WO2014017203A1 - Method and device for producing trioxane - Google Patents

Method and device for producing trioxane Download PDF

Info

Publication number
WO2014017203A1
WO2014017203A1 PCT/JP2013/066201 JP2013066201W WO2014017203A1 WO 2014017203 A1 WO2014017203 A1 WO 2014017203A1 JP 2013066201 W JP2013066201 W JP 2013066201W WO 2014017203 A1 WO2014017203 A1 WO 2014017203A1
Authority
WO
WIPO (PCT)
Prior art keywords
trioxane
gas
formaldehyde
reaction product
formaldehyde gas
Prior art date
Application number
PCT/JP2013/066201
Other languages
French (fr)
Japanese (ja)
Inventor
弘明 中尾
久保田 豊
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Publication of WO2014017203A1 publication Critical patent/WO2014017203A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D323/00Heterocyclic compounds containing more than two oxygen atoms as the only ring hetero atoms
    • C07D323/04Six-membered rings
    • C07D323/06Trioxane

Definitions

  • the present invention relates to a method and an apparatus for producing trioxane.
  • Trioxane a cyclic trimer of formaldehyde
  • POM polyoxymethylene
  • Trioxane a cyclic trimer of formaldehyde
  • a non-volatile acid represented by sulfuric acid, phosphoric acid and the like is allowed to act on a high-concentration formaldehyde aqueous solution in a liquid phase to produce trioxane, and this trioxane is cooked with water containing formaldehyde, And a step of purifying the above trioxane by extraction with an organic solvent or recrystallization.
  • the reaction equilibrium concentration in the liquid phase is very low. Therefore, the equilibrium concentration to trioxane is increased by vaporizing the reaction product from the reaction system, but vaporization of the reaction product containing water generally involves a great amount of energy consumption.
  • Patent Documents 1 to 3 when formaldehyde gas is reacted in a gas phase, as a source of formaldehyde gas as a raw material, a method by thermal decomposition of paraformaldehyde, ⁇ -polyoxymethylene, or vaporization of an aqueous formaldehyde solution is used.
  • water is present in the raw material at a level of several percent to several tens of percent, this is not only disadvantageous for the gas phase reaction, but the catalyst is deactivated by a large amount of water, and the formaldehyde gas that is the raw material is repolymerized. There is a problem such as easy to occur (paraformation).
  • the details of the separation of the obtained reaction products are not described, and therefore, the distribution rate and recovery rate of unreacted formaldehyde gas are completely unknown, and details as a continuous production process are clear. It is not something to be done.
  • Patent Document 4 a reaction process is illustrated with a specific example of a catalyst to be used for trioxane gas phase synthesis from formaldehyde. According to this document, it is described that unreacted formaldehyde gas at the outlet of the reactor is separated and recovered and recycled to the reactor again.
  • paraformaldehyde or formaldehyde aqueous solution is also used here as a formaldehyde gas supply source, and there is a demerit that the reaction system contains a lot of moisture. Further, details of the reaction product gas separation and recovery method are unknown, and the recovery rate is also unknown.
  • Patent Document 5 describes a production method for gas phase synthesis of trioxane using a solid phosphoric acid catalyst.
  • the main purpose is to use formaldehyde gas having a low water content, but it is described that the crude formaldehyde is purified or a non-oxidizing methanol dehydrogenation step is used as the method.
  • the purification of crude formaldehyde the production method including the raw material is unknown, and there is also a description that a metal sodium catalyst is used for methanol dehydrogenation, which is problematic in terms of safety from an industrial point of view.
  • the methanol dehydrogenation method cannot be said to have been sufficiently established in terms of reaction conversion rate and selectivity, and has a problem in terms of methanol usage, and is incorporated into a manufacturing process including gas phase synthesis of trioxane. There are still many difficulties.
  • trioxane gas-phase synthesis process that includes synthesizing trioxane in the gas phase after efficiently preparing formaldehyde gas from an aqueous formaldehyde solution, and further including separation and recovery methods after synthesis and circulation recycling of unreacted formaldehyde gas It is difficult to say that the manufacturing method mentioned in the above has been shown with specific examples in the past. Including this, the establishment of a comprehensive process system for trioxane vapor phase synthesis that can greatly improve the disadvantages of conventional trioxane liquid phase synthesis has been demanded.
  • the present invention has been made for the purpose of solving the above problems, and discloses a continuous production process including separation and recovery and recycling steps in the gas phase synthesis of trioxane using an aqueous formaldehyde solution as a starting material. It is. Furthermore, high yield, high selectivity of trioxane by gas phase reaction, efficient separation / recovery process and recycling of unreacted formaldehyde are more efficient than conventional methods (liquid phase reaction). A process for the gas phase synthesis of trioxane is provided.
  • the inventors of the present invention have made extensive studies to optimize the processes including the reaction process and separation / recovery process when synthesizing trioxane from an aqueous formaldehyde solution in the gas phase. As a result, they have not only obtained trioxane in a high yield and high selectivity, but also found a trioxane production method and apparatus having a high formaldehyde usage rate, and have completed the present invention. More specifically, the present invention provides the following.
  • the present invention provides a first step of obtaining hemiformal from an aqueous formaldehyde solution and alcohol, a second step of generating formaldehyde gas by thermally decomposing the hemiformal, and supplying the formaldehyde gas to a trioxane generator, A third step of gas-phase synthesis of a reaction product gas containing trioxane from the formaldehyde gas using a solid acid catalyst; and contacting the reaction product gas with an organic solvent to convert trioxane contained in the reaction product gas into the organic solvent A fourth step of discharging unreacted formaldehyde gas contained in the reaction product gas to the outside in a gas phase, and the unreacted formaldehyde gas separated in the fourth step, in the third step Recycled to be recycled as formaldehyde gas Including a cycle step, the, trioxane production method.
  • the said alcohol of this invention is a trioxane manufacturing method as described in (1) which is 1 type, or 2 or more types of combinations selected from the monool, diol, or triol whose boiling point is 190 degreeC or more. .
  • the present invention is the trioxane production method according to (1) or (2), wherein the solid acid catalyst contains phosphoric acid supported on a siliceous inorganic support.
  • this invention shows ratio of the mass per unit time of the formaldehyde gas supplied to the said trioxane production
  • the value of the mass space velocity WHSV is 1 / 50h -1 over 1h -1 or less, trioxane production method according to any one of (1) (3).
  • the solid acid catalyst is filled in a multi-tubular fixed bed reactor in the third step, and is circulated in the formaldehyde gas obtained in the second step and the circulation recycling step.
  • the recycled unreacted formaldehyde gas with the solid acid catalyst in a heterogeneous system, and continuously extracting trioxane from the fixed bed reactor in a gas phase state to perform gas phase synthesis of trioxane ( The method for producing trioxane according to any one of 1) to (4).
  • this invention is a trioxane manufacturing method in any one of (1) to (5) whose said organic solvent is 1 or more selected from benzene, toluene, xylene, ethylbenzene, and diethylbenzene.
  • the reaction product gas containing the trioxane synthesized in the third step and the unreacted formaldehyde gas unreacted in the third step is used as the boiling point of the trioxane.
  • this invention is a trioxane manufacturing method as described in (7) with which the said separation apparatus is equipped with the absorption tower by any of a liquid film type, a droplet type, or a bubble type.
  • the absorption tower is an absorption tower of the liquid film type, and the absorption tower includes a packed tower filled with a filler, and in the fourth step, the organic solvent and the By bringing the reaction product gas into alternating current or co-current contact, trioxane contained in the reaction product gas is absorbed in the organic solvent, and the unreacted formaldehyde gas contained in the reaction product gas is kept in a gas phase and the separation device Is a trioxane production method as described in (8).
  • this invention is a trioxane manufacturing method in any one of (7) to (9) whose temperature inside the said separation apparatus is 60 degrees C or less.
  • this invention is a trioxane manufacturing method in any one of (7) to (10) whose pressure inside the said separation apparatus is 1 kgf / cm ⁇ 2 > or less by a gauge pressure.
  • the present invention uses a hemi-formal generator for obtaining hemi-formal from an aqueous formaldehyde solution and alcohol, a formaldehyde gas generator for thermally decomposing the hemi-formal to generate formaldehyde gas, and a solid acid catalyst.
  • a trioxane generator for vapor-phase synthesis of a reaction product gas containing trioxane from the gas, and by contacting the reaction product gas with an organic solvent, the trioxane contained in the reaction product gas is absorbed in the organic solvent,
  • a trioxane production apparatus comprising: a separation device that discharges unreacted formaldehyde gas contained in a gas phase to the outside; and a circulation device that circulates the unreacted formaldehyde gas to the trioxane generator.
  • formaldehyde gas is prepared from the hemi-formal method, water is sufficiently eliminated from the reaction system in advance as a process, and high yield and selectivity can be realized even in trioxane gas phase synthesis. It is. Furthermore, it is possible to effectively separate and recover unreacted formaldehyde gas by using an organic solvent with high trioxane solubility in the separation and recovery process of the reaction product gas, and to circulate and recycle this unreacted formaldehyde. As a result, the use rate of formaldehyde is increased, and it is possible to realize a process that can contribute to energy reduction during the production of trioxane.
  • FIG. 1 is a schematic view showing a trioxane production apparatus 1 according to the present invention.
  • the trioxane production apparatus 1 uses a hemi-formal generator 2 that generates hemi-formal from an aqueous formaldehyde solution (formalin) and alcohol, a formaldehyde gas generator 3 that thermally decomposes the hemi-formal to generate formaldehyde gas, and a solid acid catalyst.
  • a trioxane generator 4 that generates a reaction product gas containing trioxane from the formaldehyde gas, a separation device 5 that separates trioxane and unreacted formaldehyde gas from the reaction product gas, and this unreacted formaldehyde gas into the trioxane generator 4. And a circulation device 6 that circulates.
  • Hemi formal generator 2 In the hemi-formal production
  • the hemi-formal generator 2 is composed of a mixing tank 2A for mixing an aqueous formaldehyde solution and alcohol to obtain a hemi-formal aqueous solution, and a vacuum dehydration tower 2B for concentrating the aqueous hemi-formal solution by dehydration to obtain a hemi-formal concentrate having a low water content.
  • the hemi-formal concentrate refers to a reaction product of an aqueous formaldehyde solution and alcohol, which is obtained by mixing the aqueous formaldehyde solution and alcohol at a predetermined ratio and then dehydrating and concentrating under reduced pressure.
  • the hemi-formal method by adopting the hemi-formal method, it is possible to effectively remove moisture from the system in advance, so it becomes possible to prepare formaldehyde gas with a low water content in the post-process, This is advantageous in terms of reaction yield, selectivity and catalyst lifetime in trioxane gas phase synthesis. Furthermore, in the separation process of trioxane and unreacted formaldehyde gas, it is very effective to adopt the hemi-formal method because the condensation of formaldehyde in the absorption / separation tower can be reduced by reducing the water content.
  • [Mixing tank 2A] In preparation of the hemi-formal aqueous solution, first, the (A) formaldehyde aqueous solution and the (B) alcohol are mixed and reacted inside the mixing tank 2A.
  • the reaction conditions are not particularly limited, and those similar to the reaction conditions of the aqueous formaldehyde solution and alcohol in the conventionally known hemi-formalization method can be employed.
  • the reaction temperature is preferably from room temperature (about 20 ° C.) to 90 ° C.
  • what is necessary is just to set suitably about reaction time according to the progress of reaction, etc.
  • the mixing ratio of the two is not particularly limited, but (A) the molar ratio of the hydroxyl group in the alcohol (B) to the aqueous formaldehyde solution is preferably 0.3 or more and 5.0 or less, preferably 0.5 or more. More preferably, it is 2.0 or less. If the alcohol is too small (0.3 or less), free formaldehyde increases in the aqueous hemi-formal solution, and the loss of formaldehyde increases when the vacuum / dehydration reaction is performed in the vacuum dehydration tower 2B.
  • the alcohol species used for the preparation of the hemi-formal aqueous solution is not particularly limited, but is preferably selected according to one or a combination selected from mono, di, and triol having a boiling point of 190 ° C. or higher.
  • the boiling point of the alcohol is lower than 190 ° C.
  • the dehydration / concentration of the hemi-formal aqueous solution in the vacuum dehydration tower 2B is not preferable because loss due to volatilization of the alcohol itself increases and a recovery operation is required.
  • the alcohol since the alcohol is volatilized when the hemi-formal is pyrolyzed by the formaldehyde gas generator 3, it is not preferable in that it is necessary to install a cooler for the purpose of recovering the alcohol.
  • Examples of alcohol species having a boiling point of 190 ° C. or higher include methylpentanediol, hexanetriol, pentanediol, and methylbutanediol as hydrophilic alcohols.
  • 3-methyl-1,5-pentanediol, 1,2,6-hexanetriol, 1,5-pentanediol or 3-methyl-1,3-butanediol can be preferably used.
  • Examples of the hydrophobic alcohol include diethylpentanediol, ethylhexanediol, octanol and the like.
  • diethylpentanediol 2,4-diethyl-1,5-pentanediol, 2,3-diethyl-1,5-pentanediol, 1,4-diethyl-1,5-pentanediol, 1,5- Examples thereof include diethyl-1,5-pentanediol.
  • diethyl hexanediol examples include 2-ethyl-1,3-hexanediol, 3-ethyl-1,3-hexanediol, 4-ethyl-1,3-hexanediol, and the like.
  • alkylene glycols, polyalkylene glycols, and the like used as known techniques for preparing hemiformal can also be applied.
  • alkylene glycols include diethylene glycol, triethylene glycol, and tetraethylene glycol.
  • polyalkylene glycols include polyethylene glycol having 5 or more ethylene oxide units, and polypropylene glycol and polytetramethylene glycol.
  • a polyalkylene glycol derivative or the like can also be used.
  • Polyalkylene glycol derivatives include block copolymers composed of oxyethylene and oxypropylene, oxytetraethylene, and the like, and polyalkylene glycols prepared using polyhydric alcohol or the like as a chain transfer agent.
  • Such alcohol can be produced by a general method. Moreover, you may purchase and use a commercial item.
  • the hemi-formal aqueous solution obtained in the mixing tank 2A is concentrated by dehydration to obtain a hemi-formal concentrate having a low water content.
  • the conditions of the vacuum dehydration tower 2B are not particularly limited, but it is preferable that the temperature and pressure are appropriately adjusted for the above dehydration / concentration conditions while taking into account the amount of residual water contained in the hemi-formal concentrate.
  • the temperature is preferably selected from the range of 50 ° C. or higher and 80 ° C. or lower, and the pressure is preferably selected at 50 mmHg or lower.
  • the hemi-formal concentrate after being concentrated by the vacuum dehydration tower 2B still contains a trace amount of water, but is approximately 1.0% by mass or less depending on the operating conditions of dehydration and concentration.
  • the concentration of the aqueous formaldehyde solution used for preparing the hemi-formal concentrate is not particularly limited, but is preferably 1% by mass or more and 80% by mass or less as formaldehyde.
  • Formaldehyde gas generator 3 In the formaldehyde gas generator 3, a second step of generating formaldehyde gas by thermally decomposing the hemi-formal concentrate is performed. High purity formaldehyde gas is obtained by this second step, and the technique is generally known as described in Patent Document 6.
  • the temperature condition for the thermal decomposition is performed at a high temperature (normally 140 ° C. or higher) at which the hemi-formal bond can be broken, but can be appropriately adjusted in accordance with the operation pressure in the formaldehyde gas generator 3. In general, the range of 140 to 180 ° C. is appropriate. If the temperature is too low, the decomposition rate does not increase.
  • the formaldehyde gas generator 3 is not particularly limited, and various tank-type, tube-type and tower-type thermal decomposition apparatuses and evaporators that are implemented in batch, semi-batch, and continuous systems may be used. it can.
  • Formaldehyde gas generated by thermal decomposition of hemi-formal can be used as it is as a raw material for gas phase synthesis of trioxane, but in order to prevent residual moisture and reduction, and volatilized alcohol from being mixed into the trioxane generator 4. It is also possible to further purify the formaldehyde gas by attaching a cooler (condenser, not shown) to the outlet side of the formaldehyde gas generator 3 to condense residual moisture and volatile alcohol components.
