WO2014017330A1 - Π-conjugated phthalocyanine pigment, method for producing said π-conjugated phthalocyanine pigment, and colored composition prepared using said π-conjugated phthalocyanine pigment - Google Patents

Π-conjugated phthalocyanine pigment, method for producing said π-conjugated phthalocyanine pigment, and colored composition prepared using said π-conjugated phthalocyanine pigment Download PDF

Info

Publication number
WO2014017330A1
WO2014017330A1 PCT/JP2013/069260 JP2013069260W WO2014017330A1 WO 2014017330 A1 WO2014017330 A1 WO 2014017330A1 JP 2013069260 W JP2013069260 W JP 2013069260W WO 2014017330 A1 WO2014017330 A1 WO 2014017330A1
Authority
WO
WIPO (PCT)
Prior art keywords
pigment
meth
phthalocyanine pigment
group
type
Prior art date
Application number
PCT/JP2013/069260
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 小谷
健太 齋藤
武藤 俊明
Original Assignee
東洋インキScホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋インキScホールディングス株式会社 filed Critical 東洋インキScホールディングス株式会社
Priority to KR20147023693A priority Critical patent/KR20150035487A/en
Priority to CN201380008970.XA priority patent/CN104105759B/en
Publication of WO2014017330A1 publication Critical patent/WO2014017330A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
    • C09B47/065Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide having -COOH or -SO3H radicals or derivatives thereof, directly linked to the skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
    • C09B47/062Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide having alkyl radicals linked directly to the Pc skeleton; having carboxylic groups directly linked to the skeleton, e.g. phenyl
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
    • C09B47/063Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide having oxygen or sulfur atom(s) linked directly to the skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
    • C09B47/064Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide having nitrogen atom(s) directly linked to the skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
    • C09B47/067Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
    • C09B47/073Preparation from isoindolenines, e.g. pyrrolenines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • C09B47/12Obtaining compounds having alkyl radicals, or alkyl radicals substituted by hetero atoms, bound to the phthalocyanine skeleton
    • C09B47/14Obtaining compounds having alkyl radicals, or alkyl radicals substituted by hetero atoms, bound to the phthalocyanine skeleton having alkyl radicals substituted by halogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • C09B47/18Obtaining compounds having oxygen atoms directly bound to the phthalocyanine skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • C09B47/24Obtaining compounds having —COOH or —SO3H radicals, or derivatives thereof, directly bound to the phthalocyanine radical
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments

