WO2014016460A1 - Homo- and hetero-functionalised carbosilane dendritic compounds - Google Patents

Homo- and hetero-functionalised carbosilane dendritic compounds Download PDF

Info

Publication number
WO2014016460A1
WO2014016460A1 PCT/ES2013/070529 ES2013070529W WO2014016460A1 WO 2014016460 A1 WO2014016460 A1 WO 2014016460A1 ES 2013070529 W ES2013070529 W ES 2013070529W WO 2014016460 A1 WO2014016460 A1 WO 2014016460A1
Authority
WO
WIPO (PCT)
Prior art keywords
sich
nme
yes
dendrimer
group
Prior art date
Application number
PCT/ES2013/070529
Other languages
Spanish (es)
French (fr)
Inventor
Francisco Javier De La Mata De La Mata
Mª Ángeles MUÑOZ FERNÁNDEZ
Rafael GÓMEZ RAMÍREZ
José Luis JIMÉNEZ FUENTES
Javier SÁNCHEZ-NIEVES FERNÁNDEZ
Silvia FERNÁNDEZ SORIANO
Marta GALÁN HERRANZ
Raquel LORENTE RODRÍGUEZ
Elena FUENTES PANIAGUA
Javier SÁNCHEZ RODRÍGUEZ
Cornelia E. PEÑA GONZÁLEZ
Mª Jesús SERRAMÍA LOBERA
Rosa REGUERA
Original Assignee
Universidad De Alcalá (Uah)
Fundación Para La Investigación Biomédica Del Hospital Gregorio Marañón (Fibhgm)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Alcalá (Uah), Fundación Para La Investigación Biomédica Del Hospital Gregorio Marañón (Fibhgm) filed Critical Universidad De Alcalá (Uah)
Publication of WO2014016460A1 publication Critical patent/WO2014016460A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • C08G83/003Dendrimers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation

Definitions

  • the present invention relates to dendritic compounds, particularly dendrimers or dendrons, of carbosilane structure and functionalized at its periphery with functional groups that are preferably in anionic or cationic form.
  • the present invention also relates to its method of production carried out by thiol-eno or thiol-ino reaction.
  • the invention relates to the uses of said compounds in biomedicine. STATE OF THE PREVIOUS TECHNIQUE
  • Dendrimers are hyperbranched molecules of arborescent construction, of a well-defined size and three-dimensional structure and that have uniform chemical properties due in part to their low polydispersity.
  • the discovery that dendrimers by themselves may have a biological activity is quite recent, thus acting for example as antibacterial or antiviral agents. They can also act as transport agents for nucleic acids or drugs.
  • dendrimers described in the literature and potentially useful as antiviral agents may have different types of skeletons, but in what refers to the functional groups they present at their periphery, which are the real ones responsible for their antiviral activity, they can be grouped into Three types: carbohydrates, peptides and anions.
  • RNA molecules are not toxic in a range of concentrations between 1 and 5 ⁇ and are capable of electrostatically interacting with nucleic material such as oligonucleotides or small interfering RNAs (siRNA) forming bioconjugates called "dendriplexes.”
  • nucleic material such as oligonucleotides or small interfering RNAs (siRNA) forming bioconjugates called "dendriplexes.”
  • siRNA small interfering RNAs
  • carbosilane dendrimers have shown antimicrobial activity both against Gram positive bacteria and against Gram negative bacteria. This activity seems to be related to the multivalence of dendrimers, which allows the presence of a large number of functionalities on the same molecule.
  • carbosilane dendrimers with first, second or third generation terminal ammonium groups have proven effective as multivalent biocides, showing an antibacterial activity that is more than two orders of magnitude greater than that of monofunctional analog compounds (Beatriz Rasines, Carlos Manuel Hernández - Ros, Nativity of the Caves, Carlos Luis Copa-Pati ⁇ o, Juan Soliveri, Mar ⁇ a Angeles Mu ⁇ oz-Fernández, Rafael Gómez, F.
  • Carbosilane dendrimers are constructed by repeating hydrosilylation reactions with derivatives of the HSiMexCIp-x type) and subsequent alkenylation, thereby generating functionalized dendrimers with terminal olefins.
  • a hydrosilylation reaction with HSiMe 2 CI is carried out and subsequent replacement of the Si-CI system with another of the Si-H type with UAIH 4 , thus obtaining dendrimers with Si-H groups on the periphery .
  • terminal amines can be introduced by allylamine hydrosilylation reaction, which by subsequent quaternization allows to obtain cationic dendrimers.
  • neutral carbosilane dendrimers with -NHR groups obtained in this way have been used to obtain anionic carboxylate dendrimers by reaction with methyl acrylate and subsequent basic treatment and anionic dendrimers sulfonate by reaction with vinyl sulfonate (WO201 1/101520 A2).
  • This synthetic procedure is long with the consequent increase in the process and decrease in the overall yield to obtain the desired dendrimer.
  • the hydrosilylation of C3H5NH2 necessary to then obtain anionic dendrimers requires heating at 120 ° C for more than two days, significantly reducing the yield for higher generations.
  • the introduction of some of the terminal functional groups, such as sulfonate groups also requires high temperatures and long reaction times.
  • the present invention provides highly branched macromolecules, dendrimers or dendrons, of carbosilane structure and functionalized on its periphery with anionic groups (such as carboxylate, sulphonate or sulfates), which give the macromolecule a negative net charge, or cationic (ammonium), which endow the dendrimer with a net positive charge.
  • dendrimers have a preferably polyphenolic or silicon atom core.
  • a first aspect of the present invention relates to a carbosilane dendritic compound (hereinafter compound of the invention) comprising:
  • R 2 is an alkyl group (CrC 4 ), preferably R 2 is a methyl group;
  • p is an integer and varies between 1 and 3, preferably p is 2;
  • Ri is the following group - (CH 2 ), cS- (CI-l 2 ) and R 3 ;
  • x represents an integer that varies from 2 to 5; preferably x
  • R 3 is a group -OH, -S0 3 H, -OS0 3 H, -COOR 'or -NR “R”', where R ', R “and R'” independently represent an alkyl group (CrC 4 ) or a hydrogen;
  • R 3 is -NR “R”', preferably R “and R'", they independently represent a (C1-C4) alkyl or hydrogen group, more preferably an alkyl (CrC 2 ) or hydrogen group, even more preferably R 3 is a group -N (CH 3 ) 2 . Even more preferably x is 2 and even more preferably and is 2.
  • Ri is the group - (CH 2 ) 2 -S- (CH 2 ) 2 - N (CH 3 ) 2 .
  • R 3 is a group -C0 2 R ', preferably R' is H or CH 3 , more preferably x is 2 or 3, and even more preferably and is 1 or 2.
  • R 3 is a group -S0 3 H or -OS0 3 H, preferably x is 2 or 3, and more preferably and is 2 or 3.
  • alkyl refers in the present invention to aliphatic, linear or branched chains, having 1 to 4 carbon atoms, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, tert- butyl or sec-butyl, preferably has 1 to 2 carbon atoms, more preferably the alkyl group is a methyl.
  • dendritic compound refers in the present invention to a highly branched macromolecule where the growth units, branches or branches have carbosilane skeleton.
  • This carbosilane dendritic compound can be selected from dendrimer or dendron, also referred to as dendritic wedge.
  • dendrimer refers in the present invention to a highly branched macromolecule with a spherical shape, where the dendrimer's growth nucleus is polyfunctional, the growth units, branches or branches have carbosilane skeleton and the outer layer, surface or periphery of the dendrimer incorporates functional groups, R 3 groups. This surface or periphery would be the one corresponding to the extremities of the branches.
  • the skeleton of these carbosilane dendrimeros with different nuclei is widely known to one skilled in the art (ES226591; WO201 1101520).
  • polyfunctional core in the present invention a polyvalent element or compound covalently bonded with at least two branches, that is, at least it must be divalent.
  • the core is tetravalent and more preferably the core is silicon (i.e., a silyl group).
  • the core may be a polyphenol, and "polyphenol” means a benzene molecule substituted by at least two hydroxyl groups in any of its positions, for example 1,4-dihydroxybenzene, 1,2-dihydroxybenzene or 1, 3-dihydroxybenzene, more preferably it is hydroquinone (1,4-dihydroxybenzene), but it may have three, four, five or six hydroxyl groups. More preferably the polyphenol is trisubstituted, even more preferably 1,3,5-trihydroxybenzene.
  • dendron or “dendritic wedge” refers in the present invention to a very branched cone-shaped macromolecule that is defined by a focal point, the units, branches or branches of growth, which start from said focal point, have carbosilane skeleton and the outer layer, surface or periphery of said branches incorporates functional groups, R 3 groups.
  • the focal point can have a functional group, in its outer layer, equal to or different from the ramifications.
  • the skeleton of these carbosilane dendrons is widely known to one skilled in the art (ES226591; WO201 1 101520).
  • the focal point can be selected from the group or - (CH 2 ) Z -R4; where:
  • z is an integer that varies from 1 to 10, preferably z varies from 1 to 5 and more preferably z is 4;
  • R 4 is a group selected from the list comprising -OH, -SH, -Br, -COOR 4 '", -NR 4 ' R 4 ", phthalimide, -N 3 , - 0-CH 2 -CCH, -O- CCH, -NHR5, -R 5 , -SCOCH3 or -p-0-C 6 H 4 - (CH 2 ) -OH, where R 4 ', R 4 "and R 4 "' independently represent an alkyl group ( CrC) or a hydrogen, preferably they are hydrogen (-NH 2 or -COOH), x 'is an integer value ranging from 1 to 4, preferably x' is 1, and R 5 can be selected from a tag molecule, preferably a fluorophore, a steering group or an active substance.
  • the compound of the present invention can also be cationic, forming ammonium groups (for example NH 3 + or NMe 3 + ), that is, when R 3 is an amino, or anionic group, forming the carboxylate, sulfate or sulphonate groups, to the rest of R 3 groups described above.
  • ammonium groups for example NH 3 + or NMe 3 +
  • the present invention not only includes the compounds themselves, but any of their salts, for example, alkali metal or alkaline earth metal salts, for example they can be selecting from sodium, potassium or calcium salts, preferably the salts are sodium or halogen salts, which can be selected from chloride, bromide, iodide salts; or triflate, preferably the salts are iodide.
  • the compound of the invention in the outer layer, or optionally at the focal point, also comprises at least one functional group of different nature to the R 3 groups that are part of said outer layer or optionally of the focal point. , these R 3 groups can be any of those described above or of different nature to the R 3 described, such as a label molecule, a leader group or an active ingredient.
  • the compound of the invention contains at least one R 3 group in its outer layer, or optionally at the focal point, which is selected from a group R 3 different from the rest of the groups of the dendritic compound, a group -NHR 5 or -R 5 and where said R 5 can be selected from a tag molecule, preferably a fluorophore, a leader group or an active ingredient.
  • the present invention provides dendritic compounds, dendrimers or dendrons, which in addition to containing groups that provide them with a series of useful properties in biomedicine can also introduce into their outer layer at least one group with different functionality to give rise to a composed with multifunctionality and, therefore, with great versatility in its applications.
  • tag molecule refers in this description to any biorecognizable substance, chromophore, fluorophore or any other group detectable by spectrophotometric, fluorometric, optical microscopy, fluorescence or confocal, antibody and / or NMR techniques, and which easily allows detection of another molecule that alone is difficult to detect and / or quantify.
  • this tag molecule is a fluorophore capable of binding to an amine or containing an amino group by which it binds to the dendritic compound, or is capable of binding to the dendritic compound by the functional groups it contains or with a prior functionalization, for example and without limiting our the fluorophore is selected from the list comprising Cy5, fluorescein, rhodamine and dansyl.
  • leader group is meant a molecule or functional group capable of directing the dendritic compound specifically to a type of cells or to a specific area of a cell, for example, but not limited to, folic acid, trickle groups, signal signal or an antibody, among others known to any person skilled in the art. Said lead group can be previously functionalized to bind the dendritic compound.
  • active ingredient or “drug” is meant in the present invention any purified chemical substance used in the prevention, diagnosis, treatment, mitigation or cure of a disease; to avoid the appearance of an unwanted physiological process; or to modify physiological conditions for specific purposes.
  • said active ingredient is capable of binding to an amine or containing an amino group by which it binds to the dendritic compound, or is capable of binding to the dendritic compound by the functional groups it contains or with a prior functionalization, for example, without limited to penicillin, or where the active substance is capable of binding to an alkyne group through azide groups, for example AZT (zidovudine).
  • the compound of the invention can be a dendrimer or dendron of first, second, third, fourth or successive generations.
  • generation refers to the number of iterative branches that are necessary for the preparation of the compound.
  • Another aspect of the present invention relates to a process for obtaining the compounds of the invention, which comprises a thiol-ene or thiol-ino reaction, between a precursor of said compound with olefins or terminal alkynes, respectively, and the thiol group SH- (CH 2 ) and -R3, where R 3 e and are described above.
  • the reaction is carried out in the presence of a polar solvent and more preferably in the presence of a photoinitiator.
  • polar solvents for example MeOH or THF / MeOH or THF / MeOH / H 2 0 solvent mixtures
  • photoinitiators for example benzophenone, which can be used in this type of reaction are known to any person skilled in the art.
  • anionic compounds can be synthesized with terminal groups such as carboxylate, sulphonate, sulfate; or, from dendrimers with anionic precursor groups such as the ester or carboxylic acid that after their introduction to the compound are transformed into the corresponding anion by treatment with a base, such as NaOH, KOH, K 2 C0 3 or others that fulfill this same function.
  • a base such as NaOH, KOH, K 2 C0 3 or others that fulfill this same function.
  • the compounds of the invention obtained by this process are stable and soluble in water in their ionic forms and can also be isolated with good yields.
  • obtaining cationic compounds with terminal ammonium groups can be produced by a quaternization reaction of the corresponding amino group using an RX derivative, dialkyl sulfates (CrC 5 ), methyl triflate, or any of its combinations as a quaternizing agent (where R is selected from hydrogen, alkyl (CrC 24 ), alcohol (CrC 24 ) or an aryl, preferably benzyl; and X is a halogen, preferably Cl, Br or I), as per example methyl iodide (Mel), HCI, methyl chloride, methyl bromide, ethyl chloride, ethyl bromide, propyl chloride, hexyl chloride, dodecyl chloride, benzyl chloride, benzyl bromide, ethanol bromide, ethanol iodide (HO-CH 2 CH 2 -l) or any combination thereof.
  • RX dialkyl sulfates
  • compounds functionalized with ammonium groups of the NR 2 HCI type they are neutralized with basic medium and subsequently can be treated with other quaternizing agents such as those described above.
  • compounds with R 3 : NH 3 + , NMe 3 + are whitish solids stable to air and moisture, soluble in polar solvents (for example but not limited to DMSO, H 2 0) and can be stored without decomposition for long periods of time.
  • the compounds with R 3 : NH 2 , NMe 2 are colorless oils, also stable to air and moisture and soluble in halogenated, ethereal organic solvents, but not in aliphatic hydrocarbons.
  • the amino (-NH 2 ) or ammonium (-NH 3 CI) group serves as a linking group to other functions, such as those described as R 5 , so that compounds are prepared in this way, for example with fluorophores groups and anionic groups, soluble in water.
  • R 5 a linking group to other functions
  • the same products would also be obtained if the reaction was carried out with a thiol previously modified with the different group, for example R 5 .
  • the reaction conditions would be analogous to those described for homofunctionalized compounds, but using a combination of thiol derivatives suitable to introduce two functions in the proportion of interest.
  • the present invention also relates to the uses in biomedicine of the dendritic compounds described above that have cationic or anionic terminal groups, among them the use of cationic derivatives as non-viral transport agents for transfection or internalization of nucleic material in the inside different cell lines in gene therapy processes or also the use of these cationic or anionic compounds as "per se” therapeutic agents, for example as antibacterial, antiviral or antiprionic agents.
  • said dendritic compounds can be heterofunctional, with the advantage of being able to perform more than one function simultaneously.
  • anionic dendrimers in addition to having antiviral capacity due to their negative charge, may be marked to facilitate their monitoring or may also have lead groups that direct dendrimers specifically towards their place of action.
  • heterofunctional cationic dendrimers can simultaneously have, for example, positive charges for the transport of nucleic acids or anionic drugs and leader groups such as an antibody to direct these dendrimers to a specific place.
  • another aspect of the present invention relates to the use of the compounds of the invention, both cationic and anionic, for the manufacture of a medicament.
  • the medicament is used for the prevention and / or treatment of diseases caused by microorganisms, such as viruses, bacteria, protozoa or fungi. More preferably prevention and / or treatment are for diseases caused by HIV or by Leishmania, more preferably by the species Leishmania infantum. Therefore, in another preferred embodiment the compounds of the invention are used for the prevention and / or treatment of Leishmaniosis.
  • another aspect of the present invention relates to the use of these compounds as biocidal agents for non-therapeutic applications, such as for carrying out controls, such as those used with detergents to prevent the appearance of microorganisms on surfaces.
  • compositions comprising at least one dendritic compound as described above and a pharmaceutically acceptable carrier.
  • this pharmaceutical composition may comprise another active ingredient, preferably an antibiotic, antiviral or anti-inflammatory, the antibiotic may be from the beta-lactam group, such as penicillin.
  • the anti-inflammatory may be for example ibuprofen and the antiviral AZT.
  • compositions are the vehicles known to a person skilled in the art.
  • compositions examples include any solid composition (tablets, pills, capsules, granules, etc.) or liquid (gels, solutions, suspensions or emulsions) for oral, nasal, topical or parenteral administration.
  • the administration will be topical and even more preferably in the form of a gel.
  • the administration will be oral or parenteral (injectable).
  • the present invention relates to a method of treatment or prevention of diseases caused by microorganisms, such as viruses, bacteria, protozoa or fungi in a mammal, preferably a human, comprising the administration of a therapeutically effective amount of a composition comprising at least one dendritic compound of the invention.
  • the administration of the composition can be performed orally, nasally, topically or parenterally.
  • the administration will be topical and even more preferably in the form of a gel.
  • the administration will be oral or parenteral (injectable).
  • the term "therapeutically effective amount” refers to the amount of the composition calculated to produce the desired effect and, in general, will be determined, among other causes, by the characteristics of the composition itself, the age, condition and history of the patient, the severity of the disease, and the route and frequency of administration.
  • nucleic material refers in the present invention to a material, isolated and / or purified, which comprises a nucleotide sequence and can be selected from oligonucleotides, siRNA or DNA.
  • Another aspect of the present invention relates to a non-viral vector comprising at least one cationic compound of the present invention.
  • This vector can also comprise nucleic material, as described above.
  • Another aspect of the present invention relates to the use of the non-viral vector of the invention, for the preparation of a medicament. More preferably, for the preparation of a medicament for the treatment of HIV infection or cancer in gene therapy.
  • the greatest advantage of the complexes, dendritic compound / nucleic material formulated in the present invention is that they have a uniform and flexible structure allowing the possibility of versatilely modifying the skeleton and the surface thereof. It is also possible to use the compounds of the invention as vehicles for transporting molecules, preferably molecules with pharmacological activity (active ingredients), and more preferably anionic or cationic molecules, depending on whether the compound is cationic or anionic respectively, the active substance can be an antibiotic, an anti-inflammatory or an antiviral, including for example and not limited to an antibiotic of the beta-lactam group, such as penicillin, an anti-inflammatory such as ibuprofen or an antiviral such as AZT.
  • an antibiotic an anti-inflammatory or an antiviral
  • an antiviral including for example and not limited to an antibiotic of the beta-lactam group, such as penicillin, an anti-inflammatory such as ibuprofen or an antiviral such as AZT.
  • Fig. 1 It shows the viability of the four generations of BDEF031, BDEF032, BDEF033 and BDEF034 dendrimers, at concentrations of 1, 5, 10 and 20 ⁇ in PBMCs and the second generation of the BDEF023 dendrimer at concentrations of 0, 1, 0.3, 0, 5, 1, 5 and 10 ⁇ in PBMCs.
  • Fig. 1A MTT test 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazole bromide for the four generations of dendrimers BDEF031, BDEF032, BDEF033 and BDEF034. 10% DMSO represents 100% toxicity.
  • Dx (Dextran) is used as a safe molecule control.
  • Fig. 1 B MTT test of BDEF023 dendrimer. 10% DMSO represents 100% toxicity.
  • Fig. 2. Retention gels of the siRNA Nef./dendr ⁇ meros BDEF031, BDEF032, BDEF033 and BDEF034 complexes.
  • Fig. 2A Dendriplexes 31 and 32 after 2 hours of incubation at 37 ° C.
  • Fig. 2B Dendriplexes 31 and 32 after 24 hours of incubation at 37 ° C.
  • Fig. 2C Dendriplexes 33 and 34 after 2 hours of incubation at 37 ° C.
  • Fig. 2D Dendriplexes 33 and 34 after 24 hours of incubation at 37 ° C.
  • Fig. 3 It shows the viability using the MTT assay of 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazole bromide of the dendrimers BDEF031, BDEF032, BDEF033 and BDEF034 alone and their siRNAs complexes / dendrimers at 1: 12 ratios with BDEF031, BDEF032 and 1: 8 with BDEF033 and BDEF034. 10% DMSO represents 100% toxicity.
  • Fig. 4A Heparin competition between siRNA and BDEF031 dendrimer.
  • Fig. 4B Heparin competition between siRNA and BDEF032 dendrimer;
  • Fig. 4C Heparin competition between siRNA and BDEF033 dendrimer.
  • Fig. 4D Heparin competition between siRNA and BDEF034 dendrimer.
  • Fig. 5 HIV replication inhibition assay. The results obtained after treatment of activated and infected HIV PBMCs with dendriplexes are shown. After treatment with dendriplexes, an inhibition of viral replication quantified by p24 ELISA is observed.
  • Fig. 6. Biodistribution test of BDEF023 dendrimer. The biodistribution of the BDEF023 dendrimer is presented in the various tissues / organs after injecting it into the tail vein into BALB / c mice.
  • Fig. 7- Test to determine the cytotoxicity by MTS of BDMG017 and BDMG018 in different cell lines.
  • DMSO was used as a toxicity control and dextran (Dxt) as a cell viability control.
  • Fig. 8 Internalization of HIV in human endometrial cells (HEC-1A).
  • Fig. 8A Pre-treatment with BDMG017 Dendrimer and infection with the viral isolate X4 HIVNL4.3.
  • Fig. 8B Pre-treatment with the BDMG018 dendrimer and infection with the viral isolate X4 HIVNL4.3.
  • Fig. 8C Pre-treatment with BDMG017 dendrimer and infection with the viral isolate R5 HIVBaL.
  • Fig. 8D Pre-treatment with BDMG018 Dendrimer and infection with the viral isolate R5 HIVBaL.
  • 9C-PBMC pre-treated with BDMG018 and after 1 h infected with the viral isolate X4 HIVNL4.3 or first infected with HIVNL4.3 and subsequently treated with BDMG018.
  • Example 1 Homofunctionalized dendrimers with cationic groups
  • the synthesis of these cationic compounds can be represented, in general, by the following scheme 1:
  • cationic or neutral dendrimers can be represented as GnXC x (F) or, where:
  • n indicates the number of generation G.
  • C x indicates the length of the carbon chain between the atom of Si and S.
  • Cx is C2
  • GnXAo is C3 and so on.
  • the compounds GnXVo and GnXAo of the following examples are described in J. Sánchez-Nieves et al., Tetrahedron 2010, 66, 9203. Made, AW vd; Leeuwen, PWNM v. J. Chem. Soc, Chem. Commun. 1992, 1400.
  • R 3 indicates the nature of the functional groups (R 3 ) located on the periphery of the dendrimer (NH 3 + , NMe 3 + , NH 2 , NMe 2 ) and the number of these functional groups, which will depend on the number of generations .
  • the second generation dendrimer G203C2 (NMe 3 l) i2 is prepared following a procedure similar to that described for the analog dendrimer G1, starting from G203C2 (NMe2) i2 (0.148 g, 0.06 mmol) and Mel (0.04 ml, 0.70 mmol). In this way, G203C2 (NMe 3 L) i2 is obtained as a white solid (0.233 g, 94%).
  • Ci 2 9H294li2Ni20 3 Si 2 YES9 (4222.20 g / mol): C, 36.70; H, 7.02; N, 3.98; S, 9.1 1; Exp .: C, 36.10; H, 6.80; N, 4.01; S, 7.31. Z potential: 72 ⁇ 1 mV. Synthesis of G303C2 (NMe 3 l) 24.
  • the third generation dendrimer G303C2 (NMe 3 l) 24 is prepared following a procedure similar to that described for analog dendrimer G1, starting from G303C2 (NMe2) 24 (0.186 g, 0.04 mmol) and Mel (0.05 ml, 0 , 87 mmol). In this way, G303C2 (NMe 3 L) 24 is obtained as a white solid (0.303 g, 98%).
  • the fourth generation dendrimer G403C2 (NMe 3 l) 48 is prepared following a procedure similar to that described for the analog dendrimer G1, starting from G403C2 (NMe2) 48 (0.176 g, 0.02 mmol) and Mel (0.06 ml, 0.90 mmol). In this way G403C2 (NMe 3 L) 48 is obtained as a white solid (0.229 g, 78%).
  • the G2SiC2 (NMe3l) i6 dendrimer is prepared following a procedure similar to that described for the G1 analog dendrimer, starting from G2SiC2 (NMe 2 ) i6 (0.134 g, 0.04 mmol) and Mel (0.05 mL, 0.80 mmol ). In this way, G2SiC2 (NMe3l) i6 is obtained as a white solid (0.165 g, 72%).
  • Example 2. Homofunctionalized dendrimers with ammonium groups.
  • anionic or neutral dendrimers can be represented as cationic by GnXC x (F) or; where, in this case, F is C0 2 " , SO3 " , OSO3 " , SO3H, OSO3H, C0 2 Me, C0 2 H or OH.
  • the above product is dissolved in methanol.
  • the solution is deoxygenated by passing a stream of argon through it and 4M HCI in excess dioxane is added.
  • the mixture is heated to 60 ° C and allowed to react for 15 h. Subsequently, the solvent is evaporated and the product HS (CH 2 ) 2 OS0 3 Na is obtained.
  • NMR-H (CDCI 3 ): ⁇ 3.69 (t, SCH 2 CH2OH), 2.70 (t, SCH2CH 2 OH), 2.52 (t, SiCH 2 CH 2 CH 2 S), 1.55 (m, SYCH 2 CH 2 CH 2 S), 1 .27 (m, SiCH 2 CH 2 CH 2 Si), 0.56 (m, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 CH 2 S), -0.05 (s, Si e ).
  • NMR- 3 C (D 2 0): ⁇ 60.54 (SCH 2 CH 2 OH), 35.42 (SCH 2 CH 2 OH), 34.68 (SiCH 2 CH 2 CH 2 S), 24.27 (YES 2 CH 2 CH 2 S) , 18.46 (SiCH 2 CH 2 CH 2 Si), 18.30 (YES 2 CH 2 CH 2 S), 17.33 (SiCH 2 CH 2 CH 2 Si), 13.24 (SiCH 2 CH 2 CH 2 Si), -5.32 (SiMe) . CseH ⁇ OsSsSis.
  • NMR-H (CDCI 3 ): ⁇ 4.14 (t, SCH 2 CH 2 OS0 3 Na), 3.05 (t, SCH 2 CH 2 OS0 3 Na), 2.52 (t, YES 2 CH 2 CH 2 S), 1 .55 (m, YES 2 CH 2 CH 2 S), 1 .27 (m, SiCH 2 CH 2 CH 2 Si), 0.56 (m, SiCH 2 CH2CH2Si (Me) CH2CH2CH 2 S), -0.05 (s, SiMe).
  • RMN- 3 C (CDCI 3 ): ⁇ 170.98 (COOCH 3 ), 52.38 (COOCH3), 36.43 (SCH2CO), 33.42 (SiCH 2 CH 2 CH 2 S), 23.74 ( SiCH 2 CH 2 CH 2 S), 18.92-18.44 (SiCH 2 CH 2 CH 2 Si), 13.38 (SiCH 2 CH2CH2 Yes (Me) CH2CH2CH 2 S, SiCH 2 CH 2 CH 2 Si), -5.00 (SiMeCH 2 CH 2 CH 2 S), -5.17 (SiCH 2 SiMe 2 CH 2). C144H284O32S16YES13.
  • NMR-H (CDCI 3 ): ⁇ 3.74 (s, COOCH 3 ), 3.19 (s, SCH 2 CO), 2.61 (t, SiCH 2 CH 2 CH 2 S), 1 .55 (m, SiCH 2 CH 2 CH 2 S), 1 .24 (m, SiCH 2 CH 2 CH 2 Si), 0.57 (m, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 CH 2 S), -0.06 (s, If eCH 2 CH 2 CH 2 S), - 0.10 (SiCH 2 CH 2 CH 2 If e) NMR- 3 C (D 2 0): ⁇ 170.90 (COOCH 3 ) , 52.29 (COOCH 3 ), 36.33 (SCH 2 CO), 3.32 (SiCH 2 CH 2 CH 2 S), 23.65 (SiCH 2 CH 2 CH 2 S), 18.83-18.38 (SiCH 2 CH 2 CH 2 Si), 13.29 (SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 S, SiCH 2 CH 2
  • NMR-H (D 2 0): ⁇ 3.03 (s, SCH 2 CO), 2.42 (t, SiCH 2 CH 2 CH 2 S), 1.44 (m, SiCH 2 CH 2 CH 2 S), 1 .25 (m, SiCH 2 CH 2 CH 2 Si), 0.48 (m, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 CH 2 S), -0.14 (s, Si e).
  • NMR-H (D 2 0): ⁇ 3.15 (t, SCH 2 CH 2 CH 2 S0 3 Na), 2.81 (m, SiCH 2 CH 2 CH 2 S), 2.49 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1.84 (m, SCH 2 CH 2 CH 2 S0 3 Na ), 1.44 (m, SiCH 2 CH 2 CH 2 S), 1 .23 (m, SiCH 2 CH 2 CH 2 Si), 0.58 (m, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 CH 2 S), -0.14 (s, Si Me) NMR- 3 C (D 2 0): ⁇ 50.1 1 (SCH 2 CH 2 CH 2 S0 3 Na), 30.19 (SCH 2 CH 2 CH 2 S0 3 Na ), 27.05 (SiCH 2 CH 2 CH 2 S), 24.36 (SiCH 2 CH 2 CH 2 S, SCH 2 CH 2 CH 2 S0 3 Na), 18.42 (SiCH 2 CH 2 CH 2 Si), 14.38
  • NMR-H (D 2 0): ⁇ 2.82 (t, SCH 2 CH 2 CH 2 S0 3 Na), 2.49 (m, SiCH 2 CH 2 CH 2 S), 2.42 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1.84 (m, SCH 2 CH 2 CH 2 S0 3 Na ), 1.44 (m, SiCH 2 CH 2 CH 2 S), 1 .24 (m, SiCH 2 CH 2 CH 2 Si), 0.48 (m, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 CH 2 S), -0.16 (If e).
  • NMR-H (D 2 0): ⁇ 5.79 (s, Ar), 3.06 (s, SCH 2 CO), 2.45 (t, S ⁇ CH2CH2S), 1.52 (m, OCH2CH2CH2CH2YES), 1.20 (m, SiCH 2 CH 2 S, OCH2CH2CH2YES), 0.76 (m, SiCH 2 CH 2 CH 2 Si), 0.45 (m, SiCH 2 CH2CH2Yes (Me) CH2CH 2 S, OCH2CH2CH2CH2YES), -0.1 1 (s, SiMe CH2CH2S), -0.21 ( s, SiMe).
  • NMR-H (D 2 0) dendrimer is obtained: ⁇ 3.06 (s, SCH 2 CO), 2.46 (t, SiCH 2 CH 2 S), 1 .59 ( m, OCH2CH2CH2CH2YES), 1, 22 (m, SiCH 2 CH 2 S, OCH2CH2CH2YES), 0.76 (m, SiCH 2 CH 2 CH 2 Si), 0.45 (m, SiCH 2 CH2CH2Yes (Me) CH2CH 2 S, OCH2CH2CH2CH2YES), -0.10 (s, SiMe CH 2 CH 2 S), -0.18 (s, SiMe).
  • NMR-H (D 2 0): ⁇ 5.87 (s, Ar-H), 3.50 (t, CH 2 0-Ar), 2.86 (m, SCH 2 CH 2 CH 2 S0 3 Na), 2.56 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1.85 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1.71 (m, SiCH 2 CH 2 S), 1.25 (m, OCH2CH2CH2CH2YES), 0.73 (m, SiCH 2 CH 2 S), 0.40 (m, OCH2CH2CH2CH2YES), -0.15 (s, SiMe).
  • NMR-H (D 2 0): ⁇ 3.58 (t, CH 2 0-Ar), 2.88 (m, SCH 2 CH 2 CH 2 S0 3 Na), 2.79 (m, SCH 2 CH 2 CH 2 S0 3 Na) , 1.88 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1 .71 (m, SiCH 2 CH 2 S), 1.21 (m, SiCH 2 CH 2 CH 2 Si, OCH 2 CH 2 CH 2 CH 2 Si), 0.76 (m, SiCH 2 CH 2 S), 0.46 (m, OCH 2 CH 2 CH 2 CH 2 SiCH 2 CH 2 CH 2 Si), -0.1 1 (s, Si eCH 2 CH 2 S ), -0.20 (s, Si e).
  • the heterofunctionalized dendrimers described below can be represented as GnXCx (F ') q (F ") p, where: n, G and X have been described in the previous examples; Cx indicates the length of the carbon chain between the Si atom and the S atom; F 'and F "indicate the nature of the functional groups located on the periphery of the dendrimer: F' corresponds to the groups F described in the previous examples and F" represents a fluorophore group (Flu ), in the following examples FITC is fluorescein, Rho is Rhodamine and DNS is dansyl; q and p are the number of these functions, respectively, where q + p is o.
  • the dendrimer G203C2 (NH2) (S03Na) n is obtained.
  • R 4 , R 3 e and are defined above, M is a metal, Pht is phthalimide and represents a group R 5 , for example:
  • the dendrons described in this section can be represented as XGnC and (F) or, where: n indicates the number of generation G; X, indicates the nature of the focal point, in the case of the following examples these functional groups are linked to Si by an alkyl group (CH 2 ) 4-, Cx, indicates the length of the carbon chain between the atom of S and he does; F indicates the nature of the functional groups located on the periphery of the dendron (corresponds to the R 3 groups described in the description) and I is the number of these functions and will depend on the number of generations.
  • the third generation dendron FITCNHG3C2 (NMe3l) is prepared following a procedure similar to that described for the corresponding dendron G2. Starting from NH2G3C2 (NMe3l) e (0.084 g, 0.05 mmol) and FITC (0.024 g, 0.06 mmol) in EtOH (5 mL) and subsequent addition of excess Mel (0.03 mL, 0.48 mmol) FITCNHG 3 C2 (NMe3l) 8 is obtained as a yellow solid (0.132 g, 82%).
  • the fourth generation dendron FITCNHG4C2 (NMe3l) i6 is prepared following a procedure similar to that described for the corresponding dendron G2. Starting from NH2G4C2 (NMe3l) i6 (0, 120 g, 0.04 mmol) and FITC (0.017 g, 0.04 mmol) in EtOH (5 mL) and subsequent addition of excess Mel (0.04 mL, 0 , 64 mmol) FITCG 4 C2 (NMe3l) i6 is obtained as a yellow solid (0.178 g, 83%).
  • HOArG 3 C2 (NMe 2 l-ICI) 8 (0.349 g, 0.36 mmol) in a mixture of H2O / CHCl3 (1: 1, 20 ml) an aqueous solution of NaOH is added (0,150 g, 3.75 mmol) finally obtaining HOArG 3 C2 (NMe2) 8 as a yellowish oil (0.330, 99%).
  • PhtG 2 C2 (NMe 2 HCI) 4 (1, 202 g, 1, 10 mmol) in a mixture of H 2 0 / CHCI 3 (1: 1, 20 ml) is added an aqueous solution of Na 2 C0 3 (0.467 g, 4.41 mmol).
  • the organic phase is separated and after drying with Na 2 S0 PhtG 2 C2 (NMe 2) is obtained as a yellowish oil (0.943, 90%).
  • a solution of PhtG 2 C2 (NMe 2 ) 4 (0.896 g, 0.95 mmol) in Et 2 0 (20 mL) is then taken and an excess of Mel (0.28 mL, 4.48 mmol) is added .
  • PhtG 2 C2 (NMe 3 L) 4 is obtained as a white solid (1.199 g, 70%).
  • PhtG 2 C2 (NMe 3 L) 4 (1, 300 g, 0.86 mmol) in MeOH (10 mL) is added in excess N 2 H 4 (0.07 mL, 2.15 mmol) and the mixture
  • the reaction is heated at 80 ° C in a vacuum ampoule for 16 h. Then we bring the reaction mixture to dryness and dissolve in water. Hl (7.6 M, 0.25 ml) is added and filtered.
  • PhtG C2 (NMe 2) 8 (0.927 g, 0.51 mmol) in Et 2 0 (20 ml) and excess Mel (0.32 mi, 5, 10 mmol) is added .
  • the reaction mixture is allowed to stir at room temperature for 16 hours.
  • the volatiles are then evaporated and washed with hexane.
  • PhtG 3 C2 (NMe 3 L) 8 is obtained as a white solid (1.068 g, 71%).
  • PhtG 3 C2 (NMe 3 L) 8 (0.932 g, 0.32 mmol) in MeOH (10 mL) is added in excess N 2 H 4 (0.02 mL, 0.50 mmol) and the reaction mixture it is heated at 80 ° C in a vacuum ampoule for 16 h. Then we bring the reaction mixture to dryness and dissolve in water. Hl (7.6 M, 0.08 ml) is added and filtered. The solvent is evaporated and the residue is washed with Et 2 0 to obtain INH3G3C2 (NMe3l) and after drying as an oil (0.821 g, 87%).
  • N3G2V4 is obtained as a colorless oil.
  • N3G3Ve is obtained as a colorless oil. Synthesis of N3G1 C2 (NMe 2 -HCI) 2 .
  • N3G3C2 (NMe 2 HCI) 8 is obtained as a white solid.
  • HSG2C2 (NMe-HCI). Following the procedure for analogous dendrons, from Me (CO) SG2C2 (NMe2-HCI) 4 and HCI (4 M, dioxane) HSG2C2 (NMe 2 HCI) 4 is obtained .
  • HSG3C2 (NMe 2 HCI) 8 is obtained as a white solid.
  • the dendritic wedge NH2G2C3 (C02Me) 4 is added in excess by weight and left under stirring for 12 h. After this time the solvent is evaporated and dissolved in water.
  • the dendritic wedge NH2G3C3 (C02Me) e in MeOH NaOH is added in excess by weight and left with stirring for 12 h. After this time the solvent is evaporated and dissolved in water.
  • NMR-H (D 2 0): ⁇ 2.70 (t, SCh ⁇ ChkCA ⁇ SOsNa), 2.49 (m, SiCH 2 CH 2 CH 2 S), 2.38 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1.84 (m, SChkCA ⁇ ChkSOsNa), 1.59 (m, NH 2 CH 2 CH2CH 2 CH 2 YES), 1.44 (m, YES 2 CH 2 CH 2 S), 1.25 (m, SiCH 2 CH 2 CH 2 Si), 0.58 (m, NH 2 CH 2 CH 2 CH2 YES, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 CH 2 S), 0.14 (s, SiMe) NMR- 3 C (D 2 0): ⁇ 50.10 (SChkChkCh ⁇ SOsNa), 39.42 (NH 2 CH 2 CH 2 CH 2 CH 2 YES), 35.34 (SChkChkCh ⁇ SOsNa), 31.12 (NH 2 CH 2 CH 2 CH
  • NMR-H (D 2 0): ⁇ 2.81 (t, SCH 2 CH 2 CH 2 S0 3 Na), 2.52 (m, SiCH 2 CH 2 CH 2 S), 2.43 (m, SCA ⁇ ChkChkSOsNa), 1.85 (m , SCH 2 CH 2 CH 2 S0 3 Na), 1.45 (m, SiCH 2 CH 2 CH 2 S), 1.24 (m, SiCH 2 CH 2 CH 2 Si, NH 2 CH 2 CH 2 CH2CH 2 YES), 0.49 ( m, NH 2 CH 2 CH 2 CH2S ⁇ , SiCH 2 CH 2 CH 2 Si (me) CH 2 CH 2 CH 2 S), - 0.14 (s, SiMe).
  • NMR-H (D 2 0): ⁇ 2.80 (t, SCH 2 CH 2 CH 2 S0 3 Na), 2.48 (m, SiCH 2 CH 2 CH 2 S), 2.41 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1.84 (m, SCH 2 CH 2 CH 2 S0 3 Na ), 1 .44 (m, NH 2 CH 2 CH 2 CH 2 Si, SiCH 2 CH 2 CH 2 S), 1 .23 (m, SiCH 2 CH 2 CH 2 Si), 0.47 (m, NH 2 CH 2 CH 2 CH 2 Yes, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 CH 2 S), - 0.15 (s, Si e) NMR- 3 C (D 2 0): ⁇ 50.06 (SCH 2 CH 2 CH 2 S0 3 Na), 35.99 (NH 2 CH 2 CH 2 CH 2 Si), 35.26 (SCH 2 CH 2 CH 2 S0 3 Na), 31.30 (NH 2 CH 2 CH 2 CH 2 Si), 30.30 (SiCH
  • Me (CO) SG1V2 and HSCH 2 C0 2 CH 3 Me (CO) SG1 C2 (C0 2 Me) 2 is obtained as a yellowish oil.
  • Me (CO) SG2C2 (C0 2 Me) is obtained as a yellowish oil.
  • HSG2C2 (C0 2 Na) 4 is obtained as a white solid.
  • HSG3C2 (C0 2 Me) 8 and NaOH under Ar atmosphere
  • HSG3C2 (C0 2 Na) s is obtained as a white solid.
  • NMR-H (D 2 0): 2.79 (t, CH 2 S0 3 Na), 2.49 (m, CH 2 S), 2.42 (t, HSCH2CH2CH2CH2YES), 1.84 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1 .65 (m, CH2CH2CH2CH2YES), 1 .38 (m, CH2CH2CH2CH2YES and HS), 0.76 (m, SiCH 2 CH 2 S), 0.38 (m, CH2CH2CH2CH2YES), - 0.23 (s, SiMe) .
  • HSG2C2 (S0 3 Na) is obtained as a white solid.
  • N 3 G1 C3 (C0 2 Me) 2 is obtained as a yellowish oil.
  • N 3 G2C3 (C0 2 Me) is obtained as a yellowish oil.
  • NMR-H (CDCI 3 ): 3.72 (s, COOCH 3 ), 3.24 (s, 2 H, N 3 CH 2 ), 3.22 (s, SCH 2 CO), 2.48 (t, SiCH 2 CH 2 CH 2 S) , 1 .61 (m, 2H, N-CH2-CH2-CH2-CH2-YES), 1 .42 (m, S ⁇ CH2CH2CH2S, S ⁇ CH2CH2CH2S), 1 .38 (m, SiCH 2 CH 2 CH 2 Si, N 3 CH2CH 2 CH2CH 2 Si), 0.80 (t, S1CH2 CH2CH2S), 0.48 (m, SiCH 2 CH2CH2Si (Me) CH2CH2CH 2 S, SiCH 2 CH 2 CH 2 Yes, N3CH2CH2CH2CH2YES), -
  • N3G3C3 (C0 2 Me) 8 is obtained as a yellowish oil.
  • N3G2C3 (C02Me) 4 and NaOH or from BrG2C3 (C0 2 Na) 4 and NaN 3 , N3G2C3 (C0 2 Na) 4 is obtained as a white solid.
  • N3G1 C2 (S0 3 Na) 2 is obtained Like a white solid NMR-H (D 2 0): 3.24 (m, 2 H, N 3 CH 2 ), 2.79 (t, CH 2 S0 3 Na), 2.49 (m, CH 2 S), 1.84 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1.65 (m, CH2CH2CH2CH2YES), 1.38 (m, CH2CH2CH2CH2YES), 0.76 (m, SiCH 2 CH 2 CH 2 S), 0.38 (m, CH2CH2CH2CH2YES), - 0.23 (s, SiMe).
  • N3G2C3 (S0 3 Na) is obtained as a white solid .
  • N3G3C3 (S0 3 Na) 4 is obtained as a white solid.
  • PBMCs PERIPHERAL BLOOD MONONUCLEAR CELLS
  • the blood from buffy coats from healthy donors, is diluted twice with 6.7 mM phosphate buffered saline (PBS, Bio-Whittaker®) and centrifuged in density gradient (Ficoll-lsopaque ® ). After said centrifugation, the halo containing the CMSPs is recovered and It proceeds to two subsequent wash-spin cycles with PBS (10 minutes at 1, 500 rpm). The resulting CMSPs are resuspended in complete medium and under culture conditions.
  • PBS phosphate buffered saline
  • the dendrimers G103C2 (NMe 3 l) 6 , G203C2 (NMe 3 l) and 2 , G303C2 (NMe 3 l) 2 4, G403C2 (NMe 3 l) 4 8 correspond to compounds BDEF031, BDEF032, BDEF033 and BDEF034 respectively, while the G203C2 (NMe 3 L) n (NHFITC) dendrimer refers to the BDEF023 compound.
  • a screening system was used to determine the biocompatible concentrations of the 4 generations of dendrimers.
  • the dendrimers were dissolved at concentrations of 3 mM, 2 mM and 1 mM, the latter being the one with the best solubility without the help of additional physical factors for perfect solubilization (vortex, heat, etc.).
  • concentrations of 3 mM, 2 mM and 1 mM were established.
  • the dendrimers were dissolved at concentrations of 3 mM, 2 mM and 1 mM, the latter being the one with the best solubility without the help of additional physical factors for perfect solubilization (vortex, heat, etc.).
  • the MTT assay was used to assess mitochondrial activity to study the toxicity of generations of dendrimers in primary cultures of peripheral blood mononuclear cells since they are the first target of HIV and the most physiological (PBMCs). This technique was used to show deleterious effects on cell metabolism.
  • Opti-MEM® 20 ⁇ of previously filtered MTT was added to achieve sterility (Tiazolyl Blue, Sigma®) in PBS at a concentration of 5 mg / ml (final well concentration of 0.5 mg MTT / ml). After 4 hours of incubation under culture conditions, the plate was centrifuged at 2,000 rpm. 10 minutes and after removal of the supernatant with the excess MTT that did not react. Formazan crystals were observed under the phase contrast microscope and subsequently dissolved with 200 ⁇ of DMSO. The plate was stirred at 700 rpm. in an Eppendorf ® stirrer to ensure the correct dissolution of said crystals.
  • Formazan concentration was determined by spectrophotometry using a plate reader at a wavelength of 570 nm with a reference of 690 nm.
  • the spectrophotometer was calibrated using Opti-MEM® without cells.
  • the relative cell viability (%) with respect to the control (untreated cells) was calculated based on the formula: [A] test / [A] control x 100.
  • Each dendrimer concentration was tested in triplicate, following the guidelines of the ATCC. It was used as lysis control of 0.2% Triton x-100 cells.
  • siRNA small interfering RNAs
  • siNEF siRNA 5'- GUGCCUGGCUAGAAGCACAdTdT-3 ', labeled with cyanine 3 (cy3) was used at the 5' end of the sense strand and the antisense siNEF: 3'-UGUGCUUCUAGCCAGGCACdTdT-5 '. in sterile H 2 0 and stored at 4 ° C.
  • concentration depended in each case on the desired load ratio (from 1: 1 to 1: 12 ratio, see table 1).
  • the ratios SiRNA Nef / dendrimer 1: 8 and 1: 12 were selected and an MTT toxicity test was carried out to verify that the dendriplexes were not toxic to those ratios following the same procedure that in the toxicity evaluation section of dendrimers described above. The study of dendrimer alone and complexes was carried out in parallel.
  • heparin exclusion competition trial was performed to analyze the junctions between dendrimers and siRNA. They were carried out with mixtures of dendriplexes (+/- ratio 1: 8 and 1: 12) of the dendrimers BDEF031, BDEF032, BDEF033, BDEF034 with varying concentrations of heparin (0, 1, 0.2, 0.3 and 0.6 U / ⁇ IQ siRNA). The mixture was run on a 2% agarose gel for 2 and 16 hours.
  • the viral isolate X4 HIV-1 N L4-3 is an established laboratory viral strain and MT-2 cells (T-cell leukemia cell line with integrated HTLV-1 DNA were used, obtained from the American Type Culture Collection ( ATCC) for virus expansion 2x10 6 MT-2 cells were washed twice with complete medium (RPMI 1640 (Gibco) supplemented with 10% Fetal Calf Serum (SFT), 2mM L-glutamine and antibiotics (1% cloxacycline, 1% ampicillin and 0.32% gentamicin)] in 24 or 96 well plates, under culture conditions (37 ° C in an atmosphere of 5% C0 2 and 95% relative humidity) and transferred to a tube 15 ml conical at a concentration of 2x10 6 cells / ml in complete medium Subsequently, HIV-1 N L4-3 was added at a concentration of 1 particle per cell or what is the same, 1 MOI.
  • the MT-2 were cultured with the virus for 2 hours under culture conditions, shaking the culture every 15-30 minutes.
  • the cultures (virus cells) were washed twice to remove the virus not integrated into the cell genome.
  • the cells were transferred to a six-well plate well in a volume of 3-4 ml. It was left in culture for 2-3 days and the presence of syncytia was observed in the well. When the presence of syncytia reached 80-90% of production, 12 ml of complete medium with 20x10 6 MT-2 was added and dispensed in petri dish. At 2-3 days, the entire volume was centrifuged and the supernatant was collected.
  • the HIV-1 N L4-3 viral isolate was titrated in the MT-2 cell line. 2x10 4 MT-2 cells were cultured with complete medium in 96-well plates and 40 ⁇ of the viral preparation was added at different concentrations, for which the corresponding dilutions were made. The dilutions were placed in octuplicate and kept under culture conditions for one week. After this time, the titration was read by visualization of the cytopathic effect. The title was calculated applying the Spearman-Karber formula. It was also titrated by quantification of p24 protein by an enzymatic immunoassay (ELISA p24.
  • ELISA p24 enzymatic immunoassay
  • the HIV-1 Ba -L viral isolate was titrated by quantification of p24 protein by ELISA. To ensure virus purity, thawed aliquots were filtered through 0.22 ⁇ filters before quantification.
  • PBMCs peripheral blood mononuclear cell cultures
  • PBMCs peripheral blood mononuclear cells
  • PHA phytohemagglutinin
  • Ul of IL-2 interleukin 2
  • the previously infected PBMCs are placed in a 96-well plate (2x10 5 cells per well) in complete medium (200 ⁇ per well) and the different complexes are added at a 1: 8 ratio (in this case they are placed as Examples are siNef / BDEF33 and siNEf / BDEF34
  • AZT drugs are used (Zidovudine®), nucleoside analogue retrotranscriptase inhibitor and T20 (Fuzeon®), viral entry inhibitor, in particular of fusion.
  • After the addition of the dendrimers it is incubated at 37 ° C and 5% C0 2 for 24 hours. After the time the supernatant is collected to quantify p24 antigen by ELISA.
  • mice of the BALB / c (H-2d) mouse strain of 4 to 8 weeks of age were used. Mice were injected into the tail vein with the BDEF023 dendrimer at concentrations of 1 mg / kg, 5 mg / kg, 40 mg / kg and 80 mg / kg for 30 min and 1 hour, BDEF023 at a concentration of 20 mg / kg , Cy5.5 labeled Nef siRNA at a concentration of 2 ⁇ and the Nef./BDEF023 siRNA complex. The animals were subsequently sacrificed and fluorescence emission in spleen, liver, kidney and brain was studied in the IVIS Lumina (Xenogen).
  • the ratios 1: 12 were selected for the siRNA-Nef -BDEF31 and siRNA-Nef-BDEF32 complexes and 1: 8 ratio for the siRNA-Nef-BDEF33 and siRNA complexes -Nef-BDEF34. At lower ratios, less union is observed characterized by a lower band expression at the level of the siRNA from the 1: 2 ratio (Fig. 2). As shown in Fig. 3 after 24 hours of treatment with the different dendriplexes, PBMCs were viable, using dextran (Dx) and cell death or DMSO toxicity as a control of viability.
  • Dx dextran
  • DMSO toxicity a control of viability.
  • PBMCs previously stimulated with PHA were infected with 20ng / 1x106 cells with HIV-NL4.3 for 2 h.
  • the siNef / BDEF33 and siNEf / BDEF34 dendriplexes and the AZT and T20 antiretrovirals were added as positive controls for HIV inhibition for 24 h and the culture supernatant was collected to quantify by ELISA the production of Agp24 by ELISA.
  • BDEF33 and BDEF34 showed an HIV inhibition capacity of 85% and 65%, respectively. This data would confirm that they could have a therapeutic application against HIV.
