WO2014016914A1 - Abnormal noise detection system - Google Patents

Abnormal noise detection system Download PDF

Info

Publication number
WO2014016914A1
WO2014016914A1 PCT/JP2012/068755 JP2012068755W WO2014016914A1 WO 2014016914 A1 WO2014016914 A1 WO 2014016914A1 JP 2012068755 W JP2012068755 W JP 2012068755W WO 2014016914 A1 WO2014016914 A1 WO 2014016914A1
Authority
WO
WIPO (PCT)
Prior art keywords
density distribution
abnormal
zero
zero point
normal
Prior art date
Application number
PCT/JP2012/068755
Other languages
French (fr)
Japanese (ja)
Inventor
今朝明 峰村
晋也 湯田
崇 佐伯
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2012/068755 priority Critical patent/WO2014016914A1/en
Priority to JP2014526650A priority patent/JP5948418B2/en
Priority to CN201280074211.9A priority patent/CN104380063B/en
Priority to GB1419256.1A priority patent/GB2520628B/en
Publication of WO2014016914A1 publication Critical patent/WO2014016914A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures

Definitions

  • the present invention relates to an abnormal sound detection system.
  • Patent Document 1 discloses an “acoustic diagnosis support apparatus that supports diagnosis of a sound source that generates abnormal noise at a predetermined period when an abnormality occurs”, and “makes it easy to grasp the abnormality”. It is described.
  • the sound collector records measurement data obtained by sampling the sound generated from the rotating machine at a predetermined frequency for a predetermined time longer than the rotation period.
  • the diagnosis support apparatus acquires measurement data from the sound collector.
  • the support apparatus extracts a reference data sequence for one cycle from the beginning of the first measurement data, extracts a comparison data sequence for one cycle while shifting the extraction position in the nth measurement data, The correlation degree of the comparison data series is calculated, the second measurement data is shifted using the extraction position with the largest correlation degree as the shift amount, and then added to the first measurement data ".
  • Patent Document 2 discloses that “a method for diagnosing an abnormality occurring in the diagnostic object based on an acoustic signal generated from the diagnostic object, and the acoustic signal when the diagnostic object is in a normal state”. Based on the relationship between the sound pressure and the frequency or frequency band obtained by frequency analysis of the sound pressure of each of the frequencies or the frequency band and one or more other frequencies around the frequency or frequency band “Abnormality diagnosis method for obtaining a relative difference from a sound pressure corresponding to a frequency band as a relative sound pressure difference”.
  • Patent Document 3 relates to a signal detection method for searching for and detecting a predetermined signal from a stored signal series or a signal similar to a part thereof, and can be applied to, for example, acoustic signal detection.
  • the signal detection method there is known a signal search method for the purpose of detecting a location similar to the target signal in the accumulated signal, but because only local pruning is used.
  • a disadvantage that it takes a long time to search.Based on the L1 distance, global grouping and local grouping are performed to make the search space efficient. By narrowing down to, there is an advantage that effective partial signal detection can be performed at high speed while maintaining the search system.
  • the abnormal sound detection method, the feature amount, and the search for similar information emitted from the device have been worked on from the past.
  • Patent Document 1 is an invention that, when an abnormality occurs, acquires a plurality of periodic data of acoustic data, synchronizes them, and then superimposes them to grasp the abnormality of the sound source that occurs periodically. For this reason, it is impossible to grasp an abnormality of a sound source that does not occur periodically, for example, an abnormal sound in which a phase change occurs. For this reason, it is impossible to detect an abnormality such as a small amplitude change, an air inlet clogging, or an initial abnormality.
  • Patent Document 2 defines an abnormality determination level difference upper limit threshold and an abnormality determination level difference lower limit threshold based on the relationship between the sound pressure and the frequency or frequency band that can be obtained by frequency analysis of an acoustic signal, and diagnoses In some cases, diagnosis is performed using a frequency component or its sound pressure. Therefore, it is not possible to detect an abnormality in which abnormal sound does not appear in the frequency band and sound pressure value (size).
  • Patent Document 3 is an invention for performing a search by making a histogram of feature amounts in order to perform a high-speed search using the L1 distance. Also, the color of the video is used as a feature amount.
  • the L1 distance is defined as a distance based on a difference in distance based on the first power.
  • An object of the present invention is to detect an abnormal sound in which an amplitude intensity (sound pressure) does not change or is small among abnormal sounds emitted from a device and a phase change occurs.
  • a diagnosis focusing on a zero point is performed as a feature quantity used for abnormality diagnosis.
  • the zero point is a zero crossing in the waveform in the time domain, and is a point where the energy becomes zero on the frequency domain.
  • the density distribution of the size of the zeros is a distribution corresponding to the phase change. This is because the interval of zero crossings in the time domain appears on the complex plane as the size of the zero, and on the complex plane, the number of zeros can be counted for each size. That is, when the phase change does not occur, the distribution is uniquely determined, and when the phase change occurs, the zero point density distribution changes.
  • the present invention calculates, for example, the size of a zero point of sound data for one cycle of the input signal in an abnormal sound detection system that performs abnormality diagnosis of the device using sound data collected from the device to be diagnosed as an input signal.
  • the diagnosis by comparing the zero point size calculation unit, the zero point density distribution calculation unit for calculating the zero point density distribution from the zero point size, the zero point density distribution of the input signal, and the zero point density distribution of normal sound data And a normal / abnormal diagnosis unit that determines whether the target device is normal or abnormal.
  • FIG. 1 is an example of a configuration diagram of an abnormal sound detection system.
  • FIG. 2 is an example of a hardware configuration.
  • the abnormal sound detection system 1 includes a one-cycle calculation unit 101, a zero point calculation unit 102, a zero point size calculation unit 103, a zero point density distribution calculation unit 104, an accumulated signal collation unit 105, and a normal / abnormal diagnosis unit. 106 and a zero point density database 107.
  • the abnormal sound detection system 1 shown in FIG. 1 corresponds to the data processing unit H02 shown in FIG. 2, and the processing is realized by, for example, a computer or a microcomputer.
  • the display 108 for displaying the result such as the density distribution shown in FIG. 1 corresponds to the output result display unit H03 in FIG.
  • the abnormal sound detection system 1 uses the input signal I1 as an input to the one-cycle calculation unit 101, and the one-cycle calculation unit 101 cuts out one cycle of the input signal I1 as a signal for one cycle of the input signal. Output to the zero point calculation unit 102.
  • the input signal I1 is sound data collected from the device to be diagnosed.
  • the input means for the input signal I1 is directly input from the microphone H01 shown in FIG. 2 to the data processing unit H02, and the data logger from the microphone H01. A case where the data is input to the data processing unit H02 via, for example, can be considered.
  • the zero point calculation unit 102 calculates a zero point from the signal corresponding to one cycle of the input signal calculated by the one period calculation unit 101, and outputs the calculated zero point to the zero point size calculation unit 103.
  • the zero point is calculated by performing n-order polynomial approximation and solving the n-th order approximation.
  • a method of numerical calculation reference document: numerical calculation method, written by Hideyo Nagashima
  • a method using Lagrange interpolation is known.
  • the zero point size calculation unit 103 calculates the size of the zero point from the zero point calculated by the zero point calculation unit 102. Zeros are defined as complex numbers. Therefore, the magnitude is calculated by taking the absolute value of the complex number.
  • the zero size calculated by the zero size calculator 103 is input to the zero density distribution calculator 104.
  • the zero density distribution calculation unit 104 calculates the zero density distribution from the input zero size data. Specifically, the ratio of the number of zeros having a specific zero point size to the total number of zeros is calculated. Zeros are calculated for the number of approximate orders. For example, when approximated to a sixth-order function, a maximum of six zeros are calculated. In addition, there are six periods of waveforms, and when approximated to a sixth-order function, the total number of zeros is 36.
