WO2014017338A1 - Satellite positioning signal receiving method and device - Google Patents

Satellite positioning signal receiving method and device Download PDF

Info

Publication number
WO2014017338A1
WO2014017338A1 PCT/JP2013/069305 JP2013069305W WO2014017338A1 WO 2014017338 A1 WO2014017338 A1 WO 2014017338A1 JP 2013069305 W JP2013069305 W JP 2013069305W WO 2014017338 A1 WO2014017338 A1 WO 2014017338A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
satellite positioning
satellite
phase information
Prior art date
Application number
PCT/JP2013/069305
Other languages
French (fr)
Japanese (ja)
Inventor
潔 谷島
裕昭 前田
Original Assignee
ライトハウステクノロジー・アンド・コンサルティング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライトハウステクノロジー・アンド・コンサルティング株式会社 filed Critical ライトハウステクノロジー・アンド・コンサルティング株式会社
Priority to SG11201500577XA priority Critical patent/SG11201500577XA/en
Priority to AU2013294159A priority patent/AU2013294159B2/en
Priority to KR1020157004733A priority patent/KR20150038293A/en
Publication of WO2014017338A1 publication Critical patent/WO2014017338A1/en
Priority to PH12015500155A priority patent/PH12015500155B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/31Acquisition or tracking of other signals for positioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/32Multimode operation in a single same satellite system, e.g. GPS L1/L2

Definitions

  • the present invention relates to a signal reception technique for receiving satellite positioning signals transmitted from a satellite positioning system represented by Global Positioning System (GPS), and more specifically to receiving two types of signals of different frequencies.
  • GPS Global Positioning System
  • Satellite positioning systems rely on passive measurement of satellite positioning signals broadcast by multiple satellites.
  • the on-board clock is used to generate a regular, usually continuous series of events often referred to as "epochs", with random epochs repeated at regular epoch intervals.
  • epochs a regular, usually continuous series of events often referred to as "epochs”
  • epochs a regular, usually continuous series of events often referred to as "epochs”
  • the phase difference between the spreading code generated at the time timing of the receiving device and the spreading code of the received signal is measured, and the distance between the positioning satellite and the receiving device is calculated. It can be measured.
  • GPS Global Positioning System
  • L1 band 1575.42 MHz
  • L1 band 1575.42 MHz
  • a spreading code rate 1.023 MHz.
  • FIG. 8 shows the signal structure of the L1 C / A signal.
  • QZSS Quasi Zenith Satellite System developed in Japan
  • Non-Patent Document 1 Quasi Zenith Satellite System (QZSS) developed in Japan
  • QZSS like GPS, is being developed with the intention to operate using multiple frequencies such as L1, L2 and L5 centered at 1575.42 MHz, 1227.6 MHz and 1176.45 MHz respectively .
  • the frequency of E6 centered on 1278.75 MHz is also used, and the "LEX signal" is transmitted at this frequency.
  • radio waves transmitted from positioning satellites are received by a ground receiver, and between the satellite and the receiver based on radio wave propagation time from the satellite to the receiver. Measure the distance.
  • orbit information indicating the position of the positioning satellite itself and clock information that means a deviation of time of the satellite itself are superimposed.
  • the receiver can know the position and time of the satellite by demodulating the orbit information and the clock information transmitted from the positioning satellite. Then, the reception device determines the position of the reception device itself, for example, in the manner of trilateration using the measurement values of the distances between the plurality of satellites and the reception device, the position of the satellite, and the time.
  • FIG. 9 shows the configuration of a satellite positioning system having a conventional satellite positioning receiver.
  • the receiving device 902 that performs passive measurement continuously receives satellite positioning signals from the plurality of positioning satellites 901a to 901d of the satellite positioning system 900, and performs positioning and the like.
  • the satellite positioning reception apparatus 902 performs preprocessing on the signal input from the reception antenna unit 9021 in the front end unit 9022, converts it into a digital signal in the ADC unit 9023, and sends it to the data processing unit 9024.
  • FIG. 10 shows a block configuration of a data processing unit of a conventional receiving apparatus.
  • the data processing unit 1000 has one or more reception channels (channel 1 to channel n in the figure), and one satellite positioning for each reception channel with respect to satellite positioning signals transmitted from a plurality of satellites Signals are allocated to perform continuous reception processing.
  • Continuous reception processing refers to processing the target satellite positioning signal in a state in which the message contained in the signal can be decoded while continuing tracking, and in some cases, ranging (satellite Measurement of the distance between the
  • the frequency of the satellite positioning signal is unknown because there is also a Doppler effect caused by the relative velocity between the satellite and the receiver and the influence of the frequency error of the internal transmitter of the receiver.
  • Doppler frequency the frequency due to the Doppler effect
  • the frequency error of the internal transmitter of the receiving apparatus Need to explore.
  • the spreading code since the satellite positioning signal is spread by the repeated spreading code, the same spreading code sequence is matched in phase and the satellite positioning signal is received if it is not correlated with the satellite positioning signal. You can not do it.
  • the code rate of the spreading code is usually on the order of MHz, and it is difficult for the onboard clock of the receiver to operate stably with that accuracy over the long term, and satellites always transmit satellite positioning signals It is impossible for the clock and the time to match. Therefore, it is almost impossible to know the phase of the spreading code in advance. Therefore, it is also necessary to search the phase of the spreading code.
  • the frequency interval for searching is determined according to the characteristics of the satellite positioning signal, and in the case of L1 C / A signal, it is generally set to about 500 Hz.
  • the phase of the spreading code to be searched needs to be searched for the number of chips of the spreading code. That is, as the length of the spreading code and the number of chips increase, the amount of calculation processing required for the acquisition process as a whole increases.
  • the reception channel is controlled to maintain the reception state while updating the frequency of the satellite positioning signal and the phase of the spread code after acquiring the frequency for starting tracking by acquisition and the phase of the spread code.
  • each of the frequency and the phase of the spreading code is separated by the synchronization circuit described later based on the satellite positioning signal continuously received. Control to keep the reception state.
  • the PLL is a processing circuit that receives a periodic signal and performs stable signal reception processing by feedback control.
  • the frequency acquired by acquisition can be used as an initial value, and the successively updated frequency f L1 can be acquired as an output for the input satellite positioning signal.
  • the phase of the spreading code it is general to use a delay lock circuit (DLL) 1104.
  • the DLL is a processing circuit which receives a periodic signal and performs stable signal reception processing by feedback control.
  • the phase of the spread code acquired by acquisition can be set as an initial value, and the phase ⁇ L1 of the spread code sequentially updated can be acquired as an output for the input positioning signal.
  • tracking process a series of processes in which the satellite positioning signal to be received is input, the frequency and the phase of the spreading code are used to synchronize in each synchronization circuit are called “tracking process” or “tracking”.
  • the tracking process is performed at a specific cycle based on the characteristics of the satellite positioning signal, and each time the tracking process is performed, the updated frequency and the phase of the spreading code can be acquired. Also, from the tracking circuit, a message included in the satellite positioning signal is obtained as an output.
  • the receiving channel being tracked it is possible to decode the message contained in the satellite positioning signal.
  • the decryption of the message is performed by the “decryption unit”.
  • the principle of ranging is to read the propagation time from the time difference between the spread code transmitted at a known time on the satellite side and the spread code (generated at the receiver side) whose phase is matched by tracking, It is a mechanism that measures the distance by applying the speed of light. Specifically, it is as follows.
  • the time on the positioning satellite is managed by a precise satellite clock, and the timing at which the spreading code is transmitted is precisely in line with the satellite clock.
  • the satellite positioning signal receiver if the satellite positioning signal is tracked and the message is deciphered, the accurate time of the moment when the signal is transmitted You can know
  • the satellite positioning signal receiving device while the satellite positioning signal receiving device is tracking the satellite positioning signal from the positioning satellite, the satellite positioning signal receiving device generates the same spreading code as the positioning satellite with the matched phase.
  • the phase of the spreading code synchronized with the satellite positioning signal The value of ⁇ circumflex over (L1) C / A signal] means the transmission time of the signal at time Tu at the moment of reception with an accuracy finer than 1 ms.
  • the satellite positioning signal reception device is the time when the satellite positioning signal was transmitted from the satellite And the phase of the spreading code And the propagation time from the positioning satellite to the satellite positioning signal receiver can be known.
  • the on-board clock in the receiver is not as accurate as the positioning satellite's clock. That is, the difference between the positioning satellite and the satellite positioning signal receiver is an apparent propagation time including an error.
  • this is not a big problem because the propagation time is measured with the same error for all positioning satellites (described later). Therefore, the distance measured on the receiving device side is usually called "pseudo distance".
  • the calculation procedure of the pseudo distance is shown in FIG.
  • FIG. 12 is a flow chart showing an example of a procedure for calculating a conventional pseudorange based on an L1 C / A signal. The meaning of each variable in FIG. 12 is as follows.
  • the calculation of the pseudorange starts with the state in which the target k-th reception channel is tracking the satellite positioning signal (S1201).
  • the phase of the spreading code can take a value of 0 or more and less than 1023.
  • the time at which the satellite transmitted the signal can be calculated from the time information included in the message (S1204). For example, in the case of a message of the L1 C / A signal, time information expressed in seconds within a week is included every 6 seconds. In the message there is described in the message the content of knowing the transmission start time of the signal containing the message. Therefore, if the message including the time information is decoded even once, the L1 C / A signal being continuously received can know the time when it was transmitted from the satellite, and it can be updated one after another It is possible. This time And put.
  • the pseudo distance d k in the L1 C / A signal can be calculated by the following equation (S1207).
  • the “positioning operation unit” can calculate the position of the receiving device based on the result of distance measurement (pseudo distance) obtained in each reception channel. This is an outline of the "positioning" process.
  • satellite positioning signals from four or more positioning satellites are usually required. By obtaining pseudoranges with at least four positioning satellites, the error due to the "appropriate value" used in setting the clock in the receiving apparatus is eliminated.
  • Japan Aerospace Exploration Agency "Quasi-Zenith Satellite System User Interface Specification (IS-QZSS) version 1.1", July 31, 2009, Internet ⁇ URL: http://qzss.jaxa.jp/is-qzss />
  • the satellite positioning signal broadcasted by the satellite positioning system is not intended for ranging itself, but corrects / reinforces the distance between the satellite obtained by ranging and the receiver and the positioning position of the receiver.
  • the reinforcement information in the reinforcement signal is generally included in the message part.
  • the receiver assigns one reception channel to the reinforcement signal by the same method as the case of performing to the distance measurement signal, and It is necessary to perform capture processing and tracking processing and decoding processing.
  • the frequency band in which the reinforcement signal is broadcast and the spreading code of the reinforcement signal are often different from the frequency band and spreading code of the signal generally used for ranging.
  • the receiver that handles reinforcement signals requires more processing power and resources.
  • the signal spread by the long code of 2.5575 MCps ⁇ 410 ms length is received It is necessary to This is much longer than the signal spread by the 1.023 MHz 1 ms long spreading code of the L1 C / A signal usually used for ranging. Therefore, there has been a problem that, if the reception processing of the LEX signal and tracking processing are performed in the receiving apparatus assuming handling of L1 C / A, parts and processing increase and a large cost increase is caused.
  • the present invention is a satellite positioning reception device of a satellite positioning system including one or more positioning satellites transmitting a first signal and a second signal different in frequency, the satellite positioning reception device comprising It is characterized in that conversion processing is performed on frequency and phase information of the second signal based on frequency and phase information acquired when signal reception is started or performed continuously.
  • the present invention is characterized in that message information included in the second signal is decoded based on frequency and phase information of the converted second signal.
  • the second signal is continuously tracked on the basis of frequency and phase information of the converted second signal.
  • measuring the distance between the positioning satellite and the satellite positioning reception device based on frequency and phase information of the first signal or frequency and phase information of the converted second signal It features.
  • the present invention is a satellite positioning signal receiving method in a satellite positioning system including a positioning satellite for transmitting a first signal and a second signal different in frequency and a satellite positioning receiving device, wherein the satellite positioning receiving device is And converting the frequency and phase information of the second signal on the basis of the frequency and phase information acquired when the reception of the first signal is started or continuously performed.