  • the inhibition observed due to dendriplexes was greater when the fourth generation siNEF / BDEF34 was used with 35% than when the SYRNA / BDEF33 was used, the inhibition was 15%. (Fig. 5).
  • Figure 6 shows the results obtained in spleen after injecting in the tail of BALB / c mice 40 mg / kg of the dendrimer alone.
  • the mice were treated for 30 min with the dendrimer no fluorescence was observed at concentrations of 1 and 5 mg / kg, an increase from 40 mg / kg was observed, the maximum expression being at 80 mg / kg.
  • the presence of the dendrimer, siRNA and dendriplex in the spleen of a mouse was observed in the IVIS Lumina (Xenogen) after 1 and 24 hours of treatment. Increased tide was observed when using dendriplex.
  • the data indicate that it may be possible to use dendriplexes in vivo and therefore could have application in different therapies. BIOLOGICAL ACTIVITY OF ANIONIC DENDR ⁇ MEROS AS ANTIVIRAL AGENTS AGAINST HIV.
  • HEC-1A Human Endometrial Carcinoma cells
  • PBMC Peripheral Blood Mononuclear Cells
  • VK2 / E6E7 Human vaginal epithelial cell line. Obtained from the American Type Culture Collection (ATCC), they were grown in Keratinocyte-Serum Free medium (Gibco) with 0.1 ng / ml human EGF, 0.05 mg / ml bovine pituitary extract and 44.1 mg / l calcium chloride (final concentration 0.4 mM), in different plate formats (6, 24 or 96 wells, transwells) and under culture conditions.
  • ATCC American Type Culture Collection
  • TZM.bl Expresses the CD4 and CCR5 markers, and the luciferase and ⁇ -galactosidase genes under the control of the HIV-1 promoter. It is very sensitive to infection by HIV-1 isolates. Its culture medium is DMEM (90%), 10% FBS, 100 u. of penicillin and 0.1 mg / ml streptomycin.
  • HeLa human epithelial cell line, from a cervical adenocarcinoma. They were obtained through the NIH AIDS Research and Reference Reagent Program. Grown in "Dulbecco ' s Modified Eagle Medium” supplemented with 5% SFT, 1% penicillin / streptomycin, and 2 mM L-glutamine at 37 ° C in an atmosphere of 5% C0 2 .
  • the dendrimers described in the previous section are used. And also the dendrimers G2SiC3 (S0 3 Na) i6, and, G2SiC3 (C0 2 Na) i 6 corresponding to the compounds BDMG017 and BDMG018, respectively.
  • the technique used to study the concentrations at which BDMG017 and BDMG018 dendrimers were viable was the MTS that measures cytotoxicity in relation to mitochondrial activity. This method was applied to study the toxicity of the second generation of dendrimers (from 1 to 1000 ⁇ ) in PBMCs and different cell lines: HEC-1A, HeLa, TZM.bl and VK2.
  • This technique was used to demonstrate deleterious effects of dendrimers on cell metabolism. It is a colorimetric assay based on the selective ability of viable cells to reduce (3- (4,5-dimethylthiazol-2-yl) -5- (3-carboxymethoxyphenyl) -2- (4-sulfophenyl) -2H - tetrazolium) (Promega) in insoluble crystals of formazan. After the desired incubation time of the different cell populations with different concentrations of 96-well plate dendrimers, and with 3 wells as a positive control of cell inactivity [10% dimethyl sulfoxide (DMSO, Sigma).
  • DMSO dimethyl sulfoxide
  • HEC-1A cells were grown in 12-well plates in culture medium. To study the internalization of HIV in HEC-1A, the cells were pre-treated with the BDMG017 and BDMG018 dendrimers at doses of 10 ⁇ and 100 ⁇ for 1 hour, before carrying out the infection. Once the time was up, the HEC-1A was infected with the viral isolates X4 HIV-1 NL . 3 and R5 VI H- 1 at 100 ng of HIV / 10 6 cells for two hours. After that period of time the cells were washed with sterile PBS and the cell lysis was carried out using Triton x-100 0.2% for 40 minutes at 37 ° C. Agp24 of the cell lysate was quantified by ELISA according to the test instructions.
  • PBMC Peripheral blood mononuclear cells
  • PHA PHA
  • IL-2 Peripheral blood mononuclear cells
  • the cells were treated at the concentrations of 10 ⁇ and 100 ⁇ of BDMG017 and BDMG018 dendrimers for 1 hour before infection with 10 ng of the HIV-1 -3 viral isolate per million cells for 2 hours in growing conditions After this time, the plate was washed three times with PBS and incubated under culture conditions. The concentration of HIV in the supernatant of the PBMC cultures at 3 days was quantified by p24 ELISA according to the kit instructions.
  • PBMCs were first infected with viral isolates X4 HIVNL4.3 and R5 HIVBaL for 2 hours, using the same experimental conditions as in the pre-treatment experiment. After this time, the culture plate was washed three times with PBS to remove excess virus and the cells were treated with the dendrimers BDMG017 and BDMG018. After 3 days the culture supernatant was collected and the viral infection was quantified by a p24 ELISA.
  • the ability of the dendrimers BDMG017 (SIG2SS03) and BDMG018 (SIG2SCBX) to interact with the viral particles in the process of adhesion of these to the surface of the cell membrane was evaluated.
  • the dendrimers would act as a physical barrier in preventing HIV infection of the endometrial cells, blocking the passage of the virus through the mucous membranes and the infection of other target cells such as CMSP.
  • the antiretroviral T20 (an inhibitor of HIV fusion to cells due to its binding to HIV gp41) was used; a specific CXCR4 antagonist that also blocks the T-tropic and dual-tropic variants (R5 X4) which need the CXCR4 to enter the cells, the AMD3100 or Biciclamo; a non-peptide compound that interacts with CCR5 is a quaternary ammonium derivative called TAK-779; a CCR5 co-receptor antagonist used as a drug in HAART, Maraviroc.
  • Figure 8 shows the effect that dendrimers have on the entry of the virus into vaginal epithelial cells.
  • transwell devices were used to recreate the phenomenon of transcytosis ( transport of macromolecules from one extracellular space to another through the cytoplasm of a cell by means of an endocytic vesicle) due to the possibility of forming a perfect monolayer of adherent cells inside and collecting information from the supernatants of the apical and basolateral face of the monolayer.
  • R5 viruses were used as they are the strains that appear in the first moments of infection (type X4 virus was also used).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Inorganic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The invention relates to highly branched macromolecules referred to as dendrimers or dendrons, which have a carbosilane structure and are functionalised on the periphery thereof with anionic or cationic groups which give the macromolecule a negative or positive net charge, respectively. Said molecules were synthesised from a polyvalent nucleus, in particular a polyphenolic nucleus or a silicon atom nucleus, were obtained as spherical dendrimers, or else as dendritic wedges, having a point of growth known as the focal point. The functionalisation of the periphery of said dendrimers is carried out by thiol-ene or thiol-yne reaction between a thiol that contains the anionic or cationic group, or the corresponding precursor thereof, and a dendrimer functionalised with terminal olefins or alkynes. The invention further relates to the method for obtaining same and to the uses thereof in biomedicine.

Description

DESCRIPCION  DESCRIPTION
COMPUESTOS DENDRÍTICOS CARBOSILANOS HOMO Y HETERO-FUNCIONALIZADOS.  CARBOSILAN DENDRÍTICOS COMPOUNDS HOMO AND IET-FUNCTIONALIZED.
La presente invención se refiere a compuestos dendríticos, particularmente dendrímeros o dendrones, de estructura carbosilano y funcionalizados en su periferia con grupos funcionales que preferiblemente están en forma aniónica o catiónica. La presente invención también se refiere a su procedimiento de obtención llevado a cabo por reacción tiol-eno o tiol-ino. Además, la invención se refiere a los usos de dichos compuestos en biomedicina. ESTADO DE LA TÉCNICA ANTERIOR The present invention relates to dendritic compounds, particularly dendrimers or dendrons, of carbosilane structure and functionalized at its periphery with functional groups that are preferably in anionic or cationic form. The present invention also relates to its method of production carried out by thiol-eno or thiol-ino reaction. In addition, the invention relates to the uses of said compounds in biomedicine. STATE OF THE PREVIOUS TECHNIQUE
Los dendrímeros son moléculas hiperramificadas de construcción arborescente, de tamaño y estructura tridimensional bien definidos y que poseen unas propiedades químicas uniformes debidas en parte a su baja polidispersidad. Es bastante reciente el descubrimiento de que los dendrímeros por sí mismos pueden tener una actividad biológica, actuando así por ejemplo como agentes antibacterianos o antivirales. También pueden actuar como agentes de transporte de ácidos nucleicos o fármacos.  Dendrimers are hyperbranched molecules of arborescent construction, of a well-defined size and three-dimensional structure and that have uniform chemical properties due in part to their low polydispersity. The discovery that dendrimers by themselves may have a biological activity is quite recent, thus acting for example as antibacterial or antiviral agents. They can also act as transport agents for nucleic acids or drugs.
Los dendrímeros descritos en la bibliografía y potencial mente útiles como agentes antivirales pueden presentar distintos tipos de esqueletos, pero en lo que se refiere a los grupos funcionales que presentan en su periferia, que son los verdaderos responsables de su actividad antiviral, pueden ser agrupados en tres tipos: carbohidratos, péptidos y aniones. The dendrimers described in the literature and potentially useful as antiviral agents may have different types of skeletons, but in what refers to the functional groups they present at their periphery, which are the real ones responsible for their antiviral activity, they can be grouped into Three types: carbohydrates, peptides and anions.
Por otro lado, se han descrito dendrímeros de estructura carbosilano de naturaleza catiónica que se han mostrado útiles para aplicaciones en biomedicina (N. Weber, P. Ortega, M. I . Clemente, D. Shcharbin, M. Bryszewska, F. J. de la Mata, R. Gómez, M. A.Muñoz-Fernandez. J. of Controlled Released. 2008, 132, 55-64). Estos derivados no son tóxicos en un rango de concentraciones entre 1 y 5 μΜ y son capaces de interaccionar de forma electrostática con material nucleico como oligonucleótidos o pequeños ARN de interferencia (siRNA) formando bioconjugados denominados "dendríplexes". Estos "dendríplexes" han mostrado también una baja toxicidad, capacidad para proteger al material nucleico del ataque de las proteínas del suero y de las nucleasas y son capaces de transportar este material hasta el interior de las células, por lo que se pueden considerar como vectores no virales para la transfección de material nucleico al interior de varios tipos de líneas celulares en procesos de terapia génica. On the other hand, cationic structure dendrimers of a cationic nature have been described that have proven useful for biomedicine applications (N. Weber, P. Ortega, M. I. Clemente, D. Shcharbin, M. Bryszewska, FJ de la Mata , R. Gómez, MAMuñoz-Fernandez, J. of Controlled Released. 2008, 132, 55-64). These derivatives are not toxic in a range of concentrations between 1 and 5 μΜ and are capable of electrostatically interacting with nucleic material such as oligonucleotides or small interfering RNAs (siRNA) forming bioconjugates called "dendriplexes." These "dendriflexes" have also shown a low toxicity, ability to protect the nucleic material from the attack of serum proteins and nucleases and are capable of transporting this material to the interior of the cells, so they can be considered as vectors Non-viral for the transfection of nucleic material into several types of cell lines in gene therapy processes.
También, los dendrímeros carbosilano catiónicos han mostrado actividad antimicrobiana tanto frente a bacterias Gram positivas como frente a bacterias Gram negativas. Esta actividad parece estar relacionada con la multivalencia que presentan los dendrímeros, que permite la presencia de un número elevado de funcionalidades sobre una misma molécula. Así, dendrímeros carbosilano con grupos amonio terminales de primera, segunda o tercera generación se han mostrado eficaces como biocidas multivalentes, mostrando una actividad antibacteriana que es más de dos órdenes de magnitud mayor que la de los compuestos análogos monofuncionales (Beatriz Rasines, José Manuel Hernández- Ros, Natividad de las Cuevas, José Luis Copa-Patiño, Juan Soliveri, María Angeles Muñoz-Fernández, Rafael Gómez, F. Javier de la Mata. Dalton Transactions, 2009, 40, 8704-8713; ES2265291). La eficacia mostrada por los dendrímeros carbosilano tanto aniónicos como catiónicos en diferentes campos de la biomedicina hace necesario el encontrar un método fácil y versátil que permita la obtención de estos derivados en un proceso de elevado rendimiento a partir de reactivos fácilmente accesibles y mediante reacciones químicas cuantitativas que toleren una gran variedad de condiciones de reacción. Also, cationic carbosilane dendrimers have shown antimicrobial activity both against Gram positive bacteria and against Gram negative bacteria. This activity seems to be related to the multivalence of dendrimers, which allows the presence of a large number of functionalities on the same molecule. Thus, carbosilane dendrimers with first, second or third generation terminal ammonium groups have proven effective as multivalent biocides, showing an antibacterial activity that is more than two orders of magnitude greater than that of monofunctional analog compounds (Beatriz Rasines, José Manuel Hernández - Ros, Nativity of the Caves, José Luis Copa-Patiño, Juan Soliveri, María Angeles Muñoz-Fernández, Rafael Gómez, F. Javier de la Mata, Dalton Transactions, 2009, 40, 8704-8713; ES2265291). The efficacy shown by both anionic and cationic carbosilane dendrimers in different fields of biomedicine makes it necessary to find an easy and versatile method that allows obtaining these derivatives in a high yield process from easily accessible reagents and through quantitative chemical reactions. that tolerate a wide variety of reaction conditions.
Los dendrímeros carbosilano se construyen por repetición de reacciones de hidrosililación con derivados del tipo HSiMexCIp-x) y posterior alquenilación, generando de este modo dendrímeros funcionalizados con olefinas terminales. Una vez alcanzada la generación deseada se lleva a cabo una reacción de hidrosililación con HSiMe2CI y posterior sustitución del sistema Si-CI por otro del tipo Si-H con UAIH4, obteniendo de esta manera dendrímeros con grupos Si-H en la periferia. A partir de estos dendrímeros se pueden introducir aminas terminales por reacción de hidrosililación de alilaminas, que por posterior cuaternización permite obtener dendrímeros catiónicos. Por otra parte, los dendrímeros carbosilano neutros con grupos -NHR obtenidos de esta manera se han empleado para obtener dendrímeros aniónicos carboxilato por reacción con acrilato de metilo y posterior tratamiento básico y dendrímeros aniónicos sulfonato por reacción con vinilsulfonato (WO201 1/101520 A2). Este procedimiento sintético resulta largo con el consiguiente encarecimiento del proceso y disminución del rendimiento global para la obtención del dendrímero deseado. Además, la hidrosililación de C3H5NH2 necesaria para luego obtener dendrímeros aniónicos requiere calentar a 120°C durante más de dos días, disminuyendo el rendimiento de manera notable para generaciones superiores. También la introducción de alguno de los grupos funcionales terminales, como los grupos sulfonato, necesitan temperaturas elevadas y tiempos de reacción largos. Carbosilane dendrimers are constructed by repeating hydrosilylation reactions with derivatives of the HSiMexCIp-x type) and subsequent alkenylation, thereby generating functionalized dendrimers with terminal olefins. Once the desired generation has been achieved, a hydrosilylation reaction with HSiMe 2 CI is carried out and subsequent replacement of the Si-CI system with another of the Si-H type with UAIH 4 , thus obtaining dendrimers with Si-H groups on the periphery . From these dendrimers, terminal amines can be introduced by allylamine hydrosilylation reaction, which by subsequent quaternization allows to obtain cationic dendrimers. On the other hand, neutral carbosilane dendrimers with -NHR groups obtained in this way have been used to obtain anionic carboxylate dendrimers by reaction with methyl acrylate and subsequent basic treatment and anionic dendrimers sulfonate by reaction with vinyl sulfonate (WO201 1/101520 A2). This synthetic procedure is long with the consequent increase in the process and decrease in the overall yield to obtain the desired dendrimer. In addition, the hydrosilylation of C3H5NH2 necessary to then obtain anionic dendrimers requires heating at 120 ° C for more than two days, significantly reducing the yield for higher generations. The introduction of some of the terminal functional groups, such as sulfonate groups, also requires high temperatures and long reaction times.
Teniendo en cuenta lo anterior, la simplificación del procedimiento para obtener dendrímeros tanto catiónicos como aniónicos sería de gran importancia, reduciendo costes y facilitando el acceso a moléculas con potencial biomédico. Given the above, the simplification of the procedure to obtain both cationic and anionic dendrimers would be of great importance, reducing costs and facilitating access to molecules with biomedical potential.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención proporciona macromoléculas altamente ramificadas, dendrímeros o dendrones, de estructura carbosilano y funcionalizados en su periferia con grupos aniónicos (como carboxilato, sulfonato o sulfatas), que dotan a la macromolécula de una carga neta negativa, o catiónicos (amonio), que dotan al dendrímero de una carga positiva neta. En concreto los dendrímeros presentan un núcleo preferentemente polifenólico o de átomo de silicio. El procedimiento de obtención de los compuestos de la invención permite, mediante un proceso sencillo, la versatilidad en la síntesis de dendrímeros o dendrones, de naturaleza catiónica o aniónica, y además la posibilidad de sintetizar dendrímeros o dendrones heterofuncionalizados, que consisten en las moléculas anteriores pero con una o varias de sus ramas sustituidas por grupos diferentes, como pueden ser grupos cromóforos. Además la invención proporciona sus usos en biomedicina. Por tanto, un primer aspecto de la presente invención se refiere a un compuesto dendrítico carbosilano (a partir de ahora compuesto de la invención) que comprende: The present invention provides highly branched macromolecules, dendrimers or dendrons, of carbosilane structure and functionalized on its periphery with anionic groups (such as carboxylate, sulphonate or sulfates), which give the macromolecule a negative net charge, or cationic (ammonium), which endow the dendrimer with a net positive charge. Specifically, dendrimers have a preferably polyphenolic or silicon atom core. The process for obtaining the compounds of the invention allows, by a simple process, the versatility in the synthesis of dendrimers or dendrons, of a cationic or anionic nature, and also the possibility of synthesizing heterofunctionalized dendrimers or dendrons, which consist of the above molecules. but with one or several of its branches replaced by different groups, such as chromophores groups. In addition the invention provides its uses in biomedicine. Therefore, a first aspect of the present invention relates to a carbosilane dendritic compound (hereinafter compound of the invention) comprising:
-una capa externa, que consiste, total o parcialmente, en unidades iguales o diferentes del grupo de fórmula (I):
Figure imgf000005_0001
-a outer layer, consisting, totally or partially, of equal or different units of the group of formula (I):
Figure imgf000005_0001
(l)  (l)
donde: R2 es un grupo alquilo (CrC4), preferiblemente R2 es un grupo metilo; where: R 2 is an alkyl group (CrC 4 ), preferably R 2 is a methyl group;
p es un número entero y varía entre 1 y 3, preferiblemente p es 2; y  p is an integer and varies between 1 and 3, preferably p is 2; Y
Ri es el siguiente grupo -(CH2),cS-(CI-l2)y-R3; Ri is the following group - (CH 2 ), cS- (CI-l 2 ) and R 3 ;
x representa un número entero que varía de 2 a 5; preferiblemente x  x represents an integer that varies from 2 to 5; preferably x
es 2 ó 3; it is 2 or 3;
y representa un número entero que varía de 1 a 10; preferiblemente y  and represents an integer that varies from 1 to 10; preferably and
varia entre 1 y 5; varies between 1 and 5;
R3 es un grupo -OH, -S03H, -OS03H, -COOR' o -NR"R"', donde R', R" y R'", representan de manera independiente un grupo alquilo (CrC4) o un hidrógeno; R 3 is a group -OH, -S0 3 H, -OS0 3 H, -COOR 'or -NR "R"', where R ', R "and R'" independently represent an alkyl group (CrC 4 ) or a hydrogen;
o cualquiera de sus sales. or any of its salts.
Cuando R3 es -NR"R"', preferiblemente R" y R'", representan de manera independiente un grupo alquilo (C1-C4) o hidrógeno, más preferiblemente un grupo alquilo(CrC2) o hidrógeno, aún más preferiblemente R3 es un grupo -N(CH3)2. Aún más preferiblemente x es 2 y aún más preferiblemente y es 2. En una realización más preferida, cuando R3 es -NR"R"', Ri es el grupo -(CH2)2-S-(CH2)2- N(CH3)2. When R 3 is -NR "R"', preferably R "and R'", they independently represent a (C1-C4) alkyl or hydrogen group, more preferably an alkyl (CrC 2 ) or hydrogen group, even more preferably R 3 is a group -N (CH 3 ) 2 . Even more preferably x is 2 and even more preferably and is 2. In a more preferred embodiment, when R 3 is -NR "R"', Ri is the group - (CH 2 ) 2 -S- (CH 2 ) 2 - N (CH 3 ) 2 .
Cuando R3 es un grupo -C02R', preferiblemente R' es H o CH3, más preferiblemente x es 2 ó 3, y aún más preferiblemente y es 1 ó 2. When R 3 is a group -C0 2 R ', preferably R' is H or CH 3 , more preferably x is 2 or 3, and even more preferably and is 1 or 2.
Cuando R3 es un grupo -S03H o -OS03H, preferiblemente x es 2 ó 3, y más preferiblemente y es 2 ó 3. When R 3 is a group -S0 3 H or -OS0 3 H, preferably x is 2 or 3, and more preferably and is 2 or 3.
El término "alquilo" se refiere en la presente invención a cadenas alifáticas, lineales o ramificadas, que tienen de 1 a 4 átomos de carbono, por ejemplo, metilo, etilo, n-propilo, i-propilo, n-butilo, tert-butilo o sec-butilo, preferiblemente tiene de 1 a 2 átomos de carbono, más preferiblemente el grupo alquilo es un metilo. The term "alkyl" refers in the present invention to aliphatic, linear or branched chains, having 1 to 4 carbon atoms, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, tert- butyl or sec-butyl, preferably has 1 to 2 carbon atoms, more preferably the alkyl group is a methyl.
Por "compuesto dendrítico" se refiere en la presente invención a una macromolécula muy ramificada donde las unidades, ramas o ramificaciones de crecimiento tienen esqueleto carbosilano. Este compuesto dendrítico carbosilano se puede seleccionar entre dendrímero o dendrón, también denominado este último como cuña dendrítica. Por "dendrímero" se refiere en la presente invención a una macromolécula muy ramificada con forma esférica, donde el núcleo de crecimiento del dendrímero es polifuncional, las unidades, ramas o ramificaciones de crecimiento tienen esqueleto carbosilano y la capa externa, superficie o periferia del dendrímero incorpora grupos funcionales, grupos R3. Esta superficie o periferia sería la correspondiente a las extremidades de las ramificaciones. El esqueleto de estos dendrimeros carbosilanos con diferentes núcleos es ampliamente conocido por un experto en la materia (ES226591 ; WO201 1101520). By "dendritic compound" refers in the present invention to a highly branched macromolecule where the growth units, branches or branches have carbosilane skeleton. This carbosilane dendritic compound can be selected from dendrimer or dendron, also referred to as dendritic wedge. By "dendrimer" refers in the present invention to a highly branched macromolecule with a spherical shape, where the dendrimer's growth nucleus is polyfunctional, the growth units, branches or branches have carbosilane skeleton and the outer layer, surface or periphery of the dendrimer incorporates functional groups, R 3 groups. This surface or periphery would be the one corresponding to the extremities of the branches. The skeleton of these carbosilane dendrimeros with different nuclei is widely known to one skilled in the art (ES226591; WO201 1101520).
Por "núcleo polifuncional" se entiende en la presente invención a un elemento o compuesto polivalente enlazado de la manera covalente con al menos dos ramificaciones, es decir, al menos deberá ser divalente. En una realización preferida el núcleo es tetravalente y más preferiblemente el núcleo es de silicio (es decir, un grupo sililo). En otra realización preferida el núcleo puede ser un polifenol, y se entiende por "polifenol" a una molécula de benceno sustituido por al menos dos grupos hidroxilo en cualquiera de sus posiciones, por ejemplo 1 ,4-dihidroxibenceno, 1 ,2-dihidroxibenceno o 1 ,3- dihidroxibenceno, más preferiblemente es hidroquinona (1 ,4-dihidroxibenceno), pero puede tener tres, cuatro, cinco o seis grupos hidroxilo. Más preferiblemente el polifenol es trisustituido, aún más preferiblemente 1 ,3,5-trihidroxibenceno. By "polyfunctional core" is meant in the present invention a polyvalent element or compound covalently bonded with at least two branches, that is, at least it must be divalent. In a preferred embodiment the core is tetravalent and more preferably the core is silicon (i.e., a silyl group). In another preferred embodiment, the core may be a polyphenol, and "polyphenol" means a benzene molecule substituted by at least two hydroxyl groups in any of its positions, for example 1,4-dihydroxybenzene, 1,2-dihydroxybenzene or 1, 3-dihydroxybenzene, more preferably it is hydroquinone (1,4-dihydroxybenzene), but it may have three, four, five or six hydroxyl groups. More preferably the polyphenol is trisubstituted, even more preferably 1,3,5-trihydroxybenzene.
Por "dendrón" o "cuña dendrítica" se refiere en la presente invención a una macromolécula muy ramificada con forma de cono y que está definida por un punto focal, las unidades, ramas o ramificaciones de crecimiento, que parten de dicho punto focal, tienen esqueleto carbosilano y la capa externa, superficie o periferia de dichas ramificaciones incorpora grupos funcionales, grupos R3. El punto focal puede tener un grupo funcional, en su capa externa, igual o diferente a las ramificaciones. El esqueleto de estos dendrones carbosilanos es ampliamente conocido por un experto en la materia (ES226591 ; WO201 1 101520). By "dendron" or "dendritic wedge" refers in the present invention to a very branched cone-shaped macromolecule that is defined by a focal point, the units, branches or branches of growth, which start from said focal point, have carbosilane skeleton and the outer layer, surface or periphery of said branches incorporates functional groups, R 3 groups. The focal point can have a functional group, in its outer layer, equal to or different from the ramifications. The skeleton of these carbosilane dendrons is widely known to one skilled in the art (ES226591; WO201 1 101520).
El punto focal se puede seleccionar del grupo o -(CH2)Z-R4; donde: The focal point can be selected from the group or - (CH 2 ) Z -R4; where:
z es un número entero que varía de 1 a 10, preferiblemente z varía de 1 a 5 y más preferiblemente z es 4; y z is an integer that varies from 1 to 10, preferably z varies from 1 to 5 and more preferably z is 4; Y
R4 es grupo seleccionado de la lista que comprende -OH, -SH, -Br, -COOR4'", -NR4'R4", ftalimida, -N3, - 0-CH2-CCH, -O-CCH, -NHR5, -R5, -SCOCH3 o -p-0-C6H4-(CH2) -OH, donde R4', R4" y R4"' representan de manera independiente un grupo alquilo (CrC ) o un hidrógeno, preferiblemente son hidrógeno (-NH2 o -COOH), x' es un valor entero que varia de entre 1 a 4, preferiblemente x' es 1 , y R5 se puede seleccionar entre una molécula etiqueta, preferiblemente un fluoróforo, un grupo director o un principio activo. R 4 is a group selected from the list comprising -OH, -SH, -Br, -COOR 4 '", -NR 4 ' R 4 ", phthalimide, -N 3 , - 0-CH 2 -CCH, -O- CCH, -NHR5, -R 5 , -SCOCH3 or -p-0-C 6 H 4 - (CH 2 ) -OH, where R 4 ', R 4 "and R 4 "' independently represent an alkyl group ( CrC) or a hydrogen, preferably they are hydrogen (-NH 2 or -COOH), x 'is an integer value ranging from 1 to 4, preferably x' is 1, and R 5 can be selected from a tag molecule, preferably a fluorophore, a steering group or an active substance.
El compuesto de la presente invención además puede ser catiónico, formando grupos amonio (por ejemplo NH3 + o NMe3 +), es decir, cuando R3 es un grupo amino, o aniónico, formando los grupos carboxilato, sulfato o sulfonato, para el resto de grupos R3 descritos anteriormente. The compound of the present invention can also be cationic, forming ammonium groups (for example NH 3 + or NMe 3 + ), that is, when R 3 is an amino, or anionic group, forming the carboxylate, sulfate or sulphonate groups, to the rest of R 3 groups described above.
Por lo tanto, la presente invención no sólo incluye los compuestos por sí mismos, sino cualquiera de sus sales, por ejemplo, sales de metal alcalino ó metal alcalinotérreo, por ejemplo se pueden seleccionar entre sales de sodio, potasio o calcio, preferiblemente las sales son de sodio o sales de halógenos, que se pueden seleccionar entre sales de cloruro, bromuro, ioduro; o triflato, preferiblemente las sales son de ioduro. En una realización más preferida el compuesto de la invención, en la capa externa, u opcionalmente en el punto focal, además comprende al menos un grupo funcional de diferente naturaleza a los grupos R3 que forman parte de dicha capa externa u opcionalmente del punto focal, estos grupos R3 pueden ser cualquiera de los descritos anteriormente o de diferente naturaleza a los R3 descritos, como por ejemplo una molécula etiqueta, un grupo director o un principio activo. Therefore, the present invention not only includes the compounds themselves, but any of their salts, for example, alkali metal or alkaline earth metal salts, for example they can be selecting from sodium, potassium or calcium salts, preferably the salts are sodium or halogen salts, which can be selected from chloride, bromide, iodide salts; or triflate, preferably the salts are iodide. In a more preferred embodiment, the compound of the invention, in the outer layer, or optionally at the focal point, also comprises at least one functional group of different nature to the R 3 groups that are part of said outer layer or optionally of the focal point. , these R 3 groups can be any of those described above or of different nature to the R 3 described, such as a label molecule, a leader group or an active ingredient.
Más preferiblemente, el compuesto de la invención contiene al menos un grupo R3 en su capa externa, u opcionalmente en el punto focal, que se selecciona de entre un grupo R3 diferente al resto de los grupos del compuesto dendrítico, un grupo -NHR5 o -R5 y donde dicho R5 se puede seleccionar entre una molécula etiqueta, preferiblemente un fluoróforo, un grupo director o un principio activo. More preferably, the compound of the invention contains at least one R 3 group in its outer layer, or optionally at the focal point, which is selected from a group R 3 different from the rest of the groups of the dendritic compound, a group -NHR 5 or -R 5 and where said R 5 can be selected from a tag molecule, preferably a fluorophore, a leader group or an active ingredient.
Por tanto, la presente invención proporciona unos compuestos dendríticos, dendrímeros o dendrones, que además de contener grupos que les provee de una serie de propiedades útiles en biomedicina también pueden introducir en su capa externa al menos un grupo con diferente funcionalidad para dar lugar a un compuesto con multifuncionalidad y, por tanto, con una gran versatilidad en sus aplicaciones. Therefore, the present invention provides dendritic compounds, dendrimers or dendrons, which in addition to containing groups that provide them with a series of useful properties in biomedicine can also introduce into their outer layer at least one group with different functionality to give rise to a composed with multifunctionality and, therefore, with great versatility in its applications.
El término "molécula etiqueta" se refiere en esta descripción a cualquier sustancia biorreconocible, cromóforo, fluoróforo o cualquier otro grupo detectable por técnicas espectrofotométricas, fluorométricas, de microscopía óptica, fluorescencia o confocal, anticuerpos y/o RMN, y que permite fácilmente la detección de otra molécula que por sí sola es difícil de detectar y/o cuantificar. Preferiblemente, esta molécula etiqueta es un fluoróforo capaz de unirse a una amina o contiene un grupo amino por el que se une al compuesto dendrítico, o es capaz de unirse al compuesto dendrítico mediante los grupos funcionales que contiene o con una funcionalización previa, por ejemplo y sin limitarnos el fluoróforo se selecciona de lista que comprende Cy5, fluoresceína, rodamina y dansilo. Por "grupo director" se entiende a una molécula o grupo funcional capaz de dirigir al compuesto dendrítico específicamente hacia un tipo de células o hacia una zona concreta de una célula, por ejemplo, pero sin limitarse, ácido fólico, grupos mañosa, unpéptido señal o un anticuerpo, entre otros conocidos por cualquier experto en la materia. Dicho grupo director se puede previamente funcionalizar para unirse al compuesto dendrítico. The term "tag molecule" refers in this description to any biorecognizable substance, chromophore, fluorophore or any other group detectable by spectrophotometric, fluorometric, optical microscopy, fluorescence or confocal, antibody and / or NMR techniques, and which easily allows detection of another molecule that alone is difficult to detect and / or quantify. Preferably, this tag molecule is a fluorophore capable of binding to an amine or containing an amino group by which it binds to the dendritic compound, or is capable of binding to the dendritic compound by the functional groups it contains or with a prior functionalization, for example and without limiting ourselves the fluorophore is selected from the list comprising Cy5, fluorescein, rhodamine and dansyl. By "leader group" is meant a molecule or functional group capable of directing the dendritic compound specifically to a type of cells or to a specific area of a cell, for example, but not limited to, folic acid, trickle groups, signal signal or an antibody, among others known to any person skilled in the art. Said lead group can be previously functionalized to bind the dendritic compound.
Por "principio activo" o "fármaco" se entiende en la presente invención a toda sustancia química purificada utilizada en la prevención, diagnóstico, tratamiento, mitigación o cura de una enfermedad; para evitar la aparición de un proceso fisiológico no deseado; o para modificar condiciones fisiológicas con fines específicos. Preferiblemente dicho principio activo es capaz de unirse a una amina o que contiene un grupo amino por el que se une al compuesto dendrítico, o es capaz de unirse al compuesto dendrítico mediante los grupos funcionales que contiene o con una funcionalización previa, por ejemplo, sin limitarse a penicilina, o donde el principio activo es capaz de unirse a un grupo alquino a través de grupos azida, por ejemplo AZT (zidovudina). En una realización preferida, el compuesto de la invención puede ser un dendrímero o un dendrón de primera, segunda, tercera, cuarta o sucesivas generaciones. El término "generación" se refiere al número de ramificaciones iterativas que son necesarias para la preparación del compuesto. Otro aspecto de la presente invención se refiere a un procedimiento de obtención de los compuestos de la invención, que comprende una reacción tiol-eno o tiol-ino, entre un precursor de dicho compuesto con olefinas o alquinos terminales, respectivamente, y el grupo tiol SH-(CH2)y-R3, donde R3 e y están descritos anteriormente. En una realización preferida el procedimiento se lleva a cabo mediante una reacción tiol-eno y más preferiblemente el precursor es un compuesto dendrítico que comprende una capa externa de fórmula (I) como se ha descrito anteriormente y donde Ri es el grupo -(Alq)x.i=CH2; donde Alq representa un grupo alquilo y x está definido anteriormente. Preferiblemente el compuesto tiene grupos alilo en la capa externa (-CH2-CH=CH2) o vinilo (-CH=CH2). By "active ingredient" or "drug" is meant in the present invention any purified chemical substance used in the prevention, diagnosis, treatment, mitigation or cure of a disease; to avoid the appearance of an unwanted physiological process; or to modify physiological conditions for specific purposes. Preferably said active ingredient is capable of binding to an amine or containing an amino group by which it binds to the dendritic compound, or is capable of binding to the dendritic compound by the functional groups it contains or with a prior functionalization, for example, without limited to penicillin, or where the active substance is capable of binding to an alkyne group through azide groups, for example AZT (zidovudine). In a preferred embodiment, the compound of the invention can be a dendrimer or dendron of first, second, third, fourth or successive generations. The term "generation" refers to the number of iterative branches that are necessary for the preparation of the compound. Another aspect of the present invention relates to a process for obtaining the compounds of the invention, which comprises a thiol-ene or thiol-ino reaction, between a precursor of said compound with olefins or terminal alkynes, respectively, and the thiol group SH- (CH 2 ) and -R3, where R 3 e and are described above. In a preferred embodiment the process is carried out by a thiol-eno reaction and more preferably the precursor is a dendritic compound comprising an outer layer of formula (I) as described above and where Ri is the group - (Alq) xi = CH 2 ; where Alq represents an alkyl group and x is defined above. Preferably the compound has allyl groups in the outer layer (-CH 2 -CH = CH 2 ) or vinyl (-CH = CH 2 ).
En una realización preferida del procedimiento de la invención, la reacción se lleva a cabo en presencia de un disolvente polar y más preferiblemente en presencia de un fotoiniciador. Tanto los disolventes polares, por ejemplo MeOH o mezclas de disolvente THF/MeOH o THF/MeOH/H20, y los fotoiniciadores, por ejemplo benzofenona, que se pueden utilizar en este tipo de reacciones son conocidos por cualquier experto en la materia. In a preferred embodiment of the process of the invention, the reaction is carried out in the presence of a polar solvent and more preferably in the presence of a photoinitiator. Both polar solvents, for example MeOH or THF / MeOH or THF / MeOH / H 2 0 solvent mixtures, and photoinitiators, for example benzophenone, which can be used in this type of reaction are known to any person skilled in the art.
Así por ejemplo se pueden sintetizar los compuestos aniónicos con grupos terminales como por ejemplo carboxilato, sulfonato, sulfato; o bien, a partir de dendrímeros con grupos precursores aniónicos como son los éster o ácido carboxílico que tras su introducción al compuesto se transforman en el correspondiente anión por tratamiento con una base, como pueden ser NaOH, KOH, K2C03 u otras que cumplan esta misma función. Thus, for example, anionic compounds can be synthesized with terminal groups such as carboxylate, sulphonate, sulfate; or, from dendrimers with anionic precursor groups such as the ester or carboxylic acid that after their introduction to the compound are transformed into the corresponding anion by treatment with a base, such as NaOH, KOH, K 2 C0 3 or others that fulfill this same function.
Los compuestos de la invención obtenidos por este procedimiento son estables y solubles en agua en sus formas iónicas y además se consiguen aislar con buenos rendimientos. The compounds of the invention obtained by this process are stable and soluble in water in their ionic forms and can also be isolated with good yields.
Por otro lado, la obtención de compuestos catiónicos con grupos amonio terminales, por ejemplo NMe3 +, se puede producir mediante una reacción de cuaternización del correspondiente grupo amino utilizando un derivado RX, sulfatas de dialquilo (CrC5), triflato de metilo, o cualquiera de sus combinaciones como agente cuaternizante (donde R se selecciona de entre hidrógeno, alquilo (CrC24), alcohol (CrC24) o un arilo, preferiblemente bencilo; y X es un halógeno, preferiblemente Cl, Br o I), como por ejemplo yoduro de metilo (Mel), HCI, cloruro de metilo, bromuro de metilo, cloruro de etilo, bromuro de etilo, cloruro de propilo, cloruro de hexilo, cloruro de dodecilo, cloruro de bencilo, bromuro de bencilo, bromuro de etanol, ioduro de etanol (HO-CH2CH2-l) o cualquiera de sus combinaciones. También, en el caso de compuestos funcionalizados con grupos amonio del tipo NR2 HCI, se neutralizan con medio básico y posteriormente se pueden cu ate rn izar con otros agentes cuaternizantes como los descritos anteriormente. En particular, los compuestos con R3: NH3 +, NMe3 +, son sólidos blanquecinos estables al aire y a la humedad, solubles en disolventes polares (por ejemplo pero sin limitarse a DMSO, H20) y pueden ser almacenados sin descomposición durante largos periodos de tiempo. Por otra parte, los compuestos con R3: NH2, NMe2, son aceites incoloros, también estables al aire y a la humedad y solubles en disolventes orgánicos halogenados, etéreos, pero no en hidrocarburos alifáticos. On the other hand, obtaining cationic compounds with terminal ammonium groups, for example NMe 3 + , can be produced by a quaternization reaction of the corresponding amino group using an RX derivative, dialkyl sulfates (CrC 5 ), methyl triflate, or any of its combinations as a quaternizing agent (where R is selected from hydrogen, alkyl (CrC 24 ), alcohol (CrC 24 ) or an aryl, preferably benzyl; and X is a halogen, preferably Cl, Br or I), as per example methyl iodide (Mel), HCI, methyl chloride, methyl bromide, ethyl chloride, ethyl bromide, propyl chloride, hexyl chloride, dodecyl chloride, benzyl chloride, benzyl bromide, ethanol bromide, ethanol iodide (HO-CH 2 CH 2 -l) or any combination thereof. Also, in the case of compounds functionalized with ammonium groups of the NR 2 HCI type, they are neutralized with basic medium and subsequently can be treated with other quaternizing agents such as those described above. In particular, compounds with R 3 : NH 3 + , NMe 3 + , are whitish solids stable to air and moisture, soluble in polar solvents (for example but not limited to DMSO, H 2 0) and can be stored without decomposition for long periods of time. On the other hand, the compounds with R 3 : NH 2 , NMe 2 , are colorless oils, also stable to air and moisture and soluble in halogenated, ethereal organic solvents, but not in aliphatic hydrocarbons.
En una realización particular, es posible introducir grupos funcionales distintos en la periferia del compuesto dendrítico si se hace reaccionar de manera controlada con al menos dos tioles diferentes. De esta manera si uno de los tioles contiene un grupo como los descritos anteriormente y otro un grupo amino o amonio se obtiene compuestos heterofuncionalizados. In a particular embodiment, it is possible to introduce different functional groups at the periphery of the dendritic compound if it is reacted in a controlled manner with at least two different thiols. In this way, if one of the thiols contains a group as described above and the other an amino or ammonium group, heterofunctionalized compounds are obtained.
El grupo amino (-NH2) o amonio (-NH3CI), sirve como grupo enlazante a otras funciones, como pueden ser las descritas como R5, por lo que de esta manera se preparan compuestos, por ejemplo con grupos fluoróforos y grupos aniónicos, solubles en agua. También se obtendrían los mismos productos si la reacción se realiza con un tiol modificado previamente con el grupo diferente, por ejemplo R5. Las condiciones de reacción serían análogas a las descritas para los compuestos homofuncionalizados, pero empleando una combinación de derivados tioles adecuada para introducir dos funciones en la proporción de interés. The amino (-NH 2 ) or ammonium (-NH 3 CI) group serves as a linking group to other functions, such as those described as R 5 , so that compounds are prepared in this way, for example with fluorophores groups and anionic groups, soluble in water. The same products would also be obtained if the reaction was carried out with a thiol previously modified with the different group, for example R 5 . The reaction conditions would be analogous to those described for homofunctionalized compounds, but using a combination of thiol derivatives suitable to introduce two functions in the proportion of interest.
La presente invención se refiere también a los usos en biomedicina de los compuestos dendríticos descritos anteriormente que presentan grupos terminales catiónicos o aniónicos, entre ellos destacan la utilización de los derivados catiónicos como agentes de transporte no virales para la transfección o internalización de material nucleico en el interior de diferentes líneas celulares en procesos de terapia génica o también el uso de estos compuestos catiónico o los aniónicos como agentes terapéuticos "per se", por ejemplo como agentes antibacterianos, antivirales o antipriónicos. The present invention also relates to the uses in biomedicine of the dendritic compounds described above that have cationic or anionic terminal groups, among them the use of cationic derivatives as non-viral transport agents for transfection or internalization of nucleic material in the inside different cell lines in gene therapy processes or also the use of these cationic or anionic compounds as "per se" therapeutic agents, for example as antibacterial, antiviral or antiprionic agents.
Además, dichos compuestos dendríticos pueden ser heterofuncionales, con la ventaja de poder desempeñar más de una función simultáneamente. Así por ejemplo, los dendrímeros aniónicos además de tener capacidad antiviral por su carga negativa, pueden estar marcados para facilitar su seguimiento o pueden tener además grupos directores que dirijan los dendrímeros específicamente hacia su lugar de actuación. De la misma forma los dendrímeros catiónicos heterofuncionales pueden tener simultáneamente por ejemplo cargas positivas para el transporte de ácidos nucleicos o fármacos aniónicos y grupos directores como por ejemplo un anticuerpo para dirigir estos dendrímeros a un lugar específico. In addition, said dendritic compounds can be heterofunctional, with the advantage of being able to perform more than one function simultaneously. Thus, for example, anionic dendrimers, in addition to having antiviral capacity due to their negative charge, may be marked to facilitate their monitoring or may also have lead groups that direct dendrimers specifically towards their place of action. In the same way, heterofunctional cationic dendrimers can simultaneously have, for example, positive charges for the transport of nucleic acids or anionic drugs and leader groups such as an antibody to direct these dendrimers to a specific place.
Por tanto, otro aspecto de la presente invención se refiere al uso de los compuestos de la invención, tanto catiónicos como aniónicos, para la elaboración de un medicamento. Más preferiblemente, el medicamento se utiliza para la prevención y/o el tratamiento de enfermedades causadas por microorganismos, como por ejemplo virus, bacterias, protozoos u hongos. Más preferiblemente la prevención y/o el tratamiento son para enfermedades causadas por el VIH o por Leishmania, más preferiblemente por la especie Leishmania infantum. Por tanto, en otra realización preferida los compuestos de la invención se utilizan para la prevención y/o el tratamiento de Leishmaniosis. Therefore, another aspect of the present invention relates to the use of the compounds of the invention, both cationic and anionic, for the manufacture of a medicament. More preferably, the medicament is used for the prevention and / or treatment of diseases caused by microorganisms, such as viruses, bacteria, protozoa or fungi. More preferably prevention and / or treatment are for diseases caused by HIV or by Leishmania, more preferably by the species Leishmania infantum. Therefore, in another preferred embodiment the compounds of the invention are used for the prevention and / or treatment of Leishmaniosis.
Teniendo en cuenta la actividad biocida de los compuestos de la invención , otro aspecto de la presente invención se refiere al uso de estos compuestos como agentes biocidas para aplicaciones no terapéuticas, como por ejemplo para realizar controles, como pueden ser los usados con detergentes para impedir la aparición de microorganismos en superficies. Taking into account the biocidal activity of the compounds of the invention, another aspect of the present invention relates to the use of these compounds as biocidal agents for non-therapeutic applications, such as for carrying out controls, such as those used with detergents to prevent the appearance of microorganisms on surfaces.
Otro aspecto de la presente invención se refiere a una composición farmacéutica que comprende al menos un compuesto dendrítico según se ha descrito anteriormente y un vehículo farmacéuticamente aceptable. Además, esta composición farmacéutica puede comprender otro principio activo, preferiblemente un antibiótico, antiviral o antiinflamatorio, el antibiótico puede ser del grupo de los betalactámicos, como por ejemplo la penicilina. El antiinflamatorio puede ser por ejemplo ibuprofeno y el antiviral AZT. Another aspect of the present invention relates to a pharmaceutical composition comprising at least one dendritic compound as described above and a pharmaceutically acceptable carrier. In addition, this pharmaceutical composition may comprise another active ingredient, preferably an antibiotic, antiviral or anti-inflammatory, the antibiotic may be from the beta-lactam group, such as penicillin. The anti-inflammatory may be for example ibuprofen and the antiviral AZT.
Los "vehículos farmacéuticamente aceptables" que pueden ser utilizados en dichas composiciones son los vehículos conocidos por un experto en la materia. The "pharmaceutically acceptable vehicles" that can be used in said compositions are the vehicles known to a person skilled in the art.
Como ejemplos de preparaciones farmacéuticas se incluye cualquier composición sólida (comprimidos, pildoras, cápsulas, gránulos, etc.) o líquida (geles, soluciones, suspensiones o emulsiones) para administración oral, nasal, tópica o parenteral. Para los compuestos aniónicos preferiblemente la administración será tópica y aún más preferiblemente en forma de gel. En el caso de los catiónicos, preferiblemente la administración será vía oral o parenteral (inyectable). En otro aspecto, la presente invención se refiere a un método de tratamiento o prevención de enfermedades causadas por microorganismos, como por ejemplo virus, bacterias, protozoos u hongos en un mamífero, preferiblemente un humano, que comprende la administración de una cantidad terapéuticamente efectiva de una composición que comprende al menos un compuesto dendrítico de la invención. Preferiblemente, la administración de la composición se puede realizar por vía oral, nasal, tópica o parenteral. Para los compuestos aniónicos preferiblemente la administración será tópica y aún más preferiblemente en forma de gel. En el caso de los catiónicos, preferiblemente la administración será vía oral o parenteral (inyectable). Examples of pharmaceutical preparations include any solid composition (tablets, pills, capsules, granules, etc.) or liquid (gels, solutions, suspensions or emulsions) for oral, nasal, topical or parenteral administration. For anionic compounds, preferably the administration will be topical and even more preferably in the form of a gel. In the case of cationics, preferably the administration will be oral or parenteral (injectable). In another aspect, the present invention relates to a method of treatment or prevention of diseases caused by microorganisms, such as viruses, bacteria, protozoa or fungi in a mammal, preferably a human, comprising the administration of a therapeutically effective amount of a composition comprising at least one dendritic compound of the invention. Preferably, the administration of the composition can be performed orally, nasally, topically or parenterally. For anionic compounds, preferably the administration will be topical and even more preferably in the form of a gel. In the case of cationics, preferably the administration will be oral or parenteral (injectable).
En el sentido utilizado en esta descripción, el término "cantidad terapéuticamente efectiva" se refiere a la cantidad de la composición calculada para producir el efecto deseado y, en general, vendrá determinada, entre otras causas, por las características propias de la composición, la edad, estado y antecedentes del paciente, la severidad de la enfermedad, y de la ruta y frecuencia de administración. In the sense used in this description, the term "therapeutically effective amount" refers to the amount of the composition calculated to produce the desired effect and, in general, will be determined, among other causes, by the characteristics of the composition itself, the age, condition and history of the patient, the severity of the disease, and the route and frequency of administration.
Otro aspecto de la presente invención se refiere al uso de los compuestos catiónicos de la invención como vector no viral. Preferiblemente, el vector se utiliza para la transfección o internalización de material nucleico en procesos de terapia génica, es decir, los compuestos de la invención pueden actuar como agentes de transfección en terapia génica. Por "material nucleico" se refiere en la presente invención a un material, aislado y/o purificado, que comprende una secuencia nucleótida y se puede seleccionar entre oligonucleotidos, siRNA o ADN. Another aspect of the present invention relates to the use of the cationic compounds of the invention as a non-viral vector. Preferably, the vector is used for transfection or internalization of nucleic material in gene therapy processes, that is, the compounds of the invention can act as transfection agents in gene therapy. By "nucleic material" refers in the present invention to a material, isolated and / or purified, which comprises a nucleotide sequence and can be selected from oligonucleotides, siRNA or DNA.
Otro aspecto de la presente invención se refiere a un vector no viral que comprende al menos un compuesto catiónico de la presente invención. Este vector además puede comprender material nucleico, tal y como se ha descrito anteriormente. Another aspect of the present invention relates to a non-viral vector comprising at least one cationic compound of the present invention. This vector can also comprise nucleic material, as described above.
Otro aspecto de la presente invención se refiere al uso del vector no viral de la invención, para la elaboración de un medicamento. Más preferiblemente, para la elaboración de un medicamento para el tratamiento de la infección por VIH o del cáncer en terapia génica. Another aspect of the present invention relates to the use of the non-viral vector of the invention, for the preparation of a medicament. More preferably, for the preparation of a medicament for the treatment of HIV infection or cancer in gene therapy.
La posibilidad de síntesis y fácil manipulación de estos compuestos y la posibilidad de agregar a este tipo de polímeros ligandos que permitan su direccionamiento hacia un lugar específico de acción, supone una gran ventaja frente a otros vectores utilizados en terapia génica. The possibility of synthesis and easy manipulation of these compounds and the possibility of adding ligands to this type of polymers that allow their address to a specific place of action, is a great advantage over other vectors used in gene therapy.