  • the zero point density distribution of the input signal I1 calculated by the zero point density distribution calculation unit 104 is output to the accumulated signal collation unit 105.
  • the abnormal sound detection system 1 performs the same calculation in the one cycle calculation unit 101, the zero point calculation unit 102, the zero point size calculation unit 103, and the zero point density distribution calculation unit 104 even for the accumulated signal I2.
  • the accumulation signal I2 is a normal sound collected when the device is in a normal state.
  • the zero point density distribution of the accumulated signal I2 calculated by the accumulated signal I2 is recorded in the zero point density database 107.
  • the accumulated signal collating unit 105 compares an accumulated signal for comparison with the zero density distribution of the input signal I1 calculated from the input signal I1 from the zero density distribution database of the accumulated signal I2 constructed in the zero density database 107.
  • the zero density distribution of I2 is read, and the zero density distribution of the input signal I1 and the zero density distribution of the accumulated signal I2 are output to the normal / abnormal diagnosis unit 106.
  • the zero density distribution of the accumulation signal I2 is accumulated as normal data.
  • the normal / abnormal diagnosis unit 106 compares the zero point density distribution of the input signal I1 with the zero point density distribution of the accumulated signal I2, performs normal or abnormal diagnosis, and outputs a diagnosis result.
  • a comparison method of the zero density distribution of the input signal I1 and the zero density distribution of the accumulated signal I2 a method of comparing by calculating a correlation coefficient between the zero density distribution of the input signal I1 and the zero density distribution of the accumulated signal I2. Etc. are considered.
  • a correlation coefficient of 1.0 indicates that the correlation is strong, and that the accumulated signal I2 and the input signal I1 are the same, and the correlation coefficient When 0.0 is 0.0, it indicates that there is no correlation, and that the accumulated signal I2 and the input signal I1 are different.
  • the correlation coefficient is already known as a method for statistically evaluating the degree of similarity between random variables.
  • the threshold value for distinguishing between normal and abnormal using the correlation coefficient needs to be determined according to the device to be diagnosed, the device to be detected, the progress of failure, and the like. For example, the normal / abnormal determination threshold is set to 0.8. If the correlation coefficient is equal to or higher than the normal / abnormal determination threshold, it is determined to be normal, and if the correlation coefficient is less than the normal / abnormal determination threshold, it is determined to be abnormal.
  • the display 108 displays a normal or abnormal determination result determined by the normal / abnormal diagnosis unit 106.
  • the abnormal sound detection system 1 has a display control unit (not shown), and controls display on the display 108.
  • the display 108 may also display other information together, as will be described later with reference to FIG.
  • FIG. 3 is an example of a system flowchart.
  • the input signal I1 or the accumulated signal I2 the rotation speed I10 of the diagnosis target device, and the device name I50 of the diagnosis target device are input to the one cycle calculation unit 101.
  • the input method of the rotation speed I10 and the device name I50 may be a keyboard, online, or the like, and the input method is not limited.
  • the one-cycle calculation unit 101 calculates and outputs a signal for one cycle of the input signal (or one cycle of the accumulated signal).
  • the zero point calculation unit 102 calculates and outputs the zero point in the zero point calculation step F02.
  • the zero size calculation unit 103 calculates the size of the zero.
  • the zero point density distribution calculation unit 104 calculates the zero point density distribution.
  • the zero density distribution calculation unit 104 also receives a density distribution interval I60.
  • the input method of the interval I60 may be input directly from the keyboard, online, or the like.
  • the interval I60 is an interval for calculating the number of zero points for each density distribution calculation. For example, the interval I60 being 10 means that the size of the zero point is calculated in increments of 10.
  • the accumulated signal collation unit 105 sends the zero point density distribution of the input signal I1 calculated in the zero point density distribution calculation step F04, the rotation speed I10 of the diagnosis target device corresponding to the input signal I1, and the input signal.
  • the diagnosis target device name I50 corresponding to I1 is input, the rotation speed I10 of the diagnosis target device corresponding to the input signal I1, and the zero point density of the accumulated signal I2 corresponding to the diagnosis target device name I50 corresponding to the input signal I1
  • the distribution is read from the zero density database 107.
  • the normal / abnormal diagnosis unit 106 determines normal / abnormal.
  • FIG. 4 is an example of processing of the one-cycle calculation unit.
  • the one-cycle calculation unit 101 calculates one cycle of the input signal I1 from the rotation speed I10 of the input signal I1, the recording time I20, and the sampling frequency I30, cuts out one cycle, and outputs I40 for one cycle of the input signal. .
  • the rotational speed is 60 (Hz)
  • the recording time is 20 (seconds)
  • the sampling frequency is 50000 (Hz)
  • the rotational speed I10 is 60 (Hz)
  • the recording time I20 is 20 (seconds)
  • the sampling frequency I30 is 50000 (Hz) is input.
  • the input means may be data such as a keyboard and online data.
  • FIG. 4 the process in the case of the input signal I1 is shown as an example, but the process in the case of the accumulated signal I2 is the same.
  • FIG. 5 shows an example of the zero point density distribution data structure.
  • the data configuration K01 of the zero point density database 107 shown in FIG. 5 includes a device name I50, a rotation speed I10, a zero point density distribution I70, and an interval I60.
  • the rotational speed I10 either rpm, which is the rotational speed per minute, or Hz, which is the rotational speed per second, can be considered.
  • rpm which is the number of revolutions per minute
  • Hz which is the rotational speed per second
  • the device X, the rotation speed 10 (Hz), and the zero point density distribution indicate that the interval of the zero point size is 10%, 20%, 40%, 20%, and 10% for every 10 respectively. ing.
  • FIG. 6 is an example of a zero point density distribution.
  • the horizontal axis indicates the size of the zero and the vertical axis indicates the zero density (%).
  • the zero point density (%) is the ratio of the number of zeros having a specific zero size to the number of all zeros. For example, in FIG. 6, when the number of all zeros is 600, the number of zeros is 0 or more and less than 10 and 60, and similarly, the number of 10 or less and less than 20 is 120, 20 or more and 30.
  • the density of zeros is less than 10 but less than 10 is 10 (%), less than 10 and less than 20
  • the density is 20 (%), the density 20 to 30 is 40 (%), the density 30 to 40 is 20 (%), and the density 40 to 50 is 10 (%).
  • FIG. 7 is an example of a zero density distribution display.
  • a zero density distribution display D01 shown in FIG. 7 is an example of a screen displayed on the display 108.
  • the zero point density distribution M1 of the input signal I1 is indicated by a dotted line
  • the zero point density distribution M2 of the accumulated signal I2 corresponding to the input signal I1 is indicated by a solid line.
  • the horizontal axis indicates the size of the zeros and the vertical axis indicates the zero point density (%). It is.
  • FIG. 7 shows an example in which the index calculated by the normal / abnormal diagnosis unit 106 is also displayed.
  • FIG. 8 shows an example of diagnosis of motor noise.
  • FIG. 8 shows a case where the device to be diagnosed is a motor J01.
  • a power source J02 for driving the motor is connected to the motor J01.
  • the microphone H01 is installed near the motor J01.
  • the sound (sound data) recorded from the microphone H01 is input to the data logger J03.
  • the recorded sound input to the data logger J03 is input as an input signal I1 to the data processing unit H02, diagnostic processing is performed, and the diagnostic result is displayed on the output result display unit H03.
  • a normal sound is recorded in advance as the accumulated signal I2, the zero density distribution of the accumulated signal I2 is calculated by the data processing unit H02, and recorded as zero point density distribution data in the zero density database 107.
  • a method for collecting the accumulation signal I2 for example, there are a method of recording in a plurality of times every 60 seconds, and a method of continuously operating the device and accumulating signals.
  • a method of inputting a plurality of times or a method of performing a diagnosis by inputting a signal while continuously operating can be considered.
  • the abnormal sound that cannot be detected by the conventional method and does not cause the amplitude intensity (sound pressure) change is accompanied by a phase change. Abnormal sound can be detected.