  • a cooler condenser, not shown
  • Trioxane generator 4 In the trioxane production
  • a hemi-formal concentrate is used as a formaldehyde gas raw material, and since the amount of water in the reaction system is small, the type of the solid acid catalyst is not particularly limited, but phosphoric acid supported on a siliceous inorganic carrier. It is desirable that the solid phosphoric acid catalyst contains.
  • the method for preparing the solid phosphoric acid catalyst is not particularly limited, and a generally known impregnation method, a preparation method by a sol-gel reaction, or the like can be used.
  • the carrier used for phosphoric acid support / immobilization is not particularly limited, but an inorganic carrier mainly composed of siliceous materials such as porous silica gel, silica alumina, diatomaceous earth, etc. is good, and one or a mixture selected from them. Are preferably used.
  • An example of a method for preparing a solid phosphoric acid catalyst used in the present invention is shown below, but is not limited to this method / procedure.
  • commercially available orthophosphoric acid (85%) is diluted with water in the range of 0.5 to 50% concentration to obtain a supporting liquid.
  • a predetermined amount of porous silica gel carrier is added and immersed therein. There is no particular problem if the immersion time is usually about 1 hour or longer.
  • immersion temperature is not specifically limited, it is 80 degrees C or less, Preferably it is 50 degrees C or less.
  • the support liquid and the carrier may be sufficiently mixed by stirring.
  • the support containing the supported liquid is taken out, drained, dried, and calcined at a specific temperature after drying to prepare the catalyst.
  • the shape of the solid acid catalyst is not particularly limited, such as powder, particles, and pellets by molding, but the trioxane generator 4 is a fixed bed reactor, and gas phase synthesis is performed in this fixed bed reactor.
  • a molded object is used preferably.
  • the shape of the molded product for example, by various methods such as extrusion, tableting, spray drying, rolling granulation, granulation in oil, etc.
  • the particle size of the molded body can be used in the range of about 0.5 to 6 mm.
  • the ratio of the mass per unit time of formaldehyde gas supplied to the trioxane generator 4 to the mass of the solid acid catalyst charged in the trioxane generator 4 (this is the mass space velocity WHSV [unit; h -1 ]) depends on the shape of the solid acid catalyst used, the amount of the acid component supported, and the reaction conditions, and may be adjusted as appropriate according to the trioxane yield.
  • the value of WHSV (formaldehyde gas flow rate / catalyst mass) is preferably in the range of 1/50 to 1 h ⁇ 1 .
  • the temperature is low, but formaldehyde gas is condensed before and after the trioxane generator 4 and inside the trioxane generator 4. It is required to set the temperature so as to avoid the polymerization (paraformaldehyde production). Specifically, the temperature inside the trioxane generator 4 is preferably 80 to 120 ° C., more preferably 90 to 110 ° C. If the reaction temperature is too low, a sufficient reaction rate cannot be obtained, and polymerization of formaldehyde proceeds to cause precipitation in the catalyst layer, which is not desirable.
  • reaction pressure is not particularly limited, but it is preferably carried out in the range of normal pressure to 5 MPa.
  • the type and reaction type of the reactor used as the trioxane generator 4 are not limited, and flow-type reactions such as a batch type, semi-batch type, continuous flow type, fixed bed, fluidized bed, moving bed, etc. using a tank type reactor. However, since this reaction is an exothermic equilibrium reaction, it is desirable to efficiently remove heat from the catalyst layer using a fixed bed flow reactor.
  • the fixed bed reactor is a multitubular tube reactor, and a heat medium circulates outside. It is important that the inner diameter per tube is not too large in order to enhance the temperature control and heat removal effect by the heat medium, and is preferably 50 mm ⁇ or less.
  • trioxane generator 4 when the trioxane generator 4 is a fluidized bed type reactor, either an upward flow or a downward flow may be used. Be careful because there is a risk of blowing up the catalyst when the superficial velocity increases.
  • the type of gas used for the upward flow or the downward flow is not particularly limited, and can be performed under an inert gas stream such as nitrogen or argon.
  • a fourth step of separating trioxane and unreacted formaldehyde gas from the reaction product gas produced by the trioxane production device 4 is performed.
  • trioxane contained in the reaction product gas is absorbed in an organic solvent using an absorption tower or the like to obtain a trioxane solution, while unreacted formaldehyde gas contained in the reaction product gas is removed.
  • the phase is discharged to the outside of the separation device 5.
  • the type of the absorption tower is not particularly limited, and may be any of a liquid film type, a droplet type or a bubble type.
  • liquid film types include packed towers, wet wall towers, liquid column towers, continuous ball towers, disk towers, etc., and as droplet types, spray towers (spray type absorption devices), various scrubbers, There are centrifugal absorption devices, fluidized bed packed absorption towers and the like.
  • bubble type examples include a bubble tower, a stirring tower, a plate tower, and the like.
  • a packed tower is preferably used in order to increase the contact area of gas and liquid and to realize efficient distribution of trioxane to the liquid phase side.
  • various kinds of packings represented by Raschig rings can be filled inside.
  • the material and shape of the filler are not particularly limited, and any material made of magnetic material, carbon, or steel, or a ring shape, saddle shape, or other various shapes can be used. Further, the size of the packing can be appropriately determined according to the column diameter of the packed column.
  • trioxane component it is conceivable to separate the trioxane component from the unreacted formaldehyde gas by condensing the trioxane component using a condenser or the like.
  • the temperature inside the condenser is low, the trioxane component is condensed inside the condenser. This is not preferable because it easily solidifies, and the unreacted formaldehyde component is also easily solidified, and the separation of formaldehyde gas into the gas phase is greatly reduced. Further, even if the temperature in the condenser is increased, trioxane tends to escape to the overhead side of the condenser in the vapor phase, and the separation and recovery properties are lowered, which is not preferable.
  • trioxane and unreacted formaldehyde gas by solidifying and crystallizing trioxane using a cooling tower or the like, but the temperature in the cooling tower is too low as in the case of using a condenser or the like.
  • the trioxane component is easily solidified inside the cooling tower, and the unreacted formaldehyde component is also easily solidified, and the separation of the formaldehyde gas into the gas phase is greatly reduced.
  • a trioxane solution is obtained by absorbing trioxane contained in a reaction product gas into an organic solvent using an absorption tower or the like will be described.
  • a reaction product gas containing trioxane and unreacted formaldehyde gas is continuously supplied to the separation device 5.
  • the inside of the separation device 5 is adjusted to the boiling point (114.5 ° C.) or lower of trioxane. Exceeding the boiling point of trioxane is not preferable because trioxane cannot be properly absorbed by an organic solvent. In order to increase the absorption efficiency into the organic solvent, the inside of the separation device 5 is more preferably adjusted to 60 ° C. or less.
  • the internal pressure of the separating device 5 is not particularly limited, it is preferable in terms of ensuring the separation of the gas phase of unreacted formaldehyde gas is 1 kgf / cm 2 or less in gauge pressure . If the pressure exceeds 1 kgf / cm 2 , the interaction between the formaldehyde gases in the separation device is increased, and problems such as polymerization and easy precipitation as a paraform in the solvent phase occur.
  • the trioxane contained in the reaction product gas is absorbed by the organic solvent by bringing the reaction product gas supplied to the separation device 5 into contact with the organic solvent. Then, unreacted formaldehyde gas contained in the reaction product gas is discharged to the outside of the separation device 5 in a gas phase.
  • the organic solvent may be any organic solvent that has high solubility in trioxane and low solubility in formaldehyde.
  • an aromatic compound benzene, toluene, xylene, ethylbenzene
  • examples include diethylbenzene, cumene, methoxybenzene, ethoxybenzene, chlorobenzene, and naphthalene.
  • the alicyclic compound include cyclohexane, cyclohexanone, methylcyclohexanone, decahydronaltalene, and the like.
  • benzene, toluene, xylene, ethylbenzene, diethylbenzene and the like can be mentioned in consideration of the distribution of trioxane to the solvent, and benzene is particularly preferable in consideration of separation / purification operations such as distillation in the final purification step.
  • An inorganic solvent is not preferable because it has low solubility in trioxane and a sufficient distribution ratio of trioxane to the solvent cannot be obtained.
  • the separation device 5 includes a packed tower packed with Raschig rings, and in this packed tower, the organic solvent and the reaction product gas are contacted with each other by alternating current or cocurrent flow, thereby absorbing trioxane contained in the reaction product gas into the organic solvent, More preferably, the unreacted formaldehyde gas contained in the reaction product gas is discharged to the outside of the packed tower in a gas phase.
  • a circulation recycling process is performed in which the unreacted formaldehyde gas separated by the separation device 5 is recycled as formaldehyde gas used in the trioxane generation device 4.
  • a general gas circulation device fan, Nash pump, etc.
  • a fan pump having this function can be used.
  • hemi-formal concentrate The aqueous hemi-formal solution produced by this reaction is continuously supplied to a vacuum dehydration tower at a rate of 1000 g / hr, dehydrated under conditions of 75 ° C. and 35 mmHg, and the hemi-formal concentrate according to Preparation Example A (hereinafter referred to as “hemi-formal concentrate”). A ”).
  • Preparation Example B was prepared in the same manner as Preparation Example A, except that 3-methyl-1,5-pentanediol (manufactured by Kuraray Co., Ltd.) was used instead of 2,4-dimethyl-1,5-pentanediol. Such a hemi-formal concentrate (hereinafter referred to as “hemi-formal concentrate B”) was obtained.
  • Preparation Example A1 Distilled water was added to an orthophosphoric acid reagent (manufactured by Wako Pure Chemical Industries, Ltd.) having a concentration of about 85% to dilute the phosphoric acid concentration to 25%. Then, 50 g of silica gel (trade name: CARiACT Q-50, manufactured by Fuji Silysia Chemical Co., Ltd.) is added to 100 ml of the diluted phosphoric acid aqueous solution, and the impregnation operation is performed for 1 hour or more, followed by filtration to remove an unnecessary aqueous solution that is not impregnated. Excluded. The phosphoric acid carrier thus obtained was calcined in an oven at 150 ° C. for 2 hours to obtain a solid acid catalyst according to Preparation Example A1 (hereinafter referred to as “solid acid catalyst A1”).
  • Preparation Example A2 According to Preparation Example A2, the same method as Preparation Example A1, except that distilled water was added to the orthophosphoric acid reagent and diluted so that the phosphoric acid concentration was 5% and the baking temperature was 300 ° C. A solid acid catalyst (hereinafter referred to as “solid acid catalyst A2”) was obtained.
  • alumina Sphere ( ⁇ -type) “SAS-10” (trade name: obtained from BASF Japan) was used as it was.
  • SAS-10 alumina Sphere ( ⁇ -type) “SAS-10” (trade name: obtained from BASF Japan) was used as it was.
  • this alumina is referred to as “catalyst B”.
  • catalysts A1 and A2 are solid phosphoric acid catalysts, and catalyst B is alumina.
  • the gas phase trimerization reaction to trioxane was performed by contacting formaldehyde gas obtained by thermal decomposition of the hemi-formal concentrate A with the solid acid catalyst A1.
  • the trioxane generator is a fixed bed reactor (made by Okura Riken) having an inner diameter of 30 mm ⁇ , filled with 135 g of the solid acid catalyst A1 prepared in advance, and heated to 100 ° C. by a jacket flow (oil) outside the reaction tube. Warmed up. Formaldehyde gas was continuously fed by downward flow into the fixed bed reactor filled with the solid acid catalyst A1.
  • the reaction product gas was continuously discharged to the outside of the trioxane production device through a pipe made of SUS316 kept at about 125 ° C., and further guided to the separation device.
  • a packed tower having a jacket type double tube (about 25 mm ⁇ ) was used as a separation device.
  • the packed tower was filled with 6 mm ⁇ porcelain Raschig rings. Then, while continuously supplying the reaction product gas from the lower part of the double tube and supplying benzene from the upper part at a flow rate of 200 ml / h, the reaction product gas and benzene were brought into AC contact. Gaseous trioxane was absorbed by benzene and discharged from the bottom of the packed tower as a liquid phase. On the other hand, unreacted formaldehyde gas was discharged from the upper part of the packed tower in a gaseous state without being absorbed by benzene. The temperature in the packed tower was adjusted to 30 ° C. with cooling water flowing through the jacket.
  • Example 2 The separation apparatus was a bubble column instead of a packed column, and trioxane was removed by the same method as in Example 1 except that the reaction product gas was separated into the bubble column by blowing the reaction product gas directly into the benzene solution. Manufactured.
  • Trioxane was produced by the same method as in Example 1 except that the hemi-formal concentrate obtained in the hemi-formal generator was not the hemi-formal concentrate A but the hemi-formal concentrate B.
  • Trioxane was produced by the same method as in Example 1 except that the solid acid catalyst A2 was used instead of the solid acid catalyst A1 and the amount of organic solvent (benzene) supplied to the packed tower was 400 g / h. .
  • Trioxane was produced by the same method as in Example 1 except that the raw material supplied to the formaldehyde gas generator was not a hemi-formal concentrate but a 50% aqueous formaldehyde solution was used as it was.
  • Trioxane was produced by the same method as in Example 1 except that alumina (catalyst B1) was used instead of the solid phosphoric acid catalyst.
  • Trioxane was produced by the same method as in Example 1, except that the solid acid catalyst A2 was used instead of the solid acid catalyst A1, and distilled water was used instead of benzene as the solvent used in the separator.
  • the yield of trioxane and the distribution ratio to the solvent were calculated by calculating the trioxane concentration in the solvent by gas chromatography (device name: GC-2014, manufactured by Shimadzu Corporation, column: TSG-1 (15%) 4 m length).
  • the amount of the trioxane component that escaped to the gas phase side was once collected with water, and this aqueous solution was measured by gas chromatography on another column (device name: GC-9A, manufactured by Shimadzu Corporation, column: Chromsorb 101, 5 m long).
  • the reaction selectivity of trioxane was measured by gas chromatography (equipment name: GC-9A, manufactured by Shimadzu Corporation, column: Chromsorb 101, 5 m length) by measuring the concentrations of methanol, methyl formate and methylal as reaction byproducts. After calculating the concentration of formic acid by titration, the trioxane selectivity was calculated from these results.
  • the distribution ratio of formaldehyde to the gas phase is that once the gas is extracted from the overhead of the absorption tower and absorbed with water, the concentration of this aqueous formaldehyde solution is calculated by titration by the sodium sulfite method and distributed to the absorption liquid side.
  • the formaldehyde component was similarly calculated by titration, and the ratio between the two was calculated. The results are shown in Tables 5 and 6.
  • a first step of obtaining hemiformal from an aqueous formaldehyde solution and alcohol a second step of generating formaldehyde gas by thermally decomposing the hemiformal, supplying the formaldehyde gas to a trioxane generator, using a solid acid catalyst,
  • a third step of gas-phase synthesis of a reaction product gas containing trioxane from formaldehyde gas and by contacting the reaction product gas with an organic solvent, the trioxane contained in the reaction product gas is absorbed in the organic solvent, and the reaction product is produced.
  • a fourth step of discharging unreacted formaldehyde gas contained in the gas to the outside in a gas phase, and a circulation for recycling the unreacted formaldehyde gas separated in the fourth step as the formaldehyde gas in the third step Recycling process When producing trioxane Te, along with a higher significant yield and selectivity of the reaction of trioxane in trioxane generator, it was confirmed the distribution rate in the separation device is also significantly better (Examples 1-4).
  • trioxane was obtained from formaldehyde gas using a catalyst, it was confirmed that when alumina was used instead of a solid acid catalyst, the yield of trioxane was remarkably low, and trioxane could not be produced as efficiently as the examples ( Comparative Example 2). This is considered to reduce the action of the acid catalyst as a protonic acid that is originally effective for the production of trioxane due to the influence of the base point on the catalyst surface of alumina. In addition, since the yield of trioxane is remarkably low, the evaluation of the separation apparatus is not performed.