  • the satellite positioning signal receiving method and apparatus according to the present invention can reduce the amount of operation processing and reduce the cost required for operation processing components in the acquisition processing and tracking processing of satellite positioning signals of two different frequencies, etc. Can be provided.
  • FIG. 1 shows a schematic configuration of a satellite positioning system having a satellite positioning signal receiving apparatus according to an embodiment of the present invention.
  • LEX signals are handled, and QZSS (Quasi-Zenith Satellite System) transmitting LEX signals is adopted as a model of the satellite positioning system.
  • QZSS Quad-Zenith Satellite System
  • the intermediate frequency differs depending on the design concept of the receiver, and in the present specification, the intermediate frequency of the L1 C / A signal is conveniently used.
  • FIG. 2 shows a detailed configuration of the data processing unit 1024 in FIG.
  • the positioning reception apparatus receives signals from a plurality of positioning satellites, and thus a plurality of reception channels exist in the data processing unit, but in the present specification, the convenience of understanding and explanation of the invention Therefore, the explanation of the operation in one reception channel is kept. Also, as an example, the embodiment will be described in which the message of the LEX signal is decrypted.
  • the data processing unit 200 exemplarily illustrates an L1 capturing unit 201 that captures L1 C / A signals, an L1 tracking unit 202 that tracks L1 C / A signals, and an L1 C / A signal.
  • L1 decoding unit 203 for decoding the L1 C / A signal
  • the L1-E6 conversion processing unit 204 for converting the phase of the spread code and the frequency of the L1 C / A signal to the phase of the LEX signal
  • the phase of the spread code It comprises an E6 decryption unit 205 that performs decryption.
  • these components are included as components of one reception channel, and in some cases, a "ranging unit” and one "positioning operation unit” in each channel It is also possible to adopt a configuration comprising In this case, the “ranging unit” and the “positioning operation unit” can adopt a configuration common to the data processing unit of a general reception device.
  • FIG. 3 shows a processing flow in the data processing unit 200.
  • the process is started in S301, and after acquiring the initial value f L1 of the frequency of the satellite positioning signal and the initial value ⁇ L1 of the phase of the spreading code in S302, acquisition processing for the L1 C / A signal Is performed (S303).
  • acquisition processing correlation calculation with the input satellite positioning signal is performed based on the acquired f L1 and ⁇ L1 , and the success or failure of acquisition is determined based on the magnitude of the correlation value (S304).
  • the process returns to S303 and a supplementary process is performed.
  • an algorithm used in capture such as a method of gradually changing f L1 and ⁇ L1 and a determination criterion of success or failure of capture, can adopt a capture algorithm conventionally used.
  • a capture algorithm conventionally used.
  • the algorithm used for tracking can adopt a known tracking algorithm that has been used conventionally.
  • the phases of the frequency and the spreading code are sequentially updated, and become new f L1 and ⁇ L1 .
  • the frequency at which the signal tracking is performed is specifically an intermediate frequency to which a Doppler frequency is added.
  • the Doppler frequency is a value determined by the relative velocity of the positioning satellite and the satellite positioning receiver and the frequency to be transmitted. That is, even if signals are transmitted from the same positioning satellite, the frequencies to be transmitted are different between the L1 C / A signal and the LEX signal, so that the Doppler frequency also has different values.
  • the tracking process (S306) is continued on the assumption that the reception state is correct as long as no abnormality occurs in the reception state (Yes in S306). If the tracking process of the L1 C / A signal is not continued correctly due to some cause (No in S306), the process returns to the capture process (S303), and repeats the process of tracking again when the capture process is completed. While the tracking process of the L1 C / A signal is continued, the decoding unit decodes the message of the L1 C / A signal (S307).
  • swipe code of LEX signal refers to a short code of 4 ms cycle in which the message of LEX signal is CSK modulated, and long code reception is not performed as in the prior art. Is a feature of the present invention.
  • the frequency f E6 of the LEX signal is the frequency f L1 of L1 C / A, the center frequency f IFL1 of the L1 C / A signal, the intermediate frequency f IFE6 of the LEX signal, and L1 C / the center frequency L 1 of the a signal, indicating that can be calculated using the center frequency E 6 of the LEX signal.
  • L 1 is a known value (1575.42 MHz)
  • E 6 is a known value (1278.75 MHz).
  • Known values specific to the design concept of the receiver can be used for f IFL1 and f IFE6 . Since f L1 is the frequency of the L1 C / A signal, the frequency f L1 used in tracking may be used as it is.
  • the conversion from the phase of the spreading code of the L1 C / A signal to the phase of the spreading code of the LEX signal (the process B) is performed based on the following equation (3).
  • k is taken as any one of 0, 1, 2, 3 It is.
  • the phase ⁇ E6 of the spreading code of the LEX signal is the phase ⁇ L1 of the spreading code of the L1 C / A signal, the chip rate R L1 of the spreading code of the L1 C / A signal, and the spreading of the L1 signal It is shown that calculation is possible using the code period T L1 and the chip rate R E6 of the spreading code of the LEX signal.
  • R L1 is a known value (1.023 MCps)
  • T L1 is a known value (0.001 sec)
  • R E6 is a known value (2.5575 MCps). Since ⁇ L1 is the phase of the spreading code of the L1 C / A signal, the phase ⁇ L1 of the spreading code used in tracking can be used as it is.
  • k is a value which changes with the spreading code period of two signals, and in the case of L1 C / A and LEX, it is an integer which takes the value of [0, 3]. That is, k is updated every 0 ms as 0, 1, 2, 3, 0, 1, 2, 3, 0,. The value of k is determined after time information is obtained by message decryption of the L1 C / A signal. Specifically, this will be described with reference to the relationship between the L1 C / A signal and the LEX signal shown in FIG.
  • the time at which the currently received satellite positioning signal is transmitted is t x [sec].
  • t X is the number of times the spreading code has been repeated based on the time information contained in the message at a rate of once every 6 seconds by message decoding after tracking processing of the L1 C / A signal It can be determined from the phase ⁇ L1 of the spreading code of the L 1 C / A signal.
  • t 0 [sec] a time when the spreading code of the L1 C / A signal and the spreading code of the LEX signal start simultaneously is defined as t 0 [sec].
  • Spreading code period T E6 of LEX signal is 4 ms
  • L1 for C / A spreading code period T L1 of the signal is 1 ms
  • week beginning after the exactly every 4 ms spreading code L1 C / A signal
  • the spreading codes of the LEX signal and the LEX signal start simultaneously. That is, the spreading code of the L1 C / A signal and the spreading code of the LEX signal are always simultaneously started at times that are multiples of 4 ms with reference to the start of the week.
  • the spreading code of the L1 C / A signal and the spreading code of the LEX signal start at the same time by 1 cycle of the spreading code of the L1 C / A signal. Time is present. That is, before t X , the nearest time to be a multiple of 4 ms is t 0 .
  • phase of the spreading code of the L1 C / A signal is converted to the phase of the spreading code of the LEX signal.
  • the frequency of the LEX signal and the phase of the spreading code calculated by the L1-E6 conversion processing unit 204 are passed to the E6 decoding unit 205, and used by the E6 decoding unit 205 to decode the message included in the LEX signal.
  • the signal flow from the L1 tracking unit 202 through the L1-E6 conversion processing unit 204 to the E6 decoding unit 205 is represented by dotted lines in that the data processing unit is delivered between blocks. It means that it is not the input satellite positioning signals, but the phase of the frequency and spreading code calculated based on them, and the time information based on the message decoded by the decoding unit.
  • the E6 decoding unit 205 decodes the message included in the signal based on the converted frequency of the LEX signal and the phase of the spreading code.
  • the L1-E6 conversion processing unit 204 calculates the phase of the spreading code of the LEX signal. This corresponds to the spreading code simultaneous start time t 0 used in this case.
  • t 0 can be expressed by the following equation using the phase ⁇ E6 of the spreading code of the converted LEX signal.
  • the short message decryption of LEX signals which for messages LEX signal 4ms each from t 0, the frequency components are removed superimposed on the LEX signal based on the frequency of the converted LEX signals, are CSK modulation
  • the message of the LEX signal can be deciphered.
  • the message included in the short code of the LEX signal is decoded while continuing the tracking process of the long code of the LEX signal.
  • One feature of the present invention is that the processing included in the LEX signal is omitted from the frequency and the phase of the spread code acquired by the capture processing and tracking processing of the L1 C / A signal, omitting the capture processing and tracking processing of the LEX signal. It is in the point of deciphering information. Although the transmitting frequency is different, because the L1 C / A signal and the LEX signal are transmitted from the same satellite, it is utilized that the spreading codes of the two issues are transmitted periodically at the same timing. ing.
  • the L1 C / A signal is continuously received, and the frequency of the LEX signal and the phase of the spreading code are determined from the frequency and the phase of the spreading code. It is preferable to decipher the reinforcement information included in the LEX signal.
  • the present invention is not limited to this.
  • the E6 decoding unit 5025 it is also possible to set up the E6 decoding unit 5025 as an external system. That is, it is conceivable to pass the frequency of the LEX signal and the phase of the spreading code to the E6 decoding unit 5025 in another system as the output of the data processing unit 5024.
  • the satellite positioning signal output from the ADC unit 5023b and the frequency of the converted LEX signal and the phase of the spreading code are output as the receiving apparatus, and separately passed to the E6 decoding unit (dedicated machine) 5025.
  • the data processing unit 600 simply receives the L1 C / A signal.
  • the E6 signal does not have to be input.
  • the L1 C / A signal and the LEX signal are handled as two different signals, but the present invention is not limited to the combination of the L1 C / A signal and the LEX signal, In the case of satellite positioning signals of two different frequencies transmitted from the same positioning satellite, similarly, relative to acquisition processing and tracking processing based on satellite positioning signals requiring relatively light processing capability for acquisition processing and tracking processing It is possible to obtain information on satellite positioning signals that require extremely heavy processing power.
  • the propagation distance has a difference between signals of two frequencies (this is called "ionosphere delay error"). Since the ionospheric delay error also affects the phase of the spreading code of the L1 C / A signal and the phase of the spreading code of the LEX signal, the phase of the spreading code of the L1 C / A signal to the phase of the spreading code of the LEX signal It is further preferred to take into account the ionospheric delay error that occurs between the two frequencies during conversion.
  • the difference due to the ionospheric delay error can be predicted according to an academic model, such as, for example, a ROCHATTER model. Therefore, in this case, the conversion from the phase of the diffusion code of the L1 C / A signal to the phase of the diffusion code of the LEX signal represented by the above equation (3) is the diffusion code of the L1 C / A signal due to the ionospheric delay error.
  • [psi K representing the phase difference between the spreading codes and LEX signals can be expressed as follows. However, It is.
  • the L1 C / A signal and the LEX signal are input to the receiving device, they are respectively ADC converted in the ADC unit and input to the data processing unit.
  • the difference between the phase of the spreading code of the L1 C / A signal and the phase of the spreading code of the LEX signal may occur due to the influence of the difference between Therefore, when converting the phase of the spreading code of the L1 C / A signal to the phase of the spreading code of the LEX signal, it is more preferable in consideration of an error caused between the two frequencies.
  • the conversion from the phase of the spreading code of the L1 C / A signal to the phase of the spreading code of the LEX signal expressed by the above equation (3) is performed by converting the L1 C / A signal It can be improved as in the following equation, including ⁇ n which is a term representing the phase difference between the spreading code and the spreading code of the LEX signal.
  • ⁇ n which is a term representing the phase difference between the spreading code and the spreading code of the LEX signal.
  • phase and LEX of the diffusion code of the L1 C / A signal in consideration of the above-mentioned ionospheric delay error may be included.
  • FIG. 7 shows a LEX signal generation circuit used in the satellite positioning system according to an embodiment of the present invention.
  • the signal generation circuit 700 relates to the LEX signal broadcast in the 1278.75 MHz band (E6 band) of the Quasi-Zenith Satellite System (QZSS) as an example, but the LEX signal is used as a reinforcement signal.
  • CSK modulation is an abbreviation of code shift keying, and is one of modulation schemes in which the phase of a spread code
  • the present invention is not limited to any specific configuration of the above-described embodiment.
  • the present invention comprises all novel features or combinations thereof described in this specification (including claims, examples, abstracts and figures), or all novel methods or process steps described, or It can be extended to their combination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Provided are a satellite positioning receiving method and device which achieve a reduction in calculation processing amount required to decode message information included in a second signal. A satellite positioning receiving device of a satellite positioning system including one or more positioning satellites that each transmit a first signal and a second signal of different frequencies, the satellite positioning receiving device being characterized by, on the basis of a frequency and phase information acquired when the reception of the first signal is started or continuously performed, performing conversion processing to the frequency of the second signal and phase information relating thereto.