Abstract

The purpose of the present invention is to detect, among abnormal noises emitted from a device, abnormal noises in which changes in amplitude intensity (sound pressure) do not occur or are negligible, and abnormal noises in which a phase change occurs. This abnormal noise detection system, which diagnoses abnormalities in a device being diagnosed using sound data extracted from the device as an input signal, comprises: a zero point magnitude calculation unit that calculates zero point magnitudes of the sound data for one cycle of the input signal; a zero point density distribution calculation unit that calculates a zero point density distribution from the zero point magnitudes; and a normal/abnormal diagnosis unit that determines whether the device being diagnosed is normal or abnormal by comparing the zero point density distribution of the input signal with the zero point density distribution of normal sound data.

Description

異常音検出システムAbnormal sound detection system
 本発明は、異常音検出システムに関する。 The present invention relates to an abnormal sound detection system.
 本技術分野の背景技術として、機器の稼働率維持のため、機器の診断が重要となっている。機器の診断時、診断対象部位にセンサの取り付けが困難な場合の対応として、診断対象部位に接触が不要である音響による診断が注目されている。そのため、従来より、音響を用いた診断が用いられている。 As a background technology in this technical field, device diagnosis is important for maintaining the operation rate of the device. At the time of diagnosis of a device, as a countermeasure when it is difficult to attach a sensor to a diagnosis target part, acoustic diagnosis that does not require contact with the diagnosis target part has attracted attention. Therefore, a diagnosis using sound has been conventionally used.
 特許文献1には、「異常が発生した場合に所定の周期で異音を生じる音源の診断を支援する音響診断支援装置」であって、「異常を容易に把握することができるようにする」と記載されている。そのために、「集音器は、回転機から発生した音を所定周波数で回転周期よりも長い所定時間サンプリングした測定データを記録する。診断支援装置は、集音器から測定データを取得する。診断支援装置は、1番目の測定データにおける先頭から1周期分の基準データ系列を抽出し、n番目の測定データにおける抽出位置をずらしながら、1周期分の比較データ系列を抽出し、基準データ系列と比較データ系列の相関度を算出していき、相関度の最も大きい抽出位置をシフト量として、2番目の測定データをシフトした上で、1番目の測定データに足し合わせる」と記載されている。 Patent Document 1 discloses an “acoustic diagnosis support apparatus that supports diagnosis of a sound source that generates abnormal noise at a predetermined period when an abnormality occurs”, and “makes it easy to grasp the abnormality”. It is described. For this purpose, “the sound collector records measurement data obtained by sampling the sound generated from the rotating machine at a predetermined frequency for a predetermined time longer than the rotation period. The diagnosis support apparatus acquires measurement data from the sound collector. The support apparatus extracts a reference data sequence for one cycle from the beginning of the first measurement data, extracts a comparison data sequence for one cycle while shifting the extraction position in the nth measurement data, The correlation degree of the comparison data series is calculated, the second measurement data is shifted using the extraction position with the largest correlation degree as the shift amount, and then added to the first measurement data ".
 また、特許文献2には、「診断対象から発生する音響信号に基づいて、前記診断対象で発生する異常を診断する方法であって、前記診断対象が正常な状態にあるときに、前記音響信号を周波数分析して得た周波数または周波数帯域と音圧との関係に基づいて、各前記周波数または各前記周波数帯域の音圧とその前記周波数または周波数帯域の周辺の他の1以上の前記周波数または周波数帯域に対応する音圧との相対的な差を相対的な音圧差として求める異常診断方法」と記載されている。 Further, Patent Document 2 discloses that “a method for diagnosing an abnormality occurring in the diagnostic object based on an acoustic signal generated from the diagnostic object, and the acoustic signal when the diagnostic object is in a normal state”. Based on the relationship between the sound pressure and the frequency or frequency band obtained by frequency analysis of the sound pressure of each of the frequencies or the frequency band and one or more other frequencies around the frequency or frequency band “Abnormality diagnosis method for obtaining a relative difference from a sound pressure corresponding to a frequency band as a relative sound pressure difference”.
 さらに、特許文献3には、「蓄積された信号系列の中から所定の信号、またはその一部に類似した信号を探索して検出する信号検出方法に関するものであり、例えば音響信号検出に適用可能である。従来、信号検出方法に関しては、蓄積信号中で目的信号に類似した箇所を検出することを目的とした信号検索方法が知られている。しかし、局所的な枝刈りのみを用いていたため、膨大な蓄積信号を対象とする場合には、検索に長時間を要するという欠点があった。L1距離に基づいて、大局的なグループ化および局所的なグループ化を行い、探索空間を効率的に絞り込むことによって、探索制度を保ちつつ、高速に効果的な部分信号検出ができるという利点がある」と記載されている。 Further, Patent Document 3 relates to a signal detection method for searching for and detecting a predetermined signal from a stored signal series or a signal similar to a part thereof, and can be applied to, for example, acoustic signal detection. Conventionally, with regard to the signal detection method, there is known a signal search method for the purpose of detecting a location similar to the target signal in the accumulated signal, but because only local pruning is used. However, when a large amount of accumulated signals are targeted, there is a disadvantage that it takes a long time to search.Based on the L1 distance, global grouping and local grouping are performed to make the search space efficient. By narrowing down to, there is an advantage that effective partial signal detection can be performed at high speed while maintaining the search system. "
 このように、機器から発せられる異常音検出方法および特徴量、類似情報の検索については、従前より取り組まれている。 As described above, the abnormal sound detection method, the feature amount, and the search for similar information emitted from the device have been worked on from the past.
特開2012-93094号公報JP 2012-93094 A 特開2005-257460号公報JP 2005-257460 A 国際公開第2006/009035号パンフレットInternational Publication No. 2006/009035 Pamphlet
 しかしながら、従来手法では、異常音の変化が振幅強度(音圧)に現れることが前提となっている。そのため、振幅強度(音圧)に異常が生じなく、位相変化として出現する場合、たとえば、空気吸入口つまりといった振幅変化が小さい異常に関しては、検知を行うことができない。 However, in the conventional method, it is assumed that a change in abnormal sound appears in the amplitude intensity (sound pressure). Therefore, when no abnormality occurs in the amplitude intensity (sound pressure) and it appears as a phase change, for example, an abnormality with a small amplitude change such as an air inlet cannot be detected.
 特許文献1は、異常が生じた場合、音響データの周期データを複数取得し、同期をとったうえでそれらを重ね合わせることで周期的に発生している音源の異常を把握する発明である。このため、周期的に発生していない音源の異常、例えば位相変化が生じる異常音については把握することができない。そのため、振幅変化の小さい、空気吸入口つまりといった異常、初期の異常については検出することができない。 Patent Document 1 is an invention that, when an abnormality occurs, acquires a plurality of periodic data of acoustic data, synchronizes them, and then superimposes them to grasp the abnormality of the sound source that occurs periodically. For this reason, it is impossible to grasp an abnormality of a sound source that does not occur periodically, for example, an abnormal sound in which a phase change occurs. For this reason, it is impossible to detect an abnormality such as a small amplitude change, an air inlet clogging, or an initial abnormality.
 特許文献2は、音響信号を周波数分析して得ることができる周波数または周波数帯域と音圧との関係に基づいて、異常判定用レベル差上限閾値と異常判定用レベル差下限閾値とを定め、診断時においては、周波数成分もしくはその音圧を用いて診断を行う発明である。そのため、異常音が周波数帯域ならびに音圧値(大きさ)に出現しない異常については検出することができない。 Patent Document 2 defines an abnormality determination level difference upper limit threshold and an abnormality determination level difference lower limit threshold based on the relationship between the sound pressure and the frequency or frequency band that can be obtained by frequency analysis of an acoustic signal, and diagnoses In some cases, diagnosis is performed using a frequency component or its sound pressure. Therefore, it is not possible to detect an abnormality in which abnormal sound does not appear in the frequency band and sound pressure value (size).
 特許文献3では、L1距離を用いて高速な探索を行うために特徴量をヒストグラム化して検索を行う発明である。また、映像の色を特徴量としている。L1距離とは、距離の差が1乗に基づく距離と定義されている。 Patent Document 3 is an invention for performing a search by making a histogram of feature amounts in order to perform a high-speed search using the L1 distance. Also, the color of the video is used as a feature amount. The L1 distance is defined as a distance based on a difference in distance based on the first power.
 このように、周波数帯域、振幅強度(音圧)に変化がなく、位相変化が生じている異常音を検知する手法については、先行技術文献には記載されていない。 As described above, there is no description in the prior art literature regarding a method for detecting an abnormal sound in which there is no change in the frequency band and amplitude intensity (sound pressure) and a phase change occurs.