Definitions

  • the present invention relates to a ⁇ -type phthalocyanine pigment having excellent color characteristics such as brightness and high stability in terms of heat resistance, a method for producing the ⁇ -type phthalocyanine pigment, and a coloring composition using the ⁇ -type phthalocyanine pigment. More specifically, the present invention relates to the above pigment that can provide a color filter having excellent display quality when used in a color filter used in a color liquid crystal display device, a solid-state imaging device, and the like.
  • the color filter is a red filter layer (R), green filter layer (G) and blue filter layer (B) formed on the surface of a transparent substrate such as glass, or a complementary color of red, green and blue.
  • the corresponding fine band (striped) filter segments (pixels) composed of a cyan filter layer (C), a magenta filter layer (M), and a yellow filter layer (Y) are divided into “strip arrangement”, “ It is also called “mosaic array”, “delta array”, or the like, and is composed of parallel or crossing arrangements, or arrangements of fine filter segments arranged in a constant vertical and horizontal arrangement.
  • the filter segments are as fine as several micrometers to several hundred micrometers, and are regularly arranged in a predetermined arrangement for each hue.
  • a transparent electrode for driving the liquid crystal is generally formed by vapor deposition or sputtering, and an alignment film for aligning the liquid crystal in a certain direction is formed thereon.
  • an alignment film for aligning the liquid crystal in a certain direction is formed thereon.
  • Quality items required for color filters include brightness and contrast ratio.
  • a color filter with a low contrast ratio the degree of polarization controlled by the liquid crystal is disturbed, and when light must be blocked (OFF state), light must leak or be transmitted (ON) In other words, the transmitted light is attenuated in the state), resulting in a blurred screen. Therefore, high contrast is indispensable for realizing a high-quality liquid crystal display device.
  • Copper phthalocyanine is often used as a blue pigment because it has a clear hue and a high tinting strength and is excellent in various resistances such as weather resistance, heat resistance, and chemical resistance.
  • copper phthalocyanine shows homogeneous heterocrystals, and crystal types such as ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , and R have been reported.
  • ⁇ , ⁇ and ⁇ type copper phthalocyanines are often used because they have advantages such as color characteristics and crystal stability.
  • the blue filter layer of the color filter requires a reddish hue, ⁇ is compared to ⁇ , and ⁇ type is more reddish than ⁇ , so ⁇ type copper phthalocyanine is used.
  • the ⁇ -type copper phthalocyanine pigment has an excellent property of being highly clear and having high coloring power.
  • the contrast ratio increases with the refinement, but the lightness of the primary particle size of the pigment is several tens of nm. Since it converges when the level is below the level, it is difficult to improve further. Therefore, it is difficult to improve the energy saving performance by further improving the brightness and suppressing the increase in power consumption.
  • ⁇ -type copper phthalocyanine is preferable for use as a blue filter layer of a color filter because it exhibits a reddish color compared to ⁇ -type copper phthalocyanine.
  • the stability is low, and when exposed to a high temperature and / or an organic solvent, the crystal transitions easily and lacks stability.
  • JP-A-48-725 Japanese Unexamined Patent Publication No. 63-308074 JP 62-48769 A
  • Patent Document 1 describes a method for producing ⁇ -type copper phthalocyanine.
  • the obtained ⁇ -type phthalocyanine is an unsubstituted product having no substituent on the benzene ring, and is inferior in stability compared to other crystal types, so it can withstand practicality such as color filter applications. It wasn't.
  • Patent Document 2 describes a method for synthesizing copper phthalocyanine, which is characterized by reacting an aromatic polybasic acid in the presence of copper phthalocyanine by the Weiler method. Although there is no description about the crystal form of the copper phthalocyanine to be produced, as shown in Comparative Example 3 of this specification described later, not the ⁇ type but the ⁇ type is produced.
  • Patent Document 3 describes a method for synthesizing ⁇ -type copper phthalocyanine, characterized in that pyromellitic acid is added and reacted during synthesis of copper phthalocyanine by the Weiler method.
  • ⁇ -type copper phthalocyanine obtained by this method is inferior to ⁇ -type copper phthalocyanine in terms of color characteristics.
  • the stability of the three-dimensional crystal form was inferior.
  • the present invention was devised in view of the drawbacks of the prior art, and provides a novel ⁇ -type phthalocyanine pigment that improves color characteristics such as brightness and is highly stable in terms of heat resistance and the like. Let it be an issue. Furthermore, an object of the present invention is to provide a color filter having excellent color characteristics and display quality by using the novel ⁇ -type phthalocyanine pigment in a color filter used in a color liquid crystal display device and a solid-state imaging device. .
  • the present invention relates to a ⁇ -type phthalocyanine pigment represented by the following general formula (1).
  • General formula (1) R 1 to R 8 are each independently a hydrogen atom, COOH, CONH 2 , CF 3 , OC 6 H 5 , NH 2 , NO 2 , C 6 H 5 , or an alkyl group.
  • R 1 to R 8 Are not simultaneously hydrogen atoms
  • M is a metal atom or 2H
  • R 9 to R 16 are each independently a hydrogen atom, aryl group, sulfone group, sulfoamide group, cyano group, hydroxyl group, thiol.
  • a substituent, an acyl group, a halogeno group, a silyl group, or a silyloxy group, and the substituents of R 1 to R 16 may be in the form of a metal salt.
  • Another aspect of the present invention is a method for producing a ⁇ -type phthalocyanine pigment according to the present invention, Phthalic anhydride, a phthalic acid derivative substituted at least in the ⁇ -position, urea, a urea derivative or ammonia, and a metal salt,
  • the reaction temperature is x (° C.)
  • the input weight (%) of the phthalic acid derivative substituted at least at the ⁇ -position to the total input weight of phthalic anhydride and the phthalic acid derivative substituted at least at the ⁇ -position is y
  • Formula (1) When z is the amount of solvent input (times) with respect to the total input weight of phthalic anhydride and at least the ⁇ -substituted phthalic acid derivative, Formula (1): x-4.3y-1.8z-145 ⁇ 0 (However, 90 ⁇ x ⁇ 300, 0 ⁇ y, 0 ⁇ z)
  • Another aspect of the present invention is a method for producing a ⁇ -type phthalocyanine pigment according to the present invention, A phthalonitrile and / or diiminoisoindoline, a phthalonitrile derivative substituted at least in the ⁇ -position and / or a diiminoisoindoline derivative substituted in at least the ⁇ -position, and a metal salt are reacted at 60 to 300 ° C.
  • the present invention relates to a method for producing a ⁇ -type phthalocyanine pigment including a step.
  • Another present invention relates to a pigment composition containing the ⁇ -type phthalocyanine pigment according to the present invention and a ⁇ -type unsubstituted phthalocyanine pigment.
  • Another present invention relates to a coloring composition containing the pigment composition according to the present invention and a pigment carrier.
  • Still another invention is a color filter comprising at least a substrate and a filter segment formed on the substrate, and a part of the filter segment is obtained using the coloring composition according to the invention. About.
  • the novel ⁇ -type phthalocyanine pigment according to the present invention is excellent in color characteristics and stability, and by using it in a color filter used in a color liquid crystal display device and a solid-state imaging device, brightness and contrast ratio are improved.
  • a color filter with excellent display quality can be provided.
  • ⁇ -type phthalocyanine pigments As shown by the following general formula (1), the present inventors include COOH, CONH 2 , CF 3 in at least one of R 1 to R 8 , which is the so-called ⁇ -position of phthalocyanine. , OC 6 H 5 , NH 2 , NO 2 , C 6 H 5 , or an alkyl group makes it easy to maintain the ⁇ form of the phthalocyanine crystal in a three-dimensional structure. It was found that the stability of the crystal was improved while the formation of was facilitated.
  • the present inventors have provided a color filter excellent in color characteristics such as brightness and contrast ratio and display quality when the ⁇ -type phthalocyanine is used in a color filter used in a color liquid crystal display device and a solid-state imaging device.
  • the present invention has been completed.
  • R 1 to R 8 are each independently a hydrogen atom, COOH, CONH 2 , CF 3 , OC 6 H 5 , NH 2 , NO 2 , C 6 H 5 , or an alkyl group.
  • R 1 to R 8 are not all hydrogen atoms at the same time
  • M is a metal atom or 2H
  • R 9 to R 16 are independently a hydrogen atom, an aryl group, a sulfone group, a sulfoamide group, a cyano group, a hydroxyl group, (A thiol group, an acyl group, a halogeno group, a silyl group, or a silyloxy group.
  • the substituents of R 1 to R 16 may be in the form of a metal salt.
  • the phthalocyanine pigment according to the present invention is a ⁇ -type crystal of phthalocyanine of the general formula (1) having a substituent at a position corresponding to the ⁇ -position of phthalic acid.
  • the phthalocyanine pigment represented by the general formula (1) may be referred to as a substituted ( ⁇ -substituted) phthalocyanine pigment or ⁇ -substituted product.
  • the functional group introduced into at least one of R 1 to R 8 in the general formula (1) is any one of COOH, CONH 2 , CF 3 , OC 6 H 5 , NH 2 , NO 2 , C 6 H 5 , or an alkyl group. Even a functional group is preferable.
  • the alkyl group is preferably a linear or branched alkyl group having about 1 to 12 carbon atoms. Among these, it is particularly desirable to have at least one substituent selected from the group consisting of COOH, CONH 2 , CF 3 , and OC 6 H 5 .
  • the number of functional groups to be introduced is not particularly specified, but the increase in the number of functional groups increases the possibility of adversely affecting the color characteristics when used in color filters, so other than hydrogen atoms introduced into one molecule of phthalocyanine
  • the total number of functional groups of R 1 to R 8 ( ⁇ position) and R 9 to R 16 ( ⁇ position) is preferably about 1 to 8, preferably 1 to 4, or 1 to 3. More preferably it is. Moreover, multiple types of functional groups may be introduced.
  • the ⁇ -type copper phthalocyanine obtained in the above-mentioned Patent Document 3 does not have a substituent introduced at the ⁇ -position, and its three-dimensional structural crystal type has a functional group in any of the above R 1 to R 8. It is not enough compared to the case of introduction.
  • any functional group may be introduced.
  • a hydrogen atom an aryl group, a sulfone group (also referred to as a sulfo group, —SO 3 H), a sulfoamide group (—SO 2 NRR ′), a cyano group (— CN), hydroxyl group (also referred to as hydroxy group, —OH), thiol group (—SH), acyl group, halogeno group (—F, —Cl, —Br, —I), silyl group, or silyloxy group Is desirable.
  • R and R ′ of the sulfoamide group are each independently a hydrogen atom, a linear or branched alkyl group having about 1 to 5 carbon atoms, an N, N-dimethylaminomethyl group, an N, N-dimethylamino group.
  • An amino-substituted alkyl group such as an ethyl group is desirable.
  • the aryl group is preferably a phenyl group, a benzyl group, a tolyl group, a xylyl group, etc.
  • the acyl group (—COR) is preferably such that R is methyl, ethyl, phenyl, etc., and a silyl group (—SiRR′R ′′) ) Is preferably a trimethylsilyl group, a triethylsilyl group or the like
  • the silyloxy group (—OSiRR′R ′′) is preferably a trimethylsilyloxy group, a triethylsilyloxy group or the like, but is not limited thereto.
  • the substituents R 1 to R 16 may be in the form of a metal salt.
  • a metal salt examples thereof include carboxylate (—COOM), sulfonate (—SO 3 M), alkoxide or phenoxide (—OM), and examples of metal (M) include alkali metals such as sodium, potassium and lithium.
  • the central metal M in the general formula (1) represents 2H or a metal.
  • M is preferably Cu, Zn, Al (OH), or 2H, and more preferably Cu.
  • M may be one kind or plural kinds in one pigment.
  • the ⁇ -type crystal form of phthalocyanine has a powder X-ray diffraction pattern as shown in FIG.
  • ⁇ -type phthalocyanine has a Bragg angle 2 ⁇ ( ⁇ 0.3 degrees) of 4.9, 6.5, 8.5, 9.7, 10.7, 17 when measured using Cu—K ⁇ rays. It is a crystal type having a diffraction peak at 0 degree.
  • FIG. 1 shows data obtained for a phthalocyanine ⁇ -type crystal of the general formula (1) having a substituent at the ⁇ -position, although the position of each diffraction peak is slightly shifted by the introduced functional group. As long as the mold is ⁇ -type, the diffraction pattern shows a pattern similar to FIG.
  • FIG. 4 shows a diffraction pattern of ⁇ -type phthalocyanine ( ⁇ -substituted product) in which the peak is broad and partially disappeared.
  • the presence of the substituent introduced into the benzene ring can be confirmed by TOF (Time of Flight) -MS (Time of Flight Mass Spectrometer) or the like (see FIG. 5).
  • the production method of phthalocyanine can be selected from conventionally known methods, and the reaction conditions are not particularly limited, but as described below, in order to stably obtain ⁇ -type crystals in the Weiler method, the reaction It is necessary to pay attention to the temperature, the input weight of the phthalic acid raw material, and the input weight of the solvent, and it is preferable to manufacture them under conditions that satisfy the following formula (1).
  • There are two main methods for producing phthalocyanine which are generally known.
  • the first is a method called the Weiler method, which uses phthalic anhydride or its derivatives (hereinafter these phthalic acid raw materials are collectively referred to as “phthalic acids”) and urea or its derivatives as a raw material, metal source, catalyst.
  • phthalic acids phthalic acid raw materials
  • urea or its derivatives a raw material, metal source, catalyst.
  • the second method is called the phthalonitrile method, which is a highly reactive phthalonitrile or derivative thereof (hereinafter, these phthalonitrile raw materials are collectively referred to as “phthalonitriles”), or instead of phthalonitriles.
  • diiminoisoindolines Method of synthesizing diiminoisoindoline or a derivative thereof (hereinafter, these diiminoisoindoline raw materials are collectively referred to as “diiminoisoindolines”) by adding a metal source and heating. It is.
  • the former uses phthalic anhydride and the latter uses phthalonitrile and / or diiminoisoindoline.
  • an unsubstituted phthalocyanine pigment is also produced.
  • the ratio of the unsubstituted product in the produced phthalocyanine pigment can be arbitrarily adjusted according to the raw material ratio to be used.
  • the phthalocyanine pigment represented by the general formula (1) is formed in a ⁇ -type crystal type, the presence of this ⁇ -type crystal causes the unsubstituted phthalocyanine pigment to have the same crystal type, and the same crystal type ( ⁇ -type).
  • the composition can be obtained.
  • the ⁇ -substituted phthalocyanine pigment of the general formula (1) a plurality of compounds having different substitution positions, the number of substituents, and the like can be obtained.
  • the present inventors have used a Weiler method to convert phthalic anhydride and a phthalic acid derivative substituted at least at the ⁇ -position (such as (phthalic anhydride) substituted at least at the ⁇ -position) to urea.
  • the reaction temperature is x (° C.)
  • the input weight (%) of the phthalic acid derivative with respect to the total input weight of the phthalic anhydride and the phthalic acid derivative substituted at least at the ⁇ -position is y
  • the amount of solvent input (times) with respect to the total input weight of phthalic anhydride and phthalic acid derivative is z
  • Equation (1) When the value of Equation (1) is greater than 0, not a ⁇ -type, but a ⁇ -type, an ⁇ -type, or a mixed crystal of various types of crystals is obtained (see Patent Document 2 above). A crystal form with low brightness.
  • the reaction temperature (x) In order for Formula (1) to be less than or equal to zero, that is, in order to reliably produce ⁇ -type phthalocyanine, the reaction temperature (x) is relatively low and the amount (z) of the reaction solvent is large. It can be seen that the reaction must be carried out under various conditions. For example, when the reaction temperature is relatively high, transition to a thermodynamically stable crystal form is likely to occur. Therefore, the reaction conditions may be moderated by increasing the amount of solvent and / or the phthalic acid derivative. It is considered preferable to increase the stability of the crystal by increasing the blending ratio.
  • X which is the reaction temperature (° C.) in Equation (1), is one of the important factors because it greatly affects the crystal form and yield of the pigment. Although it is desirable to adjust the temperature constant to x ° C. from the start of the reaction until the pigment starts to form, the temperature is adjusted to 90 to 300 ° C. during the reaction in order to control the particle size and particle size distribution of the produced pigment particles. You may raise and lower within the range.
  • x is not particularly limited as long as Formula (1) is satisfied, but as a general condition, x is 90 to 300 ° C., and more preferably from the viewpoint of reaction time, yield, and the like. 120-250 ° C, most preferably 150-200 ° C. Further, the reaction may be carried out under a pressure condition of about 0.05 to 1.0 MPa for the purpose of improving yield and / or purity.
  • y phthalic acid derivative input weight ⁇ 100
  • a phthalic acid derivative substituted at least at the ⁇ -position such as a (phthalic anhydride) phthalic acid derivative substituted at least at the ⁇ -position.
  • / ((Phthalic anhydride + phthalic acid derivative) total input weight) is one of the important factors for controlling the crystal form. It is preferable to add an appropriate amount of the phthalic acid derivative so as to satisfy the above mathematical formula (1). As for the timing of adding the phthalic acid derivative, the entire amount may be added at the start of the reaction, or may be divided and added until the generation of the pigment particles during the reaction is completed.
  • y is not particularly limited as long as the above formula (1) is satisfied.
  • y is preferably about 1 to 20%, more preferably. It is about 1 to 10%, more preferably about 2 to 8%.
  • a solvent may be used for the purpose of controlling the temperature in the system and / or improving the stirring efficiency during synthesis, and it is preferable to use a solvent to obtain a ⁇ -type crystal form.
  • z solvent input weight / (phthalic anhydride + phthalic acid derivative) total input weight), which is the amount of solvent input (times), is an important factor for controlling the reactivity in the system.
  • the entire amount of the solvent may be added at the start of the reaction, but may be divided in the middle of the reaction and may be added continuously or stepwise, and the value of z that satisfies the formula (1) is reached before the formation of the pigment is completed.
  • a ⁇ -type crystal can be preferably obtained.
  • z is not particularly limited as long as Formula (1) is satisfied, but z is more preferably about 2 to 15 times, and 3 to 10 times from the viewpoint of reaction time, yield, and the like. More preferably, it is about.
  • phthalic acids used in the synthesis by the Weiler method include those known in various literatures such as phthalic anhydride, phthalic acid and salts thereof, esters thereof, phthalimide, and phthalamide.
  • the phthalic acid ester is preferably a C1-C12 alkyl ester.
  • a phthalic acid having a substituent such as a group, a trifluoromethyl group, a phenyloxy group, a thiol group, an acyl group, a silyloxy group, a silyl group, or a halogeno group may be contained.
  • phthalic anhydride and a phthalic acid derivative substituted at least at the ⁇ -position are used as raw materials.
  • Phthalic acid derivatives substituted with phthalic acid derivatives, phthalic acid derivatives other than anhydrides having no substituent on the benzene ring, etc. may be used in part.
  • This “phthalic acid derivative substituted at the ⁇ -position” means “an ⁇ -substituted phthalic acid having one or more substituents described as R 1 to R 8 at least at one ⁇ -position of phthalic acid. Acid or derivative thereof.
  • Examples of the derivative on the carboxy group side of phthalic acid include general carboxylic acid derivatives such as phthalic anhydride, phthalic acid ester, phthalimide, and phthalamide.
  • Representative carboxylic acid derivatives phthalic anhydride and phthalic acid may be collectively expressed as “(anhydrous) phthalic acid” or “(anhydrous) phthalic acid derivative”.
  • As the ⁇ -substituted phthalic acid derivative plural kinds of compounds having different kinds of substituents and / or different substitution positions may be used.
  • This ⁇ -substituted phthalic acid derivative may have any one or more substituents (substituents R 9 to R 16 in the above general formula (1)) at the ⁇ -position.
  • substituents R 9 to R 16 in the above general formula (1) substituents at the ⁇ -position.
  • derivatives (phthalic acid ester, phthalimide, etc.) other than anhydrides may be used in part.
  • ⁇ -substituted phthalic acid having one or more substituents only at the ⁇ -position or derivatives thereof may be used in part.
  • the substituent at the ⁇ -position in these phthalic acid derivatives is any one or more substituents described as R 9 to R 16 above.
  • the total amount of phthalic acids used as raw materials It is preferably about 10% by weight or less.
  • urea or a derivative thereof to be reacted with the phthalic acid examples include urea, biuret, and triuret, and it is also preferable to use ammonia. A plurality of these may be used. The amount used is preferably in the range of 1 to 10 in molar ratio to the total amount of phthalic acids (phthalic acid or derivatives thereof) as raw materials.
  • the metal salt constitutes the central metal M of the general formula (1), and is preferably a salt of Cu, Zn, Al or the like.
  • Metal sources for supplying this metal salt include metal powders of metals such as Cu, Zn, Al, chloride, bromide, iodide, sulfate, sulfide, acetate, oxide, hydroxide, carbonate, Phosphate etc. can be used.
  • the valence of the metal affects the reaction, it can generally be used for phthalocyanine synthesis without any particular limitation on the valence.
  • a metal is copper
  • copper (I) chloride, copper (II) chloride, copper sulfate, copper hydroxide (I), copper hydroxide (II) etc. are used as a metal source or a metal salt. It can be preferably used. Two or more of these may be used.
  • the metal salt is preferably used in a molar ratio of 0.15 to 0.40 with respect to the total amount of phthalic acids (phthalic acid or derivatives thereof) as raw materials.
  • the catalyst for the reaction those known by the Weiler method can be used.
  • examples thereof include molybdate compounds such as ammonium molybdate and phosphomolybdic acid, titanium compounds such as titanium tetrachloride and titanate, antimony oxide, arsenic oxide, and boric acid. Two or more of these may be used.
  • the amount of the catalyst used is not particularly limited, but it is preferably used in the range of 0.0001 to 0.3 by weight with respect to the total of phthalic acids (phthalic acid or derivatives thereof) as raw materials.
  • orthophosphoric acid, metaphosphoric acid, polyphosphoric acid, polymetaphosphoric acid, sulfuric acid, hydrochloric acid, hydrogen bromide, hydrogen iodide and the like for the purpose of improving the reactivity, improving the reactivity, improving the purity of the product, and improving the clarity.
  • the metal salt or ammonium salt may be optionally used with respect to the phthalic acid (phthalic acid or derivative thereof) as a raw material, and in that case, it can be added in a range of 0.05 to 1 by weight.
  • a known organic solvent can be used as a synthetic solvent for the Weiler method.
  • aromatic hydrocarbons such as alkylbenzene, alkylnaphthalene and tetralin
  • alicyclic hydrocarbons such as alkylcyclohexane, decalin and alkyldecalin
  • aliphatic hydrocarbons such as decane and dodecane
  • nitro compounds such as nitrobenzene and o-nitrotoluene
  • Halogenated hydrocarbons such as trichlorobenzene, dichlorobenzene, chloronaphthalene and hexachlorobutadiene
  • sulfur compounds such as sulfolane, dimethylsulfolane and dimethyl sulfoxide
  • heterocyclic compounds such as quinoline and the like
  • organic solvents may be a mixture of two or more.
  • aprotic polar solvents such as acetonitrile, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, sulfolane and the like are used. It is particularly preferred to use it.
  • the phthalonitrile method is a method for synthesizing phthalocyanines in which phthalonitriles and / or diiminoisoindolines are reacted with metal salts in the presence of a base serving as a catalyst.
  • phthalonitrile and / or diiminoisoindoline, a phthalonitrile derivative substituted at least at the ⁇ -position and / or a diiminoisoindoline derivative substituted at least at the ⁇ -position, and a metal salt A step of reacting at 300 ° C.
  • a solvent may be used for the purpose of controlling the temperature in the system and / or improving the stirring efficiency.
  • the reaction may be performed under a pressure condition of about 0.05 to 1.0 MPa for the purpose of improving the yield and purity.
  • phthalonitriles phthalonitrile and / or derivatives thereof can be used.
  • diiminoisoindoline 1,3-diiminoisoindoline and / or a derivative thereof can be used.
  • a plurality of types of compounds may be used as the phthalonitrile derivative or diiminoisoindoline derivative, respectively.
  • These derivatives are compounds having one or more substituents of R 1 to R 8 or R 9 to R 16 of the above general formula (1) on the aromatic ring of phthalonitrile or diiminoisoindoline. means.
  • the compound of the state of the above metal salts can also be used.
  • a derivative having at least one of the substituents R 1 to R 8 in the ⁇ position is used as at least one of phthalonitriles and diiminoisoindolines.
  • the same sources as described in the above-mentioned Weiler method can be preferably used. That is, metal powders of metals such as Cu, Zn, and Al, chlorides, bromides, iodides, sulfates, sulfides, acetates, oxides, hydroxides, carbonates, phosphates, and the like.
  • the valence of the metal affects the reaction, but in general, the valence can be used for phthalocyanine synthesis without any particular limitation. Two or more of these may be used.
  • the amount of the metal source used is in the range of 0.15 to 0.40 in molar ratio to the total of phthalonitriles and diiminoisoindolines (total of either one when only one is included). Is preferred.
  • the catalyst base is not particularly limited, but is a cyclic amine such as ammonia, morpholine, or piperidine; an amine having nitrogen introduced into an aromatic ring such as pyridine, picoline, or quinoline; 1,5-diazabicyclo [4.3 .0] -5-nonene (DBN), 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU), 1,5-diazabicyclo [5.4.0] undec-5-ene, Preferred are amines having an amidine moiety such as 1,4-diazabicyclo [2.2.2] octane; alkoxides having 1 to 12 carbon atoms; or a mixture thereof. Two or more of these may be used.
  • a cyclic amine such as ammonia, morpholine, or piperidine
  • an amine having nitrogen introduced into an aromatic ring such as pyridine, picoline, or quinoline
  • the amount of the base is preferably 0.001 to 2 in terms of molar ratio with respect to the total of phthalonitriles and diiminoisoindolines (when either one is included). .
  • a base When a base is used as a solvent, it may be further increased.
  • a known organic solvent can be used as a synthetic solvent for the phthalonitrile method.
  • alcohols such as methanol and ethylene glycol
  • aromatic hydrocarbons such as alkylbenzene, alkylnaphthalene and tetralin
  • alicyclic hydrocarbons such as alkylcyclohexane, decalin and alkyldecalin
  • aliphatic hydrocarbons such as decane and dodecane
  • Nitro compounds such as nitrobenzene and o-nitrotoluene; halogenated hydrocarbons such as trichlorobenzene, dichlorobenzene, chloronaphthalene and hexachlorobutadiene; sulfur compounds such as sulfolane, dimethyl sulfolane and dimethyl sulfoxide; heterocyclic compounds such as quinoline; Formamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone and the like
  • the reaction may be performed in an inert gas atmosphere if necessary, or a compound known to be used in the Weiler method, such as ammonium molybdate and / or urea, may be added if necessary.
  • a compound known to be used in the Weiler method such as ammonium molybdate and / or urea
  • the phthalocyanine pigment synthesized by the production methods typified by the above two methods may be used as it is, but it is refined for the purpose of controlling the particle size, imparting easy dispersibility, etc.
  • the operation of pigmentation or sizing may also be performed.
  • a well-known refinement method can be used, and a main method includes a solvent method, a solvent milling method, a solvent salt milling method, and the like.
  • a metal-free or metal phthalocyanine derivative having at least one substituent may be added in order to advance the miniaturization while suppressing crystal growth.
  • the particle diameter of the pigment (average primary particle diameter) is preferably adjusted to about several nanometers to several tens of nanometers, which is a general pigment particle diameter, but is not limited thereto.
  • the ⁇ -type crystal is obtained as a more elongated (high aspect ratio) needle-like crystal as compared with other crystal types such as the ⁇ -type crystal.
  • a pigment refined to a desired particle size can be obtained only by a dispersion step without the kneading step.
  • the ⁇ -type crystal that has been generally used for liquid crystal televisions or the like so far is a spherical shape or a needle-like shape, and is difficult to miniaturize unless it is based on a kneading process. It is difficult to omit the kneading step before the dispersing step.
  • the pigment composition comprises a ⁇ -type phthalocyanine pigment of general formula (1) ( ⁇ -substituted product) and an unsubstituted ⁇ -type phthalocyanine pigment having no substituent other than a hydrogen atom on the benzene ring of phthalocyanine, that is, ⁇ -type It contains at least an unsubstituted phthalocyanine pigment.
  • ⁇ -substituted product a plurality of compounds having different substituents and / or substitution positions can be contained. Further, ⁇ -substituted and / or unsubstituted compounds having different types of the central metal M may be mixed and used.
  • phthalic anhydride is used for the Weiler method
  • phthalonitrile and / or diiminoisoindoline is used for the phthalonitrile method
  • an unsubstituted ⁇ -type phthalocyanine pigment can also be produced and produced as a ⁇ -type crystal mixture of an ⁇ -substituted product and an unsubstituted product, as described above.
  • the ⁇ -type phthalocyanine pigment may partially contain a ⁇ -substituted ⁇ -type phthalocyanine pigment ( ⁇ -substituted product) having no substituent at the ⁇ -position.
  • the amount of the ⁇ -substituted product that may be optionally contained is preferably about 10% by weight or less in the ⁇ -type phthalocyanine pigment in order to further enhance the stability of the ⁇ -type crystal type.
  • the pigment composition can also contain a solvent, a resin, an additive, and the like as optional components.
  • a solvent for example, rosin, metal rosin, rosin ester for various purposes such as inhibition of crystal growth at the time of miniaturization, provision of crystal stability, prevention of aggregation, provision of easy dispersibility when using a pigment as a colorant, and improvement of coloring power.
  • a rosin derivative such as rosin, a resin, an activator, a pigment derivative (pigment derivative), or the like may be mixed with the pigment during or after the refinement step.
  • a part of another crystal type phthalocyanine pigment other than the ⁇ -type or an amorphous phthalocyanine pigment may be included within a range that does not impair the effects of the present invention.
  • these phthalocyanine pigments that can be used in the pigment composition are collectively referred to simply as “phthalocyanine pigments”.
  • the form of the pigment composition is not particularly limited, and may take any form such as powder, water-containing press cake, etc., and may be processed in some way, such as a mixture with resin. .
  • Coloring composition contains at least the pigment composition and a pigment carrier, and includes printing inks such as inkjet inks, paints, plastics, water-based colors, printing inks, toning agents, toners, and resists for color filters.
  • a pigment dispersion such as ink is a typical form.
  • the color characteristics such as lightness expressed by the ⁇ -type phthalocyanine pigment of the general formula (1) are in good agreement with the color characteristics required for the color filter, and therefore are preferably used for color filters. it can.
  • the phthalocyanine pigment is preferably contained in a proportion of 5 to 70% by weight based on the total solid content of the coloring composition (100% by weight). A ratio of 20 to 50% by weight is more preferable.
  • the pigment carrier contained in the coloring composition is for dispersing a phthalocyanine pigment, and is composed of a resin, a precursor thereof, or a mixture thereof.
  • a resin having a transmittance of preferably 80% or more, more preferably 95% or more in the entire wavelength region of 400 to 700 nm in the visible light region is selected.
  • Resins include thermoplastic resins, thermosetting resins, and active energy ray curable resins, and their precursors are activated by irradiation with active energy rays such as ultraviolet rays and electron beams to produce resins.
  • An energy ray polymerizable monomer or oligomer is included. These can be used alone or in admixture of two or more.
  • the pigment carrier is preferably used in an amount of 30 to 700 parts by weight, more preferably 60 to 450 parts by weight, with respect to 100 parts by weight of the phthalocyanine pigment in the coloring composition.
  • the resin is preferably used in an amount of 20 to 400 parts by weight, more preferably 50 parts per 100 parts by weight of the phthalocyanine pigment in the coloring composition. It can be used in an amount of up to 250 parts by weight.
  • the resin precursor is preferably used in an amount of 10 to 300 parts by weight, more preferably 10 to 200 parts by weight, based on 100 parts by weight of the phthalocyanine pigment in the coloring composition.
  • thermoplastic resin examples include butyral resin, styrene-maleic acid copolymer, chlorinated polyethylene, chlorinated polypropylene, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polyvinyl acetate, polyurethane resin, and polyester resin. , Acrylic resins, alkyd resins, polystyrene resins, polyamide resins, rubber resins, cyclized rubber resins, celluloses, polyethylene (HDPE, LDPE), polybutadiene, or polyimide resins. One or more of these thermoplastic resins can be preferably used.
  • thermosetting resin examples include an epoxy resin, a benzoguanamine resin, a rosin-modified maleic acid resin, a rosin-modified fumaric acid resin, a melamine resin, a urea resin, and a phenol resin.
  • an epoxy resin a benzoguanamine resin
  • a rosin-modified maleic acid resin a rosin-modified fumaric acid resin
  • a melamine resin a urea resin
  • phenol resin a phenol resin.
  • One or more of these thermosetting resins can be preferably used.
  • a polymer having a reactive substituent such as a hydroxyl group, a carboxyl group, or an amino group has a reactive substituent such as an isocyanate group, an aldehyde group, or an epoxy group (meta )
  • a reactive substituent such as an isocyanate group, an aldehyde group, or an epoxy group (meta )
  • An acrylic compound or a cinnamic acid having the same reactive substituent is reacted to introduce a photocrosslinkable group such as a (meth) acryloyl group or a styryl group.
  • a linear polymer containing an acid anhydride such as a styrene-maleic anhydride copolymer or an ⁇ -olefin-maleic anhydride copolymer is used as a (meth) acrylic compound having a hydroxyl group such as hydroxyalkyl (meth) acrylate.
  • a half-esterified product is also used.
  • One or more kinds of these active energy ray-curable resins can be preferably used.
  • “(Meth) acryl” represents both “acryl” and “methacryl”.
  • polymerizable monomers and polymerizable oligomers that are resin precursors
  • (Meth) acrylates having the following aromatic ring; 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 2-methoxypropyl (meth) acrylate, diethylene glycol monomethyl ether (meth) acrylate, diethylene glycol monoethyl ether (meta ) Acrylate, triethylene glycol monomethyl ether (meth) acrylate, triethylene glycol monoethyl ether (meth) acrylate, diethylene glycol mono-2-ethylhexyl ether (meth) acrylate, dipropylene glycol monomethyl ether (meth) acrylate, tripropylene glycol mono (Meth) acrylate, polyethylene glycol monolauryl ether (meth) acrylate, and polyester Glycol monostearyl ether (meth) acrylate of (poly) alkylene glycol monoalky
  • a photopolymerization initiator or the like is added to the colored composition.
  • a photopolymerization initiator 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, diethoxyacetophenone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2- Such as benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one or 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one
  • the above photopolymerization initiators can be used alone or in combination of two or more.
  • sensitizers ⁇ -acyloxy ester, acylphosphine oxide, methylphenylglyoxylate, benzyl-9,10 -Phenanthrenequinone, camphorquinone, ethylanthraquinone, 4,4'-diethylisophthalophenone, 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 4,4'-diethylaminobenzophenone, etc. These compounds can also be used in combination.
  • the sensitizer can be used in an amount of 0.1 to 60 parts by weight with respect to 100 parts by weight of the photopolymerization initiator in the colored composition.
  • the coloring composition can be prepared in the form of a solvent developing type or alkali developing type colored resist.
  • the colored resist is obtained by dispersing a pigment in a pigment carrier containing a thermoplastic resin, a thermosetting resin or an active energy ray curable resin and a polymerizable monomer. Disperse one or more organic pigments together with a photopolymerization initiator, if necessary, in a pigment carrier using various dispersing means such as a three-roll mill, a two-roll mill, a sand mill, a kneader, or an attritor Can be manufactured.
  • the organic pigment is a concept including both the ⁇ -type phthalocyanine pigment and an organic pigment other than the ⁇ -type phthalocyanine pigment that is optionally added for adjusting the hue as necessary.
  • a coloring composition can be obtained by mixing a pigment composition or a phthalocyanine pigment, a pigment simple substance, and the component contained arbitrarily by a well-known arbitrary method. Known methods include the various dispersing means described above.
  • the colored composition can also be produced by mixing several types of organic pigments separately dispersed in a pigment carrier.
  • a dispersion aid such as a resin-type pigment dispersant, a surfactant, and a pigment derivative (pigment derivative)
  • the dispersion aid is obtained by using a coloring composition obtained by dispersing the pigment in the pigment carrier using the dispersion aid.
  • the colored film is excellent in transparency.
  • the dispersion aid is preferably used in an amount of 0.1 to 40 parts by weight, more preferably 0.1 to 30 parts by weight, with respect to 100 parts by weight of the phthalocyanine pigment in the coloring composition. it can.
  • a pigment derivative (pigment derivative) is excellent in the function of preventing aggregation of organic pigments and maintaining a finely dispersed state of organic pigments.
  • a coloring composition containing these derivatives By using a coloring composition containing these derivatives, a high contrast ratio can be obtained. Since a colored film with high color purity can be produced, it is preferable as a dispersion aid.
  • a pigment derivative used as a pigment dispersant known ones generally used (for example, JP-A 63-305173, JP-B 57-15620, JP-B 59-40172, JP-B 63- 17102, JP-B-5-9469, etc.) can be used without particular limitation.
  • diketopyrrolopyrrole pigments azo pigments such as azo, disazo, and polyazo
  • phthalocyanine pigments such as copper phthalocyanine, halogenated copper phthalocyanine, and metal-free phthalocyanine
  • aminoanthraquinone diaminodianthraquinone, anthrapyrimidine
  • Anthraquinone pigments such as flavantron, anthanthrone, indanthrone, pyranthrone, violanthrone
  • quinacridone pigment dioxazine pigment, perinone pigment, perylene pigment, thioindigo pigment, isoindoline pigment, isoindolinone pigment, quinophthalone Pigments such as pigments, selenium pigments, metal complex pigments and the like, and those having basic substituents (amino groups, etc.) or acidic substituents (phosphoric acid groups, sulfonic acid groups, carboxyl groups, etc.).
  • the blending amount in the case of using the pigment derivative is not particularly limited, but is preferably 0.1 part by weight or more in order to sufficiently exhibit the blending effect with respect to 100 parts by weight of the pigment, From the viewpoint of maintaining good light resistance, it is preferably 30 parts by weight or less, and more preferably about 0.5 to 25 parts by weight.
  • the resin-type pigment dispersant added in the coloring composition has a pigment-affinity part having a property of adsorbing to the pigment and a part compatible with the pigment carrier, and adsorbs to the pigment to give the pigment to the pigment carrier. It works to stabilize dispersion.
  • Examples of the resin-type pigment dispersant include polyvinyl, polyurethane, polyester, polyether, formalin condensation, silicone, and composite polymers thereof.
  • Examples of the pigment affinity site include a carboxyl group, a hydroxyl group, Polar groups such as phosphoric acid groups, phosphoric acid ester groups, sulfonic acid groups, hydroxyl groups, amino groups, quaternary ammonium bases, or amide groups, and hydrophilic polymers such as polyethylene oxide, polypropylene oxide, or composites thereof
  • Examples of the site compatible with the dye carrier include a long-chain alkyl chain, a polyvinyl chain, a polyether chain, or a polyester chain.
  • a resin-type pigment dispersant Styrene-maleic anhydride copolymer, olefin-maleic anhydride copolymer, poly (meth) acrylate, styrene- (meth) acrylic acid copolymer, (meth) acrylic acid- (meth) acrylic acid alkyl ester Copolymer, (meth) acrylic acid-polyvinyl-based macromer copolymer, phosphoric ester group-containing acrylic resin, aromatic carboxyl group-containing acrylic resin, polystyrene sulfonate, acrylamide- (meth) acrylic acid copolymer, carboxy Anionic resin type pigment dispersants such as methylcellulose, polyurethane having a carboxyl group, formalin condensate of naphthalenesulfonate, or sodium alginate; Nonionic resin-type pigment dispersants such as polyvinyl alcohol, polyalkylene polyamine, polyacrylamide, or polymer starch; or
  • the colored composition preferably contains an acidic resin-type pigment dispersant from the viewpoint of the stability of the colored composition.
  • an acidic resin-type pigment dispersant and a basic dye derivative in combination, not only the fluidity and stability of the colored composition, but also a filter segment with excellent brightness and high contrast ratio can be obtained.
  • Commercially available resin-type dispersants include Disperbyk-101, 103, 107, 108, 110, 111, 112, 116, 130, 140, 142, 154, 161, 162, 163, 164, 165 manufactured by Big Chemie Japan.
  • the surfactant is not particularly limited, but for example, Polyoxyethylene alkyl ether sulfate, sodium dodecylbenzenesulfonate, alkali salt of styrene-acrylic acid copolymer, sodium stearate, sodium alkylnaphthalene sulfonate, sodium alkyldiphenyl ether disulfonate, lauryl sulfate monoethanolamine, lauryl sulfate tri Anionic surfactants such as ethanolamine, ammonium lauryl sulfate, monoethanolamine stearate, sodium stearate, sodium lauryl sulfate, monoethanolamine of styrene-acrylic acid copolymer, polyoxyethylene alkyl ether phosphate; Nonionic surfactants such as polyoxyethylene oleyl ether, polyoxyethylene lauryl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene alkyl ether phosphate, polyoxyethylene
  • a phthalocyanine pigment is sufficiently dispersed in a pigment carrier and coated on a transparent substrate such as a glass substrate so that the dry film thickness is 0.2 to 5 ⁇ m to form a colored film.
  • a transparent substrate such as a glass substrate
  • any non-aqueous solvent can be included.
  • the non-aqueous solvent is not particularly limited.
  • the coloring composition may contain a storage stabilizer in order to stabilize the viscosity with time of the composition.
  • the storage stabilizer include commonly used ones such as benzyltrimethylammonium chloride or quaternary ammonium chlorides such as diethylhydroxyamine; lactic acid or organic acids such as oxalic acid; methyl esters of the organic acids Catechols such as t-butylpyrocatechol; organic phosphines such as triphenylphosphine, tetraethylphosphine, or tetraphenylphosphine; or phosphites, but not limited thereto.
  • the storage stabilizer can be used in an amount of 0.1 to 10 parts by weight with respect to 100 parts by weight of the phthalocyanine pigment in the coloring composition.
  • the coloring composition may contain a dye within a range that does not reduce heat resistance for color matching.
  • the dye used is not particularly limited, but azo dye, anthraquinone dye, indigoid dye, phthalocyanine dye, carbonium dye, quinoneimine dye, methine dye, quinoline dye, nitro dye, nitroso dye, benzoquinone and naphthoquinone dye, Naphthalimide dyes, perinone dyes and the like can be preferably used, and two or more kinds may be arbitrarily used in combination.
  • the coloring composition is not particularly limited, but in a preferred embodiment, it is prepared in the form of gravure offset printing ink, waterless offset printing ink, silk screen printing ink, solvent development type or alkali development type coloring resist. be able to.
  • the colored resist is a pigment (dye) dispersed in a composition containing a thermoplastic resin, a thermosetting resin or a photosensitive resin, a polymerizable monomer, a photopolymerization initiator, and an organic solvent. It has been made.
  • the coloring composition preferably does not contain coarse particles of 5 ⁇ m or more, preferably 1 ⁇ m or more, and more preferably 0.5 ⁇ m or more, and by means such as centrifugation, sintered filter, membrane filter, It is preferable to remove these coarse particles and mixed dust.
  • a colored composition when used for a color filter, it is preferable that substantially no particles of 0.5 ⁇ m or more are contained, and more preferably no particles larger than 0.3 ⁇ m.
  • Color filter includes at least a substrate and a filter segment formed on the substrate, and the filter segment includes a filter segment obtained using the colored composition. That is, the color filter includes, on the substrate, at least one red filter segment, at least one green filter segment, and at least one blue filter segment, and the blue filter segment includes the phthalocyanine pigment. Formed from the composition. Red filter layer (R) and green filter layer (G) other than blue, or cyan filter layer (C), magenta filter layer (M), and yellow filter layer corresponding to complementary colors of red, green, and blue (Y) can be formed using arbitrary coloring compositions, and is not limited at all.
  • Red filter layer (R) and green filter layer (G) other than blue, or cyan filter layer (C), magenta filter layer (M), and yellow filter layer corresponding to complementary colors of red, green, and blue (Y) can be formed using arbitrary coloring compositions, and is not limited at all.
  • an orange pigment and / or a yellow pigment can be used in combination with the red coloring composition for forming the red filter segment, so that the green coloring composition for forming the green filter segment can be used.
  • a yellow pigment can be used in combination.
  • the manufacturing method of a color filter is not specifically limited, A well-known method can be used.
  • the filter segment can be formed by a printing method or a photolithography method.
  • the formation of the filter segment by the printing method can be patterned simply by repeating the printing and drying of the coloring composition prepared as the printing ink. Therefore, the color filter manufacturing method is low in cost and excellent in mass productivity. Furthermore, it is possible to print a fine pattern having high dimensional accuracy and smoothness by the development of printing technology. In order to perform printing, it is preferable that the ink does not dry and solidify on the printing plate or on the blanket. Control of ink fluidity on a printing press is also important, and ink viscosity can be adjusted with a dispersant or extender pigment.
  • a filter segment by photolithography When forming a filter segment by photolithography, for example, it can be performed as follows, but is not limited thereto.
  • the colored composition prepared as the solvent developing type or alkali developing type colored resist is applied to a transparent substrate by a coating method such as spray coating, spin coating, slit coating, roll coating, etc. Apply as follows. If necessary, the dried film is exposed to ultraviolet rays through a mask having a predetermined pattern provided in contact or non-contact with the film. Thereafter, the film is immersed in a solvent or an alkali developer, or the developer is sprayed by spraying or the like to remove uncured portions, thereby forming a desired pattern. Similar operations can be repeated for other colors to form filter segments for each color.
  • a color filter with higher accuracy than the above printing method can be manufactured.
  • an aqueous solution such as sodium carbonate or sodium hydroxide is used as an alkali developer, and an organic alkali such as dimethylbenzylamine or triethanolamine can also be used.
  • an antifoamer and surfactant can also be added to a developing solution.
  • the colored resist is applied and dried, and then a water-soluble or alkaline water-soluble resin such as polyvinyl alcohol or water-soluble acrylic resin is applied and dried to form a film that prevents polymerization inhibition by oxygen. Then, ultraviolet exposure can be performed.
  • the filter segment may be manufactured by an electrodeposition method, a transfer method or the like in addition to the above method.
  • the electrodeposition method is a method in which each color filter segment is electrodeposited on a transparent conductive film by electrophoresis of colloidal particles using a transparent conductive film formed on a substrate.
  • the transfer method is a method in which a filter segment is formed in advance on the surface of a peelable transfer base sheet, and this filter segment is transferred to a desired substrate.
  • the arrangement of the sub-pixels or filter segments (pixels) is not particularly limited, and may be a known pattern such as a “stripe arrangement”, “mosaic arrangement”, “delta arrangement”, or the like.
  • the size of the filter segment can be arbitrarily formed in the range of several micrometers to several hundred micrometers.
  • the substrate of the color filter is a transparent substrate, glass plates such as soda lime glass, low alkali borosilicate glass, non-alkali alumino borosilicate glass, which have high transmittance for visible light, polycarbonate, polymethyl methacrylate, A resin plate such as polyethylene terephthalate is used.
  • the color filter further includes a transparent electrode for driving the liquid crystal.
  • the transparent electrode is made of indium oxide, tin oxide, or the like, and can be formed by vapor deposition or sputtering.
  • a black matrix is formed in advance before forming the filter segment on the substrate, the contrast of the liquid crystal display panel can be further increased.
  • a black matrix a multilayer film of chromium, chromium / chromium oxide, an inorganic film such as titanium nitride, or a resin film in which a light shielding agent is dispersed is used, but is not limited thereto.
  • a thin film transistor (TFT) may be formed on a substrate in advance, and then a filter segment may be formed. By forming the filter segment on the TFT substrate, the aperture ratio of the liquid crystal display panel can be increased and the luminance can be improved.
  • An overcoat film, a columnar spacer, a transparent conductive film, a liquid crystal alignment film, and the like are formed on the color filter as necessary.
  • Liquid crystal panel A color filter is attached to the opposite substrate using a sealant, and after injecting liquid crystal from the injection port provided in the seal part, the injection port is sealed, and if necessary, a polarizing film or retardation film is attached to the substrate.
  • a liquid crystal display panel is manufactured by sticking to the outside.
  • LCD panels include Twisted Nematic (TN), Super Twisted Nematic (STN), In-Plane Switching (IPS), Vertical Alignment (VA), Optically Convencend Bend (OCB), etc.
  • the liquid crystal display mode can be used for colorization using a color filter.
  • the contrast ratio was measured using the coating film used for color characteristic measurement. Below, the measuring method of the contrast ratio of a coating film is demonstrated. (Measurement method of contrast ratio of coating film)
  • the light emitted from the backlight unit for liquid crystal display passes through the first polarizing plate, is polarized, passes through the dried coating film of the colored composition applied on the glass substrate, and reaches the second polarizing plate. .
  • the first polarizing plate and the second polarizing plate if the polarization planes of both polarizing plates are parallel to each other, the light is transmitted through the second polarizing plate, but the polarization planes are orthogonal to each other. If so, the light is blocked by the second polarizing plate.
  • a black mask with a 1 cm square hole was applied to the measurement portion in order to block unnecessary light.
  • the first and second polarizing plates are overlapped on both surfaces of the substrate on which the colored film is formed so that the polarizing axes of both polarizing plates are parallel to each other, and the backlight from one polarizing plate (first polarizing plate) side.
  • the luminance (Lp) of the light transmitted through the other polarizing plate (second polarizing plate) was measured with a luminance meter.
  • both polarizing plates stacked on both sides of the substrate are arranged so that the polarization axes of both polarizing plates are orthogonal to each other, the backlight is incident from one polarizing plate side, and the light transmitted through the other polarizing plate
  • the luminance (Lc) was measured with a luminance meter.
  • the contrast ratio Lp / Lc was calculated using the measured luminance value obtained.
  • the measurement was performed in the normal direction of the substrate.
  • “NPF-SEG1224DU” manufactured by Nitto Denko Corporation
  • BM-5A manufactured by Topcon Corporation
  • Example Example 1 A ⁇ -type copper phthalocyanine pigment was produced by the Weiler method using the following raw materials. Phthalic anhydride 56 parts Urea 97 parts Cuprous chloride 15.4 parts Ammonium molybdate 1.5 parts Hemimellitic acid 3.6 parts Dimethylformamide 420 parts Each raw material is placed in a synthesizer and stirred at 180 ° C for 5 minutes. By maintaining the time, a copper phthalocyanine pigment was produced. The obtained reaction liquid containing a copper phthalocyanine pigment was filtered under reduced pressure while washing with warm water at 60 ° C. to remove the solvent and ungenerated products from the reaction liquid. The crude pigment from which the solvent and the like were removed was subjected to the following filtration and purification.
  • the crude pigment was added to 500 parts of 3% sulfuric acid heated to 80 ° C., stirred for 30 minutes, and then filtered under reduced pressure while washing with warm water at 60 ° C.
  • the mixture was added to 500 parts of 3% sodium hydroxide heated to 80 ° C., stirred for 30 minutes, and then filtered under reduced pressure while washing with hot water at 60 ° C.
  • it was added to 500 parts of warm water heated to 60 ° C., stirred for 30 minutes, and then filtered under reduced pressure while washing with warm water at 60 ° C.
  • a copper phthalocyanine pigment 1 was obtained by drying the pigment cake obtained through the filtration and purification steps in an oven at 90 ° C. for 15 hours.
  • the Bragg angle 2 ⁇ has diffraction peaks at 4.9, 6.5, 8.5, 9.7, 10.7, 17.0 degrees.
  • the diffraction pattern of ⁇ -type copper phthalocyanine pigment was shown.
  • the diffraction pattern is shown in FIG.
  • the obtained copper phthalocyanine pigment 1 was analyzed by TOF-MS.
  • one or two CONH 2 groups (generated by reaction of carboxy group at the ⁇ -position of hemimellitic acid with ammonia and isocyanate) were substituted. The presence of the compound having the number was confirmed (FIG. 5).
  • a pigment composition (organic pigment composition) 1 was prepared.
  • Copper phthalocyanine pigment 1 9.0 parts Copper phthalocyanine dye derivative 1.0 part Acrylic resin solution 40.0 parts Methoxypropyl acetate (PGMAc) 50.0 parts Copper phthalocyanine dye derivative is copper phthalocyanine dimethylaminopentylsulfonamide
  • the acrylic resin solution is a cyclohexanone solution having a solid content of 20% and containing a 2: 8 (weight ratio) copolymer of methacrylic acid and n-butyl methacrylate (weight average molecular weight 40000).
  • Pigment composition 1 45.0 parts Acrylic resin solution (same as above) 15.0 parts Trimethylolpropane triacrylate 9.0 parts (“NK ester ATMPT” manufactured by Shin-Nakamura Chemical Co., Ltd.) 2.0 parts of photopolymerization initiator (2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one (“Irgacure 907” manufactured by BASF) Sensitizer ("EAB-F” manufactured by Hodogaya Chemical Co., Ltd.) 0.2 part Cyclohexanone 28.8 parts
  • Examples 2 to 27 As in Example 1, as shown in Table 1, solvent species, catalyst species, ⁇ -substituted phthalic acid (phthalic acid derivative) species, synthesis temperature, phthalic anhydride input amount, ⁇ -substituted phthalic acid
  • the ⁇ -type copper phthalocyanine pigments 2 to 27 of Examples 2 to 27 were produced by changing the input amount and the solvent amount and synthesizing by the same operation. It was confirmed by powder X-ray diffraction that both of these crystal types were ⁇ -type.
  • pigment compositions 2 to 27 and colored compositions 2 to 27 were prepared using ⁇ -type copper phthalocyanine pigments 2 to 27.
  • Example 28 A ⁇ -type copper phthalocyanine pigment was produced by the phthalonitrile method using the following raw materials. 12.8 parts of phthalonitrile 3.3 parts of cuprous chloride 0.79 parts of 3-phenoxyphthalonitrile 230 parts of n-amyl alcohol Each raw material was charged into a synthesizer and heated to 130 ° C. with stirring. Copper phthalocyanine pigment 28 was made by adding 15.2 parts of diazabicycloundecene and maintaining for 3 hours. Further, filtration purification after the synthesis, dispersion, and stirring and mixing were processed in the same manner as in Example 1 to prepare a pigment composition 28 and a colored composition 28. The obtained crystal type was ⁇ type.
  • Example 29 A copper phthalocyanine pigment 29 was prepared in the same manner by changing 3-phenoxyphthalonitrile of Example 28 to 3-nitrophthalonitrile. Further, filtration purification after the synthesis, dispersion, and stirring and mixing were processed in the same manner as in Example 1 to prepare a pigment composition 29 and a colored composition 29. The obtained crystal type was ⁇ type.
  • Comparative Examples 1 to 3 As in Example 1, as shown in Table 1, solvent species, catalyst species, ⁇ -substituted phthalic acid (phthalic acid derivative) species, synthesis temperature, phthalic anhydride input amount, ⁇ -position substituted
  • the copper phthalocyanine pigments of Comparative Examples 1 to 3 were prepared by changing the amount of phthalic acid and the amount of the solvent, and synthesizing by the same operation. Further, filtration purification after the synthesis, dispersion, and stirring and mixing were similarly processed to prepare a pigment composition and a colored composition.
  • the pigment used in Comparative Example 4 was measured by X-ray diffraction. As a result, the diffraction pattern of an ⁇ -type copper phthalocyanine pigment having diffraction peaks at Bragg angles 2 ⁇ of 7.5, 9.0, and 14.2 degrees was shown.
  • the copper phthalocyanine pigments 1 to 29 from which the ⁇ type was obtained showed excellent results with high brightness as compared with the copper phthalocyanine pigments prepared in Comparative Examples 1 to 4 having the ⁇ or ⁇ crystal type.
  • the contrast ratio in many Examples, it was confirmed that the obtained ⁇ -type phthalocyanine pigment had higher brightness than the ⁇ -type or ⁇ -type and had excellent color characteristics.
  • the high brightness means that the transmitted light has a high transmittance, so that it is possible to show the same luminance with a smaller amount of light. For example, in an image display device such as a liquid crystal television, it leads to further energy saving. Furthermore, since the contrast ratio is high, it is possible to provide an image display device such as a colorful liquid crystal television.
  • a ⁇ -type crystal of a phthalocyanine pigment having a substituent at least at the ⁇ -position can be produced by the phthalonitrile method or the Weiler method satisfying the mathematical formula (1), unlike the prior art, and the obtained ⁇ It was confirmed that the type pigment was superior in color characteristics and display characteristics as compared with the prior art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Optical Filters (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials For Photolithography (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided is a π-conjugated phthalocyanine pigment represented by general formula (1), which enables the provision of a color filter having excellent display quality including color performance. A π-conjugated pigment having excellent color performance including brightness can be produced stably on the bounty of a conformational factor caused by selectively introducing a functional group into R1 to R8.