La mayor ventaja de los complejos, compuesto dendrítico/material nucleico formulados en la presente invención, reside en que poseen una estructura uniforme y flexible permitiendo la posibilidad de modificar de manera versátil el esqueleto y la superficie de los mismos. También es posible el uso de los compuestos de la invención como vehículos de transporte de moléculas, preferiblemente moléculas con actividad farmacológica (principios activos), y más preferiblemente moléculas aniónicas o catiónicas, dependiendo si el compuesto es catiónico o aniónico respectivamente, el principio activo puede ser un antibiótico, un antiinflamatorio o un antiviral, entre ellos por ejemplo y sin limitarse a un antibiótico del grupo de los betalactámicos, como puede ser la penicilina, a un antiinflamatorio como puede ser ibuprofeno o un antiviral como puede ser AZT. The greatest advantage of the complexes, dendritic compound / nucleic material formulated in the present invention, is that they have a uniform and flexible structure allowing the possibility of versatilely modifying the skeleton and the surface thereof. It is also possible to use the compounds of the invention as vehicles for transporting molecules, preferably molecules with pharmacological activity (active ingredients), and more preferably anionic or cationic molecules, depending on whether the compound is cationic or anionic respectively, the active substance can be an antibiotic, an anti-inflammatory or an antiviral, including for example and not limited to an antibiotic of the beta-lactam group, such as penicillin, an anti-inflammatory such as ibuprofen or an antiviral such as AZT.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and figures are provided by way of illustration, and are not intended to be limiting of the present invention.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
Fig.1. Muestra la viabilidad de las cuatro generaciones de dendrímeros BDEF031 , BDEF032, BDEF033 y BDEF034, a concentraciones de 1 , 5, 10 y 20 μΜ en PBMCs y la segunda generación del dendrímero BDEF023 a concentraciones de 0, 1 , 0,3, 0,5, 1 , 5 y 10 μΜ en PBMCs. Fig. 1A, ensayo de MTT Bromuro de 3-(4,5- dimetiltiazol-2-ilo)-2,5-difeniltetrazol para las cuatro generaciones de dendrímeros BDEF031 , BDEF032, BDEF033 y BDEF034. El DMSO al 10% representa el 100% de toxicidad. Dx (Dextrano) se utiliza como control de molécula inocua. Fig. 1 B, ensayo de MTT del dendrímero BDEF023. El DMSO al 10% representa el 100% de toxicidad. Fig. 2. Geles de retención de los complejos siRNA Nef./dendrímeros BDEF031 , BDEF032, BDEF033 y BDEF034. Fig. 2A. Dendriplexes 31 y 32 tras 2 horas de incubación a 37°C. Fig. 2B. Dendriplexes 31 y 32 tras 24 horas de incubación a 37°C. Fig. 2C. Dendriplexes 33 y 34 tras 2 horas de incubación a 37°C .Fig. 2D. Dendriplexes 33 y 34 tras 24 horas de incubación a 37°C. Fig. 1. It shows the viability of the four generations of BDEF031, BDEF032, BDEF033 and BDEF034 dendrimers, at concentrations of 1, 5, 10 and 20 μΜ in PBMCs and the second generation of the BDEF023 dendrimer at concentrations of 0, 1, 0.3, 0, 5, 1, 5 and 10 μΜ in PBMCs. Fig. 1A, MTT test 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazole bromide for the four generations of dendrimers BDEF031, BDEF032, BDEF033 and BDEF034. 10% DMSO represents 100% toxicity. Dx (Dextran) is used as a safe molecule control. Fig. 1 B, MTT test of BDEF023 dendrimer. 10% DMSO represents 100% toxicity. Fig. 2. Retention gels of the siRNA Nef./dendrímeros BDEF031, BDEF032, BDEF033 and BDEF034 complexes. Fig. 2A. Dendriplexes 31 and 32 after 2 hours of incubation at 37 ° C. Fig. 2B. Dendriplexes 31 and 32 after 24 hours of incubation at 37 ° C. Fig. 2C. Dendriplexes 33 and 34 after 2 hours of incubation at 37 ° C. Fig. 2D. Dendriplexes 33 and 34 after 24 hours of incubation at 37 ° C.
Fig. 3. Muestra la viabilidad utilizando el ensayo de MTT Bromuro de 3-(4,5- dimetiltiazol-2-ilo)-2,5- difeniltetrazol de los dendrímeros BDEF031 , BDEF032, BDEF033 y BDEF034 solos y de sus complejos siRNAs/dendrímeros a ratios 1 : 12 con BDEF031 , BDEF032 y 1 :8 con BDEF033 y BDEF034. El DMSO al 10% representa el 100% de toxicidad. Fig. 3. It shows the viability using the MTT assay of 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazole bromide of the dendrimers BDEF031, BDEF032, BDEF033 and BDEF034 alone and their siRNAs complexes / dendrimers at 1: 12 ratios with BDEF031, BDEF032 and 1: 8 with BDEF033 and BDEF034. 10% DMSO represents 100% toxicity.
Fig. 4. Ensayo de competición con heparina. Fig. 4A. Competición de heparina entre siRNA y dendrímero BDEF031. Fig. 4B. Competición de heparina entre siRNA y dendrímero BDEF032; Fig. 4C. Competición de heparina entre siRNA y dendrímero BDEF033. Fig. 4D. Competición de heparina entre siRNA y dendrímero BDEF034. Fig. 4. Competition test with heparin. Fig. 4A. Heparin competition between siRNA and BDEF031 dendrimer. Fig. 4B. Heparin competition between siRNA and BDEF032 dendrimer; Fig. 4C. Heparin competition between siRNA and BDEF033 dendrimer. Fig. 4D. Heparin competition between siRNA and BDEF034 dendrimer.
Fig. 5. Ensayo de inhibición de la replicación por el VIH. Se muestran los resultados obtenidos tras el tratamiento de las PBMCs activadas e infectadas por el VIH con los dendriplexes. Tras el tratamiento con los dendriplexes se observa una inhibición de la replicación viral cuantificada por ELISA p24. Fig. 6. Ensayo de biodistribución del dendrímero BDEF023. Se presenta la biodistribución del dendrímero BDEF023 en los distintos tejidos/órganos tras inyectarlo en la vena de la cola a ratones BALB/c. Fig. 5. HIV replication inhibition assay. The results obtained after treatment of activated and infected HIV PBMCs with dendriplexes are shown. After treatment with dendriplexes, an inhibition of viral replication quantified by p24 ELISA is observed. Fig. 6. Biodistribution test of BDEF023 dendrimer. The biodistribution of the BDEF023 dendrimer is presented in the various tissues / organs after injecting it into the tail vein into BALB / c mice.
Fig. 7- Ensayo para determinar la citotoxicidad por MTS de BDMG017 y BDMG018 en diferentes líneas celulares. Fig. 7A-Dendrímero BDMG017 Fig. 7B- Dendrímero BDMG018. Como control de toxicidad se utlizó el DMSO y como control de viabilidad celular el dextrano (Dxt). Fig. 7- Test to determine the cytotoxicity by MTS of BDMG017 and BDMG018 in different cell lines. Fig. 7A-Dendrimer BDMG017 Fig. 7B- Dendrimer BDMG018. DMSO was used as a toxicity control and dextran (Dxt) as a cell viability control.
Fig. 8- Internalización del VIH en células de endometrio humano (HEC-1A). Fig. 8A- Pre-tratamiento con Dendrímero BDMG017 e infección con el aislado viral X4 VIHNL4.3. Fig. 8B- Pre-tratamiento con el dendrímero BDMG018 e infección con el aislado viral X4 VIHNL4.3. Fig. 8C- Pre-tratamiento con dendrímero BDMG017 e infección con el aislado viral R5 VIHBaL.Fig. 8D- Pre-tratamiento con Dendrímero BDMG018 e infección con el aislado viral R5 VIHBaL. Fig. 8- Internalization of HIV in human endometrial cells (HEC-1A). Fig. 8A- Pre-treatment with BDMG017 Dendrimer and infection with the viral isolate X4 HIVNL4.3. Fig. 8B- Pre-treatment with the BDMG018 dendrimer and infection with the viral isolate X4 HIVNL4.3. Fig. 8C- Pre-treatment with BDMG017 dendrimer and infection with the viral isolate R5 HIVBaL.Fig. 8D- Pre-treatment with BDMG018 Dendrimer and infection with the viral isolate R5 HIVBaL.
Fig. 9- Efecto de los dendrímeros BDMG017 y BDMG018 sobre la infección por el VIH-1 en pre- y post- tratamiento en cultivos primarios de PBMC. Fig. 9A- PBMC pre-tratadas con BDMG017 y tras 1 h infectadas con el aislado viral X4 VIHNL4.3 o primero infectadas con el VIHNL4.3 y posteriormente tratadas con el dendrímero BDMG017. Fig. 9B- PBMC pre-tratadas con BDMG017 y tras 1 h infectadas con el aislado viral R5 VIHBaL o primero infectadas con el VIHBaL y posteriormente tratadas con el dendrímero BDMG017. Fig. 9C- PBMC pre-tratadas con BDMG018 y tras 1 h infectadas con el aislado viral X4 VIHNL4.3 o primero infectadas con el VIHNL4.3 y posteriormente tratadas con BDMG018. Fig. 9D- PBMC pre-tratadas con BDMG018 y tras 1 h infectadas con el aislado viral R5 VIHBaL o primero infectadas con el VIHBaL y posteriormente tratadas con BDMG018. EJEMPLOS Fig. 9- Effect of BDMG017 and BDMG018 dendrimers on HIV-1 infection in pre- and post-treatment in primary PBMC cultures. Fig. 9A- PBMC pre-treated with BDMG017 and after 1 h infected with the viral isolate X4 HIVNL4.3 or first infected with HIVNL4.3 and subsequently treated with the dendrimer BDMG017. Fig. 9B-PBMC pre-treated with BDMG017 and after 1 h infected with the HIVBaL R5 viral isolate or first infected with HIVBaL and subsequently treated with the BDMG017 dendrimer. Fig. 9C-PBMC pre-treated with BDMG018 and after 1 h infected with the viral isolate X4 HIVNL4.3 or first infected with HIVNL4.3 and subsequently treated with BDMG018. Fig. 9D-PBMC pre-treated with BDMG018 and after 1 h infected with the viral isolate R5 HIVBaL or first infected with HIVBaL and subsequently treated with BDMG018. EXAMPLES
Ejemplo 1.- Dendrímeros homofuncionalizados con grupos catiónicos La síntesis de estos compuestos catiónicos puede representarse, de manera general, por el siguiente esquema 1 : Example 1.- Homofunctionalized dendrimers with cationic groups The synthesis of these cationic compounds can be represented, in general, by the following scheme 1:
Figure imgf000013_0001
Figure imgf000013_0001
GnXAo  GnXAo
Esquema 1 donde: i) HS(CH2)y R3, (R3=NH2 HCI, NMe2 HCI); ii) NaOH; iii) Mel(yoduro de metilo), Scheme 1 where: i) HS (CH 2 ) and R 3 , (R 3 = NH 2 HCI, NMe 2 HCI); ii) NaOH; iii) Mel (methyl iodide),
y puede ser de 1 a 10 según se ha descrito anteriormente, para los ejemplos siguientes se van a describir de manera particular dendrímeros donde y es 2. and can be from 1 to 10 as described above, for the following examples, dendrimers where y is 2 will be described in particular.
Estos dendrímeros catiónicos o neutros se pueden representar como GnXCx(F)o, donde: These cationic or neutral dendrimers can be represented as GnXC x (F) or, where:
n indica el número de la generación G. n indicates the number of generation G.
X, indica la naturaleza del núcleo; X = 03 para derivados del 1 ,3,5-trihidroxibenceno, X = Si para derivados de tetraalilsilano.  X, indicates the nature of the nucleus; X = 03 for 1,3,5-trihydroxybenzene derivatives, X = Si for tetraalylsilane derivatives.
Cx, indica la longitud de la cadena carbonada entre el átomo de Si y S. Por ejemplo, cuando partimos del compuesto GnXVo, Cx es C2, o cuando partimos de GnXAo, Cx es C3 y así sucesivamente. Los compuestos GnXVo y GnXAo de los siguientes ejemplos están descritos en J. Sánchez-Nieves et al., Tetrahedron 2010, 66, 9203. Made, A.W. v. d.; Leeuwen, P.W. N. M. v. J. Chem. Soc, Chem. Commun.1992, 1400. C x , indicates the length of the carbon chain between the atom of Si and S. For example, when we start from the compound GnXVo, Cx is C2, or when we start from GnXAo, Cx is C3 and so on. The compounds GnXVo and GnXAo of the following examples are described in J. Sánchez-Nieves et al., Tetrahedron 2010, 66, 9203. Made, AW vd; Leeuwen, PWNM v. J. Chem. Soc, Chem. Commun. 1992, 1400.
F, indica la naturaleza de los grupos funcionales (R3) situados en la periferia del dendrímero (NH3 +, NMe3 +, NH2, NMe2) y o el número de estos grupos funcionales, que va a depender de número de generaciones. F, indicates the nature of the functional groups (R 3 ) located on the periphery of the dendrimer (NH 3 + , NMe 3 + , NH 2 , NMe 2 ) and the number of these functional groups, which will depend on the number of generations .
Se añaden las estructuras de algunos compuestos, dendrímeros y dendrones, que son representativas para el resto de moléculas que se describen en los siguientes ejemplos.  The structures of some compounds, dendrimers and dendrons, which are representative for the rest of the molecules described in the following examples are added.
Síntesis de G103C2(NMe2)6
Figure imgf000014_0001
Synthesis of G103C2 (NMe 2 ) 6
Figure imgf000014_0001
A una disolución de G103V6 (0,374 g , 0,64 mmol) en una mezcla de THF/MeOH (1 :2, 3 mi) se añaden el reactivo comercial 95% en peso 2-(Dimetilamino)etanotiol hidrocloruro (0,631 g, 4,23 mmol) y el fotoiniciador, 2,2-Dimetoxifenilacetofenona (DMPA) en un 5% mol (0,050 g, 0, 19 mmol); finalmente la mezcla se desoxigena con argón Se deja agitando 1 ,5 h bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se añade 5% mol de DMPA nuevamente y se desoxigena. Tras 1 ,5 horas de reacción se elimina el disolvente por evaporación y se purifica el dendrímero por nanofiltración con una membrana de MW=500. El producto se seca a vacío obteniéndose G103C2(NMe2-HCI)6 como un sólido blanco (0,653 g, 71 %). A una disolución del dendrímero G103C2(NMe2-HCI)6 (0,265 g, 0, 18 mmol) en una mezcla de H20/CHCI3 (1 : 1 , 20 mi) se añade una disolución acuosa de NaOH (0,055 g, 1 ,38 mmol). La mezcla de reacción se agita durante 15 minutos a temperatura ambiente y después la fase orgánica se separa y se extrae la fase acuosa con cloroformo (2 x 5 mi). Los volátiles se eliminan a vació obteniéndose G103C2(NMe2)6 como un aceite amarillento (0,208 g, 93%;. H-RMN (CDCI3): δ 0.01 (s, 9H, S e), 0.60 (m, 6H, O-CH2-CH2-CH2-CH2-SÍ), 0.90 (t, J=8.6Hz, 12H, Si-CH2-CH2-S), 1 .45 (m, 6H, O-CH2-CH2-CH2-CH2-SÍ), 1 .75 (m, 6H, O-CH2-CH2-CH2-CH2-SÍ), 2.25 (s, 36H, -S-CH2-CH2- N e2), 2.47 (m, 12H, -S-CH2-CH2-NMe2), 2.52 (m, 12H, Si-CH2-CH2-S), 2.59 (m, 12H, -S-CH2-CH2- NMe2), 3.85 (t, J=6.3Hz, 6H, -O-CH2), 6.02 (s, 3H, C6H303). 3C-RMN (CDCI3): δ -5.4 (SiMe), 13.3 (O- CH2-CH2-CH2-CH2-SÍ), 14.5 (SÍ-CH2-CH2-S), 20.3 (O-CH2-CH2-CH2-CH2-SÍ), 27.6 (-S-CH2-CH2-NMe2), 29.8 (SÍ-CH2-CH2-S), 33.0 (O-CH2-CH2-CH2-CH2-SÍ), 45.4 (-Si-CH2-CH2-NMe2), 59.2 (-S-CH2-CH2- NMe2), 67.3 (-O-CH2-), 93.7 (C6H303; C-H), 160.8 (C6H303; C-O). 29Si-RMN (CDCI3): δ 2.4 (Gi-S Me). 5N-RMN (CDCI3): δ -352.1 (-S-CH2-CH2-/VMe2). Masas: [M+H]+ = 1213.7 urna (caled. = 1213.8 urna). Anal. Cale. C57Hi2oN603S6Si3 (1214.25 g/mol): C, 56.38; H, 9.96; N, 6.92; S, 15.84; Exp. : C, 55.68; H, 9.43; N, 6.77; S, 14.94. Síntesis de G203C2(NMe2)i2 To a solution of G103V6 (0.374 g, 0.64 mmol) in a mixture of THF / MeOH (1: 2, 3 ml) are added the commercial reagent 95% by weight 2- (Dimethylamino) ethanethiol hydrochloride (0.631 g, 4 , 23 mmol) and the photoinitiator, 2,2-Dimethoxyphenylacetophenone (DMPA) in 5% mol (0.050 g, 0.19 mmol); finally the mixture is deoxygenated with argon. It is left stirring for 1.5 hours under a UV lamp with Amax = 364 nm. After this time 5% mol of DMPA is added again and deoxygenated. After 1.5 hours of reaction the solvent is removed by evaporation and the dendrimer is purified by nanofiltration with a membrane of MW = 500. The product is dried under vacuum to obtain G103C2 (NMe2-HCI) 6 as a white solid (0.653 g, 71%). To a solution of the G103C2 (NMe2-HCI) 6 (0.265 g, 0.18 mmol) dendrimer in a mixture of H 2 0 / CHCI 3 (1: 1, 20 mL) is added an aqueous solution of NaOH (0.055 g, 1.38 mmol). The reaction mixture is stirred for 15 minutes at room temperature and then the organic phase is separated and the aqueous phase is extracted with chloroform (2 x 5 mL). Volatiles are removed in vacuo to obtain G103C2 (NMe 2 ) 6 as a yellowish oil (0.208 g, 93%; H-NMR (CDCI 3 ): δ 0.01 (s, 9H, S e), 0.60 (m, 6H, O-CH 2 -CH 2 -CH 2 -CH 2 -YES), 0.90 (t, J = 8.6Hz, 12H, Si-CH 2 -CH 2 -S), 1.45 (m, 6H, O-CH 2 -CH 2 -CH 2 -CH 2 -YES), 1 .75 (m, 6H, O-CH 2 -CH 2 -CH 2 -CH 2 -YES), 2.25 (s, 36H, -S-CH 2 -CH 2 - N e 2 ), 2.47 (m, 12H, -S-CH 2 -CH 2 -NMe 2 ), 2.52 (m, 12H, Si-CH 2 -CH 2 -S), 2.59 (m, 12H , -S-CH 2 -CH 2 -. NMe 2), 3.85 (t, J = 6.3Hz, 6H, -O-CH 2), 6.02 (s, 3H, C 6 H 3 0 3) 3 C-NMR (CDCI 3 ): δ -5.4 (SiMe), 13.3 (O- CH 2 -CH 2 -CH 2 -CH 2 -YES), 14.5 (YES-CH 2 -CH 2 -S), 20.3 (O-CH 2 -CH 2 -CH 2 -CH 2 -YES), 27.6 (-S-CH 2 -CH 2 -NMe 2 ), 29.8 (YES-CH2-CH2-S), 33.0 (O-CH2-CH2-CH2-CH2 -YES), 45.4 (-Si-CH 2 -CH2-NMe 2 ), 59.2 (-S-CH2-CH2-NMe 2 ), 67.3 (-O-CH 2 -), 93.7 (C 6 H 3 0 3 ; CH), 160.8 (C 6 H 3 0 3 ; CO) 29 Si-NMR (CDCI 3 ): δ 2.4 (Gi-S Me) 5N-NMR (CDCI3): δ -352.1 (-S-CH 2 - CH 2 - / VMe 2 ) Masses: [M + H] + = 1213.7 urn a (caled. = 1213.8 urn). Anal. Cale. C 57 Hi 2 oN 6 0 3 S 6 Si 3 (1214.25 g / mol): C, 56.38; H, 9.96; N, 6.92; S, 15.84; Exp.: C, 55.68; H, 9.43; N, 6.77; S, 14.94. Synthesis of G203C2 (NMe 2 ) i2
Figure imgf000015_0001
Figure imgf000015_0001
El dendrímero de segunda generación G203C2(NMe2)i2 se prepara siguiendo un procedimiento similar al descrito para G103C2(NMe2)6, partiendo de G203V12 (0,503 g, 0,40 mmol), 2- (Dimetilamino)etanotiol hidrocloruro (0.788 g, 5.56 mmol) y DMPA (0, 123 g, 0,48 mmol) en 3 mi de la mezcla THF/MeOH (1 :2). Tras nanofiltrar con una membrana de MW=1000 se obtiene el dendrímero G203C2(NMe2-HCI)i2 (0,834 g, 70%) como un sólido blanco. A continuación a una disolución del dendrímero G203C2(NMe2-HCI)i2 (0,827 g, 0,28 mmol) en una mezcla de H20/CHCI3 (1 : 1 , 20 mi) se añade una disolución acuosa de NaOH (0, 168 g, 4,20 mmol) obteniéndose finalmente G203C2(NMe2)i2 como un aceite amarillento (0,663, 94%). H-RMN (CDCI3): δ -0.08 (s, 9H, Si eJ, -0.01 (s, 18H, Si eJ, 0.56 (m, 30H, Si-CH2-CH2-CH2-Si y 0-CH2-CH2-CH2-CH2-Si), 0.88 (t, J=8.6Hz, 24H, Si-CH2-CH2-S), 1 .27 (m, 12H, Si-CH2-CH2-CH2-Si), 1 .39 (m, 6H, 0-CH2-CH2-CH2-CH2-Si), 1 .65 (m, 6H, 0-CH2-CH2- CH2-CH2-Si), 2.23 (s, 72H, -S-CH2-CH2-N e2), 2.48 (m, 24H, -S-CH2-CH2-NMe2), 2.52 (m, 24H, Si-CH2- CH2-S), 2.57 (m, 24H, -S-CH2-CH2-NMe2), 3.85 (t, J=6.3Hz, 6H, -0-CH2), 6.03 (s, 3H, C6H303). 3C- RMN (CDCI3): δ -5.3 (SiMe), -5.1 (SiMe), 13.3 (0-CH2-CH2-CH2-CH2-Si), 14.6 (Si-CH2-CH2-S), 18.3 - 18.7 (Si-CH2-CH2-CH2-Si), 20.5 (0-CH2-CH2-CH2-CH2-Si), 27.7 (-S-CH2-CH2-NMe2), 29.6 (Si-CH2-CH2- S), 33.0 (0-CH2-CH2-CH2-CH2-Si), 45.2 (-Si-CH2-CH2-NMe2), 59.1 (-S-CH2-CH2-NMe2), 68.0 (-0-CH2-), 93.7 (C6H303; C-H), 160.8 (C6H303; C-O). 29Si-RMN (CDCI3): δ 1 .64 (G^S Me), 1 .97 (Gi-S/Me). 5N- RMN (CDCI3): δ -352.1 (-S-CH2-CH2-/VMe2). Anal. Cale. Cii7H258Ni203Si2Si9 (2518.93 g/mol): C, 55.79; H, 10.32; N, 6.67; S, 15.28; Exp.: C, 54.79; H, 9.62; N, 6.56; S, 14.58. The second generation dendrimer G203C2 (NMe2) i2 is prepared following a procedure similar to that described for G103C2 (NMe 2 ) 6, starting from G203V12 (0.503 g, 0.40 mmol), 2- (Dimethylamino) ethanethiol hydrochloride (0.788 g, 5.56 mmol) and DMPA (0.123 g, 0.48 mmol) in 3 mL of the THF / MeOH mixture (1: 2). After nanofiltration with a MW = 1000 membrane, the G203C2 (NMe2-HCI) i2 dendrimer (0.834 g, 70%) is obtained as a white solid. Then, a solution of NaOH ((0: 1, 20 ml) is added to a solution of the G203C2 dendrimer (NMe2-HCI) i 2 (0.827 g, 0.28 mmol) in a mixture of H 2 0 / CHCI 3 (1: 1, 20 ml) ( 0.166 g, 4.20 mmol) finally obtaining G203C2 (NMe2) i2 as a yellowish oil (0.663, 94%). H-NMR (CDCI 3 ): δ -0.08 (s, 9H, Si eJ, -0.01 (s, 18H, Si eJ, 0.56 (m, 30H, Si-CH 2 -CH 2 -CH 2 -Si and 0- CH 2 -CH 2 -CH 2 -CH 2 -Yes), 0.88 (t, J = 8.6Hz, 24H, Si-CH 2 -CH 2 -S), 1 .27 (m, 12H, Si-CH 2 - CH 2 -CH 2 -Yes), 1.39 (m, 6H, 0-CH 2 -CH 2 -CH 2 -CH 2 -Si), 1.65 (m, 6H, 0-CH 2 -CH 2 - CH 2 -CH 2 -Yes), 2.23 (s, 72H, -S-CH 2 -CH 2 -N e 2 ), 2.48 (m, 24H, -S-CH 2 -CH 2 -NMe 2 ), 2.52 ( m, 24H, Si-CH 2 - CH 2 -S), 2.57 (m, 24H, -S-CH 2 -CH 2 -NMe 2 ), 3.85 (t, J = 6.3Hz, 6H, -0-CH 2 ), 6.03 (s, 3H, C 6 H 3 0 3 ) 3 C-NMR (CDCI 3 ): δ -5.3 (SiMe), -5.1 (SiMe), 13.3 (0-CH 2 -CH 2 -CH 2 -CH 2 -Yes), 14.6 (Si-CH 2 -CH 2 -S), 18.3 - 18.7 (Si-CH 2 -CH 2 -CH 2 -Yes), 20.5 (0-CH 2 -CH 2 -CH 2 -CH 2 -Yes), 27.7 (-S-CH 2 -CH 2 -NMe 2 ), 29.6 (Si-CH 2 -CH 2 - S), 33.0 (0-CH 2 -CH 2 -CH 2 -CH 2 -Yes), 45.2 (-Si-CH 2 -CH 2 -NMe 2 ), 59.1 (-S-CH 2 -CH 2 -NMe 2 ), 68.0 (-0-CH 2 -), 93.7 (C 6 H 3 0 3; CH), 160.8 (C 6 H 3 0 3; CO) 29 Si-NMR (CDCI 3). δ 1 .64 (G S I), 1 .97 (Gi-S / I) 5. N-NMR (CDCI 3 ): δ -352.1 (-S-CH 2 -CH 2 - / VMe 2 ). Anal. Cale. Cii 7 H 2 58 Ni 2 0 3 Si 2 Si 9 (2518.93 g / mol): C, 55.79; H, 10.32; N, 6.67; S, 15.28; Exp .: C, 54.79; H, 9.62; N, 6.56; S, 14.58.
Síntesis de G303C2(NMe2)24 Synthesis of G303C2 (NMe 2 ) 24
NMe2 NMe 2
El dendrímero de tercera generación G303C2(NMe2)24 se prepara siguiendo un procedimiento similar al descrito para G103C2(NMe2)6, partiendo de G303V24 (0,252 g, 0, 10 mmol), 2-(Dimetilamino)etanotiol hidrocloruro (0,381 g , 2,69 mmol) y DMPA (0,060 g , 0,23 mmol) en 3 mi de la mezcla THF/MeOH (1 :2). Tras nanofiltrar con una membrana de MW=1000 se obtiene el dendrímero G303C2(NMe2-HCI)24 (0,415 g, 71 %) como un sólido blanco. A continuación a una disolución del dendrímero G303C2(NMe2-HCI)24 (0,414 g, 0,07 mmol) en una mezcla de H20/CHCI3 (1 : 1 , 20 mi) se añade una disolución acuosa de NaOH (0,083 g, 2,07 mmol) obteniéndose finalmente G303C2(NMe2)24 como un aceite amarillento (0,336, 95%). H-RMN (CDCI3): δ -0.10 (s, 27H, Si eJ, 0.00 (s, 36H, Si eJ, 0.53 (m, 78H, Si-CH2-CH2-CH2-Si y O-CH2-CH2-CH2-CH2-SÍ), 0.88 (t, J=8.6Hz, 48H, Si-CH2-CH2-S), 1 .27 (m, 36H, SÍ-CH2-CH2-CH2-SÍ), 1.39 (m, 6H, O-CH2-CH2-CH2-CH2-SÍ), 1 .70 (m, 6H, O-CH2-CH2-CH2-CH2-SÍ), 2.23 (s, 144H, -S-CH2-CH2-N e2), 2.48 (m, 48H, -S-CH2-CH2-NMe2), 2.54 (m, 48H, Si-CH2-CH2-S), 2.60 (m, 48H, -S-CH2-CH2-NMe2), 3.85 (t, J=6.3Hz, 6H, -O-CH2), 6.03 (s, 3H, C6H303). 3C-RMN (CDCI3): δ -5.3 (SiMe), -5.2 (SiMe), 13.3 (O-CH2-CH2-CH2-CH2-SÍ), 14.6 (Si-CH2-CH2-S), 18.5 - 18.8 (SÍ-CH2-CH2-CH2-SÍ), 20.5 (O-CH2-CH2-CH2-CH2-SÍ), 27.7 (-S-CH2-CH2-NMe2), 29.8 (Si-CH2-CH2-S), 33.0 (O-CH2-CH2-CH2-CH2-SÍ), 45.4 (-Si-CH2-CH2-NMe2), 59.3 (-S-CH2-CH2-NMe2), 68.0 (-O-CH2-), 93.7 (C6H303; C-H), 160.8 (C6H303; C-O). 29Si-RMN (CDCI3): δ 1 .64 (G3-S Me), 0.9 (G2-S Me). 5N-RMN (CDCI3): δ -352.1 (-S-CH2-CH2-/VMe2). Anal. Cale. C237H534N2403S24SÍ2i (5128.29 g/mol): C, 55.51 ; H, 10.50; N, 6.56; S, 15.01 ; Exp. : C, 55.06; H, 9.90; N, 6.55; S, 14.31 . Sí The third generation dendrimer G303C2 (NMe2) 24 is prepared following a procedure similar to that described for G103C2 (NMe 2 ) 6, starting from G303V24 (0.222 g, 0.10 mmol), 2- (Dimethylamino) ethanethiol hydrochloride (0.381 g, 2.69 mmol) and DMPA (0.060 g, 0.23 mmol) in 3 ml of the THF / MeOH mixture (1: 2). After nanofiltration with a MW = 1000 membrane, the G303C2 (NMe2-HCI) 24 dendrimer (0.415 g, 71%) is obtained as a white solid. Then an aqueous solution of NaOH ((0: 1, 20 ml) is added to a solution of the G303C2 dendrimer (NMe2-HCI) 2 4 (0.414 g, 0.07 mmol) in a mixture of H 2 0 / CHCI 3 (1: 1, 20 ml) ( 0.083 g, 2.07 mmol) finally obtaining G303C2 (NMe2) 24 as a yellowish oil (0.336, 95%). H-NMR (CDCI 3 ): δ -0.10 (s, 27H, Si eJ, 0.00 (s, 36H, Si eJ, 0.53 (m, 78H, Si-CH 2 -CH 2 -CH 2 -Si and O-CH2 -CH2-CH2-CH2-YES), 0.88 (t, J = 8.6Hz, 48H, Si-CH 2 -CH 2 -S), 1.27 (m, 36H, YES-CH2-CH2-CH2-YES) , 1.39 (m, 6H, O-CH2-CH2-CH2-CH2-YES), 1 .70 (m, 6H, O-CH2-CH2-CH2-CH2-YES), 2.23 (s, 144H, -S- CH 2 -CH 2 -N e 2 ), 2.48 (m, 48H, -S-CH 2 -CH 2 -NMe 2 ), 2.54 (m, 48H, Si-CH 2 -CH 2 -S), 2.60 (m , 48H, -S-CH 2 -CH 2 -NMe 2 ), 3.85 (t, J = 6.3Hz, 6H, -O-CH2), 6.03 (s, 3H, C 6 H 3 0 3 ). 3 C- NMR (CDCI 3 ): δ -5.3 (SiMe), -5.2 (SiMe), 13.3 (O-CH2-CH2-CH2-CH2-YES), 14.6 (Si-CH 2 -CH 2 -S), 18.5 - 18.8 (YES-CH2-CH2-CH2-YES), 20.5 (O-CH2-CH2-CH2-CH2-YES), 27.7 (-S-CH 2 -CH 2 -NMe 2 ), 29.8 (Si-CH 2 -CH 2- S), 33.0 (O-CH2-CH2-CH2-CH2-YES), 45.4 (-Si-CH 2 -CH2-NMe 2 ), 59.3 (-S-CH 2 -CH 2 -NMe 2 ), 68.0 (-O-CH2-), 93.7 (C 6 H 3 0 3 ; CH), 160.8 (C 6 H 3 0 3 ; CO) 29 Si-NMR (CDCI 3 ): δ 1.64 (G 3 -S me), 0.9 (G 2 -S me) 5 N-NMR (CDCI 3): δ -352.1 (-S-CH 2 -CH 2 - / VME 2) Anal Cale C July 23.... H 53 4N240 3 S24 YES 2i (5128.29 g / mol): C, 55.51; H, 10.50; N, 6.56; S, 15.01; Exp.: C, 55.06; H, 9.90; N, 6.55; S, 14.31. Yes
Figure imgf000017_0001
Figure imgf000017_0001
El dendrímero de cuarta generación G403C2(NMe2)48 se prepara siguiendo un procedimiento similar al descrito para G103C2(NMe2)6, partiendo de G403V48 (0, 172 g, 0,03 mmol), 2-(Dimetilamino)etanotiol hidrocloruro (0,255 g , 1 ,71 mmol) y DMPA (0,040 g , 0, 16 mmol) en 3 mi de la mezcla THF/MeOH (1 :2). Tras nanofiltrar con una membrana de MW=1000 se obtiene el dendrímero G403C2(NMe2-HCI)48 (0,276 g, 70%) como un sólido blanco. A continuación a una disolución del dendrímero G403C2(NMe2-HCI)48 (0,216 g, 0,02 mmol) en una mezcla de H20/CHCI3 (1 :1 , 20 mi) se añade una disolución acuosa de NaOH (0,041 g, 1 ,02 mmol) obteniéndose finalmente G403C2(NMe2)48 como un aceite amarillento (0, 179, 97%). H-RMN (CDCI3): δ -0.09 (s, 63H, Si e), 0.00 (s, 72H, Si eJ, 0.58 (m, 174H, Si-CH2-CH2-CH2-Si y O-CH2-CH2-CH2-CH2-SÍ), 0.88 (t, J=8.6Hz, 96H, Si-CH2-CH2-S), 1 .28 (m, 84H, SÍ-CH2-CH2-CH2-SÍ), 2.24 (s, 288H, -S-CH2-CH2-N e2), 2.51 (m, 96H, -S-CH2-CH2-NMe2), 2.56 (m, 96H, SÍ-CH2-CH2-S), 2.61 (m, 96H, -S-CH2-CH2-NMe2). 13C-RMN (CDCh): δ -5.0 (SiMe), 14.6 (Si- CH2-CH2-S), 18.5 - 18.8 (SÍ-CH2-CH2-CH2-SÍ), 27.7 (-S-CH2-CH2-NMe2), 29.8 (Si-CH2-CH2-S), 45.4 (-Si- CH2-CH2-NMe2), 59.2 (-S-CH2-CH2-NMe2). 29Si-RMN (CDCI3): δ 1 .64 (G4-S Me), 0.9 (G3-S Me y G2- S Me). 5N-RMN (CDCI3): δ -352.1 (-S-CH2-CH2-/VMe2). Anal. Cale. C477H1086N48O3S48SÍ45 (10347.01 g/mol): C, 55.37; H, 10.58; N, 6.50; S, 14.88; Exp.: C, 55.97; H, 10.67; N, 7.50; S, 14.79. Síntesis de G103C2(NMe3l)6 The fourth generation dendrimer G403C2 (NMe2) 48 is prepared following a procedure similar to that described for G103C2 (NMe 2 ) 6, starting from G403V48 (0.172 g, 0.03 mmol), 2- (Dimethylamino) ethanethiol hydrochloride (0.255 g, 1.71 mmol) and DMPA (0.040 g, 0.16 mmol) in 3 ml of the THF / MeOH mixture (1: 2). After nanofiltration with a membrane of MW = 1000, the dendrimer G403C2 (NMe2-HCI) 48 (0.276 g, 70%) is obtained as a white solid. Then to a solution of dendrimer G403C2 (NMe2-HCI) Apr. 8 (0.216 g, 0.02 mmol) in a mixture of H 2 0 / CHCI 3 (1: 1, 20 ml) an aqueous solution of NaOH is added ( 0.041 g, 1.02 mmol) finally obtaining G403C2 (NMe2) 48 as a yellowish oil (0.179, 97%). H-NMR (CDCI 3 ): δ -0.09 (s, 63H, Si e), 0.00 (s, 72H, Si eJ, 0.58 (m, 174H, Si-CH 2 -CH 2 -CH 2 -Si and O- CH2-CH2-CH2-CH2-YES), 0.88 (t, J = 8.6Hz, 96H, Si-CH 2 -CH 2 -S), 1.28 (m, 84H, YES-CH2-CH2-CH2-YES ), 2.24 (s, 288H, -S-CH 2 -CH 2 -N e 2 ), 2.51 (m, 96H, -S-CH 2 -CH 2 -NMe 2 ), 2.56 (m, 96H, YES-CH2 -CH2-S), 2.61 (m, 96H, -S-CH 2 -CH 2 -NMe 2) 13 C-NMR (CDCH). δ -5.0 (SiMe), 6.14 (Si- CH2-CH2-S) , 18.5 - 18.8 (YES-CH2-CH2-CH2-YES), 27.7 (-S-CH 2 -CH 2 -NMe 2 ), 29.8 (Si-CH 2 -CH 2 -S), 45.4 (-Si- CH 2 -CH2-NMe 2), 59.2 (-S-CH 2 -CH 2 -NMe 2) 29 Si-NMR (CDCI 3). δ 1 .64 (G 4 S me), 0.9 (G 3 -S Me and G 2 - S Me.) 5 N-NMR (CDCI 3 ): δ -352.1 (-S-CH 2 -CH 2 - / VMe 2 ) Anal. Cale. C477H1086N48O3S48SÍ45 (10347.01 g / mol): C, 55.37; H, 10.58; N, 6.50; S, 14.88; Exp .: C, 55.97; H, 10.67; N, 7.50; S, 14.79. Synthesis of G103C2 (NMe 3 l) 6
Sobre una disolución de G103C2(NMe2)e (0, 198 g, 0, 16 mmol) en éter (20 mi) se añade un exceso de Mel (0,07 mi, 1 , 12 mmol). La mezcla de reacción se mantiene con agitación constante durante 16 h a temperatura ambiente. A continuación se evaporan todos los volátiles a vacío. El residuo resultante se lava con hexano (2 x 5 mi) y se seca a vacío para obtener el compuesto G103C2(NMe3l)6 como un sólido de color blanco (0,31 g, 93%). H-RMN (DMSO): δ 0.05 (s, 9H, Si Me), 0.63 (m, 6H, 0-CH2-CH2- CH2-CH2-Si), 0.88 (m, 12H, Si-CH2-CH2-S), 1 .41 (m, 6H, O-CH2-CH2-CH2-CH2-SÍ), 1 .69 (m, 6H, O-CH2- CH2-CH2-CH2-SÍ), 2.64 (m, 12H, Si-CH2-CH2-S), 2.89 (m, 12H, -S-CH2-CH2-NMe3l), 3.09 (s, 54H, -S- CH2-CH2-NMe3l), 3.53 (m, 12H, -S-CH2-CH2-NMe3l), 3.89 (t, 6H, -O-CH2), 6.02 (s, 3H, C6H303). 3C- RMN (DMSO): δ -6.4 (SiMe), 1 1 .8 (O-CH2-CH2-CH2-CH2-SÍ), 12.9 (Si-CH2-CH2-S), 18.5 (O-CH2-CH2- CH2-CH2-SÍ), 22.3 (-S-CH2-CH2-NMe3l), 25.5 (Si-CH2-CH2-S), 31 .4 (O-CH2-CH2-CH2-CH2-SÍ), 51 .0 (-Si- CH2-CH2-NMe3l), 63.3 (-S-CH2-CH2-NMe2), 66.1 (-O-CH2-), 92.0 (C6H303; C-H), 160.7 (C6H303; C-O). 29Si-RMN (DMSO): δ 2.5 (Gi-S/Me). 5N-RMN (DMSO): δ -330.0 (-SiCH2-CH2-/VMe3l). Electrospray: (2064.27 g/mol) q=2 (905.24 [M-2l +), q=3 (561 .18 [M-3l +), q=4 (389.17 [M-4I"]4+). Anal. Cale. C63Hi38l6N603Si3 (2065.88 g/mol): C, 36.63; H, 6.73; N, 4.07; S, 9.31 ; Exp. : C, 37.26; H, 6.67; N, 3.89; S, 8.46. Potencial Z: 70 ± 2 mV. Over a solution of G103C2 (NMe2) and (0.198 g, 0.16 mmol) in ether (20 mL) is added an excess of Mel (0.07 mL, 1.12 mmol). The reaction mixture is maintained with constant stirring for 16 h at room temperature. Then all volatiles are evaporated in vacuo. The resulting residue is washed with hexane (2 x 5 mL) and dried in vacuo to obtain compound G103C2 (NMe3l) 6 as a white solid (0.31 g, 93%). H-NMR (DMSO): δ 0.05 (s, 9H, Si Me), 0.63 (m, 6H, 0-CH 2 -CH 2 - CH 2 -CH 2 -Si), 0.88 (m, 12H, Si-CH 2 -CH 2 -S), 1 .41 (m, 6H, O-CH2-CH2-CH2-CH2-YES), 1 .69 (m, 6H, O-CH2- CH2-CH2-CH2-YES), 2.64 (m, 12H, Si-CH 2 -CH 2 -S), 2.89 (m, 12H, -S-CH 2 -CH 2 -NMe 3 l), 3.09 (s, 54H, -S- CH 2 -CH 2 -NMe 3 l), 3.53 (m, 12H, -S-CH 2 -CH 2 -NMe 3 l), 3.89 (t, 6H, -O-CH2), 6.02 (s, 3H, C 6 H 3 0 3 ). 3 C-NMR (DMSO): δ -6.4 (SiMe), 1 1 .8 (O-CH2-CH2-CH2-CH2-YES), 12.9 (Si-CH 2 -CH 2 -S), 18.5 (O- CH2-CH2- CH2-CH2-YES), 22.3 (-S-CH 2 -CH 2 -NMe 3 l), 25.5 (Si-CH 2 -CH 2 -S), 31 .4 (O-CH2-CH2- CH2-CH2-YES), 51 .0 (-Si- CH 2 -CH 2 -NMe 3 l), 63.3 (-S-CH2-CH 2 -NMe 2 ), 66.1 (-O-CH2-), 92.0 ( C 6 H 3 0 3 ; CH), 160.7 (C 6 H 3 0 3 ; CO). 29 Si-NMR (DMSO): δ 2.5 (Gi-S / Me). 5 N-NMR (DMSO): δ -330.0 (-SiCH 2 -CH 2 - / VMe 3 l). Electrospray: (2064.27 g / mol) q = 2 (905.24 [M-2l + ), q = 3 (561 .18 [M-3l + ), q = 4 (389.17 [M-4I " ] 4+ ). Anal Cale. C 63 Hi 3 8l6N 6 0 3 Si 3 (2065.88 g / mol): C, 36.63; H, 6.73; N, 4.07; S, 9.31; Exp.: C, 37.26; H, 6.67; N, 3.89 ; S, 8.46.Potential Z: 70 ± 2 mV.
Síntesis de G203C2(NMe3l)i2. Synthesis of G203C2 (NMe 3 l) i2.
El dendrímero de segunda generación G203C2(NMe3l)i2 se prepara siguiendo un procedimiento similar al descrito para el dendrímero análogo G1 , partiendo de G203C2(NMe2)i2 (0,148 g, 0,06 mmol) y Mel (0,04 mi, 0,70 mmol). De esta forma se obtiene G203C2(NMe3l)i2 como un sólido de color blanco (0,233 g, 94%). H-RMN (DMSO): δ -0.03 (s, 9H, SiMe), 0.08 (s, 18H, SiMe), 0.59 (m, 24H, Si-CH2-CH2- CH2-Si), 0.68 (m, 6H, O-CH2-CH2-CH2-CH2-SÍ), 0.90 (m, 24H, Si-CH2-CH2-S), 1 .36 (m, 18H, O-CH2- CH2-CH2-CH2-SÍ y SÍ-CH2-CH2-CH2-SÍ), 1 .71 (m, 6H, O-CH2-CH2-CH2-CH2-SÍ), 2.67 (m, 24H, Si-CH2- CH2-S), 2.94 (m, 24H, -S-CH2-CH2-NMe3l), 3.15 (s, 108H, -S-CH2-CH2-NMe3l), 3.60 (m, 24H, -S-CH2- CH2-NMe3l), 3.91 (t, 6H, -O-CH2), 6.02 (s, 3H, C6H303J. 3C-RMN (DMSO): δ -5.6 (SiMe), 1 1 .8 (O-CH2- CH2-CH2-CH2-SÍ), 13.6 (SÍ-CH2-CH2-S), 17.2 - 19.6 (O-CH2-CH2-CH2-CH2-SÍ y Si-CH2-CH2-CH2-Si), 23.1 (-S-CH2-CH2-NMe3l), 26.4 (Si-CH2-CH2-S), 32.3 (O-CH2-CH2-CH2-CH2-SÍ), 51 .7 (-Si-CH2-CH2- NMe3l), 63.9 (-S-CH2-CH2-NMe2), 66.9 (-O-CH2-), 93.4 (C6H303; C-H), 160.7 (C6H303; C-O). 29Si-RMN (DMSO): δ 1 .8 (Gi-S/Me), 2.5 (G2-S Me). 5N-RMN (DMSO): δ -330.0 (-SiCH2-CH2-/VMe3l). Electrospray: (4218.63 g/mol) q=2 (1982.54 [M-2l +), q=3 (1279.40 [M-3l +), q=4 (927.79 [M-4I"]4+), q=5 (716.86 [M-5l +). Anal. Cale. Ci29H294li2Ni203Si2SÍ9 (4222.20 g/mol): C, 36.70; H, 7.02; N, 3.98; S, 9.1 1 ; Exp.: C, 36.10; H, 6.80; N, 4.01 ; S, 7.31 . Potencial Z: 72 ± 1 mV. Síntesis de G303C2(NMe3l)24. The second generation dendrimer G203C2 (NMe 3 l) i2 is prepared following a procedure similar to that described for the analog dendrimer G1, starting from G203C2 (NMe2) i2 (0.148 g, 0.06 mmol) and Mel (0.04 ml, 0.70 mmol). In this way, G203C2 (NMe 3 L) i2 is obtained as a white solid (0.233 g, 94%). H-NMR (DMSO): δ -0.03 (s, 9H, SiMe), 0.08 (s, 18H, SiMe), 0.59 (m, 24H, Si-CH 2 -CH 2 - CH 2 -Si), 0.68 (m , 6H, O-CH2-CH2-CH2-CH2-YES), 0.90 (m, 24H, Si-CH 2 -CH 2 -S), 1.36 (m, 18H, O-CH2- CH2-CH2-CH2 -YES and YES-CH2-CH2-CH2-YES), 1 .71 (m, 6H, O-CH2-CH2-CH2-CH2-YES), 2.67 (m, 24H, Si-CH 2 - CH 2 -S ), 2.94 (m, 24H, -S-CH 2 -CH 2 -NMe 3 l), 3.15 (s, 108H, -S-CH 2 -CH 2 -NMe 3 l), 3.60 (m, 24H, -S -CH 2 - CH 2 -NMe 3 l), 3.91 (t, 6H, -O-CH2), 6.02 (s, 3H, C 6 H 3 0 3 J. 3 C-NMR (DMSO): δ -5.6 ( SiMe), 1 1 .8 (O-CH2- CH2-CH2-CH2-YES), 13.6 (YES-CH2-CH2-S), 17.2 - 19.6 (O-CH2-CH2-CH2-CH2-YES and Si- CH 2 -CH 2 -CH 2 -Yes), 23.1 (-S-CH 2 -CH 2 -NMe 3 l), 26.4 (Si-CH 2 -CH 2 -S), 32.3 (O-CH2-CH2-CH2 -CH2-YES), 51 .7 (-Si-CH 2 -CH 2 - NMe 3 l), 63.9 (-S-CH 2 -CH 2 -NMe 2 ), 66.9 (-O-CH2-), 93.4 ( C 6 H 3 0 3 ; CH), 160.7 (C 6 H 3 0 3 ; CO) 29 Si-NMR (DMSO): δ 1 .8 (Gi-S / Me), 2.5 (G 2 -S Me) . 5N-NMR (DMSO): δ -330.0 (-SiCH 2 -CH 2 - / VME 3L) Electrospray:. (4218.63 g / mol) q = 2 (1982.54 [M-2l +), q = 3 (1279.40 [M-3l + ), q = 4 (927.79 [M-4I " ] 4+ ), q = 5 (716.86 [M-5l + ). Anal. Cale. Ci 2 9H294li2Ni20 3 Si 2 YES9 (4222.20 g / mol): C, 36.70; H, 7.02; N, 3.98; S, 9.1 1; Exp .: C, 36.10; H, 6.80; N, 4.01; S, 7.31. Z potential: 72 ± 1 mV. Synthesis of G303C2 (NMe 3 l) 24.
El dendrímero de tercera generación G303C2(NMe3l)24 se prepara siguiendo un procedimiento similar al descrito para dendrímero análogo G1 , partiendo de G303C2(NMe2)24 (0,186 g, 0,04 mmol) y Mel (0,05 mi, 0,87 mmol). De esta forma se obtiene G303C2(NMe3l)24 como un sólido de color blanco (0,303 g, 98%). H-RMN (DMSO): δ -0.08 (s, 27H, SiMe), 0.05 (s, 36H, SiMeJ, 0.53 (m, 72H, Si-CH2- CH2-CH2-SÍ), 0.63 (m, 6H, O-CH2-CH2-CH2-CH2-SÍ), 0.86 (m, 48H, Si-CH2-CH2-S), 1 .28 (m, 48H, O- CH2-CH2-CH2-CH2-SÍ y SÍ-CH2-CH2-CH2-SÍ), 1 .69 (m, 6H, O-CH2-CH2-CH2-CH2-SÍ), 2.65 (m, 48H, Si- CH2-CH2-S), 2.91 (m, 48H, -S-CH2-CH2-NMe3l), 3.14 (s, 216H, -S-CH2-CH2-NMe3l), 3.59 (m, 48H, -S- CH2-CH2-NMe3l), 3.89 (t, 6H, -0-CH2), 6.02 (s, 3H, C6H303). 3C-RMN (DMSO): δ -6.0 - -5.5 (SiMe), 1 1 .8 (O-CH2-CH2-CH2-CH2-SÍ), 13.9 (SÍ-CH2-CH2-S), 17.0 - 19.0 (O-CH2-CH2-CH2-CH2-SÍ y Si-CH2- CH2-CH2-SÍ), 23.3 (-S-CH2-CH2-NMe3l), 26.5 (Si-CH2-CH2-S), 31 .4 (O-CH2-CH2-CH2-CH2-SÍ), 51 .8 (-Si- CH2-CH2-NMe3l), 64.0 (-S-CH2-CH2-NMe2), 66.1 (-O-CH2-), 92.0 (C6H303; C-H), 160.7 (C6H303; C-O). 29Si-RMN (DMSO): δ 0.9 (G2-S Me), 2.3 (G3-S Me). 5N-RMN (DMSO): δ -330.0 (-SiCH2-CH2-/VMe3l). Electrospray: (8527.35 g/mol) q=6 (1295.48 [M-6l +), q=7 (1092.29 [M-7l +. Anal. Cale. C26i H606l24N24O3S24SÍ2i (8534.83 g/mol): C, 36.73; H, 7.16; N, 3.94; S, 9.02; Exp. : C, 36.44; H, 7.10; N, 4.02; S, 8.52. Potencial Z: 64 ± 3 mV. Síntesis de G403C2(NMe3l)48. The third generation dendrimer G303C2 (NMe 3 l) 24 is prepared following a procedure similar to that described for analog dendrimer G1, starting from G303C2 (NMe2) 24 (0.186 g, 0.04 mmol) and Mel (0.05 ml, 0 , 87 mmol). In this way, G303C2 (NMe 3 L) 24 is obtained as a white solid (0.303 g, 98%). H-NMR (DMSO): δ -0.08 (s, 27H, SiMe), 0.05 (s, 36H, SiMeJ, 0.53 (m, 72H, Si-CH 2 - CH2-CH2-YES), 0.63 (m, 6H, O-CH2-CH2-CH2-CH2-YES), 0.86 (m, 48H, Si-CH 2 -CH 2 -S), 1.28 (m, 48H, O- CH2-CH2-CH2-CH2-YES and YES-CH2-CH2-CH2-YES), 1 .69 (m, 6H, O-CH2-CH2-CH2-CH2-YES), 2.65 (m, 48H, Si- CH2-CH2-S), 2.91 (m , 48H, -S-CH 2 -CH 2 -NMe 3 l), 3.14 (s, 216H, -S-CH 2 -CH 2 -NMe 3 l), 3.59 (m, 48H, -S- CH 2 -CH 2 -NMe 3 l), 3.89 (t, 6H, -0-CH 2 ), 6.02 (s, 3H, C 6 H 3 0 3 ). 3 C-NMR (DMSO): δ -6.0 - -5.5 (SiMe), 1 1 .8 (O-CH2-CH2-CH2-CH2-YES), 13.9 (YES-CH2-CH2-S), 17.0 - 19.0 (O-CH2-CH2-CH2-CH2-YES and Si-CH 2 - CH2-CH2-YES), 23.3 (-S-CH 2 -CH 2 -NMe 3 l), 26.5 (Si-CH 2 -CH 2 -S), 31 .4 (O-CH2-CH2-CH2-CH2-YES), 51 .8 (-Si- CH 2 -CH 2 -NMe 3 l), 64.0 (-S-CH 2 -CH 2 - NMe 2 ), 66.1 (-O-CH2-), 92.0 (C 6 H 3 0 3 ; CH), 160.7 (C 6 H 3 0 3 ; CO). 29 Si-NMR (DMSO): δ 0.9 (G 2 -S Me), 2.3 (G 3 -S Me). 5 N-NMR (DMSO): δ -330.0 (-SiCH 2 -CH 2 - / VMe 3 l). Electrospray: (8527.35 g / mol) q = 6 (1295.48 [M-6l + ), q = 7 (1092.29 [M-7l + . Anal. Cale. C 2 6i H606l24N24O 3 S 2 4SÍ2i (8534.83 g / mol): C, 36.73; H, 7.16; N, 3.94; S, 9.02; Exp.: C, 36.44; H, 7.10; N, 4.02; S, 8.52. Z potential: 64 ± 3 mV. Synthesis of G403C2 (NMe 3 l ) 4 8.