 本発明は、機器から発せられる異常音のうち、振幅強度(音圧)の変化が生じない、もしくは僅少な場合でかつ、位相変化が生じている異常音を検知することを目的とする。 An object of the present invention is to detect an abnormal sound in which an amplitude intensity (sound pressure) does not change or is small among abnormal sounds emitted from a device and a phase change occurs.
 そこで、本発明では、異常診断に用いる特徴量として、零点に着目した診断を行う。零点とは、時間領域の波形での零交差であり、周波数領域上においてはエネルギーが零となる点のことである。零点の大きさの密度分布は、位相変化に対応した分布となる。これは、時間領域での零交差の間隔が零点の大きさとして、複素数平面上に出現し、複素数平面上においては、大きさ毎に零点の数を数えることが可能となる。すなわち、位相変化が生じない場合においては、分布が一意に定まり、位相変化が生じる場合においては、零点の密度分布に変化が生じる。 Therefore, in the present invention, a diagnosis focusing on a zero point is performed as a feature quantity used for abnormality diagnosis. The zero point is a zero crossing in the waveform in the time domain, and is a point where the energy becomes zero on the frequency domain. The density distribution of the size of the zeros is a distribution corresponding to the phase change. This is because the interval of zero crossings in the time domain appears on the complex plane as the size of the zero, and on the complex plane, the number of zeros can be counted for each size. That is, when the phase change does not occur, the distribution is uniquely determined, and when the phase change occurs, the zero point density distribution changes.
 以上のことから、零点密度分布を用いることにより、従来手法で検知することが不可能である、振幅強度(音圧)変化が生じない異常音のうち、位相変化を伴う異常音の検知を行う。 From the above, by using the zero-point density distribution, abnormal sound with phase change is detected among abnormal sounds that cannot be detected by the conventional method and in which amplitude intensity (sound pressure) does not change. .
 本発明は、例えば、診断対象の機器から採取した音データを入力信号として前記機器の異常診断を行う異常音検出システムにおいて、前記入力信号の1周期分の音データの零点の大きさを計算する零点大きさ計算部と、前記零点の大きさから零点密度分布を計算する零点密度分布計算部と、前記入力信号の零点密度分布と、正常な音データの零点密度分布とを比較して前記診断対象の機器が正常か異常かを判定する正常/異常診断部とを有することを特徴とする。 The present invention calculates, for example, the size of a zero point of sound data for one cycle of the input signal in an abnormal sound detection system that performs abnormality diagnosis of the device using sound data collected from the device to be diagnosed as an input signal. The diagnosis by comparing the zero point size calculation unit, the zero point density distribution calculation unit for calculating the zero point density distribution from the zero point size, the zero point density distribution of the input signal, and the zero point density distribution of normal sound data And a normal / abnormal diagnosis unit that determines whether the target device is normal or abnormal.
 本発明によれば、振幅強度の変化が小さく位相変化が生じている異常音の検知が可能となる。 According to the present invention, it is possible to detect an abnormal sound with a small change in amplitude intensity and a phase change.
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of embodiments.
異常音検出システムの構成図の例である。It is an example of a block diagram of an abnormal sound detection system. ハードウェア構成の例である。It is an example of a hardware configuration. システムフローチャートの例である。It is an example of a system flowchart. 1周期計算部の処理の例である。It is an example of the process of 1 period calculation part. 零点密度分布データ構成の例である。It is an example of a zero point density distribution data structure. 零点密度分布の例である。It is an example of a zero point density distribution. 零点密度分布表示の例である。It is an example of a zero point density distribution display. モーター音の診断例である。It is an example of a diagnosis of a motor sound.
 本発明の実施例を、図面を参照しながら説明する。尚、各図において、同一又は類似の構成要素には同じ符号を付し、説明を省略する。 Embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or similar components are denoted by the same reference numerals and description thereof is omitted.
 図1は、異常音検出システムの構成図の例である。図2は、ハードウェア構成の例である。図1に示すように、異常音検出システム1は、1周期計算部101、零点計算部102、零点大きさ計算部103、零点密度分布計算部104、蓄積信号照合部105、正常/異常診断部106、零点密度データベース107を有している。図1に示す異常音検出システム1は、図2に示すデータ処理部H02に対応しており、例えばコンピュータやマイコンなどにより処理が実現される。また、図1に示す密度分布などの結果を表示するディスプレイ108は、図2における出力結果表示部H03に対応する。 FIG. 1 is an example of a configuration diagram of an abnormal sound detection system. FIG. 2 is an example of a hardware configuration. As shown in FIG. 1, the abnormal sound detection system 1 includes a one-cycle calculation unit 101, a zero point calculation unit 102, a zero point size calculation unit 103, a zero point density distribution calculation unit 104, an accumulated signal collation unit 105, and a normal / abnormal diagnosis unit. 106 and a zero point density database 107. The abnormal sound detection system 1 shown in FIG. 1 corresponds to the data processing unit H02 shown in FIG. 2, and the processing is realized by, for example, a computer or a microcomputer. Further, the display 108 for displaying the result such as the density distribution shown in FIG. 1 corresponds to the output result display unit H03 in FIG.
 異常音検出システム1は、入力信号I1を1周期計算部101への入力とし、1周期計算部101は、入力された入力信号I1のうち1周期分を切り出し、入力信号1周期分の信号として零点計算部102へと出力する。入力信号I1は、診断対象の機器から採取された音データであり、入力信号I1の入力手段については、図2に示すマイクH01からデータ処理部H02へ直接入力する場合と、マイクH01からデータロガー等を介してデータ処理部H02へ入力されるケースが考えられる。 The abnormal sound detection system 1 uses the input signal I1 as an input to the one-cycle calculation unit 101, and the one-cycle calculation unit 101 cuts out one cycle of the input signal I1 as a signal for one cycle of the input signal. Output to the zero point calculation unit 102. The input signal I1 is sound data collected from the device to be diagnosed. The input means for the input signal I1 is directly input from the microphone H01 shown in FIG. 2 to the data processing unit H02, and the data logger from the microphone H01. A case where the data is input to the data processing unit H02 via, for example, can be considered.
 零点計算部102は、1周期計算部101により計算された入力信号1周期分の信号から零点の算出を行い、算出された零点を零点大きさ計算部103へと出力する。零点の算出方法については、n次多項式近似を行い、n次の近似式を解くことにより算出される。多項式近似方法としては、べき級数展開による方法、ラグランジュ補間による手法等、数値計算(参考文献:数値計算法、長嶋秀世著)の手法が公知となっている。 The zero point calculation unit 102 calculates a zero point from the signal corresponding to one cycle of the input signal calculated by the one period calculation unit 101, and outputs the calculated zero point to the zero point size calculation unit 103. The zero point is calculated by performing n-order polynomial approximation and solving the n-th order approximation. As a polynomial approximation method, a method of numerical calculation (reference document: numerical calculation method, written by Hideyo Nagashima) such as a method using power series expansion and a method using Lagrange interpolation is known.
 零点大きさ計算部103では、零点計算部102で算出された零点から、零点の大きさを計算する。零点は、複素数で定義されている。そのため、複素数の絶対値をとることで大きさを算出する。零点大きさ計算部103で計算された零点の大きさは、零点密度分布計算部104へと入力する。 The zero point size calculation unit 103 calculates the size of the zero point from the zero point calculated by the zero point calculation unit 102. Zeros are defined as complex numbers. Therefore, the magnitude is calculated by taking the absolute value of the complex number. The zero size calculated by the zero size calculator 103 is input to the zero density distribution calculator 104.
 零点密度分布計算部104は、入力された零点の大きさのデータから、零点密度分布を計算する。具体的には、零点の全個数における特定の零点の大きさを持つ零点の個数の割合を計算する。零点は、近似した次数の数の分だけ算出される。例えば、6次関数に近似した場合、零点は最大6個算出される。また、6周期分の波形が存在しており、6次関数に近似した場合は、零点の合計個数は、36個である。零点密度分布計算部104で計算された入力信号I1の零点密度分布は、蓄積信号照合部105に出力される。 The zero density distribution calculation unit 104 calculates the zero density distribution from the input zero size data. Specifically, the ratio of the number of zeros having a specific zero point size to the total number of zeros is calculated. Zeros are calculated for the number of approximate orders. For example, when approximated to a sixth-order function, a maximum of six zeros are calculated. In addition, there are six periods of waveforms, and when approximated to a sixth-order function, the total number of zeros is 36. The zero point density distribution of the input signal I1 calculated by the zero point density distribution calculation unit 104 is output to the accumulated signal collation unit 105.