Description

π型フタロシアニン顔料、該π型フタロシアニン顔料の製造方法および該π型フタロシアニン顔料を用いた着色組成物π-type phthalocyanine pigment, method for producing π-type phthalocyanine pigment, and coloring composition using the π-type phthalocyanine pigment
 本発明は、明度などの色特性に優れ、かつ耐熱性などの点で安定性の高いπ型フタロシアニン顔料、該π型フタロシアニン顔料の製造方法および該π型フタロシアニン顔料を用いた着色組成物に関する。さらに詳細には、カラー液晶表示装置および固体撮像素子などに用いられるカラーフィルタに使用した場合に、表示品位の優れたカラーフィルタを提供することのできる上記顔料に関する。 The present invention relates to a π-type phthalocyanine pigment having excellent color characteristics such as brightness and high stability in terms of heat resistance, a method for producing the π-type phthalocyanine pigment, and a coloring composition using the π-type phthalocyanine pigment. More specifically, the present invention relates to the above pigment that can provide a color filter having excellent display quality when used in a color filter used in a color liquid crystal display device, a solid-state imaging device, and the like.
 一般的にカラーフィルタは、ガラス等の透明な基板の表面に形成された、赤色フィルタ層(R)、緑色フィルタ層(G)および青色フィルタ層(B)、もしくは赤色、緑色、青色の補色に相当する、シアン色フィルタ層(C)、マゼンタ色フィルタ層(M)、およびイエロー色フィルタ層(Y)からなる微細な帯(ストライプ)状のフィルタセグメント(画素)を、「ストライプ配列」、「モザイク配列」、「デルタ配列」等とも呼ばれるが、平行または交差して配置したもの、あるいは微細なフィルタセグメントを縦横一定の配列で配置したものから構成されている。フィルタセグメントは、数マイクロメートル~数100マイクロメートルと微細であり、色相毎に所定の配列で整然と配置されている。 In general, the color filter is a red filter layer (R), green filter layer (G) and blue filter layer (B) formed on the surface of a transparent substrate such as glass, or a complementary color of red, green and blue. The corresponding fine band (striped) filter segments (pixels) composed of a cyan filter layer (C), a magenta filter layer (M), and a yellow filter layer (Y) are divided into “strip arrangement”, “ It is also called “mosaic array”, “delta array”, or the like, and is composed of parallel or crossing arrangements, or arrangements of fine filter segments arranged in a constant vertical and horizontal arrangement. The filter segments are as fine as several micrometers to several hundred micrometers, and are regularly arranged in a predetermined arrangement for each hue.
 カラー液晶表示装置に用いられているカラーフィルタの上には、一般に液晶を駆動させるための透明電極が蒸着あるいはスパッタリングにより形成され、さらにその上に液晶を一定方向に配向させるための配向膜が形成されている。これらの透明電極及び配向膜の性能を充分に得るには、その形成工程を一般に200℃以上、好ましくは230℃以上の高温で行なう必要がある。 On the color filter used in the color liquid crystal display device, a transparent electrode for driving the liquid crystal is generally formed by vapor deposition or sputtering, and an alignment film for aligning the liquid crystal in a certain direction is formed thereon. Has been. In order to sufficiently obtain the performance of these transparent electrodes and alignment films, it is necessary to perform the formation process at a high temperature of generally 200 ° C. or higher, preferably 230 ° C. or higher.
 カラーフィルタに要求される品質項目としては、明度とコントラスト比が挙げられる。コントラスト比が低いカラーフィルタを用いると、液晶が制御した偏光度合いを乱してしまい、光を遮断しなければならないとき(OFF状態)に光が漏れたり、光を透過しなければならないとき(ON状態)に透過光が減衰したりするため、ぼやけた画面となってしまう。そのため、高品質な液晶表示装置を実現するためには、高コントラスト化が不可欠である。 Quality items required for color filters include brightness and contrast ratio. When a color filter with a low contrast ratio is used, the degree of polarization controlled by the liquid crystal is disturbed, and when light must be blocked (OFF state), light must leak or be transmitted (ON) In other words, the transmitted light is attenuated in the state), resulting in a blurred screen. Therefore, high contrast is indispensable for realizing a high-quality liquid crystal display device.
 また、明度が低いカラーフィルタを用いると、光の透過率が低いため、暗い画面となってしまい、明るい画面とするためには、光源であるバックライトの数を増量する必要がある。そのため、消費電力の増大を抑制する観点から、カラーフィルタの高明度化がトレンドとなっている。さらに、前述のようにカラー液晶装置がテレビまたはパソコンモニタ等に用いられるようになったことから、カラーフィルタに対して高明度化、高コントラスト化とともに、高い信頼性への要求も増している。 Also, when a color filter with low brightness is used, the light transmittance is low, resulting in a dark screen. In order to obtain a bright screen, it is necessary to increase the number of backlights that are light sources. For this reason, from the viewpoint of suppressing an increase in power consumption, increasing the brightness of color filters has become a trend. Furthermore, as described above, since the color liquid crystal device is used in a television or a personal computer monitor, there is an increasing demand for a color filter with higher lightness and higher contrast and higher reliability.
 銅フタロシアニンは色相が鮮明で着色力も大きく、耐候性、耐熱性、耐薬品性などの諸耐性に優れているため、青色顔料としてよく用いられている。また、銅フタロシアニンは同質異晶を示し、α、β、ε、γ、δ、π、ρ、χ、R等の結晶型が報告されており、その中でも、印刷インキおよびカラーフィルタなどには、α、βおよびε型の銅フタロシアニンが、色特性および結晶の安定性などの利点を有するため、よく用いられている。
 カラーフィルタの青色フィルタ層では赤味の色相が必要とされており、βと比較してαが、αと比較してε型がより赤味であるため、ε型銅フタロシアニンが使用されることが多い。さらに、ε型銅フタロシアニン顔料は、高鮮明で高着色力であるという優れた性質を有している。
 しかし、公知の手法を用いてε型銅フタロシアニン顔料の微細化を進めた場合でも、コントラスト比は微細化に伴い増大していくが、明度については、顔料の一次粒子の粒径が数十nmレベル以下となると収束するので、それ以上に向上させることが難しくなる。そのため、より一層明度を向上させて消費電力の増大を抑えて、省エネ性能を高めることが難しくなっている。
Copper phthalocyanine is often used as a blue pigment because it has a clear hue and a high tinting strength and is excellent in various resistances such as weather resistance, heat resistance, and chemical resistance. In addition, copper phthalocyanine shows homogeneous heterocrystals, and crystal types such as α, β, ε, γ, δ, π, ρ, χ, and R have been reported. Among them, for printing inks and color filters, α, β and ε type copper phthalocyanines are often used because they have advantages such as color characteristics and crystal stability.
The blue filter layer of the color filter requires a reddish hue, α is compared to β, and ε type is more reddish than α, so ε type copper phthalocyanine is used. There are many. Furthermore, the ε-type copper phthalocyanine pigment has an excellent property of being highly clear and having high coloring power.
However, even when the ε-type copper phthalocyanine pigment is refined using a known method, the contrast ratio increases with the refinement, but the lightness of the primary particle size of the pigment is several tens of nm. Since it converges when the level is below the level, it is difficult to improve further. Therefore, it is difficult to improve the energy saving performance by further improving the brightness and suppressing the increase in power consumption.
 π型銅フタロシアニンは、ε型銅フタロシアニンと比較して赤味を示すために、カラーフィルタの青色フィルタ層の用途として好ましい。しかし、安定性が低く、高温および/または有機溶媒などに晒すことによって、容易に結晶転移し、安定性に欠ける。 Π-type copper phthalocyanine is preferable for use as a blue filter layer of a color filter because it exhibits a reddish color compared to ε-type copper phthalocyanine. However, the stability is low, and when exposed to a high temperature and / or an organic solvent, the crystal transitions easily and lacks stability.
特開昭48-725号公報JP-A-48-725 特開昭63-308074号公報Japanese Unexamined Patent Publication No. 63-308074 特開昭62-48769号公報JP 62-48769 A
 特許文献1には、π型銅フタロシアニンの製造方法が記載されている。しかし、得られるπ型フタロシアニンは、ベンゼン環に置換基を有さない無置換体であって、他の結晶型と比較して安定性に劣るため、カラーフィルタ用途などの実用性に耐えうるものではなかった。 Patent Document 1 describes a method for producing π-type copper phthalocyanine. However, the obtained π-type phthalocyanine is an unsubstituted product having no substituent on the benzene ring, and is inferior in stability compared to other crystal types, so it can withstand practicality such as color filter applications. It wasn't.
 特許文献2には、ワイラー法による銅フタロシアニン合成中に芳香族多塩基酸を共存させながら反応させることを特徴とする、銅フタロシアニンの合成方法が記載されている。生成する銅フタロシアニンの結晶型についての記載はないが、後述する本明細書の比較例3に示したように、π型ではなくε型が生成される。 Patent Document 2 describes a method for synthesizing copper phthalocyanine, which is characterized by reacting an aromatic polybasic acid in the presence of copper phthalocyanine by the Weiler method. Although there is no description about the crystal form of the copper phthalocyanine to be produced, as shown in Comparative Example 3 of this specification described later, not the π type but the ε type is produced.
 特許文献3には、ワイラー法による銅フタロシアニン合成中にピロメリット酸を添加して反応させることを特徴とする、π型銅フタロシアニンの合成方法が記載されている。しかし、この方法で得られるπ型銅フタロシアニンは、色特性などの点においてε型銅フタロシアニンに劣る。さらに、立体構造的な結晶型の安定性にも劣るものであった。 Patent Document 3 describes a method for synthesizing π-type copper phthalocyanine, characterized in that pyromellitic acid is added and reacted during synthesis of copper phthalocyanine by the Weiler method. However, π-type copper phthalocyanine obtained by this method is inferior to ε-type copper phthalocyanine in terms of color characteristics. Furthermore, the stability of the three-dimensional crystal form was inferior.
 本発明は、かかる従来技術の欠点に鑑み創案されたものであり、明度などの色特性を向上させ、かつ耐熱性などの点で安定性の高い、新規なπ型フタロシアニン顔料を提供することを課題とする。
 さらには、この新規なπ型フタロシアニン顔料を、カラー液晶表示装置および固体撮像素子などに用いられるカラーフィルタに使用することによって、色特性および表示品位の優れたカラーフィルタを提供することを課題とする。
The present invention was devised in view of the drawbacks of the prior art, and provides a novel π-type phthalocyanine pigment that improves color characteristics such as brightness and is highly stable in terms of heat resistance and the like. Let it be an issue.
Furthermore, an object of the present invention is to provide a color filter having excellent color characteristics and display quality by using the novel π-type phthalocyanine pigment in a color filter used in a color liquid crystal display device and a solid-state imaging device. .
 本発明は、下記一般式(1)で表されるπ型フタロシアニン顔料に関する。
 一般式(1)
Figure JPOXMLDOC01-appb-C000002
(R1~R8は、それぞれ独立に、水素原子、COOH、CONH2、CF3、OC65、NH2、NO2、C65、またはアルキル基である。R1~R8が全て同時に水素原子となることはない。Mは金属原子もしくは2Hである。R9~R16は、それぞれ独立に、水素原子、アリール基、スルホン基、スルホアミド基、シアノ基、ヒドロキシル基、チオール基、アシル基、ハロゲノ基、シリル基、またはシリルオキシ基である。R1~R16の置換基は金属塩の状態であってもよい。)
The present invention relates to a π-type phthalocyanine pigment represented by the following general formula (1).
General formula (1)
Figure JPOXMLDOC01-appb-C000002
(R 1 to R 8 are each independently a hydrogen atom, COOH, CONH 2 , CF 3 , OC 6 H 5 , NH 2 , NO 2 , C 6 H 5 , or an alkyl group. R 1 to R 8 Are not simultaneously hydrogen atoms, M is a metal atom or 2H, and R 9 to R 16 are each independently a hydrogen atom, aryl group, sulfone group, sulfoamide group, cyano group, hydroxyl group, thiol. A substituent, an acyl group, a halogeno group, a silyl group, or a silyloxy group, and the substituents of R 1 to R 16 may be in the form of a metal salt.)
 別の本発明は、本発明に係るπ型フタロシアニン顔料の製造方法であって、
 無水フタル酸、および、少なくともα位が置換されたフタル酸誘導体と、尿素、尿素誘導体またはアンモニアと、金属塩とを、
 反応温度をx(℃)、
 無水フタル酸、および少なくともα位が置換されたフタル酸誘導体の総投入重量に対する、少なくともα位が置換されたフタル酸誘導体の投入重量(%)をy、
 無水フタル酸、および少なくともα位が置換されたフタル酸誘導体の総投入重量に対する溶媒投入量(倍)をzとしたとき、
  数式(1):x-4.3y-1.8z-145≦0 
  (但し、90≦x≦300、0<y、0≦z)
で表される条件で反応させる工程を含む、π型フタロシアニン顔料の製造方法に関する。
Another aspect of the present invention is a method for producing a π-type phthalocyanine pigment according to the present invention,
Phthalic anhydride, a phthalic acid derivative substituted at least in the α-position, urea, a urea derivative or ammonia, and a metal salt,
The reaction temperature is x (° C.),
The input weight (%) of the phthalic acid derivative substituted at least at the α-position to the total input weight of phthalic anhydride and the phthalic acid derivative substituted at least at the α-position is y,
When z is the amount of solvent input (times) with respect to the total input weight of phthalic anhydride and at least the α-substituted phthalic acid derivative,
Formula (1): x-4.3y-1.8z-145 ≦ 0
(However, 90 ≦ x ≦ 300, 0 <y, 0 ≦ z)
The manufacturing method of (pi) -type phthalocyanine pigment including the process made to react on the conditions represented by these.
 別の本発明は、本発明に係るπ型フタロシアニン顔料の製造方法であって、
 フタロニトリルおよび/またはジイミノイソインドリンと、少なくともα位が置換されたフタロニトリル誘導体および/または少なくともα位が置換されたジイミノイソインドリン誘導体と、金属塩とを、60~300℃で反応させる工程を含む、π型フタロシアニン顔料の製造方法に関するものである。
Another aspect of the present invention is a method for producing a π-type phthalocyanine pigment according to the present invention,
A phthalonitrile and / or diiminoisoindoline, a phthalonitrile derivative substituted at least in the α-position and / or a diiminoisoindoline derivative substituted in at least the α-position, and a metal salt are reacted at 60 to 300 ° C. The present invention relates to a method for producing a π-type phthalocyanine pigment including a step.
 別の本発明は、本発明に係るπ型フタロシアニン顔料と、π型無置換フタロシアニン顔料とを含有する顔料組成物に関する。 Another present invention relates to a pigment composition containing the π-type phthalocyanine pigment according to the present invention and a π-type unsubstituted phthalocyanine pigment.
 別の本発明は、本発明に係る顔料組成物と顔料担体とを含有する着色組成物に関する。 Another present invention relates to a coloring composition containing the pigment composition according to the present invention and a pigment carrier.
 さらに別の本発明は、基板と、該基板上に形成されたフィルタセグメントとを少なくとも備え、該フィルタセグメントの一部は、本発明に係る着色組成物を用いて得られたものであるカラーフィルタに関する。 Still another invention is a color filter comprising at least a substrate and a filter segment formed on the substrate, and a part of the filter segment is obtained using the coloring composition according to the invention. About.
 本発明に係る新規のπ型フタロシアニン顔料は、色特性と安定性に優れており、これをカラー液晶表示装置および固体撮像素子などに用いられるカラーフィルタに使用することにより、明度およびコントラスト比などの表示品位の優れたカラーフィルタの提供が可能となる。 The novel π-type phthalocyanine pigment according to the present invention is excellent in color characteristics and stability, and by using it in a color filter used in a color liquid crystal display device and a solid-state imaging device, brightness and contrast ratio are improved. A color filter with excellent display quality can be provided.
一般式(1)で示されるπ型銅フタロシアニン顔料の粉末X線回折パターンの一例である。It is an example of the powder X-ray diffraction pattern of the π-type copper phthalocyanine pigment represented by the general formula (1). β型銅フタロシアニン顔料の粉末X線回折パターンの一例である。It is an example of the powder X-ray diffraction pattern of a β-type copper phthalocyanine pigment. ε型銅フタロシアニン顔料の粉末X線回折パターンの一例である。It is an example of the powder X-ray diffraction pattern of an epsilon-type copper phthalocyanine pigment. 一般式(1)で示される、微細化したπ型銅フタロシアニン顔料の粉末X線回折パターンの一例である。It is an example of the powder X-ray diffraction pattern of the refined | miniaturized pi-type copper phthalocyanine pigment shown by General formula (1). 一般式(1)で示されるπ型銅フタロシアニン顔料のTOF-MSチャートの一例である。2 is an example of a TOF-MS chart of a π-type copper phthalocyanine pigment represented by the general formula (1).
 以下、本発明の詳細について、好ましい実施形態に基づき説明する。
1.π型フタロシアニン顔料
 本発明者らは、下記一般式(1)で表されるように、フタロシアニンの、いわゆるα位である、R1~R8の少なくとも一つに、COOH、CONH2、CF3、OC65、NH2、NO2、C65、または、アルキル基を導入することにより、立体構造的にフタロシアニンの結晶がπ型を維持することが容易となるため、π型フタロシアニンの生成が容易になると共に、結晶の安定性が向上することを見いだした。さらに本発明者らは、カラー液晶表示装置および固体撮像素子などに用いられるカラーフィルタに該π型フタロシアニンを使用した場合に、明度およびコントラスト比などの色特性、ならびに表示品位にも優れたカラーフィルタを提供することが可能であることを見出して、本発明を完成するに至った。
Hereinafter, the details of the present invention will be described based on preferred embodiments.
1. π-type phthalocyanine pigments As shown by the following general formula (1), the present inventors include COOH, CONH 2 , CF 3 in at least one of R 1 to R 8 , which is the so-called α-position of phthalocyanine. , OC 6 H 5 , NH 2 , NO 2 , C 6 H 5 , or an alkyl group makes it easy to maintain the π form of the phthalocyanine crystal in a three-dimensional structure. It was found that the stability of the crystal was improved while the formation of was facilitated. Furthermore, the present inventors have provided a color filter excellent in color characteristics such as brightness and contrast ratio and display quality when the π-type phthalocyanine is used in a color filter used in a color liquid crystal display device and a solid-state imaging device. The present invention has been completed.
 一般式(1)
Figure JPOXMLDOC01-appb-C000003
(R1~R8は、それぞれ独立に、水素原子、COOH、CONH2、CF3、OC65、NH2、NO2、C65、または、アルキル基である。R1~R8が全て同時に水素原子となることはない。Mは金属原子もしくは2Hである。R9~R16は、それぞれ独立に、水素原
子、アリール基、スルホン基、スルホアミド基、シアノ基、ヒドロキシル基、チオール基、アシル基、ハロゲノ基、シリル基、またはシリルオキシ基である。R1~R16の置換基は金属塩の状態であってもよい。)
General formula (1)
Figure JPOXMLDOC01-appb-C000003
(R 1 to R 8 are each independently a hydrogen atom, COOH, CONH 2 , CF 3 , OC 6 H 5 , NH 2 , NO 2 , C 6 H 5 , or an alkyl group. R 1 to R 8 are not all hydrogen atoms at the same time, M is a metal atom or 2H, and R 9 to R 16 are independently a hydrogen atom, an aryl group, a sulfone group, a sulfoamide group, a cyano group, a hydroxyl group, (A thiol group, an acyl group, a halogeno group, a silyl group, or a silyloxy group. The substituents of R 1 to R 16 may be in the form of a metal salt.)
 すなわち、本発明に係るフタロシアニン顔料は、フタル酸のα位に相当する位置に置換基を有する、一般式(1)のフタロシアニンのπ型結晶である。ここで、一般式(1)で示されるフタロシアニン顔料を、置換(α位置換)フタロシアニン顔料またはα位置換体と記す場合がある。
 一般式(1)のR1~R8に少なくとも一つ導入する官能基は、COOH、CONH2、CF3、OC65、NH2、NO2、C65、またはアルキル基のどの官能基であっても好ましい。アルキル基は、炭素数1~12程度の、直鎖または分枝鎖のアルキル基であることが好ましい。なかでも、COOH、CONH2、CF3、およびOC65からなる群から選ばれる少なくとも一つの置換基を有することが特に望ましい。
 導入する官能基の数は特に指定されるものではないが、官能基数の増加によりカラーフィルタに使用した際の色特性に悪影響を及ぼす可能性が高まるため、フタロシアニン1分子中に導入する水素原子以外の官能基数は、R1~R8(α位)とR9~R16(β位)の双方の合計で、1~8程度であることが好ましく、1~4、または、1~3であることがさらに好ましい。また、複数種の官能基が導入されていてもよい。
That is, the phthalocyanine pigment according to the present invention is a π-type crystal of phthalocyanine of the general formula (1) having a substituent at a position corresponding to the α-position of phthalic acid. Here, the phthalocyanine pigment represented by the general formula (1) may be referred to as a substituted (α-substituted) phthalocyanine pigment or α-substituted product.
The functional group introduced into at least one of R 1 to R 8 in the general formula (1) is any one of COOH, CONH 2 , CF 3 , OC 6 H 5 , NH 2 , NO 2 , C 6 H 5 , or an alkyl group. Even a functional group is preferable. The alkyl group is preferably a linear or branched alkyl group having about 1 to 12 carbon atoms. Among these, it is particularly desirable to have at least one substituent selected from the group consisting of COOH, CONH 2 , CF 3 , and OC 6 H 5 .
The number of functional groups to be introduced is not particularly specified, but the increase in the number of functional groups increases the possibility of adversely affecting the color characteristics when used in color filters, so other than hydrogen atoms introduced into one molecule of phthalocyanine The total number of functional groups of R 1 to R 8 (α position) and R 9 to R 16 (β position) is preferably about 1 to 8, preferably 1 to 4, or 1 to 3. More preferably it is. Moreover, multiple types of functional groups may be introduced.
 R1~R8(α位)の少なくとも一つにCOOH、CONH2、CF3、OC65、NH2、NO2、C65、またはアルキル基を導入することによって、いわゆるβ位であるR9~R16に導入した場合と比較して、官能基が立体構造的に阻害要因として働き、その結果、結晶型をπ型に安定化させる効果が高められると考えられることから、R1~R8に官能基を導入することが重要である。
 上記特許文献3において得られるπ型銅フタロシアニンは、α位に置換基を導入したものではなく、その立体構造的な結晶型の安定性は、上記R1~R8のいずれかに官能基を導入した場合に比べて、十分なものとはいえない。
By introducing COOH, CONH 2 , CF 3 , OC 6 H 5 , NH 2 , NO 2 , C 6 H 5 , or an alkyl group into at least one of R 1 to R 8 (α position), the so-called β position Compared with the case where it is introduced into R 9 to R 16 , the functional group acts as a steric hindrance factor, and as a result, it is considered that the effect of stabilizing the crystal type to the π type is enhanced. It is important to introduce a functional group into R 1 to R 8 .
The π-type copper phthalocyanine obtained in the above-mentioned Patent Document 3 does not have a substituent introduced at the α-position, and its three-dimensional structural crystal type has a functional group in any of the above R 1 to R 8. It is not enough compared to the case of introduction.
 R9~R16に導入した官能基は、結晶型に大きな影響を及ぼさないため、いかなる官能基を導入してもよい。ただし、顔料の色相には影響が生じるため、それぞれ独立に、水素原子、アリール基、スルホン基(スルホ基ともいう。-SOH)、スルホアミド基(-SONRR’)、シアノ基(-CN)、ヒドロキシル基(ヒドロキシ基ともいう。-OH)、チオール基(-SH)、アシル基、ハロゲノ基(-F、-Cl、-Br、-I)、シリル基、またはシリルオキシ基であることが望ましい。上記スルホアミド基のRおよびR’は、それぞれ独立に、水素原子、炭素数1~5程度の、直鎖または分枝鎖のアルキル基、N,N-ジメチルアミノメチル基、N,N-ジメチルアミノエチル基等のアミノ置換アルキル基であることが望ましい。アリール基としては、フェニル基、ベンジル基、トリル基、キシリル基等が好ましく、アシル基(-COR)はRがメチル、エチル、フェニル等であることが好ましく、シリル基(-SiRR’R’’)は、トリメチルシリル基、トリエチルシリル基等が好ましく、シリルオキシ基(-OSiRR’R’’)はトリメチルシリルオキシ基、トリエチルシリルオキシ基等が好ましいが、これらに限定されることはない。
 R1~R16の置換基は、金属塩の状態であってもよい。たとえば、カルボン酸塩(-COOM)、スルホン酸塩(-SOM)、アルコキシドまたはフェノキシド(-OM)が挙げられ、金属(M)としてはナトリウム、カリウム、リチウム等のアルカリ金属が挙げられる。
Since the functional group introduced into R 9 to R 16 does not significantly affect the crystal type, any functional group may be introduced. However, since the hue of the pigment is affected, a hydrogen atom, an aryl group, a sulfone group (also referred to as a sulfo group, —SO 3 H), a sulfoamide group (—SO 2 NRR ′), a cyano group (— CN), hydroxyl group (also referred to as hydroxy group, —OH), thiol group (—SH), acyl group, halogeno group (—F, —Cl, —Br, —I), silyl group, or silyloxy group Is desirable. R and R ′ of the sulfoamide group are each independently a hydrogen atom, a linear or branched alkyl group having about 1 to 5 carbon atoms, an N, N-dimethylaminomethyl group, an N, N-dimethylamino group. An amino-substituted alkyl group such as an ethyl group is desirable. The aryl group is preferably a phenyl group, a benzyl group, a tolyl group, a xylyl group, etc., and the acyl group (—COR) is preferably such that R is methyl, ethyl, phenyl, etc., and a silyl group (—SiRR′R ″) ) Is preferably a trimethylsilyl group, a triethylsilyl group or the like, and the silyloxy group (—OSiRR′R ″) is preferably a trimethylsilyloxy group, a triethylsilyloxy group or the like, but is not limited thereto.
The substituents R 1 to R 16 may be in the form of a metal salt. Examples thereof include carboxylate (—COOM), sulfonate (—SO 3 M), alkoxide or phenoxide (—OM), and examples of metal (M) include alkali metals such as sodium, potassium and lithium.
 一般式(1)中の中心金属Mは、2Hもしくは金属を示している。その中でもMは、Cu、Zn、Al(OH)、2Hが好ましく、さらに好ましくはCuである。Mは一つの顔料中に1種類であっても、複数種あっても構わない。 The central metal M in the general formula (1) represents 2H or a metal. Among these, M is preferably Cu, Zn, Al (OH), or 2H, and more preferably Cu. M may be one kind or plural kinds in one pigment.
 フタロシアニンのπ型結晶型は、図1に示すような粉末X線回折パターンを有している。すなわち、π型フタロシアニンは、Cu-Kα線を用いて測定した場合、ブラッグ角2θ(±0.3度)の4.9、6.5、8.5、9.7、10.7、17.0度に回折ピークを持つ結晶型である。図1は、α位に置換基を有する、一般式(1)のフタロシアニンのπ型結晶について得られたデータであるが、導入した官能基により各々の回折ピークの位置は若干シフトするものの、結晶型がπ型である限り、回折パターンとしては図1と類似のパターンを示す。但し、フタロシアニンまたはフタロシアニン顔料の微細化が進んだ場合には回折ピークがブロードとなり、ピークの一部が消失することがある。ピークがブロードとなってその一部消失した、π型フタロシアニン(α位置換体)の回折パターンを図4に示す。
 ベンゼン環に導入された置換基の存在は、TOF(Time of Flight)-MS(飛行時間型質量分析計)などにより確認することができる(図5参照)。
The π-type crystal form of phthalocyanine has a powder X-ray diffraction pattern as shown in FIG. In other words, π-type phthalocyanine has a Bragg angle 2θ (± 0.3 degrees) of 4.9, 6.5, 8.5, 9.7, 10.7, 17 when measured using Cu—Kα rays. It is a crystal type having a diffraction peak at 0 degree. FIG. 1 shows data obtained for a phthalocyanine π-type crystal of the general formula (1) having a substituent at the α-position, although the position of each diffraction peak is slightly shifted by the introduced functional group. As long as the mold is π-type, the diffraction pattern shows a pattern similar to FIG. However, when the phthalocyanine or phthalocyanine pigment is further refined, the diffraction peak becomes broad and a part of the peak may disappear. FIG. 4 shows a diffraction pattern of π-type phthalocyanine (α-substituted product) in which the peak is broad and partially disappeared.
The presence of the substituent introduced into the benzene ring can be confirmed by TOF (Time of Flight) -MS (Time of Flight Mass Spectrometer) or the like (see FIG. 5).
2.π型フタロシアニン顔料の製造方法
 次に、上記一般式(1)で示されるα位置換フタロシアニン顔料のπ型結晶の代表的な製法を説明する。
 フタロシアニンの製造方法は、従来公知の方法から選択することができ、その反応条件については特に限定されないが、以下に説明するように、ワイラー法においてπ型結晶を安定的に得るためには、反応温度、フタル酸原料の投入重量、溶媒の投入重量について留意が必要であり、以下に述べる数式(1)を満たす条件で製造することが好ましい。
 一般的に知られている、フタロシアニンの主要な製法は下記の2通りである。一つ目はワイラー法と呼ばれる方法で、無水フタル酸またはその誘導体(以下、これらのフタル酸原料をまとめて「フタル酸類」とも記す。)と尿素またはその誘導体とを原料とし、金属源、触媒および溶媒などを同時に添加することによって合成する、工業的に現在主流の手法である。二つ目はフタロニトリル法と呼ばれる方法で、反応性の高いフタロニトリルもしくはその誘導体(以下、これらのフタロニトリル原料をまとめて「フタロニトリル類」とも記す。)、または、フタロニトリル類に代えてジイミノイソインドリンもしくはその誘導体(以下、これらのジイミノイソインドリン原料をまとめて「ジイミノイソインドリン類」とも記す。)を用いて、金属源などを添加して加熱することにより、合成する方法である。
2. Next, a typical method for producing a π-type crystal of the α-substituted phthalocyanine pigment represented by the general formula (1) will be described.
The production method of phthalocyanine can be selected from conventionally known methods, and the reaction conditions are not particularly limited, but as described below, in order to stably obtain π-type crystals in the Weiler method, the reaction It is necessary to pay attention to the temperature, the input weight of the phthalic acid raw material, and the input weight of the solvent, and it is preferable to manufacture them under conditions that satisfy the following formula (1).
There are two main methods for producing phthalocyanine which are generally known. The first is a method called the Weiler method, which uses phthalic anhydride or its derivatives (hereinafter these phthalic acid raw materials are collectively referred to as “phthalic acids”) and urea or its derivatives as a raw material, metal source, catalyst. This is the industrially mainstream method of synthesizing by simultaneously adding a solvent and a solvent. The second method is called the phthalonitrile method, which is a highly reactive phthalonitrile or derivative thereof (hereinafter, these phthalonitrile raw materials are collectively referred to as “phthalonitriles”), or instead of phthalonitriles. Method of synthesizing diiminoisoindoline or a derivative thereof (hereinafter, these diiminoisoindoline raw materials are collectively referred to as “diiminoisoindolines”) by adding a metal source and heating. It is.
 以下に具体的に説明するが、ワイラー法とフタロニトリル法のいずれを用いた場合でも、前者では無水フタル酸を使用し、後者ではフタロニトリルおよび/またはジイミノイソインドリンを使用することにより、一般式(1)で示されるα位置換のフタロシアニン顔料のほかに、無置換のフタロシアニン顔料も製造される。製造されるフタロシアニン顔料中の無置換体の比率は、使用する原料比率に応じて任意に調整可能である。このとき、一般式(1)で表されるフタロシアニン顔料がπ型結晶型で生成するので、このπ型結晶の存在により、無置換のフタロシアニン顔料も同じ結晶型となり、同じ結晶型(π型)の組成物を得ることができる。また、一般式(1)のα位置換のフタロシアニン顔料として、置換位置、置換基数等の異なる複数の化合物が得られる。 As will be described in detail below, regardless of whether the Weiler method or the phthalonitrile method is used, the former uses phthalic anhydride and the latter uses phthalonitrile and / or diiminoisoindoline. In addition to the α-substituted phthalocyanine pigment represented by the formula (1), an unsubstituted phthalocyanine pigment is also produced. The ratio of the unsubstituted product in the produced phthalocyanine pigment can be arbitrarily adjusted according to the raw material ratio to be used. At this time, since the phthalocyanine pigment represented by the general formula (1) is formed in a π-type crystal type, the presence of this π-type crystal causes the unsubstituted phthalocyanine pigment to have the same crystal type, and the same crystal type (π-type). The composition can be obtained. In addition, as the α-substituted phthalocyanine pigment of the general formula (1), a plurality of compounds having different substitution positions, the number of substituents, and the like can be obtained.
(1)ワイラー法
 本発明者らは、ワイラー法を用いて無水フタル酸、および、少なくともα位が置換されたフタル酸誘導体(少なくともα位が置換された(無水)フタル酸等)を、尿素、尿素誘導体またはアンモニア、および金属塩と反応させてπ型の結晶を安定的に得るためには、
 反応温度をx(℃)、
 無水フタル酸、および少なくともα位が置換されたフタル酸誘導体の総投入重量に対する、該フタル酸誘導体の投入重量(%)をy、
 無水フタル酸とフタル酸誘導体の総投入重量に対する溶媒投入量(倍)をzとしたとき、
  数式(1):x-4.3y-1.8z-145≦0(但し、90≦x≦300、0<y、0≦z)で表される条件で反応させることが望ましいことを、実験的に見出した。数式(1)の値が0より大となる場合には、π型ではなく、β型、ε型もしくは多種類の結晶の混晶が得られるなど(上記特許文献2参照)、π型と比べて明度の低い結晶型が生じる。
 数式(1)がゼロ以下になるためには、つまり、π型のフタロシアニンを確実に生成させるためには、反応温度(x)が比較的低く、かつ、反応溶媒の量(z)が多く温和な条件で反応が行われなければならないことがわかる。たとえば、反応温度が比較的高い場合は、熱力学的に安定な結晶型への転移が起こりやすくなるため、溶媒量を増やすなどして反応条件を温和にすること、および/またはフタル酸誘導体の配合比率を高くするなどして結晶の安定性を高くすることが好ましいと考えられる。
(1) Weiler Method The present inventors have used a Weiler method to convert phthalic anhydride and a phthalic acid derivative substituted at least at the α-position (such as (phthalic anhydride) substituted at least at the α-position) to urea. In order to obtain a π-type crystal stably by reacting with a urea derivative or ammonia and a metal salt,
The reaction temperature is x (° C.),
The input weight (%) of the phthalic acid derivative with respect to the total input weight of the phthalic anhydride and the phthalic acid derivative substituted at least at the α-position is y,
When the amount of solvent input (times) with respect to the total input weight of phthalic anhydride and phthalic acid derivative is z,
Experiment that it is desirable to carry out the reaction under the conditions represented by Formula (1): x-4.3y-1.8z-145 ≦ 0 (where 90 ≦ x ≦ 300, 0 <y, 0 ≦ z) I found it. When the value of Equation (1) is greater than 0, not a π-type, but a β-type, an ε-type, or a mixed crystal of various types of crystals is obtained (see Patent Document 2 above). A crystal form with low brightness.
In order for Formula (1) to be less than or equal to zero, that is, in order to reliably produce π-type phthalocyanine, the reaction temperature (x) is relatively low and the amount (z) of the reaction solvent is large. It can be seen that the reaction must be carried out under various conditions. For example, when the reaction temperature is relatively high, transition to a thermodynamically stable crystal form is likely to occur. Therefore, the reaction conditions may be moderated by increasing the amount of solvent and / or the phthalic acid derivative. It is considered preferable to increase the stability of the crystal by increasing the blending ratio.
 数式(1)における反応温度(℃)であるxは、顔料の結晶型および収率などに大きな影響を及ぼすため重要な要素の一つである。反応開始から顔料が生成し始めるまで温度をx℃に一定に調整することが望ましいが、生成する顔料粒子の粒径および粒度分布を制御するために、反応の途中で温度を90~300℃の範囲内で上下させてもよい。
 好ましい実施形態において、数式(1)を満たす限りxが特に限定されることはないが、一般的な条件としてはxは90~300℃であり、反応時間、収率などの観点からより好ましくは、120~250℃であり、最も好ましくは150~200℃である。
 また収率向上および/または純度向上等を目的として0.05~1.0MPa程度の加圧条件で反応を行ってもよい。
X, which is the reaction temperature (° C.) in Equation (1), is one of the important factors because it greatly affects the crystal form and yield of the pigment. Although it is desirable to adjust the temperature constant to x ° C. from the start of the reaction until the pigment starts to form, the temperature is adjusted to 90 to 300 ° C. during the reaction in order to control the particle size and particle size distribution of the produced pigment particles. You may raise and lower within the range.
In a preferred embodiment, x is not particularly limited as long as Formula (1) is satisfied, but as a general condition, x is 90 to 300 ° C., and more preferably from the viewpoint of reaction time, yield, and the like. 120-250 ° C, most preferably 150-200 ° C.
Further, the reaction may be carried out under a pressure condition of about 0.05 to 1.0 MPa for the purpose of improving yield and / or purity.
 数式(1)における、少なくともα位が置換されたフタル酸誘導体(少なくともα位が置換された(無水)フタル酸誘導体等)の投入重量(%)であるy(=フタル酸誘導体投入重量×100/(無水フタル酸+フタル酸誘導体)総投入重量)は、結晶型を制御させるために重要な要素の一つである。上記数式(1)を満たすように、適切な量のフタル酸誘導体を投入することが好ましい。フタル酸誘導体の投入のタイミングについては、反応開始時に全量を投入してもよいが、反応途中の顔料粒子の生成が終了するまでの間に、分割して投入してもよい。
 好ましい実施形態において、上記数式(1)を満たす限りyが特に限定されることはないが、反応時間、収率などの観点から、yは1~20%程度であることが好ましく、より好ましくは1~10%程度であり、さらに好ましくは2~8%程度である。