Abstract

The objective of the present invention is to increase the yield and selectivity of trioxane and to minimize the amount of unreacted formaldehyde when producing trioxane from an aqueous formaldehyde solution. In this production method, formaldehyde gas is generated by pyrolyzing a hemiformal concentrate obtained from an aqueous formaldehyde solution and alcohol, and using a solid acid catalyst, reaction generated gas containing trioxane is obtained from the formaldehyde gas. Then, by contacting the reaction generated gas with an organic solvent, the trioxane and the unreacted formaldehyde gas that are contained in the reaction generated gas are separated into gas and liquid, and the separated unreacted formaldehyde gas is circulated and recycled by being added to the system for obtaining the reaction generated gas.

Description

トリオキサンを製造する方法及び装置Method and apparatus for producing trioxane
 本発明は、トリオキサンを製造する方法及び装置に関する。 The present invention relates to a method and an apparatus for producing trioxane.
 ホルムアルデヒドの環状三量体であるトリオキサンは、ポリオキシメチレン(POM)樹脂の製造に広く使われる原料モノマーであり、その製造方法も古くから確立されている。例えば、高濃度のホルムアルデヒド水溶液に、硫酸、リン酸等に代表される不揮発性の酸を液相で作用させ、トリオキサンを生成する工程と、このトリオキサンを、ホルムアルデヒドを含む水とともに炊き上げる工程と、有機溶媒による抽出又は再結晶によって上記トリオキサンを精製する工程とを含む方法が知られている。しかしながら、液相における反応平衡濃度は極めて低い。そこで、反応系から反応生成物を気化させることでトリオキサンへの平衡濃度を高めることが行われるが、水を含む反応生成物の気化には多大なエネルギー消費を伴うのが一般的である。 Trioxane, a cyclic trimer of formaldehyde, is a raw material monomer widely used in the production of polyoxymethylene (POM) resin, and its production method has been established for a long time. For example, a non-volatile acid represented by sulfuric acid, phosphoric acid and the like is allowed to act on a high-concentration formaldehyde aqueous solution in a liquid phase to produce trioxane, and this trioxane is cooked with water containing formaldehyde, And a step of purifying the above trioxane by extraction with an organic solvent or recrystallization. However, the reaction equilibrium concentration in the liquid phase is very low. Therefore, the equilibrium concentration to trioxane is increased by vaporizing the reaction product from the reaction system, but vaporization of the reaction product containing water generally involves a great amount of energy consumption.
 そこで、ホルムアルデヒドガスから直接気相で三量化し、トリオキサンを合成する手法が古くより検討されている。しかしながら、それらの多くは、気相三量化反応と固体酸触媒に関する部分に主眼が置かれており、原料であるホルムアルデヒドからトリオキサンの気相合成、さらには反応生成物の分離回収、未反応ホルムアルデヒドガスの循環リサイクルまで含めた連続したプロセスとして検討されているものではない。 Therefore, a method for synthesizing trioxane directly from the formaldehyde gas in the gas phase has been studied for a long time. However, most of them focus on the gas phase trimerization reaction and the solid acid catalyst. The gas phase synthesis of trioxane from the raw material formaldehyde, the separation and recovery of the reaction products, the unreacted formaldehyde gas It is not considered as a continuous process including recycling and recycling.
 例えば、特許文献1~3においては、ホルムアルデヒドガスを気相で反応させるにあたり、その原料であるホルムアルデヒドガスの供給源として、パラホルムアルデヒド、α-ポリオキシメチレンの熱分解、あるいはホルムアルデヒド水溶液の気化による方法が述べられている。しかしながら、原料中には水が数%~数十%のレベルで存在するため、気相反応に対して不利であるばかりか、多量の水による触媒の失活や原料であるホルムアルデヒドガスの再重合化(パラホルム化)が起こりやすい等の問題がある。さらに、得られた反応生成物の分離に関しては、その詳細が記されておらず、従って、未反応ホルムアルデヒドガスの分配率、回収率等は全く不明であり、連続した製造プロセスとしての詳細を明らかにするものではない。 For example, in Patent Documents 1 to 3, when formaldehyde gas is reacted in a gas phase, as a source of formaldehyde gas as a raw material, a method by thermal decomposition of paraformaldehyde, α-polyoxymethylene, or vaporization of an aqueous formaldehyde solution is used. Is stated. However, since water is present in the raw material at a level of several percent to several tens of percent, this is not only disadvantageous for the gas phase reaction, but the catalyst is deactivated by a large amount of water, and the formaldehyde gas that is the raw material is repolymerized. There is a problem such as easy to occur (paraformation). Furthermore, the details of the separation of the obtained reaction products are not described, and therefore, the distribution rate and recovery rate of unreacted formaldehyde gas are completely unknown, and details as a continuous production process are clear. It is not something to be done.
 また、特許文献4では、ホルムアルデヒドからのトリオキサン気相合成について、用いる触媒の具体例とともに反応プロセスが図示されている。それによると、反応器出口における未反応のホルムアルデヒドガスを分離回収し、再び反応器へリサイクルすることが記載されている。しかしながら、ここでもホルムアルデヒドガスの供給源として、パラホルムアルデヒドやホルムアルデヒド水溶液が用いられており、反応系に水分を多く含むデメリットがある。また、反応生成ガスの分離回収方法の詳細が不明で回収率も不明である。 Further, in Patent Document 4, a reaction process is illustrated with a specific example of a catalyst to be used for trioxane gas phase synthesis from formaldehyde. According to this document, it is described that unreacted formaldehyde gas at the outlet of the reactor is separated and recovered and recycled to the reactor again. However, paraformaldehyde or formaldehyde aqueous solution is also used here as a formaldehyde gas supply source, and there is a demerit that the reaction system contains a lot of moisture. Further, details of the reaction product gas separation and recovery method are unknown, and the recovery rate is also unknown.
 特許文献5では、固体リン酸触媒を用いたトリオキサンの気相合成に関する製法が記されている。ここでは、低水分含量のホルムアルデヒドガスを使用することが主眼となっているが、その方法として粗ホルムアルデヒドを精製する、又は非酸化メタノール脱水素工程によることが記載されている。しかしながら、粗ホルムアルデヒドの精製に関しては原料含めた製法が不明であり、さらにメタノール脱水素に至っては金属ナトリウム触媒を使用する旨の記載もあり、工業的見地から見ると安全性に問題ある。またメタノール脱水素法は、反応転化率や選択率の点で十分な技術確立がなされているとは言い難く、メタノール使用率の点でも問題があり、トリオキサンの気相合成を含む製造プロセスに組み込むには依然多くの困難を伴うものと考えられる。 Patent Document 5 describes a production method for gas phase synthesis of trioxane using a solid phosphoric acid catalyst. Here, the main purpose is to use formaldehyde gas having a low water content, but it is described that the crude formaldehyde is purified or a non-oxidizing methanol dehydrogenation step is used as the method. However, regarding the purification of crude formaldehyde, the production method including the raw material is unknown, and there is also a description that a metal sodium catalyst is used for methanol dehydrogenation, which is problematic in terms of safety from an industrial point of view. In addition, the methanol dehydrogenation method cannot be said to have been sufficiently established in terms of reaction conversion rate and selectivity, and has a problem in terms of methanol usage, and is incorporated into a manufacturing process including gas phase synthesis of trioxane. There are still many difficulties.
特公昭40-12898号公報Japanese Patent Publication No.40-12898 特公昭40-20552号公報Japanese Patent Publication No.40-20552 特公昭44-30735号公報Japanese Patent Publication No. 44-30735 米国特許3496192号US Pat. No. 3,496,192 特開2001-11069号公報JP 2001-11069 A 特開昭50-62921号公報Japanese Patent Laid-Open No. 50-62921
 ホルムアルデヒドガスから気相でトリオキサンを合成する方法はこれまで数多く開示されており、同時に気相合成に関する数多くの固体酸触媒も例示されている。また、トリオキサン気相合成後に未反応ホルムアルデヒドガスを回収し、反応器に循環リサイクルする製造プロセスも過去の特許文献に一部記載されている。しかしながら、トリオキサンから未反応ホルムアルデヒドガスをどのように分離するかについては殆ど具体的な方法をもって例示されていない。 A number of methods for synthesizing trioxane from formaldehyde gas in the gas phase have been disclosed so far, and many solid acid catalysts relating to gas phase synthesis have been exemplified. In addition, a part of the past patent document describes a manufacturing process in which unreacted formaldehyde gas is recovered after trioxane gas phase synthesis and circulated and recycled to the reactor. However, how to separate unreacted formaldehyde gas from trioxane is hardly exemplified by specific methods.
 よって、ホルムアルデヒド水溶液から効率的にホルムアルデヒドガスを調製した上でトリオキサンを気相で合成しつつ、さらに合成後の分離回収方法や未反応ホルムアルデヒドガスの循環リサイクルまで含めた総合的なトリオキサン気相合成プロセスに言及した製造方法は過去に具体例をもって示されているとは言い難い。このことを含め、従来のトリオキサン液相合成におけるデメリットを大幅に改善できるトリオキサン気相合成の総合的なプロセス体系の確立が求められていた。 Therefore, a comprehensive trioxane gas-phase synthesis process that includes synthesizing trioxane in the gas phase after efficiently preparing formaldehyde gas from an aqueous formaldehyde solution, and further including separation and recovery methods after synthesis and circulation recycling of unreacted formaldehyde gas It is difficult to say that the manufacturing method mentioned in the above has been shown with specific examples in the past. Including this, the establishment of a comprehensive process system for trioxane vapor phase synthesis that can greatly improve the disadvantages of conventional trioxane liquid phase synthesis has been demanded.
 本発明は、上記課題を解決することを目的になされたものであり、ホルムアルデヒド水溶液を出発原料にしたトリオキサンの気相合成において、分離回収、リサイクル工程も含めた連続的な製造プロセスについて開示するものである。さらに気相反応によるトリオキサンの高収率、高選択性、未反応ホルムアルデヒドの効率的な分離回収工程及びリサイクルにより、従来法(液相反応)よりもエネルギー使用率の削減にも貢献しうる効率的なトリオキサンの気相合成プロセスを提供するものである。 The present invention has been made for the purpose of solving the above problems, and discloses a continuous production process including separation and recovery and recycling steps in the gas phase synthesis of trioxane using an aqueous formaldehyde solution as a starting material. It is. Furthermore, high yield, high selectivity of trioxane by gas phase reaction, efficient separation / recovery process and recycling of unreacted formaldehyde are more efficient than conventional methods (liquid phase reaction). A process for the gas phase synthesis of trioxane is provided.
 本発明者らは、ホルムアルデヒド水溶液から気相でトリオキサンを合成するにあたり、その反応工程、分離回収工程含めたプロセスについて、それら工程の最適化を図るべく鋭意研究を重ねた。その結果、トリオキサンを高収率・高選択的に得るのみならず、ホルムアルデヒド使用率が高いトリオキサン製造方法及び装置を見出し、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。 The inventors of the present invention have made extensive studies to optimize the processes including the reaction process and separation / recovery process when synthesizing trioxane from an aqueous formaldehyde solution in the gas phase. As a result, they have not only obtained trioxane in a high yield and high selectivity, but also found a trioxane production method and apparatus having a high formaldehyde usage rate, and have completed the present invention. More specifically, the present invention provides the following.
 (1)本発明は、ホルムアルデヒド水溶液とアルコールとからヘミホルマールを得る第一工程と、前記ヘミホルマールを熱分解することによりホルムアルデヒドガスを発生させる第二工程と、トリオキサン生成装置に前記ホルムアルデヒドガスを供給し、固体酸触媒を用い、前記ホルムアルデヒドガスからトリオキサンを含む反応生成ガスを気相合成する第三工程と、前記反応生成ガスを有機溶媒と接触させることによって前記反応生成ガスに含まれるトリオキサンを前記有機溶媒に吸収し、前記反応生成ガスに含まれる未反応ホルムアルデヒドガスを気相のまま外部に排出する第四工程と、前記第四工程にて分離した前記未反応ホルムアルデヒドガスを、前記第三工程における前記ホルムアルデヒドガスとして循環リサイクルする循環リサイクル工程と、を含む、トリオキサン製造方法である。 (1) The present invention provides a first step of obtaining hemiformal from an aqueous formaldehyde solution and alcohol, a second step of generating formaldehyde gas by thermally decomposing the hemiformal, and supplying the formaldehyde gas to a trioxane generator, A third step of gas-phase synthesis of a reaction product gas containing trioxane from the formaldehyde gas using a solid acid catalyst; and contacting the reaction product gas with an organic solvent to convert trioxane contained in the reaction product gas into the organic solvent A fourth step of discharging unreacted formaldehyde gas contained in the reaction product gas to the outside in a gas phase, and the unreacted formaldehyde gas separated in the fourth step, in the third step Recycled to be recycled as formaldehyde gas Including a cycle step, the, trioxane production method.
 (2)また、本発明の前記アルコールは、沸点が190℃以上のモノオール、ジオール又はトリオールから選択される1種又は2種以上の組合せである、(1)に記載のトリオキサン製造方法である。 (2) Moreover, the said alcohol of this invention is a trioxane manufacturing method as described in (1) which is 1 type, or 2 or more types of combinations selected from the monool, diol, or triol whose boiling point is 190 degreeC or more. .
 (3)また、本発明は、前記固体酸触媒がケイ酸質の無機担持体に担持されたリン酸を含有する、(1)又は(2)に記載のトリオキサン製造方法である。 (3) Further, the present invention is the trioxane production method according to (1) or (2), wherein the solid acid catalyst contains phosphoric acid supported on a siliceous inorganic support.
 (4)また、本発明は、前記第三工程における、前記トリオキサン生成装置に供給するホルムアルデヒドガスの単位時間当たりの質量と、前記トリオキサン生成装置に充填する前記固体酸触媒の質量との比を示す質量空間速度WHSVの値は1/50h-1以上1h-1以下である、(1)から(3)のいずれかに記載のトリオキサン製造方法である。 (4) Moreover, this invention shows ratio of the mass per unit time of the formaldehyde gas supplied to the said trioxane production | generation apparatus in the said 3rd process, and the mass of the said solid acid catalyst with which the said trioxane production | generation apparatus is filled. the value of the mass space velocity WHSV is 1 / 50h -1 over 1h -1 or less, trioxane production method according to any one of (1) (3).
 (5)また、本発明は、前記第三工程では、前記固体酸触媒を多管式の固定床反応器に充填し、前記第二工程で得られた前記ホルムアルデヒドガス及び前記循環リサイクル工程で循環リサイクルされた前記未反応ホルムアルデヒドガスと、前記固体酸触媒とを不均一系で接触させ、トリオキサンを気相状態のまま連続的に前記固定床反応器から抜き出すことによってトリオキサンを気相合成する、(1)から(4)のいずれかに記載のトリオキサン製造方法である。 (5) In the third step, the solid acid catalyst is filled in a multi-tubular fixed bed reactor in the third step, and is circulated in the formaldehyde gas obtained in the second step and the circulation recycling step. Contacting the recycled unreacted formaldehyde gas with the solid acid catalyst in a heterogeneous system, and continuously extracting trioxane from the fixed bed reactor in a gas phase state to perform gas phase synthesis of trioxane ( The method for producing trioxane according to any one of 1) to (4).
 (6)また、本発明は、前記有機溶媒がベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼンから選択される1以上である、(1)から(5)のいずれかに記載のトリオキサン製造方法である。 (6) Moreover, this invention is a trioxane manufacturing method in any one of (1) to (5) whose said organic solvent is 1 or more selected from benzene, toluene, xylene, ethylbenzene, and diethylbenzene.
 (7)また、本発明は、前記第四工程では、前記第三工程で合成されたトリオキサンと前記第三工程で未反応である未反応ホルムアルデヒドガスとを含む反応生成ガスを、前記トリオキサンの沸点以下の温度に調節された分離装置に連続的に供給する、(1)から(6)のいずれかに記載のトリオキサン製造方法である。 (7) In the fourth step, the reaction product gas containing the trioxane synthesized in the third step and the unreacted formaldehyde gas unreacted in the third step is used as the boiling point of the trioxane. The trioxane production method according to any one of (1) to (6), wherein the trioxane is continuously supplied to a separation apparatus adjusted to the following temperature.
 (8)また、本発明は、前記分離装置が、液膜式、液滴式又は気泡式のいずれかによる吸収塔を備える、(7)に記載のトリオキサン製造方法である。 (8) Moreover, this invention is a trioxane manufacturing method as described in (7) with which the said separation apparatus is equipped with the absorption tower by any of a liquid film type, a droplet type, or a bubble type.
 (9)また、本発明は、前記吸収塔は、前記液膜式による吸収塔であり、前記吸収塔は、充填材を充填する充填塔を備え、前記第四工程では、前記有機溶媒と前記反応生成ガスとを交流又は並流接触させることで、前記反応生成ガスに含まれるトリオキサンを前記有機溶媒に吸収し、前記反応生成ガスに含まれる前記未反応ホルムアルデヒドガスを気相のまま前記分離装置の外部に分離する、(8)に記載のトリオキサン製造方法である。 (9) Further, in the present invention, the absorption tower is an absorption tower of the liquid film type, and the absorption tower includes a packed tower filled with a filler, and in the fourth step, the organic solvent and the By bringing the reaction product gas into alternating current or co-current contact, trioxane contained in the reaction product gas is absorbed in the organic solvent, and the unreacted formaldehyde gas contained in the reaction product gas is kept in a gas phase and the separation device Is a trioxane production method as described in (8).
 (10)また、本発明は、前記分離装置の内部の温度が60℃以下である、(7)から(9)のいずれかに記載のトリオキサン製造方法である。 (10) Moreover, this invention is a trioxane manufacturing method in any one of (7) to (9) whose temperature inside the said separation apparatus is 60 degrees C or less.
 (11)また、本発明は、前記分離装置の内部の圧力がゲージ圧で1kgf/cm以下である、(7)から(10)のいずれかに記載のトリオキサン製造方法である。 (11) Moreover, this invention is a trioxane manufacturing method in any one of (7) to (10) whose pressure inside the said separation apparatus is 1 kgf / cm < 2 > or less by a gauge pressure.
 (12)また、本発明は、ホルムアルデヒド水溶液とアルコールとからヘミホルマールを得るヘミホルマール生成装置と、前記ヘミホルマールを熱分解し、ホルムアルデヒドガスを発生させるホルムアルデヒドガス発生装置と、固体酸触媒を用い、前記ホルムアルデヒドガスからトリオキサンを含む反応生成ガスを気相合成するトリオキサン生成装置と、前記反応生成ガスを有機溶媒と接触させることによって前記反応生成ガスに含まれるトリオキサンを前記有機溶媒に吸収し、前記反応生成ガスに含まれる未反応ホルムアルデヒドガスを気相のまま外部に排出する分離装置と、前記未反応ホルムアルデヒドガスを前記トリオキサン生成装置に循環する循環装置と、を備えるトリオキサン製造装置である。 (12) In addition, the present invention uses a hemi-formal generator for obtaining hemi-formal from an aqueous formaldehyde solution and alcohol, a formaldehyde gas generator for thermally decomposing the hemi-formal to generate formaldehyde gas, and a solid acid catalyst. A trioxane generator for vapor-phase synthesis of a reaction product gas containing trioxane from the gas, and by contacting the reaction product gas with an organic solvent, the trioxane contained in the reaction product gas is absorbed in the organic solvent, A trioxane production apparatus comprising: a separation device that discharges unreacted formaldehyde gas contained in a gas phase to the outside; and a circulation device that circulates the unreacted formaldehyde gas to the trioxane generator.