 また、異常音検出システム1は、蓄積信号I2でも、1周期計算部101、零点計算部102、零点大きさ計算部103、零点密度分布計算部104において同様の計算を行う。ここで、蓄積信号I2は、機器が正常な状態で採取された正常音である。蓄積信号I2によって計算された蓄積信号I2の零点密度分布は、零点密度データベース107に記録される。 Also, the abnormal sound detection system 1 performs the same calculation in the one cycle calculation unit 101, the zero point calculation unit 102, the zero point size calculation unit 103, and the zero point density distribution calculation unit 104 even for the accumulated signal I2. Here, the accumulation signal I2 is a normal sound collected when the device is in a normal state. The zero point density distribution of the accumulated signal I2 calculated by the accumulated signal I2 is recorded in the zero point density database 107.
 蓄積信号照合部105は、零点密度データベース107に構築されている蓄積信号I2の零点密度分布のデータベースの中から、入力信号I1により計算された入力信号I1の零点密度分布と比較するための蓄積信号I2の零点密度分布を読み出し、入力信号I1の零点密度分布と蓄積信号I2の零点密度分布とを、正常/異常診断部106へと出力する。 The accumulated signal collating unit 105 compares an accumulated signal for comparison with the zero density distribution of the input signal I1 calculated from the input signal I1 from the zero density distribution database of the accumulated signal I2 constructed in the zero density database 107. The zero density distribution of I2 is read, and the zero density distribution of the input signal I1 and the zero density distribution of the accumulated signal I2 are output to the normal / abnormal diagnosis unit 106.
 零点密度データベース107には、正常データとして蓄積信号I2の零点密度分布を蓄積している。 In the zero density database 107, the zero density distribution of the accumulation signal I2 is accumulated as normal data.
 正常/異常診断部106は、入力信号I1の零点密度分布と蓄積信号I2の零点密度分布とを比較し、正常または異常の診断を行い、診断結果を出力する。入力信号I1の零点密度分布と蓄積信号I2の零点密度分布との比較方法については、入力信号I1の零点密度分布と蓄積信号I2の零点密度分布との相関係数を算出することにより比較する方法等が考えられる。 The normal / abnormal diagnosis unit 106 compares the zero point density distribution of the input signal I1 with the zero point density distribution of the accumulated signal I2, performs normal or abnormal diagnosis, and outputs a diagnosis result. As a comparison method of the zero density distribution of the input signal I1 and the zero density distribution of the accumulated signal I2, a method of comparing by calculating a correlation coefficient between the zero density distribution of the input signal I1 and the zero density distribution of the accumulated signal I2. Etc. are considered.
 相関係数を用いて比較する場合、相関係数が1.0である場合は相関が強いことを示しており、蓄積信号I2と入力信号I1は同じであることを示しており、相関係数が0.0である場合は相関がないことを示しており、蓄積信号I2と入力信号I1は異なっていることを示す。相関係数については、確率変数間の類似度を統計的に評価する手法として既に公知となっている。なお、相関係数を用いて正常と異常とを識別するための閾値については、診断対象の機器、検知を行う機器、故障の進展度合い等により定める必要がある。例えば、正常異常判定閾値を0.8とし、相関係数が正常異常判定閾値以上であれば正常、正常異常判定閾値未満であれば異常と判定し、判定結果をディスプレイ108に出力する。 When comparing using the correlation coefficient, a correlation coefficient of 1.0 indicates that the correlation is strong, and that the accumulated signal I2 and the input signal I1 are the same, and the correlation coefficient When 0.0 is 0.0, it indicates that there is no correlation, and that the accumulated signal I2 and the input signal I1 are different. The correlation coefficient is already known as a method for statistically evaluating the degree of similarity between random variables. Note that the threshold value for distinguishing between normal and abnormal using the correlation coefficient needs to be determined according to the device to be diagnosed, the device to be detected, the progress of failure, and the like. For example, the normal / abnormal determination threshold is set to 0.8. If the correlation coefficient is equal to or higher than the normal / abnormal determination threshold, it is determined to be normal, and if the correlation coefficient is less than the normal / abnormal determination threshold, it is determined to be abnormal.
 ディスプレイ108は、正常/異常診断部106で判定された正常または異常の判定結果を表示する。異常音検出システム1は、図示しない表示制御部を有しており、ディスプレイ108への表示を制御する。尚、ディスプレイ108は、例えば後述する図7で説明するように、その他の情報も一緒に表示しても良い。 The display 108 displays a normal or abnormal determination result determined by the normal / abnormal diagnosis unit 106. The abnormal sound detection system 1 has a display control unit (not shown), and controls display on the display 108. The display 108 may also display other information together, as will be described later with reference to FIG.
 図3は、システムフローチャートの例である。1周期計算ステップF01では、1周期計算部101に、入力信号I1もしくは蓄積信号I2と、診断対象の機器の回転数I10、診断対象の機器の機器名I50が入力される。回転数I10、機器名I50の入力方法は、キーボード、オンライン等が考えられ、入力方法は問わない。1周期計算部101は、入力信号1周期分(あるいは蓄積信号1周期分)の信号を計算して出力する。 FIG. 3 is an example of a system flowchart. In the one cycle calculation step F01, the input signal I1 or the accumulated signal I2, the rotation speed I10 of the diagnosis target device, and the device name I50 of the diagnosis target device are input to the one cycle calculation unit 101. The input method of the rotation speed I10 and the device name I50 may be a keyboard, online, or the like, and the input method is not limited. The one-cycle calculation unit 101 calculates and outputs a signal for one cycle of the input signal (or one cycle of the accumulated signal).
 1周期計算ステップF01にて計算された入力信号1周期分の信号(あるいは蓄積信号1周期分)に基づいて、零点計算ステップF02にて、零点計算部102で零点が計算されて出力される。零点大きさ計算ステップF03では、零点大きさ計算部103で零点の大きさを計算する。 Based on the signal for one cycle of the input signal (or one cycle of the accumulated signal) calculated in the one cycle calculation step F01, the zero point calculation unit 102 calculates and outputs the zero point in the zero point calculation step F02. In the zero size calculation step F03, the zero size calculation unit 103 calculates the size of the zero.
 零点密度分布計算ステップF04では、零点密度分布計算部104によって零点密度分布の計算がなされる。零点密度分布計算部104では、密度分布の間隔I60も入力される。間隔I60の入力方法は、キーボードからの直接入力、オンライン等を問わない。間隔I60とは、密度分布算出時において、零点の大きさ毎の個数を算出するための間隔である。例えば、間隔I60が10であるということは、零点の大きさを10刻みで計算していくことである。 In the zero point density distribution calculation step F04, the zero point density distribution calculation unit 104 calculates the zero point density distribution. The zero density distribution calculation unit 104 also receives a density distribution interval I60. The input method of the interval I60 may be input directly from the keyboard, online, or the like. The interval I60 is an interval for calculating the number of zero points for each density distribution calculation. For example, the interval I60 being 10 means that the size of the zero point is calculated in increments of 10.
 蓄積信号照合ステップF05では、蓄積信号照合部105に、零点密度分布計算ステップF04にて計算された入力信号I1の零点密度分布、入力信号I1に対応する診断対象の機器の回転数I10、入力信号I1に対応する診断対象の機器名I50が入力され、入力信号I1に対応する診断対象の機器の回転数I10、入力信号I1に対応する診断対象の機器名I50に対応する蓄積信号I2の零点密度分布が零点密度データベース107から読み出される。そして、正常/異常診断ステップF06では、正常/異常診断部106により、正常/異常の判定が行われる。 In the accumulated signal collation step F05, the accumulated signal collation unit 105 sends the zero point density distribution of the input signal I1 calculated in the zero point density distribution calculation step F04, the rotation speed I10 of the diagnosis target device corresponding to the input signal I1, and the input signal. The diagnosis target device name I50 corresponding to I1 is input, the rotation speed I10 of the diagnosis target device corresponding to the input signal I1, and the zero point density of the accumulated signal I2 corresponding to the diagnosis target device name I50 corresponding to the input signal I1 The distribution is read from the zero density database 107. In the normal / abnormal diagnosis step F06, the normal / abnormal diagnosis unit 106 determines normal / abnormal.
 図4は、1周期計算部の処理の例である。1周期計算部101においては、入力信号I1の回転数I10、収録時間I20、サンプリング周波数I30から、入力信号I1の1周期を計算し、1周期分を切り出して入力信号1周期分I40を出力する。例えば、回転数60(Hz)、収録時間20(秒)、サンプリング周波数50000(Hz)の場合、回転数I10には60(Hz)、収録時間I20には20(秒)、サンプリング周波数I30には50000(Hz)が入力される。入力手段については、キーボード、オンライン等のデータを問わない。尚、図4では入力信号I1の場合の処理を例に示したが、蓄積信号I2の場合の処理も同様である。 FIG. 4 is an example of processing of the one-cycle calculation unit. The one-cycle calculation unit 101 calculates one cycle of the input signal I1 from the rotation speed I10 of the input signal I1, the recording time I20, and the sampling frequency I30, cuts out one cycle, and outputs I40 for one cycle of the input signal. . For example, when the rotational speed is 60 (Hz), the recording time is 20 (seconds), and the sampling frequency is 50000 (Hz), the rotational speed I10 is 60 (Hz), the recording time I20 is 20 (seconds), and the sampling frequency I30 is 50000 (Hz) is input. The input means may be data such as a keyboard and online data. In FIG. 4, the process in the case of the input signal I1 is shown as an example, but the process in the case of the accumulated signal I2 is the same.