In formula (1), y (= phthalic acid derivative input weight × 100) which is the input weight (%) of a phthalic acid derivative substituted at least at the α-position (such as a (phthalic anhydride) phthalic acid derivative substituted at least at the α-position). / ((Phthalic anhydride + phthalic acid derivative) total input weight) is one of the important factors for controlling the crystal form. It is preferable to add an appropriate amount of the phthalic acid derivative so as to satisfy the above mathematical formula (1). As for the timing of adding the phthalic acid derivative, the entire amount may be added at the start of the reaction, or may be divided and added until the generation of the pigment particles during the reaction is completed.
In a preferred embodiment, y is not particularly limited as long as the above formula (1) is satisfied. However, from the viewpoint of reaction time, yield, etc., y is preferably about 1 to 20%, more preferably. It is about 1 to 10%, more preferably about 2 to 8%.
 ワイラー法においては、合成の際に系内の温度制御および/または攪拌効率の向上等の目的のために溶剤を用いてもよく、π型結晶型を得るためには溶媒を用いることが好ましい。
 数式(1)における、溶媒投入量(倍)であるz(=溶媒投入重量/(無水フタル酸+フタル酸誘導体)総投入重量)は、系内の反応性を制御するために重要な要素の一つである。溶媒は、反応開始時に全量投入してもよいが、反応途中に分割して、連続的もしくは段階的に投入してもよく、顔料の生成が終了するまでに、数式(1)を満たすzに調整することにより、π型結晶を好ましく得ることができる。
 好ましい実施形態において、数式(1)を満たす限りzが特に限定されることはないが、反応時間、収率などの観点からより好ましくは、zは2~15倍程度であり、3~10倍程度であることが一層好ましい。
In the Weiler method, a solvent may be used for the purpose of controlling the temperature in the system and / or improving the stirring efficiency during synthesis, and it is preferable to use a solvent to obtain a π-type crystal form.
In Formula (1), z (= solvent input weight / (phthalic anhydride + phthalic acid derivative) total input weight), which is the amount of solvent input (times), is an important factor for controlling the reactivity in the system. One. The entire amount of the solvent may be added at the start of the reaction, but may be divided in the middle of the reaction and may be added continuously or stepwise, and the value of z that satisfies the formula (1) is reached before the formation of the pigment is completed. By adjusting, a π-type crystal can be preferably obtained.
In a preferred embodiment, z is not particularly limited as long as Formula (1) is satisfied, but z is more preferably about 2 to 15 times, and 3 to 10 times from the viewpoint of reaction time, yield, and the like. More preferably, it is about.
 ワイラー法での合成の際に使用するフタル酸類としては、種々の文献で公知であるもの、例えば、無水フタル酸、フタル酸およびその塩、そのエステル、フタルイミド、フタルアミドなどがある。フタル酸エステルは、C1~C12のアルキルエステルであることが好ましい。
 またこれらの化合物の芳香族環上にアルキル基、アリール基、ニトロ基、スルホン基またはその金属塩基、スルホアミド基、シアノ基、アミノ基、ヒドロキシル基またはその金属塩基、カルボキシル基またはその金属塩基、アミド基、トリフルオロメチル基、フェニルオキシ基、チオール基、アシル基、シリルオキシ基、シリル基、ハロゲノ基といった置換基を有するフタル酸類を含有していてもよい。
Examples of phthalic acids used in the synthesis by the Weiler method include those known in various literatures such as phthalic anhydride, phthalic acid and salts thereof, esters thereof, phthalimide, and phthalamide. The phthalic acid ester is preferably a C1-C12 alkyl ester.
In addition, alkyl groups, aryl groups, nitro groups, sulfone groups or their metal bases, sulfoamide groups, cyano groups, amino groups, hydroxyl groups or their metal bases, carboxyl groups or their metal bases, amides on the aromatic rings of these compounds A phthalic acid having a substituent such as a group, a trifluoromethyl group, a phenyloxy group, a thiol group, an acyl group, a silyloxy group, a silyl group, or a halogeno group may be contained.
 一般式(1)のフタロシアニンを合成するためには、少なくとも、無水フタル酸と、少なくともα位が置換されたフタル酸誘導体とを原料として使用するが、これら以外のフタル酸原料(後述するβ位が置換されたフタル酸誘導体、ベンゼン環に置換基を有さない無水物以外のフタル酸誘導体等)を一部に使用してもよい。
 この「α位が置換されたフタル酸誘導体」とは、フタル酸の少なくとも一つのα位に、上記R1~R8として説明したいずれか一以上の置換基を有する、「α位置換のフタル酸またはその誘導体」である。フタル酸のカルボキシ基側の誘導体としては、フタル酸無水物、フタル酸エステル、フタルイミド、フタルアミド等の一般的なカルボン酸誘導体が挙げられる。代表的なカルボン酸誘導体であるフタル酸無水物とフタル酸とをまとめて「(無水)フタル酸」あるいは「(無水)フタル酸誘導体」のように表記する場合もある。α位置換フタル酸誘導体として、置換基の種類および/または置換位置の異なる、複数種の化合物を使用してもよい。
In order to synthesize the phthalocyanine of the general formula (1), at least phthalic anhydride and a phthalic acid derivative substituted at least at the α-position are used as raw materials. Phthalic acid derivatives substituted with phthalic acid derivatives, phthalic acid derivatives other than anhydrides having no substituent on the benzene ring, etc.) may be used in part.
This “phthalic acid derivative substituted at the α-position” means “an α-substituted phthalic acid having one or more substituents described as R 1 to R 8 at least at one α-position of phthalic acid. Acid or derivative thereof. Examples of the derivative on the carboxy group side of phthalic acid include general carboxylic acid derivatives such as phthalic anhydride, phthalic acid ester, phthalimide, and phthalamide. Representative carboxylic acid derivatives phthalic anhydride and phthalic acid may be collectively expressed as “(anhydrous) phthalic acid” or “(anhydrous) phthalic acid derivative”. As the α-substituted phthalic acid derivative, plural kinds of compounds having different kinds of substituents and / or different substitution positions may be used.
 このα位置換のフタル酸誘導体は、β位にも任意の一以上の置換基(上記一般式(1)のR9~R16の置換基)を有していてもよい。
 また、無置換のフタル酸誘導体として、無水物以外の誘導体(フタル酸エステル、フタルイミド等)を一部に使用してもよい。
 さらに、β位のみに一以上の置換基を有するβ位置換フタル酸またはその誘導体を一部に使用してもよい。これらのフタル酸誘導体におけるβ位の置換基としては、上記R9~R16として説明したいずれか一以上の置換基である。
 無水フタル酸およびα位置換のフタル酸誘導体以外のフタル酸類(β位置換フタル酸またはその誘導体、無置換の無水物以外のフタル酸誘導体)を用いる場合は、原料となるフタル酸類の合計中に10重量%以下程度であることが好ましい。
This α-substituted phthalic acid derivative may have any one or more substituents (substituents R 9 to R 16 in the above general formula (1)) at the β-position.
Moreover, as an unsubstituted phthalic acid derivative, derivatives (phthalic acid ester, phthalimide, etc.) other than anhydrides may be used in part.
Furthermore, β-substituted phthalic acid having one or more substituents only at the β-position or derivatives thereof may be used in part. The substituent at the β-position in these phthalic acid derivatives is any one or more substituents described as R 9 to R 16 above.
When using phthalic acids other than phthalic anhydride and α-substituted phthalic acid derivatives (β-substituted phthalic acid or its derivatives, phthalic acid derivatives other than unsubstituted anhydride), the total amount of phthalic acids used as raw materials It is preferably about 10% by weight or less.
 上記フタル酸類と反応させる尿素またはその誘導体としては、尿素、ビウレット、トリウレットなどが挙げられ、アンモニアを用いることも好ましい。これらの複数種を使用してもよい。
 その使用量は、原料となるフタル酸類(フタル酸またはその誘導体)の合計に対しモル比で1から10の範囲で用いるのが望ましい。
Examples of urea or a derivative thereof to be reacted with the phthalic acid include urea, biuret, and triuret, and it is also preferable to use ammonia. A plurality of these may be used.
The amount used is preferably in the range of 1 to 10 in molar ratio to the total amount of phthalic acids (phthalic acid or derivatives thereof) as raw materials.
 金属塩は、上記一般式(1)の中心金属Mを構成するものであり、好ましくはCu、Zn、Al等の塩である。この金属塩を供給する金属源としては、Cu、Zn、Al等の金属の金属粉、塩化物、臭化物、ヨウ化物、硫酸塩、硫化物、酢酸塩、酸化物、水酸化物、炭酸塩、リン酸塩などが使用できる。金属の価数は反応に影響を与えるが、一般にフタロシアニン合成には、特に価数が限定されることなく使用できる。なかでも、金属は銅であることが好ましく、好ましくは塩化銅(I)、塩化銅(II)、硫酸銅、水酸化銅(I)、水酸化銅(II)等を金属源または金属塩として好ましく使用できる。これらの2種以上を用いてもよい。
 金属塩の使用量は、原料となるフタル酸類(フタル酸またはその誘導体)の合計に対しモル比で0.15から0.40の範囲で用いるのが好ましい。
The metal salt constitutes the central metal M of the general formula (1), and is preferably a salt of Cu, Zn, Al or the like. Metal sources for supplying this metal salt include metal powders of metals such as Cu, Zn, Al, chloride, bromide, iodide, sulfate, sulfide, acetate, oxide, hydroxide, carbonate, Phosphate etc. can be used. Although the valence of the metal affects the reaction, it can generally be used for phthalocyanine synthesis without any particular limitation on the valence. Especially, it is preferable that a metal is copper, Preferably copper (I) chloride, copper (II) chloride, copper sulfate, copper hydroxide (I), copper hydroxide (II) etc. are used as a metal source or a metal salt. It can be preferably used. Two or more of these may be used.
The metal salt is preferably used in a molar ratio of 0.15 to 0.40 with respect to the total amount of phthalic acids (phthalic acid or derivatives thereof) as raw materials.
 反応の触媒としては、ワイラー法で公知のものを用いることができる。例えばモリブデン酸アンモニウム、リンモリブデン酸などのモリブデン酸化合物、四塩化チタン、チタン酸エステルなどのチタン化合物、酸化アンチモン、酸化ヒ素、ホウ酸などが挙げられる。これらの2種以上を用いてもよい。
 触媒の使用量に関しては特に限定はないが、原料となるフタル酸類(フタル酸またはその誘導体)の合計に対し重量比で0.0001から0.3の範囲で用いるのが好ましい。
 また、反応性状の向上、反応性の向上、製品の純度の向上、鮮明性向上等を目的としてオルトリン酸、メタリン酸、ポリリン酸、ポリメタリン酸、硫酸、塩酸、臭化水素、ヨウ化水素及びこれらの金属塩またはアンモニウム塩を、原料となるフタル酸類(フタル酸またはその誘導体)に対し任意で使用してもよく、その場合は重量比で0.05から1の範囲で添加することができる。
As the catalyst for the reaction, those known by the Weiler method can be used. Examples thereof include molybdate compounds such as ammonium molybdate and phosphomolybdic acid, titanium compounds such as titanium tetrachloride and titanate, antimony oxide, arsenic oxide, and boric acid. Two or more of these may be used.
The amount of the catalyst used is not particularly limited, but it is preferably used in the range of 0.0001 to 0.3 by weight with respect to the total of phthalic acids (phthalic acid or derivatives thereof) as raw materials.
In addition, orthophosphoric acid, metaphosphoric acid, polyphosphoric acid, polymetaphosphoric acid, sulfuric acid, hydrochloric acid, hydrogen bromide, hydrogen iodide and the like for the purpose of improving the reactivity, improving the reactivity, improving the purity of the product, and improving the clarity. The metal salt or ammonium salt may be optionally used with respect to the phthalic acid (phthalic acid or derivative thereof) as a raw material, and in that case, it can be added in a range of 0.05 to 1 by weight.
 反応溶剤としては、ワイラー法の合成溶剤として公知の有機溶剤を用いることができる。例えば、アルキルベンゼン、アルキルナフタレン、テトラリン等の芳香族炭化水素;アルキルシクロヘキサン、デカリン、アルキルデカリン等の脂環式炭化水素;デカン、ドデカン等の脂肪族炭化水素;ニトロベンゼン、o-ニトロトルエン等のニトロ化合物;トリクロロベンゼン、ジクロロベンゼン、クロロナフタレン、ヘキサクロロブタジエン等のハロゲン化炭化水素;スルホラン、ジメチルスルホラン、ジメチルスルホキシド等の硫黄化合物;キノリン等の複素環化合物等が使用可能である。これらの有機溶媒は、2種以上の混合物であってもかまわない。なかでも、結晶型を安定的に制御するために、アセトニトリル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、スルホラン等の非プロトン性極性溶媒を使用することが特に好ましい。 As the reaction solvent, a known organic solvent can be used as a synthetic solvent for the Weiler method. For example, aromatic hydrocarbons such as alkylbenzene, alkylnaphthalene and tetralin; alicyclic hydrocarbons such as alkylcyclohexane, decalin and alkyldecalin; aliphatic hydrocarbons such as decane and dodecane; nitro compounds such as nitrobenzene and o-nitrotoluene; Halogenated hydrocarbons such as trichlorobenzene, dichlorobenzene, chloronaphthalene and hexachlorobutadiene; sulfur compounds such as sulfolane, dimethylsulfolane and dimethyl sulfoxide; heterocyclic compounds such as quinoline and the like can be used. These organic solvents may be a mixture of two or more. Among them, in order to stably control the crystal form, aprotic polar solvents such as acetonitrile, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, sulfolane and the like are used. It is particularly preferred to use it.
(2)フタロニトリル法
 フタロニトリル法は、上述のとおり、フタロニトリル類および/またはジイミノイソインドリン類と、金属塩とを、触媒となる塩基の存在下で反応させるフタロシアニンの合成法である。
 好ましい実施形態において、フタロニトリルおよび/またはジイミノイソインドリンと、少なくともα位が置換されたフタロニトリル誘導体および/または少なくともα位が置換されたジイミノイソインドリン誘導体と、金属塩とを、60~300℃で反応させる工程を含む。
 合成の際には、系内の温度制御および/または撹拌効率の向上等の目的のため溶剤を用いてもよい。また、収率向上、純度向上等を目的として、0.05~1.0MPa程度の加圧条件で反応を行ってもよい。
(2) Phthalonitrile Method As described above, the phthalonitrile method is a method for synthesizing phthalocyanines in which phthalonitriles and / or diiminoisoindolines are reacted with metal salts in the presence of a base serving as a catalyst.
In a preferred embodiment, phthalonitrile and / or diiminoisoindoline, a phthalonitrile derivative substituted at least at the α-position and / or a diiminoisoindoline derivative substituted at least at the α-position, and a metal salt, A step of reacting at 300 ° C.
In the synthesis, a solvent may be used for the purpose of controlling the temperature in the system and / or improving the stirring efficiency. In addition, the reaction may be performed under a pressure condition of about 0.05 to 1.0 MPa for the purpose of improving the yield and purity.
 フタロニトリル類としては、フタロニトリルおよび/またはその誘導体を使用できる。ジイミノイソインドリン類としては、1,3-ジイミノイソインドリンおよび/またはその誘導体を使用できる。フタロニトリル誘導体またはジイミノイソインドリン誘導体として、それぞれ、複数種の化合物を使用してもよい。
 これらの誘導体とは、フタロニトリルまたはジイミノイソインドリンの芳香族環上に、上記一般式(1)のR1~R8またはR9~R16のいずれか一以上の置換基を有する化合物を意味する。また、上述のような金属塩の状態の化合物を用いることもできる。
 一般式(1)のフタロシアニンを合成するために、フタロニトリル類とジイミノイソインドリン類の少なくとも一方として、少なくともα位に上記R1~R8のいずれかの置換基を有する誘導体を用いる。
As the phthalonitriles, phthalonitrile and / or derivatives thereof can be used. As the diiminoisoindoline, 1,3-diiminoisoindoline and / or a derivative thereof can be used. A plurality of types of compounds may be used as the phthalonitrile derivative or diiminoisoindoline derivative, respectively.
These derivatives are compounds having one or more substituents of R 1 to R 8 or R 9 to R 16 of the above general formula (1) on the aromatic ring of phthalonitrile or diiminoisoindoline. means. Moreover, the compound of the state of the above metal salts can also be used.
In order to synthesize the phthalocyanine of the general formula (1), a derivative having at least one of the substituents R 1 to R 8 in the α position is used as at least one of phthalonitriles and diiminoisoindolines.
 フタロニトリル法で使用できる金属源としては、上記ワイラー法において説明したと同様のものを好ましく使用できる。すなわち、Cu、Zn、Al等の金属の金属粉、塩化物、臭化物、ヨウ化物、硫酸塩、硫化物、酢酸塩、酸化物、水酸化物、炭酸塩、リン酸塩等である。フタロニトリル法においても、金属の価数は反応に影響を与えるが、一般にフタロシアニン合成には、その価数に特に制限はなく使用できる。これらの2種以上を用いてもよい。
 金属源の使用量は、フタロニトリル類およびジイミノイソインドリン類の合計(どちらか一方のみが含まれる場合は一方のみの合計)に対し、モル比で0.15から0.40の範囲で用いるのが好ましい。
As the metal source that can be used in the phthalonitrile method, the same sources as described in the above-mentioned Weiler method can be preferably used. That is, metal powders of metals such as Cu, Zn, and Al, chlorides, bromides, iodides, sulfates, sulfides, acetates, oxides, hydroxides, carbonates, phosphates, and the like. Also in the phthalonitrile method, the valence of the metal affects the reaction, but in general, the valence can be used for phthalocyanine synthesis without any particular limitation. Two or more of these may be used.
The amount of the metal source used is in the range of 0.15 to 0.40 in molar ratio to the total of phthalonitriles and diiminoisoindolines (total of either one when only one is included). Is preferred.
 触媒となる塩基としては、特に制限はないが、アンモニア、モルホリン、ピペリジン等の環状アミン;ピリジン、ピコリン、キノリン等の芳香環に窒素が導入されたアミン類;1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN)、1、8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)、1,5-ジアザビシクロ[5.4.0]ウンデカ-5-エン、1,4-ジアザビシクロ[2.2.2]オクタン等のアミジン部位を持つアミン類;炭素数1から12のアルコキシド;またはこれらの混合物が好適である。これらの2種以上を用いてもよい。
 塩基の量としては、フタロニトリル類およびジイミノイソインドリン類の合計(どちらか一方のみが含まれる場合は一方のみの合計)に対し、モル比で0.001から2の範囲で用いるのが好ましい。塩基を溶剤として用いる場合には、さらに多くてもかまわない。
The catalyst base is not particularly limited, but is a cyclic amine such as ammonia, morpholine, or piperidine; an amine having nitrogen introduced into an aromatic ring such as pyridine, picoline, or quinoline; 1,5-diazabicyclo [4.3 .0] -5-nonene (DBN), 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU), 1,5-diazabicyclo [5.4.0] undec-5-ene, Preferred are amines having an amidine moiety such as 1,4-diazabicyclo [2.2.2] octane; alkoxides having 1 to 12 carbon atoms; or a mixture thereof. Two or more of these may be used.
The amount of the base is preferably 0.001 to 2 in terms of molar ratio with respect to the total of phthalonitriles and diiminoisoindolines (when either one is included). . When a base is used as a solvent, it may be further increased.
 反応に使用できる溶剤としては、フタロニトリル法の合成溶剤として公知の有機溶剤を用いることができる。例えば、メタノール、エチレングリコールを始めとしたアルコール類;アルキルベンゼン、アルキルナフタレン、テトラリン等の芳香族炭化水素;アルキルシクロヘキサン、デカリン、アルキルデカリン等の脂環式炭化水素;デカン、ドデカン等の脂肪族炭化水素;ニトロベンゼン、o-ニトロトルエン等のニトロ化合物;トリクロロベンゼン、ジクロロベンゼン、クロロナフタレン、ヘキサクロロブタジエン等のハロゲン化炭化水素;スルホラン、ジメチルスルホラン、ジメチルスルホキシド等の硫黄化合物;キノリン等の複素環化合物等;ジメチルホルムアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン等を好ましく使用できる。これらの有機溶媒は、2種以上の混合物であってもかまわない。 As a solvent that can be used for the reaction, a known organic solvent can be used as a synthetic solvent for the phthalonitrile method. For example, alcohols such as methanol and ethylene glycol; aromatic hydrocarbons such as alkylbenzene, alkylnaphthalene and tetralin; alicyclic hydrocarbons such as alkylcyclohexane, decalin and alkyldecalin; aliphatic hydrocarbons such as decane and dodecane Nitro compounds such as nitrobenzene and o-nitrotoluene; halogenated hydrocarbons such as trichlorobenzene, dichlorobenzene, chloronaphthalene and hexachlorobutadiene; sulfur compounds such as sulfolane, dimethyl sulfolane and dimethyl sulfoxide; heterocyclic compounds such as quinoline; Formamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone and the like can be preferably used. These organic solvents may be a mixture of two or more.
 反応は、必要な場合は不活性ガス雰囲気化で行ってもよいし、必要ならばモリブデン酸アンモニウムおよび/または尿素等の、ワイラー法での使用が公知である化合物を添加してもよい。 The reaction may be performed in an inert gas atmosphere if necessary, or a compound known to be used in the Weiler method, such as ammonium molybdate and / or urea, may be added if necessary.
(3)その他の工程
 ワイラー法、フタロニトリル法共に、反応完了後、溶剤の濾過および溶剤留去等の、反応溶剤との分離処置を行った後、水および/または有機溶剤での洗浄を行うのが好ましい。洗浄の際に、酸またはアルカリを用いてもよい。さらに精製が必要ならば、公知の精製技術である昇華、アシッドペースト、アシッドスラリー、再沈殿、再結晶、抽出等の操作によって不純物を除去してもよい。
(3) Other steps In both the Weiler method and the phthalonitrile method, after completion of the reaction, after separation from the reaction solvent such as solvent filtration and solvent distillation, washing with water and / or organic solvent is performed. Is preferred. An acid or an alkali may be used at the time of washing. If further purification is required, impurities may be removed by a known purification technique such as sublimation, acid paste, acid slurry, reprecipitation, recrystallization, or extraction.
 上記の二つの方法に代表される製法で合成されたフタロシアニン顔料は、合成された状態そのままで使用してもよいが、粒子サイズの制御、易分散性の付与等といった目的のために微細化(顔料化あるいは整粒化ともいう。)の操作を行ってもよい。
 公知の微細化法を用いることができ、主な方法として、ソルベント法、ソルベントミリング法、ソルベントソルトミリング法等が挙げられる。微細化の際には、結晶成長を抑制しつつ微細化を進めるために、置換基を少なくとも一つ有する、無金属または金属フタロシアニン誘導体を添加してもよい。
 顔料の粒径(平均一次粒径)は、一般的な顔料の粒径である数nm~数10nm程度に調製することが好ましいが、これに限定されることはない。
The phthalocyanine pigment synthesized by the production methods typified by the above two methods may be used as it is, but it is refined for the purpose of controlling the particle size, imparting easy dispersibility, etc. The operation of pigmentation or sizing may also be performed.
A well-known refinement method can be used, and a main method includes a solvent method, a solvent milling method, a solvent salt milling method, and the like. At the time of miniaturization, a metal-free or metal phthalocyanine derivative having at least one substituent may be added in order to advance the miniaturization while suppressing crystal growth.
The particle diameter of the pigment (average primary particle diameter) is preferably adjusted to about several nanometers to several tens of nanometers, which is a general pigment particle diameter, but is not limited thereto.
 本発明者らの検討によると、π型結晶は例えばε型結晶などの他の結晶型と比較し、より細長い(アスペクト比の大きい)針状結晶として得られ、その粒子形状のためであるのか、微細化に際し、ニーダー等による混練工程を行う必要がなく、混練工程を省いて分散工程のみにより、所望の粒度に微細化された顔料を得ることができるとの利点もある。これに対し、たとえばこれまで一般に液晶テレビ等に用いられているε型結晶は、形状が球状、あるいは針状であっても寸胴であり、混練工程によらなければ微細化が困難であるため、分散工程前の混練工程を省略することは困難である。 According to the study by the present inventors, the π-type crystal is obtained as a more elongated (high aspect ratio) needle-like crystal as compared with other crystal types such as the ε-type crystal. In addition, there is an advantage that it is not necessary to perform a kneading step using a kneader or the like in the case of miniaturization, and a pigment refined to a desired particle size can be obtained only by a dispersion step without the kneading step. On the other hand, for example, the ε-type crystal that has been generally used for liquid crystal televisions or the like so far is a spherical shape or a needle-like shape, and is difficult to miniaturize unless it is based on a kneading process. It is difficult to omit the kneading step before the dispersing step.
3.顔料組成物
 顔料組成物は、一般式(1)のπ型フタロシアニン顔料(α位置換体)と、フタロシアニンのベンゼン環に水素原子以外の置換基を持たない無置換のπ型フタロシアニン顔料、すなわちπ型無置換フタロシアニン顔料とを少なくとも含有する。α位置換体として、置換基および/または置換位置の異なった、複数の化合物を含むことができる。また、中心金属Mの種類の異なるα位置換体および/または無置換体を混合して使用してもよい。
 先に述べたとおり、一般式(1)のα位置換π型フタロシアニン顔料の製造において、ワイラー法であれば無水フタル酸を、フタロニトリル法であればフタロニトリルおよび/またはジイミノイソインドリンを、それぞれ原料として用いることにより、無置換のπ型フタロシアニン顔料も生成し、α位置換体と無置換体のπ型結晶混合物として製造することができることは、先に述べたとおりである。
3. Pigment Composition The pigment composition comprises a π-type phthalocyanine pigment of general formula (1) (α-substituted product) and an unsubstituted π-type phthalocyanine pigment having no substituent other than a hydrogen atom on the benzene ring of phthalocyanine, that is, π-type It contains at least an unsubstituted phthalocyanine pigment. As the α-substituted product, a plurality of compounds having different substituents and / or substitution positions can be contained. Further, α-substituted and / or unsubstituted compounds having different types of the central metal M may be mixed and used.
As described above, in the production of the α-substituted π-type phthalocyanine pigment of the general formula (1), phthalic anhydride is used for the Weiler method, phthalonitrile and / or diiminoisoindoline is used for the phthalonitrile method, By using each as a raw material, an unsubstituted π-type phthalocyanine pigment can also be produced and produced as a π-type crystal mixture of an α-substituted product and an unsubstituted product, as described above.
 π型フタロシアニン顔料として、α位に置換基を持たないβ位置換のπ型フタロシアニン顔料(β位置換体)を一部含んでいてもよい。任意で含まれても良いβ位置換体の量は、π型結晶型の安定性をより高めるために、π型フタロシアニン顔料中に10重量%以下程度であることが好ましい。 The π-type phthalocyanine pigment may partially contain a β-substituted π-type phthalocyanine pigment (β-substituted product) having no substituent at the α-position. The amount of the β-substituted product that may be optionally contained is preferably about 10% by weight or less in the π-type phthalocyanine pigment in order to further enhance the stability of the π-type crystal type.
 顔料組成物は、π型フタロシアニン顔料と、無置換のπ型フタロシアニン顔料以外に、任意成分として、溶剤、樹脂、添加剤等を含むこともできる。たとえば、微細化の際の結晶成長阻害、結晶安定性付与、凝集防止、顔料を着色剤として使用する際の易分散性付与、着色力向上等の諸目的のため、ロジン、金属ロジン、ロジンエステル等のロジン誘導体、樹脂、活性剤、顔料誘導体(色素誘導体)等を、微細化工程中、もしくは微細化工程後に、顔料と混合してもよい。さらには、顔料成分として、π型以外の別の結晶型のフタロシアニン顔料あるいは非晶質のフタロシアニン顔料等を、本発明の効果を阻害しない範囲内で一部含むこともできる。以下に、顔料組成物に使用できるこれらのフタロシアニン顔料を総称して、単に「フタロシアニン顔料」とも記す。
 顔料組成物の形態は、特に制限されず、粉体、水を含有したプレスケーキ状等、任意の形態をとることができ、樹脂との混合物にするなど、何らかの加工が為されていてもよい。
In addition to the π-type phthalocyanine pigment and the unsubstituted π-type phthalocyanine pigment, the pigment composition can also contain a solvent, a resin, an additive, and the like as optional components. For example, rosin, metal rosin, rosin ester for various purposes such as inhibition of crystal growth at the time of miniaturization, provision of crystal stability, prevention of aggregation, provision of easy dispersibility when using a pigment as a colorant, and improvement of coloring power. A rosin derivative such as rosin, a resin, an activator, a pigment derivative (pigment derivative), or the like may be mixed with the pigment during or after the refinement step. Furthermore, as a pigment component, a part of another crystal type phthalocyanine pigment other than the π-type or an amorphous phthalocyanine pigment may be included within a range that does not impair the effects of the present invention. Hereinafter, these phthalocyanine pigments that can be used in the pigment composition are collectively referred to simply as “phthalocyanine pigments”.
The form of the pigment composition is not particularly limited, and may take any form such as powder, water-containing press cake, etc., and may be processed in some way, such as a mixture with resin. .
4.着色組成物
 着色組成物は、上記顔料組成物と顔料担体とを少なくとも含むものであり、インクジェット用インキ等の印刷インキ、塗料、プラスチック、水系カラー、捺染インキ、トーニング剤、トナー、カラーフィルタ用レジストインキ等の顔料分散体が代表的な形態である。この中でも特に、上記一般式(1)のπ型フタロシアニン顔料の発現する明度等の色特性は、カラーフィルタに要求される色特性に良く合致しているため、カラーフィルタ用に好適に用いることができる。
4). Coloring composition The coloring composition contains at least the pigment composition and a pigment carrier, and includes printing inks such as inkjet inks, paints, plastics, water-based colors, printing inks, toning agents, toners, and resists for color filters. A pigment dispersion such as ink is a typical form. Among these, in particular, the color characteristics such as lightness expressed by the π-type phthalocyanine pigment of the general formula (1) are in good agreement with the color characteristics required for the color filter, and therefore are preferably used for color filters. it can.
 フタロシアニン顔料は、着色組成物の全固形分量を基準(100重量%)として5~70重量%の割合で含有されることが好ましい。20~50重量%の割合であることがより好ましい。 The phthalocyanine pigment is preferably contained in a proportion of 5 to 70% by weight based on the total solid content of the coloring composition (100% by weight). A ratio of 20 to 50% by weight is more preferable.
 着色組成物に含まれる顔料担体は、フタロシアニン顔料を分散させるものであり、樹脂、その前駆体またはそれらの混合物により構成される。
 樹脂としては、可視光領域の400~700nmの全波長領域において、透過率が好ましくは80%以上、より好ましくは95%以上のものが選ばれる。樹脂には、熱可塑性樹脂、熱硬化性樹脂、および活性エネルギー線硬化性樹脂が含まれ、その前駆体には、紫外線、電子線等の活性エネルギー線照射により硬化して樹脂を生成する、活性エネルギー線重合性のモノマーもしくはオリゴマーが含まれる。これらを単独で、または2種以上混合して用いることができる。
The pigment carrier contained in the coloring composition is for dispersing a phthalocyanine pigment, and is composed of a resin, a precursor thereof, or a mixture thereof.
As the resin, a resin having a transmittance of preferably 80% or more, more preferably 95% or more in the entire wavelength region of 400 to 700 nm in the visible light region is selected. Resins include thermoplastic resins, thermosetting resins, and active energy ray curable resins, and their precursors are activated by irradiation with active energy rays such as ultraviolet rays and electron beams to produce resins. An energy ray polymerizable monomer or oligomer is included. These can be used alone or in admixture of two or more.
 顔料担体は、着色組成物中のフタロシアニン顔料100重量部に対して、30~700重量部の量で好ましく用いられ、より好ましくは60~450重量部の量で用いることができる。
 樹脂とその前駆体との混合物を顔料担体として用いる場合には、樹脂は、着色組成物中のフタロシアニン顔料100重量部に対して、20~400重量部の量で好ましく用いられ、より好ましくは50~250重量部の量で用いることができる。また、樹脂の前駆体は、着色組成物中のフタロシアニン顔料100重量部に対して、10~300重量部の量で好ましく用いられ、より好ましくは10~200重量部の量で用いることができる。
The pigment carrier is preferably used in an amount of 30 to 700 parts by weight, more preferably 60 to 450 parts by weight, with respect to 100 parts by weight of the phthalocyanine pigment in the coloring composition.
When a mixture of a resin and its precursor is used as a pigment carrier, the resin is preferably used in an amount of 20 to 400 parts by weight, more preferably 50 parts per 100 parts by weight of the phthalocyanine pigment in the coloring composition. It can be used in an amount of up to 250 parts by weight. The resin precursor is preferably used in an amount of 10 to 300 parts by weight, more preferably 10 to 200 parts by weight, based on 100 parts by weight of the phthalocyanine pigment in the coloring composition.
 熱可塑性樹脂としては、例えば、ブチラール樹脂、スチレン-マレイン酸共重合体、塩素化ポリエチレン、塩素化ポリプロピレン、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体、ポリ酢酸ビニル、ポリウレタン系樹脂、ポリエステル樹脂、アクリル系樹脂、アルキッド樹脂、ポリスチレン樹脂、ポリアミド樹脂、ゴム系樹脂、環化ゴム系樹脂、セルロース類、ポリエチレン(HDPE、LDPE)、ポリブタジエン、またはポリイミド樹脂等が挙げられる。これらの1種以上の熱可塑性樹脂を好ましく使用することができる。 Examples of the thermoplastic resin include butyral resin, styrene-maleic acid copolymer, chlorinated polyethylene, chlorinated polypropylene, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polyvinyl acetate, polyurethane resin, and polyester resin. , Acrylic resins, alkyd resins, polystyrene resins, polyamide resins, rubber resins, cyclized rubber resins, celluloses, polyethylene (HDPE, LDPE), polybutadiene, or polyimide resins. One or more of these thermoplastic resins can be preferably used.
 熱硬化性樹脂としては、例えば、エポキシ樹脂、ベンゾグアナミン樹脂、ロジン変性マレイン酸樹脂、ロジン変性フマル酸樹脂、メラミン樹脂、尿素樹脂、またはフェノール樹脂等が挙げられる。これらの1種以上の熱硬化性樹脂を好ましく使用することができる。 Examples of the thermosetting resin include an epoxy resin, a benzoguanamine resin, a rosin-modified maleic acid resin, a rosin-modified fumaric acid resin, a melamine resin, a urea resin, and a phenol resin. One or more of these thermosetting resins can be preferably used.
 活性エネルギー線硬化性樹脂としては、水酸基、カルボキシル基、またはアミノ基等の反応性の置換基を有する高分子に、イソシアネート基、アルデヒド基、またはエポキシ基等の反応性の置換基を有する(メタ)アクリル化合物または同反応性置換基を有するケイヒ酸を反応させて、(メタ)アクリロイル基、またはスチリル基等の光架橋性基を導入したものが用いられる。また、スチレン-無水マレイン酸共重合物、α-オレフィン-無水マレイン酸共重合物等の酸無水物を含む線状高分子を、ヒドロキシアルキル(メタ)アクリレート等の水酸基を有する(メタ)アクリル化合物によりハーフエステル化したものも用いられる。これらの1種以上の活性エネルギー線硬化性樹脂を好ましく使用することができる。
 なお、「(メタ)アクリル」は「アクリル」と「メタクリル」の双方を表す。
As the active energy ray-curable resin, a polymer having a reactive substituent such as a hydroxyl group, a carboxyl group, or an amino group has a reactive substituent such as an isocyanate group, an aldehyde group, or an epoxy group (meta ) An acrylic compound or a cinnamic acid having the same reactive substituent is reacted to introduce a photocrosslinkable group such as a (meth) acryloyl group or a styryl group. In addition, a linear polymer containing an acid anhydride such as a styrene-maleic anhydride copolymer or an α-olefin-maleic anhydride copolymer is used as a (meth) acrylic compound having a hydroxyl group such as hydroxyalkyl (meth) acrylate. A half-esterified product is also used. One or more kinds of these active energy ray-curable resins can be preferably used.
“(Meth) acryl” represents both “acryl” and “methacryl”.
 樹脂の前駆体である重合性モノマーおよび重合性オリゴマー(光重合性モノマー、光重合性オリゴマー等)としては、
 メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)、ターシャリブチル(メタ)アクリレート、イソアミル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、セチル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、及びイソステアリル(メタ)アクリレート等の直鎖または分岐アルキル(メタ)アクリレート類;
 シクロヘキシル(メタ)アクリレート、ターシャリブチルシクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、及びイソボルニル(メタ)アクリレート等の環状アルキル(メタ)アクリレート類または環状アルケニル(メタ)アクリレート類;
 トリフルオロエチル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート、及びテトラフルオロプロピル (メタ)アクリレート等のフルオロアルキル(メタ)アクリレート類;
 (メタ)アクリロキシ変性ポリジメチルシロキサン(シリコーンマクロマー)類;
 テトラヒドロフルフリル(メタ)アクリレート、及び3-メチル-3-オキセタニル(メタ)アクリレート等の複素環を有する(メタ)アクリレート類;
 ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、パラクミルフェノキシエチル(メタ)アクリレート、パラクミルフェノキシポリエチレングリコール(メタ)アクリレート、及びノニルフェノキシポリエチレングリコール(メタ)アクリレート等の芳香族環を有する(メタ)アクリレート類;
 2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、2-メトキシプロピル(メタ)アクリレート、ジエチレングリコールモノメチルエーテル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、トリエチレングリコールモノメチルエーテル(メタ)アクリレート、トリエチレングリコールモノエチルエーテル(メタ)アクリレート、ジエチレングリコールモノ-2-エチルヘキシルエーテル(メタ)アクリレート、ジプロピレングリコールモノメチルエーテル(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノラウリルエーテル(メタ)アクリレート、及びポリエチレングリコールモノステアリルエーテル(メタ)アクリレート等の(ポリ)アルキレングリコールモノアルキルエーテル(メタ)アクリレート類;
 (メタ)アクリル酸、アクリル酸ダイマー、2-(メタ)アクリロイロキシエチルフタレート、2-(メタ)アクリロイロキシプロピルフタレート、2-(メタ)アクリロイロキシエチルヘキサヒドロフタレート、2-(メタ)アクリロイロキシプロピルヘキサヒドロフタレート、エチレンオキサイド変性コハク酸(メタ)アクリレート、β-カルボキシエチル(メタ)アクリレート、及びω-カルボキシポリカプロラクトン(メタ)アクリレート等のカルボキシル基を有する(メタ)アクリレート類;