Description

衛星測位信号受信方法及び装置Satellite positioning signal receiving method and apparatus
 本発明は、全地球測位システム(GPS)に代表される衛星測位システムから送信される衛星測位信号を受信する信号受信技術に関し、より具体的には、周波数の異なる2種類の信号を受信する受信方法及び装置に関する。 The present invention relates to a signal reception technique for receiving satellite positioning signals transmitted from a satellite positioning system represented by Global Positioning System (GPS), and more specifically to receiving two types of signals of different frequencies. Method and apparatus
 衛星測位システムは、複数の人工衛星によって放送される衛星測位信号の受動的測定に依拠する。オンボードクロックが、しばしば「エポック」と呼ばれる規則的な、通常連続した一連のイベントを生成するのに使用され、規則的なエポックの間隔で、乱数符号または疑似乱数符号が繰り返される。拡散符号化された電波を受信装置で受信することで、受信装置の時刻タイミングで生成した拡散符号と、受信した信号の拡散符号との位相差を計測し、測位衛星と受信装置間の距離を測定することができる。 Satellite positioning systems rely on passive measurement of satellite positioning signals broadcast by multiple satellites. The on-board clock is used to generate a regular, usually continuous series of events often referred to as "epochs", with random epochs repeated at regular epoch intervals. By receiving a spread-coded radio wave by the receiving device, the phase difference between the spreading code generated at the time timing of the receiving device and the spreading code of the received signal is measured, and the distance between the positioning satellite and the receiving device is calculated. It can be measured.
 そのような衛星測位システムの例として、全地球測位システム(GPS)が挙げられる。一般に、GPSは、それぞれ1575.42MHz、1227.6MHz、および1176.45MHzを中心とするL1、L2、およびL5等と称される複数の周波数を使用して動作する。これらの信号のそれぞれが、それぞれの拡散信号によって変調される。当業者であれば容易に理解できるように、GPS衛星ナビゲーションシステムが発するCA(Coarse Acquisition)コード信号は、1575.42MHzの周波数(L1帯と呼ばれる。)で送信され、1.023MHzの拡散符号レート(チップレート)を有する。さらにこれらの信号は航法メッセージと呼ばれるデータを重畳しており、そのデータ伝送レートは50bpsである。この拡散符号レート1.023MHz、データ伝送レート50bpsの信号は、一般に「L1 C/A信号」と呼ばれる。図8に、L1 C/A信号の信号構造を示す。 An example of such a satellite positioning system is the Global Positioning System (GPS). In general, GPS operates using multiple frequencies, designated L1, L2, and L5, etc., centered at 1575.42 MHz, 1227.6 MHz, and 1176.45 MHz, respectively. Each of these signals is modulated by a respective spread signal. As can be easily understood by those skilled in the art, a CA (Coarse Acquisition) code signal emitted by a GPS satellite navigation system is transmitted at a frequency of 1575.42 MHz (referred to as L1 band) and a spreading code rate of 1.023 MHz. (Chip rate). Furthermore, these signals overlap data called navigation messages, and the data transmission rate is 50 bps. A signal with a spreading code rate of 1.023 MHz and a data transmission rate of 50 bps is generally called "L1 C / A signal". FIG. 8 shows the signal structure of the L1 C / A signal.
 また、衛星測位システムの一事例として、日本において開発されている準天頂衛星システム(QuasiZenith Satellite System:QZSS)が挙げられる(非特許文献1)。QZSSもGPSと同様に、それぞれ1575.42MHz、1227.6MHz、および1176.45MHzを中心とするL1、L2、およびL5などの複数の周波数を使用して動作する方針で開発が進められようとしている。また、QZSSには、1278.75MHzを中心とするE6の周波数も使われており、「LEX信号」がこの周波数で送信されている。 In addition, as an example of a satellite positioning system, Quasi Zenith Satellite System (QZSS) developed in Japan can be mentioned (Non-Patent Document 1). QZSS, like GPS, is being developed with the intention to operate using multiple frequencies such as L1, L2 and L5 centered at 1575.42 MHz, 1227.6 MHz and 1176.45 MHz respectively . Also, in QZSS, the frequency of E6 centered on 1278.75 MHz is also used, and the "LEX signal" is transmitted at this frequency.
 GPSを始めとする衛星測位システムによる位置決定においては、測位衛星から送信される電波を地上の受信装置で受信し、衛星から受信装置までの電波伝搬時間に基づいて衛星と受信装置との間の距離を計測する。ここで、測位衛星から送信される電波に対しては、測位衛星自身の位置を示す軌道情報と、衛星自身の時刻のズレを意味するクロック情報とが重畳される。 In position determination by a satellite positioning system such as GPS, radio waves transmitted from positioning satellites are received by a ground receiver, and between the satellite and the receiver based on radio wave propagation time from the satellite to the receiver. Measure the distance. Here, with respect to the radio wave transmitted from the positioning satellite, orbit information indicating the position of the positioning satellite itself and clock information that means a deviation of time of the satellite itself are superimposed.
 受信装置は、測位衛星から送信される軌道情報とクロック情報とを復調することにより、衛星の位置と時刻とを知ることができる。そして、受信装置は、複数の衛星と受信装置との間の距離の計測値と、衛星の位置と、時刻とを用いて、受信装置自身の位置を例えば三辺測量の要領で決定する。 The receiver can know the position and time of the satellite by demodulating the orbit information and the clock information transmitted from the positioning satellite. Then, the reception device determines the position of the reception device itself, for example, in the manner of trilateration using the measurement values of the distances between the plurality of satellites and the reception device, the position of the satellite, and the time.
 図9に、従来の衛星測位受信装置を有する衛星測位システムの構成を示す。受動的測定を行う受信装置902は、衛星測位システム900の複数の測位衛星901a~901dからの衛星測位信号を継続的に受信し、測位などを行う。衛星測位受信装置902は、受信アンテナ部9021から入力された信号に対して、フロントエンド部9022にて前処理を行い、ADC部9023にてデジタル信号に変換し、データ処理部9024に送る。 FIG. 9 shows the configuration of a satellite positioning system having a conventional satellite positioning receiver. The receiving device 902 that performs passive measurement continuously receives satellite positioning signals from the plurality of positioning satellites 901a to 901d of the satellite positioning system 900, and performs positioning and the like. The satellite positioning reception apparatus 902 performs preprocessing on the signal input from the reception antenna unit 9021 in the front end unit 9022, converts it into a digital signal in the ADC unit 9023, and sends it to the data processing unit 9024.
 図10に、従来の受信装置のデータ処理部のブロック構成を示す。データ処理部1000は、1つもしくは複数の受信チャネル(図において、チャンネル1~チャンネルn)を備えており、複数の衛星から発信された衛星測位信号に対して、各受信チャネルにつき1つの衛星測位信号を割り当てて継続的な受信処理を行っている。継続的な受信処理とは、対象とする衛星測位信号に対して、追尾を継続しながら信号に含まれるメッセージを解読できる状態に処理することであり、場合によっては同時並行的に測距(衛星と受信装置との距離の測定)が行われる。 FIG. 10 shows a block configuration of a data processing unit of a conventional receiving apparatus. The data processing unit 1000 has one or more reception channels (channel 1 to channel n in the figure), and one satellite positioning for each reception channel with respect to satellite positioning signals transmitted from a plurality of satellites Signals are allocated to perform continuous reception processing. Continuous reception processing refers to processing the target satellite positioning signal in a state in which the message contained in the signal can be decoded while continuing tracking, and in some cases, ranging (satellite Measurement of the distance between the
 ここで、各受信チャネルが継続的な受信処理を行うためには、衛星測位信号の周波数及び拡散符号の位相を知る必要がある。しかしながら、一般には、衛星測位信号の周波数及び拡散符号の位相は変動しているため、受信を開始する際にはこれらを探索しないと取得することができない。 Here, in order for each reception channel to perform continuous reception processing, it is necessary to know the frequency of the satellite positioning signal and the phase of the spreading code. However, in general, since the frequency of the satellite positioning signal and the phase of the spreading code fluctuate, it can not be acquired without searching for these when starting reception.
 また、衛星測位信号の周波数に関しては、衛星と受信装置との相対速度によって生じるドップラー効果が加わることや、受信装置の内部発信機の周波数誤差の影響もあることから、周波数は未知である。各受信チャネルが継続的に受信可能な状態に移行するためには、衛星測位信号の周波数に、ドップラー効果による周波数(ドップラー周波数)や、受信装置の内部発信機の周波数誤差が加わった周波数を、探索する必要がある。 Further, with respect to the frequency of the satellite positioning signal, the frequency is unknown because there is also a Doppler effect caused by the relative velocity between the satellite and the receiver and the influence of the frequency error of the internal transmitter of the receiver. In order to shift to a state in which each reception channel can be continuously received, the frequency of the satellite positioning signal plus the frequency due to the Doppler effect (Doppler frequency) and the frequency error of the internal transmitter of the receiving apparatus, Need to explore.
 さらに、拡散符号に関しても、衛星測位信号は、繰り返される拡散符号によって拡散されているため、同じ拡散符号系列を、位相を一致させて、衛星測位信号との相関をとらなければ衛星測位信号を受信することはできない。一方で、拡散符号の符号レートは、通常はMHzのオーダーであり、受信装置の持つオンボードクロックが長期的にその精度で安定的に動作することは難しく、常に、衛星測位信号を送信する衛星の時計と時刻が一致することは起こりえない。従って、事前に拡散符号の位相を知ることは不可能に近い。そのため、拡散符号の位相も探索する必要がある。 Furthermore, as for the spreading code, since the satellite positioning signal is spread by the repeated spreading code, the same spreading code sequence is matched in phase and the satellite positioning signal is received if it is not correlated with the satellite positioning signal. You can not do it. On the other hand, the code rate of the spreading code is usually on the order of MHz, and it is difficult for the onboard clock of the receiver to operate stably with that accuracy over the long term, and satellites always transmit satellite positioning signals It is impossible for the clock and the time to match. Therefore, it is almost impossible to know the phase of the spreading code in advance. Therefore, it is also necessary to search the phase of the spreading code.
 従って、受信チャネルが1つの衛星測位信号の継続的な受信を開始するためには、周波数並びに拡散符号の位相を、あらかじめ探索する必要がある。この探索の一連の処理は「捕捉処理」あるいは「捕捉」と呼ばれる。捕捉処理の結果、追尾処理を開始するための周波数並びに拡散符号の位相を取得することができる。 Therefore, in order for the reception channel to start continuous reception of one satellite positioning signal, it is necessary to search for the frequency as well as the phase of the spreading code in advance. A series of processes of this search is called "capture process" or "capture". As a result of the acquisition process, it is possible to acquire the frequency for starting the tracking process and the phase of the spreading code.
 なお、捕捉処理では、基本的に、衛星測位信号が存在しうる全ての周波数(L1 C/A信号の場合は±5kHz程度)と、全ての拡散符号の位相(L1 C/A信号の場合は、1023チップ)とについて探索が行われる。探索をする周波数間隔は、衛星測位信号の特性に応じて決められ、L1 C/A信号の場合は、500Hz程度とするのが一般的である。また、探索をする拡散符号の位相は、拡散符号のチップ数分だけ探索する必要がある。つまり、拡散符号の長さ並びにチップ数が増えると、全体として捕捉処理に必要となる計算処理量は増加する。 In acquisition processing, basically, all frequencies (about ± 5 kHz in the case of L1 C / A signal) where satellite positioning signals may exist and phases of all spreading codes (in the case of L1 C / A signal) , 1023 chips). The frequency interval for searching is determined according to the characteristics of the satellite positioning signal, and in the case of L1 C / A signal, it is generally set to about 500 Hz. Also, the phase of the spreading code to be searched needs to be searched for the number of chips of the spreading code. That is, as the length of the spreading code and the number of chips increase, the amount of calculation processing required for the acquisition process as a whole increases.
 受信チャネルは、捕捉により追尾を開始するための周波数並びに拡散符号の位相を取得できたら、その後、衛星測位信号の周波数並びに拡散符号の位相を更新しながら、受信状態を保つように制御される。具体的には、図11に図示するような一般的な追尾回路1100を用いて、継続的に受信する衛星測位信号に基づいて、周波数及び拡散符号の位相のそれぞれを、後述の同期回路により別々に制御し、受信状態を保つようにする。 The reception channel is controlled to maintain the reception state while updating the frequency of the satellite positioning signal and the phase of the spread code after acquiring the frequency for starting tracking by acquisition and the phase of the spread code. Specifically, using a general tracking circuit 1100 as shown in FIG. 11, each of the frequency and the phase of the spreading code is separated by the synchronization circuit described later based on the satellite positioning signal continuously received. Control to keep the reception state.
 まず周波数に関しては、位相同期回路(Phase Lock Loop:PLL)1101を用いるのが一般的である。PLLは、周期的な信号を入力として、フィードバック制御により、安定した信号受信処理を行う処理回路である。衛星測位の受信装置においては、捕捉で取得した周波数を初期値とし、入力された衛星測位信号に対して、逐次更新された周波数fL1を出力として取得することができる。 First, with regard to frequency, it is common to use a phase lock loop (PLL) 1101. The PLL is a processing circuit that receives a periodic signal and performs stable signal reception processing by feedback control. In the receiver for satellite positioning, the frequency acquired by acquisition can be used as an initial value, and the successively updated frequency f L1 can be acquired as an output for the input satellite positioning signal.
 次に、拡散符号の位相に関しては、遅延同期回路(Delay Lock Loop:DLL)1104を用いるのが一般的である。DLLもPLLと同様に、周期的な信号を入力として、フィードバック制御により、安定した信号受信処理を行う処理回路である。衛星測位受信装置においては、捕捉で取得した拡散符号の位相を初期値とし、入力された測位信号に対して、逐次更新された拡散符号の位相φL1を出力として取得することができる。 Next, as to the phase of the spreading code, it is general to use a delay lock circuit (DLL) 1104. Similarly to the PLL, the DLL is a processing circuit which receives a periodic signal and performs stable signal reception processing by feedback control. In the satellite positioning reception apparatus, the phase of the spread code acquired by acquisition can be set as an initial value, and the phase φ L1 of the spread code sequentially updated can be acquired as an output for the input positioning signal.
 以上のように、受信する衛星測位信号を入力とし、周波数並びに拡散符号の位相を用いて、それぞれの同期回路で同期させる一連の処理を「追尾処理」あるいは「追尾」と呼ばれる。追尾処理は、衛星測位信号の特性に基づいた特定の周期で行われ、追尾処理の都度、更新された周波数並びに拡散符号の位相を取得することができる。また追尾回路から、衛星測位信号に含まれるメッセージを、出力として得る。 As described above, a series of processes in which the satellite positioning signal to be received is input, the frequency and the phase of the spreading code are used to synchronize in each synchronization circuit are called "tracking process" or "tracking". The tracking process is performed at a specific cycle based on the characteristics of the satellite positioning signal, and each time the tracking process is performed, the updated frequency and the phase of the spreading code can be acquired. Also, from the tracking circuit, a message included in the satellite positioning signal is obtained as an output.
 次に、追尾が行われている受信チャネルでは、その衛星測位信号に含まれるメッセージを解読することが可能である。メッセージの解読は、「解読部」にて行われる。また、追尾が行われている受信チャネルでは、衛星と受信装置との距離を測定することが可能である。これを「測距」と称し、「測距部」で行われる。測距の原理は、衛星側で既知の時刻に送信された拡散符号に対して、追尾によって位相が一致している(受信装置側で生成した)拡散符号との時間差から伝搬時間を読み取り、それに光速をかけることで距離を測る仕組みである。具体的には、以下の通りである。 Next, in the receiving channel being tracked, it is possible to decode the message contained in the satellite positioning signal. The decryption of the message is performed by the "decryption unit". In addition, it is possible to measure the distance between the satellite and the receiver in the reception channel in which tracking is performed. This is called "ranging" and is performed by the "ranging unit". The principle of ranging is to read the propagation time from the time difference between the spread code transmitted at a known time on the satellite side and the spread code (generated at the receiver side) whose phase is matched by tracking, It is a mechanism that measures the distance by applying the speed of light. Specifically, it is as follows.
 測位衛星における時刻は、精密な衛星時計によって管理されており、拡散符号が送信されるタイミングは衛星時計に正確に則している。一方、衛星測位信号受信装置は、衛星測位信号が追尾され、メッセージ解読が行われれば、その信号が送信された瞬間の正確な時刻
Figure JPOXMLDOC01-appb-I000001
を知ることができる。また、衛星測位信号受信装置は、測位衛星からの衛星測位信号を追尾している間、測位衛星と同じ拡散符号を一致した位相で生成している。衛星測位信号は拡散符号が一定周期で繰り返されているため(例えば、L1 C/A信号の場合は1ms)、衛星測位信号と同期している拡散符号の位相
Figure JPOXMLDOC01-appb-I000002
の値が、(L1 C/A信号の場合)1msよりも細かい精度での、受信の瞬間の時刻Tuにおける信号の発信時刻を意味する。
The time on the positioning satellite is managed by a precise satellite clock, and the timing at which the spreading code is transmitted is precisely in line with the satellite clock. On the other hand, in the satellite positioning signal receiver, if the satellite positioning signal is tracked and the message is deciphered, the accurate time of the moment when the signal is transmitted
Figure JPOXMLDOC01-appb-I000001
You can know In addition, while the satellite positioning signal receiving device is tracking the satellite positioning signal from the positioning satellite, the satellite positioning signal receiving device generates the same spreading code as the positioning satellite with the matched phase. Since the satellite positioning signal has a spreading code repeated at a constant period (for example, 1 ms in the case of L1 C / A signal), the phase of the spreading code synchronized with the satellite positioning signal
Figure JPOXMLDOC01-appb-I000002
The value of {circumflex over (L1) C / A signal] means the transmission time of the signal at time Tu at the moment of reception with an accuracy finer than 1 ms.
 従って、衛星測位信号受信装置は、衛星測位信号が衛星から送信された時刻
Figure JPOXMLDOC01-appb-I000003
と、拡散符号の位相
Figure JPOXMLDOC01-appb-I000004
とを元にして、測位衛星から衛星測位信号受信装置までの伝搬時間を知ることができる。
実際には、受信装置内のオンボードクロックは、測位衛星の時計ほどの正確さはない。つまり、測位衛星と衛星測位信号信機間の差は、誤差を含んだ見かけの伝搬時間となる。しかし、全ての測位衛星に対して同一の誤差で伝搬時間が計測されるために、これは大きな問題にはならない(後述)。これ故、受信装置側で測距した距離は、通常「疑似距離」と呼ばれる。疑似距離の計算手順を、図12に示す。
Therefore, the satellite positioning signal reception device is the time when the satellite positioning signal was transmitted from the satellite
Figure JPOXMLDOC01-appb-I000003
And the phase of the spreading code
Figure JPOXMLDOC01-appb-I000004
And the propagation time from the positioning satellite to the satellite positioning signal receiver can be known.
In practice, the on-board clock in the receiver is not as accurate as the positioning satellite's clock. That is, the difference between the positioning satellite and the satellite positioning signal receiver is an apparent propagation time including an error. However, this is not a big problem because the propagation time is measured with the same error for all positioning satellites (described later). Therefore, the distance measured on the receiving device side is usually called "pseudo distance". The calculation procedure of the pseudo distance is shown in FIG.
 図12は、L1 C/A信号に基づいた、従来の擬似距離の計算手順例を示すフローチャートである。図12における各変数の意味は、次の通りである。
Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006

Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008

Figure JPOXMLDOC01-appb-I000009
FIG. 12 is a flow chart showing an example of a procedure for calculating a conventional pseudorange based on an L1 C / A signal. The meaning of each variable in FIG. 12 is as follows.
Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006

Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008

Figure JPOXMLDOC01-appb-I000009
 図12において、疑似距離の計算は、まず対象とするk 番目の受信チャネルが衛星測位信号を追尾している状態から始まる(S1201)。 In FIG. 12, the calculation of the pseudorange starts with the state in which the target k-th reception channel is tracking the satellite positioning signal (S1201).
Figure JPOXMLDOC01-appb-I000010
は、k番受信チャネルの衛星の拡散符号の位相であるが、これは、追尾により都度更新された周波数並びに拡散符号の位相を取得することができることから、そのまま追尾により取得した拡散符号の位相を
Figure JPOXMLDOC01-appb-I000011
とする(S1202)。なお、L1 C/A信号の場合、拡散符号の位相は、0以上1023未満の値を取り得る。
Figure JPOXMLDOC01-appb-I000010
Is the phase of the spreading code of the satellite of the kth reception channel, but since it is possible to obtain the frequency of the spreading code and the frequency updated each time by tracking, the phase of the spreading code obtained by tracking as it is
Figure JPOXMLDOC01-appb-I000011
(S1202). In the case of the L1 C / A signal, the phase of the spreading code can take a value of 0 or more and less than 1023.
 次に、
Figure JPOXMLDOC01-appb-I000012
が分かっていない場合(S1203において、No)
Figure JPOXMLDOC01-appb-I000013
を求めるが、メッセージの解読が既に行われていれば、メッセージに含まれる時刻情報から、衛星が信号を送信した時刻を計算することができる(S1204)。例えば、L1 C/A信号のメッセージの場合、6秒ごとに週内秒で表現した時刻情報が含まれている。
そこには、そのメッセージが含まれた信号の送信開始時刻が分かる内容が、メッセージ内に記されている。従って、時刻情報が含まれたメッセージを一度でも解読していれば、継続的に受信しているL1 C/A信号が衛星から送信された時刻を知ることができ、その後も逐次更新することが可能である。この時刻を
Figure JPOXMLDOC01-appb-I000014
と置く。
next,
Figure JPOXMLDOC01-appb-I000012
If you do not know (No in S1203)
Figure JPOXMLDOC01-appb-I000013
If the message has already been decoded, the time at which the satellite transmitted the signal can be calculated from the time information included in the message (S1204). For example, in the case of a message of the L1 C / A signal, time information expressed in seconds within a week is included every 6 seconds.
In the message there is described in the message the content of knowing the transmission start time of the signal containing the message. Therefore, if the message including the time information is decoded even once, the L1 C / A signal being continuously received can know the time when it was transmitted from the satellite, and it can be updated one after another It is possible. This time
Figure JPOXMLDOC01-appb-I000014
And put.
 次に、
Figure JPOXMLDOC01-appb-I000015
が分かったものとして(S1203において、Yes)、
Figure JPOXMLDOC01-appb-I000016
を求めるが、最初の追尾ではなく、既に、
Figure JPOXMLDOC01-appb-I000017
が設定されている場合(S1205において、Yes)は、S1207へ進むが、最初の追尾の場合(S1205において、No)は、S1206へ進み、最初に追尾した受信チャネルを基準として、受信装置内の時計
Figure JPOXMLDOC01-appb-I000018
を適切な値に設定する。例えば、その方法は、最初に追尾した受信チャネルがk番受信チャネルであるとすると、
Figure JPOXMLDOC01-appb-I000019
の設定は、
Figure JPOXMLDOC01-appb-I000020
に対して適当な値(例えば、100ms)を加算した値とすることができ、以後、受信装置内の時計は、これを基準として動作する。なお、ここで用いる適当な値とは、各衛星と受信装置間の疑似距離を表現するための共通の誤差分に相当するので、基本的にはいかなる値でも構わない。
next,
Figure JPOXMLDOC01-appb-I000015
(S1203: Yes),
Figure JPOXMLDOC01-appb-I000016
But not the first tracking, already
Figure JPOXMLDOC01-appb-I000017
Is set (Yes in S1205), the process proceeds to S1207, but in the case of the first tracking (No in S1205), the process proceeds to S1206, and the reception channel tracked in the first is used as a reference in the receiving apparatus. clock
Figure JPOXMLDOC01-appb-I000018
Set to the appropriate value. For example, assuming that the reception channel tracked first is the kth reception channel,
Figure JPOXMLDOC01-appb-I000019
The setting is
Figure JPOXMLDOC01-appb-I000020
The value obtained by adding an appropriate value (e.g., 100 ms) may be used as a reference, and thereafter, the clock in the receiver operates based on this. The appropriate value used here corresponds to a common error for expressing the pseudoranges between the satellites and the receiver, and basically any value may be used.
 上述の通り、
Figure JPOXMLDOC01-appb-I000021
が求まると、光速Cに基づき、L1 C/A信号における疑似距離dk は、次式により算出することができる(S1207)。
Figure JPOXMLDOC01-appb-I000022
As mentioned above
Figure JPOXMLDOC01-appb-I000021
When it is determined, on the basis of the speed of light C, the pseudo distance d k in the L1 C / A signal can be calculated by the following equation (S1207).
Figure JPOXMLDOC01-appb-I000022
 以上の様にして、各受信チャネルにて得られた測距の結果(疑似距離)に基づいて、「測位演算部」で受信装置の位置を演算することができる。これが「測位」処理の概要である。測位を行うためには、通常4機以上の測位衛星からの衛星測位信号を必要とする。最低限4機の測位衛星との疑似距離を得ることにより、受信装置内の時計の設定で用いた「適当な値」による誤差分が解消される。 As described above, the “positioning operation unit” can calculate the position of the receiving device based on the result of distance measurement (pseudo distance) obtained in each reception channel. This is an outline of the "positioning" process. In order to perform positioning, satellite positioning signals from four or more positioning satellites are usually required. By obtaining pseudoranges with at least four positioning satellites, the error due to the "appropriate value" used in setting the clock in the receiving apparatus is eliminated.
 さて、衛星測位システムが放送する衛星測位信号には、測距そのものを目的としたものではなく、測距で得られた衛星と受信装置間の距離や、受信装置の測位位置を補正・補強する機能を持つ信号がある。これを「補強信号」といい、補強信号の中に含まれる情報を「補強情報」という。補強信号における補強情報は、メッセージ部分に含まれるのが一般的である。 Now, the satellite positioning signal broadcasted by the satellite positioning system is not intended for ranging itself, but corrects / reinforces the distance between the satellite obtained by ranging and the receiver and the positioning position of the receiver. There is a signal that has a function. This is called "reinforcement signal", and the information contained in the reinforcement signal is called "reinforcement information". The reinforcement information in the reinforcement signal is generally included in the message part.
 そして、一般的な方法で補強信号から補強情報を解読するためには、受信装置は、測距信号に対して行う場合と同じ手法で1受信チャネルを補強信号に割り当て、該当する周波数帯での捕捉処理及び追尾処理、並びに、解読処理をする必要がある。 Then, in order to decipher the reinforcement information from the reinforcement signal by a general method, the receiver assigns one reception channel to the reinforcement signal by the same method as the case of performing to the distance measurement signal, and It is necessary to perform capture processing and tracking processing and decoding processing.
 しかしながら、補強信号が放送される周波数帯や補強信号の拡散符号は、一般的に測距に使用される信号の周波数帯や拡散符号とは異なることが多い。測距に用いる信号だけを扱う受信装置の処理能力やリソースと比較して、補強信号を扱う受信装置は、より大きな処理能力やリソースを必要とする。また、LEX信号の場合は更に特殊であり、LEX信号ショートコードに含まれる補強信号を含むメッセージ解読をするためには、まず、2.5575MCps・410ms長のロングコードにより拡散されている信号を受信すること必要である。これは、通常測距に用いられるL1 C/A信号の、1.023MHz・1ms長拡散符号により拡散されている信号よりも遥かに長い。そのため、L1 C/Aを扱うことを想定した受信装置で、LEX信号の捕捉処理及び追尾処理を行おうとすると、部品や処理が増大化し、大きなコストアップを招いてしまうという課題があった。 However, the frequency band in which the reinforcement signal is broadcast and the spreading code of the reinforcement signal are often different from the frequency band and spreading code of the signal generally used for ranging. Compared to the processing power and resources of the receiver that handles only signals used for ranging, the receiver that handles reinforcement signals requires more processing power and resources. Also, in the case of the LEX signal, which is more specific, in order to decipher the message including the reinforcement signal included in the LEX signal short code, first, the signal spread by the long code of 2.5575 MCps · 410 ms length is received It is necessary to This is much longer than the signal spread by the 1.023 MHz 1 ms long spreading code of the L1 C / A signal usually used for ranging. Therefore, there has been a problem that, if the reception processing of the LEX signal and tracking processing are performed in the receiving apparatus assuming handling of L1 C / A, parts and processing increase and a large cost increase is caused.
 本発明は、周波数の異なる第1の信号と第2の信号とを送信する1以上の測位衛星を含む衛星測位システムの衛星測位受信装置であって、前記衛星測位受信装置は、前記第1の信号の受信を開始または継続的に行う際に取得する周波数及び位相情報に基づいて、前記第2の信号の周波数及び位相情報に変換処理することを特徴とする。 The present invention is a satellite positioning reception device of a satellite positioning system including one or more positioning satellites transmitting a first signal and a second signal different in frequency, the satellite positioning reception device comprising It is characterized in that conversion processing is performed on frequency and phase information of the second signal based on frequency and phase information acquired when signal reception is started or performed continuously.
 また、変換された前記第2の信号の周波数及び位相情報に基づいて、前記第2の信号に含まれるメッセージ情報を解読することを特徴とする。 Further, the present invention is characterized in that message information included in the second signal is decoded based on frequency and phase information of the converted second signal.
 また、変換された前記第2の信号の周波数及び位相情報に基づいて、前記第2の信号の追尾を継続的に行うことを特徴とする。 Further, the second signal is continuously tracked on the basis of frequency and phase information of the converted second signal.
 また、前記第1の信号の周波数及び位相情報、又は変換された前記第2の信号の周波数及び位相情報に基づいて、前記測位衛星と前記衛星測位受信装置との間の距離を測定することを特徴とする。 In addition, measuring the distance between the positioning satellite and the satellite positioning reception device based on frequency and phase information of the first signal or frequency and phase information of the converted second signal. It features.
 また、本発明は、周波数の異なる第1の信号及び第2の信号を送信する測位衛星と衛星測位受信装置とを含む衛星測位システムにおける衛星測位信号受信方法であって、前記衛星測位受信装置は、前記第1の信号の受信を開始又は継続的に行う際に取得する周波数及び位相情報に基づいて、前記第2の信号の周波数及び位相情報に変換することを特徴とする。 Further, the present invention is a satellite positioning signal receiving method in a satellite positioning system including a positioning satellite for transmitting a first signal and a second signal different in frequency and a satellite positioning receiving device, wherein the satellite positioning receiving device is And converting the frequency and phase information of the second signal on the basis of the frequency and phase information acquired when the reception of the first signal is started or continuously performed.
 本発明にかかる衛星測位信号受信方法及び装置により、2つの異なる周波数の衛星測位信号の捕捉処理及び追尾処理において、演算処理量の軽減し、演算処理部品に要するコストを軽減することができる方法等を提供することができる。 The satellite positioning signal receiving method and apparatus according to the present invention can reduce the amount of operation processing and reduce the cost required for operation processing components in the acquisition processing and tracking processing of satellite positioning signals of two different frequencies, etc. Can be provided.