 図5は、零点密度分布データ構成の例である。図5に示す零点密度データベース107のデータ構成K01は、機器名I50、回転数I10、零点密度分布I70、間隔I60により構成される。回転数I10については、1分あたりの回転数であるrpm、もしくは、1秒あたりの回転数であるHzのどちらかが考えられる。1分あたりの回転数であるrpmの場合、別途、1秒あたりの回転数であるHzへ変換する必要がある。例えば、600rpmが入力された場合、10Hzへと変換する必要がある。図5の例では、機器X、回転数10(Hz)、零点密度分布は零点の大きさの間隔が10毎にそれぞれ10%、20%、40%、20%、10%であることを示している。 FIG. 5 shows an example of the zero point density distribution data structure. The data configuration K01 of the zero point density database 107 shown in FIG. 5 includes a device name I50, a rotation speed I10, a zero point density distribution I70, and an interval I60. Regarding the rotational speed I10, either rpm, which is the rotational speed per minute, or Hz, which is the rotational speed per second, can be considered. In the case of rpm, which is the number of revolutions per minute, it is necessary to separately convert to Hz, which is the number of revolutions per second. For example, when 600 rpm is input, it is necessary to convert to 10 Hz. In the example of FIG. 5, the device X, the rotation speed 10 (Hz), and the zero point density distribution indicate that the interval of the zero point size is 10%, 20%, 40%, 20%, and 10% for every 10 respectively. ing.
 図6は、零点密度分布の例である。図6に示している零点密度分布M01は、横軸に零点の大きさ、縦軸に零点密度(%)を示している。零点密度(%)は、全零点の個数における、特定の零点の大きさを持つ零点の個数の割合のことである。例えば、図6において、全零点の個数が600個の場合で、零点の大きさが0以上10未満の個数が60個、同様に大きさが10以上20未満の個数が120個、20以上30未満の個数が240個、30以上40未満の個数が120個、40以上50未満の個数が60個の場合、零点の大きさが0以上10未満の密度は10(%)、10以上20未満の密度が20(%)、20以上30未満の密度が40(%)、30以上40未満の密度が20(%)、40以上50未満の密度が10(%)であることを示している。 FIG. 6 is an example of a zero point density distribution. In the zero density distribution M01 shown in FIG. 6, the horizontal axis indicates the size of the zero and the vertical axis indicates the zero density (%). The zero point density (%) is the ratio of the number of zeros having a specific zero size to the number of all zeros. For example, in FIG. 6, when the number of all zeros is 600, the number of zeros is 0 or more and less than 10 and 60, and similarly, the number of 10 or less and less than 20 is 120, 20 or more and 30. When the number is less than 240, the number between 30 and less than 40 is 120, and the number between 40 and less than 50 is 60, the density of zeros is less than 10 but less than 10 is 10 (%), less than 10 and less than 20 The density is 20 (%), the density 20 to 30 is 40 (%), the density 30 to 40 is 20 (%), and the density 40 to 50 is 10 (%). .
 図7は、零点密度分布表示の例である。図7に示している零点密度分布表示D01は、ディスプレイ108に表示された画面の一例である。入力信号I1の零点密度分布M1を点線で、入力信号I1に対応する蓄積信号I2の零点密度分布M2を実線で表示しており、横軸は零点の大きさ、縦軸は零点密度(%)である。また、図7では、正常/異常診断部106で計算された指標も表示した例を示している。例えば、相関係数を用いて正常音と異常音とを判定する場合で、計算された相関係数が0.7、正常異常判定閾値が0.8の場合、図7において、数値評価指標は「相関係数0.7」、正常異常判定閾値は「相関係数0.8」、判定結果は「異常」と表示した例を示している。尚、これらの表示の制御は、異常音検出システム1の図示しない表示制御部によって行われる。 FIG. 7 is an example of a zero density distribution display. A zero density distribution display D01 shown in FIG. 7 is an example of a screen displayed on the display 108. The zero point density distribution M1 of the input signal I1 is indicated by a dotted line, and the zero point density distribution M2 of the accumulated signal I2 corresponding to the input signal I1 is indicated by a solid line. The horizontal axis indicates the size of the zeros and the vertical axis indicates the zero point density (%). It is. Further, FIG. 7 shows an example in which the index calculated by the normal / abnormal diagnosis unit 106 is also displayed. For example, when a normal sound and an abnormal sound are determined using a correlation coefficient, when the calculated correlation coefficient is 0.7 and the normal / abnormal determination threshold value is 0.8, in FIG. In this example, “correlation coefficient 0.7”, the normal / abnormal determination threshold is “correlation coefficient 0.8”, and the determination result is “abnormal”. These display controls are performed by a display control unit (not shown) of the abnormal sound detection system 1.
 図8は、モーター音の診断例である。図8では、診断対象の機器をモーターJ01とした場合を示している。モーターJ01には、モーター駆動のための電源J02が接続されている。 Fig. 8 shows an example of diagnosis of motor noise. FIG. 8 shows a case where the device to be diagnosed is a motor J01. A power source J02 for driving the motor is connected to the motor J01.
 そして、モーターJ01付近にマイクH01を設置する。マイクH01から収録された音声(音データ)は、データロガーJ03へと入力される。データロガーJ03に入力された収録音は、データ処理部H02へ入力信号I1として入力され、診断処理が行われ、診断結果が出力結果表示部H03に表示される。 And, the microphone H01 is installed near the motor J01. The sound (sound data) recorded from the microphone H01 is input to the data logger J03. The recorded sound input to the data logger J03 is input as an input signal I1 to the data processing unit H02, diagnostic processing is performed, and the diagnostic result is displayed on the output result display unit H03.
 尚、蓄積信号I2として正常音を予め収録し、データ処理部H02で蓄積信号I2の零点密度分布を計算し、零点密度データベース107に零点密度分布データとして収録しておく。 A normal sound is recorded in advance as the accumulated signal I2, the zero density distribution of the accumulated signal I2 is calculated by the data processing unit H02, and recorded as zero point density distribution data in the zero density database 107.
 蓄積信号I2の採取方法としては、例えば60秒毎に複数回に分けて収録を行う方法や、機器を連続稼動し信号を蓄積していく方法が考えられる。入力信号I1に関しても同様に、複数回に分けて入力する方法や、連続稼動しながら信号を入力し診断を行う方法が考えられる。 As a method for collecting the accumulation signal I2, for example, there are a method of recording in a plurality of times every 60 seconds, and a method of continuously operating the device and accumulating signals. Similarly, for the input signal I1, a method of inputting a plurality of times or a method of performing a diagnosis by inputting a signal while continuously operating can be considered.
 以上のように、異常診断の際に、零点密度分布を用いることにより、従来手法で検知することが不可能である、振幅強度(音圧)変化が生じない異常音のうち、位相変化を伴う異常音の検知を行うことができる。 As described above, in the abnormality diagnosis, by using the zero point density distribution, the abnormal sound that cannot be detected by the conventional method and does not cause the amplitude intensity (sound pressure) change is accompanied by a phase change. Abnormal sound can be detected.
 以上、本発明の実施例を説明してきたが、これまでの実施例で説明した構成はあくまで一例であり、本発明は、技術思想を逸脱しない範囲内で適宜変更が可能である。 The embodiments of the present invention have been described above. However, the configurations described in the above embodiments are merely examples, and the present invention can be appropriately changed without departing from the technical idea.
1    異常音検出システム
101  1周期計算部
102  零点計算部
103  零点大きさ計算部
104  零点密度分布計算部
105  蓄積信号照合部
106  正常/異常診断部
107  零点密度データベース
108  ディスプレイ
H01  マイク
H02  データ処理部
H03  出力結果表示部
F01  1周期計算ステップ
F02  零点計算ステップ
F03  零点大きさ計算ステップ
F04  零点密度分布計算ステップ
F05  蓄積信号照合ステップ
F06  正常/異常診断ステップ
I1   入力信号
I2   蓄積信号
I10  回転数
I20  収録時間
I30  サンプリング周波数
I40  入力信号1周期分
I50  機器名
I60  間隔
I70  零点密度分布
K01  零点密度分布データ構成
M01  零点密度分布
M1   入力信号の零点密度分布
M2   蓄積信号の零点密度分布
D01  零点密度分布表示
J01  モーター
J02  電源
J03  データロガー
DESCRIPTION OF SYMBOLS 1 Abnormal sound detection system 101 1 period calculation part 102 Zero point calculation part 103 Zero point size calculation part 104 Zero point density distribution calculation part 105 Accumulated signal collation part 106 Normal / abnormality diagnosis part 107 Zero point density database 108 Display H01 Microphone H02 Data processing part H03 Output result display section F01 1 cycle calculation step F02 Zero point calculation step F03 Zero point size calculation step F04 Zero point density distribution calculation step F05 Accumulated signal collation step F06 Normal / abnormal diagnosis step I1 Input signal I2 Accumulated signal I10 Number of revolutions I20 Recording time I30 Sampling time Frequency I40 One period of input signal I50 Device name I60 Interval I70 Zero density distribution K01 Zero density distribution data configuration M01 Zero density distribution M1 Zero density distribution M2 of input signal Zero of accumulated signal Degree distribution D01 zero density distribution display J01 motor J02 power J03 data logger