 本発明によると、ヘミホルマール法からホルムアルデヒドガスを調製しているため、プロセスとして事前に反応系内から水が十分に排除されており、トリオキサン気相合成においても高い収率・選択率の実現が可能である。さらに反応生成ガスの分離回収工程において、トリオキサン溶解性の高い有機溶媒等を使用することにより、未反応ホルムアルデヒドガスを効果的に分離回収することが可能となり、さらにこの未反応ホルムアルデヒドを循環リサイクルすることでホルムアルデヒド使用率が高まり、トリオキサン製造時のエネルギー面での削減にも貢献できるプロセスを実現することが可能となる。 According to the present invention, since formaldehyde gas is prepared from the hemi-formal method, water is sufficiently eliminated from the reaction system in advance as a process, and high yield and selectivity can be realized even in trioxane gas phase synthesis. It is. Furthermore, it is possible to effectively separate and recover unreacted formaldehyde gas by using an organic solvent with high trioxane solubility in the separation and recovery process of the reaction product gas, and to circulate and recycle this unreacted formaldehyde. As a result, the use rate of formaldehyde is increased, and it is possible to realize a process that can contribute to energy reduction during the production of trioxane.
本発明に係るトリオキサン製造装置を示す概略図である。It is the schematic which shows the trioxane manufacturing apparatus which concerns on this invention.
 以下、本発明の具体的な実施形態について、詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, specific embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and may be implemented with appropriate modifications within the scope of the object of the present invention. can do.
 <トリオキサン製造装置1>
 図1は、本発明に係るトリオキサン製造装置1を示す概略図である。トリオキサン製造装置1は、ホルムアルデヒド水溶液(ホルマリン)とアルコールとからヘミホルマールを生成させるヘミホルマール生成装置2と、該ヘミホルマールを熱分解し、ホルムアルデヒドガスを発生させるホルムアルデヒドガス発生装置3と、固体酸触媒を用い、上記ホルムアルデヒドガスからトリオキサンを含む反応生成ガスを生成するトリオキサン生成装置4と、この反応生成ガスからトリオキサンと未反応ホルムアルデヒドガスとを分離する分離装置5と、この未反応ホルムアルデヒドガスをトリオキサン生成装置4に循環する循環装置6とを備える。
<Trioxane production device 1>
FIG. 1 is a schematic view showing a trioxane production apparatus 1 according to the present invention. The trioxane production apparatus 1 uses a hemi-formal generator 2 that generates hemi-formal from an aqueous formaldehyde solution (formalin) and alcohol, a formaldehyde gas generator 3 that thermally decomposes the hemi-formal to generate formaldehyde gas, and a solid acid catalyst. A trioxane generator 4 that generates a reaction product gas containing trioxane from the formaldehyde gas, a separation device 5 that separates trioxane and unreacted formaldehyde gas from the reaction product gas, and this unreacted formaldehyde gas into the trioxane generator 4. And a circulation device 6 that circulates.
 [ヘミホルマール生成装置2]
 ヘミホルマール生成装置2では、ホルムアルデヒド水溶液とアルコールとを反応・脱水させることにより、ヘミホルマール濃縮物を生成する第一工程が行われる。ヘミホルマール生成装置2は、ホルムアルデヒド水溶液とアルコールとを混合し、ヘミホルマール水溶液を得る混合槽2Aと、このヘミホルマール水溶液を脱水により濃縮し、低水分量のヘミホルマール濃縮物を得る減圧脱水塔2Bとにより構成される。本実施形態において、ヘミホルマール濃縮物とは、ホルムアルデヒド水溶液とアルコールとの反応生成物をいい、ホルムアルデヒド水溶液とアルコールとを所定の比率で混合させたのち、減圧下で脱水・濃縮したものをいう。
[Hemi formal generator 2]
In the hemi-formal production | generation apparatus 2, the 1st process which produces | generates a hemi-formal concentrate is performed by reacting and dehydrating formaldehyde aqueous solution and alcohol. The hemi-formal generator 2 is composed of a mixing tank 2A for mixing an aqueous formaldehyde solution and alcohol to obtain a hemi-formal aqueous solution, and a vacuum dehydration tower 2B for concentrating the aqueous hemi-formal solution by dehydration to obtain a hemi-formal concentrate having a low water content. The In the present embodiment, the hemi-formal concentrate refers to a reaction product of an aqueous formaldehyde solution and alcohol, which is obtained by mixing the aqueous formaldehyde solution and alcohol at a predetermined ratio and then dehydrating and concentrating under reduced pressure.
 本実施形態では、ヘミホルマール法を採用することで、予め系内からの水分を効果的に除去することが可能であるため、後工程における水分含有量の少ないホルムアルデヒドガスを調製することが可能となり、トリオキサン気相合成における反応収率や選択性、触媒寿命の点で有利である。さらにトリオキサンと未反応ホルムアルデヒドガスの分離工程においても、低水分化により吸収・分離塔内でのホルムアルデヒドの凝縮を緩和することが出来るため、ヘミホルマール法を採択することは非常に有効である。 In the present embodiment, by adopting the hemi-formal method, it is possible to effectively remove moisture from the system in advance, so it becomes possible to prepare formaldehyde gas with a low water content in the post-process, This is advantageous in terms of reaction yield, selectivity and catalyst lifetime in trioxane gas phase synthesis. Furthermore, in the separation process of trioxane and unreacted formaldehyde gas, it is very effective to adopt the hemi-formal method because the condensation of formaldehyde in the absorption / separation tower can be reduced by reducing the water content.
 〔混合槽2A〕
 ヘミホルマール水溶液の調製にあたり、まず(A)ホルムアルデヒド水溶液と(B)アルコールとを、混合槽2Aの内部で混合し反応を行う。反応条件は特に限定はされず、従来公知のヘミホルマール化法における、ホルムアルデヒド水溶液とアルコールとの反応条件と同様のものを採用することができる。例えば、反応温度は室温(約20℃)以上90℃以下であることが好ましい。また、反応時間については、反応の進み具合等に応じて適宜設定すればよい。また、両者の混合比率についても特に限定はされないが、(A)ホルムアルデヒド水溶液に対する(B)アルコール中の水酸基のモル比で、0.3以上5.0以下であることが好ましく、0.5以上2.0以下であることがより好ましい。アルコールが過少(0.3以下)であると、ヘミホルマール水溶液中で遊離のホルムアルデヒドが多くなり、減圧脱水塔2Bにおいて減圧・脱水反応を行う際にホルムアルデヒドのロスが多くなることから好ましくない。またアルコール過多(5.0以上)の場合、ホルムアルデヒドガス発生装置3においてヘミホルマールを熱分解する際に、一定量のホルムアルデヒドガス製造のために多量のヘミホルマールを供給する必要が生じ、熱分解に要するエネルギー面で不利となることから好ましくない。
[Mixing tank 2A]
In preparation of the hemi-formal aqueous solution, first, the (A) formaldehyde aqueous solution and the (B) alcohol are mixed and reacted inside the mixing tank 2A. The reaction conditions are not particularly limited, and those similar to the reaction conditions of the aqueous formaldehyde solution and alcohol in the conventionally known hemi-formalization method can be employed. For example, the reaction temperature is preferably from room temperature (about 20 ° C.) to 90 ° C. Moreover, what is necessary is just to set suitably about reaction time according to the progress of reaction, etc. Further, the mixing ratio of the two is not particularly limited, but (A) the molar ratio of the hydroxyl group in the alcohol (B) to the aqueous formaldehyde solution is preferably 0.3 or more and 5.0 or less, preferably 0.5 or more. More preferably, it is 2.0 or less. If the alcohol is too small (0.3 or less), free formaldehyde increases in the aqueous hemi-formal solution, and the loss of formaldehyde increases when the vacuum / dehydration reaction is performed in the vacuum dehydration tower 2B. Further, in the case of excessive alcohol (5.0 or more), it is necessary to supply a large amount of hemi-formal for producing a certain amount of formaldehyde gas when the hemi-formal is pyrolyzed in the formaldehyde gas generator 3, and energy required for the pyrolysis This is not preferable because it is disadvantageous.
 ヘミホルマール水溶液の調製に用いられるアルコール種は特に限定されるものではないが、沸点が190℃以上であるモノ、ジ、トリオールから選ばれる1種又はそれらの組合せにより選択されることが望ましい。アルコールの沸点が190℃よりも低い場合、減圧脱水塔2Bにおいて、ヘミホルマール水溶液を脱水・濃縮する際に、アルコール自身の揮発によるロスが多くなり、回収操作が必要となるため、好ましくない。また、ホルムアルデヒドガス発生装置3でヘミホルマールを熱分解する際にアルコールが揮発することから、アルコールの回収を目的とした冷却器を設置する必要が生じる点でも好ましくない。 The alcohol species used for the preparation of the hemi-formal aqueous solution is not particularly limited, but is preferably selected according to one or a combination selected from mono, di, and triol having a boiling point of 190 ° C. or higher. When the boiling point of the alcohol is lower than 190 ° C., the dehydration / concentration of the hemi-formal aqueous solution in the vacuum dehydration tower 2B is not preferable because loss due to volatilization of the alcohol itself increases and a recovery operation is required. Further, since the alcohol is volatilized when the hemi-formal is pyrolyzed by the formaldehyde gas generator 3, it is not preferable in that it is necessary to install a cooler for the purpose of recovering the alcohol.
 沸点が190℃以上であるアルコール種を例示すると、親水性アルコールとしてメチルペンタンジオール、ヘキサントリオール、ペンタンジオール、メチルブタンジオール等を挙げることができる。特に、3-メチル-1,5-ペンタンジオール、1,2,6-ヘキサントリオール、1,5-ペンタンジオール又は3-メチル-1,3-ブタンジオール等は好適に用いることができる。また疎水性アルコールとして、ジエチルペンタンジオール、エチルヘキサンジオール、オクタノール等を挙げることができる。特に、ジエチルペンタンジオールとして、2,4-ジエチル-1,5-ペンタンジオール、2,3-ジエチル-1,5-ペンタンジオール、1,4-ジエチル-1,5-ペンタンジオール、1,5-ジエチル-1,5-ペンタンジオール等を例示することができる。またエチルヘキサンジオールとして、2-エチル-1,3-ヘキサンジオール、3-エチル-1,3-ヘキサンジオール、4-エチル-1,3-ヘキサンジオール等を例示することができる。 Examples of alcohol species having a boiling point of 190 ° C. or higher include methylpentanediol, hexanetriol, pentanediol, and methylbutanediol as hydrophilic alcohols. In particular, 3-methyl-1,5-pentanediol, 1,2,6-hexanetriol, 1,5-pentanediol or 3-methyl-1,3-butanediol can be preferably used. Examples of the hydrophobic alcohol include diethylpentanediol, ethylhexanediol, octanol and the like. In particular, as diethylpentanediol, 2,4-diethyl-1,5-pentanediol, 2,3-diethyl-1,5-pentanediol, 1,4-diethyl-1,5-pentanediol, 1,5- Examples thereof include diethyl-1,5-pentanediol. Examples of ethyl hexanediol include 2-ethyl-1,3-hexanediol, 3-ethyl-1,3-hexanediol, 4-ethyl-1,3-hexanediol, and the like.
 また上記以外にも、ヘミホルマール調製に公知技術として用いられるアルキレングリコール類、ポリアルキレングリコール類等を適用することも可能である。アルキレングリコール類として、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等があり、またポリアルキレングリコール類としてエチレンオキサイドユニットが5以上のポリエチレングリコール、さらにはポリプロピレングリコール、ポリテトラメチレングリコール等がある。またポリアルキレングリコールの誘導体等を用いることもできる。ポリアルキレングリコールの誘導体とは、オキシエチレンとオキシプロピレン、オキシテトラエチレン等からなるブロック共重合体や、多価アルコール等を連鎖移動剤として調製されたポリアルキレングリコール類等である。 In addition to the above, alkylene glycols, polyalkylene glycols, and the like used as known techniques for preparing hemiformal can also be applied. Examples of the alkylene glycols include diethylene glycol, triethylene glycol, and tetraethylene glycol. Examples of the polyalkylene glycols include polyethylene glycol having 5 or more ethylene oxide units, and polypropylene glycol and polytetramethylene glycol. A polyalkylene glycol derivative or the like can also be used. Polyalkylene glycol derivatives include block copolymers composed of oxyethylene and oxypropylene, oxytetraethylene, and the like, and polyalkylene glycols prepared using polyhydric alcohol or the like as a chain transfer agent.
 このようなアルコールは、一般的な方法で製造したものを使用することができる。また市販品を購入して使用してもよい。 Such alcohol can be produced by a general method. Moreover, you may purchase and use a commercial item.
 〔減圧脱水塔2B〕
 減圧脱水塔2Bでは、混合槽2Aで得たヘミホルマール水溶液を脱水により濃縮し、低水分量のヘミホルマール濃縮物を得る。減圧脱水塔2Bの条件は特に限定されないが、温度や圧力はヘミホルマール濃縮物中に含まれる残留水分量を考慮しながら、上記脱水・濃縮時の条件を適宜調整することが好ましい。具体的には、温度は50℃以上80℃以下の範囲から選択されることが好ましく、圧力は50mmHg以下で選択されることが好ましい。
[Vacuum dehydration tower 2B]
In the vacuum dehydration tower 2B, the hemi-formal aqueous solution obtained in the mixing tank 2A is concentrated by dehydration to obtain a hemi-formal concentrate having a low water content. The conditions of the vacuum dehydration tower 2B are not particularly limited, but it is preferable that the temperature and pressure are appropriately adjusted for the above dehydration / concentration conditions while taking into account the amount of residual water contained in the hemi-formal concentrate. Specifically, the temperature is preferably selected from the range of 50 ° C. or higher and 80 ° C. or lower, and the pressure is preferably selected at 50 mmHg or lower.
 減圧脱水塔2Bによって濃縮された後のヘミホルマール濃縮物には依然微量の水が含まれるが、脱水・濃縮の操作条件により概ね1.0質量%以下になる。 The hemi-formal concentrate after being concentrated by the vacuum dehydration tower 2B still contains a trace amount of water, but is approximately 1.0% by mass or less depending on the operating conditions of dehydration and concentration.
 ヘミホルマール濃縮物の調製に用いられるホルムアルデヒド水溶液の濃度は特に限定されないが、ホルムアルデヒドとして1質量%以上80質量%以下であることが好ましい。 The concentration of the aqueous formaldehyde solution used for preparing the hemi-formal concentrate is not particularly limited, but is preferably 1% by mass or more and 80% by mass or less as formaldehyde.
 [ホルムアルデヒドガス発生装置3]
 ホルムアルデヒドガス発生装置3では、ヘミホルマール濃縮物を熱分解することによりホルムアルデヒドガスを発生させる第二工程が行われる。この第二工程によって高純度のホルムアルデヒドガスが得られるが、その手法は特許文献6に記載されるように一般的に公知技術である。熱分解の温度条件は、ヘミホルマール結合の切断が可能であるような高温(通常は140℃以上)で行われるが、ホルムアルデヒドガス発生装置3における操作圧力と合わせて適宜調整することが可能である。一般的には140~180℃の範囲が適当であり、温度が低すぎると分解率が上がらず、逆に温度が高すぎるとヘミホルマールを構成するアルコールの揮発・変質等の問題が発生するため、好ましくない。ホルムアルデヒドガス発生装置3は特に限定されるものでなく、回分式、半回分式、連続方式にて実施される各種槽型、管型・塔型等の各種熱分解装置、蒸発器を用いることができる。
[Formaldehyde gas generator 3]
In the formaldehyde gas generator 3, a second step of generating formaldehyde gas by thermally decomposing the hemi-formal concentrate is performed. High purity formaldehyde gas is obtained by this second step, and the technique is generally known as described in Patent Document 6. The temperature condition for the thermal decomposition is performed at a high temperature (normally 140 ° C. or higher) at which the hemi-formal bond can be broken, but can be appropriately adjusted in accordance with the operation pressure in the formaldehyde gas generator 3. In general, the range of 140 to 180 ° C. is appropriate. If the temperature is too low, the decomposition rate does not increase. Conversely, if the temperature is too high, problems such as volatilization and alteration of the alcohol constituting the hemi-formal occur. It is not preferable. The formaldehyde gas generator 3 is not particularly limited, and various tank-type, tube-type and tower-type thermal decomposition apparatuses and evaporators that are implemented in batch, semi-batch, and continuous systems may be used. it can.
 ヘミホルマールの熱分解により発生したホルムアルデヒドガスは、そのままトリオキサンの気相合成の原料として扱うことも可能であるが、さらに残留水分や低減や、揮発したアルコールがトリオキサン生成装置4に混入することを防ぐため、ホルムアルデヒドガス発生装置3の出口側に冷却器(コンデンサー、図示せず)を取り付けて、残留水分や揮発アルコール成分を凝縮させることにより、ホルムアルデヒドガスをさらに精製することも可能である。 Formaldehyde gas generated by thermal decomposition of hemi-formal can be used as it is as a raw material for gas phase synthesis of trioxane, but in order to prevent residual moisture and reduction, and volatilized alcohol from being mixed into the trioxane generator 4. It is also possible to further purify the formaldehyde gas by attaching a cooler (condenser, not shown) to the outlet side of the formaldehyde gas generator 3 to condense residual moisture and volatile alcohol components.
 [トリオキサン生成装置4]
 トリオキサン生成装置4では、固体酸触媒を用い、ホルムアルデヒドガスからトリオキサンを含む反応生成ガスを気相合成する第三工程が行われる。
[Trioxane generator 4]
In the trioxane production | generation apparatus 4, the 3rd process of carrying out the gas phase synthesis | combination of the reaction product gas containing a trioxane from a formaldehyde gas is performed using a solid acid catalyst.
 本発明では、ヘミホルマール濃縮物をホルムアルデヒドガス原料として用いており、反応系内の水分量が少ないため、固体酸触媒の種類は特に限定されないが、ケイ酸質の無機担持体に担持されたリン酸を含有する固体リン酸触媒であることが望ましい。 In the present invention, a hemi-formal concentrate is used as a formaldehyde gas raw material, and since the amount of water in the reaction system is small, the type of the solid acid catalyst is not particularly limited, but phosphoric acid supported on a siliceous inorganic carrier. It is desirable that the solid phosphoric acid catalyst contains.
 固体リン酸触媒の調製法は特に限定されるものではなく、一般的に知られる含浸法、ゾル-ゲル反応による調製方法等用いることができる。またリン酸の担持・固定化に用いられる担体も特に限定はされないが、多孔質シリカゲル、シリカアルミナ、珪藻土等珪酸質を主成分とする無機担持体が良く、それらから選ばれる一種もしくはこれらの混合物が好適に用いられる。 The method for preparing the solid phosphoric acid catalyst is not particularly limited, and a generally known impregnation method, a preparation method by a sol-gel reaction, or the like can be used. Further, the carrier used for phosphoric acid support / immobilization is not particularly limited, but an inorganic carrier mainly composed of siliceous materials such as porous silica gel, silica alumina, diatomaceous earth, etc. is good, and one or a mixture selected from them. Are preferably used.