本発明の一実施形態にかかる衛星測位信号受信装置を有する衛星測位システムの概略構成を説明する説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing explaining schematic structure of a satellite positioning system which has a satellite positioning signal receiver concerning one Embodiment of this invention. 本発明の一実施形態にかかる衛星測位信号受信装置のブロック構成を説明する説明図である。It is an explanatory view explaining a block configuration of a satellite positioning signal receiving device concerning one embodiment of the present invention. 本発明の一実施形態にかかる衛星測位信号受信装置における処理フローを説明するフローチャートである。It is a flowchart explaining the processing flow in the satellite positioning signal receiver concerning one embodiment of the present invention. 本発明の一実施形態にかかる衛星測位システムにおけるL1 C/A信号とLEX信号との関係を説明する説明図である。It is explanatory drawing explaining the relationship of the L1 C / A signal and LEX signal in the satellite positioning system concerning one Embodiment of this invention. 本発明の他の実施形態にかかる衛星測位信号受信装置を有する衛星測位システムの概略構成を説明する説明図である。It is explanatory drawing explaining schematic structure of a satellite positioning system which has a satellite positioning signal receiver concerning other embodiment of this invention. 本発明の他の実施形態にかかる衛星測位信号受信装置のブロック構成を説明する説明図である。It is explanatory drawing explaining the block configuration of the satellite positioning signal receiver concerning other embodiment of this invention. 本発明の一実施形態にかかる衛星測位システムにおける信号生成回路を説明する説明図である。It is an explanatory view explaining a signal generation circuit in a satellite positioning system concerning one embodiment of the present invention. 従来のL1 C/A信号の信号構造を説明する説明図である。It is explanatory drawing explaining the signal structure of the conventional L1 C / A signal. 従来の衛星測位受信装置を有する衛星測位システムの構成を説明する説明図である。It is explanatory drawing explaining the structure of the satellite positioning system which has the conventional satellite positioning reception apparatus. 従来の受信装置のデータ処理部のブロック構成を説明する説明図である。It is explanatory drawing explaining the block configuration of the data processing part of the conventional receiver. 従来の追尾回路のブロック構成を説明する説明図である。It is explanatory drawing explaining the block configuration of the conventional tracking circuit. 従来の擬似距離の計算手順を説明するフローチャートである。It is a flowchart explaining the calculation procedure of the conventional pseudo | simulation distance.
 以下、本発明にかかる衛星測位信号受信方法及び装置を実施するための形態ついて、図面を参照しながら詳述する。 Hereinafter, a mode for carrying out a satellite positioning signal receiving method and apparatus according to the present invention will be described in detail with reference to the drawings.
 図1に、本発明の一実施形態にかかるに衛星測位信号受信装置を有する衛星測位システムの概略構成を示す。本発明の一実施形態においては、LEX信号を取り扱うものとし、LEX信号を送信するQZSS(準天頂衛星システム)を衛星測位システムのモデルとして採用するものとする。 FIG. 1 shows a schematic configuration of a satellite positioning system having a satellite positioning signal receiving apparatus according to an embodiment of the present invention. In one embodiment of the present invention, LEX signals are handled, and QZSS (Quasi-Zenith Satellite System) transmitting LEX signals is adopted as a model of the satellite positioning system.
 図1において、QZSSシステム100の測位衛星101a~101dからそれぞれ放送されたL1 C/A信号及びLEX信号は、宇宙空間および大気中を伝搬し、衛星測位受信装置102に到達する。受信装置102に到達したL1 C/A信号及びLEX信号は、フロントエンド部1022にてそれぞれの搬送波周波数を、扱い易い周波数(中間周波数)に変換する(ダウンコンバージョンもしくはダウンコンバートという)。中間周波数は、受信装置の設計思想によって異なるものであり、本明細書では、便宜的にL1 C/A信号の中間周波数を
Figure JPOXMLDOC01-appb-I000023
とし、LEX信号の中間周波数を
Figure JPOXMLDOC01-appb-I000024
とする。ダウンコンバートされた各信号はその後、ADC部1023a及び1023bにてそれぞれ量子化され、データ処理部1024へ送られて受信処理される。
In FIG. 1, L1 C / A signals and LEX signals broadcast from positioning satellites 101a to 101d of QZSS system 100 propagate in space and the atmosphere, and reach satellite positioning receiver 102. The L1 C / A signal and LEX signal that have arrived at the receiving device 102 convert their respective carrier frequencies into manageable frequencies (intermediate frequencies) in the front end unit 1022 (referred to as down conversion or down conversion). The intermediate frequency differs depending on the design concept of the receiver, and in the present specification, the intermediate frequency of the L1 C / A signal is conveniently used.
Figure JPOXMLDOC01-appb-I000023
And the intermediate frequency of the LEX signal
Figure JPOXMLDOC01-appb-I000024
I assume. Thereafter, the down-converted signals are respectively quantized by the ADC units 1023 a and 1023 b and sent to the data processing unit 1024 for reception processing.
 次に、図1におけるデータ処理部1024の詳細構成を図2に示す。 Next, FIG. 2 shows a detailed configuration of the data processing unit 1024 in FIG.
 図2において、一般的には、測位受信装置は複数の測位衛星からの信号を受信するため、データ処理部には複数の受信チャネルが存在するが、本明細書では発明の理解と説明の便宜のため、1受信チャンネルにおける動作の説明に留める。また、例示的に、LEX信号のメッセージを解読を行う実施例として説明する。 In FIG. 2, in general, the positioning reception apparatus receives signals from a plurality of positioning satellites, and thus a plurality of reception channels exist in the data processing unit, but in the present specification, the convenience of understanding and explanation of the invention Therefore, the explanation of the operation in one reception channel is kept. Also, as an example, the embodiment will be described in which the message of the LEX signal is decrypted.
 図2において、データ処理部200は、例示的に、L1 C/A信号の捕捉処理を行うL1捕捉部201と、L1 C/A信号の追尾を行うL1追尾部202と、L1 C/A信号の解読を行うL1解読部203と、L1 C/A信号の周波数並びに拡散符号の位相からLEX信号の周波数並びに拡散符号の位相への変換処理を行うL1-E6変換処理部204と、LEX信号の解読を行うE6解読部205とによって構成される。
 なお、複数受信チャネルの衛星測位受信装置の場合は、これらの構成要素が1つの受信チャネルの構成要素として含まれ、場合によっては各チャネル内に「測距部」と1つの「測位演算部」とを備える構成を採用することも可能である。この場合、「測距部」及び「測位演算部」は、一般的な受信装置のデータ処理部と共通する構成を採用することができる。
In FIG. 2, the data processing unit 200 exemplarily illustrates an L1 capturing unit 201 that captures L1 C / A signals, an L1 tracking unit 202 that tracks L1 C / A signals, and an L1 C / A signal. L1 decoding unit 203 for decoding the L1 C / A signal, the L1-E6 conversion processing unit 204 for converting the phase of the spread code and the frequency of the L1 C / A signal to the phase of the LEX signal, and the phase of the spread code It comprises an E6 decryption unit 205 that performs decryption.
In the case of a satellite positioning receiver of a plurality of reception channels, these components are included as components of one reception channel, and in some cases, a "ranging unit" and one "positioning operation unit" in each channel It is also possible to adopt a configuration comprising In this case, the “ranging unit” and the “positioning operation unit” can adopt a configuration common to the data processing unit of a general reception device.
 図3に、データ処理部200における処理フローを示す。 FIG. 3 shows a processing flow in the data processing unit 200.
 データ処理部200では、まず、S301において処理を開始し、S302において衛星測位信号の周波数の初期値fL1及び拡散符号の位相の初期値φL1を取得した後、L1 C/A信号に対する捕捉処理が行われる(S303)。捕捉処理は、取得したfL1及びφL1に基づいて、入力された衛星測位信号との相関演算を行い、相関値の大小で捕捉の成否を判断する(S304)。追尾で用いるfL1及びφL1の取得に成功しない限り(S304においてYes)、S303に復帰して補足処理が行われる。補足処理の間、fL1及びφL1を徐々に変更し、最も高い相関値が得られた時のfL1及びφL1を捕捉成功時点での周波数及び拡散符号の位相とし、その後の追尾で用いる周波数及び拡散符号の位相の初期値とする(S305)。 In the data processing unit 200, first, the process is started in S301, and after acquiring the initial value f L1 of the frequency of the satellite positioning signal and the initial value φ L1 of the phase of the spreading code in S302, acquisition processing for the L1 C / A signal Is performed (S303). In the acquisition processing, correlation calculation with the input satellite positioning signal is performed based on the acquired f L1 and φ L1 , and the success or failure of acquisition is determined based on the magnitude of the correlation value (S304). As long as acquisition of f L1 and φ L1 used in tracking is not successful (Yes in S304), the process returns to S303 and a supplementary process is performed. During the supplementary process, by changing gradually f L1 and phi L1, and the highest frequency of the f L1 and phi L1 when the correlation value is obtained by capturing successful time and spread code phase used in subsequent tracking The initial values of the frequency and the phase of the spreading code are used (S305).
 なお、fL1及びφL1を徐々に変更する手法や、捕捉の成否の判断基準など、捕捉で用いられるアルゴリズムは、従来に用いられてきた捕捉アルゴリズムを採用することができる。捕捉処理の結果、L1 C/A信号を追尾するための周波数fL1、及び拡散符号の位相φL1を取得することができる。 Note that an algorithm used in capture, such as a method of gradually changing f L1 and φ L1 and a determination criterion of success or failure of capture, can adopt a capture algorithm conventionally used. As a result of the acquisition process, it is possible to acquire the frequency f L1 for tracking the L1 C / A signal and the phase φ L1 of the spreading code.
 そして、上述のL1 C/A信号の捕捉により、追尾で最初に用いる周波数及び拡散符号の位相が決定されると、捕捉は一旦終了し、引き続き、L1 C/A信号に対する追尾が行われる(S305)。まず捕捉によって得られたfL1を衛星測位信号の周波数、 φL1を衛星測位信号の拡散符号の位相とし、追尾処理を行う。 Then, when the frequency and the phase of the spread code to be used first in the tracking are determined by the above-described L1 C / A signal acquisition, the acquisition is temporarily ended, and the L1 C / A signal is subsequently tracked (S305). ). First, tracking processing is performed with f L1 obtained by acquisition as the frequency of the satellite positioning signal and φ L1 as the phase of the spreading code of the satellite positioning signal.
 追尾で用いられるアルゴリズムは、従来用いられてきた既知の追尾アルゴリズムを採用することができる。L1 C/A信号を入力とした追尾処理により、周波数及び拡散符号の位相が逐次更新され、新たなfL1、φL1となる。 The algorithm used for tracking can adopt a known tracking algorithm that has been used conventionally. By the tracking process using the L1 C / A signal as input, the phases of the frequency and the spreading code are sequentially updated, and become new f L1 and φ L1 .
 なお、信号の追尾が行われる周波数は、具体的には、中間周波数にドップラー周波数が加わったものである。ドップラー周波数は、測位衛星と衛星測位受信装置の相対速度と、送信される周波数とによって決定される値である。つまり、同じ測位衛星から送信されていても、L1 C/A信号とLEX信号とでは送信する周波数が異なるため、ドップラー周波数も異なる値となる。 The frequency at which the signal tracking is performed is specifically an intermediate frequency to which a Doppler frequency is added. The Doppler frequency is a value determined by the relative velocity of the positioning satellite and the satellite positioning receiver and the frequency to be transmitted. That is, even if signals are transmitted from the same positioning satellite, the frequencies to be transmitted are different between the L1 C / A signal and the LEX signal, so that the Doppler frequency also has different values.
 また、L1 C/A信号の追尾処理においては、受信状態に何らかの異常が発生しない限り(S306において、Yes)、正しい受信状態であるものとして、追尾処理(S306)を継続する。何らかの原因によりL1 C/A信号の追尾処理が正しく継続されなかった場合(S306において、No)は、捕捉処理(S303)に戻り、捕捉処理が終了したら、再度追尾を行う、という処理を繰り返す。
 L1 C/A信号の追尾処理が継続されている間、解読部において、L1 C/A信号のメッセージ解読が行われる(S307)。
In addition, in the tracking process of the L1 C / A signal, the tracking process (S306) is continued on the assumption that the reception state is correct as long as no abnormality occurs in the reception state (Yes in S306). If the tracking process of the L1 C / A signal is not continued correctly due to some cause (No in S306), the process returns to the capture process (S303), and repeats the process of tracking again when the capture process is completed.
While the tracking process of the L1 C / A signal is continued, the decoding unit decodes the message of the L1 C / A signal (S307).
 続いて、L1 C/A信号の追尾が継続されている間、時刻情報が1度でも取得されれば(S309)、この時刻情報とfL1及びφL1(S308)とに基づいて、L1-E6変換処理が行われる(S310)。なお、時刻情報は、追尾が継続している間は、1回取得できれば足りる。 Subsequently, while the tracking of the L1 C / A signal is continued, if the time information is acquired even once (S309), L1− based on the time information and f L1 and φ L1 (S308). E6 conversion processing is performed (S310). In addition, while tracking is continuing, it is sufficient if time information can be acquired once.
 L1-E6変換処理では、以下の2つの処理が行われる。
(処理A)L1 C/A信号の周波数からLEX信号の周波数への変換処理
(処理B)L1 C/A信号の拡散符号の位相からLEX信号の拡散符号の位相への変換処理
The following two processes are performed in the L1-E6 conversion process.
(Processing A) Conversion process of L1 C / A signal frequency to LEX signal frequency (Processing B) conversion process of L1 C / A signal spreading code phase to LEX signal spreading code phase
 なお、上記で「LEX信号の拡散符号」と記しているのは、LEX信号のメッセージがCSK変調されている、4ms周期のショートコードを指し、従来技術のようにロングコードの受信を行わないことが本発明の特徴となっている。 The term "spread code of LEX signal" refers to a short code of 4 ms cycle in which the message of LEX signal is CSK modulated, and long code reception is not performed as in the prior art. Is a feature of the present invention.
 L1 C/A信号の周波数からLEX信号の周波数への変換(上記、処理A)は、次式(2)に基づいて行われる。
Figure JPOXMLDOC01-appb-I000025
 但し、
Figure JPOXMLDOC01-appb-I000026

