 光伏接收器 14包括光伏电池 16, 光伏电池 16可以为多结 光伏电池, 例如砷化镓三结电池, 在多结光伏电池层的不同层吸收不同光 谱范围的光, 可高效利用太阳光谱的光谱响应率, 提高光伏电池效率; 光 伏电池可以为单结光伏电池, 例如单晶硅、 多晶硅、 非晶硅等, 只接收反 射或透射的特定光谱范围, 多种单结光伏电池相近布置, 接收波长分光装 置 11进行选择分光后得到的光。
优选地, 复合接收装置 13中至少一种为单晶硅电池的光伏接收器。 波长分光装置 11采用波长分光薄膜分光镜对汇聚的入射光进行透射、 反 射选择分光, 其中透射光线穿过波长分光装置 11后, 继续汇聚到集热器 17上转化为热能, 反射光线被分光镜反射后, 汇聚到光伏电池 16上转化 为电能。 同时, 波长分光装置 11可活动调节, 对各接收器的受光比例进 行调配, 当波长分光装置 11置于图 la位置时, 由于分光镜的作用, 汇聚 光线按照分光曲线, 一部分波长的光线被反射到光伏电池 16上, 一部分 光线透射汇聚到集热器 17上, 光热光伏的接收比例与分光光谱曲线确定 的比例有关; 当波长分光装置 11旋转, 离开汇聚光线位置时, 所有汇聚 光线均照射到光热接收器 15上, 全部用于产生热能。
进一步地, 所述波长分光薄膜分光镜的反射光线为某特定波长光谱范 围, 例如部分紫外光谱、 部分可见光谱范围实施, 反射至光伏接收器 14; 所述波长分光薄膜分光镜的透射光线为除反射光线之外的光谱范围, 例如 部分紫外光谱、 部分可见光谱、 近红外光谱、 远红外光谱范围, 透射光线 至光热接收器 15 (在另一种实施例中也可以将选择性光谱辐射透射至光伏 接收器 14, 其余部分光谱辐射反射至光热接收器 15 ) ; 整体实施太阳能 光谱分离后的高效利用, 提高光伏电池发电效率 (减少低光谱响应率范围 光谱的接收, 即减少了光伏电池发电能量向热量的转化, 保证光伏电池高 效发电及拥有理想的工作温度) , 并将其余部分光谱辐射转化为热能, 提 升太阳能综合利用效率。
图 lb是波长分光装置不同波长对应透射比例曲线图; 参考图 lb的分 光曲线图, 该分光设计为在 650nm-900nm波长之间具有高反射率, 其余波 段均为透射, 光学吸收很低, 因此单晶硅电池上接收的是 650-900nm波长 的光线, 在此波长范围内, 单晶硅电池转换效率很高 (例如输出电功率与 输入该段波长的光功率之比超过 40%甚至 50%) , 而在此波段内的太阳光 辐射能量约为 300W/平米, 占全部辐射量的 30%, 因此光伏部分对全部太 阳光的转换效率为 30%* ( 40%〜50%) =12%〜15%; 剩余的 70%太阳辐射, 被光热接收器 15接收后,用于 CSP光热发电时,其光电转换效率约为 13%〜 16%, 对应的全部太阳光热转换效率为 70%* ( 13%〜16%) =9. 1%〜11. 2% , 综合下来, 光热、 光伏发电的总电力转化效率为 12%〜15%+9. 1%〜
11. 2%=21. 1%〜26. 2%, 远高于单一光伏或单一光热的发电效率。
光热接收器 15包括集热器 17,集热器 17内部的传热介质为导热油或 水, 用以将热量进行传输、 存储或者经过换热后, 也可直接产生过热蒸汽 进入发电系统推动热机进行发电; 图 la中右边位置示意了复合接收装置 13局部放大的结构示意图。
进一步地, 光伏接收器 14将光谱辐射转化成电能, 经过逆变器、 变 压器、 电传输装置, 进行输出或并网; 本发明的综合利用系统包括热存储 装置; 光热接收器 15将白天接收的辐射产生的热量输送至热存储装置, 在夜间经过换热器进行换热成过热蒸气, 如此光热接收器 15获得的热能 用于推动热机进行光热发电或者工业及生活利用。
图 2是第一实施例复合接收装置及波长分光装置的截面结构示意图; 如图 2所示, 复合接收装置包括光伏接收器 14和光热接收器 15, 且二者 受波长分光装置 11所隔开, 分别接收波长分光装置 11的反射分光和透射 分光进行发电或热量接收, 其中光热接收器 15通过集热器 17将光谱辐射 转化成热量; 单次聚光装置的光线汇聚夹角小于等于 90度, 优选地, 光 线汇聚夹角小于 60度, 最优为小于 40度; 其中光线汇聚夹角定义为反射 镜镜场单元的最外两端部反射镜镜条的外边缘入射至复合接收装置反射 光线所形成角度, 如图 2中角度 A所示。