 本発明に用いる固体リン酸触媒の調製方法の一例を以下に示すが、この手法・手順に限定されるものではない。まず市販のオルトリン酸(85%)を水で0.5~50%濃度の範囲で希釈し、これを担持液とする。ここに所定量の多孔質シリカゲルの担体を加えて浸漬する。浸漬時間は、通常1時間程度又はそれ以上であれば特に問題ない。浸漬温度は特に限定されないが80℃以下、好ましくは50℃以下である。浸漬時には攪拌により担持液と担体を十分に混和させてもよい。次いで担持液を含む担体を取り出して液切りを行い、乾燥後特定の温度で焼成することによって本触媒は調製される。 An example of a method for preparing a solid phosphoric acid catalyst used in the present invention is shown below, but is not limited to this method / procedure. First, commercially available orthophosphoric acid (85%) is diluted with water in the range of 0.5 to 50% concentration to obtain a supporting liquid. A predetermined amount of porous silica gel carrier is added and immersed therein. There is no particular problem if the immersion time is usually about 1 hour or longer. Although immersion temperature is not specifically limited, it is 80 degrees C or less, Preferably it is 50 degrees C or less. At the time of immersion, the support liquid and the carrier may be sufficiently mixed by stirring. Next, the support containing the supported liquid is taken out, drained, dried, and calcined at a specific temperature after drying to prepare the catalyst.
 なお固体酸触媒は、上記の調製方法によって得られる以外に、市販あるいは商用の固体酸触媒をそのまま用いることもできる。また固体酸触媒の形状についても、粉末状、粒子状、成形によるペレット状等特に限定されるものではないが、トリオキサン生成装置4が固定床反応器であり、この固定床反応器で気相合成を行う場合においては、成形体が好ましく用いられる。成形品の形状については特に制限はなく、例えば、押出し成形、打錠成形、スプレードライ、転動造粒、油中造粒等の方法で、ペレット状、板状、粒状等の各種成形体とすることができ、さらに成形体の粒径は0.5~6mm程度の範囲で使用することができる。 In addition to the solid acid catalyst obtained by the above preparation method, a commercially available or commercial solid acid catalyst can be used as it is. Also, the shape of the solid acid catalyst is not particularly limited, such as powder, particles, and pellets by molding, but the trioxane generator 4 is a fixed bed reactor, and gas phase synthesis is performed in this fixed bed reactor. When performing, a molded object is used preferably. There is no particular limitation on the shape of the molded product, for example, by various methods such as extrusion, tableting, spray drying, rolling granulation, granulation in oil, etc. Furthermore, the particle size of the molded body can be used in the range of about 0.5 to 6 mm.
 上記の気相合成を行う際、トリオキサン生成装置4に供給するホルムアルデヒドガスの単位時間当たりの質量とトリオキサン生成装置4に充填する固体酸触媒の質量との比(これを質量空間速度WHSV[単位;h-1]と記す)は、用いる固体酸触媒の形状、酸成分の担持量及び反応条件によって異なり、トリオキサン収率に応じて適宜調整すればよい。WHSV(ホルムアルデヒドガス流量/触媒質量)の値は、1/50~1h-1の範囲であることが好ましい。WHSVが1/50h-1未満では、供給されるホルムアルデヒドガスに対して触媒重量が多く、触媒の添加量に見合うだけのトリオキサンへの転化率を得られない可能性があるとともに、触媒のコストが多大になる可能性がある。一方、WHSVが1h-1を超えると、触媒に対して供給されるホルムアルデヒドガス量が多いため、十分な触媒との接触時間がとれずトリオキサンへの反応転化率が低下し得る。 When performing the above gas phase synthesis, the ratio of the mass per unit time of formaldehyde gas supplied to the trioxane generator 4 to the mass of the solid acid catalyst charged in the trioxane generator 4 (this is the mass space velocity WHSV [unit; h -1 ]) depends on the shape of the solid acid catalyst used, the amount of the acid component supported, and the reaction conditions, and may be adjusted as appropriate according to the trioxane yield. The value of WHSV (formaldehyde gas flow rate / catalyst mass) is preferably in the range of 1/50 to 1 h −1 . When WHSV is less than 1/50 h −1 , the catalyst weight is large with respect to the supplied formaldehyde gas, and there is a possibility that the conversion rate to trioxane corresponding to the added amount of the catalyst cannot be obtained, and the cost of the catalyst is low. It can be enormous. On the other hand, when the WHSV exceeds 1h -1, for formaldehyde gas amount supplied to the catalyst is large, reaction conversion of not take a contact time with the catalyst sufficient trioxane may be reduced.
 またその他の反応条件として、温度に関しては本反応が発熱平衡反応であることを鑑みると一般に低温であることが望ましいが、ホルムアルデヒドガスがトリオキサン生成装置4の前後やトリオキサン生成装置4の内部で凝縮したり重合化(パラホルムアルデヒド生成)したりするのを避けられる温度に設定することが求められる。具体的には、トリオキサン生成装置4の内部の温度が80~120℃であることが好ましく、90~110℃であることがより好ましい。反応温度が低温になりすぎると十分な反応速度が得られず、またホルムアルデヒドの重合化が進行して触媒層での析出が起こるので望ましくない。逆に温度が120℃を超えると、トリオキサンの気相平衡濃度が大きく低下する上に副反応が多くなるので好ましくない。反応圧力は特に限定されないが、常圧~5MPaの範囲で行われるのが好ましい。 As other reaction conditions, in view of the fact that this reaction is an exothermic equilibrium reaction, it is generally desirable that the temperature is low, but formaldehyde gas is condensed before and after the trioxane generator 4 and inside the trioxane generator 4. It is required to set the temperature so as to avoid the polymerization (paraformaldehyde production). Specifically, the temperature inside the trioxane generator 4 is preferably 80 to 120 ° C., more preferably 90 to 110 ° C. If the reaction temperature is too low, a sufficient reaction rate cannot be obtained, and polymerization of formaldehyde proceeds to cause precipitation in the catalyst layer, which is not desirable. On the other hand, if the temperature exceeds 120 ° C., the gas phase equilibrium concentration of trioxane is greatly reduced and side reactions increase, which is not preferable. The reaction pressure is not particularly limited, but it is preferably carried out in the range of normal pressure to 5 MPa.
 トリオキサン生成装置4として用いる反応器の種類及び反応形式は制限されるものではなく、槽型反応器によるバッチ式、セミバッチ式、連続流通式や、固定床、流動床、移動床等の流通型反応器を採用することができるが、本反応は発熱平衡反応であるため、好ましくは固定床の流通型反応器を用い効率的に触媒層からの除熱を行うことが望ましい。固定床反応器は多管式のチューブリアクターであり、外側を熱媒が流通する。チューブ1本あたりの内径は熱媒による温度制御ならびに除熱の効果を高めるために大きくなりすぎないことが肝要で、好ましくは50mmφ以下である。50mmφを超える反応器では、充填した触媒の半径方向で温度勾配を生じやすく、充填内部で蓄熱しやすくなるので反応に不利となり好ましくない。また、リアクターチューブの内径が小さすぎても触媒の成形体を充填するのに不都合が生じるため、内径は、少なくとも10mmφ以上であることが好ましい。 The type and reaction type of the reactor used as the trioxane generator 4 are not limited, and flow-type reactions such as a batch type, semi-batch type, continuous flow type, fixed bed, fluidized bed, moving bed, etc. using a tank type reactor. However, since this reaction is an exothermic equilibrium reaction, it is desirable to efficiently remove heat from the catalyst layer using a fixed bed flow reactor. The fixed bed reactor is a multitubular tube reactor, and a heat medium circulates outside. It is important that the inner diameter per tube is not too large in order to enhance the temperature control and heat removal effect by the heat medium, and is preferably 50 mmφ or less. In a reactor exceeding 50 mmφ, a temperature gradient is likely to occur in the radial direction of the packed catalyst, and heat is easily stored inside the packing, which is disadvantageous for the reaction and is not preferable. Further, even if the inner diameter of the reactor tube is too small, inconvenience arises in filling the catalyst compact, so that the inner diameter is preferably at least 10 mmφ.
 トリオキサン生成装置4へのホルムアルデヒドガスの流通方法については、トリオキサン生成装置4が流動床型反応器である場合、上方流・下方流のどちらにしてもよいが、上方流にすると、反応生成ガスの空塔速度が増した場合に触媒を吹き上げる危険性があるので注意を要する。 As for the flow method of formaldehyde gas to the trioxane generator 4, when the trioxane generator 4 is a fluidized bed type reactor, either an upward flow or a downward flow may be used. Be careful because there is a risk of blowing up the catalyst when the superficial velocity increases.
 また、本実施形態において、上方流又は下方流に用いるガスの種類は、特に限定されるものでなく、窒素もしくはアルゴン等の不活性ガス気流下で行うこともできる。 Further, in this embodiment, the type of gas used for the upward flow or the downward flow is not particularly limited, and can be performed under an inert gas stream such as nitrogen or argon.
 [分離装置5]
 分離装置5では、トリオキサン生成装置4で生成された反応生成ガスからトリオキサンと未反応ホルムアルデヒドガスとを分離する第四工程が行われる。図1に示されるとおり、本実施形態では、吸収塔等を用いて反応生成ガスに含まれるトリオキサンを有機溶媒に吸収してトリオキサン溶液を得る一方、反応生成ガスに含まれる未反応ホルムアルデヒドガスを気相のまま分離装置5の外部に排出する。吸収塔の種類は特に限定されるものではなく、液膜式、液滴式又は気泡式のいずれであってもよい。
[Separator 5]
In the separation device 5, a fourth step of separating trioxane and unreacted formaldehyde gas from the reaction product gas produced by the trioxane production device 4 is performed. As shown in FIG. 1, in this embodiment, trioxane contained in the reaction product gas is absorbed in an organic solvent using an absorption tower or the like to obtain a trioxane solution, while unreacted formaldehyde gas contained in the reaction product gas is removed. The phase is discharged to the outside of the separation device 5. The type of the absorption tower is not particularly limited, and may be any of a liquid film type, a droplet type or a bubble type.
 液膜式の一例として、充填塔、濡れ壁塔、液柱塔、連球(連珠)塔、円板塔等があり、また液滴式として、スプレー塔(噴霧式吸収装置)、各種スクラバー、遠心式吸収装置、流動層充填物吸収塔等がある。さらに気泡式としては、気泡塔、攪拌塔、棚段塔等が挙げられる。これらの中で、特に気液の接触面積を大きくとりトリオキサンの効率的な液相側への分配を実現する上で、充填塔が好んで用いられる。 Examples of liquid film types include packed towers, wet wall towers, liquid column towers, continuous ball towers, disk towers, etc., and as droplet types, spray towers (spray type absorption devices), various scrubbers, There are centrifugal absorption devices, fluidized bed packed absorption towers and the like. Furthermore, examples of the bubble type include a bubble tower, a stirring tower, a plate tower, and the like. Among these, a packed tower is preferably used in order to increase the contact area of gas and liquid and to realize efficient distribution of trioxane to the liquid phase side.
 また充填塔の場合、内部には通常ラシヒリングに代表される各種充填物を充填することができる。充填物の材質、形状については特に何ら限定されるものではなく、磁製、カーボン製、鋼製のいずれの材質、またリング型、サドル型、その他各種形状の充填物を用いることができる。また充填物のサイズについては、充填塔の塔径に合わせて適宜決めることが出来る。 Also, in the case of a packed tower, various kinds of packings represented by Raschig rings can be filled inside. The material and shape of the filler are not particularly limited, and any material made of magnetic material, carbon, or steel, or a ring shape, saddle shape, or other various shapes can be used. Further, the size of the packing can be appropriately determined according to the column diameter of the packed column.
 一方、凝縮器等を用いてよりトリオキサン成分を凝縮させることでトリオキサンと未反応ホルムアルデヒドガスとを分離することも考えられるが、凝縮器内の温度が低いと、凝縮器内部でトリオキサン成分が凝縮・固化しやすく、これに伴って未反応ホルムアルデヒド成分も固化しやすくなり、ホルムアルデヒドガスの気相への分離が大きく低下するため、好ましくない。また、凝縮器内の温度を上げても、トリオキサンが気相のまま凝縮器のオーバーヘッド側へ抜けやすくなり、分離回収性が低下するため、好ましくない。また、冷却塔等を用いてトリオキサンを固化、結晶化させてトリオキサンと未反応ホルムアルデヒドガスとを分離することも考えられるが、凝縮器等を用いる場合と同様、冷却塔内の温度が低すぎるため、冷却塔内部でトリオキサン成分が固化しやすく、これに伴って未反応ホルムアルデヒド成分も固化しやすくなり、ホルムアルデヒドガスの気相への分離が大きく低下するため、好ましくない。 On the other hand, it is conceivable to separate the trioxane component from the unreacted formaldehyde gas by condensing the trioxane component using a condenser or the like. However, if the temperature inside the condenser is low, the trioxane component is condensed inside the condenser. This is not preferable because it easily solidifies, and the unreacted formaldehyde component is also easily solidified, and the separation of formaldehyde gas into the gas phase is greatly reduced. Further, even if the temperature in the condenser is increased, trioxane tends to escape to the overhead side of the condenser in the vapor phase, and the separation and recovery properties are lowered, which is not preferable. In addition, it is conceivable to separate trioxane and unreacted formaldehyde gas by solidifying and crystallizing trioxane using a cooling tower or the like, but the temperature in the cooling tower is too low as in the case of using a condenser or the like. The trioxane component is easily solidified inside the cooling tower, and the unreacted formaldehyde component is also easily solidified, and the separation of the formaldehyde gas into the gas phase is greatly reduced.
 以下では、図1に示すように、吸収塔等を用いて反応生成ガスに含まれるトリオキサンを有機溶媒に吸収してトリオキサン溶液を得る場合について説明する。まず、トリオキサンと未反応ホルムアルデヒドガスとを含む反応生成ガスが分離装置5に連続的に供給される。 Hereinafter, as shown in FIG. 1, a case where a trioxane solution is obtained by absorbing trioxane contained in a reaction product gas into an organic solvent using an absorption tower or the like will be described. First, a reaction product gas containing trioxane and unreacted formaldehyde gas is continuously supplied to the separation device 5.
 分離装置5の内部は、トリオキサンの沸点(114.5℃)以下に調整されている。トリオキサンの沸点を超えると、トリオキサンを有機溶媒に適切に吸収できないため、好ましくない。有機溶媒への吸収効率を高めるため、分離装置5の内部は60℃以下に調整されていることがより好ましい。 The inside of the separation device 5 is adjusted to the boiling point (114.5 ° C.) or lower of trioxane. Exceeding the boiling point of trioxane is not preferable because trioxane cannot be properly absorbed by an organic solvent. In order to increase the absorption efficiency into the organic solvent, the inside of the separation device 5 is more preferably adjusted to 60 ° C. or less.
 また、分離装置5の内部の圧力は、特に限定されるものではないが、ゲージ圧で1kgf/cm以下であることが、未反応ホルムアルデヒドガスの気相への分離性を確保する点で好ましい。圧力が1kgf/cmを超えると、分離装置内でのホルムアルデヒドガス同士の相互作用が高まり、重合化してパラホルムとして溶剤相に析出しやすくなる等の問題が生じるため好ましくない。 The internal pressure of the separating device 5 is not particularly limited, it is preferable in terms of ensuring the separation of the gas phase of unreacted formaldehyde gas is 1 kgf / cm 2 or less in gauge pressure . If the pressure exceeds 1 kgf / cm 2 , the interaction between the formaldehyde gases in the separation device is increased, and problems such as polymerization and easy precipitation as a paraform in the solvent phase occur.
 続いて、分離装置5に供給された反応生成ガスを有機溶媒と接触させることによって、反応生成ガスに含まれるトリオキサンを有機溶媒に吸収する。そして、反応生成ガスに含まれる未反応ホルムアルデヒドガスを気相のまま分離装置5の外部に排出する。 Subsequently, the trioxane contained in the reaction product gas is absorbed by the organic solvent by bringing the reaction product gas supplied to the separation device 5 into contact with the organic solvent. Then, unreacted formaldehyde gas contained in the reaction product gas is discharged to the outside of the separation device 5 in a gas phase.
 有機溶媒は、トリオキサンに対する溶解性が高く、ホルムアルデヒドに対する溶解性が低いものであれば、どのようなものであってもよいが、例えば、芳香族化合物の一例として、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、クメン、メトキシベンゼン、エトキシベンゼン、クロロベンゼン、ナフタレン等が挙げられ、また脂環式化合物として、シクロヘキサン、シクロヘキサノン、メチルシクロヘキサノン、デカヒドロナルタレン等が挙げられる。このうち、トリオキサンの溶剤への分配性を考慮すると、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン等を挙げることができ、特に、最終精製工程での蒸留等による分離・精製操作を考慮するとベンゼンが好ましい。なお、無機溶媒は、トリオキサンに対する溶解性が低く、トリオキサンの溶媒への十分な分配率が得られないため、好ましくない。 The organic solvent may be any organic solvent that has high solubility in trioxane and low solubility in formaldehyde. For example, as an example of an aromatic compound, benzene, toluene, xylene, ethylbenzene, Examples include diethylbenzene, cumene, methoxybenzene, ethoxybenzene, chlorobenzene, and naphthalene. Examples of the alicyclic compound include cyclohexane, cyclohexanone, methylcyclohexanone, decahydronaltalene, and the like. Of these, benzene, toluene, xylene, ethylbenzene, diethylbenzene and the like can be mentioned in consideration of the distribution of trioxane to the solvent, and benzene is particularly preferable in consideration of separation / purification operations such as distillation in the final purification step. . An inorganic solvent is not preferable because it has low solubility in trioxane and a sufficient distribution ratio of trioxane to the solvent cannot be obtained.
 そして、反応生成ガスに含まれる未反応ホルムアルデヒドガスを気相のまま分離装置5の外部に排出する。 Then, unreacted formaldehyde gas contained in the reaction product gas is discharged to the outside of the separation device 5 in a gas phase.
 分離装置5は、ラシヒリングを充填する充填塔を備え、この充填塔において、有機溶媒と反応生成ガスとを交流又は並流接触させることで、反応生成ガスに含まれるトリオキサンを有機溶媒に吸収し、反応生成ガスに含まれる未反応ホルムアルデヒドガスを気相のまま充填塔の外部に排出することがより好ましい。 The separation device 5 includes a packed tower packed with Raschig rings, and in this packed tower, the organic solvent and the reaction product gas are contacted with each other by alternating current or cocurrent flow, thereby absorbing trioxane contained in the reaction product gas into the organic solvent, More preferably, the unreacted formaldehyde gas contained in the reaction product gas is discharged to the outside of the packed tower in a gas phase.
 [循環装置6]
 循環装置6では、分離装置5によって分離された未反応ホルムアルデヒドガスを、トリオキサン生成装置4で用いるホルムアルデヒドガスとして循環リサイクルする循環リサイクル工程が行われる。このガス循環においては、一般的なガス循環装置(ファン、ナッシュポンプ等)を用いることができる。気相三量化の反応器へガスを循環させるには、差圧分だけガスを圧縮する必要が生じるため、その機能を備えたファン・ポンプを使用することができる。
[Circulating device 6]
In the circulation device 6, a circulation recycling process is performed in which the unreacted formaldehyde gas separated by the separation device 5 is recycled as formaldehyde gas used in the trioxane generation device 4. In this gas circulation, a general gas circulation device (fan, Nash pump, etc.) can be used. In order to circulate the gas to the gas-phase trimerization reactor, it is necessary to compress the gas by the amount corresponding to the differential pressure. Therefore, a fan pump having this function can be used.
 以下、実施例及び比較例を示し具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, although an Example and a comparative example are shown and demonstrated concretely, this invention is not limited to these Examples.
<ヘミホルマール濃縮物の調製>
Figure JPOXMLDOC01-appb-T000001
 