Figure JPOXMLDOC01-appb-I000027

Figure JPOXMLDOC01-appb-I000028

Figure JPOXMLDOC01-appb-I000029

Figure JPOXMLDOC01-appb-I000030

Figure JPOXMLDOC01-appb-I000031
である。
The conversion from the frequency of the L1 C / A signal to the frequency of the LEX signal (the process A) is performed based on the following equation (2).
Figure JPOXMLDOC01-appb-I000025
However,
Figure JPOXMLDOC01-appb-I000026

Figure JPOXMLDOC01-appb-I000027

Figure JPOXMLDOC01-appb-I000028

Figure JPOXMLDOC01-appb-I000029

Figure JPOXMLDOC01-appb-I000030

Figure JPOXMLDOC01-appb-I000031
It is.
 上式(2)は、 LEX信号の周波数 fE6が、L1 C/A号の周波数fL1と、L1 C/A信号の中心周波数fIFL1と、LEX信号の中間周波数fIFE6と、L1 C/A信号の中心周波数L1と、LEX信号の中心周波数E6とを用いて計算できるということを示している。
 ここで、L1は既知の値(1575.42MHz)であり、E6は既知の値(1278.75MHz)である。fIFL1及びfIFE6は、受信装置の設計思想によって固有の既知の値を用いることができる。
 fL1は、L1 C/A信号の周波数であるから、追尾にて用いられる周波数 fL1をそのまま用いればよい。
The above equation (2) shows that the frequency f E6 of the LEX signal is the frequency f L1 of L1 C / A, the center frequency f IFL1 of the L1 C / A signal, the intermediate frequency f IFE6 of the LEX signal, and L1 C / the center frequency L 1 of the a signal, indicating that can be calculated using the center frequency E 6 of the LEX signal.
Here, L 1 is a known value (1575.42 MHz), and E 6 is a known value (1278.75 MHz). Known values specific to the design concept of the receiver can be used for f IFL1 and f IFE6 .
Since f L1 is the frequency of the L1 C / A signal, the frequency f L1 used in tracking may be used as it is.
 以上の通り、上式(2)に基づいて、L1 C/A信号の周波数からLEX信号の周波数への変換処理が行われる。 As described above, the conversion process from the frequency of the L1 C / A signal to the frequency of the LEX signal is performed based on the above equation (2).
 また、L1 C/A信号の拡散符号の位相からLEX信号の拡散符号の位相への変換(上記、処理B)は、次式(3)に基づいて行われる。
Figure JPOXMLDOC01-appb-I000032
 但し、kは、0、1、2、3のうちのいずれかの値をとるものとし、
Figure JPOXMLDOC01-appb-I000033

Figure JPOXMLDOC01-appb-I000034

Figure JPOXMLDOC01-appb-I000035

Figure JPOXMLDOC01-appb-I000036

Figure JPOXMLDOC01-appb-I000037
である。
Further, the conversion from the phase of the spreading code of the L1 C / A signal to the phase of the spreading code of the LEX signal (the process B) is performed based on the following equation (3).
Figure JPOXMLDOC01-appb-I000032
However, k is taken as any one of 0, 1, 2, 3
Figure JPOXMLDOC01-appb-I000033