El dendrímero de cuarta generación G403C2(NMe3l)48 se prepara siguiendo un procedimiento similar al descrito para el dendrímero análogo G1 , partiendo de G403C2(NMe2)48 (0,176 g, 0,02 mmol) y Mel (0,06 mi, 0,90 mmol). De esta forma se obtiene G403C2(NMe3l)48 como un sólido de color blanco (0,229 g, 78%). H-RMN (DMSO): δ -0.08 (s, 63H, Si e), 0.05 (s, 72H, Si Me), 0.54 (m, 174H, Si-CH2- CH2-CH2-Si), 0.85 (m, 96H, Si-CH2-CH2-S), 1 .27 (m, 90H, O-CH2-CH2-CH2-CH2-SÍ y Si-CH2-CH2-CH2- Si), 2.66 (m, 96H, Si-CH2-CH2-S), 2.94 (m, 96H, -S-CH2-CH2-NMe3l), 3.17 (s, 432H, -S-CH2-CH2- NMe3l), 3.62 (m, 96H, -S-CH2-CH2-NMe3l). 3C-RMN (DMSO): δ -6.2 (SiMe), -6.0 (SiMe), 13.0 (Si-CH2- CH2-S), 16.8 - 17.1 (SÍ-CH2-CH2-CH2-SÍ), 22.5 (-S-CH2-CH2-NMe3l), 25.8 (Si-CH2-CH2-S), 51.1 (-Si- CH2-CH2-NMe3l), 63.4 (-S-CH2-CH2-NMe2). 29Si-RMN (DMSO): δ 0.9 (G3-S Me), 2.3 (G4-S Me). 5N- RMN (DMSO): δ -330.0 (-SiCH2-CH2-/VMe3l). Anal. Cale. C525Hi23ol48N4803S48SÍ45 (17144.79 g/mol): C, 36.75; H, 7.22; N, 3.92; S, 8.97; Exp.: C, 36.68; H, 6.95; N, 3.79; S, 8.27. Potencial Z: 57 ± 2 mV. The fourth generation dendrimer G403C2 (NMe 3 l) 48 is prepared following a procedure similar to that described for the analog dendrimer G1, starting from G403C2 (NMe2) 48 (0.176 g, 0.02 mmol) and Mel (0.06 ml, 0.90 mmol). In this way G403C2 (NMe 3 L) 48 is obtained as a white solid (0.229 g, 78%). H-NMR (DMSO): δ -0.08 (s, 63H, Si e), 0.05 (s, 72H, Si Me), 0.54 (m, 174H, Si-CH 2 - CH 2 -CH 2 -Si), 0.85 (m, 96H, Si-CH 2 -CH 2 -S), 1 .27 (m, 90H, O-CH2-CH2-CH2-CH2-YES and Si-CH 2 -CH 2 -CH 2 - Si), 2.66 (m, 96H, Si-CH 2 -CH 2 -S), 2.94 (m, 96H, -S-CH 2 -CH 2 -NMe 3 l), 3.17 (s, 432H, -S-CH 2 -CH 2 - NMe 3 l), 3.62 (m, 96H, -S-CH 2 -CH 2 -NMe 3 l). 3 C-NMR (DMSO): δ -6.2 (SiMe), -6.0 (SiMe), 13.0 (Si-CH 2 - CH 2 -S), 16.8 - 17.1 (YES-CH2-CH2-CH2-YES), 22.5 (-S-CH 2 -CH 2 -NMe 3 l), 25.8 (Si-CH 2 -CH 2 -S), 51.1 (-Si- CH 2 -CH 2 -NMe 3 l), 63.4 (-S-CH 2 -CH 2 -NMe 2 ). 29 Si-NMR (DMSO): δ 0.9 (G 3 -S Me), 2.3 (G 4 -S Me). 5 N-NMR (DMSO): δ -330.0 (-SiCH 2 -CH 2 - / VMe 3 l). Anal. Cale. C 5 25Hi2 3 ol48N480 3 S 4 8 YES 45 (17144.79 g / mol): C, 36.75; H, 7.22; N, 3.92; S, 8.97; Exp .: C, 36.68; H, 6.95; N, 3.79; S, 8.27. Potential Z: 57 ± 2 mV.
Síntesis de G2SiC2(NMe2)i6. Synthesis of G2SiC2 (NMe 2 ) i6.
Figure imgf000019_0001
Figure imgf000019_0001
El dendrímero G2SiC2(NMe2)i6 se prepara siguiendo un procedimiento similar al descrito para G103C2(NMe2)6, partiendo de G2SÍV16 (0,400 g, 0, 11 mmol), 2-(Dimetilamino)etanotiol hidrocloruro (0.262 g, 1 .76 mmol) y DMPA (0,044 g, 1 ,76 mmol) en 3 mi de la mezcla THF/MeOH (1 :2). Tras nanofiltrar con una membrana de MW=1000 se obtiene el dendrímero G2SiC2(NMe2-HCI)i6 (0,380 g, 92%) como un sólido blanco. A continuación a una disolución del dendrímero G2SiC2(NMe2-HCI)i6 (0,380 g, 0.10 mmol) en una mezcla de H20/CHCI3 (1 : 1 , 20 mi) se añade una disolución acuosa de NaOH (0.064 g, 1 .60 mmol) obteniéndose finalmente G2SiC2(NMe2)i6 como un aceite amarillento (0.313, 99%). H-RMN (CDCI3): δ -0.1 1 (s, 12H, SiMeJ,-0.01 (s, 24H, SiMe), 0.55 (m, 48H, Si-CH2-CH2- CH2-Si), 0.87 (t, J=8.6Hz, 32H, Si-CH2-CH2-S), 1 .26 (m, 24H, Si-CH2-CH2-CH2-Si), 2.22 (s, 96H, -S- CH2-CH2-NMe2), 2.47 (m, 24H, -S-CH2-CH2-NMe2), 2.53 (m, 24H, Si-CH2-CH2-S), 2.59 (m, 24H, -S-CH2- CH2-NMe2). 3C-RMN (CDCI3): δ -5.2 y -5.0 (SiMe), 14.6 (Si-CH2-CH2-S), 17.7 - 19.2 (Si-CH2-CH2-CH2- Si), 27.7 (-S-CH2-CH2-NMe2), 29.8 (Si-CH2-CH2-S), 45.4 (-Si-CH2-CH2-NMe2), 59.3 (-S-CH2-CH2-NMe2). 29Si-RMN (CDCI3): δ 1 .64 (G2-S Me). 5N-RMN (CDCI3): δ -352.1 (-S-CH2-CH2-/VMe2). Anal. Cale. Ci44H332Ni6Si6Sii3 (3166.44 g/mol): C, 54.62; H, 10.57; N, 7.08; S, 16.20; Exp.: C, 54.65; H, 9.88; N, 6.58; S, 15.59. The G2SiC2 (NMe2) i6 dendrimer is prepared following a procedure similar to that described for G103C2 (NMe 2 ) 6, starting from G2SÍV16 (0.400 g, 0.11 mmol), 2- (Dimethylamino) ethanethiol hydrochloride (0.262 g, 1.76 mmol) and DMPA (0.044 g, 1.76 mmol) in 3 mL of the THF / MeOH mixture (1: 2). After nanofiltration with a MW = 1000 membrane, the G2SiC2 (NMe2-HCI) i6 dendrimer (0.380 g, 92%) as a white solid. Then, a solution of NaOH (0.064 g,) is added to a solution of the G2SiC2 (NMe2-HCI) i6 (0.380 g, 0.10 mmol) dendrimer in a mixture of H 2 0 / CHCI 3 (1: 1, 20 ml). 1.60 mmol) finally obtaining G2SiC2 (NMe2) i6 as a yellowish oil (0.313, 99%). H-NMR (CDCI 3 ): δ -0.1 1 (s, 12H, SiMeJ, -0.01 (s, 24H, SiMe), 0.55 (m, 48H, Si-CH 2 -CH 2 - CH 2 -Si), 0.87 (t, J = 8.6Hz, 32H, Si-CH 2 -CH 2 -S), 1.26 (m, 24H, Si-CH 2 -CH 2 -CH 2 -Si), 2.22 (s, 96H, - S- CH 2 -CH 2 -NMe 2 ), 2.47 (m, 24H, -S-CH 2 -CH 2 -NMe 2 ), 2.53 (m, 24H, Si-CH 2 -CH 2 -S), 2.59 ( m, 24H, -S-CH 2 - CH 2 -NMe 2 ) 3 C-NMR (CDCI 3 ): δ -5.2 and -5.0 (SiMe), 14.6 (Si-CH 2 -CH 2 -S), 17.7 - 19.2 (Si-CH 2 -CH 2 -CH 2 - Si), 27.7 (-S-CH 2 -CH 2 -NMe 2 ), 29.8 (Si-CH 2 -CH 2 -S), 45.4 (-Si- CH 2 -CH 2 -NMe 2 ), 59.3 (-S-CH 2 -CH 2 -NMe 2 ) 29 Si-NMR (CDCI 3 ): δ 1 .64 (G 2 -S Me). 5 N-NMR (CDCI 3 ): δ -352.1 (-S-CH 2 -CH 2 - / VMe 2 ) Anal. Cale. Ci44H33 2 Ni6Si 6 Sii3 (3166.44 g / mol): C, 54.62; H, 10.57; N, 7.08 ; S, 16.20; Exp .: C, 54.65; H, 9.88; N, 6.58; S, 15.59.
Síntesis de G2SiC2(NMe3l)i6. Synthesis of G2SiC2 (NMe 3 l) i6.
El dendrímero G2SiC2(NMe3l)i6 se prepara siguiendo un procedimiento similar al descrito para el dendrímero análogo G1 , partiendo de G2SiC2(NMe2)i6 (0,134 g, 0,04 mmol) y Mel (0,05 mi, 0,80 mmol). De esta forma se obtiene G2SiC2(NMe3l)i6 como un sólido de color blanco (0, 165 g , 72%). H- RMN (DMSO): δ -0.09 (s, 12H, SiMe), 0.05 (s, 24H, SiMe), 0.52 (m, 32H, Si-CH2-CH2-CH2-Si), 0.62 (m, 16H, CH2-Si- CH2-CH2-S), 0.85 (t, Ja=7.6Hz, 32H, Si-CH2-CH2-S), 1 .25 (m, 24H, Si-CH2-CH2-CH2-Si), 2.65 (t, Ja=7.5Hz, 32H, Si-CH2-CH2-S), 2.91 (t, J =6.9Hz, 32H, -S-CH2-CH2-NMe3l), 3.15 (s, 144H, -S- CH2-CH2-NMe3l), 3.60 (m, 32H, -S-CH2-CH2-NMe3l). 3C-RMN (DMSO): δ -5.5 (SiMe), 13.7 (Si-CH2- CH2-S), 17.3 - 18.0 (Si-CH2-CH2-CH2-Si), 23.2 (-S-CH2-CH2-NMe3l), 26.5 (Si-CH2-CH2-S), 51.8 (-Si- CH2-CH2-NMe3l), 64.0 (-S-CH2-CH2-NMe2). 29Si-RMN (DMSO): δ 2.3 (G2-S Me). 5N-RMN (DMSO): δ - 330.0 (-SiCH2-CH2-/VMe3l). Electrospray: (5432.74 g/mol) q=4 (1231 .35 [M-4I"]4+), q=5 (959.68 [M-5I"]5+), q=6 (778.55 [M-6l +). Anal. Cale. CisoHssolieNisSisSiis (5437.45 g/mol): C, 35.34; H, 7.04; N, 4.12; S, 9.44; Exp.: C, 35.07; H, 6.98; N, 4.01 ; S, 8.82. The G2SiC2 (NMe3l) i6 dendrimer is prepared following a procedure similar to that described for the G1 analog dendrimer, starting from G2SiC2 (NMe 2 ) i6 (0.134 g, 0.04 mmol) and Mel (0.05 mL, 0.80 mmol ). In this way, G2SiC2 (NMe3l) i6 is obtained as a white solid (0.165 g, 72%). H-NMR (DMSO): δ -0.09 (s, 12H, SiMe), 0.05 (s, 24H, SiMe), 0.52 (m, 32H, Si-CH 2 -CH 2 -CH 2 -Si), 0.62 (m , 16H, CH 2 -Si- CH 2 -CH 2 -S), 0.85 (t, J a = 7.6Hz, 32H, Si-CH 2 -CH 2 -S), 1.25 (m, 24H, Si- CH 2 -CH 2 -CH 2 -Yes), 2.65 (t, J a = 7.5Hz, 32H, Si-CH 2 -CH 2 -S), 2.91 (t, J = 6.9Hz, 32H, -S-CH 2 -CH 2 -NMe 3 l), 3.15 (s, 144H, -S- CH 2 -CH 2 -NMe 3 l), 3.60 (m, 32H, -S-CH 2 -CH 2 -NMe 3 l). 3 C-NMR (DMSO): δ -5.5 (SiMe), 13.7 (Si-CH 2 - CH 2 -S), 17.3 - 18.0 (Si-CH 2 -CH 2 -CH 2 -Si), 23.2 (-S -CH 2 -CH 2 -NMe 3 l), 26.5 (Si-CH 2 -CH 2 -S), 51.8 (-Si- CH 2 -CH 2 -NMe 3 l), 64.0 (-S-CH 2 -CH 2 -NMe 2 ). 29 Si-NMR (DMSO): δ 2.3 (G 2 -S Me). 5 N-NMR (DMSO): δ - 330.0 (-SiCH 2 -CH 2 - / VMe 3 l). Electrospray: (5432.74 g / mol) q = 4 (1231 .35 [M-4I " ] 4+ ), q = 5 (959.68 [M-5I " ] 5+ ), q = 6 (778.55 [M-6l + ). Anal. Cale. CisoHssolieNisSisSiis (5437.45 g / mol): C, 35.34; H, 7.04; N, 4.12; S, 9.44; Exp .: C, 35.07; H, 6.98; N, 4.01; S, 8.82.
Ejemplo 2.- Dendrímeros homofuncionalizados con grupos amónicos. Example 2.- Homofunctionalized dendrimers with ammonium groups.
La síntesis de estos compuestos aniónicos puede representarse, de manera general, por el siguiente esquema 2: The synthesis of these anionic compounds can be represented, in general, by the following scheme 2:
Gn Gn
Gn
Figure imgf000020_0001
Gn
Figure imgf000020_0001
GnXCx(F)o  GnXCx (F) or
¡v) V)
v)  v)
GnXVo  GnXVo
ó  or
GnXAo  GnXAo
Esquema 2 donde: i) HS(CH2)yR3, (F¾ = C02-, SCv, OSCV); ii) HS(CH2)yR3, (F¾ = C02Me, C02H); iii) base; iv) HS(CH2)yR3, (R3 = OH); v) S03 py, base; y puede ser de 1 a 10 según se ha descrito anteriormente, para los ejemplos siguientes se van a describir de manera particular dendrímeros donde y es 3 cuando F es SO3H, SCV; y es 2 cuando F es OSO3", OSO3H o OH; y es 1 cuando F es C02Me, C02 " o C02H. Scheme 2 where: i) HS (CH 2 ) and R 3 , (F¾ = C0 2 -, SCv, OSCV); ii) HS (CH 2 ) and R 3 , (F¾ = C0 2 Me, C0 2 H); iii) base; iv) HS (CH 2 ) and R 3 , (R3 = OH); v) S0 3 py, base; and it can be from 1 to 10 as described above, for the following examples, dendrimers where y is 3 when F is SO3H, SCV will be described in particular; y is 2 when F is OSO3 " , OSO3H or OH; and is 1 when F is C0 2 Me, C0 2 " or C0 2 H.
Estos dendrímeros aniónicos o neutros se pueden representar como los catiónico mediante GnXCx(F)o; donde, en este caso, F es C02 ", SO3", OSO3", SO3H, OSO3H, C02Me, C02H u OH. These anionic or neutral dendrimers can be represented as cationic by GnXC x (F) or; where, in this case, F is C0 2 " , SO3 " , OSO3 " , SO3H, OSO3H, C0 2 Me, C0 2 H or OH.
Síntesis de HS(CH2)2OS03Na. Synthesis of HS (CH 2 ) 2 OS0 3 Na.
a) Preparación de CH3COS(CH2)2OH. a) Preparation of CH3COS (CH 2 ) 2 OH.
En un matraz schlenk en condiciones inertes se suspenden en THF el compuesto comercial CH3COSH (4,5 mL, 0,06 mol) y K2C03 (8,35 g, 0,06 mol). Tras 30 min de agitación se añade sobre la mezcla una disolución en THF del compuesto comercial ICH2CH2OH (4 mL, 0,05 mol). A continuación se calienta hasta 55°C y se deja la mezcla a esta temperatura durante dos días. El crudo de reacción se evapora, se disuelve en CH2CI2 y se lava con H20 destilada. El producto CH3COS(CH2)2OH se obtiene como un aceite con rendimientos elevados. In a schlenk flask under inert conditions the commercial compound CH 3 COSH (4.5 mL, 0.06 mol) and K 2 C0 3 (8.35 g, 0.06 mol) are suspended in THF. After 30 min of stirring, a THF solution of the commercial compound ICH 2 CH 2 OH (4 mL, 0.05 mol) is added to the mixture. It is then heated to 55 ° C and the mixture is left at this temperature for two days. The reaction crude is evaporated, dissolved in CH 2 CI 2 and washed with distilled H 2 0. The product CH3COS (CH 2 ) 2 OH is obtained as an oil with high yields.
b) Preparación de CH3COS(CH2)2OS03Na. b) Preparation of CH 3 COS (CH 2 ) 2 OS0 3 Na.
El producto anteriormente obtenido se disuelve en CH2CI2 seco y se añade la cantidad estequiométrica del complejo comercial S03 Py. La mezcla de reacción se calienta a 40°C durante 2,5 h. A continuación se extrae con H20 (3 veces). El conjunto de las fases acuosas se concentra a la mitad del volumen inicial y se neutraliza con una disolución saturada de Na2C03 hasta que deja de observarse burbujeo. Finalmente se evapora el disolvente, se extrae con EtOH caliente. Así obtenemos CH3COS(CH2)2OS03Na. The product obtained above is dissolved in dry CH 2 CI 2 and the stoichiometric amount of the commercial complex S0 3 Py is added. The reaction mixture is heated at 40 ° C for 2.5 h. It is then extracted with H 2 0 (3 times). The whole of the aqueous phases is concentrated at half of the initial volume and neutralized with a saturated solution of Na 2 C0 3 until bubbling ceases to be observed. Finally, the solvent is evaporated, extracted with hot EtOH. Thus we obtain CH 3 COS (CH 2 ) 2 OS0 3 Na.
c) Preparación de HS(CH2)2OS03Na. c) Preparation of HS (CH 2 ) 2 OS0 3 Na.
El producto anterior se disuelve en metanol. La disolución se desoxigena haciendo pasar por la misma una corriente de argón y se añade HCI 4M en dioxano en exceso. La mezcla se calienta a 60°C y se deja reaccionar durante 15 h. Posteriormente se evapora el disolvente y se obtine el producto HS(CH2)2OS03Na. The above product is dissolved in methanol. The solution is deoxygenated by passing a stream of argon through it and 4M HCI in excess dioxane is added. The mixture is heated to 60 ° C and allowed to react for 15 h. Subsequently, the solvent is evaporated and the product HS (CH 2 ) 2 OS0 3 Na is obtained.
Síntesis de G1SiC3(OS Synthesis of G1SiC3 (OS
Figure imgf000021_0001
Sobre una disolución del dendrímero G1 SÍA8 (0,130 g, 1 ,56*10"4 mol) en THF/MeOH proporción 3:1 , se añade un cuarto de la cantidad estequiométrica del reactivo HS(CH2)20S03Na, disuelto en la mínima cantidad de agua posible (0,354 g, 1 ,18*10"3 mol. Se añade 0,088 g). Se añade un 0,25% mol de DMPA y se desoxigena la mezcla con argón. Se deja agitando 1 h bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se añaden las mismas cantidades de HS(CH2)20S03Na y DMPA y se desoxigena nuevamente. Este procedimiento se repite a las 2 y 3 horas de reacción. Tras 1 h más de agitación (tiempo total de reacción 4 h) bajo la lámpara UV se detiene la reacción, se elimina el disolvente por evaporación y se purifica el dendrímero por nanofiltración con una membrana de MWCO=500. De este modo se obtiene el dendrímero G1SiC3(OS03Na)s.
Figure imgf000021_0001
On a solution of the G1 SIA8 dendrimer (0,130 g, 1, 56 * 10 "4 mol) in THF / MeOH ratio 3: 1, a quarter of the stoichiometric amount of the reagent HS (CH2) 20S03Na is added, dissolved in the minimum amount of possible water (0.354 g, 1, 18 * 10 "3 mol. 0.088 g is added). 0.25% mol of DMPA is added and the mixture is deoxygenated with argon. It is allowed to stir 1 h under a UV lamp with Amax = 364 nm. After this time, the same amounts of HS (CH2) 20S03Na and DMPA are added and deoxygenated again. This procedure is repeated at 2 and 3 hours of reaction. After a further 1 h of stirring (total reaction time 4 h) under the UV lamp the reaction is stopped, the solvent is removed by evaporation and the dendrimer is purified by nanofiltration with a MWCO = 500 membrane. In this way the G1SiC3 dendrimer (OS0 3 Na) s is obtained.
Síntesis de G1SiC3(OS03Na)8. (2a vía) Synthesis of G1SiC3 (OS0 3 Na) 8 . (2 way)
a) Preparación de G1SiC3(OH)8 a) Preparation of G1SiC3 (OH) 8
Sobre una disolución del dendrímero G1 SÍA8 (0,150 g, 2,1 *10"4 mol) en THF, se añaden el reactivo comercial HSCH2CH2OH con un exceso del 20%, d=1.114 g/mL (0,14 mi, 1 ,72*10"3 mol). Se añade MeOH y un 0.1 % mol de DMPA y se desoxigena la mezcla con argón. Se deja agitando 4 h bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se elimina el disolvente por evaporación y se separa el dendrímero del tiol en exceso. De este modo se obtiene G1SiC3(OH)8 con un 100% de rendimiento. On a solution of the G1 SIA8 dendrimer (0,150 g, 2,1 * 10 "4 mol) in THF, the commercial reagent HSCH 2 CH 2 OH is added with an excess of 20%, d = 1,114 g / mL (0.14 my, 1, 72 * 10 "3 mol). MeOH and 0.1% mol of DMPA are added and the mixture is deoxygenated with argon. It is left stirring for 4 hours under a UV lamp with Amax = 364 nm. After this time the solvent is removed by evaporation and the dendrimer is removed from the excess thiol. In this way, G1SiC3 (OH) 8 is obtained with 100% yield.
RMN- H (CDCI3): δ 3.69 (t, SCH2CH2OH), 2.70 (t, SCH2CH2OH), 2.52 (t, SiCH2CH2CH2S), 1 .55 (m, SÍCH2CH2CH2S), 1 .27 (m, SiCH2CH2CH2Si), 0.56 (m, SiCH2CH2CH2Si(Me)CH2CH2CH2S), -0.05 (s, Si e). NMR-H (CDCI 3 ): δ 3.69 (t, SCH 2 CH2OH), 2.70 (t, SCH2CH 2 OH), 2.52 (t, SiCH 2 CH 2 CH 2 S), 1.55 (m, SYCH 2 CH 2 CH 2 S), 1 .27 (m, SiCH 2 CH 2 CH 2 Si), 0.56 (m, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 CH 2 S), -0.05 (s, Si e ).
RMN- 3C (D20): δ 60.54 (SCH2CH2OH), 35.42 (SCH2CH2OH), 34.68 (SiCH2CH2CH2S), 24.27 (SÍCH2CH2CH2S), 18.46 (SiCH2CH2CH2Si), 18.30 (SÍCH2CH2CH2S), 17.33 (SiCH2CH2CH2Si), 13.24 (SiCH2CH2CH2Si), -5.32 (SiMe). CseH^OsSsSis. NMR- 3 C (D 2 0): δ 60.54 (SCH 2 CH 2 OH), 35.42 (SCH 2 CH 2 OH), 34.68 (SiCH 2 CH 2 CH 2 S), 24.27 (YES 2 CH 2 CH 2 S) , 18.46 (SiCH 2 CH 2 CH 2 Si), 18.30 (YES 2 CH 2 CH 2 S), 17.33 (SiCH 2 CH 2 CH 2 Si), 13.24 (SiCH 2 CH 2 CH 2 Si), -5.32 (SiMe) . CseH ^ OsSsSis.
b) Preparación de G1SiC3(OS03Na)s b) Preparation of G1SiC3 (OS0 3 Na) s
El producto anteriormente obtenido se disuelve en CH2CI2 seco y se añade el complejo comercial S03 Py en exceso (0,840 g, 1 ,7*10"3 mol). La mezcla de reacción se calienta a 40°C durante 2,5 h. A continuación se extrae con H20 (3 veces). El conjunto de las fases acuosas se concentra a la mitad del volumen inicial y se neutraliza con una disolución saturada de Na2C03 hasta que deja de observarse burbujeo. Finalmente se purifica con una membrana de diálisis de MWCO=500. Así obtenemos G1SiC3(OS03Na)8. RMN- H (CDCI3): δ 4.14 (t, SCH2CH2OS03Na), 3.05 (t, SCH2CH2OS03Na), 2.52 (t, SÍCH2CH2CH2S), 1 .55 (m, SÍCH2CH2CH2S), 1 .27 (m, SiCH2CH2CH2Si), 0.56 (m, SiCH2CH2CH2Si(Me)CH2CH2CH2S), -0.05 (s, SiMe).
Figure imgf000022_0001
The product obtained above is dissolved in dry CH 2 CI 2 and the commercial complex S0 3 Py is added in excess (0.840 g, 1.7 * 10 "3 mol). The reaction mixture is heated at 40 ° C for 2, 5 h Then, it is extracted with H 2 0 (3 times) The whole of the aqueous phases is concentrated to half of the initial volume and neutralized with a saturated solution of Na 2 C0 3 until bubbling stops. it is purified with a dialysis membrane of MWCO = 500. Thus we obtain G1SiC3 (OS0 3 Na) 8. NMR-H (CDCI 3 ): δ 4.14 (t, SCH 2 CH 2 OS0 3 Na), 3.05 (t, SCH 2 CH 2 OS0 3 Na), 2.52 (t, YES 2 CH 2 CH 2 S), 1 .55 (m, YES 2 CH 2 CH 2 S), 1 .27 (m, SiCH 2 CH 2 CH 2 Si), 0.56 (m, SiCH 2 CH2CH2Si (Me) CH2CH2CH 2 S), -0.05 (s, SiMe).
Figure imgf000022_0001
Síntesis de G1SiC3(C02Me)8 Synthesis of G1SiC3 (C0 2 Me) 8
Sobre una disolución del dendrímero G1 SÍA8 (0,103 g, 1 ,5*10"3 mol) en THF, se añaden el reactivo comercial HSCH2COOCH3 97%s en volumen, d=1 .166g/mL (0,1 1 mi, 1 ,18*10 3 mol). Se añade MeOH y se desoxigena la mezcla con argón. Esta mezcla se deja agitando 4 h bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se elimina el disolvente por evaporación y se separa el dendrímero del tiol en exceso. De este modo se obtiene G1SiC3(C02Me)8 con un 100% de rendimiento. RMN- H (CDCI3): δ 3.69 (s, COOCH3), 3.12 (s, SCH2CO), 2.59 (t, SiCH2CH2CH2S), 1 .48 (m, SiCH2CH2CH2S), 1 .22 (m, SiCH2CH2CH2Si), 0.57 (m, SiCH2CH2CH2Si(Me)CH2CH2CH2S), -0.08 (s, Si e). RMN- 3C (D2O): δ 170.89 (COOCH3), 52.28 (COOCH3), 36.32 (SCH2COOCH3), 33.32 (SiCH2CH2CH2S), 23.62 (SÍCH2CH2CH2S), 18.62 (SiCH2CH2CH2Si), 18.40 (SÍCH2CH2CH2S), 17.48 (SiCH2CH2CH2Si), 13.27 (SiCH2CH2CH2Si), -5.32 (SiMe). C64H124O16S8SÍ5. On a solution of the G1 SIA8 dendrimer (0.103 g, 1.5 * 10 "3 mol) in THF, the commercial reagent HSCH 2 COOCH 3 97% by volume is added, d = 1.166g / mL (0.1 1 mi, 1, 18 * 10 3 mol.) MeOH is added and the mixture is deoxygenated with argon.This mixture is left stirring 4 hours under a UV lamp with Amax = 364 nm. After this time the solvent is removed by evaporation and separates the dendrimer from the thiol in excess, thus obtaining G1SiC3 (C02Me) 8 with 100% yield NMR-H (CDCI 3 ): δ 3.69 (s, COOCH 3 ), 3.12 (s, SCH 2 CO) , 2.59 (t, SiCH 2 CH 2 CH 2 S), 1 .48 (m, SiCH 2 CH 2 CH 2 S), 1.22 (m, SiCH 2 CH 2 CH 2 Si), 0.57 (m, SiCH 2 CH2CH2Si (Me) CH2CH2CH 2 S), -0.08 (s, Si e). NMR- 3 C (D2O): δ 170.89 (COOCH 3 ), 52.28 (COOCH3), 36.32 (SCH2COOCH3), 33.32 (SiCH 2 CH 2 CH 2 S), 23.62 (SÍCH2CH2CH2S), 18.62 (SiCH 2 CH 2 CH 2 Si ), 18.40 (SICH2CH2CH2S), 17.48 (SiCH 2 CH 2 CH 2 Si), 13.27 (SiCH 2 CH 2 CH 2 Si), -5.32 (SiMe). C64H124O16S8YES5.
Síntesis de G2SiC3(C02Me)i6. Synthesis of G2SiC3 (C0 2 Me) and 6 .
Sobre una disolución del dendrímero G2SÍA16 (0,103 g, 1 ,48*10 5 mol) en THF, se añaden el reactivo comercial HSCH2COOCH3 97% en volumen, d=1.166g/mL (0, 12 mi, 1 ,18*10 3 mol). Se añade MeOH y se desoxigena la mezcla con argón. Esta mezcla se deja agitando 4 h bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se elimina el disolvente por evaporación y se separa el dendrímero del tiol en exceso. De este modo se obtiene G2SiC3(C02Me)ie con un 100% de rendimiento. RMN- H (CDCI3): δ 3.74 (s, COOCH3), 3.20 (s, SCH2CO), 2.62 (t, SiCH2CH2CH2S), 1 .55 (m, SiCH2CH2CH2S), 1 .24 (m, SiCH2CH2CH2Si), 0.54 (m, SiCH2CH2CH2Si(Me)CH2CH2CH2S, SiCH2CH2CH2Si), -0.05 (Si eCH2CH2CH2S), -0.09 (SiCH2CH2CH2Si e).RMN- 3C (CDCI3): δ 170.98 (COOCH3), 52.38 (COOCH3), 36.43 (SCH2CO), 33.42 (SiCH2CH2CH2S), 23.74 (SiCH2CH2CH2S), 18.92-18.44 (SiCH2CH2CH2Si), 13.38 (SiCH2CH2CH2Si(Me)CH2CH2CH2S, SiCH2CH2CH2Si), -5.00 (SiMeCH2CH2CH2S), -5.17 (SiCH2CH2CH2SiMe). C144H284O32S16SÍ13. On a solution of the G2SIA16 dendrimer (0.103 g, 1.48 * 10 5 mol) in THF, the commercial reagent HSCH 2 COOCH 3 97% by volume is added, d = 1,166g / mL (0.12 ml, 1, 18 * 10 3 mol). MeOH is added and the mixture is deoxygenated with argon. This mixture is allowed to stir 4 h under a UV lamp with Amax = 364 nm. After this time the solvent is removed by evaporation and the dendrimer is removed from the excess thiol. This gives G2SiC3 (C02Me) ie with 100% performance. NMR-H (CDCI 3 ): δ 3.74 (s, COOCH3), 3.20 (s, SCH 2 CO), 2.62 (t, SiCH 2 CH 2 CH 2 S), 1.55 (m, SiCH 2 CH 2 CH 2 S), 1.24 (m, SiCH 2 CH 2 CH 2 Si), 0.54 (m, SiCH 2 CH2CH2 Yes (Me) CH2CH2CH 2 S, SiCH 2 CH 2 CH 2 Yes), -0.05 (If eCH 2 CH 2 CH 2 S), -0.09 (SiCH2CH2CH2Si e). RMN- 3 C (CDCI 3 ): δ 170.98 (COOCH 3 ), 52.38 (COOCH3), 36.43 (SCH2CO), 33.42 (SiCH 2 CH 2 CH 2 S), 23.74 ( SiCH 2 CH 2 CH 2 S), 18.92-18.44 (SiCH 2 CH 2 CH 2 Si), 13.38 (SiCH 2 CH2CH2 Yes (Me) CH2CH2CH 2 S, SiCH 2 CH 2 CH 2 Si), -5.00 (SiMeCH 2 CH 2 CH 2 S), -5.17 (SiCH 2 SiMe 2 CH 2). C144H284O32S16YES13.
Síntesis de Synthesis of
Figure imgf000023_0001
Figure imgf000023_0001
Sobre una disolución del dendrímero G3SÍA32 (0,433 g, 1 ,16*10 4 mol) en THF, se añaden el reactivo comercial HSCH2COOCH3 97% en volumen, d=1 , 166g/mL (0,34 mi, 3,72*10"3 mol). Se añade MeOH y se desoxigena la mezcla con argón . Esta mezcla se deja agitando 4 h bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se elimina el disolvente por evaporación y se separa el dendrímero del tiol en exceso. De este modo se obtiene G3SiC3(C02Me con un 100% de rendimiento. RMN- H (CDCI3): δ 3.74 (s, COOCH3), 3.19 (s, SCH2CO), 2.61 (t, SiCH2CH2CH2S), 1 .55 (m, SiCH2CH2CH2S), 1 .24 (m, SiCH2CH2CH2Si), 0.57 (m, SiCH2CH2CH2Si(Me)CH2CH2CH2S), -0.06 (s, Si eCH2CH2CH2S), - 0.10 (SiCH2CH2CH2Si e) RMN- 3C (D20): δ 170.90 (COOCH3), 52.29 (COOCH3), 36.33 (SCH2CO), 3.32 (SiCH2CH2CH2S), 23.65 (SiCH2CH2CH2S), 18.83-18.38 (SiCH2CH2CH2Si), 13.29 (SiCH2CH2CH2Si(Me)CH2CH2CH2S, SiCH2CH2CH2Si ), -5.24 (SiMeCH2CH2CH2S, SiCH2CH2CH2SiMe).
Figure imgf000024_0001
Síntesis de G1SiC3(C02Na
On a solution of the G3SIA32 dendrimer (0.433 g, 1.16 * 10 4 mol) in THF, the commercial reagent HSCH 2 COOCH 3 97% by volume is added, d = 1.166g / mL (0.34 ml, 3, 72 * 10 "3 mol). MeOH is added and the mixture is deoxygenated with argon. This mixture is left stirring 4 hours under a UV lamp with Amax = 364 nm After this time the solvent is removed by evaporation and the dendrimer is removed from the excess thiol. This results in G3SiC3 (C02Me with 100% yield. NMR-H (CDCI 3 ): δ 3.74 (s, COOCH 3 ), 3.19 (s, SCH 2 CO), 2.61 (t, SiCH 2 CH 2 CH 2 S), 1 .55 (m, SiCH 2 CH 2 CH 2 S), 1 .24 (m, SiCH 2 CH 2 CH 2 Si), 0.57 (m, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 CH 2 S), -0.06 (s, If eCH 2 CH 2 CH 2 S), - 0.10 (SiCH 2 CH 2 CH 2 If e) NMR- 3 C (D 2 0): δ 170.90 (COOCH 3 ) , 52.29 (COOCH 3 ), 36.33 (SCH 2 CO), 3.32 (SiCH 2 CH 2 CH 2 S), 23.65 (SiCH 2 CH 2 CH 2 S), 18.83-18.38 (SiCH 2 CH 2 CH 2 Si), 13.29 (SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 CH 2 S, SiCH 2 CH 2 CH 2 Si), -5.24 (SiMeCH 2 CH 2 CH 2 S, SiCH 2 CH 2 CH 2 SiMe).
Figure imgf000024_0001
Synthesis of G1SiC3 (C0 2 Na
Sobre una disolución del dendrímero G1SiC3(C02Me)e en MeOH se añade NaOH en exceso en peso y se deja con agitación 12 h. Transcurrido este tiempo se evapora el disolvente y se disuelve en agua. Se purifica el dendrímero por ultrafiltración con una membrana de MWCO=500. De este modo se obtiene el dendrímero G1SiC3(C02Na)8 (0,165 g, 9,30*10"5 mol, 63%) como sólido de color blanco. RMN- H (D20): δ 3.15 (s, SCH2CO), 2.40 (t, SiCH2CH2CH2S), 1 .43 (m, SiCH2CH2CH2S), 1 .23 (m, SiCH2CH2CH2Si), 0.48 (m, SiCH2CH2CH2Si(Me)CH2CH2CH2S), -0.15 (s, Si e). RMN- 3C (D20): δ 177.48 (COOCH3), 36.16 (SCH2CO), 23.51 (SiCH2CH2CH2S), 18.72 (SiCH2CH2CH2S), 17.52 (SiCH2CH2CH2Si), 13.05 (SiCH2CH2CH2Si(Me)CH2CH2CH2S), -5.20 (SiMeCH2CH2CH2S). Análisis de SiG1 (COONa)8 (1610,25 g/mol): Cale. %: C, 41 ,47; H, 6,26; S, 15,93; exp. %: C, 41 ,47; H, 6,7; S, 15,6. CseHiooNasOisSsSis On a solution of the G1SiC3 (C02Me) dendrimer in MeOH, excess NaOH is added by weight and left under stirring for 12 h. After this time the solvent is evaporated and dissolved in water. The dendrimer is purified by ultrafiltration with a MWCO = 500 membrane. In this way the G1SiC3 (C0 2 Na) 8 (0.165 g, 9.30 * 10 "5 mol, 63%) dendrimer is obtained as a white solid. NMR-H (D 2 0): δ 3.15 (s, SCH 2 CO), 2.40 (t, SiCH 2 CH 2 CH 2 S), 1 .43 (m, SiCH 2 CH 2 CH 2 S), 1 .23 (m, SiCH 2 CH 2 CH 2 Si), 0.48 ( m, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 CH 2 S), -0.15 (s, Si e) NMR- 3 C (D 2 0): δ 177.48 (COOCH 3 ), 36.16 (SCH 2 CO), 23.51 (SiCH 2 CH 2 CH 2 S), 18.72 (SiCH 2 CH 2 CH 2 S), 17.52 (SiCH 2 CH 2 CH 2 Si), 13.05 (SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 CH 2 S), -5.20 (SiMeCH 2 CH 2 CH 2 S) Analysis of SiG1 (COONa) 8 (1610.25 g / mol): Cale.%: C, 41, 47; H, 6, 26; S, 15.93; exp.%: C, 41, 47; H, 6.7; S, 15.6. CseHiooNasOisSsSis
Síntesis de G2SiC3(C02Na)i6. Synthesis of G2SiC3 (C0 2 Na) and 6 .
Figure imgf000024_0002
Figure imgf000024_0002
Sobre una disolución del dendrímero G2SiC3(C02Me)ie en MeOH se añade NaOH en exceso en peso y se deja con agitación 12 h . Transcurrido este tiempo se evapora el disolvente y se disuelve en agua. Se purifica el dendrímero por ultrafiltración con una membrana de MWCO=500. De este modo se obtiene el dendrímero G2SiC3(C02Na)i6 (0,047 g, 1 ,33*10 5 mol, 90%). RMN- H (D20): δ 3.03 (s, SCH2CO), 2.42 (t, SiCH2CH2CH2S), 1 .44 (m, SiCH2CH2CH2S), 1 .25 (m, SiCH2CH2CH2Si), 0.48 (m, SiCH2CH2CH2Si(Me)CH2CH2CH2S), -0.14 (s, Si e). RMN- 3C (D20): δ 176.99 (COOCH3), 35.98 (SCH2CO), 34.99 (SÍCH2CH2CH2S), 22.66 (SiCH2CH2CH2S), 17.62 (SiCH2CH2CH2Si), 12.21 (SiCH2CH2CH2Si(Me)CH2CH2CH2S, SiCH2CH2CH2Si), -5.99 (Si/WeCH2CH2CH2S, SiCH2CH2CH2SiMe). Análisis de SiG2(COONa)16 (3533,21 g/mol): Cale. %: C, 43,51 ; H, 6,73; S, 14,52; exp. %: C, 41 ,38; H,
Figure imgf000025_0001
On a solution of the G2SiC3 (C02Me) dendrimer ie in MeOH, excess NaOH is added by weight and left with stirring for 12 h. After this time the solvent is evaporated and dissolved in water. The dendrimer is purified by ultrafiltration with a MWCO = 500 membrane. In this way the dendrimer G2SiC3 (C0 2 Na) and 6 (0.047 g, 1.33 * 10 5 mol, 90%) is obtained. NMR-H (D 2 0): δ 3.03 (s, SCH 2 CO), 2.42 (t, SiCH 2 CH 2 CH 2 S), 1.44 (m, SiCH 2 CH 2 CH 2 S), 1 .25 (m, SiCH 2 CH 2 CH 2 Si), 0.48 (m, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 CH 2 S), -0.14 (s, Si e). NMR- 3 C (D 2 0): δ 176.99 (COOCH 3 ), 35.98 (SCH 2 CO), 34.99 (YES 2 CH 2 CH 2 S), 22.66 (SiCH 2 CH 2 CH 2 S), 17.62 (SiCH 2 CH 2 CH 2 Si), 12.21 (SiCH 2 CH 2 CH 2 Yes (Me) CH 2 CH 2 CH 2 S, SiCH 2 CH 2 CH 2 Si), -5.99 (Si / WeCH 2 CH 2 CH 2 S, SiCH 2 CH 2 CH 2 SiMe). Analysis of SiG2 (COONa) 16 (3533.21 g / mol): Cale. %: C, 43.51; H, 6.73; S, 14.52; exp. %: C, 41, 38; H
Figure imgf000025_0001
Síntesis de G3SiC3(C02Na)32. Synthesis of G3SiC3 (C0 2 Na) 3 2.
Sobre una disolución del dendrímero G3SiC3(C02Me)32 en MeOH se añade NaOH en exceso en peso y se deja con agitación 12 h. Transcurrido este tiempo se evapora el disolvente y se disuelve en agua. Se purifica el dendrímero por ultrafiltración con una membrana de MWCO=500. De este modo se obtiene el dendrímero G3SiC3(C02Na)32 (0,723 g, 9,86*10"5 mol, 85%). RMN- H (D20): δ 3.04 (s, SCH2CO), 2.42 (t, SÍCH2CH2CH2S), 1 .44 (m, SiCH2CH2CH2S), 1 .22 (m, SiCH2CH2CH2Si), 0.47 (m, SiCH2CH2CH2Si(Me)CH2CH2CH2S), -0.14 (s, Si eCH2CH2CH2S), -0.17 (SiCH2CH2CH2Si e). RMN- 3C (D20): δ 176.94 (COOCH3), 36.05 (SCH2CO), 35.02 (SiCH2CH2CH2S), 22.69 (SiCH2CH2CH2S), 17.65 (SiCH2CH2CH2Si), 12.22 (SiCH2CH2CH2Si(Me)CH2CH2CH2S, SiCH2CH2CH2Si ), -5.22 (SiMeCH2CH2CH2S), -5.87 (SiCH2CH2CH2SiMe). RMN-29Si (D20): δ 2.58 (S MeCH2CH2CH2S), 1 .10 (SiCH2CH2CH2SiMe). Análisis de SiG3(COONa)32 (7379,14 g/mol): Cale. %: C, 44,27; H, 6,94; S, 13,91 ; exp. %: C, 44,14; H, 7,06; S, 15,92. C272H508Na32O64S32SÍ29. Síntesis de G1SiC3(S03Na)8. On a solution of the G3SiC3 (C02Me) 32 dendrimer in MeOH, excess NaOH is added by weight and left with stirring for 12 h. After this time the solvent is evaporated and dissolved in water. The dendrimer is purified by ultrafiltration with a MWCO = 500 membrane. In this way the G3SiC3 (C0 2 Na) 3 2 (0.723 g, 9.86 * 10 "5 mol, 85%) dendrimer is obtained. NMR-H (D 2 0): δ 3.04 (s, SCH 2 CO) , 2.42 (t, SÍCH 2 CH 2 CH 2 S), 1 .44 (m, SiCH 2 CH 2 CH 2 S), 1. .22 (m, SiCH 2 CH 2 CH 2 Si), 0.47 (m, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 CH 2 S), -0.14 (s, If eCH 2 CH 2 CH 2 S), -0.17 (SiCH 2 CH 2 CH 2 Si e) NMR- 3 C ( D 2 0): δ 176.94 (COOCH 3 ), 36.05 (SCH 2 CO), 35.02 (SiCH 2 CH 2 CH 2 S), 22.69 (SiCH 2 CH 2 CH 2 S), 17.65 (SiCH 2 CH 2 CH 2 Si ), 12.22 (SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 CH 2 S, SiCH 2 CH 2 CH 2 Si), -5.22 (SiMeCH 2 CH 2 CH 2 S), -5.87 (SiCH 2 CH 2 CH 2 SiMe) NMR- 29 Si (D 2 0): δ 2.58 (S MeCH 2 CH 2 CH 2 S), 1.10 (SiCH 2 CH 2 CH 2 SiMe) SiG3 analysis (COONa) 32 (7379 , 14 g / mol): Cale.%: C, 44.27; H, 6.94; S, 13.91; exp.%: C, 44.14; H, 7.06; S, 15.92 .C 2 72H508Na32O64S 3 2YES29 Synthesis of G1SiC3 (S0 3 Na) 8 .
Sobre una disolución del dendrímero G1 SÍA8 (0,130 g, 1 ,56*10"4 mol) en THF/MeOH proporción 3:1 , se añade un cuarto de la cantidad estequiométrica del reactivo comercial HS(CH2)3S03Na 90% en peso, disuelto en la mínima cantidad de agua posible (0,354 g, 1 ,18*10"3 mol. Se añade 0,088 g). Se añade un 0,25% mol de DMPA y se desoxigena la mezcla con argón. Se deja agitando 1 h bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se añaden las mismas cantidades de HS(CH2)3S03Na y DMPA y se desoxigena nuevamente. Este procedimiento se repite a las 2 y 3 horas de reacción. Tras 1 h más de agitación (tiempo total de reacción 4 h) bajo la lámpara UV se detiene la reacción, se elimina el disolvente por evaporación y se purifica el dendrímero por nanofiltración con una membrana de MWCO=500. De este modo se obtiene el dendrímero G1SiC3(S03Na)8 (0,265 g, 1 ,24*10"4 mol, 80%). RMN- H (D20): δ 3.60 (t, SCH2CH2CH2S03Na), 2.85 (m, SiCH2CH2CH2S), 2.51 (m, SCH2CH2CH2S03Na), 1 .95 (m, SCH2CH2CH2S03Na), 1 .46 (m, SiCH2CH2CH2S), 1 .28 (m, SiCH2CH2CH2Si), 0.51 (m, SiCH2CH2CH2Si(Me)CH2CH2CH2S), -0.1 1 (SiMe). RMN- 3C (D20): δ 49.14 (SCH2CH2CH2S03Na), 34.41 (SCH2CH2CH2S03Na), 29.42 (SiCH2CH2CH2S), 23.56 (SCH2CH2CH2S03Na), 23.07 (SiCH2CH2CH2S), 17.93 (SiCH2CH2CH2Si), 12.28 (SiCH2CH2CH2SiMeCH2CH2CH2S), -5.84 (s, SiMe). Análisis de SiG1 (S03Na)8 (2123,1 g/mol): Cale. %: C, 36,21 ; H, 6,27; S, 24, 16; exp. %: C, 36,54; H, 6,39; S,
Figure imgf000025_0002
On a solution of the G1 SIA8 dendrimer (0.130 g, 1.56 * 10 "4 mol) in THF / MeOH ratio 3: 1, a quarter of the stoichiometric amount of the commercial reagent HS (CH 2 ) 3 S0 3 Na 90 is added % by weight, dissolved in the minimum amount of water possible (0.354 g, 1.18 * 10 "3 mol. 0.088 g is added). 0.25% mol of DMPA is added and the mixture is deoxygenated with argon. It is allowed to stir 1 h under a UV lamp with Amax = 364 nm. After this time, the same amounts of HS (CH 2 ) 3 S0 3 Na and DMPA are added and deoxygenated again. This procedure is repeated at 2 and 3 hours of reaction. After a further 1 h of stirring (total reaction time 4 h) under the UV lamp the reaction is stopped, the solvent is removed by evaporation and the dendrimer is purified by nanofiltration with a MWCO = 500 membrane. In this way the G1SiC3 dendrimer (S0 3 Na) 8 (0.265 g, 1, 24 * 10 "4 mol, 80%) is obtained. NMR-H (D 2 0): δ 3.60 (t, SCH 2 CH 2 CH 2 S0 3 Na), 2.85 (m, SiCH 2 CH 2 CH 2 S), 2.51 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1.95 (m, SCH 2 CH 2 CH 2 S0 3 Na) , 1 .46 (m, SiCH 2 CH 2 CH 2 S), 1 .28 (m, SiCH 2 CH 2 CH 2 Si), 0.51 (m, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 CH 2 S), -0.1 1 (SiMe). NMR- 3 C (D 2 0): δ 49.14 (SCH 2 CH 2 CH 2 S0 3 Na), 34.41 (SCH 2 CH 2 CH 2 S0 3 Na), 29.42 ( SiCH 2 CH 2 CH 2 S), 23.56 (SCH 2 CH 2 CH 2 S0 3 Na), 23.07 (SiCH 2 CH 2 CH 2 S), 17.93 (SiCH 2 CH 2 CH 2 Si), 12.28 (SiCH 2 CH 2 CH 2 SiMeCH 2 CH 2 CH 2 S), -5.84 (s, SiMe) Analysis of SiG1 (S0 3 Na) 8 (2123.1 g / mol): Cale.%: C, 36.21; H, 6 , 27; S, 24, 16; exp.%: C, 36.54; H, 6.39; S,
Figure imgf000025_0002
Síntesis de G2SiC3(S03Na)ie. Synthesis of G2SiC3 (S0 3 Na) ie.