图 3是本发明的波长分光式太阳能综合利用系统的第二实施例结构示 意图; 如图 3所示, 综合利用系统包括波长分光装置 31、 置于波长分光装 置 31光路前级的单次聚光装置 32和光路后级的由两种及以上接收器组成 的复合接收装置。其中, 单次聚光装置 32为小角度单次直接聚光装置(即 入射太阳光线经过聚光装置的反射后, 以小角度入射至复合接收装置) ; 单次聚光装置 32的入射夹角小于或等于 90度; 优选地, 所述单次聚光装 置 32的入射夹角小于或等于 60度, 能良好地将太阳光谱进行分离, 实现 各光谱范围内的高效利用; 具体地, 单次聚光装置 32为塔式聚光装置, 接收塔周边布置有多个定日镜系统, 将太阳光汇聚于中央位置的复合接收 装置; 复合接收装置包括光伏接收器 34和光热接收器 35, 整体布置于中 央接收塔的上部; 图 3中复合接收装置的光伏接收器 34与光热接收器 35 布置在波长分光装置 31光路中的后级, 该波长分光装置 31采用波长分光 薄膜分光镜对汇聚的入射光进行透射、 反射选择分光 (波长分光装置 31 也可以采用棱镜分光镜或棱镜分光镜组对入射光进行折射选择波长分 光) ; 整体实施高效太阳能光谱分离利用, 提高光伏电池发电效率 (减少 低光谱响应率范围内光谱的接收, 即减少了能量向热量的转化, 保证光伏 电池高效发电及理想工作温度) 。 该实施例二具有与实施例一相同或者相 似的复合接收装置和联合运行系统, 此处不再进行详细描述。
图 4是本发明的波长分光式太阳能综合利用系统的第三实施例结构示 意图; 如图 4所示, 本实施例的综合利用系统包括第一波长分光装置 411 和第二波长分光装置 412、 置于所述分光装置光路前级的单次聚光装置 420、 置于所述分光装置光路后级的由两种及以上接收器组成的复合接收 装置; 其中复合接收装置包括第一光伏接收器 441和第二光伏接收器 442 及光热接收器 450; 第一光伏接收器 441和第二光伏接收器 442分别对应 第一波长分光装置 411和第二波长分光装置 412, 第一波长分光装置 411 和第二波长分光装置 412通过反射方式分离太阳光谱, 光热接收器 450接 收第一波长分光装置 411和第二波长分光装置 412二者共同透射的光线; 复合接收装置为至少一种为单晶硅电池的光伏接收器, 即光伏电池 461或 者光伏电池 462至少一种为单晶硅电池。单次聚光装置 420入射到每个波 长分光装置的光线汇聚夹角小于或等于 90度; 优选地, 该单次聚光装置 420的光线汇聚夹角小于或等于 60度, 最优化为小于或等于 40度。 图 4 的第三实施例中包括两个波长分光装置, 所述波长分光装置之间形成夹角 布置, 每个波长分光装置对应的入射光线小夹角分别为图中的角度 A和角 度 B; 第一波长分光装置 411或第二波长分光装置 412的入射光线角度在 设计入射角度 (如 45度) 的附近, 入射角度差别较小 (例如正负 20度、 正负 30度、 正负 45度) , 以保证分光装置能良好地按照设计的分光光谱 曲线将太阳光谱进行分离, 实现各光谱范围段的高效利用; 具体地, 单次 聚光装置 420为抛物槽式反射聚光装置, 其中, 复合接收装置中各接收器 接收分光光线的光程长度接近; 即从单次聚光装置 420 (或者从波长分光 器) 到达复合接收装置中各接收器表面的光线光程长度接近, 具有相近的 跟踪容差精度, 具有良好的跟踪统一性, 且能良好地接收第一波长分光装 置 411和第二波长分光装置 412分离的光谱范围内的光。
图 5是本发明的实施例的工艺路线示意图; 如图 5所示, 细实线为综 合利用系统在白天的运行路线、 虚线为夜间运行路线、 双虚线为出现短暂 无光照射运行路线。 白天有光情况下, 单次聚光装置 512接收太阳光, 将 反射光入射至波长分光装置 511处理光谱后; 其中, 光伏接收器 514接收 波长分光装置 511分离出的特定分光光谱而产生的电能, 电能经过电传输 装置 516进行稳定输出或并网 (实线所示) ; 光热接收器 515白天接收光 伏电池吸收光谱之外的光, 光热接收器 515产生热量, 并将热量储存在热 存储装置 517 (实线所示) 中, 在夜间经过换热器 519换热成水蒸气, 推 动热机进行光热发电 (虚线所示) ; 当太阳能综合发电系统在白天短暂的 无光或弱光情况下, 可以启动热机进行发电, 实施白天连续发电 (双虚线 所示) 。
显而易见, 在不偏离本发明的真实精神和范围的前提下, 在此描述的 本发明可以有许多变化。 因此, 所有对于本领域技术人员来说可以预见的 改变, 都应包括在本权利要求书所涵盖的范围之内。