Figure JPOXMLDOC01-appb-I000034

Figure JPOXMLDOC01-appb-I000035

Figure JPOXMLDOC01-appb-I000036

Figure JPOXMLDOC01-appb-I000037
It is.
 上記(3)は、LEX信号の拡散符号の位相φE6が、L1 C/A信号の拡散符号の位相φL1と、L1 C/A信号の拡散符号のチップレートRL1と、L1信号の拡散符号の周期TL1と、LEX信号の拡散符号のチップレートRE6とを用いて計算できるということを示している。
 ここで、RL1は既知の値(1.023MCps)であり、また、TL1は既知の値(0.001sec)であり、また、RE6は、既知の値(2.5575MCps)である。φL1は、L1 C/A信号の拡散符号の位相であるから、追尾にて用いられる拡散符号の位相φL1をそのまま用いることができる。
In the above (3), the phase φ E6 of the spreading code of the LEX signal is the phase φ L1 of the spreading code of the L1 C / A signal, the chip rate R L1 of the spreading code of the L1 C / A signal, and the spreading of the L1 signal It is shown that calculation is possible using the code period T L1 and the chip rate R E6 of the spreading code of the LEX signal.
Here, R L1 is a known value (1.023 MCps), T L1 is a known value (0.001 sec), and R E6 is a known value (2.5575 MCps). Since φ L1 is the phase of the spreading code of the L1 C / A signal, the phase φ L1 of the spreading code used in tracking can be used as it is.
 なお、kは、2つの信号の拡散符号周期によって変わる値であり、L1 C/AとLEXの場合は、[0,3]の値を取る整数である。すなわち、kは、0,1,2,3,0,1,2,3,0,・・・と、1ms毎に更新される。kの値は、L1 C/A信号のメッセージ解読により時刻情報が取得された後に決定される。具体的には、図4に示すL1 C/A信号とLEX信号との関係を参照しながら説明する。 In addition, k is a value which changes with the spreading code period of two signals, and in the case of L1 C / A and LEX, it is an integer which takes the value of [0, 3]. That is, k is updated every 0 ms as 0, 1, 2, 3, 0, 1, 2, 3, 0,. The value of k is determined after time information is obtained by message decryption of the L1 C / A signal. Specifically, this will be described with reference to the relationship between the L1 C / A signal and the LEX signal shown in FIG.
 図4において、現在受信している衛星測位信号が送信された時刻をtX[sec]とする。tXは、L1 C/A信号の追尾処理後、メッセージ解読により、6秒に1回の割合でメッセージに含まれている時刻情報を基準にして、拡散符号が繰り返された回数と、追尾しているL1 C/A信号の拡散符号の位相φL1とから、求めることができる。 In FIG. 4, the time at which the currently received satellite positioning signal is transmitted is t x [sec]. t X is the number of times the spreading code has been repeated based on the time information contained in the message at a rate of once every 6 seconds by message decoding after tracking processing of the L1 C / A signal It can be determined from the phase φ L1 of the spreading code of the L 1 C / A signal.
 次に、L1 C/A信号の拡散符号と、LEX信号の拡散符号とが、同時に開始した時刻をt0[sec]と定義する。L1 C/A信号及びLEX信号は、週の始まりを基準として、同時に信号の送信を開始する。LEX信号の拡散符号周期TE6は4msであり、L1 C/A信号の拡散符号周期TL1は1msであるため、週の始まり以後は、正確に4ms毎に、L1 C/A信号の拡散符号及びLEX信号の拡散符号は同時に開始する。つまり、週の始まりを基準として、4msの倍数の時刻では、L1 C/A信号の拡散符号とLEX信号の拡散符号は必ず同時に開始される。図4において、tX以前の直近を見ると、L1 C/A信号の拡散符号を4周期分遡るまでに、必ず、L1 C/A信号の拡散符号とLEX信号の拡散符号とが同時に開始する時刻が存在する。つまり、tX以前で、4msの倍数となる直近の時刻がt0である。 Next, a time when the spreading code of the L1 C / A signal and the spreading code of the LEX signal start simultaneously is defined as t 0 [sec]. The L1 C / A signal and the LEX signal simultaneously start transmitting signals relative to the beginning of the week. Spreading code period T E6 of LEX signal is 4 ms, L1 for C / A spreading code period T L1 of the signal is 1 ms, week beginning after the exactly every 4 ms, spreading code L1 C / A signal The spreading codes of the LEX signal and the LEX signal start simultaneously. That is, the spreading code of the L1 C / A signal and the spreading code of the LEX signal are always simultaneously started at times that are multiples of 4 ms with reference to the start of the week. In FIG. 4, when looking at the nearest point before t X , the spreading code of the L1 C / A signal and the spreading code of the LEX signal start at the same time by 1 cycle of the spreading code of the L1 C / A signal. Time is present. That is, before t X , the nearest time to be a multiple of 4 ms is t 0 .
 上式(3)で表されるkの値は、tXとt0との間に含まれるL1 C/A信号の拡散符号の周期の数である。つまり、L1 C/A信号の拡散符号とLEX信号の拡散符号とが同時に開始された時刻を基準に、k=0から1ms毎に更新される。 The value of k represented by the above equation (3) is the number of periods of the spreading code of the L1 C / A signal included between t X and t 0 . That is, based on the time at which the spreading code of the L1 C / A signal and the spreading code of the LEX signal are simultaneously started, k is updated every 1 ms from k = 0.
 以上のように、L1 C/A信号の拡散符号の位相からLEX信号の拡散符号の位相への変換が行われる。 As described above, the phase of the spreading code of the L1 C / A signal is converted to the phase of the spreading code of the LEX signal.
 S310においてL1-E6変換処理が終わると、S311に進み、LEXメッセージ解読が行われる。 When the L1-E6 conversion process is completed in S310, the process proceeds to S311, where the LEX message is decrypted.
 再び、図2を参照する。L1-E6変換処理部204にて計算されたLEX信号の周波数及び拡散符号の位相は、E6解読部205に渡され、E6解読部205においてLEX信号に含まれるメッセージを解読するのに用いられる。
 なお、図2において、L1追尾部202からL1-E6変換処理部204を経て、E6解読部205までの信号の流れを点線で表したのは、ブロック間で引き渡されるのが、データ処理部に入力された衛星測位信号ではなく、それらに基づいて計算された周波数及び拡散符号の位相、並びに、解読部で解読されたメッセージに基づいた時刻情報であることを意味する。
Refer again to FIG. The frequency of the LEX signal and the phase of the spreading code calculated by the L1-E6 conversion processing unit 204 are passed to the E6 decoding unit 205, and used by the E6 decoding unit 205 to decode the message included in the LEX signal.
In FIG. 2, the signal flow from the L1 tracking unit 202 through the L1-E6 conversion processing unit 204 to the E6 decoding unit 205 is represented by dotted lines in that the data processing unit is delivered between blocks. It means that it is not the input satellite positioning signals, but the phase of the frequency and spreading code calculated based on them, and the time information based on the message decoded by the decoding unit.
 E6解読部205では、変換されたLEX信号の周波数及び拡散符号の位相に基づき、信号に含まれるメッセージが解読される。実際にLEX信号のメッセージを解読するには、4ms毎のLEX拡散符号の開始時刻を知る必要があるが、これは、L1-E6変換処理部204にてLEX信号の拡散符号の位相を計算する際に用いた、拡散符号同時開始時刻t0に該当する。t0は、変換されたLEX信号の拡散符号の位相φE6を用いて、次式で表すことができる。
Figure JPOXMLDOC01-appb-I000038
The E6 decoding unit 205 decodes the message included in the signal based on the converted frequency of the LEX signal and the phase of the spreading code. In order to actually decipher the message of the LEX signal, it is necessary to know the start time of the LEX spreading code every 4 ms, but in this case, the L1-E6 conversion processing unit 204 calculates the phase of the spreading code of the LEX signal. This corresponds to the spreading code simultaneous start time t 0 used in this case. t 0 can be expressed by the following equation using the phase φ E6 of the spreading code of the converted LEX signal.
Figure JPOXMLDOC01-appb-I000038
 つまり、LEX拡散符号の開始時刻(=拡散符号同時開始時刻)t0は、現在受信している信号の送信時刻tXと、変換されたLEX信号の拡散符号の位相φE6と、LEX信号の拡散符号のチップレートRE6とを用いて計算することができる。 That is, the start time (= spread code simultaneous start time) t 0 of the LEX spreading code is the transmission time t X of the signal currently being received, the phase φ E6 of the spread code of the converted LEX signal, and It can be calculated using the chip rate R E6 of the spreading code.
 結局、LEX信号のメッセージ解読は、t0から4ms毎のLEX信号のメッセージに対して、変換されたLEX信号の周波数に基づきLEX信号に重畳されている周波数成分を除去し、CSK変調されたショートコードをデコードすることによって、LEX信号のメッセージを解読することができる。 After all, the short message decryption of LEX signals, which for messages LEX signal 4ms each from t 0, the frequency components are removed superimposed on the LEX signal based on the frequency of the converted LEX signals, are CSK modulation By decoding the code, the message of the LEX signal can be deciphered.
 以上の様にして、変換されたLEX信号の周波数並びに拡散符号の位相に基づき、LEX信号に含まれるメッセージを直接解読することが可能である。 As described above, it is possible to directly decode the message included in the LEX signal based on the frequency of the converted LEX signal and the phase of the spreading code.
 また、より高度な処理としては、変換されたLEX信号の周波数及び拡散符号の位相に基づき、改めてLEX信号に1受信チャネルを割り当て、LEX信号のロングコードの追尾を開始することも可能である。この場合、通常の従来技術によるLEX信号のロングコードの追尾を開始するために必要となる、LEX信号のロングコードによる捕捉処理を省くことができるという利点を持っている。 As more advanced processing, it is also possible to newly assign one reception channel to the LEX signal based on the converted frequency of the LEX signal and the phase of the spreading code, and start tracking of the long code of the LEX signal. In this case, there is an advantage that the long code acquisition processing of the LEX signal can be omitted, which is necessary to start tracking of the long code of the conventional LEX signal according to the prior art.
 この場合、LEX信号のロングコードの追尾処理を継続しながら、LEX信号のショートコードに含まれるメッセージを解読することになる。 In this case, the message included in the short code of the LEX signal is decoded while continuing the tracking process of the long code of the LEX signal.
 本発明の特徴の一つは、LEX信号の捕捉処理・追尾処理を省略して、L1 C/A信号の捕捉処理・追尾処理によって取得した周波数及び拡散符号の位相から、LEX信号に含まれる補強情報を解読する点にある。送信している周波数は異なるが、L1 C/A信号とLEX信号とが同じ衛星から送信されているために、2つの号の拡散符号が定期的に同じタイミングで送信されていることを利用している。 One feature of the present invention is that the processing included in the LEX signal is omitted from the frequency and the phase of the spread code acquired by the capture processing and tracking processing of the L1 C / A signal, omitting the capture processing and tracking processing of the LEX signal. It is in the point of deciphering information. Although the transmitting frequency is different, because the L1 C / A signal and the LEX signal are transmitted from the same satellite, it is utilized that the spreading codes of the two issues are transmitted periodically at the same timing. ing.
 以上に示した発明を実施するための最良の形態においては、L1 C/A信号を継続的に受信し、その周波数及び拡散符号の位相から、LEX信号の周波数及び拡散符号の位相を求め、そこからLEX信号に含まれる補強情報を解読すると好適である。 In the best mode for carrying out the invention described above, the L1 C / A signal is continuously received, and the frequency of the LEX signal and the phase of the spreading code are determined from the frequency and the phase of the spreading code. It is preferable to decipher the reinforcement information included in the LEX signal.
 以上説明した実施の形態では、データ処理部内にE6解読部を設けた構成を説明したが、本発明はこれに限定されるものではなく、例えば、図5に示すように、データ処理部5024の外の系としてE6解読部5025を設置することも可能である。即ち、データ処理部5024の出力として、LEX信号の周波数及び拡散符号の位相を、他の系にあるE6解読部5025に渡すことが考えられる。この場合、受信装置としてはADC部5023bから出力された衛星測位信号と、変換されたLEX信号の周波数及び拡散符号の位相とが出力され、別途、E6解読部(専用機)5025に渡される。
 なお、この場合、データ処理部5024の詳細ブロック図として例示的に図6に示したデータ処理部600に示されるように、データ処理部600には、L1 C/A信号が入力されるだけでE6信号が入力される必要はない。
In the embodiment described above, the configuration in which the E6 decoding unit is provided in the data processing unit has been described, but the present invention is not limited to this. For example, as shown in FIG. It is also possible to set up the E6 decoding unit 5025 as an external system. That is, it is conceivable to pass the frequency of the LEX signal and the phase of the spreading code to the E6 decoding unit 5025 in another system as the output of the data processing unit 5024. In this case, the satellite positioning signal output from the ADC unit 5023b and the frequency of the converted LEX signal and the phase of the spreading code are output as the receiving apparatus, and separately passed to the E6 decoding unit (dedicated machine) 5025.
In this case, as shown in the data processing unit 600 illustrated in FIG. 6 as a detailed block diagram of the data processing unit 5024, the data processing unit 600 simply receives the L1 C / A signal. The E6 signal does not have to be input.
 また、上述の説明では、2つの異なる信号として、L1 C/A信号とLEX信号とを取り扱ったが、本発明は、L1 C/A信号とLEX信号との組み合わせに限定されるものではなく、同じ測位衛星から送信された2つの異なる周波数の衛星測位信号であれば、同様に、捕捉処理・追尾処理に関して相対的に軽い処理能力を要する衛星測位信号に基づいて、捕捉処理・追尾処理に関して相対的に重い処理能力を要する衛星測位信号の情報を取得することが可能である。 In the above description, the L1 C / A signal and the LEX signal are handled as two different signals, but the present invention is not limited to the combination of the L1 C / A signal and the LEX signal, In the case of satellite positioning signals of two different frequencies transmitted from the same positioning satellite, similarly, relative to acquisition processing and tracking processing based on satellite positioning signals requiring relatively light processing capability for acquisition processing and tracking processing It is possible to obtain information on satellite positioning signals that require extremely heavy processing power.
 また、L1 C/A信号が搬送されるL1帯と、LEX信号が搬送されるE6帯の周波数との差分によって、2つの信号が宇宙空間および大気中を伝搬する際に、地球上空に存在する電離層の影響を受け、一般的には、2つの周波数の信号間で伝搬距離に差分が生じる(これを「電離層遅延誤差」という。)。電離層遅延誤差は、L1 C/A信号の拡散符号の位相とLEX信号の拡散符号の位相にも影響を及ぼすため、L1 C/A信号の拡散符号の位相からLEX信号の拡散符号の位相への変換に際し、2つの周波数の間で生じる電離層遅延誤差を考慮すると更に好適である。
 電離層遅延誤差による差分は、一例として、ロバッチャーモデルのような、学術的なモデルに従って予測をすることが可能である。従って、この場合、上式(3)にて表した、L1 C/A信号の拡散符号の位相からLEX信号の拡散符号の位相への変換は、電離層遅延誤差によるL1 C/A信号の拡散符号とLEX信号の拡散符号との位相差を表す項であるψKを含めて、以下のように表現することができる。
Figure JPOXMLDOC01-appb-I000039
 但し、
Figure JPOXMLDOC01-appb-I000040
である。
Also, due to the difference between the L1 band in which the L1 C / A signal is carried and the frequency in the E6 band in which the LEX signal is carried, two signals exist above the earth when propagating through space and the atmosphere. Under the influence of the ionosphere, in general, the propagation distance has a difference between signals of two frequencies (this is called "ionosphere delay error"). Since the ionospheric delay error also affects the phase of the spreading code of the L1 C / A signal and the phase of the spreading code of the LEX signal, the phase of the spreading code of the L1 C / A signal to the phase of the spreading code of the LEX signal It is further preferred to take into account the ionospheric delay error that occurs between the two frequencies during conversion.
The difference due to the ionospheric delay error can be predicted according to an academic model, such as, for example, a ROCHATTER model. Therefore, in this case, the conversion from the phase of the diffusion code of the L1 C / A signal to the phase of the diffusion code of the LEX signal represented by the above equation (3) is the diffusion code of the L1 C / A signal due to the ionospheric delay error. including a term in which [psi K representing the phase difference between the spreading codes and LEX signals, can be expressed as follows.
Figure JPOXMLDOC01-appb-I000039
However,
Figure JPOXMLDOC01-appb-I000040
It is.
 また、上述の実施例では、L1 C/A信号とLEX信号とが受信装置に入力された後、ADC部で各々ADC変換され、データ処理部に入力されているが、各々の電気的な経路の差分などの影響により、L1 C/A信号の拡散符号の位相とLEX信号の拡散符号のと位相に誤差分が生じる場合がある。
 従って、L1 C/A信号の拡散符号の位相からLEX信号の拡散符号の位相への変換に際し、2つの周波数の間で生じる誤差分を考慮すると更に好適である。
Also, in the above embodiment, after the L1 C / A signal and the LEX signal are input to the receiving device, they are respectively ADC converted in the ADC unit and input to the data processing unit. The difference between the phase of the spreading code of the L1 C / A signal and the phase of the spreading code of the LEX signal may occur due to the influence of the difference between
Therefore, when converting the phase of the spreading code of the L1 C / A signal to the phase of the spreading code of the LEX signal, it is more preferable in consideration of an error caused between the two frequencies.
 この場合、誤差分となる値をいくつか予測し、各々を考慮に入れた変換を行い、複数の結果を得ることができる。具体的な処理手順としては、上式(3)にて表した、L1 C/A信号の拡散符号の位相からLEX信号の拡散符号の位相への変換は、誤差分によるL1 C/A信号の拡散符号とLEX信号の拡散符号との位相差を表す項であるψnを含めて、次式のように改良することができる。
Figure JPOXMLDOC01-appb-I000041
 但し、
Figure JPOXMLDOC01-appb-I000042
In this case, it is possible to predict several values for the error component, perform conversion taking each into consideration, and obtain a plurality of results. As a specific processing procedure, the conversion from the phase of the spreading code of the L1 C / A signal to the phase of the spreading code of the LEX signal expressed by the above equation (3) is performed by converting the L1 C / A signal It can be improved as in the following equation, including ψ n which is a term representing the phase difference between the spreading code and the spreading code of the LEX signal.
Figure JPOXMLDOC01-appb-I000041
However,
Figure JPOXMLDOC01-appb-I000042
 なお、誤差分となる値をいくつか予測し、各々を考慮に入れた変換を行う場合、その誤差分には、上述の電離層遅延誤差を考慮したL1 C/A信号の拡散符号の位相とLEX信号の拡散符号の位相との差分が含まれても構わない。 In addition, when several values to be an error component are predicted, and conversion taking into consideration each is performed, the phase and LEX of the diffusion code of the L1 C / A signal in consideration of the above-mentioned ionospheric delay error The difference from the phase of the spreading code of the signal may be included.
 最後に、本発明の一実施形態にかかる衛星測位システムにおける信号生成回路例を説明しておく。図7に、本発明の一実施形態にかかる衛星測位システムにおいて使用されるLEX信号の生成回路を示す。 Finally, an example of a signal generation circuit in the satellite positioning system according to an embodiment of the present invention will be described. FIG. 7 shows a LEX signal generation circuit used in the satellite positioning system according to an embodiment of the present invention.
 信号生成回路700は、一例として、準天頂衛星システム(QZSS)の1278.75MHz帯(E6帯)にて放送されるLEX信号に係るものであるが、LEX信号は補強信号として利用されている。
 LEX信号は、拡散符号生成器701より生成され、4ms長の8bit(=256通り)メッセージによりCSK変調器702でCSKコード変調された「ショートコード」と呼ばれる2.5575Mcpsの拡散符号と、拡散符号生成器701より生成され、方形波生成器703から生成される方形波に重畳された、410ms長であって2.5575Mcpsの「ロングコード」と呼ばれる拡散符号とを、5.115Mcpsの間隔で交互に選択するようクロック制御され、搬送波生成器705で生成された1278.75MHzの搬送波周波数に重畳されて送信される。
 なお、CSK変調とは、コードシフトキーイングの略であり、データの値によって拡散符号の位相を変化させる変調方式の一つである。
The signal generation circuit 700 relates to the LEX signal broadcast in the 1278.75 MHz band (E6 band) of the Quasi-Zenith Satellite System (QZSS) as an example, but the LEX signal is used as a reinforcement signal.
The LEX signal is generated from the spreading code generator 701 and a spreading code of 2.5575 Mcps called “short code” called “short code” which is CSK code-modulated by the CSK modulator 702 by a 4 ms long 8-bit (= 256 ways) message A 410 ms long, 2.5575 Mcps spreading code called a "long code" alternated at intervals of 5.115 Mcps, superimposed on the square wave generated by generator 701 and superimposed on the square wave generated by square wave generator 703 To be selected and transmitted superimposed on the carrier frequency of 1278.75 MHz generated by the carrier generator 705.
CSK modulation is an abbreviation of code shift keying, and is one of modulation schemes in which the phase of a spread code is changed according to the value of data.
[公知の技術等]
 本発明に関連して、本明細書と同時に出願されたかその前に出願され、公に自由に入手できるすべての論文および文書の内容は、参照によって本明細書の記載内容として組み込まれる。
[Known technology etc.]
In the context of the present invention, the contents of all articles and documents filed concurrently with or separately from the present specification and freely available to the public are hereby incorporated by reference.
[組み合わせ]
 本明細書(請求項、実施例、要約、及び図面を含む)に記載された構成要件の全て及び/又は開示された全ての方法又は処理の全てのステップについては、これらの特徴が相互に排他的である組合せを除き、任意の組合せで組み合わせることができる。
[combination]
These features are mutually exclusive with respect to all of the constituent elements described in the specification (including claims, examples, abstracts, and drawings) and / or all steps of all methods or processes disclosed. It can be combined in any combination except the combination which is the target.
[特徴の一例]
 本明細書(請求項、実施例、要約、及び図面を含む)に記載された特徴の各々は、明示的に否定されない限り、同一の目的、同等の目的、または類似する目的のために働く代替の特徴に置換することができる。したがって、明示的に否定されない限り、開示された特徴の各々は、包括的な一連の同一又は均等となる特徴の一例にすぎない。
[One example of features]
Each of the features recited in the specification (including the claims, examples, abstracts and drawings) serve an alternative for the same purpose, an equivalent purpose or a similar purpose, unless explicitly denied Can be substituted for Thus, unless expressly stated to the contrary, each of the disclosed features is only an example of a generic series of identical or equivalent features.
 本発明は、上述した実施形態のいずれの具体的構成にも制限されるものではない。本発明は、本明細書(請求項、実施例、要約、及び図面を含む)に記載された全ての新規な特徴又はそれらの組合せ、あるいは記載された全ての新規な方法又は処理のステップ、又はそれらの組合せに拡張することができる。 The present invention is not limited to any specific configuration of the above-described embodiment. The present invention comprises all novel features or combinations thereof described in this specification (including claims, examples, abstracts and figures), or all novel methods or process steps described, or It can be extended to their combination.
100 衛星測位システム
101a~101d 測位衛星
102 測位測位受信装置
1021 受信アンテナ部
1022 フロントエンド部
1023a、1023b ADC部
1024 データ処理部
100 satellite positioning system 101a to 101d positioning satellite 102 positioning positioning receiver 1021 receiving antenna unit 1022 front end unit 1023a, 1023b ADC unit 1024 data processing unit