Figure imgf000026_0001
Figure imgf000026_0001
Sobre una disolución del dendrímero G2SÍA16 (0,200 g, 1 ,15*10 4 mol) en THF/MeOH proporción 3:1 , se añade un cuarto de la cantidad estequiométrica del reactivo comercial HS(CH2)3S03Na 90% en peso, disuelto en la mínima cantidad de agua posible (0,402 g, 1 ,84*10 3 mol. Se añade 0, 101 g). Se añade un 0.25% mol de DMPA y se desoxigena la mezcla con argón. Se deja agitando 1 h bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se añaden las mismas cantidades de HS(CH2)3S03Na y DMPA y se desoxigena nuevamente. Este procedimiento se repite a las 2 y 3 horas de reacción. Tras 1 h más de agitación (tiempo total de reacción 4 h) bajo la lámpara UV se detiene la reacción, se elimina el disolvente por evaporación y se purifica el dendrímero por nanofiltración con una membrana de MWCO=500. De este modo se obtiene el dendrímero G2SiC3(S03Na)i6 (0,370 g, 8,07*10"5 mol, 70%). RMN- H (D20): δ 3.15 (t, SCH2CH2CH2S03Na), 2.81 (m, SiCH2CH2CH2S), 2.49 (m, SCH2CH2CH2S03Na), 1 .84 (m, SCH2CH2CH2S03Na), 1 .44 (m, SiCH2CH2CH2S), 1 .23 (m, SiCH2CH2CH2Si), 0.58 (m, SiCH2CH2CH2Si(Me)CH2CH2CH2S), -0.14 (s, Si Me). RMN- 3C (D20): δ 50.1 1 (SCH2CH2CH2S03Na), 30.19 (SCH2CH2CH2S03Na), 27.05 (SiCH2CH2CH2S), 24.36 (SiCH2CH2CH2S, SCH2CH2CH2S03Na), 18.42 (SiCH2CH2CH2Si), 14.38On a solution of the G2SIA16 dendrimer (0.200 g, 1, 15 * 10 4 mol) in THF / MeOH ratio 3: 1, a quarter of the stoichiometric amount of the commercial reagent HS (CH 2 ) 3 S0 3 Na 90% is added in weight, dissolved in the minimum amount of water possible (0.402 g, 1.84 * 10 3 mol. 0.101 g is added). 0.25% mol of DMPA is added and the mixture is deoxygenated with argon. It is allowed to stir 1 h under a UV lamp with Amax = 364 nm. After this time, the same amounts of HS (CH 2 ) 3 S0 3 Na and DMPA are added and deoxygenated again. This procedure is repeated at 2 and 3 hours of reaction. After a further 1 h of stirring (total reaction time 4 h) under the UV lamp the reaction is stopped, the solvent is removed by evaporation and the dendrimer is purified by nanofiltration with a MWCO = 500 membrane. In this way the dendrimer G2SiC3 (S0 3 Na) and 6 (0.370 g, 8.07 * 10 "5 mol, 70%) is obtained. NMR-H (D 2 0): δ 3.15 (t, SCH 2 CH 2 CH 2 S0 3 Na), 2.81 (m, SiCH 2 CH 2 CH 2 S), 2.49 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1.84 (m, SCH 2 CH 2 CH 2 S0 3 Na ), 1.44 (m, SiCH 2 CH 2 CH 2 S), 1 .23 (m, SiCH 2 CH 2 CH 2 Si), 0.58 (m, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 CH 2 S), -0.14 (s, Si Me) NMR- 3 C (D 2 0): δ 50.1 1 (SCH 2 CH 2 CH 2 S0 3 Na), 30.19 (SCH 2 CH 2 CH 2 S0 3 Na ), 27.05 (SiCH 2 CH 2 CH 2 S), 24.36 (SiCH 2 CH 2 CH 2 S, SCH 2 CH 2 CH 2 S0 3 Na), 18.42 (SiCH 2 CH 2 CH 2 Si), 14.38
(SiCH2CH2CH2SiMeCH2CH2CH2), -5.24 (SiMe). Ci44H30oNai6048S32Sii3 (SiCH 2 CH 2 CH 2 SiMeCH 2 CH 2 CH 2 ), -5.24 (SiMe). Ci 44 H 30 oNai 6 0 48 S 32 Sii 3
Síntesis de G3SiC3(S03Na)32. Synthesis of G3SiC3 (S0 3 Na) 3 2.
Sobre una disolución del dendrímero G3SÍA32 (0,420 g, 1 ,12*10 4 mol) en THF/MeOH proporción 3:1 , se añade un cuarto de la cantidad estequiométrica del reactivo comercial HS(CH2)3S03Na 90% en peso, disuelto en la mínima cantidad de agua posible (1 ,02 g, 5,73*10"3 mol. Se añade 0,255 g). Se añade un 0,25% mol de DMPA y se desoxigena la mezcla con argón. Se deja agitando 1 h bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se añaden las mismas cantidades de HS(CH2)3S03Na y DMPA y se desoxigena nuevamente. Este procedimiento se repite a las 2 y 3 horas de reacción. Tras 1 h más de agitación (tiempo total de reacción 4 h) bajo la lámpara UV se detiene la reacción, se elimina el disolvente por evaporación y se purifica el dendrímero por nanofiltración con una membrana de MWCO=500. De este modo se obtiene el dendrímero G3SiC3(S03Na)32 (0,950 g, 1 ,01 *10"4 mol, 90%). RMN- H (D20): δ 2.82 (t, SCH2CH2CH2S03Na), 2.49 (m, SiCH2CH2CH2S), 2.42 (m, SCH2CH2CH2S03Na), 1 .84 (m, SCH2CH2CH2S03Na), 1 .44 (m, SiCH2CH2CH2S), 1 .24 (m, SiCH2CH2CH2Si), 0.48 (m, SiCH2CH2CH2Si(Me)CH2CH2CH2S), -0.16 (Si e). RMN- 3C (D20): δ 50.1 1 (SCH2CH2CH2S03Na), 35.32 (SCH2CH2CH2S03Na), 30.32 (SiCH2CH2CH2S), 24.49 (SCH2CH2CH2S03Na), 23.98 (SiCH2CH2CH2S), 18.58 (SiCH2CH2CH2Si), 13.17 (SiCH2CH2CH2SiMeCH2CH2CH2), -4.95 (s, SiMe). C304H636Na32O96S64Si29 On a solution of the G3SIA32 dendrimer (0.420 g, 1, 12 * 10 4 mol) in THF / MeOH ratio 3: 1, a quarter of the stoichiometric amount of the commercial reagent HS (CH 2 ) 3 S0 3 Na 90% in weight, dissolved in the minimum amount of water possible (1.2 g, 5.73 * 10 "3 mol. 0.255 g is added.) 0.25% mol DMPA is added and the mixture is deoxygenated with argon. stir 1 h under a UV lamp with Amax = 364 nm. After this time the same amounts of HS (CH 2 ) 3 S0 3 Na and DMPA are added and deoxygenated again. This procedure is repeated at 2 and 3 hours after After stirring for a further 1 h (total reaction time 4 h) under the UV lamp the reaction is stopped, the solvent is removed by evaporation and the dendrimer is purified by nanofiltration with a MWCO membrane = 500. In this way the G3SiC3 dendrimer (S0 3 Na) 3 2 (0.950 g, 1, 01 * 10 "4 mol, 90%) is obtained. NMR-H (D 2 0): δ 2.82 (t, SCH 2 CH 2 CH 2 S0 3 Na), 2.49 (m, SiCH 2 CH 2 CH 2 S), 2.42 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1.84 (m, SCH 2 CH 2 CH 2 S0 3 Na ), 1.44 (m, SiCH 2 CH 2 CH 2 S), 1 .24 (m, SiCH 2 CH 2 CH 2 Si), 0.48 (m, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 CH 2 S), -0.16 (If e). NMR- 3 C (D 2 0): δ 50.1 1 (SCH 2 CH 2 CH 2 S0 3 Na), 35.32 (SCH 2 CH 2 CH 2 S0 3 Na), 30.32 (SiCH 2 CH 2 CH 2 S), 24.49 (SCH 2 CH 2 CH 2 S0 3 Na), 23.98 (SiCH 2 CH 2 CH 2 S), 18.58 (SiCH 2 CH 2 CH 2 Si), 13.17 (SiCH 2 CH 2 CH 2 SiMeCH 2 CH 2 CH 2 ), -4.95 (s, SiMe). C 30 4H6 3 6Na 32 O96S 64 Si 2 9
Síntesis de G103C2(C02Me)6. Synthesis of G103C2 (C0 2 Me) 6 .
Sobre una disolución del dendrímero G103V6 (0,1 12 g, 1 ,91 *10 4 mol) en THF, se añaden el reactivo comercial HSCH2COOCH3 97% en volumen, d=1 , 166g/mL (0,13 mi, 1 ,15*10 4 mol). Se añade MeOH y se desoxigena la mezcla con argón. Esta mezcla se deja agitando 4 h bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se elimina el disolvente por evaporación y se separa el dendrímero del tiol en exceso. De este modo se obtiene G103C2(C02Me)6. RMN- H (CDCI3): δ 5.83 (s, Ar-H), 3.71 (t, CH20-Ar), 3.53 (s, COOCH3), 3.04 (s, SCH2CO), 2.47 (t, SiCH2CH2S), 1 .57 (m, OCH2CH2CH2CH2Si), 1 .26 (m, OCH2CH2CH2CH2Si), 0.73 (m, SiCH2CH2S), 0.43 (m, OCH2CH2CH2CH2Si), -0.15 (SiMe).On a solution of the G103V6 dendrimer (0.1 12 g, 1.91 * 10 4 mol) in THF, the commercial reagent HSCH 2 COOCH 3 97% by volume, d = 1.166 g / mL (0.13 ml) is added , 1, 15 * 10 4 mol). MeOH is added and the mixture is deoxygenated with argon. This mixture is allowed to stir 4 h under a UV lamp with Amax = 364 nm. After this time the solvent is removed by evaporation and the dendrimer is removed from the excess thiol. In this way, G103C2 (C0 2 Me) 6 is obtained. NMR-H (CDCI 3 ): δ 5.83 (s, Ar-H), 3.71 (t, CH 2 0-Ar), 3.53 (s, COOCH 3 ), 3.04 (s, SCH 2 CO), 2.47 (t, SiCH 2 CH 2 S), 1 .57 (m, OCH 2 CH 2 CH 2 CH 2 Si), 1 .26 (m, OCH 2 CH 2 CH 2 CH 2 Si), 0.73 (m, SiCH 2 CH 2 S ), 0.43 (m, OCH 2 CH 2 CH 2 CH 2 Si), -0.15 (SiMe).
C5l HgoOl5S6Si3 C 5l HgoO l5 S 6 Si 3
Síntesis de G203C2(C02Me)i2. Synthesis of G203C2 (C0 2 Me) and 2 .
Sobre una disolución del dendrímero G203V12 (0,252 g , 2,00*10"4 mol) en THF, se añaden el reactivo comercial HSCH2COOCH3 97% en volumen, d=1 .166g/mL (0,23 mi, 2,40*10"3 mol). Se añade MeOH y se desoxigena la mezcla con argón. Esta mezcla se deja agitando 4 h bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se elimina el disolvente por evaporación y se separa el dendrímero del tiol en exceso. De este modo se obtiene G203C2(C02Me)i2. RMN- H (D20): δ 6.04 (s, Ar), 3.88 (t, OCH2CH2CH2CH2Si), 3.72 (s, COCHaJ, 3.24 (s, SCH2CO), 2.65 (t, SiCH2CH2S), 1 .76 (m, OCH2CH2CH2CH2Si), 1 .30 (m, SiCH2CH2S, OCH2CH2CH2CH2Si), 0.90 (m, SiCH2CH2CH2Si), 0.60 (m, SiCH2CH2CH2Si(Me)CH2CH2S, OCH2CH2CH2CH2Si), 0.03 (s, SiMe CH2CH2S), -0.06 (s, SiMe). On a solution of the G203V12 dendrimer (0.252 g, 2.00 * 10 "4 mol) in THF, the commercial reagent HSCH 2 COOCH 3 97% by volume is added, d = 1.166g / mL (0.23 ml, 2 , 40 * 10 "3 mol). MeOH is added and the mixture is deoxygenated with argon. This mixture is allowed to stir 4 h under a UV lamp with Amax = 364 nm. After this time the solvent is removed by evaporation and the dendrimer is removed from the excess thiol. In this way, G203C2 (C0 2 Me) i2 is obtained. NMR-H (D 2 0): δ 6.04 (s, Ar), 3.88 (t, OCH 2 CH 2 CH 2 CH 2 Si), 3.72 (s, CAR, 3.24 (s, SCH 2 CO), 2.65 (t , SiCH 2 CH 2 S), 1 .76 (m, OCH 2 CH 2 CH 2 CH 2 Si), 1 .30 (m, SiCH 2 CH 2 S, OCH 2 CH 2 CH 2 CH 2 Si), 0.90 ( m, SiCH 2 CH 2 CH 2 Si), 0.60 (m, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 S, OCH 2 CH 2 CH 2 CH 2 Si), 0.03 (s, SiMe CH 2 CH 2 S), -0.06 (s, SiMe).
Síntesis de G303C2(C02Me)24. Synthesis of G303C2 (C0 2 Me) 2 4.
Sobre una disolución del dendrímero G303V24 (0,199 g , 7,64*10"5 mol) en THF, se añaden el reactivo comercial HSCH2COOCH3 97% en volumen, d=1 , 166g/mL (0,2 mi, 1 ,83*10"3 mol). Se añade MeOH y se desoxigena la mezcla con argón. Esta mezcla se deja agitando 4 h bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se elimina el disolvente por evaporación y se separa el dendrímero del tiol en exceso. De este modo se obtiene G303C2(C02Me)24. C237H46205iS24Si2i On a solution of the G303V24 dendrimer (0.199 g, 7.64 * 10 "5 mol) in THF, the commercial reagent HSCH 2 COOCH 3 97% by volume is added, d = 1.166g / mL (0.2 ml, 1 , 83 * 10 "3 mol). MeOH is added and the mixture is deoxygenated with argon. This mixture is allowed to stir 4 h under a UV lamp with Amax = 364 nm. After this time the solvent is removed by evaporation and the dendrimer is removed from the excess thiol. This gives G303C2 (C0 2 Me) 2 4. C 237 H46 2 0 5 iS 24 Yes 2 i
Síntesis de G103C2(C02Na)6. Synthesis of G103C2 (C0 2 Na) 6 .
Sobre una disolución del dendrímero G103C2(C02Me)e en MeOH se añade NaOH en exceso en peso y se deja con agitación 12 h. Transcurrido este tiempo se evapora el disolvente y se disuelve en agua. Se purifica el dendrímero por ultrafiltración con una membrana de MWCO=500. De este modo se obtiene el dendrímero G103C2(C02Na)6. RMN- H (D20): δ 5.97 (s, Ar-H), 3.72 (t, CH20-Ar), 3.04 (s, SCH2CO), 2.43 (t, SiCH2CH2S), 1 .53 (m, OCH2CH2CH2CH2Si), 1 .25 (m, OCH2CH2CH2CH2Si), 0.73 (m, SiCH2CH2S), 0.43 (m, OCH2CH2CH2CH2SÍ), -0.17 (Si Me). C45H72Na60i5S6SÍ3 Síntesis de G203C2(C02Na)i2. On a solution of the G103C2 (C0 2 Me) dendrimer in MeOH, excess NaOH is added by weight and left under stirring for 12 h. After this time the solvent is evaporated and dissolved in water. The dendrimer is purified by ultrafiltration with a MWCO = 500 membrane. In this way the G103C2 dendrimer (C0 2 Na) 6 is obtained . NMR-H (D 2 0): δ 5.97 (s, Ar-H), 3.72 (t, CH 2 0-Ar), 3.04 (s, SCH 2 CO), 2.43 (t, SiCH 2 CH 2 S), 1.53 (m, OCH 2 CH 2 CH 2 CH 2 Si), 1 .25 (m, OCH 2 CH 2 CH 2 CH 2 Si), 0.73 (m, SiCH 2 CH 2 S), 0.43 (m, OCH2CH2CH2CH2YES), -0.17 (Si Me). C 4 5H72Na60i5S 6 YES3 Synthesis of G203C2 (C0 2 Na) i 2 .
Sobre una disolución del dendrímero G203C2(C02Me)i2 en MeOH se añade NaOH en exceso en peso y se deja con agitación 12 h. Transcurrido este tiempo se evapora el disolvente y se disuelve en agua. Se purifica el dendrímero por ultrafiltración con una membrana de MWCO=500. De este modo se obtiene el dendrímero G203C2(C02Na)i2. RMN- H (D20): δ 5.79 (s, Ar), 3.06 (s, SCH2CO), 2.45 (t, SÍCH2CH2S), 1 .52 (m, OCH2CH2CH2CH2SÍ), 1 .20 (m, SiCH2CH2S, OCH2CH2CH2CH2SÍ), 0.76 (m, SiCH2CH2CH2Si), 0.45 (m, SiCH2CH2CH2Si(Me)CH2CH2S, OCH2CH2CH2CH2SÍ), -0.1 1 (s, SiMe CH2CH2S), -0.21 (s, SiMe).
Figure imgf000028_0001
On a solution of the G203C2 (C02Me) i2 dendrimer in MeOH, excess NaOH is added by weight and left under stirring for 12 h. After this time the solvent is evaporated and dissolved in water. The dendrimer is purified by ultrafiltration with a MWCO = 500 membrane. In this way the dendrimer G203C2 (C0 2 Na) and 2 is obtained . NMR-H (D 2 0): δ 5.79 (s, Ar), 3.06 (s, SCH 2 CO), 2.45 (t, SÍCH2CH2S), 1.52 (m, OCH2CH2CH2CH2YES), 1.20 (m, SiCH 2 CH 2 S, OCH2CH2CH2CH2YES), 0.76 (m, SiCH 2 CH 2 CH 2 Si), 0.45 (m, SiCH 2 CH2CH2Yes (Me) CH2CH 2 S, OCH2CH2CH2CH2YES), -0.1 1 (s, SiMe CH2CH2S), -0.21 ( s, SiMe).
Figure imgf000028_0001
Síntesis de G303C2(C02Na)24. Synthesis of G303C2 (C0 2 Na) 2 4.
Sobre una disolución del dendrímero G303C2(C02Me)24 en MeOH se añade NaOH en exceso en peso y se deja con agitación 12 h. Transcurrido este tiempo se evapora el disolvente y se disuelve en agua. Se purifica el dendrímero por ultrafiltración con una membrana de MWCO=500. De este modo se obtiene el dendrímero G303C2(C02Na)24. RMN- H (D20): δ 3.06 (s, SCH2CO), 2.46 (t, SiCH2CH2S), 1 .59 (m, OCH2CH2CH2CH2SÍ), 1 ,22 (m, SiCH2CH2S, OCH2CH2CH2CH2SÍ), 0.76 (m, SiCH2CH2CH2Si), 0.45 (m, SiCH2CH2CH2Si(Me)CH2CH2S, OCH2CH2CH2CH2SÍ), -0.10 (s, SiMe CH2CH2S), -0.18 (s, SiMe). RMN- 3C (D20): δ 177.99 (COONa), 36.89 (SCH2CO), 27.79 (SiCH2CH2S), 18.64 (SiCH2CH2CH2Si), 18.37 (OCH2CH2CH2CH2SÍ), 13.95 (SiCH2CH2CH2Si(Me)CH2CH2S, SiCH2CH2CH2Si, OCH2CH2CH2CH2SÍ), -4.55 (SiMeCH2CH2S), -5.38 (SiCH2CH2CH2SiMe). C2i3H39oNa2405iS24SÍ2i On a solution of the G303C2 (C0 2 Me) 2 4 dendrimer in MeOH, excess NaOH is added by weight and left with stirring for 12 h. After this time the solvent is evaporated and dissolved in water. The dendrimer is purified by ultrafiltration with a MWCO = 500 membrane. In this way the G303C2 (C0 2 Na) 2 4. NMR-H (D 2 0) dendrimer is obtained: δ 3.06 (s, SCH 2 CO), 2.46 (t, SiCH 2 CH 2 S), 1 .59 ( m, OCH2CH2CH2CH2YES), 1, 22 (m, SiCH 2 CH 2 S, OCH2CH2CH2CH2YES), 0.76 (m, SiCH 2 CH 2 CH 2 Si), 0.45 (m, SiCH 2 CH2CH2Yes (Me) CH2CH 2 S, OCH2CH2CH2CH2YES), -0.10 (s, SiMe CH 2 CH 2 S), -0.18 (s, SiMe). NMR- 3 C (D 2 0): δ 177.99 (COONa), 36.89 (SCH 2 CO), 27.79 (SiCH 2 CH 2 S), 18.64 (SiCH 2 CH 2 CH 2 Si), 18.37 (OCH2CH2CH2CH2YES), 13.95 ( SiCH 2 CH2CH2Si (me) CH2CH 2 S, SiCH 2 CH 2 CH 2 Si, OCH2CH2CH2CH2SÍ), -4.55 (SiMeCH 2 CH 2 S), -5.38 (SiCH 2 SiMe 2 CH 2). C 2 i3H39oNa240 5 iS24YES2i
Síntesis de G103C2(S03Na)6. Synthesis of G103C2 (S0 3 Na) 6 .
Sobre una disolución del dendrímero G103V6 (0,142 g, 2,4*10"5 mol) en THF/MeOH proporción 3:1 , se añade un cuarto de la cantidad estequiométrica del reactivo comercial HS(CH2)3S03Na 90% en peso, disuelto en la mínima cantidad de agua posible (0,345 g, 1 ,74*10"3 mol. Se añade 0,086 g). Se añade un 0,25% mol de DMPA y se desoxigena la mezcla con argón. Se deja agitando 1 h bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se añaden las mismas cantidades de HS(CH2)3S03Na y DMPA y se desoxigena nuevamente. Este procedimiento se repite a las 2 y 3 horas de reacción. Tras 1 h más de agitación (tiempo total de reacción 4 h) bajo la lámpara UV se detiene la reacción, se elimina el disolvente por evaporación y se purifica el dendrímero por nanofiltración con una membrana de MWCO=500. De este modo se obtiene el dendrímero G103C2(S03Na)6. RMN- H (D20): δ 5.87 (s, Ar-H), 3.50 (t, CH20-Ar), 2.86 (m, SCH2CH2CH2S03Na), 2.56 (m, SCH2CH2CH2S03Na), 1 .85 (m, SCH2CH2CH2S03Na), 1 .71 (m, SiCH2CH2S), 1 .25 (m, OCH2CH2CH2CH2SÍ), 0.73 (m, SiCH2CH2S), 0.40 (m, OCH2CH2CH2CH2SÍ), -0.15 (s, SiMe). RMN- 3C (D20): δ 160.41 (ArC), 94.02 (ArC-O), 67.48 (OCH2CH2CH2CH2SÍ), 50.04 (SCH2CH2CH2S03Na), 36.02 (SCH2CH2CH2S03Na), 29.94 (SiCH2CH2S), 26.85 (SCH2CH2CH2S03Na), 24.23 (OCH2CH2CH2CH2SÍ), 23.48 (OCH2CH2CH2CH2SÍ), 18.42 (SiCH2CH2CH2Si), 14.03 (CH2CH2CH2CH2SiMeCH2CH2), -5.72 (SiMe). C5i H96Na602iSi2SÍ3 Síntesis de G203C2(S03Na)i2. On a solution of the G103V6 dendrimer (0.142 g, 2.4 * 10 "5 mol) in THF / MeOH ratio 3: 1, a quarter of the stoichiometric amount of the commercial reagent HS (CH 2 ) 3 S0 3 Na 90% is added by weight, dissolved in the minimum amount of water possible (0.345 g, 1.74 * 10 "3 mol. 0.086 g is added). 0.25% mol of DMPA is added and the mixture is deoxygenated with argon. It is allowed to stir 1 h under a UV lamp with Amax = 364 nm. After this time, the same amounts of HS (CH 2 ) 3 S0 3 Na and DMPA are added and deoxygenated again. This procedure is repeated at 2 and 3 hours of reaction. After a further 1 h of stirring (total reaction time 4 h) under the UV lamp the reaction is stopped, the solvent is removed by evaporation and the dendrimer is purified by nanofiltration with a MWCO = 500 membrane. In this way the G103C2 dendrimer (S0 3 Na) 6 is obtained . NMR-H (D 2 0): δ 5.87 (s, Ar-H), 3.50 (t, CH 2 0-Ar), 2.86 (m, SCH 2 CH 2 CH 2 S0 3 Na), 2.56 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1.85 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1.71 (m, SiCH 2 CH 2 S), 1.25 (m, OCH2CH2CH2CH2YES), 0.73 (m, SiCH 2 CH 2 S), 0.40 (m, OCH2CH2CH2CH2YES), -0.15 (s, SiMe). NMR- 3 C (D 2 0): δ 160.41 (ArC), 94.02 (ArC-O), 67.48 (OCH2CH2CH2CH2YES), 50.04 (SCH2CH 2 CH 2 S0 3 Na), 36.02 (SCH 2 CH 2 CH 2 S0 3 Na ), 29.94 (SiCH 2 CH 2 S), 26.85 (SCH2CH 2 CH 2 S0 3 Na), 24.23 (OCH2CH2CH2CH2YES), 23.48 (OCH2CH2CH2CH2YES), 18.42 (SiCH 2 CH 2 CH 2 Si), 14.03 (CH 2 CH2CH2CH2SCH 2 CH2 ), -5.72 (SiMe). C 5 i H96Na602iSi 2 YES3 Synthesis of G203C2 (S0 3 Na) i 2 .
Sobre una disolución del dendrímero G203V12 (0,228 g, 1 ,81 *10"4 mol) en THF/MeOH proporción 3:1 , se añade un cuarto de la cantidad estequiométrica del reactivo comercial HS(CH2)3S03Na 90% en peso, disuelto en la mínima cantidad de agua posible (0,436 g, 2,18*10 3 mol. Se añade 0, 109 g). Se añade un 0,25% mol de DMPA y se desoxigena la mezcla con argón. Se deja agitando 1 h bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se añaden las mismas cantidades de HS(CH2)3S03Na y DMPA y se desoxigena nuevamente. Este procedimiento se repite a las 2 y 3 horas de reacción. Tras 1 h más de agitación (tiempo total de reacción 4 h) bajo la lámpara UV se detiene la reacción, se elimina el disolvente por evaporación y se purifica el dendrímero por nanofiltración con una membrana de MWCO=500. De este modo se obtiene el dendrímero G203C2(S03Na)i2. RMN- H (D20): δ 3.58 (t, CH20-Ar), 2.88 (m, SCH2CH2CH2S03Na), 2.79 (m, SCH2CH2CH2S03Na), 1 .88 (m, SCH2CH2CH2S03Na), 1 .71 (m, SiCH2CH2S), 1 .21 (m, SiCH2CH2CH2Si, OCH2CH2CH2CH2Si), 0.76 (m, SiCH2CH2S), 0.46 (m, OCH2CH2CH2CH2SiCH2CH2CH2Si), -0.1 1 (s, Si eCH2CH2S), -0.20 (s, Si e).On a solution of the G203V12 dendrimer (0.228 g, 1.81 * 10 "4 mol) in THF / MeOH ratio 3: 1, a quarter of the stoichiometric amount of the commercial reagent HS (CH 2 ) 3 S0 3 Na 90% is added in weight, dissolved in the minimum amount of water possible (0.436 g, 2.18 * 10 3 mol. 0.109 g is added). 0.25% mol of DMPA is added and the mixture is deoxygenated with argon. It is allowed to stir 1 h under a UV lamp with Amax = 364 nm. After this time, the same amounts of HS (CH 2 ) 3 S0 3 Na and DMPA are added and deoxygenated again. This procedure is repeated at 2 and 3 hours of reaction. After a further 1 h of stirring (total reaction time 4 h) under the UV lamp the reaction is stopped, the solvent is removed by evaporation and the dendrimer is purified by nanofiltration with a MWCO = 500 membrane. In this way the G203C2 dendrimer (S0 3 Na) and 2 is obtained . NMR-H (D 2 0): δ 3.58 (t, CH 2 0-Ar), 2.88 (m, SCH 2 CH 2 CH 2 S0 3 Na), 2.79 (m, SCH 2 CH 2 CH 2 S0 3 Na) , 1.88 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1 .71 (m, SiCH 2 CH 2 S), 1.21 (m, SiCH 2 CH 2 CH 2 Si, OCH 2 CH 2 CH 2 CH 2 Si), 0.76 (m, SiCH 2 CH 2 S), 0.46 (m, OCH 2 CH 2 CH 2 CH 2 SiCH 2 CH 2 CH 2 Si), -0.1 1 (s, Si eCH 2 CH 2 S ), -0.20 (s, Si e).
Análisis de G203S(S03Na)i2 (3394,97 g/mol): Cale. %: C, 37,15; H, 6,23; S, 22,67; exp. %: C, 36,99; H,
Figure imgf000029_0001
Analysis of G203S (S0 3 Na) and 2 (3394.97 g / mol): Cale. %: C, 37.15; H, 6.23; S, 22.67; exp. %: C, 36.99; H
Figure imgf000029_0001
Síntesis de G303C2(S03Na)24. Synthesis of G303C2 (S0 3 Na) 2 4.
Sobre una disolución del dendrímero G303V24 (0,230 g, 8,8*10"5 mol) en THF/MeOH proporción 3: 1 , se añade un cuarto de la cantidad estequiométrica del reactivo comercial HS(CH2)3S03Na 90% en peso, disuelto en la mínima cantidad de agua posible (0,462 g, 2,3*10"3 mol. Se añade 0, 1 15 g). Se añade un 0,25% mol de DMPA y se desoxigena la mezcla con argón. Se deja agitando 1 h bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se añaden las mismas cantidades de HS(CH2)3S03Na y DMPA y se desoxigena nuevamente. Este procedimiento se repite a las 2 y 3 horas de reacción. Tras 1 h más de agitación (tiempo total de reacción 4 h) bajo la lámpara UV se detiene la reacción, se elimina el disolvente por evaporación y se purifica el dendrímero por nanofiltración con una membrana de MWCO=500. De este modo se obtiene el dendrímero G303C2(S03Na)24. Análisis de G303S(S03Na)24 (3394,97 g/mol): Cale. %: C, 37,15; H, 6,23; S, 22,67; exp. %: C, 36,99; H, 6,64; S, 25,51 . C237H486Na24075S48Si2i On a solution of the G303V24 dendrimer (0.230 g, 8.8 * 10 "5 mol) in THF / MeOH ratio 3: 1, a quarter of the stoichiometric amount of the commercial reagent HS (CH 2 ) 3 S0 3 Na 90% is added by weight, dissolved in the minimum amount of water possible (0.462 g, 2.3 * 10 "3 mol. 0.1 g is added). 0.25% mol of DMPA is added and the mixture is deoxygenated with argon. It is allowed to stir 1 h under a UV lamp with Amax = 364 nm. After this time, the same amounts of HS (CH 2 ) 3 S0 3 Na and DMPA are added and deoxygenated again. This procedure is repeated at 2 and 3 hours of reaction. After a further 1 h of stirring (total reaction time 4 h) under the UV lamp the reaction is stopped, the solvent is removed by evaporation and the dendrimer is purified by nanofiltration with a MWCO = 500 membrane. In this way the G303C2 dendrimer (S03Na) 24 is obtained. Analysis of G303S (S0 3 Na) 24 (3394.97 g / mol): Cale. %: C, 37.15; H, 6.23; S, 22.67; exp. %: C, 36.99; H, 6.64; S, 25.51. C 237 H486Na 24 0 75 S 48 Yes 2 i
Ejemplo 3. Dendrímeros heterofuncionalizados Example 3. Heterofunctionalized dendrimers
En general para la síntesis de compuestos heterofuncionalizados, tanto aniónicos como catiónicos o sus correspondientes grupos neutros, se puede representar en el siguiente esquema 3:
Figure imgf000029_0002
In general, for the synthesis of heterofunctionalized compounds, both anionic and cationic or their corresponding neutral groups, it can be represented in the following scheme 3:
Figure imgf000029_0002
GnXVo GnXCx(F')q(NH2)p GnXCx(F')q(HNFIu)p GnXVo GnXCx (F ') q (NH 2 ) p GnXCx (F') q (HNFIu) p
Esquema 3 representa un grupo fluoróforo (Flu) y representa un grupo alquilo -(CH2)y-, en los ejemplos siguientes corresponde a un grupo etilo (y=2). En general los dendrímeros heterofuncionalizados que se describen a continuación se pueden representar como GnXCx(F')q(F")p, donde: n, G y X se han descrito en los ejemplos anteriores; Cx indica la longitud de la cadena carbonada entre el átomo de Si y el átomo de S; F' y F" indican la naturaleza de los grupos funcionales situados en la periferia del dendrímero: F' corresponde a los grupos F descritos en los ejemplos anteriores y F" representa un grupo fluoróforo (Flu), en los siguientes ejemplos FITC es fluoresceina, Rho es Rodamina y DNS es Dansilo; q y p son el número de estas funciones, respectivamente, donde q+p es o. Scheme 3 represents a fluorophore group (Flu) and represents an alkyl group - (CH 2 ) and -, in the following examples corresponds to an ethyl group (y = 2). In general the heterofunctionalized dendrimers described below can be represented as GnXCx (F ') q (F ") p, where: n, G and X have been described in the previous examples; Cx indicates the length of the carbon chain between the Si atom and the S atom; F 'and F "indicate the nature of the functional groups located on the periphery of the dendrimer: F' corresponds to the groups F described in the previous examples and F" represents a fluorophore group (Flu ), in the following examples FITC is fluorescein, Rho is Rhodamine and DNS is Dansyl; q and p are the number of these functions, respectively, where q + p is o.
Síntesis de G203C2(NMe2)ii(NH2). Synthesis of G203C2 (NMe 2 ) ii (NH 2 ).
A una disolución de G203V12 (0, 159 g, 0, 13 mmol) en una mezcla de THF/MeOH (1 :2, 3 mi) se añaden el reactivo comercial cisteamina hidrocluro (0.014 g, 0.13 mmol) y el fotoiniciador, DMPA en un 20% mol (0,006 g, 0,02 mmol); finalmente la mezcla se desoxigena con argón Se deja agitando 20 min . bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se añaden el reactivo comercial 95% en peso 2-(Dimetilamino)etanotiol hidrocloruro (0,250 g, 1 ,68 mmol) y DMPA en un 10% mol (0,037 g, 0, 14 mmol) y se desoxigena de nuevo. Tras 2.5 horas de reacción se elimina el disolvente por evaporación y se purifica el dendrímero por nanofiltración con una membrana de MW=1000. El producto se seca a vacío obteniéndose G203C2(NMe2-HCI) (NH2-HCI) como un sólido blanco (0,261 g, 70%). A una disolución del dendrímero G203C2(NMe2-HCI) (NH2-HCI) (0,226 g, 0,08 mmol) en una mezcla de H2O/CHCI3 (1 : 1 , 20 mi) se añade una disolución acuosa de NaOH (0,044 g, 1 , 11 mmol). La mezcla de reacción se agita durante 15 minutos a temperatura ambiente y después la fase orgánica se separa y se extrae la fase acuosa con cloroformo (2 x 5 mi). Los volátiles se eliminan a vacío obteniéndose G203C2(NMe2)ii(NH2) como un aceite amarillento (0, 180 g, 94%). H-RMN (CDCI3): δ -0.08 (s, 9H, Si e), 0.00 (s, 18H, Si e), 0.56 (m, 30H, Si-CH2-CH2-CH2-Si y O-CH2-CH2-CH2-CH2-SÍ), 0.88 (t, J=8.6Hz, 24H, SÍ-CH2-CH2-S), 1 .27 (m, 12H, Si-CH2-CH2-CH2-Si), 1 .39 (m, 6H, O-CH2-CH2-CH2-CH2- Si), 1 .65 (m, 6H, O-CH2-CH2-CH2-CH2-SÍ), 2.24 (s, 66H, -S-CH2-CH2-N e2), 2.50 (m, 24H, -S-CH2-CH2- NR2), 2.55 (m, 24H, Si-CH2-CH2-S), 2.58 (m, 24H, -S-CH2-CH2-NR2), 3.85 (t, J=6.3Hz, 6H, -O-CH2), 6.03 (s, 3H, 06Η3Ο3). 3C-RMN (CDCI3): δ -5.3 (SiMe), -5.1 (SiMe), 13.8 (O-CH2-CH2-CH2-CH2-SÍ), 14.6 (SÍ-CH2-CH2-S), 18.3, 18.4 y 18.7 (Si-CH2-CH2-CH2-Si), 20.5 (O-CH2-CH2-CH2-CH2-SÍ), 27.7 (-S-CH2- CH2-NMe2), 29.8 (Si-CH2-CH2-S), 33.3 (O-CH2-CH2-CH2-CH2-SÍ), 45.4 (-Si-CH2-CH2-NMe2), 59.2 (-S- CH2-CH2-NMe2), 67.6 (-O-CH2-), 93.7 (C6H303; C-H), 160.9 (C6H303; C-O). 29Si-RMN (CDCI3): δ 1 .64 (G2-S Me), 1 .97 (Gi-S Me). 5N-RMN (CDCI3): δ -352.1 (-SiCH2-CH2-/VMe2). Anal. Cale. C115H254N12O3S129 (2490.88 g/mol): C, 55.45; H, 10.28; N, 6.75; S, 15.45; Exp. : C, 55.81 ; H, 9.58; N, 6.47; S, 14.55. Síntesis de G203C2(NMe3l)ii(NHFITC).
Figure imgf000031_0001
To a solution of G203V12 (0.159 g, 0.13 mmol) in a mixture of THF / MeOH (1: 2, 3 ml) are added the commercial reagent cysteamine hydrochloride (0.014 g, 0.13 mmol) and the photoinitiator, DMPA in 20% mol (0.006 g, 0.02 mmol); finally the mixture is deoxygenated with argon. It is left stirring for 20 min. under a UV lamp with Amax = 364 nm. After this time, the commercial reagent 95% by weight 2- (Dimethylamino) ethanethiol hydrochloride (0.250 g, 1.68 mmol) and DMPA in 10% mol (0.037 g, 0.14 mmol) are added and deoxygenated again. After 2.5 hours of reaction the solvent is removed by evaporation and the dendrimer is purified by nanofiltration with a membrane of MW = 1000. The product is dried under vacuum to obtain G203C2 (NMe2-HCI) (NH2-HCI) as a white solid (0.261 g, 70%). To a solution of the G203C2 dendrimer (NMe2-HCI) (NH2-HCI) (0.226 g, 0.08 mmol) in a mixture of H 2 O / CHCI 3 (1: 1, 20 ml) is added an aqueous solution of NaOH (0.044 g, 1.11 mmol). The reaction mixture is stirred for 15 minutes at room temperature and then the organic phase is separated and the aqueous phase is extracted with chloroform (2 x 5 mL). Volatiles are removed in vacuo to obtain G203C2 (NMe 2 ) ii (NH 2 ) as a yellowish oil (0. 180 g, 94%). H-NMR (CDCI 3 ): δ -0.08 (s, 9H, Si e), 0.00 (s, 18H, Si e), 0.56 (m, 30H, Si-CH 2 -CH 2 -CH 2 -Si and O -CH 2 -CH 2 -CH 2 -CH 2 -YES), 0.88 (t, J = 8.6Hz, 24H, YES-CH 2 -CH 2 -S), 1.27 (m, 12H, Si-CH 2 -CH 2 -CH 2 -Yes), 1.39 (m, 6H, O-CH 2 -CH 2 -CH 2 -CH 2 - Si), 1.65 (m, 6H, O-CH2-CH2-CH2 -CH2-YES), 2.24 (s, 66H, -S-CH 2 -CH 2 -N e 2 ), 2.50 (m, 24H, -S-CH 2 -CH 2 - NR 2 ), 2.55 (m, 24H , Si-CH 2 -CH 2 -S), 2.58 (m, 24H, -S-CH 2 -CH 2 -NR 2 ), 3.85 (t, J = 6.3Hz, 6H, -O-CH2), 6.03 ( s, 3H, 0 6 Η 3 Ο 3 ). 3 C-NMR (CDCI 3 ): δ -5.3 (SiMe), -5.1 (SiMe), 13.8 (O-CH 2 -CH 2 -CH 2 -CH 2 -YES), 14.6 (YES-CH 2 -CH 2 -S), 18.3, 18.4 and 18.7 (Si-CH 2 -CH 2 -CH 2 -Yes), 20.5 (O-CH 2 -CH 2 -CH 2 -CH 2 -YES), 27.7 (-S-CH 2 - CH 2 -NMe 2 ), 29.8 (Si-CH 2 -CH 2 -S), 33.3 (O-CH2-CH2-CH2-CH2-YES), 45.4 (-Si-CH 2 -CH 2 -NMe 2 ) , 59.2 (-S- CH2-CH 2 -NMe 2 ), 67.6 (-O-CH2-), 93.7 (C 6 H 3 03; CH), 160.9 (C 6 H 3 03; CO). 29 Si-NMR (CDCI 3 ): δ 1 .64 (G2-S Me), 1 .97 (Gi-S Me). 5 N-NMR (CDCI 3 ): δ -352.1 (-SiCH2-CH 2 - / VMe 2 ). Anal. Cale. C 115 H 254 N 12 O 3 S 12 YES 9 (2490.88 g / mol): C, 55.45; H, 10.28; N, 6.75; S, 15.45; Exp.: C, 55.81; H, 9.58; N, 6.47; S, 14.55. Synthesis of G203C2 (NMe 3 L) ii (NHFITC).
Figure imgf000031_0001
Sobre una disolución del dendrímero de segunda generación G203C2(NMe2)n(NH2) (0, 182 g, 0,07 mmol) en EtOH (5 mi) se añade un exceso del reactivo comercial fluoresceína isotiocianato, FITC (0,036 g, 0,09 mmol). Tras 16 horas de reacción con agitación constante y a temperatura ambiente, se evapora la mezcla de reacción. A continuación se disuelve de nuevo en THF (10 mi) y se filtra con cánula y celite a un nuevo schlenck. Al filtrado se añade un exceso de Mel (0,06 mi, 0,96 mmol). La mezcla de reacción se mantiene con agitación constante durante 16 h a temperatura ambiente y se evaporan todos los volátiles a vacío. El residuo resultante se lava con EtOH (2 x 5 mi) y se seca a vacío. El producto se seca a vacío obteniéndose G203C2(NMe3l) (NHFITC) como un sólido anaranjado (0,261 g, 80%). H-RMN (DMSO): δ -0.07 (s, 9H, S/Me), 0.04 (s, 18H, S/Me), 0.55 (m, 24H, Si-CH2-CH2-CH2-Si) 0.64 (m, 6H, O-CH2-CH2-CH2-CH2-SÍ), 0.86 (m, 24H, Si-CH2-CH2-S), 1 .31 (m, 18H, O-CH2-CH2-CH2-CH2-SÍ y SÍ-CH2-CH2-CH2-SÍ), 1 .69 (m, 6H, O-CH2-CH2-CH2-CH2-SÍ), 2.63 (m, 24H, Si- CH2-CH2-S), 2.89 (m, 24H, -S-CH2-CH2-NMe3l), 3.10 (s, 99H, -S-CH2-CH2-N e3l), 3.55 (m, 24H, -S- CH2-CH2-NMe3l), 3.89 (m, 6H, -O-CH2), 6.02 (s, 3H, C6H303), 6.50 - 6.70 (m, 6H, Ar-H), 7.15 (m, 2H, Ar-H). 3C-RMN (DMSO): δ -5.7 (SiMe), 1 1 .8 (O-CH2-CH2-CH2-CH2-SÍ), 13.6 (Si-CH2-CH2-S), 17.4 - 19.6 (O-CH2-CH2-CH2-CH2-SÍ y SÍ-CH2-CH2-CH2-SÍ), 23.1 (-S-CH2-CH2-NMe3l), 26.4 (Si-CH2-CH2-S), 31 .4 (O-CH2-CH2-CH2-CH2-SÍ), 51 .7 (-Si-CH2-CH2-NMe3l), 63.9 (-S-CH2-CH2-NMe2), 66.1 (-O-CH2-), 92.0 (C6H303; C-H), 160.7 (C6H303; C-O). 29Si-RMN (DMSO): δ 0.9 (G2-S/Me), 2.3 (G3-S/Me2). 5N- RMN (DMSO): δ -330.0 (-SiCH2-CH2-/VMe3l). Anal. Cale.
Figure imgf000031_0002
(4441 .58 g/mol): C, 39.75; H, 6.76; N, 4.10; S, 9.39; Exp.: C, 39.05; H, 6.68; N, 4.05; S, 8.79. IR (NaCI): 787.0 (a, Si-C3t), 1593.8 (a, arC-C), 1751 .5 (d, C=Ost), 2909.7 (a, C-Hst), 3004.9 (s, =C-Hst). UV-vis (H20): 224.4 (a), 265.4 (h), 292.6 (h), 322.2 (h), 467.0 (h), 500.0 (a).
On a solution of the second generation dendrimer G203C2 (NMe2) n (NH2) (0.182 g, 0.07 mmol) in EtOH (5 mL) an excess of the commercial fluorescein isothiocyanate reagent, FITC (0.036 g, 0, is added) 09 mmol). After 16 hours of reaction with constant stirring and at room temperature, the reaction mixture is evaporated. It is then dissolved again in THF (10 ml) and filtered with a cannula and celite to a new schlenck. To the filtrate is added an excess of Mel (0.06 ml, 0.96 mmol). The reaction mixture is kept under constant stirring for 16 h at room temperature and all volatiles are evaporated in vacuo. The resulting residue is washed with EtOH (2 x 5 mL) and dried in vacuo. The product is dried under vacuum to obtain G203C2 (NMe3l) (NHFITC) as an orange solid (0.261 g, 80%). H-NMR (DMSO): δ -0.07 (s, 9H, S / Me), 0.04 (s, 18H, S / Me), 0.55 (m, 24H, Si-CH 2 -CH 2 -CH 2 -Si) 0.64 (m, 6H, O-CH 2 -CH 2 -CH 2 -CH 2 -YES), 0.86 (m, 24H, Si-CH 2 -CH 2 -S), 1.31 (m, 18H, O- CH 2 -CH 2 -CH 2 -CH 2 -YES and YES-CH 2 -CH 2 -CH 2 -YES), 1.69 (m, 6H, O-CH 2 -CH 2 -CH 2 -CH 2 - YES), 2.63 (m, 24H, Si- CH 2 -CH 2 -S), 2.89 (m, 24H, -S-CH 2 -CH 2 -NMe 3 l), 3.10 (s, 99H, -S-CH 2 -CH 2 -N e 3 l), 3.55 (m, 24H, -S- CH 2 -CH 2 -NMe 3 l), 3.89 (m, 6H, -O-CH 2 ), 6.02 (s, 3H, C 6 H 3 0 3 ), 6.50 - 6.70 (m, 6H, Ar-H), 7.15 (m, 2H, Ar-H). 3 C-NMR (DMSO): δ -5.7 (SiMe), 1 1 .8 (O-CH 2 -CH 2 -CH 2 -CH 2 -YES), 13.6 (Si-CH 2 -CH 2 -S), 17.4 - 19.6 (O-CH 2 -CH 2 -CH 2 -CH 2 -YES and YES-CH 2 -CH 2 -CH 2 -YES), 23.1 (-S-CH 2 -CH 2 -NMe 3 l), 26.4 (Si-CH 2 -CH 2 -S), 31 .4 (O-CH2-CH2-CH2-CH2-YES), 51 .7 (-Si-CH 2 -CH 2 -NMe 3 l), 63.9 ( -S-CH2-CH 2 -NMe 2 ), 66.1 (-O-CH2-), 92.0 (C 6 H 3 0 3 ; CH), 160.7 (C 6 H 3 0 3 ; CO). 29 Si-NMR (DMSO): δ 0.9 (G 2 -S / Me), 2.3 (G 3 -S / Me 2 ). 5 N-NMR (DMSO): δ -330.0 (-SiCH 2 -CH 2 - / VMe 3 l). Anal. Cale.
Figure imgf000031_0002
(4441.58 g / mol): C, 39.75; H, 6.76; N, 4.10; S, 9.39; Exp .: C, 39.05; H, 6.68; N, 4.05; S, 8.79. IR (NaCI): 787.0 (a, Si-C 3t ), 1593.8 (a, arC-C), 1751 .5 (d, C = O st ), 2909.7 (a, CH st ), 3004.9 (s, = CH st ). UV-vis (H 2 0): 224.4 (a), 265.4 (h), 292.6 (h), 322.2 (h), 467.0 (h), 500.0 (a).
Síntesis de G203C2(C02Me)ii(NH2). Synthesis of G203C2 (C0 2 Me) ii (NH 2 ).
Sobre una disolución del dendrímero G203V12 (0,312 g, 2,48*10"4 mol) en THF/MeOH proporción 1 :2, se añade un equivalente del reactivo comercial HS(CH2)2NH3CI (0,028 g, 2,48*10"4 mol Se añade un 1 % mol de DMPA y se desoxigena la mezcla con argón. Se deja agitando 20 min bajo una lámpara UV con Amax= 364 nm. A una disolución del producto anterior (de 0, 130 g, 9,5*10"5 mol) en una mezcla THF/MeOH (1 :2) se añaden con un exceso del 10%, 1 1 equivalentes del reactivo comercial HSCH2CO2CH3 97% (0, 1 1 mi, 1 , 15*10 3 mol). Tras 4 h más de agitación bajo la lámpara UV se detiene la reacción, se elimina el disolvente por evaporación. RMN- H (CDCI3): δ 6.03 (m, Ar-O-CZ-k), 3.88 (t, OCH2CH2CH2CH2SÍ), 3.70 (s, COCH3J, 3.22 (s, SCH2CO), 2.65 (m, SiCH2CH2S, SÍCH2CH2SCH2CH2NH2), 1 .75 (m, SCH2CH2NH2), 1 .23-1 .35 (m, SiCH2CH2CH2Si, OCH2CH2CH2CH2SÍ), 0.90 (t, SiCH2CH2CH2Si(Me)CH2CH2S) 0.54 (m, OCH2CH2CH2CH2SÍ, SÍCH2CH2CH2SÍ), - 0.07 (s, Si e CH2CH2S), -0.09 (s, SiMe). On a solution of the G203V12 dendrimer (0.312 g, 2.48 * 10 "4 mol) in THF / MeOH ratio 1: 2, an equivalent of the commercial reagent HS (CH 2 ) 2 NH 3 CI (0.028 g, 2, 48 * 10 "4 mol 1% mol of DMPA is added and the mixture is deoxygenated with argon. It is left stirring for 20 min under a UV lamp with Amax = 364 nm. To a solution of the previous product (0.30 g, 9.5 * 10 "5 mol) in a THF / MeOH mixture (1: 2) are added with an excess of 10%, 1 1 equivalents of the commercial reagent HSCH 2 CO 2 CH 3 97% (0, 1 1 mi, 1, 15 * 10 3 mol). After 4 h of stirring under the UV lamp the reaction is stopped, the solvent is removed by evaporation. NMR-H (CDCI 3 ): δ 6.03 (m, Ar-O-CZ-k), 3.88 (t, OCH2CH 2 CH 2 CH 2 YES), 3.70 (s, COCH3J, 3.22 (s, SCH 2 CO), 2.65 (m, SiCH 2 CH 2 S, SICH2CH2SCH2CH2NH2), 1 .75 (m, SCH2CH2NH2), 1 .23-1 .35 (m, SiCH 2 CH 2 CH 2 Si, OCH2CH2CH2CH2YES), 0.90 (t, SiCH 2 CH 2 CH 2 Si (me) CH 2 CH 2 s) 0.54 (m, OCH 2 CH 2 CH 2 CH2SÍ, CH2SÍ SÍCH2CH 2), - 0.07 (s, Si and CH 2 CH 2 s), -0.09 (s, SiMe ).
Síntesis de G203C2(C02Na)ii(NH2) Synthesis of G203C2 (C0 2 Na) ii (NH 2 )
Sobre una disolución del dendrímero G203C2(NH2)(C02Me) en MeOH se añade NaOH en exceso en peso y se deja con agitación 12 h. Transcurrido este tiempo se evapora el disolvente y se disuelve en agua. Se purifica el dendrímero por ultrafiltración con una membrana de MWCO=500. De este modo se obtiene el dendrímero G203C2(NH2)(C02Na)ii. RMN- H (CDCI3): δ 3.70 (m, OCH2CH2CH2CH2SÍ), 3.03 (s, SCH2CO), 2.42 (m, SÍCH2CH2S, SÍCH2CH2SCH2CH2NH2), 1 .47 (m, SCH2CH2NH2), 1 .17 (m, SiCH2CH2CH2Si, OCH2CH2CH2CH2SÍ), 0.72 (t, SiCH2CH2CH2Si(Me)CH2CH2S) 0.43 (m, OCH2CH2CH2CH2SÍ, SÍCH2CH2CH2SÍ), - 0.14 (s, SiMe CH2CH2S), -0.24 (s, SiMe). C87Hi55CINNaii025Si29 On a solution of the G203C2 (NH2) (C02Me) dendrimer in MeOH, NaOH is added in excess by weight and left under stirring for 12 h. After this time the solvent is evaporated and dissolved in water. The dendrimer is purified by ultrafiltration with a MWCO = 500 membrane. In this way the G203C2 dendrimer (NH 2 ) (C0 2 Na) ii is obtained. NMR-H (CDCI 3 ): δ 3.70 (m, OCH2CH 2 CH 2 CH 2 YES), 3.03 (s, SCH2CO), 2.42 (m, SÍCH2CH2S, SÍCH2CH2SCH2CH2NH2), 1.47 (m, SCH 2 CH 2 NH 2 ), 1.17 (m, SiCH 2 CH 2 CH 2 Si, OCH 2 CH 2 CH2CH 2 YES), 0.72 (t, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 S) 0.43 (m, OCH CH 2 CH 2 2 CH2SÍ, CH2SÍ SÍCH2CH 2), - 0.14 (s, SiMe 2 CH 2 CH s), -0.24 (s, SiMe). C 87 Hi 55 CINNaii0 25 Yes 2 YES 9
Síntesis de G203C2(S03Na) (NH2). Synthesis of G203C2 (S0 3 Na) (NH 2 ).