 2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-アクリロイロキシエチル-2-ヒドロキシエチル(メタ)フタレート、ジエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、プロピレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリテトラメチレングリコールモノ(メタ)アクリレート、ポリ(エチレングリコール-プロピレングリコール)モノ(メタ)アクリレート、ポリ(エチレングリコール-テトラメチレングリコール)モノ(メタ)アクリレート、ポリ(プロピレングリコール-テトラメチレングリコール)モノ(メタ)アクリレート、及びグリセロール(メタ)アクリレート等のヒドロキシル基を有する(メタ)アクリレート類;
 エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート,ポリプロピレングリコールジ(メタ)アクリレート、ポリ(エチレングリコール-プロピレングリコール)ジ(メタ)アクリレート、ポリ(エチレングリコール-テトラメチレングリコール)ジ(メタ)アクリレート、ポリ(プロピレングリコール-テトラメチレングリコール)ジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、及び2-エチル,2-ブチル-プロパンジオールジ(メタ)アクリレート等の(ポリ)アルキレングリコールジ(メタ)アクリレート類;
 ジメチロールジシクロペンタンジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ステアリン酸変性ペンタエリスリトールジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、プロピレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、テトラメチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールFジ(メタ)アクリレート、プロピレンオキサイド変性ビスフェノールFジ(メタ)アクリレート、テトラメチレンオキサイド変性ビスフェノールFジ(メタ)アクリレート、ジアクリル酸亜鉛、エチレンオキサイド変性リン酸トリ(メタ)アクリレート、及びグリセロールジ(メタ)アクリレート等のジ(メタ)アクリレート類;
 ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリレート等の三級アミノ基を有する(メタ)アクリレート類;
 グリセロールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、及びジペンタエリスリトールヘキサ(メタ)アクリレート等の三官能以上の多官能(メタ)アクリレート;
 グリセロールトリグリシジルエーテル-(メタ)アクリル酸付加物、グリセロールジグリシジルエーテル-(メタ)アクリル酸付加物、ポリグリセロールポリグリシジルエーテル-(メタ)アクリル酸付加物、1,6-ブタンジオールジグリシジルエーテル-(メタ)アクリル酸付加物、アルキルグリシジルエーテル-(メタ)アクリル酸付加物、アリルグリシジルエーテル-(メタ)アクリル酸付加物、フェニルグリシジルエーテル-(メタ)アクリル酸付加物、スチレンオキサイド-(メタ)アクリル酸付加物、ビスフェノールAジグリシジルエーテル-(メタ)アクリル酸付加物、プロピレンオキサド変性ビスフェノールAジグリシジルエーテル-(メタ)アクリル酸付加物、ビスフェノールFジグリシジルエーテル-(メタ)アクリル酸付加物、エピクロルヒドリン変性フタル酸-(メタ)アクリル酸付加物、エピクロルヒドリン変性ヘキサヒドロフタル酸-(メタ)アクリル酸付加物、エチレングリコールジグリシジルエーテル-(メタ)アクリル酸付加物、ポリエチレングリコールジグリシジルエーテル-(メタ)アクリル酸付加物、プロピレングリコールジグリシジルエーテル-(メタ)アクリル酸付加物、ポリプロピレングリコールジグリシジルエーテル-(メタ)アクリル酸付加物、フェノールノボラック型エポキシ樹脂-(メタ)アクリル酸付加物、クレゾールノボラック型エポキシ樹脂-(メタ)アクリル酸付加物、その他のエポキシ樹脂-(メタ)アクリル酸付加物等のエポキシ(メタ)アクリレート類;
 (メタ)アクリロイル変性イソシアヌレート、(メタ)アクリロイル変性ポリウレタン、(メタ)アクリロイル変性ポリエステル、(メタ)アクリロイル変性メラミン、(メタ)アクリロイル変性シリコーン、(メタ)アクリロイル変性ポリブタジエン、及び(メタ)アクリロイル変性ロジン等の(メタ)アクリロイル変性樹脂オリゴマー類;
 スチレン、α-メチルスチレン、酢酸ビニル、(メタ)アクリル酸ビニル、及び(メタ)アクリル酸アリル等のビニル類;
 ヒドロキシエチルビニルエーテル、エチレングリコールジビニルエーテル、及びペンタエリスリトールトリビニルエーテル等のビニルエーテル類;
 (メタ)アクリルアミド、N-ヒドロキシメチル(メタ)アクリルアミド、及びN-ビニルホルムアミド等のアミド類;並びにアクリロニトリル等が挙げられる。これらは、単独で、または2種類以上混合して用いることができる。
As polymerizable monomers and polymerizable oligomers (photopolymerizable monomers, photopolymerizable oligomers, etc.) that are resin precursors,
Methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth), tertiary butyl (meth) acrylate, isoamyl (meth) acrylate, octyl (Meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cetyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, iso Linear or branched alkyl (meth) acrylates such as myristyl (meth) acrylate, stearyl (meth) acrylate, and isostearyl (meth) acrylate;
Cyclohexyl (meth) acrylate, Tertiarybutylcyclohexyl (meth) acrylate, Dicyclopentanyl (meth) acrylate, Dicyclopentanyloxyethyl (meth) acrylate, Dicyclopentenyl (meth) acrylate, Dicyclopentenyloxyethyl (meth) ) Acrylates and cyclic alkyl (meth) acrylates or cyclic alkenyl (meth) acrylates such as isobornyl (meth) acrylate;
Fluoroalkyl (meth) acrylates such as trifluoroethyl (meth) acrylate, octafluoropentyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, and tetrafluoropropyl (meth) acrylate;
(Meth) acryloxy-modified polydimethylsiloxanes (silicone macromers);
(Meth) acrylates having a heterocyclic ring such as tetrahydrofurfuryl (meth) acrylate and 3-methyl-3-oxetanyl (meth) acrylate;
Benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, paracumylphenoxyethyl (meth) acrylate, paracumylphenoxypolyethylene glycol (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, etc. (Meth) acrylates having the following aromatic ring;
2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 2-methoxypropyl (meth) acrylate, diethylene glycol monomethyl ether (meth) acrylate, diethylene glycol monoethyl ether (meta ) Acrylate, triethylene glycol monomethyl ether (meth) acrylate, triethylene glycol monoethyl ether (meth) acrylate, diethylene glycol mono-2-ethylhexyl ether (meth) acrylate, dipropylene glycol monomethyl ether (meth) acrylate, tripropylene glycol mono (Meth) acrylate, polyethylene glycol monolauryl ether (meth) acrylate, and polyester Glycol monostearyl ether (meth) acrylate of (poly) alkylene glycol monoalkyl ether (meth) acrylates;
(Meth) acrylic acid, acrylic acid dimer, 2- (meth) acryloyloxyethyl phthalate, 2- (meth) acryloyloxypropyl phthalate, 2- (meth) acryloyloxyethyl hexahydrophthalate, 2- (meth) (Meth) acrylates having a carboxyl group such as acryloyloxypropyl hexahydrophthalate, ethylene oxide-modified succinic acid (meth) acrylate, β-carboxyethyl (meth) acrylate, and ω-carboxypolycaprolactone (meth) acrylate;
2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-acryloyloxyethyl-2-hydroxyethyl (meth) Phthalate, diethylene glycol mono (meth) acrylate, dipropylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, propylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, polytetramethylene glycol mono (meth) Acrylate, poly (ethylene glycol-propylene glycol) mono (meth) acrylate, poly (ethylene glycol-tetramethylene glycol) mono (meth) Acrylate, poly (propylene glycol - tetramethylene glycol) mono (meth) acrylate, and a hydroxyl group, such as glycerol (meth) acrylate (meth) acrylates;
Ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tri Propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, poly (ethylene glycol-propylene glycol) di (meth) acrylate, poly (ethylene glycol-tetramethylene glycol) di (meth) acrylate, poly (propylene glycol- Tetramethylene glycol) di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, 1,3-butanediol di (Meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, and 2-ethyl, 2-butyl-propanediol di ( (Poly) alkylene glycol di (meth) acrylates such as (meth) acrylate;
Dimethylol dicyclopentane di (meth) acrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, stearic acid modified pentaerythritol di (meth) acrylate, ethylene oxide modified bisphenol A di (meth) acrylate, propylene oxide modified bisphenol A Di (meth) acrylate, tetramethylene oxide modified bisphenol A di (meth) acrylate, ethylene oxide modified bisphenol F di (meth) acrylate, propylene oxide modified bisphenol F di (meth) acrylate, tetramethylene oxide modified bisphenol F di (meth) Acrylate, zinc diacrylate, ethylene oxide modified tri (meth) acrylate phosphate, and glycerol di (meth) acrylate Di (meth) acrylates such as relations;
(Meth) acrylates having a tertiary amino group such as dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, diethylaminopropyl (meth) acrylate;
Glycerol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate Trifunctional or higher polyfunctional (meth) acrylates such as
Glycerol triglycidyl ether- (meth) acrylic acid adduct, glycerol diglycidyl ether- (meth) acrylic acid adduct, polyglycerol polyglycidyl ether- (meth) acrylic acid adduct, 1,6-butanediol diglycidyl ether- (Meth) acrylic acid adduct, alkyl glycidyl ether- (meth) acrylic acid adduct, allyl glycidyl ether- (meth) acrylic acid adduct, phenyl glycidyl ether- (meth) acrylic acid adduct, styrene oxide- (meth) Acrylic acid adduct, bisphenol A diglycidyl ether- (meth) acrylic acid adduct, propylene oxide modified bisphenol A diglycidyl ether- (meth) acrylic acid adduct, bisphenol F diglycidyl ether- (meth) acrylic Acid adducts, epichlorohydrin modified phthalic acid- (meth) acrylic acid adducts, epichlorohydrin modified hexahydrophthalic acid- (meth) acrylic acid adducts, ethylene glycol diglycidyl ether- (meth) acrylic acid adducts, polyethylene glycol diglycidyl Ether- (meth) acrylic acid adduct, propylene glycol diglycidyl ether- (meth) acrylic acid adduct, polypropylene glycol diglycidyl ether- (meth) acrylic acid adduct, phenol novolac type epoxy resin- (meth) acrylic acid addition , Cresol novolac-type epoxy resin- (meth) acrylic acid adducts, other epoxy resins- (meth) acrylic acid adducts and other epoxy (meth) acrylates;
(Meth) acryloyl modified isocyanurate, (meth) acryloyl modified polyurethane, (meth) acryloyl modified polyester, (meth) acryloyl modified melamine, (meth) acryloyl modified silicone, (meth) acryloyl modified polybutadiene, and (meth) acryloyl modified rosin (Meth) acryloyl-modified resin oligomers such as;
Vinyls such as styrene, α-methylstyrene, vinyl acetate, vinyl (meth) acrylate, and allyl (meth) acrylate;
Vinyl ethers such as hydroxyethyl vinyl ether, ethylene glycol divinyl ether, and pentaerythritol trivinyl ether;
Amides such as (meth) acrylamide, N-hydroxymethyl (meth) acrylamide, and N-vinylformamide; and acrylonitrile. These may be used alone or in combination of two or more.
 着色組成物には、該組成物を紫外線照射により硬化するときには、光重合開始剤等が添加される。
 光重合開始剤としては、
 4-フェノキシジクロロアセトフェノン、4-t-ブチル-ジクロロアセトフェノン、ジエトキシアセトフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、または2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン等のアセトフェノン系光重合開始剤;
 ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、またはベンジルジメチルケタール等のベンゾイン系光重合開始剤;
 ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、または4-ベンゾイル-4’-メチルジフェニルサルファイド等のベンゾフェノン系光重合開始剤;
 チオキサントン、2-クロルチオキサントン、2-メチルチオキサントン、イソプロピルチオキサントン、または2,4-ジイソプロピルチオキサントン等のチオキサントン系光重合開始剤;
 2,4,6-トリクロロ-s-トリアジン、2-フェニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-トリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-ピペロニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2,4-ビス(トリクロロメチル)-6-スチリル-s-トリアジン、2-(ナフト-1-イル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシ-ナフト-1-イル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2,4-トリクロロメチル-(ピペロニル)-6-トリアジン、または2,4-トリクロロメチル(4’-メトキシスチリル)-6-トリアジン等のトリアジン系光重合開始剤;
 ボレート系光重合開始剤;
 カルバゾール系光重合開始剤;あるいはイミダゾール系光重合開始剤等が用いられる。
 光重合開始剤は、着色組成物中のフタロシアニン顔料100重量部に対して、5~200重量部の量で用いることが好ましく、より好ましくは10~150重量部の量で用いることができる。
When the composition is cured by ultraviolet irradiation, a photopolymerization initiator or the like is added to the colored composition.
As a photopolymerization initiator,
4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, diethoxyacetophenone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2- Such as benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one or 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one An acetophenone photopolymerization initiator;
Benzoin photopolymerization initiators such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, or benzyldimethyl ketal;
Benzophenone photopolymerization initiators such as benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, acrylated benzophenone, or 4-benzoyl-4′-methyldiphenyl sulfide;
A thioxanthone photopolymerization initiator such as thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, isopropylthioxanthone, or 2,4-diisopropylthioxanthone;
2,4,6-trichloro-s-triazine, 2-phenyl-4,6-bis (trichloromethyl) -s-triazine, 2- (p-methoxyphenyl) -4,6-bis (trichloromethyl) -s -Triazine, 2- (p-tolyl) -4,6-bis (trichloromethyl) -s-triazine, 2-piperonyl-4,6-bis (trichloromethyl) -s-triazine, 2,4-bis (trichloro Methyl) -6-styryl-s-triazine, 2- (naphth-1-yl) -4,6-bis (trichloromethyl) -s-triazine, 2- (4-methoxy-naphth-1-yl) -4 , 6-bis (trichloromethyl) -s-triazine, 2,4-trichloromethyl- (piperonyl) -6-triazine, or 2,4-trichloromethyl (4′-methoxystyryl) -6 -Triazine photopolymerization initiators such as triazine;
Borate photopolymerization initiator;
A carbazole photopolymerization initiator; or an imidazole photopolymerization initiator is used.
The photopolymerization initiator is preferably used in an amount of 5 to 200 parts by weight, more preferably 10 to 150 parts by weight, based on 100 parts by weight of the phthalocyanine pigment in the coloring composition.
 上記光重合開始剤は、単独で、あるいは2種以上混合して用いることができるが、さらに増感剤として、α-アシロキシエステル、アシルホスフィンオキサイド、メチルフェニルグリオキシレート、ベンジル-9,10-フェナントレンキノン、カンファーキノン、エチルアントラキノン、4,4’-ジエチルイソフタロフェノン、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、または4,4’-ジエチルアミノベンゾフェノン等の化合物を併用することもできる。増感剤は、着色組成物中の光重合開始剤100重量部に対して、0.1~60重量部の量で用いることができる。 The above photopolymerization initiators can be used alone or in combination of two or more. As sensitizers, α-acyloxy ester, acylphosphine oxide, methylphenylglyoxylate, benzyl-9,10 -Phenanthrenequinone, camphorquinone, ethylanthraquinone, 4,4'-diethylisophthalophenone, 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 4,4'-diethylaminobenzophenone, etc. These compounds can also be used in combination. The sensitizer can be used in an amount of 0.1 to 60 parts by weight with respect to 100 parts by weight of the photopolymerization initiator in the colored composition.
 着色組成物は、溶剤現像型あるいはアルカリ現像型の着色レジストの形態で調製することができる。着色レジストは、熱可塑性樹脂、熱硬化性樹脂または活性エネルギー線硬化性樹脂と重合性モノマーを含む顔料担体中に顔料を分散させたものである。1種または2種以上の有機顔料を、必要に応じて光重合開始剤と共に、顔料担体中に、三本ロールミル、二本ロールミル、サンドミル、ニーダー、またはアトライター等の各種分散手段を用いて分散させて製造することができる。ここで、有機顔料は、上記π型フタロシアニン顔料と、必要に応じて色相調節のために任意に添加される、上記π型フタロシアニン顔料以外の有機顔料の双方を含む概念である。 The coloring composition can be prepared in the form of a solvent developing type or alkali developing type colored resist. The colored resist is obtained by dispersing a pigment in a pigment carrier containing a thermoplastic resin, a thermosetting resin or an active energy ray curable resin and a polymerizable monomer. Disperse one or more organic pigments together with a photopolymerization initiator, if necessary, in a pigment carrier using various dispersing means such as a three-roll mill, a two-roll mill, a sand mill, a kneader, or an attritor Can be manufactured. Here, the organic pigment is a concept including both the π-type phthalocyanine pigment and an organic pigment other than the π-type phthalocyanine pigment that is optionally added for adjusting the hue as necessary.
 着色組成物の製造方法は、特に限定されず、顔料組成物あるいはフタロシアニン顔料と顔料単体、および任意で含まれる成分とを公知の任意の方法で混合することにより着色組成物を得ることができる。公知の方法としては、上記の各種分散手段が含まれる。
 また、着色組成物は、数種類の有機顔料を別々に顔料担体に分散したものを混合して、製造することもできる。
The manufacturing method of a coloring composition is not specifically limited, A coloring composition can be obtained by mixing a pigment composition or a phthalocyanine pigment, a pigment simple substance, and the component contained arbitrarily by a well-known arbitrary method. Known methods include the various dispersing means described above.
The colored composition can also be produced by mixing several types of organic pigments separately dispersed in a pigment carrier.
 フタロシアニン顔料を顔料担体中に分散する際には、適宜、樹脂型顔料分散剤、界面活性剤、および色素誘導体(顔料誘導体)等の分散助剤(分散剤)を用いることができる。分散助剤は、顔料の分散に優れ、分散後の顔料の再凝集を防止する効果が大きいので、分散助剤を用いて顔料を顔料担体中に分散してなる着色組成物を用いて得られる着色膜は、透明性に優れる。
 分散助剤は、着色組成物中のフタロシアニン顔料100重量部に対して、0.1~40重量部の量で用いることが好ましく、より好ましくは0.1~30重量部の量で用いることができる。
When the phthalocyanine pigment is dispersed in the pigment carrier, a dispersion aid (dispersant) such as a resin-type pigment dispersant, a surfactant, and a pigment derivative (pigment derivative) can be appropriately used. Since the dispersion aid is excellent in pigment dispersion and has a great effect of preventing re-aggregation of the pigment after dispersion, the dispersion aid is obtained by using a coloring composition obtained by dispersing the pigment in the pigment carrier using the dispersion aid. The colored film is excellent in transparency.
The dispersion aid is preferably used in an amount of 0.1 to 40 parts by weight, more preferably 0.1 to 30 parts by weight, with respect to 100 parts by weight of the phthalocyanine pigment in the coloring composition. it can.
 なかでも色素誘導体(顔料誘導体)は、有機顔料の凝集を防ぎ、有機顔料が微細に分散した状態を維持する働きに優れ、これらの誘導体を含有する着色組成物を用いることにより、高コントラスト比で色純度の高い着色膜を製造することができるため、分散助剤として好ましい。
 顔料分散剤として使用する色素誘導体としては、一般に使用される公知のもの(例えば、特開昭63-305173号公報、特公昭57-15620号公報、特公昭59-40172号公報、特公昭63-17102号公報、特公平5-9469号公報等に記載されているもの)を、特に制限なく使用できる。具体的には、ジケトピロロピロール系顔料;アゾ、ジスアゾ、ポリアゾ等のアゾ系顔料;銅フタロシアニン、ハロゲン化銅フタロシアニン、無金属フタロシアニン等のフタロシアニン系顔料;アミノアントラキノン、ジアミノジアントラキノン、アントラピリミジン、フラバントロン、アントアントロン、インダントロン、ピラントロン、ビオラントロン等のアントラキノン系顔料;キナクリドン系顔料、ジオキサジン系顔料、ペリノン系顔料、ペリレン系顔料、チオインジゴ系顔料、イソインドリン系顔料、イソインドリノン系顔料、キノフタロン系顔料、スレン系顔料、金属錯体系顔料等の顔料残基と塩基性置換基(アミノ基等)または酸性置換基(リン酸基、スルホン酸基、カルボキシル基等)とを有するものが挙げられる。これらは単独で、または2種以上を混合して用いることができる。
Among these, a pigment derivative (pigment derivative) is excellent in the function of preventing aggregation of organic pigments and maintaining a finely dispersed state of organic pigments. By using a coloring composition containing these derivatives, a high contrast ratio can be obtained. Since a colored film with high color purity can be produced, it is preferable as a dispersion aid.
As a pigment derivative used as a pigment dispersant, known ones generally used (for example, JP-A 63-305173, JP-B 57-15620, JP-B 59-40172, JP-B 63- 17102, JP-B-5-9469, etc.) can be used without particular limitation. Specifically, diketopyrrolopyrrole pigments; azo pigments such as azo, disazo, and polyazo; phthalocyanine pigments such as copper phthalocyanine, halogenated copper phthalocyanine, and metal-free phthalocyanine; aminoanthraquinone, diaminodianthraquinone, anthrapyrimidine, Anthraquinone pigments such as flavantron, anthanthrone, indanthrone, pyranthrone, violanthrone; quinacridone pigment, dioxazine pigment, perinone pigment, perylene pigment, thioindigo pigment, isoindoline pigment, isoindolinone pigment, quinophthalone Pigments such as pigments, selenium pigments, metal complex pigments and the like, and those having basic substituents (amino groups, etc.) or acidic substituents (phosphoric acid groups, sulfonic acid groups, carboxyl groups, etc.). . These can be used alone or in admixture of two or more.
 色素誘導体を使用する場合の配合量についても、特に限定されないが、顔料100重量部に対して、その配合効果を充分に発揮させるために0.1重量部以上であることが好ましく、耐熱性および耐光性を良好に維持する観点から30重量部以下であることが好ましく、0.5~25重量部程度であることがより好ましい。 The blending amount in the case of using the pigment derivative is not particularly limited, but is preferably 0.1 part by weight or more in order to sufficiently exhibit the blending effect with respect to 100 parts by weight of the pigment, From the viewpoint of maintaining good light resistance, it is preferably 30 parts by weight or less, and more preferably about 0.5 to 25 parts by weight.
 着色組成物において添加する樹脂型顔料分散剤は、顔料に吸着する性質を有する顔料親和性部位と、顔料担体と相溶性のある部位とを有し、顔料に吸着して顔料の顔料担体への分散を安定化する働きをするものである。 The resin-type pigment dispersant added in the coloring composition has a pigment-affinity part having a property of adsorbing to the pigment and a part compatible with the pigment carrier, and adsorbs to the pigment to give the pigment to the pigment carrier. It works to stabilize dispersion.
 樹脂型顔料分散剤は、ポリビニル系、ポリウレタン系、ポリエステル系、ポリエーテル系、ホルマリン縮合系、シリコーン系、またはこれらの複合系ポリマーが挙げられ、顔料親和性部位としては、カルボキシル基、ヒドロキシル基、リン酸基、リン酸エステル基、スルホン酸基、ヒドロキシル基、アミノ基、四級アンモニウム塩基、またはアミド基等の極性基、並びに、ポリエチレンオキサイド、ポリプロピレンオキサイド、またはこれらの複合系等の親水性ポリマー鎖等が挙げられ、色素担体と相溶性のある部位としては、長鎖アルキル鎖、ポリビニル鎖、ポリエーテル鎖、またはポリエステル鎖等が挙げられる。 Examples of the resin-type pigment dispersant include polyvinyl, polyurethane, polyester, polyether, formalin condensation, silicone, and composite polymers thereof. Examples of the pigment affinity site include a carboxyl group, a hydroxyl group, Polar groups such as phosphoric acid groups, phosphoric acid ester groups, sulfonic acid groups, hydroxyl groups, amino groups, quaternary ammonium bases, or amide groups, and hydrophilic polymers such as polyethylene oxide, polypropylene oxide, or composites thereof Examples of the site compatible with the dye carrier include a long-chain alkyl chain, a polyvinyl chain, a polyether chain, or a polyester chain.
 樹脂型顔料分散剤として具体的には、
 スチレン-無水マレイン酸共重合物、オレフィン-無水マレイン酸共重合物、ポリ(メタ)アクリル酸塩、スチレン-(メタ)アクリル酸共重合体、(メタ)アクリル酸-(メタ)アクリル酸アルキルエステル共重合体、(メタ)アクリル酸-ポリビニル系マクロマー共重合体、リン酸エステル基含有アクリル樹脂、芳香族カルボキシル基含有アクリル樹脂、ポリスチレンスルホン酸塩、アクリルアミド-(メタ)アクリル酸共重合物、カルボキシメチルセルロース、カルボキシル基を有するポリウレタン、ナフタレンスルホン酸塩のホルマリン縮合物、またはアルギン酸ソーダ等のアニオン系樹脂型顔料分散剤;
 ポリビニルアルコール、ポリアルキレンポリアミン、ポリアクリルアミド、またはポリマー澱粉等のノニオン系樹脂型顔料分散剤;あるいは、
 ポリエチレンイミン、アミノアルキル(メタ)アクリレート共重合物、ポリビニルイミダゾリン、アミノ基を有するポリウレタン、ポリアルキレンイミンと遊離のカルボキシル基を有するポリエステルとの反応物等のカチオン系樹脂型顔料分散剤が好ましく挙げられる。これらを単独で、または2種以上を混合して用いることができる。
Specifically, as a resin-type pigment dispersant,
Styrene-maleic anhydride copolymer, olefin-maleic anhydride copolymer, poly (meth) acrylate, styrene- (meth) acrylic acid copolymer, (meth) acrylic acid- (meth) acrylic acid alkyl ester Copolymer, (meth) acrylic acid-polyvinyl-based macromer copolymer, phosphoric ester group-containing acrylic resin, aromatic carboxyl group-containing acrylic resin, polystyrene sulfonate, acrylamide- (meth) acrylic acid copolymer, carboxy Anionic resin type pigment dispersants such as methylcellulose, polyurethane having a carboxyl group, formalin condensate of naphthalenesulfonate, or sodium alginate;
Nonionic resin-type pigment dispersants such as polyvinyl alcohol, polyalkylene polyamine, polyacrylamide, or polymer starch; or
Preferred examples include cationic resin-type pigment dispersants such as polyethyleneimine, aminoalkyl (meth) acrylate copolymer, polyvinylimidazoline, polyurethane having an amino group, and a reaction product of polyalkyleneimine and polyester having a free carboxyl group. . These can be used alone or in admixture of two or more.
 着色組成物は、特に、着色組成物の安定性の点で、酸性の樹脂型顔料分散剤を含むことが好ましい。さらに酸性の樹脂型顔料分散剤と、塩基性の色素誘導体を併用することで、着色組成物の流動性、安定性だけでなく、高明度、高コントラスト比の優れたフィルタセグメントが得られるために好ましい。
 市販の樹脂型分散剤としては、ビックケミー・ジャパン社製のDisperbyk-101、103、107、108、110、111、112、116、130、140、142、154、161、162、163、164、165、166、170、171、174、180、181、182、183、184、185、190、2000、2001、2020、2025、2050、2070、2095、2150、2155またはAnti-Terra-U、203、204、またはBYK-P104、P104S、220S、6919、またはLactimon、Lactimon-WSまたはBykumen等;
 日本ルーブリゾール社製のSOLSPERSE-3000、9000、13000、13240、13650、13940、16000、17000、18000、20000、21000、24000、26000、27000、28000、31845、32000、32500、32550、33500、32600、34750、35100、36600、38500、41000、41090、53095、55000、76500等;
 チバ・ジャパン社製のEFKA-46、47、48、452、4008、4009、4010、4015、4020、4047、4050、4055、4060、4080、4400、4401、4402、4403、4406、4408、4300、4310、4320、4330、4340、450、451、453、4540、4550、4560、4800、5010、5065、5066、5070、7500、7554、1101、120、150、1501、1502、1503等;
 楠本化成社製のDISPARLON3600N、DISPARLON1850等;
 味の素ファインテクノ社製のアジスパーPA111、PB711、PB821、PB822、PB824等が挙げられるが、これらに限定されることはない。これらは単独で、または2種以上を混合して用いることができる。
 これらの中でも、酸性官能基を有する樹脂型顔料分散剤である、ビックケミー・ジャパン社製のDisperbyk-108、110、111、112、116、142、180、2000、2001、または日本ルーブリゾール社製のSOLSPERSE-3000、21000、26000、36600、41000、またはチバ・ジャパン社製のEFKA-4401、4550、または楠本化成社製のDISPARLON3600N、DISPARLON1850、または味の素ファインテクノ社製のアジスパーPA111等が好ましく挙げられるが、これらに限定されるものではない。
In particular, the colored composition preferably contains an acidic resin-type pigment dispersant from the viewpoint of the stability of the colored composition. Furthermore, by using an acidic resin-type pigment dispersant and a basic dye derivative in combination, not only the fluidity and stability of the colored composition, but also a filter segment with excellent brightness and high contrast ratio can be obtained. preferable.
Commercially available resin-type dispersants include Disperbyk-101, 103, 107, 108, 110, 111, 112, 116, 130, 140, 142, 154, 161, 162, 163, 164, 165 manufactured by Big Chemie Japan. 166, 170, 171, 174, 180, 181, 182, 183, 184, 185, 190, 2000, 2001, 2020, 2025, 2050, 2070, 2095, 2150, 2155 or Anti-Terra-U, 203, 204 Or BYK-P104, P104S, 220S, 6919, or Lactimon, Lactimon-WS or Bykumen, etc .;
SOLPERSE-3000, 9000, 13000, 13240, 13650, 13940, 16000, 17000, 18000, 20000, 21000, 24000, 26000, 27000, 28000, 31845, 32000, 32500, 32550, 33500, 32600, manufactured by Nippon Lubrizol 34750, 35100, 36600, 38500, 41000, 41090, 53095, 55000, 76500, etc .;
EFKA-46, 47, 48, 452, 4008, 4009, 4010, 4015, 4020, 4047, 4050, 4055, 4060, 4080, 4400, 4401, 4402, 4403, 4406, 4408, 4300, manufactured by Ciba Japan 4310, 4320, 4330, 4340, 450, 451, 453, 4540, 4550, 4560, 4800, 5010, 5065, 5066, 5070, 7500, 7554, 1101, 120, 150, 1501, 1502, 1503, etc .;
DISPARLON 3600N, DISPARLON 1850, etc. manufactured by Enomoto Kasei Co., Ltd .;
Ajinomoto Fine Techno Co., Ltd. Ajisper PA111, PB711, PB821, PB822, PB824, etc. are mentioned, but it is not limited to these. These can be used alone or in admixture of two or more.
Among these, a resin-type pigment dispersant having an acidic functional group, Disperbyk-108, 110, 111, 112, 116, 142, 180, 2000, 2001, manufactured by Big Chemie Japan, or manufactured by Nippon Lubrizol, Inc. SOLPERSE-3000, 21000, 26000, 36600, 41000, or EFKA-4401, 4550 manufactured by Ciba Japan, or DISPARLON 3600N, DISPARLON 1850 manufactured by Enomoto Kasei Co., or Ajimoto Fine Techno Co., Ltd. However, it is not limited to these.
 界面活性剤としては、特に限定はされないが、例えば、
 ポリオキシエチレンアルキルエーテル硫酸塩、ドデシルベンゼンスルホン酸ナトリウム、スチレン-アクリル酸共重合体のアルカリ塩、ステアリン酸ナトリウム、アルキルナフタリンスルホン酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム、ラウリル硫酸モノエタノールアミン、ラウリル硫酸トリエタノールアミン、ラウリル硫酸アンモニウム、ステアリン酸モノエタノールアミン、ステアリン酸ナトリウム、ラウリル硫酸ナトリウム、スチレン-アクリル酸共重合体のモノエタノールアミン、ポリオキシエチレンアルキルエーテルリン酸エステル等のアニオン性界面活性剤;
 ポリオキシエチレンオレイルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンアルキルエーテルリン酸エステル、ポリオキシエチレンソルビタンモノステアレート、ポリエチレングリコールモノラウレートなどのノニオン性界面活性剤;
 アルキル四級アンモニウム塩、およびそれらのエチレンオキサイド付加物等のカオチン性界面活性剤;並びにアルキルジメチルアミノ酢酸ベタイン等のアルキルベタイン、及びアルキルイミダゾリン等の両性界面活性剤が挙げられる。これらは単独で、または2種以上を混合して用いることができる。
The surfactant is not particularly limited, but for example,
Polyoxyethylene alkyl ether sulfate, sodium dodecylbenzenesulfonate, alkali salt of styrene-acrylic acid copolymer, sodium stearate, sodium alkylnaphthalene sulfonate, sodium alkyldiphenyl ether disulfonate, lauryl sulfate monoethanolamine, lauryl sulfate tri Anionic surfactants such as ethanolamine, ammonium lauryl sulfate, monoethanolamine stearate, sodium stearate, sodium lauryl sulfate, monoethanolamine of styrene-acrylic acid copolymer, polyoxyethylene alkyl ether phosphate;
Nonionic surfactants such as polyoxyethylene oleyl ether, polyoxyethylene lauryl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene alkyl ether phosphate, polyoxyethylene sorbitan monostearate, polyethylene glycol monolaurate;
Examples thereof include chaotic surfactants such as alkyl quaternary ammonium salts and their ethylene oxide adducts; and alkylbetaines such as alkyldimethylaminoacetic acid betaines, and amphoteric surfactants such as alkylimidazolines. These can be used alone or in admixture of two or more.
 着色組成物には、フタロシアニン顔料を充分に顔料担体中に分散させ、ガラス基板等の透明基板上に、乾燥膜厚が0.2~5μmとなるように塗布して着色膜を形成することを容易にするために、任意の非水系溶剤を含有させることができる。 In the coloring composition, a phthalocyanine pigment is sufficiently dispersed in a pigment carrier and coated on a transparent substrate such as a glass substrate so that the dry film thickness is 0.2 to 5 μm to form a colored film. For ease, any non-aqueous solvent can be included.
 非水系溶剤としては、特に限定されることはなく、例えば1,2,3-トリクロロプロパン、1,3-ブタンジオール、1,3-ブチレングリコール、1,3-ブチレングリコールジアセテート、1,4-ジオキサン、2-ヘプタノン、2-メチル-1,3-プロパンジオール、3,5,5-トリメチル-2-シクロヘキセン-1-オン、3,3,5-トリメチルシクロヘキサノン、3-エトキシプロピオン酸エチル、3-メチル-1,3-ブタンジオール、3-メトキシ-3-メチル-1-ブタノール、3-メトキシ-3-メチルブチルアセテート、3-メトキシブタノール、3-メトキシブチルアセテート、4-ヘプタノン、m-キシレン、m-ジエチルベンゼン、m-ジクロロベンゼン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、n-ブチルアルコール、n-ブチルベンゼン、n-プロピルアセテート、N-メチルピロリドン、o-キシレン、o-クロロトルエン、o-ジエチルベンゼン、o-ジクロロベンゼン、p-クロロトルエン、p-ジエチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン、γ―ブチロラクトン、イソブチルアルコール、イソホロン、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノターシャリーブチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノプロピルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、ジイソブチルケトン、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノメチルエーテル、シクロヘキサノール、シクロヘキサノールアセテート、シクロヘキサノン、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノブチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノメチルエーテル、ジアセトンアルコール、トリアセチン、トリプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールジアセテート、プロピレングリコールフェニルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルプロピオネート、ベンジルアルコール、メチルイソブチルケトン、メチルシクロヘキサノール、酢酸n-アミル、酢酸n-ブチル、酢酸イソアミル、酢酸イソブチル、酢酸プロピル、または二塩基酸エステル等が好ましく挙げられる。これらを単独で、もしくは混合して用いる。
 溶剤は、着色組成物または顔料分散体中のフタロシアニン顔料100重量部に対して、800~4000重量部の量で用いることが好ましく、より好ましくは1000~2500重量部の量で用いることができる。
The non-aqueous solvent is not particularly limited. For example, 1,2,3-trichloropropane, 1,3-butanediol, 1,3-butylene glycol, 1,3-butylene glycol diacetate, 1,4 -Dioxane, 2-heptanone, 2-methyl-1,3-propanediol, 3,5,5-trimethyl-2-cyclohexen-1-one, 3,3,5-trimethylcyclohexanone, ethyl 3-ethoxypropionate, 3-methyl-1,3-butanediol, 3-methoxy-3-methyl-1-butanol, 3-methoxy-3-methylbutyl acetate, 3-methoxybutanol, 3-methoxybutyl acetate, 4-heptanone, m- Xylene, m-diethylbenzene, m-dichlorobenzene, N, N-dimethylacetamide, N, N-dimethyl Formamide, n-butyl alcohol, n-butylbenzene, n-propyl acetate, N-methylpyrrolidone, o-xylene, o-chlorotoluene, o-diethylbenzene, o-dichlorobenzene, p-chlorotoluene, p-diethylbenzene, sec-butylbenzene, tert-butylbenzene, γ-butyrolactone, isobutyl alcohol, isophorone, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol Monotertiary butyl ether, ethylene glycol monobutyl ether, ethylene glycol monobutyl ether acetate, Ethylene glycol monopropyl ether, ethylene glycol monohexyl ether, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, diisobutyl ketone, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether Butyl ether acetate, diethylene glycol monomethyl ether, cyclohexanol, cyclohexanol acetate, cyclohexanone, dipropylene glycol dimethyl ether, dipropylene glycol methyl ether acetate, dipropylene glycol No ethyl ether, dipropylene glycol monobutyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monomethyl ether, diacetone alcohol, triacetin, tripropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, propylene glycol diacetate, propylene glycol phenyl ether , Propylene glycol monoethyl ether, propylene glycol monoethyl ether acetate, propylene glycol monobutyl ether, propylene glycol monopropyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether propionate, benzine Alcohol, methyl isobutyl ketone, methyl cyclohexanol, acetic acid n- amyl acetate n- butyl, isoamyl acetate, isobutyl acetate, propyl acetate or dibasic acid esters and the like, may preferably be mentioned. These are used alone or in combination.
The solvent is preferably used in an amount of 800 to 4000 parts by weight, more preferably 1000 to 2500 parts by weight with respect to 100 parts by weight of the phthalocyanine pigment in the coloring composition or pigment dispersion.
 さらに着色組成物には、組成物の経時粘度を安定化させるために貯蔵安定剤を含有させることができる。貯蔵安定剤としては、一般的に用いられる公知のもの、例えば、ベンジルトリメチルアンモニウムクロライド、またはジエチルヒドロキシアミン等の四級アンモニウムクロライド類;乳酸、またはシュウ酸等の有機酸類;前記有機酸のメチルエステル類;t-ブチルピロカテコール等のカテコール類;トリフェニルホスフィン、テトラエチルホスフィン、またはテトラフェニルフォスフィン等の有機ホスフィン類;あるいは亜リン酸塩類等が挙げられるが、これらに限定されることはない。
 貯蔵安定剤は、着色組成物中のフタロシアニン顔料100重量部に対して、0.1~10重量部の量で用いることができる。