Claims

权 利 要 求 书
1.一种波长分光式太阳能综合利用系统, 其特征在于, 包括: 单次聚光装置, 用于将光线聚集;
波长分光装置, 用于将聚集后的光线中可进行光伏发电的光波分离出 来, 设置于所述单次聚光装置的光路后级;
复合接收装置, 设置于所述波长分光装置的光路后级, 包括光伏接收 器和光热接收器;
所述光伏接收器, 用于接收可进行光伏发电的光线并进行电能转换; 所述光热接收器, 用于接收其它波段光线并进行热能转换;
其中, 所述单次聚光装置入射到每个所述波长分光装置的光线汇聚夹 角小于或等于 90度。
2.根据权利要求 1所述的波长分光式太阳能综合利用系统, 其特征在 于, 所述复合接收装置中至少有一种为单晶硅电池的光伏接收器。
3.根据权利要求 1所述的波长分光式太阳能综合利用系统, 其特征在 于, 多个所述波长分光装置之间形成夹角布置, 各自接收入射光线的汇聚 夹角小于或等于 90度。
4.根据权利要求 1或 3所述的波长分光式太阳能综合利用系统, 其特 征在于, 所述单次聚光装置入射到每个所述波长分光装置的光线汇聚夹角 小于或等于 60度。
5.根据权利要求 4所述的波长分光式太阳能综合利用系统, 其特征在 于, 所述单次聚光装置入射到每个所述波长分光装置的光线汇聚夹角小于 或等于 40度。
6.根据权利要求 1所述的波长分光式太阳能综合利用系统, 其特征在 于, 所述单次聚光装置为抛物槽式反射聚光装置、 菲涅尔阵列式反射聚光 装置或长焦距透射式聚光装置。
7.根据权利要求 6所述的波长分光式太阳能综合利用系统, 其特征在 于, 所述菲涅尔阵列式反射聚光装置的阵列中的镜条为槽式曲面镜条。
8.根据权利要求 1所述的波长分光式太阳能综合利用系统, 其特征在 于, 所述波长分光装置采用波长分光薄膜分光镜对汇聚的入射光进行透射 和反射选择分光。
9.根据权利要求 1所述的波长分光式太阳能综合利用系统, 其特征在 于, 所述波长分光装置采用棱镜分光镜或棱镜分光镜组对入射光进行折射 选择波长分光。
10.根据权利要求 1 所述的波长分光式太阳能综合利用系统, 其特征 在于, 所述波长分光装置可活动调节, 对所述复合接收装置中各接收器的 受光比例进行调配。
11.根据权利要求 1 所述的波长分光式太阳能综合利用系统, 其特征 在于, 所述复合接收装置中各接收器接收分光光线的光程长度相同。
12.根据权利要求 1 所述的波长分光式太阳能综合利用系统, 其特征 在于, 所述复合接收装置包括二次聚光装置, 所述二次聚光装置设置于所 述光伏接收器或所述光热接受器的周围, 所述二次聚光装置用于对经所述 波长分光装置却未射入所述复合接收装置中各接收器的光线进行回收。
13.根据权利要求 1 所述的波长分光式太阳能综合利用系统, 其特征 在于, 所述光热接收器获得的热能用于推动热机进行光热发电或者工业及 生活利用。
14.根据权利要求 13所述的波长分光式太阳能综合利用系统, 其特征 在于, 所述综合利用系统中包含热存储装置, 用于存储所述光热接收器转 换的热能。
15.根据权利要求 13所述的波长分光式太阳能综合利用系统, 其特征 在于, 所述综合利用系统实施光热发电与光伏发电联合运行。
PCT/CN2013/080359 2012-07-30 2013-07-29 波长分光式太阳能综合利用系统 WO2014019488A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210269171.5A CN103580601B (zh) 2012-07-30 2012-07-30 一种高效波长分光式太阳能综合利用系统
CN201210269171.5 2012-07-30