Sobre una disolución del dendrímero G203V12 (0, 156 g, 1 ,24*10 4 mol) en THF/MeOH proporción 1 :2, se añade un equivalente del reactivo comercial HS(CH2)2NH3CI (0,014 g, 1 ,24*10 4 mol Se añade un 1 % mol de DMPA y se desoxigena la mezcla con argón. Se deja agitando 20 min bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se añaden con un exceso del 10%, 1 1 equivalentes del reactivo comercial HS(CH2)3S03Na 90% en peso. Un cuarto de la cantidad estequiométricamente necesaria se disuelve en la mínima cantidad de agua posible (0,067 g, 3,41 *10 4 mol). Se añade un 0.25% mol de DMPA y se desoxigena la mezcla con argón . Se deja agitando 1 h bajo una lámpara UV con Amax= 364 nm. Este procedimiento se repite a las 2 y 3 horas de reacción. Tras 1 h más de agitación (tiempo total de reacción 4,5 h) bajo la lámpara UV se detiene la reacción, se elimina el disolvente por evaporación. El producto se disuelve en MeOH y se trata con 1 equivalente de NaOH para basificar la amina. Finalmente se purifica el dendrímero por nanofiltración con una membrana de MWCO=500. De este modo se obtiene el dendrímero G203C2(NH2)(S03Na)n . Análisis de G203SNH2S(S03Na)n (3246,22 g/mol): Cale. %: C, 36,26; H, 6, 18; N, 0.43; S, 22,72; exp. %: C, 36,99; H, 6,64; N, 0.77. C98Hi99CINNaii036S23SÍ9 On a solution of the G203V12 dendrimer (0.156 g, 1.24 * 10 4 mol) in THF / MeOH ratio 1: 2, an equivalent of the commercial reagent HS (CH 2 ) 2 NH 3 CI (0.014 g, 1) is added , 24 * 10 4 mol 1% mol of DMPA is added and the mixture is deoxygenated with argon, left stirring for 20 min under a UV lamp with Amax = 364 nm. After this time they are added with an excess of 10%, 1 1 equivalent of the commercial reagent HS (CH 2 ) 3 S0 3 Na 90% by weight A quarter of the stoichiometrically necessary amount is dissolved in the minimum amount of water possible (0.067 g, 3.41 * 10 4 mol). 0.25% mol DMPA and the mixture is deoxygenated with argon, stirring for 1 h under a UV lamp with Amax = 364 nm This procedure is repeated at 2 and 3 hours of reaction After 1 h more stirring (time total reaction 4.5 h) under the UV lamp the reaction is stopped, the solvent is removed by evaporation.The product is dissolved in MeOH and treated with 1 equivalent of Na OH to basify the amine. Finally, the dendrimer is purified by nanofiltration with a membrane of MWCO = 500. In this way the dendrimer G203C2 (NH2) (S03Na) n is obtained. Analysis of G203SNH 2 S (S0 3 Na) n (3246.22 g / mol): Cale. %: C, 36.26; H, 6, 18; N, 0.43; S, 22.72; exp. %: C, 36.99; H, 6.64; N, 0.77. C 9 8Hi99CINNaii036S 2 3YES9
Síntesis de G203C2(S03Na) (NHFITC) Synthesis of G203C2 (S0 3 Na) (NHFITC)
Figure imgf000033_0001
Figure imgf000033_0001
Sobre una disolución del dendrímero G203C2(NH2)(S03Na)ii (0,06 g, 1 ,82*10"5 mol) en DMF/H20 (1 :1) en un matraz de fondo redondo topacio, se añade el reactivo comercial FITC isómero 1 (0,011 g, 2,7*10"5 mol). La mezcla de reacción se deja agitando durante 18 h. Posteriormente se evapora el disolvente y se extrae el exceso de FITC en EtOH (3 veces). El dendrímero se lava con Et20 y se seca a vacío. Obtenemos G203C2(NHFITC)(S03Na) como un sólido de color amarillo. Cii9H209N2NaiiO4iS24SÍ9 On a solution of the G203C2 (NH2) dendrimer (S0 3 Na) ii (0.06 g, 1, 82 * 10 "5 mol) in DMF / H20 (1: 1) in a topaz round bottom flask, the commercial reagent FITC isomer 1 (0.011 g, 2.7 * 10 "5 mol). The reaction mixture is allowed to stir for 18 h. Subsequently, the solvent is evaporated and the excess FITC in EtOH is extracted (3 times). The dendrimer is washed with Et 2 0 and dried in vacuo. We obtain G203C2 (NHFITC) (S03Na) as a yellow solid. Cii9H209N 2 NaiiO4iS24YES9
Ejemplo 4 Cuñas dendríticas o dendrones Example 4 Dendritic wedges or dendrons
Para la síntesis de estas cuñas dendríticas se puede partir de un haloalqueno, más preferiblemente bromoalqueno, como por ejemplo bromuro de alilo o 4-bromobuteno y se puede utilizar una estrategia de crecimiento divergente, siguiendo procedimientos ya descritos de reacciones de hidrosililación y alquenilación (J. Sánchez-Nieves et al., Tetrahedron 2010, 66, 9203). En general para la síntesis de cuñas dendríticas se puede representar, en general, y sin limitarse por los siguientes esquemas de reacción: For the synthesis of these dendritic wedges, it is possible to start from a haloalkene, more preferably bromoalkene, such as allyl bromide or 4-bromobutene, and a divergent growth strategy can be used, following procedures already described for hydrosilylation and alkenylation reactions (J Sánchez-Nieves et al., Tetrahedron 2010, 66, 9203). In general for the synthesis of dendritic wedges it can be represented, in general, and without being limited by the following reaction schemes:
Figure imgf000033_0002
Figure imgf000033_0002
BrGnAo XGnAo XGnCx(F)o  BrGnAo XGnAo XGnCx (F) or
Esquema 4
Figure imgf000034_0001
Scheme 4
Figure imgf000034_0001
Figure imgf000034_0002
Figure imgf000034_0002
Esquemas 5 y 6 donde: i) MR4; ii) HS(CH2)yR3 (cuando R3 es NH2 HCI, NMe2 HCI, se añade NaOH); iii) HCI; BrCH2CCH. Schemes 5 and 6 where: i) MR 4 ; ii) HS (CH 2 ) and R 3 (when R 3 is NH2 HCI, NMe 2 HCI, NaOH is added); iii) HCI; BrCH 2 CCH.
Gn Gn
Gn
Figure imgf000034_0003
iv)
Gn
Figure imgf000034_0003
iv)
v)  v)
GnXVo  GnXVo
ó  or
GnXAo  GnXAo
Esquema 7  Scheme 7
donde: i) HS(CH2)yR3 (R3 = C02 ", S03 ", OS03 "); ii) HS(CH2)yR3 (R3 = C02Me, C02H); iii) base; iv) HS(CH2)yR3 (R3 = OH); v) S03 py, base. where: i) HS (CH 2 ) and R 3 (R 3 = C0 2 " , S0 3 " , OS0 3 " ); ii) HS (CH 2 ) and R 3 (R 3 = C0 2 Me, C0 2 H ); iii) base; iv) HS (CH 2 ) and R 3 (R 3 = OH); v) S0 3 py, base.
Figure imgf000034_0004
Figure imgf000034_0004
Esquema 8 Scheme 8
En los esquemas 4 a 8, representa un grupo alquilo -(CH2)Z-, en los siguientes ejemplos z es 4,In schemes 4 to 8, it represents an alkyl group - (CH 2 ) Z -, in the following examples z is 4,
R4, R3 e y están definidos anteriormente, M es un metal, Pht es ftalimida y representa un grupo R5, por ejemplo:
Figure imgf000035_0001
R 4 , R 3 e and are defined above, M is a metal, Pht is phthalimide and represents a group R 5 , for example:
Figure imgf000035_0001
En general los dendrones que se describen en este apartado se pueden representar como XGnCy(F)o, donde: n indica el número de la generación G; X, indica la naturaleza del punto focal, en el caso de los siguientes ejemplos estos grupos funcionales se encuentran unidos al Si por un grupo alquilo (CH2)4-, Cx, indica la longitud de la cadena carbonada entre el átomo de S y el Si; F indica la naturaleza de los grupos funcionales situados en la periferia del dendrón (corresponde a los grupos R3 descritos en la descripción) y o es el número de estas funciones y dependerá del número de generaciones. In general, the dendrons described in this section can be represented as XGnC and (F) or, where: n indicates the number of generation G; X, indicates the nature of the focal point, in the case of the following examples these functional groups are linked to Si by an alkyl group (CH 2 ) 4-, Cx, indicates the length of the carbon chain between the atom of S and he does; F indicates the nature of the functional groups located on the periphery of the dendron (corresponds to the R 3 groups described in the description) and I is the number of these functions and will depend on the number of generations.
Síntesis de NH2G2C2(NMe2)4. Synthesis of NH 2 G 2 C2 (NMe2) 4.
Figure imgf000035_0002
Figure imgf000035_0002
Sobre una disolución de PhtG2C2V4 (0,208 g, 0,40 mmol) en una mezcla de THF/MeOH (1 :2, 3 mi) se añaden el reactivo comercial 95% en peso 2-(Dimetilamino)etanotiol hidrocloruro (0,260 g, 1 ,74 mmol) y DMPA en un 5% mol (0,020 g, 0,08 mmol); finalmente la mezcla se desoxigena con argón Se deja agitando 1 .5 h bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se añade 5% mol de DMPA nuevamente y se desoxigena. Tras 1 .5 horas de reacción se elimina el disolvente por evaporación y se purifica el dendrímero por nanofiltración con una membrana de MW=500. El producto se seca a vacío obteniéndose PhtG2C2(NMe2 HCI)4 como un sólido blanco (0,364 g, 84%). Por último, a una disolución de PhtG2C2(NMe2 HCI)4 (0,364 g, 0,33 mmol) en MeOH (10 mi) se añade N2H4 en exceso (0,08 mi, 2,72 mmol) y la mezcla de reacción se calienta a 80°C en una ampolla de vacío durante 16 h. A continuación llevamos la mezcla de reacción a sequedad para eliminar el disolvente y el exceso de N2H4 y finalmente extraemos el producto en CH2CI2 obteniéndose NH2G2C2(NMe2)4, tras evaporar, como un aceite amarillento (0,254 g, 93%). H-RMN (CDCI3): δ -0.10 (s, 3H, S/' e), 0.00 (s, 6H, S e), 0.54 (m, 10H, Si-CH2-CH2-CH2-Si y N-CH2-CH2-CH2-CH2-Si), 0.88 (t, J=8.7Hz, 8H, Si-CH2- CH2-S), 1 .27 fm, 4H Si-CH2-CH2-CH2-Si), 1 .39 (m, 2H, N-CH2-CH2-CH2-CH2-Si), 1 .65 (m, 2H, N-CH2- CH2-CH2-CH2-Si), 2.24 (s, 24H, -S-CH2-CH2-N e2), 2.48 (m, 8H, -S-CH2-CH2-NMe2), 2.52 (m, 8H, Si- CH2-CH2-S), 2.57 (m, 8H, -S-CH2-CH2-NMe2), 2.65 (m, 2H, NH2-CH2). 3C-RMN (CDCI3): δ -5.2 fSi/We), 13.7 (N-CH2-CH2-CH2-CH2-Si), 14.6 (Si-CH2-CH2-S), 18.3 - 18.6 (Si-CH2-CH2-CH2-Si), 21 .2 (N-CH2- CH2-CH2-CH2-Si), 27.7 (-S-CH2-CH2-NMe2), 29.6 (Si-CH2-CH2-S), 37.8 (N-CH2-CH2-CH2-CH2-Si), 41 .9 (NH2-CH2), 45.3 (-Si-CH2-CH2-NMe2), 59.1 (-S-CH2-CH2-NMe2). 29Si-RMN (CDCI3): δ 2.10 (G2-S Me), 1 .80 (Gi-S Me). 5N-RMN (CDCI3): δ -353.0 (-SiCH2-CH2-/VMe2). Masas: [M+H]+ = 815.5 urna (caled. = 815.5 urna), [M+2H]2+ = 407.3 urna (caled. = 408.8 urna). Anal. Cale. C37H87N5S4Si3 (814.64 g/mol): C, 54.55; H, 10.76; N, 8.60; S, 15.74; Exp.: C, 53.83; H, 10.24; N, 8.09; S, 15.10. Síntesis de NH2G3C2(NMe2)8. On a solution of PhtG 2 C2V4 (0.208 g, 0.40 mmol) in a mixture of THF / MeOH (1: 2, 3 ml), the commercial reagent 95% by weight 2- (Dimethylamino) ethanethiol hydrochloride (0.260 g) is added , 1.74 mmol) and DMPA in 5% mol (0.020 g, 0.08 mmol); finally the mixture is deoxygenated with argon. It is left stirring for 1.5 hours under a UV lamp with Amax = 364 nm. After this time 5% mol of DMPA is added again and deoxygenated. After 1.5 hours of reaction the solvent is removed by evaporation and the dendrimer is purified by nanofiltration with a membrane of MW = 500. The product is dried under vacuum to obtain PhtG 2 C2 (NMe 2 HCI) 4 as a white solid (0.364 g, 84%). Finally, to a solution of PhtG 2 C2 (NMe 2 HCI) 4 (0.364 g, 0.33 mmol) in MeOH (10 mL), excess N 2 H 4 (0.08 mL, 2.72 mmol) is added and the reaction mixture is heated at 80 ° C in a vacuum ampoule for 16 h. Then we take the reaction mixture to dryness to remove the solvent and the excess of N 2 H 4 and finally we extract the product in CH 2 CI 2 obtaining NH2G2C2 (NMe2) 4, after evaporating, as a yellowish oil (0.254 g, 93 %). H-NMR (CDCI 3 ): δ -0.10 (s, 3H, S / ' e), 0.00 (s, 6H, S e), 0.54 (m, 10H, Si-CH 2 -CH 2 -CH 2 -Si and N-CH 2 -CH 2 -CH 2 -CH 2 -Si), 0.88 (t, J = 8.7Hz, 8H, Si-CH 2 - CH 2 -S), 1.27 fm, 4H Si-CH 2 -CH 2 -CH 2 -Yes), 1.39 (m, 2H, N-CH 2 -CH 2 -CH 2 -CH 2 -Yes), 1.65 (m, 2H, N-CH 2 - CH 2 -CH 2 -CH 2 -Yes), 2.24 (s, 24H, -S-CH 2 -CH 2 -N e 2 ), 2.48 (m, 8H, -S-CH 2 -CH 2 -NMe 2 ), 2.52 (m, 8H, Si-CH 2 -CH 2 -S), 2.57 (m, 8H, -S-CH 2 -CH 2 -NMe 2 ), 2.65 (m, 2H, NH 2 -CH 2 ). 3 C-NMR (CDCI 3 ): δ -5.2 fSi / We), 13.7 (N-CH 2 -CH 2 -CH 2 -CH 2 -Si), 14.6 (Si-CH 2 -CH 2 -S), 18.3 - 18.6 (Si-CH 2 -CH 2 -CH 2 -Yes), 21 .2 (N-CH 2 - CH 2 -CH 2 -CH 2 -Yes), 27.7 (-S-CH 2 -CH 2 -NMe 2 ), 29.6 (Si-CH 2 -CH 2 -S), 37.8 (N-CH 2 -CH 2 -CH 2 -CH 2 -Yes), 41 .9 (NH 2 -CH 2 ), 45.3 (-Yes -CH 2 -CH 2 -NMe 2), 59.1 (-S-CH 2 -CH 2 -NMe 2). 29 Si-NMR (CDCI 3 ): δ 2.10 (G 2 -S Me), 1.80 (Gi-S Me). 5 N-NMR (CDCI 3 ): δ -353.0 (-SiCH 2 -CH 2 - / VMe 2 ). Masses: [M + H] + = 815.5 urn (caled. = 815.5 urn), [M + 2H] 2+ = 407.3 urn (caled. = 408.8 urn). Anal. Cale. C 37 H87N5S 4 Si 3 (814.64 g / mol): C, 54.55; H, 10.76; N, 8.60; S, 15.74; Exp .: C, 53.83; H, 10.24; N, 8.09; S, 15.10. Synthesis of NH 2 G3C2 (NMe 2 ) 8.
Figure imgf000036_0001
Figure imgf000036_0001
El dendrón de tercera generación NH2G3C2(NMe2)e se prepara siguiendo un procedimiento similar al descrito para el dendrón G2 descrito anteriormente, partiendo de PhtG3V8 (0,509 g, 0,52 mmol), 2- (Dimetilamino)etanotiol hidrocloruro (0,686 g, 4,60 mmol) y DMPA (0, 107 g, 0,42 mmol) en 3 mi de la mezcla THF/MeOH (1 :2). Tras nanofiltrar con una membrana de MW=1000 se obtiene el dendrímero PhtG3C2(NMe2 HCI)8 (0,955 g, 81 %) como un sólido blanco. Por último, a una disolución de PhtG3C2(NMe2 HCI)8 (0,422 g, 0,20 mmol) en MeOH (10 mi) se añade N2H4 en exceso (0, 10 mi, 3,21 mmol) obteniéndose NH2G3C2(NMe2)8 como un aceite amarillento (0,306 g, 91 %). Ή-RMN (CDCI3): δ - 0.13 (s, 9H, S e), -0.04 (s, 9H, Si e), 0.46 (m, 24H, Si-CH2-CH2-CH2-Si), 0.54 (m, 2H, N-CH2-CH2- CH2-CH2-Si), 0.83 (t, J=8.7Hz, 16H, Si-CH2-CH2-S), 1 .23 (m, 12H Si-CH2-CH2-CH2-Si), 1 .40 (m, 2H, N- CH2-CH2-CH2-CH2-Si), 1 .65 (m, 2H, N-CH2-CH2-CH2-CH2-Si), 2.19 (s, 48H, -S-CH2-CH2-N e2), 2.42 (m, 16H, -S-CH2-CH2-NMe2), 2.49 (m, 16H, Si-CH2-CH2-S), 2.57 (m, 16H, -S-CH2-CH2-NMe2), 2.65 (m, 2H, N-CH2J. 3C-RMN (CDCI3): δ -5.4 (SiMe), -5.1 (SiMe), 13.7 (N-CH2-CH2-CH2-CH2-Si), 14.5 (Si-CH2- CH2-S), 18.2 - 18.8 (Si-CH2-CH2-CH2-Si), 21 .2 (N-CH2-CH2-CH2-CH2-Si), 27.6 (-S-CH2-CH2-NMe2), 29.7 (Si-CH2-CH2-S), 37.8 (N-CH2-CH2-CH2-CH2-Si), 41 .9 (N-CH2), 45.3 (-Si-CH2-CH2-NMe2), 59.2 (-S- CH2-CH2-NMe2). 29Si-RMN (CDCI3): δ 2.10 (G3-S Me), 0.90 (G2-S Me). 5N-RMN (CDCI3): δ -353.0 (- SiCH2-CH2-/VMe2). Anal. Cale. C77H179N9S8SÍ7 (1684.42 g/mol): C, 54.90; H, 10.71 ; N, 7.48; S, 15.23; Exp.: C, 53.72; H, 10.1 1 ; N, 6.73; S, 14.04. The third generation dendron NH2G3C2 (NMe2) e is prepared following a procedure similar to that described for the dendron G2 described above, starting from PhtG 3 V8 (0.509 g, 0.52 mmol), 2- (Dimethylamino) ethanethiol hydrochloride (0.686 g , 4.60 mmol) and DMPA (0.107 g, 0.42 mmol) in 3 mL of the THF / MeOH mixture (1: 2). After nanofiltration with a MW = 1000 membrane, the PhtG 3 C2 dendrimer (NMe 2 HCI) 8 (0.955 g, 81%) is obtained as a white solid. Finally, to a solution of PhtG 3 C2 (NMe 2 HCI) 8 (0.422 g, 0.20 mmol) in MeOH (10 mL) is added excess N 2 H 4 (0.10 mL, 3.21 mmol) obtaining NH 2 G3C2 (NMe2) 8 as a yellowish oil (0.306 g, 91%). Ή-NMR (CDCI 3 ): δ - 0.13 (s, 9H, S e), -0.04 (s, 9H, Si e), 0.46 (m, 24H, Si-CH 2 -CH 2 -CH 2 -Si) , 0.54 (m, 2H, N-CH 2 -CH 2 - CH 2 -CH 2 -Si), 0.83 (t, J = 8.7Hz, 16H, Si-CH 2 -CH 2 -S), 1 .23 ( m, 12H Si-CH 2 -CH 2 -CH 2 -Si), 1 .40 (m, 2H, N- CH 2 -CH 2 -CH 2 -CH 2 -Si), 1 .65 (m, 2H, N-CH 2 -CH 2 -CH 2 -CH 2 -Yes), 2.19 (s, 48H, -S-CH 2 -CH 2 -N e 2 ), 2.42 (m, 16H, -S-CH 2 -CH 2 -NMe 2 ), 2.49 (m, 16H, Si-CH 2 -CH 2 -S), 2.57 (m, 16H, -S-CH 2 -CH 2 -NMe 2 ), 2.65 (m, 2H, N- CH 2 J. 3 C-NMR (CDCI 3 ): δ -5.4 (SiMe), -5.1 (SiMe), 13.7 (N-CH 2 -CH 2 -CH 2 -CH 2 -Si), 14.5 (Si-CH 2 - CH 2 -S), 18.2 - 18.8 (Si-CH 2 -CH 2 -CH 2 -Yes), 21 .2 (N-CH 2 -CH 2 -CH 2 -CH 2 -Yes), 27.6 (- S-CH 2 -CH 2 -NMe 2 ), 29.7 (Si-CH 2 -CH 2 -S), 37.8 (N-CH 2 -CH 2 -CH 2 -CH 2 -Yes), 41 .9 (N- CH 2 ), 45.3 (-Si-CH 2 -CH 2 -NMe 2 ), 59.2 (-S- CH 2 -CH 2 -NMe 2 ) 29 Si-NMR (CDCI 3 ): δ 2.10 (G 3 -S me), 0.90 (G 2 -S me) 5 N-NMR (CDCI 3):... δ -353.0 (- SiCH 2 -CH 2 - / VME 2) Anal Cale C77H179N9S8SÍ7 (1684.. 42 g / mol): C, 54.90; H, 10.71; N, 7.48; S, 15.23; Exp .: C, 53.72; H, 10.1 1; N, 6.73; S, 14.04.
Síntesis de NH2G4C2(NMe2)i6. Synthesis of NH 2 G4C2 (NMe 2 ) i6.
Figure imgf000037_0001
Figure imgf000037_0001
El dendrón de cuarta generación NH2G4C2(NMe2)i6 se prepara siguiendo un procedimiento similar al descrito para el dendrón G2 descrito anteriormente, partiendo de PhtG4V16 (0, 136 g, 0,07 mmol), 2- (Dimetilamino)etanotiol hidrocloruro (0, 194 g, 1 ,30 mmol) y DMPA (0,030 g, 0, 12 mmol) en 3 ml de la mezcla THF/MeOH (1 :2). Tras nanofiltrar con una membrana de MW=1000 se obtiene el dendrímero PhtG C2(NMe2 HCI)i6 (0,249 g, 83%) como un sólido blanco. Por último, a una disolución de PhtG4C2(NMe2 HCI)i6 (0,251 g, 0,06 mmol) en MeOH (10 ml) se añade N2H4 en exceso (0,06 ml, 1 ,92 mmol) obteniéndose NH2G4C2(NMe2)i6 como un aceite amarillento (0, 190 g, 92%). H-RMN (CDCI3): δ -0.13 (s, 21 H, Si e), -0.04 (s, 24H, Si e), 0.48 (m, 56H, Si-CH2-CH2-CH2-Si), 0.83 (t, J=8.7Hz, 32H, Si- CH2-CH2-S), 1 .23 (m, 28H Si-CH2-CH2-CH2-Si), 2.20 (s, 96H, -S-CH2-CH2-N e2), 2.44 (m, 32H, -S-CH2- CH2-NMe2), 2.46 (m, 32H, Si-CH2-CH2-S), 2.55 (m, 32H, -S-CH2-CH2-NMe2), 3C-RMN (CDCI3): δ -5.4 (SiMe), -5.1 (SiMe), 13.7 (N-CH2-CH2-CH2-CH2-Si), 14.6 (Si-CH2-CH2-S), 18.3 - 18.8 (Si-CH2-CH2-CH2- Si), 27.6 (-S-CH2-CH2-NMe2), 29.7 (Si-CH2-CH2-S), 45.3 (-Si-CH2-CH2-NMe2), 59.2 (-S-CH2-CH2-NMe2). 29Si-RMN (CDCI3): δ 2.10 (G4-S Me), 0.90 (G3-S Me). 5N-RMN (CDCI3): δ -353.0 (-SiCH2-CH2-/VMe2). Anal. Cale. C157H363N17S16SÍ15 (3424.00 g/mol): C, 55.07; H, 10.69; N, 6.95; S, 14.98; Exp. : C, 54.38; H, 10.25; N, 7.23; S, 14.23. The fourth generation dendron NH2G4C2 (NMe2) i6 is prepared following a procedure similar to that described for the dendron G2 described above, starting from PhtG 4 V16 (0.136 g, 0.07 mmol), 2- (Dimethylamino) ethanethiol hydrochloride ( 0.194 g, 1.30 mmol) and DMPA (0.030 g, 0.12 mmol) in 3 ml of the THF / MeOH mixture (1: 2). After nanofiltration with a membrane of MW = 1000, the PhtG C2 dendrimer (NMe 2 HCI) and 6 (0.249 g, 83%) are obtained as a white solid. Finally, to a solution of PhtG 4 C2 (NMe 2 HCI) i6 (0.251 g, 0.06 mmol) in MeOH (10 ml) is added excess N 2 H 4 (0.06 ml, 1.92 mmol) obtaining NH 2 G4C2 (NMe2) i6 as a yellowish oil (0.190 g, 92%). H-NMR (CDCI 3 ): δ -0.13 (s, 21 H, Si e), -0.04 (s, 24H, Si e), 0.48 (m, 56H, Si-CH 2 -CH 2 -CH 2 -Si ), 0.83 (t, J = 8.7Hz, 32H, Si- CH 2 -CH 2 -S), 1 .23 (m, 28H Si-CH 2 -CH 2 -CH 2 -Si), 2.20 (s, 96H , -S-CH 2 -CH 2 -N e 2 ), 2.44 (m, 32H, -S-CH 2 - CH 2 -NMe 2 ), 2.46 (m, 32H, Si-CH 2 -CH 2 -S) , 2.55 (m, 32H, -S-CH 2 -CH 2 -NMe 2 ), 3 C-NMR (CDCI 3 ): δ -5.4 (SiMe), -5.1 (SiMe), 13.7 (N-CH 2 -CH 2 -CH 2 -CH 2 -Yes), 14.6 (Si-CH 2 -CH 2 -S), 18.3 - 18.8 (Si-CH 2 -CH 2 -CH 2 - Si), 27.6 (-S-CH 2 - CH 2 -NMe 2 ), 29.7 (Si-CH 2 -CH 2 -S), 45.3 (-Si-CH 2 -CH 2 -NMe 2 ), 59.2 (-S-CH 2 -CH 2 -NMe 2 ). 29 Si-NMR (CDCI 3 ): δ 2.10 (G 4 -S Me), 0.90 (G 3 -S Me). 5 N-NMR (CDCI 3 ): δ -353.0 (-SiCH 2 -CH 2 - / VMe 2 ). Anal. Cale. C157H363N17S16YES15 (3424.00 g / mol): C, 55.07; H, 10.69; N, 6.95; S, 14.98; Exp.: C, 54.38; H, 10.25; N, 7.23; S, 14.23.
Síntesis de FITCNHG2C2(NMe3l)4. Synthesis of FITCNHG 2 C2 (NMe 3 l) 4.
Figure imgf000037_0002
Sobre una disolución del dendron de segunda generación NH2G2C2(NMe3l)4 (0, 150 g, 0, 18 mmol) en DMF (5 mi) se añade un exceso del reactivo comercial fluoresceína isotiocianato, FITC (0,090 g, 0,23 mmol). Tras 16 horas de reacción con agitación constante y a temperatura ambiente, se evapora la mezcla de reacción. A continuación se disuelve de nuevo en THF (10 mi), se filtra y se añade un exceso de Mel (0,06 mi, 0,96 mmol). La mezcla de reacción se mantiene con agitación constante durante 16 h a temperatura ambiente y se evaporan todos los volátiles a vacío. El residuo resultante se lava con EtOH (2 x 5 mi) y se seca a vacío obteniéndose FITCNHG2C2(NMe3l)4 como un sólido amarillo (0,263 g, 81 %). Ή-RMN (DMSO): δ -0.06 (s, 3H, SiMe), 0.02 (s, 6H, SiMe), 0.57 (m, 10H, Si-CH2-CH2-CH2-Si y N-CH2-CH2-CH2-CH2-SÍ), 0.85 (m, 8H, Si-CH2-CH2-S), 1 .29 (m, 6H, N-CH2-CH2-CH2-CH2-SÍ y Si-CH2- CH2-CH2-SÍ), 1 .60 (m, 2H, N-CH2-CH2-CH2-CH2-SÍ), 2.61 (m, 8H, Si-CH2-CH2-S), 2.88 (m, 8H, -S-CH2- CH2-NMe3l), 3.06 (s, 36H, -S-CH2-CH2-N e3l), 3.49 (m, 8H, -S-CH2-CH2-NMe3l), 3.28 (m, 2H, -N-CH2), 6.50 - 6.70 (m, 6H, Ar-H), 7.15 (m, 2H, Ar-H). 3C-RMN (DMSO): δ -5.6 (SiMe), 12.7 (N-CH2-CH2-CH2- CH2-Si), 13.6 (SÍ-CH2-CH2-S), 17.2 - 19.8 (O-CH2-CH2-CH2-CH2-SÍ y Si-CH2-CH2-CH2-Si), 20.6 (N-CH2- CH2-CH2-CH2-SÍ), 23.1 (-S-CH2-CH2-NMe3l), 26.4 (Si-CH2-CH2-S), 31 .4 (N-CH2-CH2-CH2-CH2-SÍ), 40.2 (-N-CH2-), 51 .7 (-Si-CH2-CH2-NMe3l), 63.9 (-S-CH2-CH2-NMe2), 101 .8, 109.8, 1 13.1 , 124.4, 128.6, 151 ,5, 152.1 , 153.1 , 168.5 y 179.7 (C(Ar)). 29Si-RMN (DMSO): δ 1 .8 (Gi-S Me), 2.5 (G2-S Me). 5N- RMN (DMSO): δ -329.9 (-SiCH2-CH2-/VMe3l). Electrospray: (1262.64 g/mol) q=2 (758.23 [M-2I"]2+). Anal. Cale. C62Hiiol4N605S5Si3 (1771 .77 g/mol): C, 42.03; H, 6.26; N, 4.74; S, 9.05; Exp. : C, 41 .49; H, 6.53; N, 4.79; S, 8.55. IR (NaCI): 799.5 (a, Si-C3t), 1578.1 (a, arC-C), 1751 .3 (d, C=Ost), 2913.6 (a, C-Hst), 3004.9 (s, =C-Hst). UV-vis (H20): 236.4 (a), 504.5 (a).
Figure imgf000037_0002
On a solution of the second generation dendron NH2G2C2 (NMe3l) 4 (0. 150 g, 0.18 mmol) in DMF (5 ml), an excess of the commercial fluorescein isothiocyanate reagent, FITC (0.090 g, 0.23 mmol) is added . After 16 hours of reaction with constant stirring and at room temperature, the reaction mixture is evaporated. It is then dissolved again in THF (10 ml), filtered and an excess of Mel (0.06 ml, 0.96 mmol) is added. The reaction mixture is kept under constant stirring for 16 h at room temperature and all volatiles are evaporated in vacuo. The resulting residue is washed with EtOH (2 x 5 mL) and dried in vacuo to obtain FITCNHG2C2 (NMe3l) 4 as a yellow solid (0.263 g, 81%). Ή-NMR (DMSO): δ -0.06 (s, 3H, SiMe), 0.02 (s, 6H, SiMe), 0.57 (m, 10H, Si-CH 2 -CH 2 -CH 2 -Si and N-CH2- CH2-CH2-CH2-YES), 0.85 (m, 8H, Si-CH 2 -CH 2 -S), 1.29 (m, 6H, N-CH2-CH2-CH2-CH2-YES and Si-CH 2 - CH2-CH2-YES), 1 .60 (m, 2H, N-CH2-CH2-CH2-CH2-YES), 2.61 (m, 8H, Si-CH 2 -CH 2 -S), 2.88 (m, 8H, -S-CH 2 - CH 2 -NMe 3 l), 3.06 (s, 36H, -S-CH 2 -CH 2 -N e 3 l), 3.49 (m, 8H, -S-CH 2 -CH 2 -NMe 3 l), 3.28 (m, 2H, -N-CH 2 ), 6.50-6.70 (m, 6H, Ar-H), 7.15 (m, 2H, Ar-H). 3 C-NMR (DMSO): δ -5.6 (SiMe), 12.7 (N-CH 2 -CH 2 -CH 2 - CH 2 -Yes), 13.6 (YES-CH2-CH2-S), 17.2 - 19.8 (O -CH2-CH2-CH2-CH2-YES and Si-CH 2 -CH 2 -CH 2 -Yes), 20.6 (N-CH 2 - CH2-CH2-CH2-YES), 23.1 (-S-CH2-CH 2 -NMe 3 l), 26.4 (Si-CH 2 -CH 2 -S), 31 .4 (N-CH2-CH2-CH2-CH2-YES), 40.2 (-N-CH2-), 51 .7 (- Si-CH 2 -CH 2 -NMe 3 l), 63.9 (-S-CH2-CH 2 -NMe 2 ), 101 .8, 109.8, 1 13.1, 124.4, 128.6, 151, 5, 152.1, 153.1, 168.5 and 179.7 (C (Ar)). 29 Si-NMR (DMSO): δ 1 .8 (Gi-S Me), 2.5 (G 2 -S Me). 5 N-NMR (DMSO): δ -329.9 (-SiCH 2 -CH 2 - / VMe 3 l). Electrospray: (1262.64 g / mol) q = 2 (758.23 [M-2I " ] 2+ ). Anal. Cale. C 6 2Hiiol4N605S 5 Si 3 (1771 .77 g / mol): C, 42.03; H, 6.26; N, 4.74; S, 9.05; Exp.: C, 41 .49; H, 6.53; N, 4.79; S, 8.55. IR (NaCI): 799.5 (a, Si-C 3t ), 1578.1 (a, arC- C), 1751 .3 (d, C = O st ), 2913.6 (a, CH st ), 3004.9 (s, = CH st ) UV-vis (H 2 0): 236.4 (a), 504.5 (a) .
Síntesis de FITCNHG3C2(NMe3l)8. Synthesis of FITCNHG 3 C2 (NMe 3 l) 8 .
El dendrón de tercera generación FITCNHG3C2(NMe3l)e se prepara siguiendo un procedimiento similar al descrito para el dendrón correspondiente G2. Partiendo de NH2G3C2(NMe3l)e (0,084 g , 0,05 mmol) y FITC (0,024 g, 0,06 mmol) en EtOH (5 mi) y posterior adición de un exceso de Mel (0,03 mi, 0,48 mmol) se obtiene FITCNHG3C2(NMe3l)8 como un sólido amarillo (0,132 g , 82%). H-RMN (DMSO): δ -0.09 (s, 9H, SiMe), 0.02 (s, 12H, SiMe), 0.53 (m, 26H, Si-CH2-CH2-CH2-Si y N-CH2-CH2-CH2-CH2-SÍ), 0.85 (m, 16H, SÍ-CH2-CH2-S), 1 .28 (m, 14H, N-CH2-CH2-CH2-CH2-SÍ y Si-CH2-CH2-CH2-Si), 1 .59 (m, 2H, N-CH2- CH2-CH2-CH2-SÍ), 2.62 (m, 16H, Si-CH2-CH2-S), 2.88 (m, 16H, -S-CH2-CH2-NMe3l), 3.09 (s, 72H, -S- CH2-CH2-NMe3l), 3.54 (m, 16H, -S-CH2-CH2-NMe3l), 6.50 - 6.70 (m, 6H, Ar-H), 7.15 (m, 2H, Ar-H). 3C- RMN (DMSO): δ -5.7 (S/Me), 1 1 .8 (N-CH2-CH2-CH2-CH2-SÍ), 13.6 (Si-CH2-CH2-S), 17.8 (N-CH2-CH2- CH2-CH2-SÍ y SÍ-CH2-CH2-CH2-SÍ), 23.2 (-S-CH2-CH2-NMe3l), 26.4 (Si-CH2-CH2-S), 31 .4 (N-CH2-CH2- CH2-CH2-SÍ), 40.2 (-N-CH2-), 51 .7 (-Si-CH2-CH2-NMe3l), 63.9 (-S-CH2-CH2-NMe2). 29Si-RMN (DMSO): δ 0.9 (G2-S Me), 2.5 (G3-S/Me2). 5N-RMN (DMSO): δ -329.8 (-SiCH2-CH2-/VMe3l). Anal. Cale. C106H214I8N10O5S9SÍ7 (3209.32 g/mol): C, 39.67; H, 6.72; N, 4.36; S, 8.99; Exp. : C, 39.29; H, 6.75; N, 4.06; S, 9.16. IR (NaCI): 799.6 (a, Si-C3t), 1590.7 (a, arC-C), 1750.9 (d, C=Ost), 291 1 .2 (a, C-Hst), 3004.9 (s, =C-Hst). UV-vis (H20): 226.8 (a), 266.0 (h), 290.3 (h), 323.15 (h), 463.0 (h), 497.8 (a). The third generation dendron FITCNHG3C2 (NMe3l) is prepared following a procedure similar to that described for the corresponding dendron G2. Starting from NH2G3C2 (NMe3l) e (0.084 g, 0.05 mmol) and FITC (0.024 g, 0.06 mmol) in EtOH (5 mL) and subsequent addition of excess Mel (0.03 mL, 0.48 mmol) FITCNHG 3 C2 (NMe3l) 8 is obtained as a yellow solid (0.132 g, 82%). H-NMR (DMSO): δ -0.09 (s, 9H, SiMe), 0.02 (s, 12H, SiMe), 0.53 (m, 26H, Si-CH 2 -CH 2 -CH 2 -Si and N-CH2- CH2-CH2-CH2-YES), 0.85 (m, 16H, YES-CH2-CH2-S), 1.28 (m, 14H, N-CH2-CH2-CH2-CH2-YES and Si-CH 2 -CH 2 -CH 2 -Yes), 1 .59 (m, 2H, N-CH 2 - CH2-CH2-CH2-YES), 2.62 (m, 16H, Si-CH 2 -CH 2 -S), 2.88 (m , 16H, -S-CH 2 -CH 2 -NMe 3 l), 3.09 (s, 72H, -S- CH 2 -CH 2 -NMe 3 l), 3.54 (m, 16H, -S-CH 2 -CH 2 -NMe 3 l), 6.50 - 6.70 (m, 6H, Ar-H), 7.15 (m, 2H, Ar-H). 3 C-NMR (DMSO): δ -5.7 (S / Me), 1 1 .8 (N-CH2-CH2-CH2-CH2-YES), 13.6 (Si-CH 2 -CH 2 -S), 17.8 ( N-CH 2 -CH 2 - CH2-CH2-YES and YES-CH2-CH2-CH2-YES), 23.2 (-S-CH 2 -CH 2 -NMe 3 l), 26.4 (Si-CH 2 -CH 2 -S), 31 .4 (N-CH 2 -CH 2 - CH2-CH2-YES), 40.2 (-N-CH2-), 51 .7 (-Si-CH 2 -CH 2 -NMe 3 l), 63.9 (-S-CH 2 -CH 2 -NMe 2 ). 29 Si-NMR (DMSO): δ 0.9 (G 2 -S Me), 2.5 (G 3 -S / Me 2 ). 5 N-NMR (DMSO): δ -329.8 (-SiCH 2 -CH 2 - / VMe 3 l). Anal. Cale. C106H214I8N10O5S9YES7 (3209.32 g / mol): C, 39.67; H, 6.72; N, 4.36; S, 8.99; Exp.: C, 39.29; H, 6.75; N, 4.06; S, 9.16. IR (NaCI): 799.6 (a, Si-C 3t ), 1590.7 (a, arC-C), 1750.9 (d, C = O st ), 291 1 .2 (a, CH st ), 3004.9 (s, = CH st ). UV-vis (H 2 0): 226.8 (a), 266.0 (h), 290.3 (h), 323.15 (h), 463.0 (h), 497.8 (a).
Síntesis de FITCNHG4C2(NMe3l)i6. Synthesis of FITCNHG 4 C2 (NMe 3 l) i6.
El dendrón de cuarta generación FITCNHG4C2(NMe3l)i6 se prepara siguiendo un procedimiento similar al descrito para el dendrón correspondiente G2. Partiendo de NH2G4C2(NMe3l)i6 (0, 120 g, 0,04 mmol) y FITC (0,017 g, 0,04 mmol) en EtOH (5 mi) y posterior adición de un exceso de Mel (0,04 mi, 0,64 mmol) se obtiene FITCG4C2(NMe3l)i6 como un sólido amarillo (0, 178 g, 83%). H-RMN (DMSO): δ - 0.10 (s, 21 H, SiMe), 0.03 (s, 24H, SiMe), 0.50 (m, 56H, Si-CH2-CH2-CH2-Si), 0.58 (m, 2H, N-CH2-CH2- CH2-CH2-Si), 0.85 (m, 32H, Si-CH2-CH2-S), 1 .28 (m, 30H, N-CH2-CH2-CH2-CH2-Si y Si-CH2-CH2-CH2- Si), 1 .59 (m, 2H, N-CH2-CH2-CH2-CH2-Si), 2.62 (m, 32H, Si-CH2-CH2-S), 2.88 (m, 32H, -S-CH2-CH2- NMe3l), 3.1 1 (s, 144H, -S-CH2-CH2-NMe3l), 3.54 (m, 32H, -S-CH2-CH2-NMe3l), 6.50 - 6.70 (m, 6H, Ar- H), 7.15 (m, 2H, Ar-H). 3C-RMN (DMSO): δ -5.5 (SiMe), -5.3 (SiMe), 1 1 .8 (N-CH2-CH2-CH2-CH2-Si), 13.7 (Si-CH2-CH2-S), 17.5 - 17.8 (N-CH2-CH2-CH2-CH2-Si y Si-CH2-CH2-CH2-Si), 23.2 (-S-CH2-CH2- NMe3l), 26.5 (Si-CH2-CH2-S), 31 .4 (N-CH2-CH2-CH2-CH2-Si), 40.2 (-N-CH2-), 51 .7 (-Si-CH2-CH2-NMe3l), 64.0 (-S-CH2-CH2-NMe2), 66.1 (N-CH2-). 29Si-RMN (DMSO): δ 0.9 (G2-S Me), 2.5 (G3-S Me2). 5N-RMN (DMSO): δ -329.9 (-SiCH2-CH2-/VMe3l). Anal. Cale. Ci8oH43i lieNi805Si7S¡i 4 (5999.29 g/mol): C, 38.04; H, 6.94; N, 4.20; S, 9.09; Exp.: C, 38.15; H, 7.04; N, 4.64; S, 9.32. IR (NaCI): 802.6 (a, Si-C3t), 1591 .1 (a, arC-C), 1751 .9 (d, C=Ost), 2914.2 (a, C-Hst), 3004.9 (s, =C-Hst). UV-vis (H20): 226.0 (a), 268.3 (h), 292.2 (h), 324.4 (h), 465.5 (h), 500.0 (a). The fourth generation dendron FITCNHG4C2 (NMe3l) i6 is prepared following a procedure similar to that described for the corresponding dendron G2. Starting from NH2G4C2 (NMe3l) i6 (0, 120 g, 0.04 mmol) and FITC (0.017 g, 0.04 mmol) in EtOH (5 mL) and subsequent addition of excess Mel (0.04 mL, 0 , 64 mmol) FITCG 4 C2 (NMe3l) i6 is obtained as a yellow solid (0.178 g, 83%). H-NMR (DMSO): δ - 0.10 (s, 21 H, SiMe), 0.03 (s, 24H, SiMe), 0.50 (m, 56H, Si-CH 2 -CH 2 -CH 2 -Si), 0.58 ( m, 2H, N-CH 2 -CH 2 - CH 2 -CH 2 -Si), 0.85 (m, 32H, Si-CH 2 -CH 2 -S), 1 .28 (m, 30H, N-CH 2 -CH 2 -CH 2 -CH 2 -Yes and Si-CH 2 -CH 2 -CH 2 - Si), 1 .59 (m, 2H, N-CH 2 -CH 2 -CH 2 -CH 2 -Yes) , 2.62 (m, 32H, Si-CH 2 -CH 2 -S), 2.88 (m, 32H, -S-CH 2 -CH 2 - NMe 3 l), 3.1 1 (s, 144H, -S-CH 2 -CH 2 -NMe 3 l), 3.54 (m, 32H, -S-CH 2 -CH 2 -NMe 3 l), 6.50 - 6.70 (m, 6H, Ar- H), 7.15 (m, 2H, Ar- H). 3 C-NMR (DMSO): δ -5.5 (SiMe), -5.3 (SiMe), 1 1 .8 (N-CH 2 -CH 2 -CH 2 -CH 2 -Si), 13.7 (Si-CH 2 - CH 2 -S), 17.5 - 17.8 (N-CH 2 -CH 2 -CH 2 -CH 2 -Yes and Si-CH 2 -CH 2 -CH 2 -Yes), 23.2 (-S-CH 2 -CH 2 - NMe 3 l), 26.5 (Si-CH 2 -CH 2 -S), 31 .4 (N-CH 2 -CH 2 -CH 2 -CH 2 -Si), 40.2 (-N-CH 2 -), 51 .7 (-Si-CH 2 -CH 2 -NMe 3 l), 64.0 (-S-CH 2 -CH 2 -NMe 2 ), 66.1 (N-CH 2 -). 29 Si-NMR (DMSO): δ 0.9 (G 2 -S Me), 2.5 (G 3 -S Me 2 ). 5 N-NMR (DMSO): δ -329.9 (-SiCH 2 -CH 2 - / VMe 3 l). Anal. Cale. Ci 8 oH43i lieNi80 5 Si7S¡i 4 (5999.29 g / mol): C, 38.04; H, 6.94; N, 4.20; S, 9.09; Exp .: C, 38.15; H, 7.04; N, 4.64; S, 9.32. IR (NaCI): 802.6 (a, Si-C 3t ), 1591 .1 (a, arC-C), 1751 .9 (d, C = O st ), 2914.2 (a, CH st ), 3004.9 (s, = CH st ). UV-vis (H 2 0): 226.0 (a), 268.3 (h), 292.2 (h), 324.4 (h), 465.5 (h), 500.0 (a).
Síntesis de HOArG2C2(N Synthesis of HOArG 2 C2 (N
Figure imgf000039_0001
Figure imgf000039_0001
La cuña HOArG2C2(NMe2)4 se prepara partiendo de HOArG2V4 (0,400 g, 0,82 mmol), 2- (Dimetilamino)etanotiol hidrocloruro (0,539 g, 3,62 mmol) y DMPA (0,084 g, 0,33 mmol) en 3 mi de la mezcla THF/MeOH (1 :2). Tras nanofiltrar con una membrana de MW=500 se obtiene la cuña HOArG2C2(NMe2 HCI)4 (0,604 g, 70%) como un sólido amarillento. A continuación a una disolución de la cuña HOArG2C2(NMe2 HCI)4 (0,383 g, 0,36 mmol) en una mezcla de H20/CHCI3 (1 :1 , 20 mi) se añade una disolución acuosa de NaOH (0, 150 g, 3,75 mmol) obteniéndose finalmente HOArG2C2(NMe2)4 como un aceite amarillento (0,330, 100%). H-RMN (CDCI3): δ -0.1 1 (s, 3H, SiMe), - 0.03 (s, 6H, SiMe), 0.53 (m, 10H, Si-CH2-CH2-CH2-Si y 0-CH2-CH2-CH2-CH2-Si), 0.83 (t, J=8.6Hz, 8H, Si-CH2-CH2-S), 1 .24 (m, 4H Si-CH2-CH2-CH2-Si), 1 .42 (m, 2H, 0-CH2-CH2-CH2-CH2-Si), 1 .71 (m, 2H, O- CH2-CH2-CH2-CH2-Si), 2.23 (s, 24H, -S-CH2-CH2-NMe2), 2.48 (m, 16H, -S-CH2-CH2-NMe2 y Si-CH2- CH2-S), 2.60 (m, 8H, -S-CH2-CH2-NMe2), 3.89 (t, J=6.3Hz, 2H, -0-CH2), 6.65 y 6.73 (d, 4H, C6H402). 3C-RMN (CDCI3): δ -5.3 (SiMe), -5.0 (SiMe), 13.3 (0-CH2-CH2-CH2-CH2-Si), 14.7 (Si-CH2-CH2-S), 18.3 - 18.7 (Si-CH2-CH2-CH2-Si), 20.1 (0-CH2-CH2-CH2-CH2-Si), 27.7 (-S-CH2-CH2-NMe2), 29.6 (Si-CH2- CH2-S), 33.0 (0-CH2-CH2-CH2-CH2-Si), 45.3 (-Si-CH2-CH2-NMe2), 59.2 (-S-CH2-CH2-NMe2), 67.7 (-0- CH2-), 1 15.8 y 1 16.4 (C6H402; C-H), 150.8 y 152.4 (C6H402; C-O). 29Si-RMN (CDCI3): δ 1 .64 (G2-S Me), 1 .97 (Gi-S Me). 5N-RMN (CDCI3): δ -352.1 (-SiCH2-CH2-/VMe2). Anal. Cale. C43H9oN402S4Si3 (907.72 g/mol): C, 56.90; H, 9.99; N, 6.17; S, 14.13; Exp.: C, 55.20; H, 9.70; N, 5.89; S, 13.83. Síntesis de HOArG3C2(NMe2)8. Se prepara siguiendo un procedimiento similar al descrito para el dendrón análogo G2, partiendo de HOArG3V8 (0,228 g, 0,24 mmol), 2-(Dimetilamino)etanotiol hidrocloruro (0,320 g, 2, 14 mmol) y DMPA (0,050 g, 0,20 mmol) en 3 mi de la mezcla THF/MeOH (1 :2). Tras nanofiltrar con una membrana de MW=500 se obtiene la cuña HOArG3C2(NMe2 HCI)8 (0,410 g, 81 %) como un sólido amarillento. A continuación a una disolución de la cuña HOArG3C2(NMe2 l-ICI)8 (0,349 g, 0,36 mmol) en una mezcla de H2O/CHCI3 (1 :1 , 20 mi) se añade una disolución acuosa de NaOH (0,150 g, 3.75 mmol) obteniéndose finalmente HOArG3C2(NMe2)8 como un aceite amarillento (0,330, 99%). Ή-RMN (CDCI3): δ -0.07 (s, 9H, S/Me), -0.02 (s, 12H, S/Me), 0.62 (m, 26H, Si-CH2-CH2-CH2-Si y 0-CH2-CH2-CH2-CH2- Si), 0.88 (t, J=7.5Hz, 16H, Si-CH2-CH2-S), 1 .30 (m, 20H Si-CH2-CH2-CH2-Si), 1 .45 (m, 2H, 0-CH2-CH2- CH2-CH2-Si), 1 .78 (m, 2H, 0-CH2-CH2-CH2-CH2-Si), 2.28 (s, 48H, -S-CH2-CH2-N e2), 2.48 (m, 32H, -S- CH2-CH2-NMe2 y Si-CH2-CH2-S), 2.60 (m, 16H, -S-CH2-CH2-NMe2), 3.89 (t, J=6.3Hz, 2H, -0-CH2), 6.65 y 6.73 (d, 4H, C6H402). 3C-RMN (CDCI3): δ -5.3 (SiMe), -5.0 (SiMe), 13.5 (0-CH2-CH2-CH2-CH2-Si), 14.6 (Si-CH2-CH2-S), 17.8 - 18.8 (Si-CH2-CH2-CH2-Si), 20.5 (0-CH2-CH2-CH2-CH2-Si), 27.6 (-S-CH2- CH2-NMe2), 29.7 (Si-CH2-CH2-S), 33.1 (0-CH2-CH2-CH2-CH2-Si), 45.3 (-Si-CH2-CH2-NMe2), 59.2 (-S- CH2-CH2-NMe2), 68.2 (-0-CH2-), 1 15.6 y 1 16.3 (C6H402; C-H), 150.9 y 152.3 (C6H402; C-O). 29Si-RMN (CDCI3): δ 1 .64 (G2-S/Me), 1 .97 (Gi-S/Me). 5N-RMN (CDCI3): δ -352.1 (-SiCH2-CH2-/VMe2). Masas: [M+H]+ = 1 176.0 urna (caled. = 1 176.0 urna). C83Hi82N802S8SÍ7. Wedge HOArG 2 C2 (NMe 2 ) 4 is prepared starting from HOArG 2 V4 (0.400 g, 0.82 mmol), 2- (Dimethylamino) ethanethiol hydrochloride (0.539 g, 3.62 mmol) and DMPA (0.084 g, 0 , 33 mmol) in 3 ml of the THF / MeOH mixture (1: 2). After nanofiltration with a MW = 500 membrane, the HOArG 2 C2 wedge (NMe 2 HCI) 4 (0.604 g, 70%) is obtained as a yellowish solid. Then, to a solution of the HOArG 2 C2 wedge (NMe 2 HCI) 4 (0.383 g, 0.36 mmol) in a mixture of H 2 0 / CHCI 3 (1: 1, 20 ml), an aqueous solution of NaOH (0. 150 g, 3.75 mmol) finally obtaining HOArG 2 C2 (NMe 2 ) 4 as a yellowish oil (0.330, 100%). H-NMR (CDCI 3 ): δ -0.1 1 (s, 3H, SiMe), - 0.03 (s, 6H, SiMe), 0.53 (m, 10H, Si-CH 2 -CH 2 -CH 2 -Si and 0 -CH 2 -CH 2 -CH 2 -CH 2 -Yes), 0.83 (t, J = 8.6Hz, 8H, Si-CH 2 -CH 2 -S), 1.24 (m, 4H Si-CH 2 - CH 2 -CH 2 -Yes), 1 .42 (m, 2H, 0-CH 2 -CH 2 -CH 2 -CH 2 -Yes), 1 .71 (m, 2H, O- CH 2 -CH 2 - CH 2 -CH 2 -Yes), 2.23 (s, 24H, -S-CH 2 -CH 2 -NMe 2 ), 2.48 (m, 16H, -S-CH 2 -CH 2 -NMe 2 and Si-CH 2 - CH 2 -S), 2.60 (m, 8H, -S-CH 2 -CH 2 -NMe 2 ), 3.89 (t, J = 6.3Hz, 2H, -0-CH 2 ), 6.65 and 6.73 (d, 4H, C 6 H 4 0 2 ). 3C-NMR (CDCI 3 ): δ -5.3 (SiMe), -5.0 (SiMe), 13.3 (0-CH 2 -CH 2 -CH 2 -CH 2 -Si), 14.7 (Si-CH 2 -CH 2 - S), 3.18 - 7.18 (Si-CH 2 -CH 2 -CH 2 -Si), 20.1 (0-CH 2 -CH 2 -CH 2 -CH 2 -Si), 27.7 (-S-CH 2 -CH 2 -NMe 2 ), 29.6 (Si-CH 2 - CH 2 -S), 33.0 (0-CH 2 -CH 2 -CH 2 -CH 2 -Yes), 45.3 (-Si-CH 2 -CH 2 -NMe 2 ), 59.2 (-S-CH 2 -CH 2 -NMe 2 ), 67.7 (-0- CH 2 -), 1 15.8 and 1 16.4 (C 6 H 4 0 2 ; CH), 150.8 and 152.4 (C 6 H 4 0 2 ; CO). 29 Si-NMR (CDCI 3 ): δ 1 .64 (G 2 -S Me), 1 .97 (Gi-S Me). 5 N-NMR (CDCI 3 ): δ -352.1 (-SiCH 2 -CH 2 - / VMe 2 ). Anal. Cale. C 43 H 9 oN 4 0 2 S 4 Si 3 (907.72 g / mol): C, 56.90; H, 9.99; N, 6.17; S, 14.13; Exp .: C, 55.20; H, 9.70; N, 5.89; S, 13.83. Synthesis of HOArG 3 C2 (NMe 2 ) 8. It is prepared following a procedure similar to that described for the G2 analog dendron, starting from HOArG 3 V8 (0.228 g, 0.24 mmol), 2- (Dimethylamino) ethanethiol hydrochloride (0.320 g, 2.14 mmol) and DMPA (0.050 g , 0.20 mmol) in 3 ml of the THF / MeOH mixture (1: 2). After nanofiltration with a MW = 500 membrane, the HOArG 3 C2 wedge (NMe 2 HCI) 8 (0.410 g, 81%) is obtained as a yellowish solid. Then to a solution of the wedge HOArG 3 C2 (NMe 2 l-ICI) 8 (0.349 g, 0.36 mmol) in a mixture of H2O / CHCl3 (1: 1, 20 ml) an aqueous solution of NaOH is added (0,150 g, 3.75 mmol) finally obtaining HOArG 3 C2 (NMe2) 8 as a yellowish oil (0.330, 99%). Ή-NMR (CDCI 3 ): δ -0.07 (s, 9H, S / Me), -0.02 (s, 12H, S / Me), 0.62 (m, 26H, Si-CH 2 -CH 2 -CH 2 - Yes and 0-CH 2 -CH 2 -CH 2 -CH 2 - Si), 0.88 (t, J = 7.5Hz, 16H, Si-CH 2 -CH 2 -S), 1.30 (m, 20H Si- CH 2 -CH 2 -CH 2 -Yes), 1 .45 (m, 2H, 0-CH 2 -CH 2 - CH 2 -CH 2 -Yes), 1 .78 (m, 2H, 0-CH 2 - CH 2 -CH 2 -CH 2 -Yes), 2.28 (s, 48H, -S-CH 2 -CH 2 -N e 2 ), 2.48 (m, 32H, -S- CH 2 -CH 2 -NMe 2 and Si-CH 2 -CH 2 -S), 2.60 (m, 16H, -S-CH 2 -CH 2 -NMe 2 ), 3.89 (t, J = 6.3Hz, 2H, -0-CH 2 ), 6.65 and 6.73 (d, 4H, C 6 H 4 0 2 ). 3 C-NMR (CDCI 3 ): δ -5.3 (SiMe), -5.0 (SiMe), 13.5 (0-CH 2 -CH 2 -CH 2 -CH 2 -Si), 14.6 (Si-CH 2 -CH 2 -S), 17.8 - 18.8 (Si-CH 2 -CH 2 -CH 2 -Yes), 20.5 (0-CH 2 -CH 2 -CH 2 -CH 2 -Yes), 27.6 (-S-CH 2 - CH 2 -NMe 2), 29.7 (Si-CH 2 -CH 2 -S), 33.1 (0-CH 2 -CH 2 -CH 2 -CH 2 -Si), 45.3 (-Si-CH 2 -CH 2 -NMe 2 ), 59.2 (-S- CH 2 -CH 2 -NMe 2 ), 68.2 (-0-CH 2 -), 1 15.6 and 1 16.3 (C 6 H 4 0 2 ; CH), 150.9 and 152.3 (C 6 H 4 0 2 ; CO). 29 Si-NMR (CDCI3): δ 1 .64 (G 2 -S / Me), 1 .97 (Gi-S / Me). 5 N-NMR (CDCI 3 ): δ -352.1 (-SiCH 2 -CH 2 - / VMe 2 ). Masses: [M + H] + = 1 176.0 urn (caled. = 1 176.0 urn). C 8 3Hi8 2 N80 2 S 8 YES7.