Further, the coloring composition may contain a storage stabilizer in order to stabilize the viscosity with time of the composition. Examples of the storage stabilizer include commonly used ones such as benzyltrimethylammonium chloride or quaternary ammonium chlorides such as diethylhydroxyamine; lactic acid or organic acids such as oxalic acid; methyl esters of the organic acids Catechols such as t-butylpyrocatechol; organic phosphines such as triphenylphosphine, tetraethylphosphine, or tetraphenylphosphine; or phosphites, but not limited thereto.
The storage stabilizer can be used in an amount of 0.1 to 10 parts by weight with respect to 100 parts by weight of the phthalocyanine pigment in the coloring composition.
 また、着色組成物には、調色のため、耐熱性を低下させない範囲内で染料を含有させることもできる。使用される染料は、特に限定されることはないが、アゾ染料、アントラキノン染料、インジゴイド染料、フタロシアニン染料、カルボニウム染料、キノンイミン染料、メチン染料、キノリン染料、ニトロ染料、ニトロソ染料、ベンゾキノンおよびナフトキノン染料、ナフタルイミド染料、ペリノン染料等を好ましく使用でき、任意に二種以上を組み合わせて使用してもよい。 In addition, the coloring composition may contain a dye within a range that does not reduce heat resistance for color matching. The dye used is not particularly limited, but azo dye, anthraquinone dye, indigoid dye, phthalocyanine dye, carbonium dye, quinoneimine dye, methine dye, quinoline dye, nitro dye, nitroso dye, benzoquinone and naphthoquinone dye, Naphthalimide dyes, perinone dyes and the like can be preferably used, and two or more kinds may be arbitrarily used in combination.
 着色組成物の用途は、特に限定されないが、好ましい実施形態においては、グラビアオフセット用印刷インキ、水無しオフセット印刷インキ、シルクスクリーン印刷用インキ、溶剤現像型あるいはアルカリ現像型着色レジストの形態で調製することができる。
 着色レジストは、上述のように、熱可塑性樹脂、熱硬化性樹脂または感光性樹脂と、重合性モノマーと、光重合開始剤と、有機溶剤とを含有する組成物中に顔料(色素)を分散させたものである。
The use of the coloring composition is not particularly limited, but in a preferred embodiment, it is prepared in the form of gravure offset printing ink, waterless offset printing ink, silk screen printing ink, solvent development type or alkali development type coloring resist. be able to.
As described above, the colored resist is a pigment (dye) dispersed in a composition containing a thermoplastic resin, a thermosetting resin or a photosensitive resin, a polymerizable monomer, a photopolymerization initiator, and an organic solvent. It has been made.
 着色組成物は、5μm以上の粗大粒子、好ましくは1μm以上の粗大粒子、さらに好ましくは0.5μm以上の粗大粒子を含まないことが好ましく、遠心分離、焼結フィルタ、メンブレンフィルタ等の手段により、これらの粗大粒子および混入した塵の除去を行うことが好ましい。特に、カラーフィルタ用として着色組成物を使用する場合には、実質的に0.5μm以上の粒子を含まないことが好ましく、0.3μmより大きな粒子を含まないことがより好ましい。 The coloring composition preferably does not contain coarse particles of 5 μm or more, preferably 1 μm or more, and more preferably 0.5 μm or more, and by means such as centrifugation, sintered filter, membrane filter, It is preferable to remove these coarse particles and mixed dust. In particular, when a colored composition is used for a color filter, it is preferable that substantially no particles of 0.5 μm or more are contained, and more preferably no particles larger than 0.3 μm.
5.カラーフィルタ
 カラーフィルタは、基板と、該基板上に形成されたフィルタセグメントとを少なくとも備えており、該フィルタセグメントとして、上記着色組成物を用いて得られたものを含んでいる。すなわち、カラーフィルタは、基板上に、少なくとも一つの赤色フィルタセグメントと、少なくとも一つの緑色フィルタセグメントと、少なくとも一つの青色フィルタセグメントとを具備しており、青色フィルタセグメントは、フタロシアニン顔料を含む上記着色組成物から形成される。青色以外の赤色フィルタ層(R)および緑色フィルタ層(G)、または赤色、緑色、青色の補色に相当する、シアン色フィルタ層(C)、マゼンタ色フィルタ層(M)、およびイエロー色フィルタ層(Y)は、任意の着色組成物を用いて形成することができ、何ら限定されることはない。また、赤色フィルタセグメントを形成するための赤色着色組成物には、赤色顔料のほかに、橙色顔料および/または黄色顔料を併用することができ、緑色フィルタセグメントを形成するための緑色着色組成物には、緑色顔料のほかに、黄色顔料を併用することができる。
5. Color filter The color filter includes at least a substrate and a filter segment formed on the substrate, and the filter segment includes a filter segment obtained using the colored composition. That is, the color filter includes, on the substrate, at least one red filter segment, at least one green filter segment, and at least one blue filter segment, and the blue filter segment includes the phthalocyanine pigment. Formed from the composition. Red filter layer (R) and green filter layer (G) other than blue, or cyan filter layer (C), magenta filter layer (M), and yellow filter layer corresponding to complementary colors of red, green, and blue (Y) can be formed using arbitrary coloring compositions, and is not limited at all. In addition to the red pigment, an orange pigment and / or a yellow pigment can be used in combination with the red coloring composition for forming the red filter segment, so that the green coloring composition for forming the green filter segment can be used. In addition to the green pigment, a yellow pigment can be used in combination.
 カラーフィルタの製造方法は特に限定されることはなく、公知の手法を用いることができる。
 フィルタセグメントの形成は、印刷法またはフォトリソグラフィー法により行うことができる。印刷法によるフィルタセグメントの形成は、印刷インキとして調製した着色組成物の印刷と乾燥を繰り返すだけでパターン化ができるため、カラーフィルタの製造法としては、低コストで量産性に優れている。さらに、印刷技術の発展により高い寸法精度および平滑度を有する微細パターンの印刷を行うことができる。印刷を行うためには、印刷の版上にて、あるいはブランケット上にてインキが乾燥、固化しないような組成とすることが好ましい。また、印刷機上でのインキの流動性の制御も重要であり、分散剤や体質顔料によるインキ粘度の調整を行うこともできる。
The manufacturing method of a color filter is not specifically limited, A well-known method can be used.
The filter segment can be formed by a printing method or a photolithography method. The formation of the filter segment by the printing method can be patterned simply by repeating the printing and drying of the coloring composition prepared as the printing ink. Therefore, the color filter manufacturing method is low in cost and excellent in mass productivity. Furthermore, it is possible to print a fine pattern having high dimensional accuracy and smoothness by the development of printing technology. In order to perform printing, it is preferable that the ink does not dry and solidify on the printing plate or on the blanket. Control of ink fluidity on a printing press is also important, and ink viscosity can be adjusted with a dispersant or extender pigment.
 フォトリソグラフィー法によりフィルタセグメントを形成する場合は、たとえば次のように行うことができるが、これに限定されることはない。上記溶剤現像型あるいはアルカリ現像型着色レジストとして調製した着色組成物を、透明基板上に、スプレーコート、スピンコート、スリットコート、ロールコート等の塗布方法により、乾燥膜厚が0.2~5μmとなるように塗布する。必要により乾燥された膜に対し、この膜と接触あるいは非接触状態で設けられた所定のパターンを有するマスクを通して、紫外線露光を行う。その後、溶剤またはアルカリ現像液に浸漬するか、もしくはスプレーなどにより現像液を噴霧して未硬化部を除去して、所望のパターンを形成する。同様の操作を他色についても繰り返し行って、各色のフィルタセグメントの形成ができる。さらに、着色レジストの重合を促進するため、必要に応じて加熱を施すこともできる。フォトリソグラフィー法によれば、上記印刷法よりも、精度の高いカラーフィルタが製造できる。
 現像に際しては、アルカリ現像液として炭酸ナトリウム、水酸化ナトリウム等の水溶液が使用され、ジメチルベンジルアミン、トリエタノールアミン等の有機アルカリを用いることもできる。また、現像液には、消泡剤や界面活性剤を添加することもできる。なお、紫外線露光感度を上げるために、上記着色レジストを塗布乾燥後、水溶性あるいはアルカリ水溶性樹脂、例えばポリビニルアルコールまたは水溶性アクリル樹脂等を塗布乾燥し、酸素による重合阻害を防止する膜を形成した後、紫外線露光を行うこともできる。
When forming a filter segment by photolithography, for example, it can be performed as follows, but is not limited thereto. The colored composition prepared as the solvent developing type or alkali developing type colored resist is applied to a transparent substrate by a coating method such as spray coating, spin coating, slit coating, roll coating, etc. Apply as follows. If necessary, the dried film is exposed to ultraviolet rays through a mask having a predetermined pattern provided in contact or non-contact with the film. Thereafter, the film is immersed in a solvent or an alkali developer, or the developer is sprayed by spraying or the like to remove uncured portions, thereby forming a desired pattern. Similar operations can be repeated for other colors to form filter segments for each color. Furthermore, in order to accelerate the polymerization of the colored resist, heating can be performed as necessary. According to the photolithography method, a color filter with higher accuracy than the above printing method can be manufactured.
In development, an aqueous solution such as sodium carbonate or sodium hydroxide is used as an alkali developer, and an organic alkali such as dimethylbenzylamine or triethanolamine can also be used. Moreover, an antifoamer and surfactant can also be added to a developing solution. In order to increase the UV exposure sensitivity, the colored resist is applied and dried, and then a water-soluble or alkaline water-soluble resin such as polyvinyl alcohol or water-soluble acrylic resin is applied and dried to form a film that prevents polymerization inhibition by oxygen. Then, ultraviolet exposure can be performed.
 フィルタセグメントは、上記方法の他に電着法、転写法などにより製造してもよい。電着法は、基板上に形成した透明導電膜を利用して、コロイド粒子の電気泳動により、各色フィルタセグメントを透明導電膜の上に電着形成する方法である。転写法は、剥離性の転写ベースシートの表面に、あらかじめフィルタセグメントを形成しておき、このフィルタセグメントを所望の基板に転写させる方法である。 The filter segment may be manufactured by an electrodeposition method, a transfer method or the like in addition to the above method. The electrodeposition method is a method in which each color filter segment is electrodeposited on a transparent conductive film by electrophoresis of colloidal particles using a transparent conductive film formed on a substrate. The transfer method is a method in which a filter segment is formed in advance on the surface of a peelable transfer base sheet, and this filter segment is transferred to a desired substrate.
 サブピクセルまたはフィルタセグメント(画素)の配置は、特に限定されることはなく、「ストライプ配列」、「モザイク配列」、「デルタ配列」等の公知のパターンとすることができる。フィルタセグメントのサイズは、数マイクロメートル~数100マイクロメートルの範囲で任意に作成できる。 The arrangement of the sub-pixels or filter segments (pixels) is not particularly limited, and may be a known pattern such as a “stripe arrangement”, “mosaic arrangement”, “delta arrangement”, or the like. The size of the filter segment can be arbitrarily formed in the range of several micrometers to several hundred micrometers.
 カラーフィルタの基板は、透明基板であり、可視光に対して透過率の高いソーダ石灰ガラス、低アルカリ硼珪酸ガラス、無アルカリアルミノ硼珪酸ガラスなどのガラス板のほか、ポリカーボネート、ポリメタクリル酸メチル、ポリエチレンテレフタレートなどの樹脂板が用いられる。
 カラーフィルタは、さらに、液晶を駆動させるための透明電極を備えている。透明電極は、酸化インジウム、酸化錫などから構成され、蒸着あるいはスパッタリングにより形成することができる。
The substrate of the color filter is a transparent substrate, glass plates such as soda lime glass, low alkali borosilicate glass, non-alkali alumino borosilicate glass, which have high transmittance for visible light, polycarbonate, polymethyl methacrylate, A resin plate such as polyethylene terephthalate is used.
The color filter further includes a transparent electrode for driving the liquid crystal. The transparent electrode is made of indium oxide, tin oxide, or the like, and can be formed by vapor deposition or sputtering.
 基板上にフィルタセグメントを形成する前に、あらかじめブラックマトリクスを形成しておくと、液晶表示パネルのコントラストを一層高めることができる。ブラックマトリクスとしては、クロムやクロム/酸化クロムの多層膜、窒化チタニウムなどの無機膜、あるいは遮光剤を分散した樹脂膜が用いられるが、これらに限定されない。また、基板上に薄膜トランジスター(TFT)をあらかじめ形成しておき、その後にフィルタセグメントを形成することもできる。TFT基板上にフィルタセグメントを形成することにより、液晶表示パネルの開口率を高め、輝度を向上させることができる。
 カラーフィルタ上には、必要に応じてオーバーコート膜、柱状スペーサー、透明導電膜、液晶配向膜などが形成される。
If a black matrix is formed in advance before forming the filter segment on the substrate, the contrast of the liquid crystal display panel can be further increased. As the black matrix, a multilayer film of chromium, chromium / chromium oxide, an inorganic film such as titanium nitride, or a resin film in which a light shielding agent is dispersed is used, but is not limited thereto. Alternatively, a thin film transistor (TFT) may be formed on a substrate in advance, and then a filter segment may be formed. By forming the filter segment on the TFT substrate, the aperture ratio of the liquid crystal display panel can be increased and the luminance can be improved.
An overcoat film, a columnar spacer, a transparent conductive film, a liquid crystal alignment film, and the like are formed on the color filter as necessary.
6.液晶パネル
 カラーフィルタを、シール剤を用いて対向基板と張り合わせ、シール部に設けられた注入口から液晶を注入したのち注入口を封止し、必要に応じて偏光膜や位相差膜を基板の外側に張り合わせることにより、液晶表示パネルが製造される。
 液晶表示パネルは、ツイステッド・ネマティック(TN)、スーパー・ツイステッド・ネマティック(STN)、イン・プレーン・スイッチング(IPS)、ヴァーティカリー・アライメント(VA)、オプティカリー・コンベンセンド・ベンド(OCB)などの、カラーフィルタを使用してカラー化を行う液晶表示モードに使用することができる。
6). Liquid crystal panel A color filter is attached to the opposite substrate using a sealant, and after injecting liquid crystal from the injection port provided in the seal part, the injection port is sealed, and if necessary, a polarizing film or retardation film is attached to the substrate. A liquid crystal display panel is manufactured by sticking to the outside.
LCD panels include Twisted Nematic (TN), Super Twisted Nematic (STN), In-Plane Switching (IPS), Vertical Alignment (VA), Optically Convencend Bend (OCB), etc. The liquid crystal display mode can be used for colorization using a color filter.
 以下に、実施例により本発明をさらに詳細に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。なお、実施例における「部」および「%」は、「重量部」および「重量%」をそれぞれ表す。 Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples do not limit the scope of rights of the present invention. In the examples, “parts” and “%” represent “parts by weight” and “% by weight”, respectively.
1.測定法
(1)色特性
 ガラス基板上に、C光源においてy=0.1500になるような膜厚に、それぞれのフタロシアニン顔料着色組成物(青色レジスト材)を塗布し、この基板を230℃で20分加熱した。その後、得られた基板の明度を、顕微分光光度計(オリンパス光学社製「OSP-SP200」)で測定した。
1. Measurement Method (1) Color Characteristics Each phthalocyanine pigment coloring composition (blue resist material) was applied on a glass substrate to a thickness such that y = 0.1500 in a C light source, and the substrate was heated at 230 ° C. Heated for 20 minutes. Thereafter, the brightness of the obtained substrate was measured with a microspectrophotometer (“OSP-SP200” manufactured by Olympus Optical Co., Ltd.).
(2)コントラスト比
 色特性測定に使用した塗布膜を用いて、コントラスト比を測定した。下記に、塗膜のコントラスト比の測定方法について説明する。
(塗膜のコントラスト比の測定法)
 液晶ディスプレー用バックライトユニットから出た光は、第1の偏光板を通過して偏光され、ガラス基板上に塗布された着色組成物の乾燥塗膜を通過し、第2の偏光板に到達する。第1の偏光板と第2の偏光板の間に何も存在しないとき、両偏光板の偏光面が互いに平行であれば、光は第2の偏光板を透過するが、両偏光面が直交している場合には、光は第2の偏光板により遮断される。しかし、両偏光板の間に着色組成物の乾燥塗膜が存在すると、第1の偏光板によって偏光された光が着色組成物の乾燥塗膜を通過するときに、顔料粒子による散乱等が起こって偏光面の一部(偏光方向)にずれを生じると、両偏光板が平行のときは第2の偏光板を透過する光量が減り、両偏光板が直交のときは第2の偏光板を一部の光が透過する。この透過光を偏光板上の輝度として測定し、両偏光板が平行のときの輝度と、直交のときの輝度との比(コントラスト比)を算出した。
 (コントラスト比)=(平行のときの輝度)/(直交のときの輝度)
 すなわち、塗膜中の顔料により散乱が起こると、平行のときの輝度が低下し、かつ直交のときの輝度が増加するため、コントラスト比が低くなる。
(2) Contrast ratio The contrast ratio was measured using the coating film used for color characteristic measurement. Below, the measuring method of the contrast ratio of a coating film is demonstrated.
(Measurement method of contrast ratio of coating film)
The light emitted from the backlight unit for liquid crystal display passes through the first polarizing plate, is polarized, passes through the dried coating film of the colored composition applied on the glass substrate, and reaches the second polarizing plate. . When there is nothing between the first polarizing plate and the second polarizing plate, if the polarization planes of both polarizing plates are parallel to each other, the light is transmitted through the second polarizing plate, but the polarization planes are orthogonal to each other. If so, the light is blocked by the second polarizing plate. However, if there is a dried coating film of the colored composition between both polarizing plates, the light polarized by the first polarizing plate passes through the dried coating film of the colored composition, causing scattering by pigment particles, etc. When a deviation occurs in part of the surface (polarization direction), the amount of light transmitted through the second polarizing plate decreases when both polarizing plates are parallel, and part of the second polarizing plate when both polarizing plates are orthogonal to each other. Light is transmitted. This transmitted light was measured as the luminance on the polarizing plate, and the ratio (contrast ratio) between the luminance when the two polarizing plates were parallel and the luminance when they were orthogonal was calculated.
(Contrast ratio) = (Luminance when parallel) / (Luminance when orthogonal)
That is, when scattering occurs due to the pigment in the coating film, the brightness when parallel is reduced and the brightness when orthogonal is increased, the contrast ratio is lowered.
 なお、測定に際しては、不要光を遮断するために、測定部分に1cm角の孔を開けた黒色のマスクを当てた。着色膜を形成した基板の両面に、第1および第2それぞれの偏光板を、両偏光板の偏向軸が互いに平行になるよう重ね、一方の偏光板(第1の偏光板)側からバックライトを入射させ、他方の偏光板(第2の偏光板)を透過した光の輝度(Lp)を輝度計にて測定した。次に、基板の両面に重ねられた両偏光板を、両偏光板の偏向軸が互いに直交するように配置し、一方の偏光板側からバックライトを入射させ、他方の偏光板を透過した光の輝度(Lc)を輝度計にて測定した。得られた測定輝度値を用いて、コントラスト比Lp/Lcを算出した。測定は基板の法線方向において行った。また、二つの偏光板として、いずれも、「NPF-SEG1224DU」(日東電工社製)を用いた。輝度計としては、「BM-5A」(トプコン社製)を用い、2°視野の条件で輝度を測定した。 In the measurement, a black mask with a 1 cm square hole was applied to the measurement portion in order to block unnecessary light. The first and second polarizing plates are overlapped on both surfaces of the substrate on which the colored film is formed so that the polarizing axes of both polarizing plates are parallel to each other, and the backlight from one polarizing plate (first polarizing plate) side. And the luminance (Lp) of the light transmitted through the other polarizing plate (second polarizing plate) was measured with a luminance meter. Next, both polarizing plates stacked on both sides of the substrate are arranged so that the polarization axes of both polarizing plates are orthogonal to each other, the backlight is incident from one polarizing plate side, and the light transmitted through the other polarizing plate The luminance (Lc) was measured with a luminance meter. The contrast ratio Lp / Lc was calculated using the measured luminance value obtained. The measurement was performed in the normal direction of the substrate. As the two polarizing plates, “NPF-SEG1224DU” (manufactured by Nitto Denko Corporation) was used. As a luminance meter, “BM-5A” (manufactured by Topcon Corporation) was used, and the luminance was measured under the condition of a 2 ° visual field.
(3)粉末X線回折
 乾燥した顔料を80メッシュの金網上で粉砕し、80メッシュ以下の粒径とした後、X線測定を実施した。X線回折スペクトルの測定は、下記条件で実施した。
 装置:X‘pert-Pro 全自動多目的X線回折装置(Philips社製)
 X線源:Cu2kW管球
 電圧:30kV
 電流:40mA
 測定範囲:3.0°~35.0°
 ステップ角:0.01°
(3) Powder X-ray diffraction The dried pigment was pulverized on an 80-mesh wire mesh to obtain a particle size of 80 mesh or less, and then X-ray measurement was performed. The X-ray diffraction spectrum was measured under the following conditions.
Equipment: X'pert-Pro Fully automatic multipurpose X-ray diffractometer (manufactured by Philips)
X-ray source: Cu2kW tube Voltage: 30kV
Current: 40 mA
Measurement range: 3.0 ° to 35.0 °
Step angle: 0.01 °
2.実施例
実施例1
 以下の各原料を用いて、ワイラー法によりπ型銅フタロシアニン顔料を製造した。
   無水フタル酸                56部
   尿素                    97部
   塩化第一銅               15.4部
   モリブデン酸アンモニウム         1.5部
   ヘミメリット酸              3.6部
   ジメチルホルムアミド           420部
 各原料を合成装置内に仕込み、撹拌しながら180℃で5時間維持することにより、銅フタロシアニン顔料を生成させた。銅フタロシアニン顔料を含有する、得られた反応液を、60℃の温水で洗浄しながら減圧濾過して、反応液から溶剤および未生成品などを除去した。
 溶剤等を除去した粗顔料に対し、次の濾過と精製を行った。まず、粗顔料を80℃に加熱した3%硫酸500部中に加え30分撹拌した後、60℃の温水で洗浄しながら減圧濾過した。次に、80℃に加熱した3%水酸化ナトリウム500部中に加え30分撹拌した後、60℃の温水で洗浄しながら減圧濾過した。最後に、60℃に加熱した温水500部中に加え、30分撹拌した後、60℃の温水で洗浄しながら減圧濾過した。
 濾過、精製工程を経て得られた顔料ケーキを90℃のオーブン内で15時間乾燥させることにより、銅フタロシアニン顔料1を得た。得られた銅フタロシアニン顔料1をX線回折にて測定した結果、ブラッグ角2θが4.9、6.5、8.5、9.7、10.7、17.0度に回折ピークを有するπ型の銅フタロシアニン顔料の回折パターンを示した。回折パターンを図1に示す。
 さらに、得られた銅フタロシアニン顔料1をTOF-MSにより分析した結果、置換基としてCONH基(ヘミメリット酸のα位のカルボキシ基とアンモニア、イソシアン酸との反応により生成)を1個または2個有する化合物の存在が確認できた(図5)。
2. Example Example 1
A π-type copper phthalocyanine pigment was produced by the Weiler method using the following raw materials.
Phthalic anhydride 56 parts Urea 97 parts Cuprous chloride 15.4 parts Ammonium molybdate 1.5 parts Hemimellitic acid 3.6 parts Dimethylformamide 420 parts Each raw material is placed in a synthesizer and stirred at 180 ° C for 5 minutes. By maintaining the time, a copper phthalocyanine pigment was produced. The obtained reaction liquid containing a copper phthalocyanine pigment was filtered under reduced pressure while washing with warm water at 60 ° C. to remove the solvent and ungenerated products from the reaction liquid.
The crude pigment from which the solvent and the like were removed was subjected to the following filtration and purification. First, the crude pigment was added to 500 parts of 3% sulfuric acid heated to 80 ° C., stirred for 30 minutes, and then filtered under reduced pressure while washing with warm water at 60 ° C. Next, the mixture was added to 500 parts of 3% sodium hydroxide heated to 80 ° C., stirred for 30 minutes, and then filtered under reduced pressure while washing with hot water at 60 ° C. Finally, it was added to 500 parts of warm water heated to 60 ° C., stirred for 30 minutes, and then filtered under reduced pressure while washing with warm water at 60 ° C.
A copper phthalocyanine pigment 1 was obtained by drying the pigment cake obtained through the filtration and purification steps in an oven at 90 ° C. for 15 hours. As a result of measuring the obtained copper phthalocyanine pigment 1 by X-ray diffraction, the Bragg angle 2θ has diffraction peaks at 4.9, 6.5, 8.5, 9.7, 10.7, 17.0 degrees. The diffraction pattern of π-type copper phthalocyanine pigment was shown. The diffraction pattern is shown in FIG.
Further, the obtained copper phthalocyanine pigment 1 was analyzed by TOF-MS. As a result, one or two CONH 2 groups (generated by reaction of carboxy group at the α-position of hemimellitic acid with ammonia and isocyanate) were substituted. The presence of the compound having the number was confirmed (FIG. 5).
 次いで、得られたπ型銅フタロシアニン顔料1を含む下記組成の混合物を均一に撹拌した後、直径0.5mmのジルコニアビーズを用いて、ビーズミルで3時間分散した、2μmのフィルタで濾過して、顔料組成物(有機顔料組成物)1を作製した。
   銅フタロシアニン顔料1          9.0部
   銅フタロシアニン系色素誘導体       1.0部
   アクリル樹脂溶液            40.0部
   メトキシプロピルアセテート(PGMAc)50.0部
 銅フタロシアニン系色素誘導体は、銅フタロシアニンジメチルアミノペンチルスルホンアミドであり、また、アクリル樹脂溶液は、メタクリル酸とn-ブチルメタクリレートの2:8(重量比)共重合体(重量平均分子量40000)を含む、固形分20%のシクロヘキサノン溶液である。
Next, after uniformly stirring a mixture of the following composition containing the obtained π-type copper phthalocyanine pigment 1, using a zirconia bead having a diameter of 0.5 mm, it was filtered with a 2 μm filter dispersed in a bead mill for 3 hours, A pigment composition (organic pigment composition) 1 was prepared.
Copper phthalocyanine pigment 1 9.0 parts Copper phthalocyanine dye derivative 1.0 part Acrylic resin solution 40.0 parts Methoxypropyl acetate (PGMAc) 50.0 parts Copper phthalocyanine dye derivative is copper phthalocyanine dimethylaminopentylsulfonamide The acrylic resin solution is a cyclohexanone solution having a solid content of 20% and containing a 2: 8 (weight ratio) copolymer of methacrylic acid and n-butyl methacrylate (weight average molecular weight 40000).
 さらに、得られた顔料組成物1を含む下記組成の混合物を均一になるように撹拌混合した後、2μmのフィルタで濾過して、着色組成物(アルカリ現像型レジスト材)1を作製した。
   顔料組成物1              45.0部
   アクリル樹脂溶液(同上)        15.0部
   トリメチロールプロパントリアクリレート  9.0部
   (新中村化学社製「NKエステルATMPT」)
   光重合開始剤               2.0部
   (2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン(BASF社製「イルガキュアー907」)
   増感剤(保土ヶ谷化学社製「EAB-F」) 0.2部
   シクロヘキサノン            28.8部
Further, a mixture of the following composition including the obtained pigment composition 1 was stirred and mixed so as to be uniform, and then filtered through a 2 μm filter to prepare a colored composition (alkali development resist material) 1.
Pigment composition 1 45.0 parts Acrylic resin solution (same as above) 15.0 parts Trimethylolpropane triacrylate 9.0 parts (“NK ester ATMPT” manufactured by Shin-Nakamura Chemical Co., Ltd.)
2.0 parts of photopolymerization initiator (2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one (“Irgacure 907” manufactured by BASF)
Sensitizer ("EAB-F" manufactured by Hodogaya Chemical Co., Ltd.) 0.2 part Cyclohexanone 28.8 parts
実施例2~27
 実施例1と同様にして、表1に示したように溶媒種、触媒種、α位が置換されたフタル酸(フタル酸誘導体)種、合成温度、無水フタル酸投入量、α位置換フタル酸投入量および溶媒量を変更し、同様の操作で合成することによって、実施例2~27のπ型銅フタロシアニン顔料2~27を作製した。粉末X線回折により、これらの結晶型がいずれもπ型であることを確認した。
 同様に、π型銅フタロシアニン顔料2~27を用いて、顔料組成物2~27および着色組成物2~27を作製した。
Examples 2 to 27
As in Example 1, as shown in Table 1, solvent species, catalyst species, α-substituted phthalic acid (phthalic acid derivative) species, synthesis temperature, phthalic anhydride input amount, α-substituted phthalic acid The π-type copper phthalocyanine pigments 2 to 27 of Examples 2 to 27 were produced by changing the input amount and the solvent amount and synthesizing by the same operation. It was confirmed by powder X-ray diffraction that both of these crystal types were π-type.
Similarly, pigment compositions 2 to 27 and colored compositions 2 to 27 were prepared using π-type copper phthalocyanine pigments 2 to 27.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実施例28
 以下の各原料を用いて、フタロニトリル法によりπ型銅フタロシアニン顔料を製造した。
   フタロニトリル             12.8部
   第一塩化銅                3.3部
   3-フェノキシフタロニトリル      0.79部
   n-アミルアルコール           230部
 各原料を合成装置内に仕込み、撹拌しながら130℃まで昇温させた後、ジアザビシクロウンデセン15.2部を追加して3時間維持することによって、銅フタロシアニン顔料28を作製した。また、合成後の濾過精製、分散および撹拌混合については実施例1と同様に処理し、顔料組成物28および着色組成物28を作製した。得られた結晶型は、π型であった。
Example 28
A π-type copper phthalocyanine pigment was produced by the phthalonitrile method using the following raw materials.
12.8 parts of phthalonitrile 3.3 parts of cuprous chloride 0.79 parts of 3-phenoxyphthalonitrile 230 parts of n-amyl alcohol Each raw material was charged into a synthesizer and heated to 130 ° C. with stirring. Copper phthalocyanine pigment 28 was made by adding 15.2 parts of diazabicycloundecene and maintaining for 3 hours. Further, filtration purification after the synthesis, dispersion, and stirring and mixing were processed in the same manner as in Example 1 to prepare a pigment composition 28 and a colored composition 28. The obtained crystal type was π type.
実施例29
 実施例28の3-フェノキシフタロニトリルを3-ニトロフタロニトリルに変更して同様に銅フタロシアニン顔料29を作製した。また、合成後の濾過精製、分散および撹拌混合については実施例1と同様に処理し、顔料組成物29および着色組成物29を作製した。得られた結晶型は、π型であった。
Example 29
A copper phthalocyanine pigment 29 was prepared in the same manner by changing 3-phenoxyphthalonitrile of Example 28 to 3-nitrophthalonitrile. Further, filtration purification after the synthesis, dispersion, and stirring and mixing were processed in the same manner as in Example 1 to prepare a pigment composition 29 and a colored composition 29. The obtained crystal type was π type.
比較例1~3
 実施例1と同様に、表1に示したように溶媒種、触媒種、α位が置換されたフタル酸(フタル酸誘導体)種、合成温度、無水フタル酸投入量、α位が置換されたフタル酸投入量および溶媒量を変更し、同様の操作で合成することによって、比較例1~3の銅フタロシアニン顔料を作製した。また、合成後の濾過精製、分散および撹拌混合についても同様に処理し、顔料組成物および着色組成物を作製した。
Comparative Examples 1 to 3
As in Example 1, as shown in Table 1, solvent species, catalyst species, α-substituted phthalic acid (phthalic acid derivative) species, synthesis temperature, phthalic anhydride input amount, α-position substituted The copper phthalocyanine pigments of Comparative Examples 1 to 3 were prepared by changing the amount of phthalic acid and the amount of the solvent, and synthesizing by the same operation. Further, filtration purification after the synthesis, dispersion, and stirring and mixing were similarly processed to prepare a pigment composition and a colored composition.
比較例4
 トーヨーカラー社製 LIONOL BLUE E 76部、銅フタロシアニンジメチルアミノペンチルスルホンアミド4部、塩化ナトリウム600部、およびジエチレングリコール100部を、ステンレス製ニーダー(井上製作所社製)中で70℃で6時間混練した後、水洗濾過と乾燥粉砕を行って、銅フタロシアニン顔料を作製した。
 得られた顔料を用いて、実施例1と同様にして顔料組成物および着色組成物を得た。
Comparative Example 4
After kneading 76 parts of LIONOL BLUE E manufactured by Toyocolor Co., 4 parts of copper phthalocyanine dimethylaminopentylsulfonamide, 600 parts of sodium chloride, and 100 parts of diethylene glycol at 70 ° C. for 6 hours in a stainless steel kneader (manufactured by Inoue Seisakusho) Then, washing with water and drying and grinding were performed to prepare a copper phthalocyanine pigment.
Using the obtained pigment, a pigment composition and a colored composition were obtained in the same manner as in Example 1.
 上記実施例および比較例の方法により作製した顔料の結晶型、およびそれぞれの着色組成物を用いて作製した塗膜の色相(Y値:C光源)およびコントラスト比を測定した。
 結果を表2に示す。
The pigment crystal types produced by the methods of the above Examples and Comparative Examples, and the hue (Y value: C light source) and contrast ratio of the coatings produced using the respective colored compositions were measured.
The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 比較例1のようにヘミメリット酸を添加せずに合成を行った顔料をX線回折にて測定した結果、ブラッグ角2θが6.9、9.0、10.2、12.3、18.2度に回折ピークを有する、図2に示すようなβ型の銅フタロシアニン顔料の回折パターンを示した。また、比較例2、3のようにヘミメリット酸を加えたとしても、(数式1)≦0となるような適切な合成条件を選択しなかった顔料は、X線回折にて測定した結果、ブラッグ角2θが7.5、9.0、14.2度に回折ピークを有する、図3に示すようなε型の銅フタロシアニン顔料の回折パターンを示した。
 比較例4で使用した顔料はX線回折により測定した結果、ブラッグ角2θが7.5、9.0、14.2度に回折ピークを有するε型の銅フタロシアニン顔料の回折パターンを示した。
As a result of measuring the pigment synthesized without adding hemimellitic acid as in Comparative Example 1 by X-ray diffraction, the Bragg angle 2θ was 6.9, 9.0, 10.2, 12.3, 18 The diffraction pattern of a β-type copper phthalocyanine pigment as shown in FIG. Further, even when hemimellitic acid was added as in Comparative Examples 2 and 3, pigments that did not select appropriate synthesis conditions such that (Equation 1) ≦ 0 were measured by X-ray diffraction, A diffraction pattern of an ε-type copper phthalocyanine pigment as shown in FIG. 3 having diffraction peaks at Bragg angles 2θ of 7.5, 9.0, and 14.2 degrees was shown.
The pigment used in Comparative Example 4 was measured by X-ray diffraction. As a result, the diffraction pattern of an ε-type copper phthalocyanine pigment having diffraction peaks at Bragg angles 2θ of 7.5, 9.0, and 14.2 degrees was shown.
 π型が得られた銅フタロシアニン顔料1~29は、βまたはε型の結晶型を有する比較例1~4において作製した銅フタロシアニン顔料と比較して、明度が高く優れた結果を示した。また、コントラスト比についても、多くの実施例において、得られたπ型フタロシアニン顔料は、ε型またはβ型と比較して高明度であり、色特性に優れていることが確認できた。明度が高いことは、すなわち照射した光の透過度が大きいことであるため、より少ない光量で同等の輝度を示すことが可能となり、例えば液晶テレビなど画像表示装置においては、さらなる省エネルギー化につながる。さらに、コントラスト比が高いことから、例えば色鮮やかな液晶テレビなど画像表示装置の提供が可能となる。
 これらの結果から、フタロニトリル法あるいは数式(1)を満たすワイラー法により、従来技術とは異なり、少なくともα位に置換基を有するフタロシアニン顔料のπ型結晶を製造することができ、得られたπ型顔料は、先行技術と比較して、色特性および表示特性の優れていることが確認できた。
The copper phthalocyanine pigments 1 to 29 from which the π type was obtained showed excellent results with high brightness as compared with the copper phthalocyanine pigments prepared in Comparative Examples 1 to 4 having the β or ε crystal type. As for the contrast ratio, in many Examples, it was confirmed that the obtained π-type phthalocyanine pigment had higher brightness than the ε-type or β-type and had excellent color characteristics. The high brightness means that the transmitted light has a high transmittance, so that it is possible to show the same luminance with a smaller amount of light. For example, in an image display device such as a liquid crystal television, it leads to further energy saving. Furthermore, since the contrast ratio is high, it is possible to provide an image display device such as a colorful liquid crystal television.
From these results, a π-type crystal of a phthalocyanine pigment having a substituent at least at the α-position can be produced by the phthalonitrile method or the Weiler method satisfying the mathematical formula (1), unlike the prior art, and the obtained π It was confirmed that the type pigment was superior in color characteristics and display characteristics as compared with the prior art.
 既に述べられたもの以外に、本発明の新規かつ有利な特徴から外れることなく、上記の実施形態に様々な修正および変更を加えてもよいことに注意すべきである。したがって、そのような全ての修正および変更は、添付の請求の範囲に含まれることが意図されている。 It should be noted that various modifications and changes may be made to the above-described embodiments without departing from the novel and advantageous features of the present invention other than those already described. Accordingly, all such modifications and changes are intended to be included within the scope of the appended claims.