(数値は、ホルムアルデヒド1モルに対するアルコールに含まれる水酸基のモル数の割合を示したもの)
<Preparation of hemi-formal concentrate>
Figure JPOXMLDOC01-appb-T000001

(Numerical values indicate the ratio of the number of moles of hydroxyl group contained in alcohol to 1 mole of formaldehyde)
〔調製例A〕
 ホルムアルデヒド50質量%含むホルムアルデヒド水溶液と、2,4-ジメチル-1,5-ペンタンジオール(商品名:PD-9,協和発酵ケミカル社製)とを、ホルムアルデヒド水溶液に含まれるホルムアルデヒドに対するアルコールに含まれる水酸基のモル比(アルコールに含まれる水酸基のモル数/ホルムアルデヒド水溶液に含まれるホルムアルデヒドのモル数)が1.3になるように混合し、室温下で12時間反応させ、ヘミホルマール化を行った。この反応によって生成したヘミホルマール水溶液を、1000g/hrの速さで減圧脱水塔に連続供給し、75℃、35mmHgの条件で脱水を行い、調製例Aに係るヘミホルマール濃縮物(以下、「ヘミホルマール濃縮物A」という。)を得た。
[Preparation Example A]
A formaldehyde aqueous solution containing 50% by mass of formaldehyde and 2,4-dimethyl-1,5-pentanediol (trade name: PD-9, manufactured by Kyowa Hakko Chemical Co., Ltd.), a hydroxyl group contained in alcohol relative to formaldehyde contained in the formaldehyde aqueous solution Was mixed so that the molar ratio (number of moles of hydroxyl group contained in alcohol / number of moles of formaldehyde contained in formaldehyde aqueous solution) was 1.3 and reacted at room temperature for 12 hours to perform hemi-formalization. The aqueous hemi-formal solution produced by this reaction is continuously supplied to a vacuum dehydration tower at a rate of 1000 g / hr, dehydrated under conditions of 75 ° C. and 35 mmHg, and the hemi-formal concentrate according to Preparation Example A (hereinafter referred to as “hemi-formal concentrate”). A ”).
〔調製例B〕
 2,4-ジメチル-1,5-ペンタンジオールの代わりに3-メチル-1,5-ペンタンジオール(クラレ社製)を用いたこと以外は、調製例Aと同じ方法にて、調製例Bに係るヘミホルマール濃縮物(以下、「ヘミホルマール濃縮物B」という。)を得た。
[Preparation Example B]
Preparation Example B was prepared in the same manner as Preparation Example A, except that 3-methyl-1,5-pentanediol (manufactured by Kuraray Co., Ltd.) was used instead of 2,4-dimethyl-1,5-pentanediol. Such a hemi-formal concentrate (hereinafter referred to as “hemi-formal concentrate B”) was obtained.
<固体酸触媒の調製>
Figure JPOXMLDOC01-appb-T000002
 
(その他、触媒Bとして市販品のアルミナを用いた。)
<Preparation of solid acid catalyst>
Figure JPOXMLDOC01-appb-T000002

(In addition, commercially available alumina was used as catalyst B.)
〔調製例A1〕
 濃度が約85%のオルトリン酸試薬(和光純薬製)に蒸留水を加え、リン酸濃度が25%になるように希釈した。そして、希釈後のリン酸水溶液100mlに対し、シリカゲル(商品名:CARiACT Q-50,富士シリシア化学社製)50gを加え1時間以上含浸操作を行った後、ろ過し、含浸されない不要な水溶液を除いた。こうして得られたリン酸担持体をオーブン内において150℃で2h焼成し、調製例A1に係る固体酸触媒(以下、「固体酸触媒A1」という。)を得た。
[Preparation Example A1]
Distilled water was added to an orthophosphoric acid reagent (manufactured by Wako Pure Chemical Industries, Ltd.) having a concentration of about 85% to dilute the phosphoric acid concentration to 25%. Then, 50 g of silica gel (trade name: CARiACT Q-50, manufactured by Fuji Silysia Chemical Co., Ltd.) is added to 100 ml of the diluted phosphoric acid aqueous solution, and the impregnation operation is performed for 1 hour or more, followed by filtration to remove an unnecessary aqueous solution that is not impregnated. Excluded. The phosphoric acid carrier thus obtained was calcined in an oven at 150 ° C. for 2 hours to obtain a solid acid catalyst according to Preparation Example A1 (hereinafter referred to as “solid acid catalyst A1”).
〔調製例A2〕
 上記オルトリン酸試薬に蒸留水を加え、リン酸濃度が5%になるように希釈したこと、及び焼成温度が300℃であること以外は、調製例A1と同じ方法にて、調製例A2に係る固体酸触媒(以下、「固体酸触媒A2」という。)を得た。
[Preparation Example A2]
According to Preparation Example A2, the same method as Preparation Example A1, except that distilled water was added to the orthophosphoric acid reagent and diluted so that the phosphoric acid concentration was 5% and the baking temperature was 300 ° C. A solid acid catalyst (hereinafter referred to as “solid acid catalyst A2”) was obtained.
〔その他〕
 その他、アルミナSphere(α-type)「SAS-10」(商品名:BASFジャパン社より入手)をそのまま使用した。以下、このアルミナを「触媒B」という。
[Others]
In addition, alumina Sphere (α-type) “SAS-10” (trade name: obtained from BASF Japan) was used as it was. Hereinafter, this alumina is referred to as “catalyst B”.
<実施例及び比較例>
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
 表3及び表4において、触媒A1及びA2は固体リン酸触媒、触媒Bはアルミナである。
<Examples and Comparative Examples>
Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004