Síntesis de INH3G2C2(NMe3l)4. Synthesis of INH 3 G 2 C2 (NMe3l) 4.
A una disolución de PhtG2C2(NMe2 HCI)4 (1 ,202 g, 1 , 10 mmol) en una mezcla de H20/CHCI3 (1 : 1 , 20 mi) se añade una disolución acuosa de Na2C03 (0,467 g , 4,41 mmol). A continuación se separa la fase orgánica y tras secado con Na2S0 se obtiene PhtG2C2(NMe2) como un aceite amarillento (0,943, 90%). A continuación se toma una disolución de PhtG2C2(NMe2)4 (0,896 g , 0,95 mmol) en Et20 (20 mi) y se añade un exceso de Mel (0,28 mi, 4,48 mmol). La mezcla de reacción se deja en agitación a temperatura ambiente durante 16 horas. A continuación se evaporan los volátiles y se lava con hexano. Tras evaporar se obtiene PhtG2C2(NMe3l)4 como un sólido blanco (1 ,319 g, 70%). Se toma PhtG2C2(NMe3l)4 (1 ,300 g, 0,86 mmol) en MeOH (10 mi) se añade N2H4 en exceso (0,07 mi, 2, 15 mmol) y la mezcla de reacción se calienta a 80°C en una ampolla de vacío durante 16 h. A continuación llevamos la mezcla de reacción a sequedad y se disuelve en agua. Se añade Hl (7,6 M, 0,25 mi) y se filtra. Se evapora el disolvente y se lava el residuo con Et20 obteniéndose INH3G2C2(NMe3l)4 tras secar como un aceite (0,902 g, 93%). H-RMN (DMSO): δ -0.07 (s, 3H, Si e), 0.04 (s, 6H, Si e), 0.49 (m, 2H, N-CH2-CH2-CH2-CH2-Si), 0.54 y 0.60 (m, 8H, Si-CH2-CH2-CH2-Si), 0.85 (t, Ja=8.2Hz, 8H, Si-CH2- CH2-S), 1 .27 (m, 6H, N-CH2-CH2-CH2-CH2-Si y Si-CH2-CH2-CH2-Si), 1 .52 (m, 2H, N-CH2-CH2-CH2-CH2- Si), 2.63 (t, Ja=8.5Hz, 8H, Si-CH2-CH2-S), 2.78 (m, 2H, NCH2), 2.99 (t, J =8.0Hz, 8H, -S-CH2-CH2- NMe3l), 3.1 1 (s, 36H, -S-CH2-CH2-N e3l), 3.56 (t, J =8.3Hz, 8H, -S-CH2-CH2-NMe3l), 7.61 (m, 3H, NH3). 3C-RMN (DMSO): δ -5.6 (SiMe), 12.6 (N-CH2-CH2-CH2-CH2-Si), 13.6 (Si-CH2-CH2-S), 17.2 - 17.5 (Si-CH2-CH2-CH2-Si), 20.0 (N-CH2-CH2-CH2-CH2-Si), 23.1 (-S-CH2-CH2-NMe3l), 26.4 (Si-CH2-CH2-S), 30.4 (N-CH2-CH2-CH2-CH2-Si), 38.2 (NCH2), 51 .7 (-Si-CH2-CH2-NMe3l), 63.9 (-S-CH2-CH2-NMe2).To a solution of PhtG 2 C2 (NMe 2 HCI) 4 (1, 202 g, 1, 10 mmol) in a mixture of H 2 0 / CHCI 3 (1: 1, 20 ml) is added an aqueous solution of Na 2 C0 3 (0.467 g, 4.41 mmol). The organic phase is separated and after drying with Na 2 S0 PhtG 2 C2 (NMe 2) is obtained as a yellowish oil (0.943, 90%). A solution of PhtG 2 C2 (NMe 2 ) 4 (0.896 g, 0.95 mmol) in Et 2 0 (20 mL) is then taken and an excess of Mel (0.28 mL, 4.48 mmol) is added . The reaction mixture is allowed to stir at room temperature for 16 hours. The volatiles are then evaporated and washed with hexane. After evaporation, PhtG 2 C2 (NMe 3 L) 4 is obtained as a white solid (1.199 g, 70%). PhtG 2 C2 (NMe 3 L) 4 (1, 300 g, 0.86 mmol) in MeOH (10 mL) is added in excess N 2 H 4 (0.07 mL, 2.15 mmol) and the mixture The reaction is heated at 80 ° C in a vacuum ampoule for 16 h. Then we bring the reaction mixture to dryness and dissolve in water. Hl (7.6 M, 0.25 ml) is added and filtered. The solvent is evaporated and the residue is washed with Et 2 0 to obtain INH3G2C2 (NMe3l) 4 after drying as an oil (0.902 g, 93%). H-NMR (DMSO): δ -0.07 (s, 3H, Si e), 0.04 (s, 6H, Si e), 0.49 (m, 2H, N-CH 2 -CH 2 -CH 2 -CH 2 -Si ), 0.54 and 0.60 (m, 8H, Si-CH 2 -CH 2 -CH 2 -Si), 0.85 (t, J = 8.2 Hz to, 8H, Si-CH 2 - CH 2 -S), 1 .27 (m, 6H, N-CH 2 -CH 2 -CH 2 -CH 2 -Si and Si-CH 2 -CH 2 -CH 2 -Yes), 1 .52 (m, 2H, N-CH 2 -CH 2 -CH 2 -CH 2 - Si), 2.63 (t, J a = 8.5Hz, 8H, Si-CH 2 -CH 2 -S), 2.78 (m, 2H, NCH 2 ), 2.99 (t, J = 8.0 Hz, 8H, -S-CH 2 -CH 2 - NMe 3 l), 3.1 1 (s, 36H, -S-CH 2 -CH 2 -N e 3 l), 3.56 (t, J = 8.3Hz, 8H , -S-CH 2 -CH 2 -NMe 3 l), 7.61 (m, 3H, NH 3 ). 3 C-NMR (DMSO): δ -5.6 (SiMe), 12.6 (N-CH 2 -CH 2 -CH 2 -CH 2 -Si), 13.06 (Si-CH 2 -CH 2 -S), 17.2 - 17.5 (Si-CH 2 -CH 2 -CH 2 -Yes), 20.0 (N-CH 2 -CH 2 -CH 2 -CH 2 -Yes), 23.1 (-S-CH 2 -CH 2 -NMe 3 l), 26.4 (Si-CH 2 -CH 2 -S), 30.4 (N-CH 2 -CH 2 -CH 2 -CH 2 -Yes), 38.2 (NCH 2 ), 51 .7 (-Si-CH 2 -CH 2 -NMe 3 l), 63.9 (-S-CH 2 -CH 2 -NMe 2 ).
C4l Hlool5 sS4SÍ3 C 4 l Hlool5 sS 4 YES3
Síntesis de INH3G3C2(NMe3l)8. A una disolución de PhtG3C2(NMe2 HCI)8 (1 ,222 g, 0,58 mmol) en una mezcla de H20/CHCI3 (1 : 1 , 20 mi) se añade una disolución acuosa de Na2C03 (0,614 g , 4,41 mmol). A continuación se separa la fase orgánica y tras secado con Na2S04 se obtiene PhtG3C2(NMe2)8 como un aceite amarillento (1 ,052, 87%). A continuación se toma una disolución de PhtG3C2(NMe2)8 (0,927 g , 0,51 mmol) en Et20 (20 mi) y se añade un exceso de Mel (0,32 mi, 5, 10 mmol). La mezcla de reacción se deja en agitación a temperatura ambiente durante 16 horas. A continuación se evaporan los volátiles y se lava con hexano. Tras evaporar se obtiene PhtG3C2(NMe3l)8 como un sólido blanco (1 ,068 g, 71 %). Se toma PhtG3C2(NMe3l)8 (0,932 g, 0,32 mmol) en MeOH (10 mi) se añade N2H4 en exceso (0,02 mi, 0,50 mmol) y la mezcla de reacción se calienta a 80°C en una ampolla de vacío durante 16 h. A continuación llevamos la mezcla de reacción a sequedad y se disuelve en agua. Se añade Hl (7,6 M, 0,08 mi) y se filtra. Se evapora el disolvente y se lava el residuo con Et20 obteniéndose INH3G3C2(NMe3l)e tras secar como un aceite (0,821 g, 87%). H-RMN (DMSO): δ -0.19 (s, 9H, Si e), 0.03 (s, 12H, Si e), 0.45 (m, 26H, N-CH2-CH2-CH2-CH2-Si, Si-CH2-CH2-CH2-Si), 0.85 (t, Ja=8.2Hz, 16H, Si-CH2-CH2-S), 1 .24 (m, 14H, N-CH2-CH2-CH2-CH2-Si y Si-CH2-CH2-CH2-Si), 1 .62 (m, 2H, N-CH2-CH2-CH2-CH2-Si), 2.63 (t, Ja=8.5Hz, 16H, Si-CH2-CH2-S), 2.78 (m, 2H, NCH2), 2.99 (t, J =8.0Hz, 16H, -S-CH2-CH2-NMe3l), 3.1 1 (s, 72H, -S-CH2-CH2-N e3l), 3.56 (t, J =8.3Hz, 16H, -S-CH2-CH2-NMe3l), 7.61 (m, 3H, NH3). 3C-RMN (DMSO): δ -5.3 (SiMe), 12.6 (N-CH2-CH2-CH2-CH2-Si), 13.7 (Si-CH2-CH2-S), 16.9 - 17.6 (Si-CH2-CH2- CH2-Si), 20.1 (N-CH2-CH2-CH2-CH2-Si), 23.2 (-S-CH2-CH2-NMe3l), 26.4 (Si-CH2-CH2-S), 30.4 (N-CH2- CH2-CH2-CH2-Si), 38.2 (NCH2), 51 .7 (-Si-CH2-CH2-NMe3l), 63.9 (-S-CH2-CH2-NMe2).
Figure imgf000041_0001
Synthesis of INH 3 G 3 C2 (NMe3l) 8. To a solution of PhtG 3 C2 (NMe 2 HCI) 8 (1,222 g, 0.58 mmol) in a mixture of H 2 0 / CHCI 3 (1: 1, 20 ml) is added an aqueous solution of Na 2 C0 3 (0.614 g, 4.41 mmol). The organic phase is then separated and after drying with Na 2 S0 4 , PhtG 3 C2 (NMe 2 ) 8 is obtained as a yellowish oil (1.052, 87%). Then take a solution of 3 PhtG C2 (NMe 2) 8 (0.927 g, 0.51 mmol) in Et 2 0 (20 ml) and excess Mel (0.32 mi, 5, 10 mmol) is added . The reaction mixture is allowed to stir at room temperature for 16 hours. The volatiles are then evaporated and washed with hexane. After evaporation, PhtG 3 C2 (NMe 3 L) 8 is obtained as a white solid (1.068 g, 71%). PhtG 3 C2 (NMe 3 L) 8 (0.932 g, 0.32 mmol) in MeOH (10 mL) is added in excess N 2 H 4 (0.02 mL, 0.50 mmol) and the reaction mixture it is heated at 80 ° C in a vacuum ampoule for 16 h. Then we bring the reaction mixture to dryness and dissolve in water. Hl (7.6 M, 0.08 ml) is added and filtered. The solvent is evaporated and the residue is washed with Et 2 0 to obtain INH3G3C2 (NMe3l) and after drying as an oil (0.821 g, 87%). H-NMR (DMSO): δ -0.19 (s, 9H, Si e), 0.03 (s, 12H, Si e), 0.45 (m, 26H, N-CH 2 -CH 2 -CH 2 -CH 2 -Si , Si-CH 2 -CH 2 -CH 2 -Si), 0.85 (t, J a = 8.2Hz, 16H, Si-CH 2 -CH 2 -S), 1.24 (m, 14H, N-CH 2 -CH 2 -CH 2 -CH 2 -Yes and Si-CH 2 -CH 2 -CH 2 -Yes), 1 .62 (m, 2H, N-CH 2 -CH 2 -CH 2 -CH 2 -Yes) , 2.63 (t, J a = 8.5Hz, 16H, Si-CH 2 -CH 2 -S), 2.78 (m, 2H, NCH 2 ), 2.99 (t, J = 8.0Hz, 16H, -S-CH 2 -CH 2 -NMe 3 l), 3.1 1 (s, 72H, -S-CH 2 -CH 2 -N e 3 l), 3.56 (t, J = 8.3Hz, 16H, -S-CH 2 -CH 2 -NMe 3 l), 7.61 (m, 3H, NH 3 ). 3 C-NMR (DMSO): δ -5.3 (SiMe), 12.6 (N-CH 2 -CH 2 -CH 2 -CH 2 -Si), 13.07 (Si-CH 2 -CH 2 -S), 16.9 - 17.6 (Si-CH 2 -CH 2 - CH 2 -Yes), 20.1 (N-CH 2 -CH 2 -CH 2 -CH 2 -Yes), 23.2 (-S-CH 2 -CH 2 -NMe 3 l), 26.4 (Si-CH 2 -CH 2 -S), 30.4 (N-CH 2 - CH 2 -CH 2 -CH 2 -Yes), 38.2 (NCH 2 ), 51 .7 (-Si-CH 2 -CH 2 -NMe 3 l), 63.9 (-S-CH 2 -CH 2 -NMe 2 ).
Figure imgf000041_0001
Síntesis de N3G1V2. Synthesis of N3G1V 2 .
Una disolución de BrG1 V2 en acetona se calienta a 60 °C en presencia de exceso de NaN3 y éter corona 18-C-6 durante 16 h. A continuación se evaporan los volátiles y se realiza una extracción H20/Et20. La fase orgánica se seca sobre Na2S04 y posteriormete 15 min sobre Si02, a continuación se lleva a sequedad y se obtiene N3G1V2 como un aceite incoloro. A solution of BrG1 V2 in acetone is heated at 60 ° C in the presence of excess NaN 3 and crown ether 18-C-6 for 16 h. The volatiles are then evaporated and an H 2 0 / Et 2 0 extraction is carried out. The organic phase is dried over Na 2 S0 4 and subsequently 15 min over Si0 2 , then it is taken to dryness and N3G1V2 is obtained as an oil. colorless.
Síntesis de N3G2VY Synthesis of N3G2VY
Siguiendo el procedimiento descrito para el dendrón análogo G1 a partir de BrG2V4 y NaN3 se obtiene N3G2V4 Como un aceite incoloro. Following the procedure described for the analog dendron G1 from BrG2V4 and NaN 3 , N3G2V4 is obtained as a colorless oil.
Síntesis de N3G3VY Synthesis of N3G3VY
Siguiendo el procedimiento descrito para el dendrón análogo G1 a partir de BrG3V8 y NaN3 se obtiene N3G3Ve como un aceite incoloro. Síntesis de N3G1 C2(NMe2-HCI)2. Following the procedure described for the analog dendron G1 from BrG3V8 and NaN 3 , N3G3Ve is obtained as a colorless oil. Synthesis of N3G1 C2 (NMe 2 -HCI) 2 .
Siguiendo el procedimiento descrito para dendrones análogos, a partir de N3G1V2 (0,089 g, 0,46 mmol) y HS(CH2)2NMe2 HCI (0, 136 g, 0,91 mmol) y DMPA (0,020 g, 0,08 mmol) en 3 mi de la mezcla THF/MeOH (1 :2). Al cabo de 3 horas, se evapora la mezcla de reacción y se precipita el dendrón en éter. Se separa la disolución y tras secar se obtiene N3G1 C2(NMe2-HCI)2 como un sólido (0, 188 g, 86%). H-RMN (CDCI3): δ 0.00 (s, 3H, SiMe), 0.55 (t, Ja=8.57Hz, 2H, N-CH2-CH2-CH2-CH2-Si,), 0.93 (t, J =7.2Hz, 4H, Si-CH2-CH2-S), 1 .34 (m, 2H, N-CH2-CH2-CH2-CH2-Si), 1 .58 (m, 2H, N-CH2-CH2-CH2-CH2- Si), 2.65 (t, J =7.2Hz, 4H, Si-CH2-CH2-S), 2.86 (s, 12H, -S-CH2-CH2-N e2HCI), 3.02 (t, Jc=7.7Hz, 4H, - S-CH2-CH2-NMe2HCI), 3.27 (m, 6H, -S-CH2-CH2-NMe2HCI y N-CH2). Ci7H4iCI2N5S2Si Following the procedure described for analogous dendrons, starting with N3G1V2 (0.089 g, 0.46 mmol) and HS (CH 2 ) 2 NMe 2 HCI (0.136 g, 0.91 mmol) and DMPA (0.020 g, 0, 08 mmol) in 3 ml of the THF / MeOH mixture (1: 2). After 3 hours, the reaction mixture is evaporated and the dendron is precipitated in ether. The solution is separated and after drying N3G1 C2 (NMe2-HCI) 2 is obtained as a solid (0.188 g, 86%). H-NMR (CDCI 3 ): δ 0.00 (s, 3H, SiMe), 0.55 (t, J a = 8.57Hz, 2H, N-CH 2 -CH 2 -CH 2 -CH 2 -Yes,), 0.93 ( t, J = 7.2Hz, 4H, Si-CH 2 -CH 2 -S), 1.34 (m, 2H, N-CH 2 -CH 2 -CH 2 -CH 2 -Si), 1 .58 (m , 2H, N-CH 2 -CH 2 -CH 2 -CH 2 - Si), 2.65 (t, J = 7.2Hz, 4H, Si-CH 2 -CH 2 -S), 2.86 (s, 12H, -S-CH 2 -CH 2 -N e 2 HCI), 3.02 (t, J c = 7.7Hz, 4H, - S-CH 2 -CH 2 -NMe 2 HCI), 3.27 (m, 6H, -S-CH 2 -CH 2 -NMe 2 HCI and N-CH 2 ). Ci 7 H 4 iCI 2 N 5 S 2 Yes
Síntesis de N3G2C2(NMe2 HCI) . Synthesis of N3G2C2 (NMe 2 HCI).
Siguiendo el procedimiento descrito para dendrones análogos, a partir de N3G2V4 y HS(CH2)2NMe2 HCI se obtiene N3G2C2(NMe2 HCI) como un sólido blanco.1 H-RMN (CDCI3): δ 0.00 (s, 3H, Si e), 0.55 (t, Ja=8.57Hz, 2H, N-CH2-CH2-CH2-CH2-Si,), 0.93 (t, J =7.2Hz, 4H, Si-CH2-CH2-S), 1 .34 (m, 2H, N-CH2- CH2-CH2-CH2-Si), 1 .58 (m, 2H, N-CH2-CH2-CH2-CH2-Si), 2.65 (t, J =7.2Hz, 4H, Si-CH2-CH2-S), 2.86 (s, 12H, -S-CH2-CH2-N e2HCI), 3.02 (m, 6 H, -S-CH2-CH2-NMe2HCI y N3CH2), 3.27 (m, 8H, -S-CH2-CH2- NMe2HCI). C37H89CI4N7S4SÍ3 Following the procedure described for analogous dendrons, from N3G2V4 and HS (CH 2) 2 NMe 2 HCl N3G2C2 (NMe 2 HCl) was obtained as a white solid. 1 H-NMR (CDCI 3 ): δ 0.00 (s, 3H, Si e), 0.55 (t, J a = 8.57Hz, 2H, N-CH 2 -CH 2 -CH 2 -CH 2 -Yes,), 0.93 (t, J = 7.2Hz, 4H, Si-CH 2 -CH 2 -S), 1.34 (m, 2H, N-CH 2 - CH 2 -CH 2 -CH 2 -Si), 1 .58 (m, 2H, N-CH 2 -CH 2 -CH 2 -CH 2 -Si), 2.65 (t, J = 7.2Hz, 4H, Si-CH 2 -CH 2 -S), 2.86 (s, 12H, -S-CH 2 -CH 2 -N and 2 HCI), 3.02 (m, 6 H, -S-CH 2 -CH 2 -NMe 2 HCI and N 3 CH 2 ), 3.27 (m, 8H, -S- CH 2 -CH 2 - NMe 2 HCI). C37H89CI4N7S4YES3
Síntesis de N3G3C2(NMe2 HCI)8. Synthesis of N3G3C2 (NMe 2 HCI) 8 .
Siguiendo el procedimiento descrito para el dendrón análogo, a partir de N3G3V8 y HS(CH2)2NMe2 HCI se obtiene N3G3C2(NMe2 HCI)8 como un sólido blanco. H-RMN (CDCI3): δ 0.00 (s, 9H, SiMe), 0.55 (m, 10 H, CH2-Si,), 0.93 (m, 8 H, Si-CH2-CH2-S), 1 .34 (m, 6 H, CH2-CH2-CH2), 1 .58 (m, 2H, N-CH2-CH2), 2.65 (m, 8 H, Si-CH2-CH2-S), 2.86 (s, 24 H, -S-CH2-CH2-NMe2HCI), 3.02 (m, 8 H, -S-CH2-CH2- NMe2HCI), 3.27 (m, 10 H, -S-CH2-CH2-NMe2HCI y
Figure imgf000042_0001
Following the procedure described for the analog dendron, starting from N3G3V 8 and HS (CH 2 ) 2 NMe 2 HCI, N3G3C2 (NMe 2 HCI) 8 is obtained as a white solid. H-NMR (CDCI 3 ): δ 0.00 (s, 9H, SiMe), 0.55 (m, 10 H, CH 2 -Si,), 0.93 (m, 8 H, Si-CH 2 -CH 2 -S), 1.34 (m, 6 H, CH 2 -CH 2 -CH 2 ), 1 .58 (m, 2H, N-CH 2 -CH 2 ), 2.65 (m, 8 H, Si-CH 2 -CH 2 -S), 2.86 (s, 24 H, -S-CH 2 -CH 2 -NMe 2 HCI), 3.02 (m, 8 H, -S-CH 2 -CH 2 - NMe 2 HCI), 3.27 (m, 10 H, -S-CH 2 -CH 2 -NMe 2 HCI and
Figure imgf000042_0001
Síntesis de Me(CO)SG2C2(NMe2-HCI)4. Synthesis of Me (CO) SG2C2 (NMe 2 -HCI) 4 .
Siguiendo el procedimiento descrito para dendrones análogos, partiendo de Me(CO)SG2V4 y HS(CH2)2NMe2 HCI se obtiene Me(CO)SG2C2(NMe2 HCI) como un sólido blanco.1 H-RMN (D20): δ - 0.10 (s, 3H, SiMe), 0.00 (s, 6H, SiMe), 0.54 (m, 10H, Si-CH2-CH2-CH2-Si y N-CH2-CH2-CH2-CH2-Si), 0.88 (t, J=8.7Hz, 8H, Si-CH2-CH2-S), 1 .27 fm, 4H Si-CH2-CH2-CH2-Si), 1 .39 (m, 2H, N-CH2-CH2-CH2- CH2-Si), 1 .65 (m, 2H, N-CH2-CH2-CH2-CH2-Si), 2.40 (s, 3 H, MeCO), 2.65 (m, 8 H, Si-CH2-CH2-S), 2.80 (t, J = 7.9 Hz, COSCH2), 2.86 (s, 24 H, -S-CH2-CH2-NMe2HCI), 3.02 (m, 8 H, -S-CH2-CH2-NMe2HCI), 3.27 (m, 12 H, -S-CH2-CH2-NMe2HCI y N-CH2).
Figure imgf000042_0002
Following the procedure described for analogous dendrons, starting from Me (CO) SG2V4 and HS (CH 2 ) 2 NMe 2 HCI, Me (CO) SG2C2 (NMe 2 HCI) is obtained as a white solid. 1 H-NMR (D 2 0): δ - 0.10 (s, 3H, SiMe), 0.00 (s, 6H, SiMe), 0.54 (m, 10H, Si-CH 2 -CH 2 -CH 2 -Si and N -CH 2 -CH 2 -CH 2 -CH 2 -Yes), 0.88 (t, J = 8.7Hz, 8H, Si-CH 2 -CH 2 -S), 1 .27 fm, 4H Si-CH 2 -CH 2 -CH 2 -Si), 1 .39 (m, 2H, N-CH 2 -CH 2 -CH 2 - CH 2 -Si), 1 .65 (m, 2H, N-CH 2 -CH 2 -CH 2 -CH 2 -Yes), 2.40 (s, 3 H, MeCO), 2.65 (m, 8 H, Si-CH 2 -CH 2 -S), 2.80 (t, J = 7.9 Hz, COSCH2), 2.86 ( s, 24 H, -S-CH 2 -CH 2 -NMe 2 HCI), 3.02 (m, 8 H, -S-CH 2 -CH 2 -NMe 2 HCI), 3.27 (m, 12 H, -S- CH 2 -CH 2 -NMe 2 HCI and N-CH 2 ).
Figure imgf000042_0002
Síntesis de Me(CO)SG3C2(NMe -HCI)8. Synthesis of Me (CO) SG3C2 (NMe-HCI) 8 .
Siguiendo el procedimiento descrito para dendrones análogos, partiendo de Me(CO)SG3Vs y HS(CH2)2NMe2 HCI se obtiene Me(CO)SG3C2((NMe2-HCI)8 como un sólido blanco. CygH-issCIsNsOSgSiT Following the procedure described for analogous dendrons, starting from Me (CO) SG3Vs and HS (CH 2 ) 2 NMe 2 HCI, Me (CO) SG3C2 ((NMe 2 -HCI) 8 is obtained as a white solid. CygH-issCIsNsOSgSiT
Síntesis de HSG1 C2(NMe HCI)4. Synthesis of HSG1 C2 (NMe HCI) 4 .
Una disolución de Me(CO)SG1 C2(NMe2-HCI)2 en MeOH se agita en presencia de exceso de HCI (4 M, dioxano) en atmósfera de Ar durante 4 h. A continuación se evaporan los volátiles y se obtiene HSG1 C2(NMe2-HCI)2 como un sólido blanco. H-RMN (D20): 0.00 (s, 3H, SiMe), 0.40 (m, 2 H, N-CH2- CH2-CH2-CH2-Si), 0.88 (m, 4 H, Si-CH2-CH2-S), 1 .39 (m, 3 H, S-CH2-CH2-CH2-CH2-Si y HS), 1 .65 (m, 2 H, S-CH2-CH2-CH2-CH2-Si), 2.55 (m, 2 H, HSCH2)2.65 (m, 4 H, Si-CH2-CH2-S), 2.86 (s, 12 H, -S-CH2- CH2-NMe2HCI), 3.02 (m, 4 H, -S-CH2-CH2-NMe2HCI), 3.27 (m, 4 H, -S-CH2-CH2-NMe2HCI). Ci7H42CI2N2S3Si A solution of Me (CO) SG1 C2 (NMe 2 -HCI) 2 in MeOH is stirred in the presence of excess HCI (4 M, dioxane) under an Ar atmosphere for 4 h. The volatiles are then evaporated and HSG1 C2 (NMe 2 -HCI) 2 is obtained as a white solid. H-NMR (D 2 0): 0.00 (s, 3H, SiMe), 0.40 (m, 2 H, N-CH 2 - CH 2 -CH 2 -CH 2 -Si), 0.88 (m, 4 H, Si -CH 2 -CH 2 -S), 1.39 (m, 3 H, S-CH 2 -CH 2 -CH 2 -CH 2 -Si and HS), 1.65 (m, 2 H, S-CH 2 -CH 2 -CH 2 -CH 2 -Yes), 2.55 (m, 2 H, HSCH 2 ) 2.65 (m, 4 H, Si-CH 2 -CH 2 -S), 2.86 (s, 12 H, - S-CH 2 - CH 2 -NMe 2 HCI), 3.02 (m, 4 H, -S-CH 2 -CH 2 -NMe 2 HCI), 3.27 (m, 4 H, -S-CH 2 -CH 2 - NMe 2 HCI). Ci 7 H 42 CI 2 N 2 S 3 Yes
Síntesis de HSG2C2(NMe -HCI) . Siguiendo el procedimiento para dendrones análogos, a partir de Me(CO)SG2C2(NMe2-HCI)4 y HCI (4 M, dioxano) se obtiene HSG2C2(NMe2 HCI)4. H-RMN (D20): δ -0.10 (s, 3H, S/Me), 0.00 (s, 6H, S/Me), 0.54 (m, 10H, Si-CH2-CH2-CH2-Si y N-CH2-CH2-CH2-CH2-Si), 0.88 (m, 8H, Si-CH2-CH2-S), 1 .27 fm, 4H, Si-CH2-CH2-CH2-Si), 1 .39 (m, 3 H, S-CH2-CH2-CH2-CH2-Si y HS), 1 .65 (m, 2H, N-CH2-CH2-CH2-CH2- Si), 2.44 (m, 2 H, HSCH2), 2.65 (m, 8 H, Si-CH2-CH2-S), 2.86 (s, 24 H, -S-CH2-CH2-N e2HCI), 3.02 (m, 8 H, -S-CH2-CH2-NMe2HCI), 3.27 (m, 8 H, -S-CH2-CH2-NMe2HCI). C37H90CI4N4S5SÍ3 Synthesis of HSG2C2 (NMe-HCI). Following the procedure for analogous dendrons, from Me (CO) SG2C2 (NMe2-HCI) 4 and HCI (4 M, dioxane) HSG2C2 (NMe 2 HCI) 4 is obtained . H-NMR (D 2 0): δ -0.10 (s, 3H, S / Me), 0.00 (s, 6H, S / Me), 0.54 (m, 10H, Si-CH 2 -CH 2 -CH 2 - Si and N-CH 2 -CH 2 -CH 2 -CH 2 -Yes), 0.88 (m, 8H, Si-CH 2 -CH 2 -S), 1 .27 fm, 4H, Si-CH 2 -CH 2 -CH 2 -Yes), 1.39 (m, 3 H, S-CH 2 -CH 2 -CH 2 -CH 2 -Si and HS), 1.65 (m, 2H, N-CH 2 -CH 2 -CH 2 -CH 2 - Si), 2.44 (m, 2 H, HSCH 2 ), 2.65 (m, 8 H, Si-CH 2 -CH 2 -S), 2.86 (s, 24 H, -S-CH 2 -CH 2 -N e 2 HCI), 3.02 (m, 8 H, -S-CH 2 -CH 2 -NMe 2 HCI), 3.27 (m, 8 H, -S-CH 2 -CH 2 -NMe 2 HCI). C37H90CI4N4S5YES3
Síntesis de HSG3C2(NMe2 HCI)8. Synthesis of HSG3C2 (NMe 2 HCI) 8 .
Siguiendo el procedimiento descrito para el dendrón análogo G2, partiendo de Me(CO)SG3C2(NMe2 HCI)8 y HCI (4 M, dioxano) se obtiene HSG3C2(NMe2 HCI)8 como un sólido blanco. H-RMN (D20): δ -0.10 (s, 21 H, S/Me), 0.50 (m, 22 H, Si-CH2), 0.88 (m, 16 H, Si-CH2-CH2-S), 1 .40 fm, 13 H, CH2-CH2-CH2 y HS), 1 .65 (m, 2 H, S-CH2-CH2), 2.44 (m, 2 H, HSCH2), 2.65 (m, 16 H, Si- CH2-CH2-S), 2.86 (s, 48 H, -S-CH2-CH2-NMe2HCI), 3.02 (m, 16 H, -S-CH2-CH2-NMe2HCI), 3.27 (m, 16 H, -S-CH2-CH2-NMe2HCI). CTTHiseCIsNsSgSiy Following the procedure described for the analog dendron G2, starting from Me (CO) SG3C2 (NMe 2 HCI) 8 and HCI (4 M, dioxane), HSG3C2 (NMe 2 HCI) 8 is obtained as a white solid. H-NMR (D 2 0): δ -0.10 (s, 21 H, S / Me), 0.50 (m, 22 H, Si-CH 2 ), 0.88 (m, 16 H, Si-CH 2 -CH 2 -S), 1 .40 fm, 13 H, CH 2 -CH 2 -CH 2 and HS), 1 .65 (m, 2 H, S-CH 2 -CH 2 ), 2.44 (m, 2 H, HSCH 2 ), 2.65 (m, 16 H, Si- CH 2 -CH 2 -S), 2.86 (s, 48 H, -S-CH 2 -CH 2 -NMe 2 HCI), 3.02 (m, 16 H, - S-CH 2 -CH 2 -NMe 2 HCl), 3.27 (m, 16 H, -S-CH 2 -CH 2 -NMe 2 HCl). CTTHiseCIsNsSgSiy
Síntesis de PhtG2A4 Synthesis of PhtG2A4
Figure imgf000043_0001
Figure imgf000043_0001
A una disolución en DMF de la cuña carbosilano de segunda generación BrG2A4 (0,393 g, 7,65*10"4 mol) se añade un exceso de la sal potásica de ftalimida al 98% (PhtK) (0,578 g, 3,06*10"3 mol) y una punta de espátula de Nal. La mezcla se calienta con agitación a 90°C durante 18 h. Se evapora el disolvente y se extrae el producto PhtG2A4 en hexano (0,347 g, 5,97*10"4 mol, 78%). C33H53N023 To a DMF solution of the second generation carbosilane wedge BrG2A4 (0.393 g, 7.65 * 10 "4 mol) is added an excess of 98% phthalimide potassium salt (PhtK) (0.578 g, 3.06 * 10 "3 mol) and a spatula tip of Nal. The mixture is heated with stirring at 90 ° C for 18 h. The solvent is evaporated and the PhtG2A4 product is extracted in hexane (0.347 g, 5.97 * 10 "4 mol, 78%). C 33 H 53 N0 2 YES 3
Síntesis de PhtG3A8 Synthesis of PhtG3A8
A una disolución en DMF de la cuña carbosilano de tercera generación BrG3A8 (1 ,233 g, 1 ,21*10"3 mol) se añade un exceso de la sal potásica de ftalimida al 98% (PhtK) (0,916 g, 4,84*10"3 mol) y una punta de espátula de Nal. La mezcla se calienta con agitación a 90°C durante 18 h. Se evapora el disolvente y se extrae el producto PhtG3A8 en hexano (0,997 g, 9,27*10"4 mol, 77%). To a DMF solution of the third generation carbosilane wedge BrG3A8 (1.233 g, 1.21 * 10 "3 mol) is added an excess of 98% phthalimide potassium salt (PhtK) (0.916 g, 4, 84 * 10 "3 mol) and a spatula tip of Nal. The mixture is heated with stirring at 90 ° C for 18 h. The solvent is evaporated and the PhtG3A8 product is extracted in hexane (0.997 g, 9.27 * 10 "4 mol, 77%).
Síntesis de PhtG4A16 Synthesis of PhtG4A16
A una disolución en DMF de la cuña carbosilano de cuarta generación BrG4A16 (1 ,5 g, 7,40*10"4 mol) se añade un exceso de la sal potásica de ftalimida al 98% (PhtK) (0,56 g, 2,96*10"3 mol) y una punta de espátula de Nal. La mezcla se calienta con agitación a 90°C durante 18 h. Se evapora el disolvente y se extrae el producto PhtG4A16 en hexano (1 ,1 g, 5,26*10"4 mol, 71 %). Síntesis de NH2G2A4 To a DMF solution of the fourth generation carbosilane wedge BrG4A16 (1.5 g, 7.40 * 10 "4 mol) is added an excess of 98% phthalimide potassium salt (PhtK) (0.56 g, 2.96 * 10 "3 mol) and a spatula tip of Nal. The mixture is heated with stirring at 90 ° C for 18 h. The solvent is evaporated and the product PhtG4A16 is extracted in hexane (1.1 g, 5.26 * 10 "4 mol, 71%). Synthesis of NH 2 G2A4
A una disolución en EtOH de la cuña PhtG2A4 (4 g, 6,88*10"3 mol) se añade un exceso del reactivo comercial hidracina (H2NNH2) (3,4 mL, 1 , 10*10"2 mol). La mezcla se calienta con agitación a 90°C durante 18 h . Se evapora el disolvente y se extrae el producto NH2G2A4 en hexano (3,012 g, 6,67*10"3 mol, 97%). To an EtOH solution of the PhtG2A4 wedge (4 g, 6.88 * 10 "3 mol) is added an excess of the commercial hydrazine reagent (H 2 NNH 2 ) (3.4 mL, 1, 10 * 10 " 2 mol ). The mixture is heated with stirring at 90 ° C for 18 h. The solvent is evaporated and the NH 2 G2A4 product is extracted in hexane (3.012 g, 6.67 * 10 "3 mol, 97%).
Síntesis de NH2G3A8 Synthesis of NH 2 G3A 8
A una disolución en EtOH de la cuña PhtG3A8 (3,97 g, 3,70*10"3 mol) se añade un exceso del reactivo comercial hidracina (H2NNH2) (1 ml_, 2,90*10"2 mol). La mezcla se calienta con agitación a 90°C durante 18 h. Se evapora el disolvente y se extrae el producto NH2G2A4 en hexano (2,830 g, 2,96*10"3 mol, 80%). To an EtOH solution of the PhtG3A8 wedge (3.97 g, 3.70 * 10 "3 mol) is added an excess of the commercial hydrazine reagent (H 2 NNH 2 ) (1 ml_, 2.90 * 10 " 2 mol ). The mixture is heated with stirring at 90 ° C for 18 h. The solvent is evaporated and the NH2G2A4 product is extracted in hexane (2,830 g, 2.96 * 10 "3 mol, 80%).
Síntesis de NH2G4Ai6 Synthesis of NH 2 G4Ai 6
A una disolución en EtOH de la cuña PhtG4A16 (0,550 g, 2,63*10"4 mol) se añade un exceso del reactivo comercial hidracina (H2NNH2) (0,2 ml_, 4,20*10"3 mol). La mezcla se calienta con agitación a 90°C durante 18 h. Se evapora el disolvente y se extrae el producto NH2G2A4 en hexano (0,330 g, 1 ,68*10"4 mol, 64%). Síntesis de N3G2A4 To an EtOH solution of the PhtG4A16 wedge (0.550 g, 2.63 * 10 "4 mol) is added an excess of the commercial hydrazine reagent (H 2 NNH 2 ) (0.2 ml_, 4.20 * 10 " 3 mol ). The mixture is heated with stirring at 90 ° C for 18 h. The solvent is evaporated and the NH2G2A4 product is extracted in hexane (0.330 g, 1.68 * 10 "4 mol, 64%). Synthesis of N3G2A4
A una disolución en DMF de la cuña carbosilano de segunda generación BrG2A4 (0,393 g, 7,65*10"4 mol) se añade un exceso de la sal comercial azida de sodio NaN3 (0,099 g, 1 ,53*10"3 mol). La mezcla se calienta con agitación a temperatura ambiente durante 18 h. Se evapora el disolvente y se extrae el producto N3G2A4 en hexano (0,327 g, 6,88*10"4 mol, 90%). To a DMF solution of the second generation carbosilane wedge BrG2A4 (0.393 g, 7.65 * 10 "4 mol) is added an excess of the commercial sodium azide salt NaN 3 (0.099 g, 1, 53 * 10 " 3 mol). The mixture is heated with stirring at room temperature for 18 h. The solvent is evaporated and the product N3G2A4 is extracted in hexane (0.327 g, 6.88 * 10 "4 mol, 90%).
Síntesis de BrG1 C2(S03Na)2 Synthesis of BrG1 C2 (S0 3 Na) 2
Sobre una disolución de la cuña dendrítica BrG1 V2 (0,349 g, 1 ,50*10 3 mol) en THF/MeOH proporción 3: 1 , se añade un cuarto de la cantidad estequiométrica del reactivo comercial HS(CH2)3S03Na 90% en peso, disuelto en la mínima cantidad de agua posible (0,653 g, 3,30*10"3 mol. Se añade 0, 163 g). Se añade un 0.25% mol de DMPA y se desoxigena la mezcla con argón. Se deja agitando 1 h bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se añaden las mismas cantidades de HS(CH2)3S03Na y DMPA y se desoxigena nuevamente. Este procedimiento se repite a las 2 y 3 horas de reacción. Tras 1 h más de agitación (tiempo total de reacción 4 h) bajo la lámpara UV se detiene la reacción, se elimina el disolvente por evaporación y se purifica el dendrímero por nanofiltración con una membrana de MWCO=500. De este modo se obtiene el dendrímero BrG1 C2(S03Na)2. RMN- H (D20): δ 3,42 (t, BrCH2CH2CH2CH2Si), 2,79 (t, SCH2CH2CH2S03Na), 2.49 (m, SiCH2CH2S, SCH2CH2CH2S03Na), 1 .85 (m, SCH2CH2CH2S03Na), 1 .65 (m, BrCH2CH2CH2CH2Si), 1 .38 (m, BrCH2CH2CH2CH2Si), 0.76 (m, SiCH2CH2S), 0.38 (m, BrCH2CH2CH2CH2Si), - 0.23 (s, Si e).
Figure imgf000044_0001
On a solution of the dendritic wedge BrG1 V2 (0.349 g, 1.50 * 10 3 mol) in THF / MeOH ratio 3: 1, a quarter of the stoichiometric amount of the commercial reagent HS (CH 2 ) 3 S0 3 Na is added 90% by weight, dissolved in the minimum amount of water possible (0.653 g, 3.30 * 10 "3 mol. 0.166 g is added. 0.25% mol of DMPA is added and the mixture is deoxygenated with argon. It is left stirring for 1 h under a UV lamp with Amax = 364 nm. After this time the same amounts of HS (CH 2 ) 3 S0 3 Na and DMPA are added and it is deoxygenated again. This procedure is repeated at 2 and 3 hours The reaction is stopped after 1 h of stirring (total reaction time 4 h) under the UV lamp, the solvent is removed by evaporation and the dendrimer is purified by nanofiltration with a MWCO = 500 membrane. . δ 3.42 (t, BrCH 2 CH 2 CH 2 CH 2 Si), 2.79 (t, SCH 2 CH 2: dendrimer Brg1 C2 (S0 3 Na) 2 H NMR (D 2 0) is obtained CH 2 S0 3 Na), 2.49 ( m, SiCH 2 CH 2 S, SCH 2 CH 2 CH 2 S0 3 Na), 1.85 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1.65 (m, BrCH 2 CH 2 CH 2 CH 2 Yes), 1.38 (m, BrCH 2 CH 2 CH 2 CH 2 Si), 0.76 (m, SiCH 2 CH 2 S), 0.38 (m, BrCH 2 CH 2 CH 2 CH 2 Si), - 0.23 (s , Yes e).
Figure imgf000044_0001
Síntesis de PhtG2C3(S03Na)4. Synthesis of PhtG2C3 (S0 3 Na) 4 .
Sobre una disolución de la cuña dendrítica PhtG2A4 (0,515 g, 8,86*10"4 mol) en THF/MeOH proporción 3: 1 , se añade un cuarto de la cantidad estequiométrica del reactivo comercial HS(CH2)3S03Na 90% en peso, disuelto en la mínima cantidad de agua posible (0,842 g, 4,25*10"3 mol. Se añade 0,210 g). Se añade un 0,25% mol de DMPA y se desoxigena la mezcla con argón. Se deja agitando 1 h bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se añaden las mismas cantidades de HS(CH2)3S03Na y DMPA y se desoxigena nuevamente. Este procedimiento se repite a las 2 y 3 horas de reacción. Tras 1 h más de agitación (tiempo total de reacción 4 h) bajo la lámpara UV se detiene la reacción, se elimina el disolvente por evaporación y se purifica el dendrímero por nanofiltración con una membrana de MWCO=500. De este modo se obtiene el dendrímero PhtG2C3(S03Na)4. RMN- H (D20): δ 7.63 (s, Ar-H), 3.51 (m, PhtNCH2), 2.79 (t, SCH2CH2CH2S03Na), 2.45 (m, SiCH2CH2CH2S, SCH2CH2CH2S03Na), 1 .85 (m, SCH2CH2CH2S03Na), 1 .38 (m, NH2CH2CH2CH2CH2Si, SiCH2CH2CH2S), 1 .15 (m, SiCH2CH2CH2Si), 0.38 (m, NH2CH2CH2CH2CH2Si, SiCH2CH2CH2Si(Me)CH2CH2CH2S), - 0.23 (s, Si e). C45H8i NNa40i4S8SÍ3 On a solution of the PhtG2A4 dendritic wedge (0.515 g, 8.86 * 10 "4 mol) in THF / MeOH ratio 3: 1, a quarter of the stoichiometric amount of the commercial reagent HS (CH 2 ) 3 S0 3 Na is added 90% by weight, dissolved in the minimum amount of water possible (0.842 g, 4.25 * 10 "3 mol. 0.210 g is added). 0.25% mol of DMPA is added and the mixture is deoxygenated with argon. It is allowed to stir 1 h under a UV lamp with Amax = 364 nm. After this time, the same amounts of HS (CH 2 ) 3 S0 3 Na and DMPA are added and deoxygenated again. This procedure is repeated at 2 and 3 hours of reaction. After a further 1 h of stirring (total reaction time 4 h) under the UV lamp the reaction is stopped, the solvent is removed by evaporation and the dendrimer is purified by nanofiltration with a MWCO = 500 membrane. In this way the dendrimer PhtG2C3 (S03Na) 4 is obtained. NMR-H (D 2 0): δ 7.63 (s, Ar-H), 3.51 (m, PhtNCH 2 ), 2.79 (t, SCH 2 CH 2 CH 2 S0 3 Na), 2.45 (m, SiCH 2 CH 2 CH 2 S, SCH 2 CH 2 CH 2 S0 3 Na), 1.85 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1.38 (m, NH 2 CH 2 CH 2 CH 2 CH 2 Yes, SiCH 2 CH 2 CH 2 S), 1 .15 (m, SiCH 2 CH 2 CH 2 Si), 0.38 (m, NH 2 CH 2 CH 2 CH 2 CH 2 Yes, SiCH 2 CH 2 CH 2 Yes (Me) CH 2 CH 2 CH 2 S), - 0.23 (s, Si e). C 4 5H8i NNa40i4S 8 YES3
Síntesis de PhtG3C3(S03Na)8. Synthesis of PhtG3C3 (S0 3 Na) 8 .