Claims (9)

  1.  下記一般式(1)で表されるπ型フタロシアニン顔料。
     一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (R1~R8は、それぞれ独立に、水素原子、COOH、CONH2、CF3、OC65、NH2、NO2、C65、またはアルキル基である。R1~R8が全て同時に水素原子となることはない。Mは金属原子もしくは2Hである。R9~R16は、それぞれ独立に、水素原子、アリール基、スルホン基、スルホアミド基、シアノ基、ヒドロキシル基、チオール基、アシル基、ハロゲノ基、シリル基、またはシリルオキシ基である。R1~R16の置換基は金属塩の状態であってもよい。)
    A π-type phthalocyanine pigment represented by the following general formula (1).
    General formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (R 1 to R 8 are each independently a hydrogen atom, COOH, CONH 2 , CF 3 , OC 6 H 5 , NH 2 , NO 2 , C 6 H 5 , or an alkyl group. R 1 to R 8 Are not simultaneously hydrogen atoms, M is a metal atom or 2H, and R 9 to R 16 are each independently a hydrogen atom, aryl group, sulfone group, sulfoamide group, cyano group, hydroxyl group, thiol. A substituent, an acyl group, a halogeno group, a silyl group, or a silyloxy group, and the substituents of R 1 to R 16 may be in the form of a metal salt.)
  2.  MがCuである、請求項1記載のπ型フタロシアニン顔料。 The π-type phthalocyanine pigment according to claim 1, wherein M is Cu.
  3.  請求項1記載のπ型フタロシアニン顔料の製造方法であって、
     無水フタル酸、および少なくともα位が置換されたフタル酸誘導体と、尿素、尿素誘導体またはアンモニアと、金属塩とを、
     反応温度をx(℃)、
     無水フタル酸および前記フタル酸誘導体の総投入重量に対する、前記フタル酸誘導体の投入重量(%)をy、
     無水フタル酸および前記フタル酸誘導体の総投入重量に対する溶媒投入量(倍)をzとしたとき、
      数式(1):x-4.3y-1.8z-145≦0 
      (但し、90≦x≦300、0<y、0≦z)
    で表される条件で反応させる工程を含む、π型フタロシアニン顔料の製造方法。
    A method for producing a π-type phthalocyanine pigment according to claim 1,
    Phthalic anhydride, a phthalic acid derivative substituted at least in the α-position, urea, a urea derivative or ammonia, and a metal salt,
    The reaction temperature is x (° C.),
    The input weight (%) of the phthalic acid derivative to the total input weight of phthalic anhydride and the phthalic acid derivative is y,
    When the amount of solvent input (times) relative to the total input weight of phthalic anhydride and the phthalic acid derivative is z,
    Formula (1): x-4.3y-1.8z-145 ≦ 0
    (However, 90 ≦ x ≦ 300, 0 <y, 0 ≦ z)
    The manufacturing method of (pi) -type phthalocyanine pigment including the process made to react on the conditions represented by these.
  4.  請求項1記載のπ型フタロシアニン顔料の製造方法であって、
     フタロニトリルおよび/またはジイミノイソインドリンと、少なくともα位が置換されたフタロニトリル誘導体および/または少なくともα位が置換されたジイミノイソインドリン誘導体と、金属塩とを、60~300℃で反応させる工程を含む、π型フタロシアニン顔料の製造方法。
    A method for producing a π-type phthalocyanine pigment according to claim 1,
    A phthalonitrile and / or diiminoisoindoline, a phthalonitrile derivative substituted at least in the α-position and / or a diiminoisoindoline derivative substituted in at least the α-position, and a metal salt are reacted at 60 to 300 ° C. A method for producing a π-type phthalocyanine pigment, comprising a step.
  5.  請求項1記載のπ型フタロシアニン顔料と、π型無置換フタロシアニン顔料とを含有する顔料組成物。 A pigment composition comprising the π-type phthalocyanine pigment according to claim 1 and a π-type unsubstituted phthalocyanine pigment.
  6.  請求項5記載の顔料組成物と顔料担体とを含有する着色組成物。 A coloring composition comprising the pigment composition according to claim 5 and a pigment carrier.
  7.  さらに、樹脂型顔料分散剤および/または色素誘導体を含有する、請求項6記載の着色組成物。 The coloring composition according to claim 6, further comprising a resin-type pigment dispersant and / or a pigment derivative.
  8.  さらに、光重合性モノマーおよび/または光重合開始剤を含有する、請求項6記載の着色組成物。 The colored composition according to claim 6, further comprising a photopolymerizable monomer and / or a photopolymerization initiator.
  9.  基板と、該基板上に形成されたフィルタセグメントとを少なくとも備え、該フィルタセグメントの一部は、請求項6~8いずれか1項に記載の着色組成物を用いて得られたものである、カラーフィルタ。 Comprising at least a substrate and a filter segment formed on the substrate, and a part of the filter segment is obtained by using the coloring composition according to any one of claims 6 to 8. Color filter.
PCT/JP2013/069260 2012-07-25 2013-07-16 Π-conjugated phthalocyanine pigment, method for producing said π-conjugated phthalocyanine pigment, and colored composition prepared using said π-conjugated phthalocyanine pigment WO2014017330A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR20147023693A KR20150035487A (en) 2012-07-25 2013-07-16 Π-conjugated phthalocyanine pigment, method for producing said π-conjugated phthalocyanine pigment, and colored composition prepared using said π-conjugated phthalocyanine pigment
CN201380008970.XA CN104105759B (en) 2012-07-25 2013-07-16 π type phthalocyanine pigments and its manufacture method, color compositions, coloured composition and colour filter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012164956 2012-07-25
JP2012-164956 2012-07-25
JP2013037750A JP5277469B1 (en) 2012-07-25 2013-02-27 π-type phthalocyanine pigment, method for producing π-type phthalocyanine pigment, and coloring composition using the π-type phthalocyanine pigment
JP2013-037750 2013-02-27