Publications (1)

Publication Number Publication Date
WO2014019488A1 true WO2014019488A1 (zh) 2014-02-06

Family

ID=50027249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080359 WO2014019488A1 (zh) 2012-07-30 2013-07-29 波长分光式太阳能综合利用系统

Country Status (2)

Country Link
CN (1) CN103580601B (zh)
WO (1) WO2014019488A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105007038B (zh) * 2014-04-16 2017-05-03 北京兆阳能源技术有限公司 一种光热电站光伏辅助发电系统
CN105182549B (zh) * 2015-08-28 2018-01-12 南方科技大学 一种光学分光装置
CN110677116A (zh) * 2019-10-09 2020-01-10 管金兰 一种利用太阳光分光发电装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101083288A (zh) * 2007-06-12 2007-12-05 邱定平 分光谱太阳能光电池
CN201360011Y (zh) * 2009-02-05 2009-12-09 浙江同星光电科技有限公司 一种多功能太阳光谱利用装置
CN201373595Y (zh) * 2009-02-09 2009-12-30 浙江同星光电科技有限公司 一种新型的太阳光谱综合利用系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202737785U (zh) * 2012-07-30 2013-02-13 北京兆阳能源技术有限公司 一种高效波长分光式太阳能综合利用系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101083288A (zh) * 2007-06-12 2007-12-05 邱定平 分光谱太阳能光电池
CN201360011Y (zh) * 2009-02-05 2009-12-09 浙江同星光电科技有限公司 一种多功能太阳光谱利用装置
CN201373595Y (zh) * 2009-02-09 2009-12-30 浙江同星光电科技有限公司 一种新型的太阳光谱综合利用系统

Also Published As

Publication number Publication date
CN103580601A (zh) 2014-02-12
CN103580601B (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
US8188366B2 (en) Integrated solar energy conversion system, method, and apparatus
US20100300510A1 (en) Solar energy systems with reflecting and photovoltaic conversion means
US20130087184A1 (en) Integrated concentrator photovoltaics and water heater
US20100229908A1 (en) Solar power conversion system and methods of use
CN103441177B (zh) 多用途聚光太阳能系统
US20080314436A1 (en) Solar augmentation system
CN101098113A (zh) 平面网架二维跟踪太阳的光伏发电装置
US8226253B2 (en) Concentrators for solar power generating systems
US10608134B2 (en) Solar power system using hybrid trough and photovoltaic two-stage light concentration
CN202737785U (zh) 一种高效波长分光式太阳能综合利用系统
US20110186106A1 (en) Hybrid concentrator solar energy device
KR101082707B1 (ko) 자동 태양광 트래킹이 가능한 휴대형 태양광 발전장치
WO2014019488A1 (zh) 波长分光式太阳能综合利用系统
US10153726B2 (en) Non-concentrated photovoltaic and concentrated solar thermal hybrid devices and methods for solar energy collection
CN2932457Y (zh) 平面网架二维跟踪太阳的光伏发电装置
CN101894875B (zh) 一种高效聚光式太阳能光电转换器
CN110034720A (zh) 一种反射式聚热光热光伏发电组合能源利用系统及方法
CN209881723U (zh) 一种聚光分光光伏系统
CN208887130U (zh) 一种光伏光热一体化装置及太阳能综合利用电站
Jaffré et al. Design and characterization of a curved linear Fresnel lens concentrating photovoltaic and thermal system
WO2012093327A1 (en) A photovoltaic device
CN204388387U (zh) 一种三维cpc簇太阳能二次聚集器
US20200036327A1 (en) Upconverted hybrid concentrator solar energy device
US8878050B2 (en) Composite photovoltaic device with parabolic collector and different solar cells
CN202662648U (zh) 聚光型太阳能双发电组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825946

Country of ref document: EP

Kind code of ref document: A1