In Tables 3 and 4, catalysts A1 and A2 are solid phosphoric acid catalysts, and catalyst B is alumina.
[実施例1]
〔ヘミホルマール濃縮物Aの調製〕
 まず、ヘミホルマール生成装置において上記ヘミホルマール濃縮物Aを得た。
[Example 1]
[Preparation of hemi-formal concentrate A]
First, the said hemi-formal concentrate A was obtained in the hemi-formal production | generation apparatus.
〔ホルムアルデヒドガスの調製〕
 次いで、ヘミホルマール濃縮物Aの熱分解にあたり、まず、1L耐圧容器を備えるオートクレーブにヘミホルマール濃縮物Aを600ml仕込み、さらにフラスコ外部よりヘミホルマールを300ml/hの一定速度で連続的に供給・排出を行えるようローラーポンプを設置した。また、オートクレーブ容器内にキャリアーガスとして窒素を一定流量(50~100ml/min)で供給した。オートクレーブの液温度として160~170℃の間でヘミホルマールの熱分解反応を行い、ホルムアルデヒドガスと窒素との混合ガスを調製した。ここで、ホルムアルデヒドガスと窒素の混合比がモル比で70:30よりもホルムアルデヒドの組成が高くなるよう、窒素流量と分解温度を適宜調整した。
[Preparation of formaldehyde gas]
Next, in the thermal decomposition of hemi-formal concentrate A, first, 600 ml of hemi-formal concentrate A is charged into an autoclave equipped with a 1 L pressure vessel, and hemi-formal can be continuously supplied and discharged from the outside of the flask at a constant rate of 300 ml / h. A roller pump was installed. Further, nitrogen was supplied as a carrier gas into the autoclave container at a constant flow rate (50 to 100 ml / min). A hemi-formal pyrolysis reaction was performed at a liquid temperature of the autoclave between 160 and 170 ° C. to prepare a mixed gas of formaldehyde gas and nitrogen. Here, the nitrogen flow rate and the decomposition temperature were adjusted as appropriate so that the composition ratio of formaldehyde gas and nitrogen was higher than the molar ratio of 70:30.
〔ホルムアルデヒドガスからトリオキサンを含む反応生成ガスへの気相合成〕
 トリオキサンへの気相三量化反応は、ヘミホルマール濃縮物Aの熱分解によって得たホルムアルデヒドガスを固体酸触媒A1と接触させることで行った。トリオキサン生成装置は、内径30mmφの固定床型の反応器(大倉理研製)であり、ここに予め調製した固体酸触媒A1を135g充填し、反応管の外側のジャケット流(オイル)により100℃に加温した。固体酸触媒A1が充填された固定床反応器内に、ホルムアルデヒドガスを下方流によって連続的に供給した。反応生成ガスは、約125℃に保温されたSUS316製の配管を通じてトリオキサン生成装置の外部に連続的に排出され、さらに分離装置に誘導された。
[Gas phase synthesis from formaldehyde gas to reaction product gas containing trioxane]
The gas phase trimerization reaction to trioxane was performed by contacting formaldehyde gas obtained by thermal decomposition of the hemi-formal concentrate A with the solid acid catalyst A1. The trioxane generator is a fixed bed reactor (made by Okura Riken) having an inner diameter of 30 mmφ, filled with 135 g of the solid acid catalyst A1 prepared in advance, and heated to 100 ° C. by a jacket flow (oil) outside the reaction tube. Warmed up. Formaldehyde gas was continuously fed by downward flow into the fixed bed reactor filled with the solid acid catalyst A1. The reaction product gas was continuously discharged to the outside of the trioxane production device through a pipe made of SUS316 kept at about 125 ° C., and further guided to the separation device.
〔反応生成ガスの分離〕
 分離装置として、ジャケット式の二重管(約25mmφ)を有する充填塔を用いた。この充填塔の内部に、6mmφの磁製ラシヒリングを充填した。そして、二重管の下部から反応生成ガスを連続的に供給するとともに、上部からベンゼンを200ml/hの流量で供給することにより、反応生成ガスとベンゼンとを交流接触させた。ガス状のトリオキサンはベンゼンに吸収され、液相として充填塔の下部から排出した。一方、未反応のホルムアルデヒドガスは、ベンゼンに吸収されることなく、充填塔の上部からガス状のまま排出された。充填塔内の温度は、ジャケットを流れる冷却水により30℃となるよう調整された。
(Separation of reaction product gas)
A packed tower having a jacket type double tube (about 25 mmφ) was used as a separation device. The packed tower was filled with 6 mmφ porcelain Raschig rings. Then, while continuously supplying the reaction product gas from the lower part of the double tube and supplying benzene from the upper part at a flow rate of 200 ml / h, the reaction product gas and benzene were brought into AC contact. Gaseous trioxane was absorbed by benzene and discharged from the bottom of the packed tower as a liquid phase. On the other hand, unreacted formaldehyde gas was discharged from the upper part of the packed tower in a gaseous state without being absorbed by benzene. The temperature in the packed tower was adjusted to 30 ° C. with cooling water flowing through the jacket.
〔未反応ホルムアルデヒドガスのリサイクル〕 [Recycling unreacted formaldehyde gas]
 続いて、充填塔の上部より排出される未反応ホルムアルデヒドガスをトリオキサン生成装置に循環リサイクル供給した。 Subsequently, unreacted formaldehyde gas discharged from the upper part of the packed tower was circulated and supplied to the trioxane generator.
[実施例2]
 分離装置が充填塔の代わりに気泡塔であり、この気泡塔に対し、反応生成ガスをベンゼン溶液中に直接吹き込む形で反応生成ガスを分離したこと以外は、実施例1と同じ方法によってトリオキサンを製造した。
[Example 2]
The separation apparatus was a bubble column instead of a packed column, and trioxane was removed by the same method as in Example 1 except that the reaction product gas was separated into the bubble column by blowing the reaction product gas directly into the benzene solution. Manufactured.
[実施例3]
 ヘミホルマール生成装置において得るヘミホルマール濃縮物が上記ヘミホルマール濃縮物Aではなく上記ヘミホルマール濃縮物Bであること以外は、実施例1と同じ方法によってトリオキサンを製造した。
[Example 3]
Trioxane was produced by the same method as in Example 1 except that the hemi-formal concentrate obtained in the hemi-formal generator was not the hemi-formal concentrate A but the hemi-formal concentrate B.
[実施例4]
 触媒として固体酸触媒A1の代わりに固体酸触媒A2を用い、充填塔内への有機溶媒(ベンゼン)の供給量を400g/hとしたこと以外は、実施例1と同じ方法によってトリオキサンを製造した。
[Example 4]
Trioxane was produced by the same method as in Example 1 except that the solid acid catalyst A2 was used instead of the solid acid catalyst A1 and the amount of organic solvent (benzene) supplied to the packed tower was 400 g / h. .
[比較例1]
 ホルムアルデヒドガス発生装置に供給する原料をヘミホルマール濃縮物ではなく、50%のホルムアルデヒド水溶液をそのまま使用したこと以外は、実施例1と同じ方法によってトリオキサンを製造した。
[Comparative Example 1]
Trioxane was produced by the same method as in Example 1 except that the raw material supplied to the formaldehyde gas generator was not a hemi-formal concentrate but a 50% aqueous formaldehyde solution was used as it was.
[比較例2]
 触媒として固体リン酸触媒の代わりにアルミナ(触媒B1)を用いたこと以外は、実施例1と同じ方法によってトリオキサンを製造した。
[Comparative Example 2]
Trioxane was produced by the same method as in Example 1 except that alumina (catalyst B1) was used instead of the solid phosphoric acid catalyst.
[比較例3]
 固体酸触媒A1の代わりに固体酸触媒A2を用い、さらに分離装置内で使用する溶媒としてベンゼンの代わりに蒸留水を用いた以外は、実施例1と同じ方法によってトリオキサンを製造した。
[Comparative Example 3]
Trioxane was produced by the same method as in Example 1, except that the solid acid catalyst A2 was used instead of the solid acid catalyst A1, and distilled water was used instead of benzene as the solvent used in the separator.
[比較例4~5]
 固体酸触媒A1の代わりに固体酸触媒A2を用い、分離装置として充填塔の代わりにジャケット式の凝縮器(内径約25mmφ)を用い、凝縮器内で溶媒を用いず直接反応生成ガスの気液分離を試みた。比較例4ではジャケットによる内部温度を30℃とし、また比較例5では50℃とした。
[Comparative Examples 4 to 5]
The solid acid catalyst A2 is used instead of the solid acid catalyst A1, a jacket type condenser (with an inner diameter of about 25 mmφ) is used instead of the packed tower as a separation device, and the gas-liquid of the reaction product gas is directly used without a solvent in the condenser. Attempted separation. In Comparative Example 4, the internal temperature by the jacket was 30 ° C., and in Comparative Example 5, it was 50 ° C.
<評価>
 実施例及び比較例のそれぞれについて、トリオキサン製造装置の運転を6時間以上連続して行った。そして、(1)トリオキサン生成装置においては、トリオキサンの収率及び反応選択率を、(2)分離装置においては、トリオキサンの溶媒への分配率、及びホルムアルデヒドの気相への分配率を評価した。
<Evaluation>
About each of the Example and the comparative example, the driving | operation of the trioxane manufacturing apparatus was performed continuously for 6 hours or more. Then, (1) in the trioxane generator, the yield of trioxane and reaction selectivity were evaluated, and (2) in the separator, the distribution ratio of trioxane to the solvent and the distribution ratio of formaldehyde to the gas phase were evaluated.
 トリオキサンの収率及び溶媒への分配率は、溶媒中のトリオキサン濃度をガスクロマトグラフィー(装置名:GC-2014,島津製作所社製、カラム:TSG-1(15%)4m長)によって算出するとともに、気相側に抜けたトリオキサン成分量を一旦水で補集し、この水溶液を別のカラムのガスクロマトグラフィー(装置名:GC-9A,島津製作所社製、カラム:Chromsorb101,5m長)で測定することによって算出した。 The yield of trioxane and the distribution ratio to the solvent were calculated by calculating the trioxane concentration in the solvent by gas chromatography (device name: GC-2014, manufactured by Shimadzu Corporation, column: TSG-1 (15%) 4 m length). The amount of the trioxane component that escaped to the gas phase side was once collected with water, and this aqueous solution was measured by gas chromatography on another column (device name: GC-9A, manufactured by Shimadzu Corporation, column: Chromsorb 101, 5 m long). Calculated by
 トリオキサンの反応選択率は、反応副生成物であるメタノール、蟻酸メチル及びメチラールの濃度をガスクロマトグラフィー(装置名:GC-9A,島津製作所社製、カラム:Chromsorb101,5m長)で測定し、また、蟻酸の濃度を滴定で算出した後、これらの結果からトリオキサン選択率を計算することによって算出した。 The reaction selectivity of trioxane was measured by gas chromatography (equipment name: GC-9A, manufactured by Shimadzu Corporation, column: Chromsorb 101, 5 m length) by measuring the concentrations of methanol, methyl formate and methylal as reaction byproducts. After calculating the concentration of formic acid by titration, the trioxane selectivity was calculated from these results.
 ホルムアルデヒドの気相への分配率は、一旦吸収塔のオーバーヘッドからガスを抜き出し、これを水で吸収した後、このホルムアルデヒド水溶液を亜硫酸ナトリウム法による滴定で濃度を算出するとともに、吸収液側に分配されたホルムアルデヒド成分を同様に滴定により算出し、両者の比を求めることにより算出した。結果を表5及び表6に示す。 The distribution ratio of formaldehyde to the gas phase is that once the gas is extracted from the overhead of the absorption tower and absorbed with water, the concentration of this aqueous formaldehyde solution is calculated by titration by the sodium sulfite method and distributed to the absorption liquid side. The formaldehyde component was similarly calculated by titration, and the ratio between the two was calculated. The results are shown in Tables 5 and 6.
<結果>
Figure JPOXMLDOC01-appb-T000005
 
<Result>
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
 ホルムアルデヒド水溶液とアルコールとからヘミホルマールを得る第一工程と、上記ヘミホルマールを熱分解することによりホルムアルデヒドガスを発生させる第二工程と、トリオキサン生成装置に上記ホルムアルデヒドガスを供給し、固体酸触媒を用い、上記ホルムアルデヒドガスからトリオキサンを含む反応生成ガスを気相合成する第三工程と、上記反応生成ガスを有機溶媒と接触させることによって上記反応生成ガスに含まれるトリオキサンを上記有機溶媒に吸収し、上記反応生成ガスに含まれる未反応ホルムアルデヒドガスを気相のまま外部に排出する第四工程と、上記第四工程にて分離した上記未反応ホルムアルデヒドガスを、上記第三工程における前記ホルムアルデヒドガスとして循環リサイクルする循環リサイクル工程とを経てトリオキサンを製造する場合、トリオキサン生成装置におけるトリオキサンの収率及び反応選択率が有意に高いとともに、分離装置における分配率も有意に良好であることが確認された(実施例1~4)。 A first step of obtaining hemiformal from an aqueous formaldehyde solution and alcohol, a second step of generating formaldehyde gas by thermally decomposing the hemiformal, supplying the formaldehyde gas to a trioxane generator, using a solid acid catalyst, A third step of gas-phase synthesis of a reaction product gas containing trioxane from formaldehyde gas, and by contacting the reaction product gas with an organic solvent, the trioxane contained in the reaction product gas is absorbed in the organic solvent, and the reaction product is produced. A fourth step of discharging unreacted formaldehyde gas contained in the gas to the outside in a gas phase, and a circulation for recycling the unreacted formaldehyde gas separated in the fourth step as the formaldehyde gas in the third step Recycling process When producing trioxane Te, along with a higher significant yield and selectivity of the reaction of trioxane in trioxane generator, it was confirmed the distribution rate in the separation device is also significantly better (Examples 1-4).
 一方、ホルムアルデヒドガス発生装置において、ヘミホルマール濃縮物ではなく、ホルムアルデヒド水溶液を原料として供給すると、トリオキサンの収率が著しく低く、実施例ほど効率的にトリオキサンを製造できないことが確認された(比較例1)。これは、原料中には水が高濃度で存在するため、気相反応に対して不利であるばかりか、多量の水による固体酸触媒の失活や、ホルムアルデヒドガスの再重合化(パラホルム化)が起こり易いためであると考えられる。なお、トリオキサンの収率が著しく低いため、分離装置の評価は行っていない。 On the other hand, in the formaldehyde gas generator, when the formaldehyde aqueous solution was supplied as a raw material instead of the hemi-formal concentrate, the yield of trioxane was remarkably low, and it was confirmed that trioxane could not be produced as efficiently as the examples (Comparative Example 1). . This is not only disadvantageous for the gas phase reaction because of the high concentration of water in the raw material, but also the deactivation of the solid acid catalyst by a large amount of water and the repolymerization of formaldehyde gas (paraformation). It is considered that this is likely to occur. In addition, since the yield of trioxane is remarkably low, the evaluation of the separation apparatus is not performed.
 また、ホルムアルデヒドガスから触媒を用いてトリオキサンを得る際、触媒として固体酸触媒ではなくアルミナを用いると、トリオキサンの収率が著しく低く、実施例ほど効率的にトリオキサンを製造できないことが確認された(比較例2)。これは、アルミナが有する触媒表面上の塩基点の影響により、本来トリオキサンの生成に有効なプロトン酸としての酸触媒の作用を低下させるためと考えられる。なお、トリオキサンの収率が著しく低いため、分離装置の評価は行っていない。 Further, when trioxane was obtained from formaldehyde gas using a catalyst, it was confirmed that when alumina was used instead of a solid acid catalyst, the yield of trioxane was remarkably low, and trioxane could not be produced as efficiently as the examples ( Comparative Example 2). This is considered to reduce the action of the acid catalyst as a protonic acid that is originally effective for the production of trioxane due to the influence of the base point on the catalyst surface of alumina. In addition, since the yield of trioxane is remarkably low, the evaluation of the separation apparatus is not performed.
 また、分離装置で使用する溶媒が無機溶媒(蒸留水)であると、未反応ホルムアルデヒドガスの気相分離が困難であり、好ましくないことが確認された(比較例3)。 Further, it was confirmed that when the solvent used in the separation apparatus is an inorganic solvent (distilled water), it is difficult to perform gas phase separation of unreacted formaldehyde gas (Comparative Example 3).
 また、分離装置としてジャケット式の凝縮器を用い、凝縮器内で溶媒を用いず直接反応生成ガスの気液分離を試みようとすると、凝縮器内の温度が低い場合は、凝縮器内部でトリオキサン成分が凝縮・固化しやすく、これに伴って未反応ホルムアルデヒド成分も固化しやすくなり、ホルムアルデヒドガスの気相への分離が大きく低下するため、好ましくないことが確認された(比較例4)。また、凝縮器内の温度が高いと、トリオキサンが気相のまま凝縮気のオーバーヘッド側へ抜けやすくなり、分離回収性が低下するため、好ましくないことが確認された(比較例5)。 In addition, when a jacket-type condenser is used as a separation device and an attempt is made to perform gas-liquid separation of the reaction product gas directly without using a solvent in the condenser, if the temperature in the condenser is low, trioxane is contained inside the condenser. It was confirmed that the components are easily condensed and solidified, and the unreacted formaldehyde component is easily solidified, and the separation of the formaldehyde gas into the gas phase is greatly reduced, which is not preferable (Comparative Example 4). Moreover, when the temperature in the condenser was high, it was confirmed that trioxane was not preferable because it was easy to escape to the overhead side of the condensed gas in the gas phase, and the separation and recovery were reduced (Comparative Example 5).
 1   トリオキサン製造装置
 2   ヘミホルマール生成装置
 3   ホルムアルデヒドガス発生装置
 4   トリオキサン生成装置
 5   分離装置
 6   循環装置
DESCRIPTION OF SYMBOLS 1 Trioxane production apparatus 2 Hemi formal production apparatus 3 Formaldehyde gas generation apparatus 4 Trioxane production apparatus 5 Separation apparatus 6 Circulation apparatus