Publications (1)

Publication Number Publication Date
WO2014017330A1 true WO2014017330A1 (en) 2014-01-30

Family

ID=49179296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069260 WO2014017330A1 (en) 2012-07-25 2013-07-16 Π-conjugated phthalocyanine pigment, method for producing said π-conjugated phthalocyanine pigment, and colored composition prepared using said π-conjugated phthalocyanine pigment

Country Status (5)

Country Link
JP (1) JP5277469B1 (en)
KR (1) KR20150035487A (en)
CN (1) CN104105759B (en)
TW (1) TWI582172B (en)
WO (1) WO2014017330A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11611381B2 (en) 2017-12-22 2023-03-21 Telefonaktiebolaget Lm Ericsson (Publ) Wireless communications system, a radio network node, a machine learning unit and methods therein for transmission of a downlink signal in a wireless communications network supporting beam forming

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6971633B2 (en) * 2017-05-26 2021-11-24 キヤノン株式会社 Toner and toner manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248769A (en) * 1985-08-27 1987-03-03 Dainippon Ink & Chem Inc Production of copper phthalocyanine
WO2002096913A1 (en) * 2001-05-25 2002-12-05 Gentian As Substituted di(hydroxy/alkoxy)silicon phthalocyanines and their uses

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291223A (en) * 1996-04-26 1997-11-11 Toyo Ink Mfg Co Ltd Production of beta-type copper phthalocyanine pigment
ES2289099T3 (en) * 2001-01-05 2008-02-01 Seung-Yong Lee PARAMAGNETIC METAL COMPLEX BASED COMPOUNDS WITH FTALOCIANINE AND CONTRASTING AGENT THAT UNDERSTANDS THEM.
GB0219938D0 (en) * 2002-08-28 2002-10-02 Avecia Ltd Compound
CN100528968C (en) * 2003-03-31 2009-08-19 日本化药株式会社 Phthalocyanine dye and use thereof for ink-jet printing
JP4193007B1 (en) * 2007-03-12 2008-12-10 Dic株式会社 Pigment composition for color filter
JP4631949B2 (en) * 2007-09-18 2011-02-16 東洋インキ製造株式会社 Coloring composition containing phthalocyanine pigment, inkjet ink containing the same, and color filter substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248769A (en) * 1985-08-27 1987-03-03 Dainippon Ink & Chem Inc Production of copper phthalocyanine
WO2002096913A1 (en) * 2001-05-25 2002-12-05 Gentian As Substituted di(hydroxy/alkoxy)silicon phthalocyanines and their uses

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11611381B2 (en) 2017-12-22 2023-03-21 Telefonaktiebolaget Lm Ericsson (Publ) Wireless communications system, a radio network node, a machine learning unit and methods therein for transmission of a downlink signal in a wireless communications network supporting beam forming

Also Published As

Publication number Publication date
JP2014040567A (en) 2014-03-06
CN104105759B (en) 2016-01-13
JP5277469B1 (en) 2013-08-28
CN104105759A (en) 2014-10-15
TWI582172B (en) 2017-05-11
TW201406869A (en) 2014-02-16
KR20150035487A (en) 2015-04-06

Similar Documents

Publication Publication Date Title
JP5597926B2 (en) Method for producing fine organic pigment, fine organic pigment, and fine organic pigment coloring composition
JP6217067B2 (en) Coloring composition for color filter and color filter
JP5817028B2 (en) Coloring composition for color filter, and color filter
JP2011157478A (en) Coloring composition, photosensitive coloring composition for color filter, color filter and color display device
JP5949246B2 (en) Coloring composition for color filter and color filter
JP2012068559A (en) Coloring composition for color filter and color filter
JP5880157B2 (en) Quinophthalone dye and its use
JP5045126B2 (en) Color filter and liquid crystal display device
JP5493381B2 (en) Coloring composition for color filter and color filter using the same
JP2011039307A (en) Coloring composition for color filter, and color filter
JP2009271475A (en) Color filter and liquid crystal display apparatus
JP5540519B2 (en) Coloring composition for color filter and color filter
JP2009217241A (en) Green colored composition for color filter, and color filter
JP5478214B2 (en) Green colored resist for color filter, colored layer, color filter, and liquid crystal display device
WO2014017330A1 (en) Π-conjugated phthalocyanine pigment, method for producing said π-conjugated phthalocyanine pigment, and colored composition prepared using said π-conjugated phthalocyanine pigment
JP5561337B2 (en) Green coloring composition for color filter and color filter
JP2010145787A (en) Color filter substrate and liquid crystal display device using the same
JP5297754B2 (en) Red coloring composition for color filter and color filter using the same
JP2008185986A (en) Color filter and liquid crystal display device
JP4938406B2 (en) Color filter and liquid crystal display device including the same
JP2015045706A (en) Color filter coloring composition and color filter
JP2010100789A (en) Green colored composition for color filter, and color filter
JP2012188475A (en) Pigment dispersant and pigment composition, coloring composition, and color filter using the same
JP2011057909A (en) Coloring composition, photosensitive coloring composition for color filter, and color filter
JP2013145321A (en) Red coloring composition for color filter, and color filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147023693

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13823703

Country of ref document: EP

Kind code of ref document: A1