Claims (4)

  1.  診断対象の機器から採取した音データを入力信号として前記機器の異常診断を行う異常音検出システムにおいて、
     前記入力信号の1周期分の音データの零点の大きさを計算する零点大きさ計算部と、
     前記零点の大きさから零点密度分布を計算する零点密度分布計算部と、
     前記入力信号の零点密度分布と、正常な音データの零点密度分布とを比較して前記診断対象の機器が正常か異常かを判定する正常/異常診断部とを有することを特徴とする異常音検出システム。
    In an abnormal sound detection system that performs an abnormality diagnosis of the device using sound data collected from the device to be diagnosed as an input signal,
    A zero size calculator for calculating the size of the zero of sound data for one cycle of the input signal;
    A zero-point density distribution calculating unit for calculating a zero-point density distribution from the size of the zeros;
    An abnormal sound comprising: a normality / abnormality diagnosis unit that compares the zero point density distribution of the input signal with the zero point density distribution of normal sound data to determine whether the device to be diagnosed is normal or abnormal Detection system.
  2.  前記正常/異常診断部は、前記入力信号の零点密度分布と前記正常な音データの零点密度分布との相関係数を計算し、前記相関係数と正常異常判定閾値とを比較することにより前記診断対象の機器が正常か異常かを判定することを特徴とする請求項1に記載の異常音検出システム。 The normal / abnormal diagnosis unit calculates a correlation coefficient between the zero-point density distribution of the input signal and the zero-point density distribution of the normal sound data, and compares the correlation coefficient with a normal / abnormal determination threshold value. The abnormal sound detection system according to claim 1, wherein the device to be diagnosed is determined to be normal or abnormal.
  3.  前記診断対象の機器が正常か異常かの判定結果を表示させる表示制御部を有することを特徴とする請求項1または2に記載の異常音検出システム。 The abnormal sound detection system according to claim 1 or 2, further comprising a display control unit that displays a determination result of whether the diagnosis target device is normal or abnormal.
  4.  前記表示制御部は、前記入力信号の零点密度分布と、前記正常な音データの零点密度分布とを表示させることを特徴とする請求項3に記載の異常音検出システム。 The abnormal sound detection system according to claim 3, wherein the display control unit displays a zero point density distribution of the input signal and a zero point density distribution of the normal sound data.
PCT/JP2012/068755 2012-07-25 2012-07-25 Abnormal noise detection system WO2014016914A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2012/068755 WO2014016914A1 (en) 2012-07-25 2012-07-25 Abnormal noise detection system
JP2014526650A JP5948418B2 (en) 2012-07-25 2012-07-25 Abnormal sound detection system
CN201280074211.9A CN104380063B (en) 2012-07-25 2012-07-25 Abnormal noise detection system
GB1419256.1A GB2520628B (en) 2012-07-25 2012-07-25 Abnormal sound detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/068755 WO2014016914A1 (en) 2012-07-25 2012-07-25 Abnormal noise detection system