Claims (12)

  1.  ホルムアルデヒド水溶液とアルコールとからヘミホルマールを得る第一工程と、
     前記ヘミホルマールを熱分解することによりホルムアルデヒドガスを発生させる第二工程と、
     トリオキサン生成装置に前記ホルムアルデヒドガスを供給し、固体酸触媒を用い、前記ホルムアルデヒドガスからトリオキサンを含む反応生成ガスを気相合成する第三工程と、
     前記反応生成ガスを有機溶媒と接触させることによって前記反応生成ガスに含まれるトリオキサンを前記有機溶媒に吸収し、前記反応生成ガスに含まれる未反応ホルムアルデヒドガスを気相のまま外部に排出する第四工程と、
     前記第四工程にて分離した前記未反応ホルムアルデヒドガスを、前記第三工程における前記ホルムアルデヒドガスとして循環リサイクルする循環リサイクル工程と、
    を含む、トリオキサン製造方法。
    A first step of obtaining hemiformal from an aqueous formaldehyde solution and alcohol;
    A second step of generating formaldehyde gas by pyrolyzing the hemiformal;
    A third step in which the formaldehyde gas is supplied to a trioxane generator, a solid acid catalyst is used, and a reaction product gas containing trioxane is vapor-phase synthesized from the formaldehyde gas;
    By bringing the reaction product gas into contact with an organic solvent, trioxane contained in the reaction product gas is absorbed into the organic solvent, and unreacted formaldehyde gas contained in the reaction product gas is discharged outside in a gas phase. Process,
    A circulation recycling step of circulating and recycling the unreacted formaldehyde gas separated in the fourth step as the formaldehyde gas in the third step;
    A method for producing trioxane, comprising:
  2.  前記アルコールは、沸点が190℃以上のモノオール、ジオール又はトリオールから選択される1種又は2種以上の組合せである、請求項1に記載のトリオキサン製造方法。 The method for producing trioxane according to claim 1, wherein the alcohol is one or a combination of two or more selected from monool, diol or triol having a boiling point of 190 ° C or higher.
  3.  前記固体酸触媒はケイ酸質の無機担持体に担持されたリン酸を含有する、請求項1又は2に記載のトリオキサン製造方法。 The method for producing trioxane according to claim 1 or 2, wherein the solid acid catalyst contains phosphoric acid supported on a siliceous inorganic carrier.
  4.  前記第三工程における、前記トリオキサン生成装置に供給するホルムアルデヒドガスの単位時間当たりの質量と、前記トリオキサン生成装置に充填する前記固体酸触媒の質量との比を示す質量空間速度WHSVの値は1/50h-1以上1h-1以下である、請求項1から3のいずれかに記載のトリオキサン製造方法。 In the third step, the mass space velocity WHSV indicating the ratio of the mass per unit time of formaldehyde gas supplied to the trioxane generator and the mass of the solid acid catalyst charged in the trioxane generator is 1 / 50h is -1 or more 1h -1 or less, trioxane production method according to any one of claims 1 to 3.
  5.  前記第三工程では、
      前記固体酸触媒を多管式の固定床反応器に充填し、
      前記第二工程で得られた前記ホルムアルデヒドガス及び前記循環リサイクル工程で循環リサイクルされた前記未反応ホルムアルデヒドガスと、前記固体酸触媒とを不均一系で接触させ、
      トリオキサンを気相状態のまま連続的に前記固定床反応器から抜き出すことによってトリオキサンを気相合成する、
     請求項1から4のいずれかに記載のトリオキサン製造方法。
    In the third step,
    Packing the solid acid catalyst into a multitubular fixed bed reactor,
    Contacting the solid acid catalyst in a heterogeneous system with the formaldehyde gas obtained in the second step and the unreacted formaldehyde gas circulated and recycled in the circulation and recycling step;
    Trioxane is vapor-phase synthesized by continuously withdrawing trioxane from the fixed bed reactor in the gas-phase state.
    The trioxane manufacturing method in any one of Claim 1 to 4.
  6.  前記有機溶媒はベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼンから選択される1以上である、請求項1から5のいずれかに記載のトリオキサン製造方法。 The method for producing trioxane according to any one of claims 1 to 5, wherein the organic solvent is one or more selected from benzene, toluene, xylene, ethylbenzene, and diethylbenzene.
  7.  前記第四工程では、前記第三工程で合成されたトリオキサンと前記第三工程で未反応である未反応ホルムアルデヒドガスとを含む反応生成ガスを、前記トリオキサンの沸点以下の温度に調節された分離装置に連続的に供給する、請求項1から6のいずれかに記載のトリオキサン製造方法。 In the fourth step, a separation apparatus in which the reaction product gas containing trioxane synthesized in the third step and unreacted formaldehyde gas unreacted in the third step is adjusted to a temperature not higher than the boiling point of the trioxane. The method for producing trioxane according to any one of claims 1 to 6, wherein the trioxane is continuously supplied to the reactor.
  8.  前記分離装置は、液膜式、液滴式又は気泡式のいずれかによる吸収塔を備える、請求項7に記載のトリオキサン製造方法。 The method for producing trioxane according to claim 7, wherein the separation device includes an absorption tower of any one of a liquid film type, a droplet type and a bubble type.
  9.  前記吸収塔は、前記液膜式による吸収塔であり、
     前記吸収塔は、充填材を充填する充填塔を備え、
     前記第四工程では、前記有機溶媒と前記反応生成ガスとを交流又は並流接触させることで、前記反応生成ガスに含まれるトリオキサンを前記有機溶媒に吸収し、前記反応生成ガスに含まれる前記未反応ホルムアルデヒドガスを気相のまま前記分離装置の外部に分離する、請求項8に記載のトリオキサン製造方法。
    The absorption tower is an absorption tower by the liquid film type,
    The absorption tower includes a packed tower that is filled with a filler,
    In the fourth step, trioxane contained in the reaction product gas is absorbed into the organic solvent by bringing the organic solvent and the reaction product gas into alternating current or cocurrent contact with each other, and the unsolved product contained in the reaction product gas is absorbed. The method for producing trioxane according to claim 8, wherein the reaction formaldehyde gas is separated outside the separation device in a gas phase.
  10.  前記分離装置の内部の温度は60℃以下である、請求項7から9のいずれかに記載のトリオキサン製造方法。 The method for producing trioxane according to any one of claims 7 to 9, wherein the temperature inside the separator is 60 ° C or lower.
  11.  前記分離装置の内部の圧力はゲージ圧で1kgf/cm以下である、請求項7から10のいずれかに記載のトリオキサン製造方法。 The trioxane production method according to any one of claims 7 to 10, wherein the pressure inside the separation device is 1 kgf / cm 2 or less in terms of gauge pressure.
  12.   ホルムアルデヒド水溶液とアルコールとからヘミホルマールを得るヘミホルマール生成装置と、
     前記ヘミホルマールを熱分解し、ホルムアルデヒドガスを発生させるホルムアルデヒドガス発生装置と、
     固体酸触媒を用い、前記ホルムアルデヒドガスからトリオキサンを含む反応生成ガスを気相合成するトリオキサン生成装置と、
     前記反応生成ガスを有機溶媒と接触させることによって前記反応生成ガスに含まれるトリオキサンを前記有機溶媒に吸収し、前記反応生成ガスに含まれる未反応ホルムアルデヒドガスを気相のまま外部に排出する分離装置と、
     前記未反応ホルムアルデヒドガスを前記トリオキサン生成装置に循環する循環装置と、
    を備えるトリオキサン製造装置。
    A hemi-formal generator for obtaining hemi-formal from an aqueous formaldehyde solution and alcohol;
    A formaldehyde gas generator that thermally decomposes the hemiformal to generate formaldehyde gas;
    Using a solid acid catalyst, a trioxane generator for vapor-phase synthesis of a reaction product gas containing trioxane from the formaldehyde gas, and
    A separation device that absorbs trioxane contained in the reaction product gas into the organic solvent by bringing the reaction product gas into contact with an organic solvent, and discharges the unreacted formaldehyde gas contained in the reaction product gas to the outside in a gas phase. When,
    A circulation device for circulating the unreacted formaldehyde gas to the trioxane generator;
    An apparatus for producing trioxane.
PCT/JP2013/066201 2012-07-24 2013-06-12 Method and device for producing trioxane WO2014017203A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-163719 2012-07-24
JP2012163719A JP2014024754A (en) 2012-07-24 2012-07-24 Method and apparatus of producing trioxane

Publications (1)

Publication Number Publication Date
WO2014017203A1 true WO2014017203A1 (en) 2014-01-30

Family

ID=49997019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066201 WO2014017203A1 (en) 2012-07-24 2013-06-12 Method and device for producing trioxane

Country Status (3)

Country Link
JP (1) JP2014024754A (en)
TW (1) TW201404775A (en)
WO (1) WO2014017203A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185205A1 (en) * 2013-05-13 2014-11-20 クラリアント触媒株式会社 Solid phosphoric acid catalyst, and method for producing trioxane
US10829467B2 (en) * 2018-03-29 2020-11-10 Celanese Sales Germany Gmbh Process for producing a cyclic acetal in a heterogeneous reaction system
CN112272615A (en) * 2018-06-05 2021-01-26 Skc株式会社 Film for glass bonding, method for producing same, and mobile device comprising same
CN114105937A (en) * 2022-01-29 2022-03-01 中化学科学技术研究有限公司 Trioxymethylene reaction method and production method thereof
WO2022095307A1 (en) * 2020-11-05 2022-05-12 中国科学院成都有机化学有限公司 Process and device for preparing trioxymethylene from methanol

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062921A (en) * 1973-10-08 1975-05-29
JPH07300441A (en) * 1994-05-02 1995-11-14 Hoechst Ag Separation of formaldehyde and trioxane
JP2001011069A (en) * 1999-05-06 2001-01-16 Ticona Gmbh Trimerization of formaldehyde in vapor phase

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062921A (en) * 1973-10-08 1975-05-29
JPH07300441A (en) * 1994-05-02 1995-11-14 Hoechst Ag Separation of formaldehyde and trioxane
JP2001011069A (en) * 1999-05-06 2001-01-16 Ticona Gmbh Trimerization of formaldehyde in vapor phase

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185205A1 (en) * 2013-05-13 2014-11-20 クラリアント触媒株式会社 Solid phosphoric acid catalyst, and method for producing trioxane
US9409159B2 (en) 2013-05-13 2016-08-09 Clariant Catalysts (Japan) K.K. Solid phosphoric acid catalyst, and method for producing trioxane
US10829467B2 (en) * 2018-03-29 2020-11-10 Celanese Sales Germany Gmbh Process for producing a cyclic acetal in a heterogeneous reaction system
CN112272615A (en) * 2018-06-05 2021-01-26 Skc株式会社 Film for glass bonding, method for producing same, and mobile device comprising same
US11613611B2 (en) 2018-06-05 2023-03-28 Skc Co., Ltd. Film for laminating glass, method for manufacturing film for laminating glass, and vehicle comprising film for laminating glass
CN112272615B (en) * 2018-06-05 2023-03-31 Skc株式会社 Film for glass bonding, method for producing same, and mobile device comprising same
WO2022095307A1 (en) * 2020-11-05 2022-05-12 中国科学院成都有机化学有限公司 Process and device for preparing trioxymethylene from methanol
CN114105937A (en) * 2022-01-29 2022-03-01 中化学科学技术研究有限公司 Trioxymethylene reaction method and production method thereof

Also Published As

Publication number Publication date
JP2014024754A (en) 2014-02-06
TW201404775A (en) 2014-02-01

Similar Documents

Publication Publication Date Title
WO2014017203A1 (en) Method and device for producing trioxane
US10471371B2 (en) Reflux condenser method
EP0867434B1 (en) A method for continuously producing a cyclic formal
JP6332913B2 (en) Solid phosphoric acid catalyst and method for producing trioxane using the same
KR101529798B1 (en) Process for production of allyl acetate
WO2001098285A1 (en) Process for the removal of carbon dioxide from 3,4-epoxy-1-butene process recycle streams
JP4910503B2 (en) Propylene oxide production method
JP5734538B1 (en) Method for producing aromatic dihydroxy compound
JP5817189B2 (en) Method for producing tetrahydrofuran
WO2016051987A1 (en) Processes for producing acetaldehyde
JP6391596B2 (en) Separation of acrolein from process gas of oxidation by heterogeneous catalysis of propene
KR100485226B1 (en) Manufacturing method of 1,3-dioxolane
US4990685A (en) Process for the preparation of aqueous formaldehyde solutions
US9012638B2 (en) Process for preparing EDDN and/or EDMN by conversion of FACH and EDA
CN112759498B (en) Method for preparing isobutene by decomposing methyl tertiary butyl ether
JP4673028B2 (en) Method for purifying ethylene carbonate
JP2017509604A (en) Process for the production of acrylic acid of biological origin
JP2016531148A (en) Cross reference of improved process related applications for the production of tetrahydrofuran
CN112759499B (en) Process for preparing isobutene by decomposing high-efficiency methyl tertiary butyl ether
CN111978288B (en) Preparation process and device of trioxymethylene
JPH0788353B2 (en) Method for producing aziridine compound
JP4029454B2 (en) Continuous production method of cyclic formal
US20110087035A1 (en) Process for the preparation of dihydropyran
JPWO2015105078A1 (en) Method for producing hexachloroacetone
WO2023099727A1 (en) Process for preparing isoprenal and/or prenal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13823832

Country of ref document: EP

Kind code of ref document: A1