Claims (14)

  1.  周波数の異なる第1の信号と第2の信号とを送信する1以上の測位衛星を含む衛星測位システムの衛星測位受信装置であって、前記衛星測位受信装置は、前記第1の信号の受信を開始または継続的に行う際に取得する周波数及び位相情報に基づいて、前記第2の信号の周波数及び位相情報に変換処理することを特徴とする衛星測位受信装置。 A satellite positioning reception device of a satellite positioning system including one or more positioning satellites transmitting a first signal and a second signal different in frequency, the satellite positioning reception device receiving the first signal A satellite positioning receiving apparatus characterized in that conversion processing is performed to frequency and phase information of the second signal based on frequency and phase information acquired when starting or continuously performing.
  2.  変換された前記第2の信号の周波数及び位相情報に基づいて、前記第2の信号に含まれるメッセージ情報を解読することを特徴とする請求項1に記載の衛星測位受信装置。 The satellite positioning receiver according to claim 1, wherein the message information included in the second signal is decoded based on frequency and phase information of the converted second signal.
  3.  変換された前記第2の信号の周波数及び位相情報に基づいて、前記第2の信号の追尾を継続的に行うことを特徴とする請求項1に記載の衛星測位受信装置。 The satellite positioning receiving device according to claim 1, wherein tracking of the second signal is continuously performed based on frequency and phase information of the converted second signal.
  4.  前記第1の信号の周波数及び位相情報、又は変換された前記第2の信号の周波数及び位相情報に基づいて、前記測位衛星と前記衛星測位受信装置との間の距離を測定することを特徴とする請求項1~3のいずれか1項に記載の衛星測位受信装置。 Measuring a distance between the positioning satellite and the satellite positioning reception apparatus based on frequency and phase information of the first signal or frequency and phase information of the converted second signal; The satellite positioning receiving device according to any one of claims 1 to 3.
  5.  前記第1の信号がL1周波数帯(1575.42MHz帯)のC/A信号であることを特徴とする請求項1~4のいずれか1項に記載の衛星測位受信装置。 The satellite positioning receiving device according to any one of claims 1 to 4, wherein the first signal is a C / A signal in an L1 frequency band (1575.42 MHz band).
  6.  前記第2の信号がE6周波数帯(1278.75MHz帯)のLEX信号であることを特徴とする請求項1~5のいずれか1項に記載の衛星測位受信装置。 The satellite positioning reception device according to any one of claims 1 to 5, wherein the second signal is a LEX signal in an E6 frequency band (1278.75 MHz band).
  7.  請求項1~6のいずれか1項に記載の衛星測位受信装置であって、前記第2の信号の周波数及び位相情報の変換処理に際し、前記第1の信号の周波数と前記第2の信号の周波数との差分によって生じる電離層遅延誤差成分に基づいて、前記変換処理を行うことを特徴とする衛星測位受信装置。 The satellite positioning receiving apparatus according to any one of claims 1 to 6, wherein, when converting the frequency and phase information of the second signal, the frequency of the first signal and the frequency of the second signal. A satellite positioning receiving apparatus characterized in that the conversion processing is performed based on an ionospheric delay error component generated by a difference from a frequency.
  8.  請求項1~7のいずれか1項に記載の衛星測位受信装置であって、前記第2の信号の周波数及び位相情報の変換処理に際し、前記第1の信号の位相情報及び前記第2の信号の位相情報に含まれる誤差に基づき、前記第2の信号の位相情報に複数の候補を設定した上で、前記変換処理を行うことを特徴とする衛星測位受信装置。 The satellite positioning reception device according to any one of claims 1 to 7, wherein, when converting the frequency and phase information of the second signal, the phase information of the first signal and the second signal. A satellite positioning receiving apparatus characterized in that the conversion processing is performed after setting a plurality of candidates for the phase information of the second signal based on the error included in the phase information of.
  9.  周波数の異なる第1の信号及び第2の信号を送信する測位衛星と衛星測位受信装置とを含む衛星測位システムにおける衛星測位信号受信方法であって、前記衛星測位受信装置は、前記第1の信号の受信を開始又は継続的に行う際に取得する周波数及び位相情報に基づいて、前記第2の信号の周波数及び位相情報に変換することを特徴とする衛星測位信号受信方法。 A satellite positioning signal receiving method in a satellite positioning system including a positioning satellite transmitting a first signal and a second signal different in frequency and a satellite positioning receiving device, wherein the satellite positioning receiving device is the first signal. A satellite positioning signal reception method characterized in that it is converted into frequency and phase information of the second signal based on frequency and phase information acquired when starting or continuing reception of the second signal.
  10.  変換された前記第2の信号の周波数及び位相情報に基づいて、前記第2の信号に含まれるメッセージ情報を解読することを特徴とする請求項7に記載の方法。 The method according to claim 7, wherein the message information contained in the second signal is decoded based on frequency and phase information of the converted second signal.
  11.  変換された前記第2の信号の周波数及び位相情報に基づいて、前記第2の信号の受信を継続的に行うことを特徴とする請求項7に記載の方法。 The method according to claim 7, characterized in that reception of the second signal is performed continuously on the basis of frequency and phase information of the converted second signal.
  12.  前記第1の信号の周波数及び位相情報、又は変換された前記第2の信号の周波数及び位相情報に基づいて、前記測位衛星と前記衛星測位受信装置との間の距離を測定することを特徴とする請求項7~9のいずれか1項に記載の方法。 Measuring a distance between the positioning satellite and the satellite positioning reception apparatus based on frequency and phase information of the first signal or frequency and phase information of the converted second signal; The method according to any one of claims 7-9.
  13.  前記第1の信号がL1周波数帯(1575.42MHz帯)のC/A信号であることを特徴とする請求項7~10のいずれか1項に記載の方法。 The method according to any one of claims 7 to 10, wherein the first signal is a C / A signal in an L1 frequency band (1575.42 MHz band).
  14.  前記第2の信号がE6周波数帯(1278.75MHz帯)のLEX信号であることを特徴とする請求項7~11のいずれか1項に記載の方法。 The method according to any one of claims 7 to 11, wherein the second signal is a LEX signal in an E6 frequency band (1278.75 MHz band).
PCT/JP2013/069305 2012-07-25 2013-07-16 Satellite positioning signal receiving method and device WO2014017338A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11201500577XA SG11201500577XA (en) 2012-07-25 2013-07-16 Satellite positioning signal receiving method and device
AU2013294159A AU2013294159B2 (en) 2012-07-25 2013-07-16 Satellite positioning signal receiving method and device
KR1020157004733A KR20150038293A (en) 2012-07-25 2013-07-16 Satellite positioning signal receiving method and device
PH12015500155A PH12015500155B1 (en) 2012-07-25 2015-01-23 Satellite positioning signal receiving method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012164578A JP5965765B2 (en) 2012-07-25 2012-07-25 Satellite positioning signal receiving method and apparatus
JP2012-164578 2012-07-25

Publications (1)

Publication Number Publication Date
WO2014017338A1 true WO2014017338A1 (en) 2014-01-30

Family

ID=49997152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069305 WO2014017338A1 (en) 2012-07-25 2013-07-16 Satellite positioning signal receiving method and device

Country Status (7)

Country Link
JP (1) JP5965765B2 (en)
KR (1) KR20150038293A (en)
AU (1) AU2013294159B2 (en)
PH (1) PH12015500155B1 (en)
SG (1) SG11201500577XA (en)
TW (1) TWI596363B (en)
WO (1) WO2014017338A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019174394A (en) * 2018-03-29 2019-10-10 日本無線株式会社 Spectrum spread signal receiver
CN113238260A (en) * 2021-05-18 2021-08-10 北京航天飞行控制中心 Signal parameter acquisition method, system, storage medium and electronic equipment
CN114598583A (en) * 2022-03-07 2022-06-07 天津凯芯科技有限公司 CSK modulation symbol decoding method, device, chip and satellite receiver
CN114624746A (en) * 2022-03-07 2022-06-14 天津凯芯科技有限公司 CSK modulation symbol decoding method, device, chip and satellite receiver

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10809352B2 (en) 2015-06-05 2020-10-20 Sony Semiconductor Solutions Corporation Signal processing device and method,and information processing device and method
KR102036078B1 (en) * 2017-09-07 2019-10-24 한국항공우주연구원 Multiband gnss receivers and method of operateing multiband gnss receivers
WO2021215950A1 (en) 2020-04-22 2021-10-28 Limited Liability Company "Topcon Positioning Systems" Method and apparatus for receiving chip-by-chip multiplexed csk signals
EP4194899A1 (en) * 2021-12-07 2023-06-14 u-blox AG Demodulating qzss signals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265476A (en) * 2004-03-16 2005-09-29 Japan Radio Co Ltd Satellite navigation device
JP2007187462A (en) * 2006-01-11 2007-07-26 Toyota Motor Corp Gps receiving apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2783929B1 (en) * 1998-09-25 2000-12-08 Sextant Avionique PROCESS AND DEVICE FOR PROCESSING IN RECEPTION OF A GPS SATELLITE L2 SIGNAL
FR2936320B1 (en) * 2008-09-23 2012-12-28 Centre Nat Etd Spatiales RADIONAVIGATION SIGNAL PROCESSING USING A WIDELANE COMBINATION
CN202182944U (en) * 2011-08-15 2012-04-04 河北晶禾电子技术有限公司 Compatible reception module for satellite navigation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265476A (en) * 2004-03-16 2005-09-29 Japan Radio Co Ltd Satellite navigation device
JP2007187462A (en) * 2006-01-11 2007-07-26 Toyota Motor Corp Gps receiving apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019174394A (en) * 2018-03-29 2019-10-10 日本無線株式会社 Spectrum spread signal receiver
JP7055565B2 (en) 2018-03-29 2022-04-18 日本無線株式会社 Spectral diffusion signal receiver
CN113238260A (en) * 2021-05-18 2021-08-10 北京航天飞行控制中心 Signal parameter acquisition method, system, storage medium and electronic equipment
CN113238260B (en) * 2021-05-18 2022-09-09 北京航天飞行控制中心 Signal parameter acquisition method, system, storage medium and electronic equipment
CN114598583A (en) * 2022-03-07 2022-06-07 天津凯芯科技有限公司 CSK modulation symbol decoding method, device, chip and satellite receiver
CN114624746A (en) * 2022-03-07 2022-06-14 天津凯芯科技有限公司 CSK modulation symbol decoding method, device, chip and satellite receiver
CN114598583B (en) * 2022-03-07 2022-11-18 北京凯芯微科技有限公司 CSK modulation symbol decoding method, device, chip and satellite receiver
CN114624746B (en) * 2022-03-07 2023-01-17 北京凯芯微科技有限公司 CSK modulation symbol decoding method, device, chip and satellite receiver

Also Published As

Publication number Publication date
KR20150038293A (en) 2015-04-08
TW201411169A (en) 2014-03-16
AU2013294159A1 (en) 2015-02-19
JP5965765B2 (en) 2016-08-10
TWI596363B (en) 2017-08-21
PH12015500155A1 (en) 2015-03-16
PH12015500155B1 (en) 2015-03-16
AU2013294159B2 (en) 2017-09-21
SG11201500577XA (en) 2015-03-30
JP2014025744A (en) 2014-02-06

Similar Documents

Publication Publication Date Title
WO2014017338A1 (en) Satellite positioning signal receiving method and device
CN104375151A (en) Navigation signal receiver and relieving method
JP2019521311A (en) Position Estimation in Low Earth Orbit Satellite Communication System
US7411550B2 (en) System for transmitting positioning signal
US9319097B2 (en) Method for generating binary offset carrier correlation function based on local signals, apparatus for tracking binary offset carrier signal, and spread spectrum signal receiver system
JP5650436B2 (en) Satellite positioning receiver
CN1031843C (en) A pseudorandom noise ranging receiver which compensates for multipath distortion by dynamically adjusting the time delay spacing between early and late correctors
US11372112B2 (en) GNSS receiver apparatus with GNSS pseudo random noise delayed sequence generator
JP4306693B2 (en) Correlation detection device, correlation detection method, and reception device
JP4848146B2 (en) Apparatus for transmitting positioning signal, positioning system including the apparatus, and system for transmitting positioning signal
JP5357451B2 (en) Multi-frequency GNSS receiver
JP2007278708A (en) Satellite navigation system
JP4973933B2 (en) Calibration signal generator, GPS receiver, GPS information correction system
JP2014020814A (en) Satellite positioning system and positioning reinforcement signal generation method
JP4916660B2 (en) Support in satellite positioning system
US20080123718A1 (en) Positioning apparatus and control method thereof
RU2570837C2 (en) Apparatus and method
US20110109504A1 (en) Alternative Geolocation Capabilities
JP2007187462A (en) Gps receiving apparatus
Baracchi-Frei Real-time GNSS software receiver optimized for general purpose microprocessors
CN113406621B (en) Phase synchronization method, satellite-borne radar and ground receiving station
US20230417858A1 (en) Wireless communication systems and methods
US8300813B1 (en) Secure information transfer based on global position
RU2005126119A (en) METHOD FOR DETERMINING COORDINATES OF RADIO TRANSMITTERS USING GLOBAL NAVIGATION SYSTEMS AND A DEVICE FOR ITS IMPLEMENTATION (OPTIONS)
JP2006090755A (en) Receiver for positioning observation data output

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823003

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12015500155

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013294159

Country of ref document: AU

Date of ref document: 20130716

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201501022

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 20157004733

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13823003

Country of ref document: EP

Kind code of ref document: A1