Publications (1)

Publication Number Publication Date
WO2014016914A1 true WO2014016914A1 (en) 2014-01-30

Family

ID=49996750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068755 WO2014016914A1 (en) 2012-07-25 2012-07-25 Abnormal noise detection system

Country Status (4)

Country Link
JP (1) JP5948418B2 (en)
CN (1) CN104380063B (en)
GB (1) GB2520628B (en)
WO (1) WO2014016914A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106531193A (en) * 2016-10-31 2017-03-22 济南中维世纪科技有限公司 Abnormal sound detection method and system of background noise adaption
CN112233692A (en) * 2020-09-28 2021-01-15 东莞市东纳通信有限公司 Abnormal sound detection method and device, electronic equipment and storage medium
CN115035913A (en) * 2022-08-11 2022-09-09 合肥中科类脑智能技术有限公司 Sound abnormity detection method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104907132B (en) * 2015-06-01 2017-10-03 遵义市立新机械有限责任公司 A kind of hammer mill audio monitoring system
CN106023499B (en) * 2016-04-28 2018-05-22 北京北邮国安技术股份有限公司 A kind of dual recognition methods of optical fiber security signal and system
JP2019164107A (en) * 2018-03-20 2019-09-26 本田技研工業株式会社 Abnormal sound determination device and determination method
GB2576309A (en) * 2018-08-10 2020-02-19 Green Running Ltd Systems and methods for condition monitoring
CN109556818A (en) * 2018-12-03 2019-04-02 济南大学 A kind of method and system of the measurement material collisional damping coefficient based on sound calibration

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10504107A (en) * 1994-08-15 1998-04-14 モニタリング テクノロジー コーポレイション Digital signal processing of encoder signals for detecting resonance of rotating machinery
JP2012510585A (en) * 2008-11-28 2012-05-10 スネクマ Aircraft engine abnormality detection

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4247195B2 (en) * 2005-03-23 2009-04-02 株式会社東芝 Acoustic signal processing apparatus, acoustic signal processing method, acoustic signal processing program, and recording medium recording the acoustic signal processing program
JP2010030356A (en) * 2008-07-25 2010-02-12 Fujitsu Ltd Door opening detection device, microphone device, door opening detection program, and door opening detection method
CN100595548C (en) * 2008-09-05 2010-03-24 华南理工大学 Automotive engine fault diagnosis system and method based on sparse expression
JP5452158B2 (en) * 2009-10-07 2014-03-26 株式会社日立製作所 Acoustic monitoring system and sound collection system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10504107A (en) * 1994-08-15 1998-04-14 モニタリング テクノロジー コーポレイション Digital signal processing of encoder signals for detecting resonance of rotating machinery
JP2012510585A (en) * 2008-11-28 2012-05-10 スネクマ Aircraft engine abnormality detection

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KESAAKI MINEMURA ET AL.: "Spectral Signal Representation of Vowels Using Power Series Expansion and Its Zeros", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS A, vol. J93-A, no. 12, 1 December 2010 (2010-12-01), pages 833 - 834 *
TAKASHI MANABE ET AL.: "Reverberation phase and zeros in a 1-D and 2-D sound fields", IEICE TECHNICAL REPORT. EA, ENGINEERING ACOUSTICS, vol. 95, no. 433, 15 December 1995 (1995-12-15), pages 23 - 28 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106531193A (en) * 2016-10-31 2017-03-22 济南中维世纪科技有限公司 Abnormal sound detection method and system of background noise adaption
CN112233692A (en) * 2020-09-28 2021-01-15 东莞市东纳通信有限公司 Abnormal sound detection method and device, electronic equipment and storage medium
CN115035913A (en) * 2022-08-11 2022-09-09 合肥中科类脑智能技术有限公司 Sound abnormity detection method
CN115035913B (en) * 2022-08-11 2022-11-11 合肥中科类脑智能技术有限公司 Sound abnormity detection method

Also Published As

Publication number Publication date
GB2520628A (en) 2015-05-27
CN104380063B (en) 2017-04-12
GB2520628B (en) 2020-03-11
GB201419256D0 (en) 2014-12-10
JP5948418B2 (en) 2016-07-06
CN104380063A (en) 2015-02-25
JPWO2014016914A1 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
JP5948418B2 (en) Abnormal sound detection system
Zhao et al. Health assessment of rotating machinery using a rotary encoder
Borghesani et al. The relationship between kurtosis-and envelope-based indexes for the diagnostic of rolling element bearings
US8988238B2 (en) Change detection system using frequency analysis and method
US9791856B2 (en) Fault frequency set detection system and method
CN102155984B (en) General vibration signal measuring system of fan
Liang et al. A novel indicator to improve fast kurtogram for the health monitoring of rolling bearing
JP6922708B2 (en) Anomaly detection computer program, anomaly detection device and anomaly detection method
JP2005504269A (en) Vibration analysis for predictive maintenance of machinery
Klausen et al. Multi-band identification for enhancing bearing fault detection in variable speed conditions
Ferrando Chacon et al. An experimental study on the applicability of acoustic emission for wind turbine gearbox health diagnosis
Cheng et al. Envelope deformation in computed order tracking and error in order analysis
Xu et al. Detecting weak position fluctuations from encoder signal using singular spectrum analysis
JP5197853B2 (en) Monitoring device
JP5669933B2 (en) Machine vibration monitoring
CN108195584B (en) A kind of Fault Diagnosis of Roller Bearings based on accuracy spectrogram
JP2019100756A (en) Abnormality detection apparatus, abnormality detection method and abnormality detection computer program
Tian et al. Rolling element bearing fault diagnosis using simulated annealing optimized spectral kurtosis
CN105741850A (en) Method and device for diagnosing mechanical equipment based on audio signal
US20140058615A1 (en) Fleet anomaly detection system and method
JP6714498B2 (en) Equipment diagnosis device and equipment diagnosis method
JP3920715B2 (en) Vibration signal processing method
Liu et al. A novel acoustic emission signal segmentation network for bearing fault fingerprint feature extraction under varying speed conditions
EP3936849A1 (en) Rolling bearing status monitoring system and status monitoring method
US20100182158A1 (en) Wavelet based hard disk analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014526650

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 1419256

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20120725

WWE Wipo information: entry into national phase

Ref document number: 1419256.1

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12881796

Country of ref document: EP

Kind code of ref document: A1