Sobre una disolución de la cuña dendrítica PhtG3A8 (0,350 g, 3,25*10"4 mol) en THF/MeOH proporción 3: 1 , se añade un cuarto de la cantidad estequiométrica del reactivo comercial HS(CH2)3S03Na 90% en peso, disuelto en la mínima cantidad de agua posible (0,567 g, 2,6*10"3 mol. Se añade 0, 142 g). Se añade un 0,25% mol de DMPA y se desoxigena la mezcla con argón. Se deja agitando 1 h bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se añaden las mismas cantidades de HS(CH2)3S03Na y DMPA y se desoxigena nuevamente. Este procedimiento se repite a las 2 y 3 horas de reacción. Tras 1 h más de agitación (tiempo total de reacción 4 h) bajo la lámpara UV se detiene la reacción, se elimina el disolvente por evaporación y se purifica el dendrímero por nanofiltración con una membrana de MWCO=500. De este modo se obtiene el dendrímero PhtG3C3(S03Na)e. RMN- H (D20): δ 7.66 (s, CH-Ar), 2.84 (t, SCH2CH2CH2S03Na), 2.52 (m, SiCH2CH2CH2S), 2.43 (m, SCH2CH2CH2S03Na), 1 .81 (m, SCH2CH2CH2S03Na), 1 .37 (m, SiCH2CH2CH2S), 1 .24 (m, SiCH2CH2CH2Si, NH2CH2CH2CH2CH2Si ), 0.42 (m, NH2CH2CH2CH2CH2Si, SiCH2CH2CH2Si(Me)CH2CH2CH2S), - 0.19 (s, SiMe). CssHissNNasOasSisSiy On a solution of the PhtG3A8 dendritic wedge (0.350 g, 3.25 * 10 "4 mol) in THF / MeOH ratio 3: 1, a quarter of the stoichiometric amount of the commercial reagent HS (CH 2 ) 3 S0 3 Na is added 90% by weight, dissolved in the minimum amount of water possible (0.567 g, 2.6 * 10 "3 mol. 0.142 g is added). 0.25% mol of DMPA is added and the mixture is deoxygenated with argon. It is allowed to stir 1 h under a UV lamp with Amax = 364 nm. After this time, the same amounts of HS (CH 2 ) 3 S0 3 Na and DMPA are added and deoxygenated again. This procedure is repeated at 2 and 3 hours of reaction. After a further 1 h of stirring (total reaction time 4 h) under the UV lamp the reaction is stopped, the solvent is removed by evaporation and the dendrimer is purified by nanofiltration with a MWCO = 500 membrane. In this way the dendrimer PhtG3C3 (S03Na) e is obtained. NMR-H (D 2 0): δ 7.66 (s, CH-Ar), 2.84 (t, SCH 2 CH 2 CH 2 S0 3 Na), 2.52 (m, SiCH 2 CH 2 CH 2 S), 2.43 (m , SCH 2 CH 2 CH 2 S0 3 Na), 1.81 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1.37 (m, SiCH 2 CH 2 CH 2 S), 1.24 (m, SiCH 2 CH 2 CH 2 Yes, NH 2 CH 2 CH 2 CH 2 CH 2 Si), 0.42 (m, NH 2 CH 2 CH 2 CH 2 CH 2 Yes, SiCH 2 CH 2 CH 2 Yes (Me) CH 2 CH 2 CH 2 S), - 0.19 (s, SiMe). CssHissNNasOasSisSiy
Síntesis de PhtG4C3(S03Na)i6. Synthesis of PhtG4C3 (S0 3 Na) and 6 .
Sobre una disolución de la cuña dendrítica PhtG4A16 (0,291 , 1 ,39*10"4 mol) en THF/MeOH proporción 3: 1 , se añade un cuarto de la cantidad estequiométrica del reactivo comercial HS(CH2)3S03Na 90% en peso, disuelto en la mínima cantidad de agua posible (0,484 g, 2,45*10"3 mol. Se añade 0, 121 g). Se añade un 0,25% mol de DMPA y se desoxigena la mezcla con argón. Se deja agitando 1 h bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se añaden las mismas cantidades de HS(CH2)3S03Na y DMPA y se desoxigena nuevamente. Este procedimiento se repite a las 2 y 3 horas de reacción. Tras 1 h más de agitación (tiempo total de reacción 4 h) bajo la lámpara UV se detiene la reacción, se elimina el disolvente por evaporación y se purifica el dendrímero por nanofiltración con una membrana de MWCO=500. De este modo se obtiene el dendrímero PhtG4C3(S03Na)i6. Ci 6sH333NNai 605oS32Sii 5 On a solution of the dendritic wedge PhtG4A16 (0.291, 1, 39 * 10 "4 mol) in THF / MeOH ratio 3: 1, a quarter of the stoichiometric amount of the commercial reagent HS (CH 2 ) 3 S0 3 Na 90 is added % by weight, dissolved in the minimum amount of water possible (0.484 g, 2.45 * 10 "3 mol. 0.121 g is added). 0.25% mol of DMPA is added and the mixture is deoxygenated with argon. It is allowed to stir 1 h under a UV lamp with Amax = 364 nm. After this time, the same amounts of HS (CH 2 ) 3 S0 3 Na and DMPA are added and deoxygenated again. This procedure is repeated at 2 and 3 hours of reaction. After a further 1 h of stirring (total reaction time 4 h) under the UV lamp the reaction is stopped, the solvent is removed by evaporation and the dendrimer is purified by nanofiltration with a MWCO = 500 membrane. In this way the dendrimer PhtG4C3 (S03Na) i6 is obtained. Ci 6sH 333 NNai 6 0 5 oS 32 Sii 5
Síntesis de NH2G2C3(C02Me)4. Synthesis of NH 2 G2C3 (C0 2 Me) 4 .
Sobre una disolución de la cuña dendrítica NH2G2A4 (0,517 g, 1 , 15*10 3 mol) en THF/MeOH se añade un equivalente del reactivo HCI 4M en dioxano (0,29 ml_). Se deja agitando 30 min. A continuación se añaden el reactivo comercial HSCH2COOCH3 97% en volumen, d=1 .166g/mL (0,5 mi, 5,05*10"3 mol) y 0,5% en mol de DMPA. Se desoxigena la mezcla con argón. Esta mezcla se deja agitando 4 h bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se elimina el disolvente por evaporación y se separa el dendrímero del tiol en exceso. De este modo se obtiene NH2G2C3(C02Me)4 (100%). RMN- H (CDCI3): δ 3.54 (s, COOCH3), 3.03 (s, SCH2CO), 2.48 (t, SiCH2CH2CH2S), 1 .42 (m, SiCH2CH2CH2S), 1 .38 (m, SiCH2CH2CH2Si, NH2CH2CH2CH2CH2Si), 0.48 (m, SiCH2CH2CH2Si(Me)CH2CH2CH2S, SiCH2CH2CH2Si, NH2CH2CH2CH2CH2Si), -0.22 (Si eCH2CH2CH2S, SiCH2CH2CH2Si e). On a solution of the NH 2 G2A4 dendritic wedge (0.517 g, 1.15 * 10 3 mol) in THF / MeOH, an equivalent of the 4M HCI reagent in dioxane (0.29 ml_) is added. Stir 30 min. Next, the commercial reagent HSCH 2 COOCH 3 97% by volume, d = 1.166g / mL (0.5 ml, 5.05 * 10 "3 mol) and 0.5% by mol DMPA are added. the mixture with argon.This mixture is left stirring for 4 hours under a UV lamp with Amax = 364 nm. After this time the solvent is removed by evaporation and the dendrimer is removed from the excess thiol, thus obtaining NH2G2C3 (C02Me) 4 (100%) .HR-NMR (CDCI3): δ 3.54 (s, COOCH3), 3.03 (s, SCH 2 CO), 2.48 (t, SiCH 2 CH 2 CH 2 S), 1.42 (m, SiCH 2 CH 2 CH 2 S), 1 .38 (m, SiCH 2 CH 2 CH 2 Si, NH 2 CH 2 CH 2 CH 2 CH 2 Si), 0.48 (m, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 CH 2 S, SiCH 2 CH 2 CH 2 Yes, NH 2 CH 2 CH 2 CH 2 CH 2 Yes), -0.22 (If eCH 2 CH 2 CH 2 S, SiCH 2 CH 2 CH 2 Si e).
RMN- 3C (CDCI3): δ 171 .34 (COOCH3), 52.63 (COOCH3), 36.64 (SCH2CO), 33.64 (SiCH2CH2CH2S), 23.95 (SiCH2CH2CH2S), 18.94-18.61 (SiCH2CH2CH2Si), 13.59 (SiCH2CH2CH2Si(Me)CH2CH2CH2S, SiCH2CH2CH2Si), -4.95 (Si eCH2CH2CH2S, SiCH2CH2CH2Si e C37H7563NO8S4SÍ3 NMR- 3 C (CDCI3): δ 171 .34 (COOCH 3 ), 52.63 (COOCH3), 36.64 (SCH 2 CO), 33.64 (SiCH 2 CH 2 CH 2 S), 23.95 (SiCH 2 CH 2 CH 2 S) , 18.94-18.61 (SiCH 2 CH 2 CH 2 Si), 13.59 (SiCH 2 CH 2 CH 2 Yes (Me) CH 2 CH 2 CH 2 S, SiCH 2 CH 2 CH 2 Si), -4.95 (If eCH 2 CH 2 CH 2 S, SiCH 2 CH 2 CH 2 Si e C37H7563NO8S4YES3
Síntesis de NH2G3C3(C02Me)8. Synthesis of NH 2 G3C3 (C0 2 Me) 8.
Sobre una disolución de la cuña dendrítica NH2G3A8 (0,340 g, 3,34*10"4 mol) en THF/MeOH se añade un equivalente del reactivo HCI 4M en dioxano (0,08 ml_). Se deja agitando 30 min. A continuación se añaden el reactivo comercial HSCH2COOCH3 97% en volumen, d=1 , 166g/mL (0,25 mi, 2,67*10"3 mol) y 0,5% en mol de DMPA. Se desoxigena la mezcla con argón. Esta mezcla se deja agitando 4 h bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se elimina el disolvente por evaporación y se separa el dendrímero del tiol en exceso. De este modo se obtiene NH2G3C3(C02Me)e con un rendimiento del 100%. RMN- H (CDCI3): δ 3.57 (s, COOCH3), 3.03 (s, SCH2CO), 2.44 (t, SiCH2CH2CH2S), 1 .42 (m, SiCH2CH2CH2S), 1 .14 (m, SiCH2CH2CH2Si, NH2CH2CH2CH2CH2Si), 0.45 (m, SiCH2CH2CH2Si(Me)CH2CH2CH2S, NH2CH2CH2CH2CH2Si), -0.23 (s, Si Me). C77H155NO16S8SÍ7 On a solution of the NH 2 G3A8 dendritic wedge (0.340 g, 3.34 * 10 "4 mol) in THF / MeOH, an equivalent of the 4M HCI reagent in dioxane (0.08 ml_) is added. Stirring is allowed for 30 min. The commercial reagent HSCH 2 COOCH 3 97% by volume, d = 1, 166g / mL (0.25 ml, 2.67 * 10 "3 mol) and 0.5% by mol DMPA are added. The mixture is deoxygenated with argon. This mixture is allowed to stir 4 h under a UV lamp with Amax = 364 nm. After this time the solvent is removed by evaporation and the dendrimer is removed from the excess thiol. In this way NH2G3C3 (C02Me) e is obtained with a yield of 100%. NMR-H (CDCI 3 ): δ 3.57 (s, COOCH3), 3.03 (s, SCH 2 CO), 2.44 (t, SiCH 2 CH 2 CH 2 S), 1.42 (m, SiCH 2 CH 2 CH 2 S), 1.14 (m, SiCH 2 CH 2 CH 2 Si, NH 2 CH 2 CH 2 CH 2 CH 2 Si), 0.45 (m, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 CH 2 S, NH 2 CH 2 CH 2 CH 2 CH 2 Si), -0.23 (s, Si Me). C77H155NO16S8YES7
Síntesis de NH2G4C3(C02Me)i6. Synthesis of NH 2 G4C3 (C0 2 Me) i6.
Sobre una disolución de la cuña dendrítica NH2G4A16 (0,250 g, 1 ,27*10 mol) en THF/MeOH se añade un equivalente del reactivo HCI 4M en dioxano (0,03 ml_). Se deja agitando 30 min. A continuación se añaden el reactivo comercial HSCH2COOCH3 97% en volumen, d=1 , 166g/mL (0,2 mi, 2,04*10"3 mol) y 0,5% en mol de DMPA. Se desoxigena la mezcla con argón. Esta mezcla se deja agitando 4 h bajo una lámpara UV con Amax= 364 nm. Transcurrido este tiempo se elimina el disolvente por evaporación y se separa el dendrímero del tiol en exceso. De este modo se obtiene NH2G C3(C02Me)i6 (100%).
Figure imgf000046_0001
On a solution of the NH 2 G4A16 dendritic wedge (0.250 g, 1.27 * 10 mol) in THF / MeOH, an equivalent of the 4M HCI reagent in dioxane (0.03 ml_) is added. Stir 30 min. The commercial reagent HSCH 2 COOCH 3 97% by volume, d = 1, 166g / mL (0.2 ml, 2.04 * 10 "3 mol) and 0.5% by mol of DMPA are then added. the mixture with argon.This mixture is left stirring for 4 hours under a UV lamp with Amax = 364 nm. After this time the solvent is removed by evaporation and the dendrimer is removed from the excess thiol, thus obtaining NH2G C3 (C02Me ) i6 (100%).
Figure imgf000046_0001
Síntesis de NH2G2C3(C02Na)4. Synthesis of NH 2 G2C3 (C0 2 Na) 4.
Sobre una disolución de la cuña dendrítica NH2G2C3(C02Me)4 en MeOH se añade NaOH en exceso en peso y se deja con agitación 12 h. Transcurrido este tiempo se evapora el disolvente y se disuelve en agua. Se purifica el dendrímero por ultrafiltración con una membrana de MWCO=500. De este modo se obtiene la cuña dendrítica NH2G2C3(C02Na)4 (0,605 g, 6,67*10"4 mol, 58%). RMN- H (D20): δ 2.99 (s, SCH2CO), 2.38 (t, SiCH2CH2CH2S), 1 .40 (m, SiCH2CH2CH2S), 1 .19 (m, SiCH2CH2CH2Si, NH2CH2CH2CH2CH2Si), 0.43 (m, SiCH2CH2CH2Si(Me)CH2CH2CH2S, NH2CH2CH2CH2CH2Si), -0.10 (s, SiMe). C33H63NNa408S4SÍ3 On a solution of the dendritic wedge NH2G2C3 (C02Me) 4 in MeOH, NaOH is added in excess by weight and left under stirring for 12 h. After this time the solvent is evaporated and dissolved in water. The dendrimer is purified by ultrafiltration with a MWCO = 500 membrane. In this way the dendritic wedge NH2G2C3 (C0 2 Na) 4 (0.605 g, 6.67 * 10 "4 mol, 58%) is obtained. NMR-H (D 2 0): δ 2.99 (s, SCH 2 CO) , 2.38 (t, SiCH 2 CH 2 CH 2 S), 1.40 (m, SiCH 2 CH 2 CH 2 S), 1.19 (m, SiCH 2 CH 2 CH 2 Si, NH 2 CH 2 CH 2 CH 2 CH 2 Si), 0.43 (m, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 CH 2 S, NH 2 CH 2 CH 2 CH 2 CH 2 Si), -0.10 (s, SiMe). C33H63NNa 4 08S 4 YES3
Síntesis de NH2G3C3(C02Na)8. Synthesis of NH 2 G3C3 (C0 2 Na) 8 .
Sobre una disolución de la cuña dendrítica NH2G3C3(C02Me)e en MeOH se añade NaOH en exceso en peso y se deja con agitación 12 h. Transcurrido este tiempo se evapora el disolvente y se disuelve en agua. Se purifica el dendrímero por ultrafiltración con una membrana de MWCO=500. De este modo se obtiene la cuña dendrítica NH2G3C3(C02Na)8 (0,499 g, 2,67*10"4 mol, 80%). RMN- H (D20): δ 3.00 (s, SCH2CO), 2.40 (t, SiCH2CH2CH2S), 1 .43 (m, SiCH2CH2CH2S), 1 .24 (m, SiCH2CH2CH2Si, NH2CH2CH2CH2CH2SÍ), 0.46 (m, SiCH2CH2CH2Si(Me)CH2CH2CH2S, NH2CH2CH2CH2CH2SÍ), -0.17 (s, Si e). RMN- 3C (D20): δ 178.07 (COOCH3), 36.81 (SCH2CO), 35.86 (SiCH2CH2CH2S), 23.53 (SÍCH2CH2CH2S), 18.56 (SiCH2CH2CH2Si), 13.04 (SiCH2CH2CH2Si(Me)CH2CH2CH2S, SiCH2CH2CH2Si), -5.24 (SiyWeCH2CH2CH2S, SiCH2CH2CH2SiMe). CsgHisi NNasOisSsSiy On a solution of the dendritic wedge NH2G3C3 (C02Me) e in MeOH, NaOH is added in excess by weight and left with stirring for 12 h. After this time the solvent is evaporated and dissolved in water. The dendrimer is purified by ultrafiltration with a MWCO = 500 membrane. In this way the dendritic wedge NH2G3C3 (C0 2 Na) 8 (0.499 g, 2.67 * 10 "4 mol, 80%) is obtained. NMR-H (D 2 0): δ 3.00 (s, SCH 2 CO) , 2.40 (t, SiCH 2 CH 2 CH 2 S), 1 .43 (m, SiCH 2 CH 2 CH 2 S), 1.24 (m, SiCH 2 CH 2 CH 2 Si, NH 2 CH 2 CH 2 CH2CH 2 YES), 0.46 (m, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 CH 2 S, NH 2 CH 2 CH 2 CH 2 CH2 YES), -0.17 (s, Yes and). NMR- 3 C (D 2 0): δ 178.07 (COOCH 3 ), 36.81 (SCH 2 CO), 35.86 (SiCH 2 CH 2 CH 2 S), 23.53 (YES 2 CH 2 CH 2 S), 18.56 (SiCH 2 CH 2 CH 2 Si), 13.04 (SiCH 2 CH 2 CH 2 Si (me) CH 2 CH 2 CH 2 S, SiCH 2 CH 2 CH 2 Si), -5.24 (SiyWeCH 2 CH2CH 2 S, SiCH 2 CH 2 CH 2 SiMe ). CsgHisi NNasOisSsSiy
Síntesis de NH2G4C3(C02Na)i6. Synthesis of NH 2 G4C3 (C0 2 Na) i6.
Sobre una disolución de la cuña dendrítica NH2G4C3(C02Me)i6 en MeOH se añade NaOH en exceso en peso y se deja con agitación 12 h. Transcurrido este tiempo se evapora el disolvente y se disuelve en agua. Se purifica el dendrímero por ultrafiltración con una membrana de MWCO=500. De este modo se obtienen 0,434 g (1 ,14*104 mol, 90%) de la cuña dendrítica NH2G4C3(C02Na)i6.como un sólido de color blanco. Ci4iH267NNai8032SioSii5 On a solution of the dendritic wedge NH2G4C3 (C02Me) i6 in MeOH, NaOH is added in excess by weight and left with stirring for 12 h. After this time the solvent is evaporated and dissolved in water. The dendrimer is purified by ultrafiltration with a MWCO = 500 membrane. In this way, 0.434 g (1.14 * 10 4 mol, 90%) of the dendritic wedge NH2G4C3 (C0 2 Na) is obtained as a white solid. Ci4iH267NNai 8 0 3 2SioSii5
Síntesis de NH2G2C3(S03Na)4. Synthesis of NH 2 G2C3 (S0 3 Na) 4.
Sobre una la disolución de PhtG2C3(S03Na)4 en una mezcla MeOH/H20 6:1 en el interior de una ampolla se añaden 16 equivalentes del reactivo comercial H2NNH2. La mezcla se calienta con agitación a 90°C durante 18 h. Posteriormente se evapora la hidracina (H2NNH2) en exceso junto con el disolvente. Se disuelve en agua y se purifica el dendrímero por nanofiltración con una membrana de MWCO=500. De este modo se obtiene la cuña dendrítica NH2G2C3(S03Na)4 (0,618 g, 5,32*10"4 mol, 60%). RMN- H (D20): δ 2.70 (t, SCh^ChkCA^SOsNa), 2.49 (m, SiCH2CH2CH2S), 2.38 (m, SCH2CH2CH2S03Na), 1.84 (m, SChkCA^ChkSOsNa), 1.59 (m, NH2CH2CH2CH2CH2SÍ), 1.44 (m, SÍCH2CH2CH2S), 1.25 (m, SiCH2CH2CH2Si), 0.58 (m, NH2CH2CH2CH2CH2SÍ, SiCH2CH2CH2Si(Me)CH2CH2CH2S), 0.14 (s, SiMe). RMN- 3C (D20): δ 50.10 (SChkChkCh^SOsNa), 39.42 (NH2CH2CH2CH2CH2SÍ), 35.34 (SChkChkCh^SOsNa), 31.12 (NH2CH2CH2CH2CH2SÍ), 30.39 (SÍCH2CH2CH2S), 24.56 (SCH2CH2CH2S03Na), 24.05 (SiCH2CH2CH2S), 21.12 (NH2CH2CH2CH2CH2SÍ), 18.56 (SiCH2CH2CH2Si), 13.20 (SiC^C^C^SiMeC^ChkChk, NH2CH2CH2CH2CH2SÍ), -4.51 (SiMe).
Figure imgf000047_0001
On top of it, the solution of PhtG2C3 (S03Na) 4 in a MeOH / H 2 0 6: 1 mixture inside a vial is added 16 equivalents of the commercial reagent H 2 NNH 2 . The mixture is heated with stirring at 90 ° C for 18 h. Subsequently, the hydrazine (H 2 NNH 2 ) is evaporated in excess together with the solvent. It is dissolved in water and the dendrimer is purified by nanofiltration with a MWCO = 500 membrane. In this way the dendritic wedge NH2G2C3 (S0 3 Na) 4 (0.618 g, 5.32 * 10 "4 mol, 60%) is obtained. NMR-H (D 2 0): δ 2.70 (t, SCh ^ ChkCA ^ SOsNa), 2.49 (m, SiCH 2 CH 2 CH 2 S), 2.38 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1.84 (m, SChkCA ^ ChkSOsNa), 1.59 (m, NH 2 CH 2 CH2CH 2 CH 2 YES), 1.44 (m, YES 2 CH 2 CH 2 S), 1.25 (m, SiCH 2 CH 2 CH 2 Si), 0.58 (m, NH 2 CH 2 CH 2 CH 2 CH2 YES, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 CH 2 S), 0.14 (s, SiMe) NMR- 3 C (D 2 0): δ 50.10 (SChkChkCh ^ SOsNa), 39.42 (NH 2 CH 2 CH 2 CH 2 CH 2 YES), 35.34 (SChkChkCh ^ SOsNa), 31.12 (NH 2 CH 2 CH 2 CH 2 CH 2 YES), 30.39 (SÍCH 2 CH 2 CH 2 S), 24.56 (SCH 2 CH 2 CH 2 S0 3 Na), 24.05 (SiCH 2 CH 2 CH 2 S), 21.12 (NH 2 CH 2 CH 2 CH 2 CH 2 YES), 18.56 (SiCH 2 CH 2 CH 2 Si), 13.20 (SiC ^ C ^ C ^ SiMeC ^ ChkChk, NH2CH2CH2CH2CH2YES ), -4.51 (SiMe).
Figure imgf000047_0001
Síntesis de NH2G3C3(S03Na)8. Synthesis of NH 2 G3C3 (S0 3 Na) 8 .
Sobre una disolución de PhtG3C3(S03Na)e en una mezcla MeOH/H20 6:1 en el interior de una ampolla se añaden 16 equivalentes del reactivo comercial H2NNH2. La mezcla se calienta con agitación a 90°C durante 18 h. Posteriormente se evapora la hidracina (H2NNH2) en exceso junto con el disolvente. Se disuelve en agua y se purifica el dendrímero por nanofiltración con una membrana de MWCO=500. De este modo se obtiene la cuña dendrítica NH2G3C3(S03Na)8 (0,397 g, 1 ,62*104 mol, 50%). RMN- H (D20): δ 2.81 (t, SCH2CH2CH2S03Na), 2.52 (m, SiCH2CH2CH2S), 2.43 (m, SCA^ChkChkSOsNa), 1.85 (m, SCH2CH2CH2S03Na), 1.45 (m, SiCH2CH2CH2S), 1.24 (m, SiCH2CH2CH2Si, NH2CH2CH2CH2CH2SÍ ), 0.49 (m, NH2CH2CH2CH2CH2SÍ, SiCH2CH2CH2Si(Me)CH2CH2CH2S), - 0.14 (s, SiMe).
Figure imgf000047_0002
On a solution of PhtG3C3 (S03Na) e in a MeOH / H 2 0 6: 1 mixture inside a vial, 16 equivalents of the commercial reagent H 2 NNH 2 are added . The mixture is heated with stirring at 90 ° C for 18 h. Subsequently, the hydrazine (H 2 NNH 2 ) is evaporated in excess together with the solvent. It is dissolved in water and the dendrimer is purified by nanofiltration with a MWCO = 500 membrane. In this way the dendritic wedge NH2G3C3 (S0 3 Na) 8 (0.397 g, 1.62 * 10 4 mol, 50%) is obtained. NMR-H (D 2 0): δ 2.81 (t, SCH 2 CH 2 CH 2 S0 3 Na), 2.52 (m, SiCH 2 CH 2 CH 2 S), 2.43 (m, SCA ^ ChkChkSOsNa), 1.85 (m , SCH 2 CH 2 CH 2 S0 3 Na), 1.45 (m, SiCH 2 CH 2 CH 2 S), 1.24 (m, SiCH 2 CH 2 CH 2 Si, NH 2 CH 2 CH 2 CH2CH 2 YES), 0.49 ( m, NH 2 CH 2 CH 2 CH 2 CH2SÍ, SiCH 2 CH 2 CH 2 Si (me) CH 2 CH 2 CH 2 S), - 0.14 (s, SiMe).
Figure imgf000047_0002
Síntesis de NH2G4C3(S03Na)i6. Synthesis of NH 2 G4C3 (S0 3 Na) and 6 .
Sobre una disolución de PhtG4C3(S03Na)ie en una mezcla MeOH/H20 6:1 en el interior de una ampolla se añaden 16 equivalentes del reactivo comercial H2NNH2. La mezcla se calienta con agitación a 90°C durante 18 h. Posteriormente se evapora la hidracina (H2NNH2) en exceso junto con el disolvente. Se disuelve en agua y se purifica el dendrímero por nanofiltración con una membrana de MWCO=500. De este modo se obtiene la cuña dendrítica NH2G C3(S03Na)i6 (0,426 g, 8,85*10"5 mol, 64%). RMN- H (D20): δ 2.80 (t, SCH2CH2CH2S03Na), 2.48 (m, SiCH2CH2CH2S), 2.41 (m, SCH2CH2CH2S03Na), 1 .84 (m, SCH2CH2CH2S03Na), 1 .44 (m, NH2CH2CH2CH2CH2Si, SiCH2CH2CH2S), 1 .23 (m, SiCH2CH2CH2Si), 0.47 (m, NH2CH2CH2CH2CH2Si, SiCH2CH2CH2Si(Me)CH2CH2CH2S), - 0.15 (s, Si e). RMN- 3C (D20): δ 50.06 (SCH2CH2CH2S03Na), 35.99 (NH2CH2CH2CH2CH2Si), 35.26 (SCH2CH2CH2S03Na), 31 .30 (NH2CH2CH2CH2CH2Si), 30.30 (SiCH2CH2CH2S), 24.51 (SCH2CH2CH2S03Na), 23.99 (SiCH2CH2CH2S), 23.82 (NH2CH2CH2CH2CH2Si), 18.62 (SiCH2CH2CH2Si), 13.14 (SiCH2CH2CH2SiMeCH2CH2CH2, NH2CH2CH2CH2CH2Si), -4.91 (SiMe). Ci57H33i NNai6048S32Sii5 On a solution of PhtG4C3 (S03Na) ie in a MeOH / H 2 0 6: 1 mixture inside a vial, 16 equivalents of the commercial reagent H 2 NNH 2 are added . The mixture is heated with stirring at 90 ° C for 18 h. Subsequently, the hydrazine (H 2 NNH 2 ) is evaporated in excess together with the solvent It is dissolved in water and the dendrimer is purified by nanofiltration with a MWCO = 500 membrane. In this way the dendritic wedge NH2G C3 (S03Na) and 6 (0.426 g, 8.85 * 10 "5 mol, 64%) is obtained. NMR-H (D 2 0): δ 2.80 (t, SCH 2 CH 2 CH 2 S0 3 Na), 2.48 (m, SiCH 2 CH 2 CH 2 S), 2.41 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1.84 (m, SCH 2 CH 2 CH 2 S0 3 Na ), 1 .44 (m, NH 2 CH 2 CH 2 CH 2 CH 2 Si, SiCH 2 CH 2 CH 2 S), 1 .23 (m, SiCH 2 CH 2 CH 2 Si), 0.47 (m, NH 2 CH 2 CH 2 CH 2 CH 2 Yes, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 CH 2 S), - 0.15 (s, Si e) NMR- 3 C (D 2 0): δ 50.06 (SCH 2 CH 2 CH 2 S0 3 Na), 35.99 (NH 2 CH 2 CH 2 CH 2 CH 2 Si), 35.26 (SCH 2 CH 2 CH 2 S0 3 Na), 31.30 (NH 2 CH 2 CH 2 CH 2 CH 2 Si), 30.30 (SiCH 2 CH 2 CH 2 S), 24.51 (SCH 2 CH 2 CH 2 S0 3 Na), 23.99 (SiCH 2 CH 2 CH 2 S), 23.82 (NH 2 CH 2 CH 2 CH 2 CH 2 Si), 18.62 (SiCH 2 CH 2 CH 2 Si), 13.14 (SiCH 2 CH 2 CH 2 SiMeCH 2 CH 2 CH 2 , NH 2 CH 2 CH 2 CH 2 CH 2 Yes), -4.91 (SiMe ) Ci57H 33 i NNai 6 0 4 8S 32 Sii5
Síntesis de Me(CO)SG2V4. Synthesis of Me (CO) SG2V 4 .
Una disolución de BrG2V4 en THF se calienta a 60 °C en presencia de exceso de Me(CO)SK durante 24 h. A continuación se evaporan los volátiles y se realiza una extracción H20/Et20. La fase orgánica se evapora y se obtiene Me(CO)SG2V4 como un aceite incoloro. A solution of BrG2V4 in THF is heated at 60 ° C in the presence of excess Me (CO) SK for 24 h. The volatiles are then evaporated and an H 2 0 / Et 2 0 extraction is carried out. The organic phase is evaporated and Me (CO) SG2V4 is obtained as a colorless oil.
Síntesis de Me(CO)SG3V8. Synthesis of Me (CO) SG3V 8 .
Siguiendo el procedimiento descrito para el dendrón análogo G2 a partir de BrG3V8 y Me(CO)SK se obtiene Me(CO)SG3Vs como un aceite incoloro.  Following the procedure described for the analog dendron G2 from BrG3V8 and Me (CO) SK, Me (CO) SG3Vs is obtained as a colorless oil.
Síntesis de Me(CO)SG1C2(C02Me)2. Synthesis of Me (CO) SG1C2 (C0 2 Me) 2 .
Siguiendo el procedimiento descrito para dendrones análogos, partiendo de Me(CO)SG1V2 y HSCH2C02CH3 se obtiene Me(CO)SG1 C2(C02Me)2 como un aceite amarillento. Following the procedure described for analogous dendrons, starting from Me (CO) SG1V2 and HSCH 2 C0 2 CH 3 , Me (CO) SG1 C2 (C0 2 Me) 2 is obtained as a yellowish oil.
RMN- H (CDCI3): δ 3.72 (s, COOCH3), 3.23 (s, SCH2CO), 2.84 (t, 2 H, COSCH2), 2.62 (t, SiCH2CH2S), 2.40 (s, 3 H, MeCO), 1 .68 (m, 2 H, SiCH2CH2CH2CH2Si), 1 .40 (m, 2 H, SiCH2CH2CH2CH2S), 0.48 (m, SiCH2CH2CH2CH2Si), -0.22 (SiMe). Ci7H3205S3Si NMR-H (CDCI 3 ): δ 3.72 (s, COOCH 3 ), 3.23 (s, SCH 2 CO), 2.84 (t, 2 H, COSCH 2 ), 2.62 (t, SiCH 2 CH 2 S), 2.40 ( s, 3H, MeCO), 1 .68 (m, 2H, SiCH 2 CH 2 CH 2 CH 2 Si), 1 .40 (m, 2H, SiCH 2 CH 2 CH 2 CH 2 S), 0.48 ( m, SiCH 2 CH 2 CH 2 CH 2 Si), -0.22 (SiMe). Ci 7 H 32 0 5 S 3 Yes
Síntesis de Me(CO)SG2C2(C02Me)4. Synthesis of Me (CO) SG2C2 (C0 2 Me) 4 .
Siguiendo el procedimiento descrito para dendrones análogos, partiendo de Me(CO)SG2V4 y HSCH2C02CH3 se obtiene Me(CO)SG2C2(C02Me) como un aceite amarillento. RMN- H (CDCI3): δ 3.72 (s, COOCH3), 3.23 (s, SCH2CO), 2.84 (t, 2 H, COSCH2), 2.62 (t, SiCH2CH2S), 2.40 (s, 3 H, MeCO), 1 .68 (m, CH2CH2CH2S), 1 .42 (m, SiCH2CH2CH2S), 1 .38 (m, SiCH2CH2CH2Si, COSCH2CH2CH2CH2Si), 0.48 (m, SiCH2CH2CH2Si(Me)CH2CH2S, SiCH2CH2CH2Si, COSCH2CH2CH2CH2Si), -0.22 (SiMeCH2CH2S, SiCH2CH2CH2SiMe). CssHssOgSsSis Following the procedure described for analogous dendrons, starting from Me (CO) SG2V 4 and HSCH 2 C0 2 CH 3 , Me (CO) SG2C2 (C0 2 Me) is obtained as a yellowish oil. NMR-H (CDCI 3 ): δ 3.72 (s, COOCH 3 ), 3.23 (s, SCH 2 CO), 2.84 (t, 2 H, COSCH 2 ), 2.62 (t, SiCH 2 CH 2 S), 2.40 ( s, 3 H, MeCO), 1 .68 (m, CH 2 CH 2 CH 2 S), 1 .42 (m, SiCH 2 CH 2 CH 2 S), 1 .38 (m, SiCH 2 CH 2 CH 2 If, cosch 2 CH 2 CH 2 CH 2 Si), 0.48 (m, SiCH 2 CH 2 CH 2 Si (me) CH 2 CH 2 S, SiCH 2 CH 2 CH 2 Si, cosch 2 CH 2 CH 2 CH 2 if ), -0.22 (SiMeCH 2 CH 2 S, SiCH 2 CH 2 CH 2 SiMe). CssHssOgSsSis
Síntesis de Me(CO)SG3C2(C02Me)8. Synthesis of Me (CO) SG3C2 (C0 2 Me) 8 .
Siguiendo el procedimiento descrito para dendrones análogos, partiendo de Me(CO)SG3Vs y HSCH2C02CH3 se obtiene Me(CO)SG3C2(C02Me)8 como un aceite amarillento. C7i H14oOi7S9SÍ7 Síntesis de HSG1C2(C02Me)2. Una disolución de Me(CO)SG1 C2(C02Me)i en MeOH se agita en presencia de exceso de HCI (4 M, dioxano) en atmósfera de Ar durante 4 h. A continuación se evaporan los volátiles y se obtiene HSG1C2(C02Me)2 como un aceite amarillento. C15H30O4S3SÍ Following the procedure described for analogous dendrons, starting from Me (CO) SG3Vs and HSCH 2 C0 2 CH 3 , Me (CO) SG3C2 (C0 2 Me) 8 is obtained as a yellowish oil. C 7 i H1 4 oOi7S 9 YES7 Synthesis of HSG1C2 (C0 2 Me) 2 . A solution of Me (CO) SG1 C2 (C02Me) i in MeOH is stirred in the presence of excess HCI (4 M, dioxane) under Ar's atmosphere for 4 h. The volatiles are then evaporated and HSG1C2 (C02Me) 2 is obtained as a yellowish oil. C15H30O4S3YES
RMN- H (CDCI3): δ 3.72 (s, COOCH3), 3.23 (s, SCH2CO), 2.62 (t, SiCH2CH2S), 2.51 (m, 2 H, HSCH2), 1 .62 (m, 2 H, HSCH2CH2CH2CH2Si), 1 .34 (m, 2 H, HSCH2CH2CH2CH2Si), 1 .31 (t, HSCH2CH2CH2CH2Si), 0.48 (m, 2 H, HSCH2CH2CH2CH2Si), -0.22 (Si e). NMR-H (CDCI 3 ): δ 3.72 (s, COOCH 3 ), 3.23 (s, SCH 2 CO), 2.62 (t, SiCH 2 CH 2 S), 2.51 (m, 2 H, HSCH 2 ), 1. 62 (m, 2 H, HSCH 2 CH 2 CH 2 CH 2 Si), 1.34 (m, 2 H, HSCH 2 CH 2 CH 2 CH 2 Si), 1.31 (t, HSCH 2 CH 2 CH 2 CH 2 Si), 0.48 (m, 2 H, HSCH 2 CH 2 CH 2 CH 2 Si), -0.22 (Si e).
Síntesis de HSG2C2(C02Me)4. Synthesis of HSG2C2 (C0 2 Me) 4 .
Una disolución de Me(CO)SG2C2(C02Me)4 en MeOH se agita en presencia de exceso de HCI (4 M, dioxano) en atmósfera de Ar durante 4 h. A continuación se evaporan los volátiles y se obtiene HSG2C2(C02Me)4 como un aceite amarillento. RMN- H (CDCI3): δ 3.72 (s, COOCH3), 3.23 (s, SCH2CO), 2.62 (t, SiCH2CH2S), 2.51 (m, 2 H, HSCH2), 1 .62 (m, 2 H, HSCH2CH2CH2CH2Si), 1 .42 (m, SiCH2CH2CH2S), 1 .35 (m, SiCH2CH2CH2Si, HSCH2CH2CH2CH2Si), 1 .31 (m, 1 H, HS), 0.48 (m, SiCH2CH2CH2Si(Me)CH2CH2S, SiCH2CH2CH2Si, HSCH2CH2CH2CH2Si), -0.22 (Si eCH2CH2S, SiCH2CH2CH2Si e). C33H6608S5Si3 A solution of Me (CO) SG2C2 (C02Me) 4 in MeOH is stirred in the presence of excess HCI (4M, dioxane) under Ar's atmosphere for 4 h. The volatiles are then evaporated and HSG2C2 (C0 2 Me) 4 is obtained as a yellowish oil. NMR-H (CDCI 3 ): δ 3.72 (s, COOCH3), 3.23 (s, SCH 2 CO), 2.62 (t, SiCH 2 CH 2 S), 2.51 (m, 2 H, HSCH 2 ), 1 .62 (m, 2 H, HSCH 2 CH 2 CH 2 CH 2 Si), 1 .42 (m, SiCH 2 CH 2 CH 2 S), 1 .35 (m, SiCH 2 CH 2 CH 2 Si, HSCH 2 CH 2 CH 2 CH 2 Si), 1 .31 (m, 1 H, HS), 0.48 (m, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 S, SiCH 2 CH 2 CH 2 Yes, HSCH 2 CH 2 CH 2 CH 2 Si), -0.22 (If eCH 2 CH 2 S, SiCH 2 CH 2 CH 2 Yes e). C 33 H 66 0 8 S 5 Yes 3
Síntesis de HSG3C2(C02Me)8. Synthesis of HSG3C2 (C0 2 Me) 8 .
Siguiendo el procedimiento descrito para el dendrón análogo G2, partiendo de Me(CO)SG3C2(C02Me)8 y HCI (4 M, dioxano) se obtiene HSG3C2(C02Me)8 como un aceite amarillento. C69H138O16S9SÍ7 Following the procedure described for the analog dendron G2, starting from Me (CO) SG3C2 (C0 2 Me) 8 and HCI (4 M, dioxane) HSG3C2 (C0 2 Me) 8 is obtained as a yellowish oil. C69H138O16S9YES7
Síntesis de HSG2C2(C02Na)4. Synthesis of HSG2C2 (C0 2 Na) 4 .
Siguiendo el procedimiento descrito para dendrones análogos, partiendo de HSG2C2(C02Me)4 y NaOH en atmósfera de Ar se obtiene HSG2C2(C02Na)4 como un sólido blanco. RMN- H (D20): δ 2.99 (s, SCH2CO), 2.42 8m, 2 H, HSCH2), 2.38 (t, SiCH2CH2S), 1 .40 (m, CH2CH2CH2 y HS), 1 .19 (m, SiCH2CH2CH2Si, HSCH2CH2CH2CH2Si), 0.43 (m, SiCH2CH2CH2Si(Me)CH2CH2S, HSCH2CH2CH2CH2Si), -0.10 (s, SiMe).
Figure imgf000049_0001
Following the procedure described for analogous dendrons, starting from HSG2C2 (C02Me) 4 and NaOH under Ar atmosphere, HSG2C2 (C0 2 Na) 4 is obtained as a white solid. NMR-H (D 2 0): δ 2.99 (s, SCH 2 CO), 2.42 8m, 2 H, HSCH 2 ), 2.38 (t, SiCH 2 CH 2 S), 1.40 (m, CH 2 CH 2 CH 2 and HS), 1 .19 (m, SiCH 2 CH 2 CH 2 Si, HSCH 2 CH 2 CH 2 CH 2 Si), 0.43 (m, SiCH 2 CH 2 CH 2 Si (Me) CH 2 CH 2 S , HSCH 2 CH 2 CH 2 CH 2 Si), -0.10 (s, SiMe).
Figure imgf000049_0001
Síntesis de HSG3C2(C02Na)8. Synthesis of HSG3C2 (C0 2 Na) 8 .
Siguiendo el procedimiento descrito para el dendrón análogo G2, partiendo de HSG3C2(C02Me)8 y NaOH en atmósfera de Ar se obtiene HSG3C2(C02Na)s como un sólido blanco. Cei Hi-HNasO-mSgSiy Following the procedure described for the analog dendron G2, starting from HSG3C2 (C0 2 Me) 8 and NaOH under Ar atmosphere, HSG3C2 (C0 2 Na) s is obtained as a white solid. Cei Hi-HNasO-mSgSiy
Síntesis de Me(CO)SG1 C2(S03Na)2. Synthesis of Me (CO) SG1 C2 (S0 3 Na) 2 .
Siguiendo el procedimiento descrito para dendrones análogos, partiendo de Me(CO)SG1V2 y HS(CH2)3S03Na se obtiene Me(CO)SG1 C2(S03Na)2 como un sólido blanco. RMN- H (D20): 2.82 (t, SCH2CH2CH2CH2Si), 2,79 (t, SCH2CH2S03Na), 2.52 (s, MeCO), 2.49 (m, SiCH2CH2S, SCH2CH2S03Na), 1 .84 (m, SCH2CH2CH2S03Na), 1 .65 (m, CH2CH2CH2CH2Si), 1 .38 (m, CH2CH2CH2CH2Si), 0.76 (m, SiCH2CH2S), 0.38 (m, CH2CH2CH2CH2Si), - 0.23 (s, SiMe). Following the procedure described for analogous dendrons, starting from Me (CO) SG1V2 and HS (CH 2 ) 3 S0 3 Na, Me (CO) SG1 C2 (S0 3 Na) 2 is obtained as a white solid. NMR-H (D 2 0): 2.82 (t, SCH 2 CH 2 CH 2 CH 2 Si), 2.79 (t, SCH 2 CH 2 S0 3 Na), 2.52 (s, MeCO), 2.49 (m, SiCH 2 CH 2 S, SCH 2 CH 2 S0 3 Na), 1 .84 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1.65 (m, CH 2 CH 2 CH 2 CH 2 Si), 1 .38 (m, CH 2 CH 2 CH 2 CH 2 Si), 0.76 (m, SiCH 2 CH 2 S), 0.38 (m, CH 2 CH 2 CH 2 CH 2 Si), - 0.23 (s, SiMe).
Síntesis de Me(CO)SG2C2(S03Na)4. Synthesis of Me (CO) SG2C2 (S0 3 Na) 4 .
Siguiendo el procedimiento descrito para dendrones análogos, partiendo de Me(CO)SG2V4 y HS(CH2)3S03Na se obtiene Me(CO)SG2C2(S03Na)4 como un sólido blanco. RMN- H (D20): 2.82 (t, SCH2CH2CH2CH2SÍ), 2.79 (t, SCH2CH2S03Na), 2.52 (s, eCO), 2.45 (m, SiCH2CH2S, SCH2CH2CH2S03Na), 1 .84 (m, SCH2CH2CH2S03Na), 1 .65 (m, CH2CH2CH2CH2SÍ), 1 .38 (m, CH2CH2CH2CH2SÍ), 1 .15 (m, SiCH2CH2CH2Si), 0.76 (m, SiCH2CH2S), 0.38 (m, SCH2CH2CH2CH2SÍ, SiCH2CH2CH2Si), - 0.23 (s, Si e). C35H72Na40i3S9SÍ3 Following the procedure described for analogous dendrons, starting from Me (CO) SG2V4 and HS (CH 2 ) 3 S0 3 Na, Me (CO) SG2C2 (S0 3 Na) 4 is obtained as a white solid. NMR-H (D 2 0): 2.82 (t, SCH2CH2CH2CH2YES), 2.79 (t, SCH 2 CH 2 S0 3 Na), 2.52 (s, eCO), 2.45 (m, SiCH 2 CH 2 S, SCH 2 CH 2 CH 2 S0 3 Na), 1 .84 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1.65 (m, CH2CH2CH2CH2YES), 1.38 (m, CH2CH2CH2CH2YES), 1.15 (m, SiCH 2 CH 2 CH 2 Si), 0.76 (m, SiCH 2 CH 2 S), 0.38 (m, SCH2CH2CH2CH2YES, SiCH 2 CH 2 CH 2 Si), - 0.23 (s, Si e). C 3 5H72Na40i3S 9 YES3
Síntesis de Me(CO)SG3C2(S03Na)8. Synthesis of Me (CO) SG3C2 (S0 3 Na) 8 .
Siguiendo el procedimiento descrito para dendrones análogos, partiendo de Me(CO)SG3Vs y HS(CH2)3S03Na se obtiene Me(CO)SG3C2(S03Na)s como un sólido blanco. CT-i
Figure imgf000050_0001
Síntesis de HSG1C2(S03Na)2.
Following the procedure described for analogous dendrons, starting from Me (CO) SG3Vs and HS (CH 2 ) 3S0 3 Na, Me (CO) SG3C2 (S0 3 Na) s is obtained as a white solid. CT-i
Figure imgf000050_0001
Synthesis of HSG1C2 (S0 3 Na) 2 .
Una disolución de Me(CO)SG1 C2(S03Na)2 en MeOH se agita en presencia de exceso de HCI (4 M, dioxano) en atmósfera de Ar durante 4 h. A continuación se evaporan los volátiles y se obtiene HSG1C2(S03Na)2 como un aceite amarillento. RMN- H (D20): 2,79 (t, CH2S03Na), 2.49 (m, CH2S), 2.42 (t, HSCH2CH2CH2CH2SÍ), 1 .84 (m, SCH2CH2CH2S03Na), 1 .65 (m, CH2CH2CH2CH2SÍ), 1 .38 (m, CH2CH2CH2CH2SÍ y HS), 0.76 (m, SiCH2CH2S), 0.38 (m, CH2CH2CH2CH2SÍ), - 0.23 (s, SiMe). A solution of Me (CO) SG1 C2 (S0 3 Na) 2 in MeOH is stirred in the presence of excess HCI (4 M, dioxane) under Ar atmosphere for 4 h. The volatiles are then evaporated and HSG1C2 (S0 3 Na) 2 is obtained as a yellowish oil. NMR-H (D 2 0): 2.79 (t, CH 2 S0 3 Na), 2.49 (m, CH 2 S), 2.42 (t, HSCH2CH2CH2CH2YES), 1.84 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1 .65 (m, CH2CH2CH2CH2YES), 1 .38 (m, CH2CH2CH2CH2YES and HS), 0.76 (m, SiCH 2 CH 2 S), 0.38 (m, CH2CH2CH2CH2YES), - 0.23 (s, SiMe) .
Síntesis de HSG2C2(S03Na)4. Synthesis of HSG2C2 (S0 3 Na) 4 .
Siguiendo el procedimiento descrito para el dendrón análogo G1 , partiendo de Me(CO)SG2C2(S03Na)4 y HCI (4 M, dioxano) se obtiene HSG2C2(S03Na) como un sólido blanco. RMN- H (D20): 2.79 (t, CH2S03Na), 2.52 (s, MeCO), 2.45 (m, SiCH2CH2S, SCH2CH2CH2S03Na), 2.43 (t, SCH2CH2CH2CH2SÍ), 1 .84 (m, SCH2CH2CH2S03Na), 1 .65 (m, CH2CH2CH2CH2SÍ), 1 .38 (m, CH2CH2CH2CH2SÍ y SH), 1 .15 (m, SiCH2CH2CH2Si), 0.76 (m, SÍCH2CH2S), 0.38 (m, SCH2CH2CH2CH2SÍ, SiCH2CH2CH2Si), - 0.23 (s, SiMe). C33H7oNa4Oi2S9Si3 Following the procedure described for the analog dendron G1, starting from Me (CO) SG2C2 (S0 3 Na) 4 and HCI (4 M, dioxane), HSG2C2 (S0 3 Na) is obtained as a white solid. NMR-H (D 2 0): 2.79 (t, CH 2 S0 3 Na), 2.52 (s, MeCO), 2.45 (m, SiCH 2 CH 2 S, SCH 2 CH 2 CH 2 S0 3 Na), 2.43 ( t, SCH2CH2CH2CH2YES), 1 .84 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1.65 (m, CH2CH2CH2CH2YES), 1 .38 (m, CH2CH2CH2CH2YES and SH), 1.15 (m, SiCH 2 CH 2 CH 2 Si), 0.76 (m, YES2CH2S), 0.38 (m, SCH2CH2CH2CH2YES, SiCH 2 CH 2 CH 2 Si), - 0.23 (s, SiMe). C 33 H7oNa 4 Oi2S 9 Si 3
Síntesis de HSG3C2(S03Na)8. Synthesis of HSG3C2 (S0 3 Na) 8 .
Siguiendo el procedimiento descrito para el dendrón análogo G2, partiendo de Me(CO)SG3C2(S03Na)e y HCI (4 M, dioxano) se obtiene HSG3C2(S03Na)e como un sólido blanco. C69Hi46Na8024Si7SÍ7 Síntesis de N3G1 C3(C02Me)2. Following the procedure described for the analog dendron G2, starting from Me (CO) SG3C2 (S0 3 Na) e and HCI (4 M, dioxane) HSG3C2 (S0 3 Na) e is obtained as a white solid. C 6 9 Hi46Na 8 024 Yes 7 YES Synthesis of N3G1 C3 (C0 2 Me) 2 .
Siguiendo el procedimiento descrito para dendrones análogos, partiendo de N3G1A2 y HSCH2C02CH3 se obtiene N3G1 C3(C02Me)2 como un aceite amarillento. RMN- H (CDCI3): 3.72 (s, COOCH3), 3.24 (s, 2 H, N3CH2), 3.22 (s, SCH2CO), 2.48 (t, SiCH2CH2CH2S), 1 .61 (m, 2H, N-CH2-CH2-CH2-CH2-SÍ), 1 .40 (m, 2H, N-CH2-CH2-CH2-CH2-SÍ, SÍCH2CH2CH2S ), 0.80 (t, SiCH2 CH2CH2S), 0.48 (m, CH2Si,), -0.22 (SiMe). Ci7H33N304S2Si Following the procedure described for analogous dendrons, starting from N3G1A2 and HSCH 2 C0 2 CH 3 , N 3 G1 C3 (C0 2 Me) 2 is obtained as a yellowish oil. NMR-H (CDCI 3 ): 3.72 (s, COOCH 3 ), 3.24 (s, 2 H, N 3 CH 2 ), 3.22 (s, SCH 2 CO), 2.48 (t, SiCH 2 CH 2 CH 2 S) , 1 .61 (m, 2H, N-CH2-CH2-CH2-CH2-YES), 1 .40 (m, 2H, N-CH2-CH2-CH2-CH2-YES, SÍCH2CH2CH2S), 0.80 (t, SiCH 2 CH2CH2S), 0.48 (m, CH 2 Si,), -0.22 (SiMe). Ci 7 H 33 N 3 0 4 S 2 Yes
Síntesis de N3G2C3(C02Me)4. Synthesis of N3G2C3 (C0 2 Me) 4 .
Siguiendo el procedimiento descrito para dendrones análogos, partiendo de N3G2A4 y HSCH2C02CH3 se obtiene N3G2C3(C02Me) como un aceite amarillento. RMN- H (CDCI3): 3.72 (s, COOCH3), 3.24 (s, 2 H, N3CH2), 3.22 (s, SCH2CO), 2.48 (t, SiCH2CH2CH2S), 1 .61 (m, 2H, N-CH2-CH2-CH2-CH2-SÍ), 1 .42 (m, SÍCH2CH2CH2S, SÍCH2CH2CH2S), 1 .38 (m, SiCH2CH2CH2Si, N3CH2CH2CH2CH2Si), 0.80 (t, S1CH2 CH2CH2S), 0.48 (m, SiCH2CH2CH2Si(Me)CH2CH2CH2S, SiCH2CH2CH2Si, N3CH2CH2CH2CH2SÍ), -0.22 (Si eCH2CH2CH2S, SiCH2CH2CH2Si e). C37H73N3O8S4SÍ3 Following the procedure described for similar dendrons, starting from N3G2A 4 and HSCH 2 C0 2 CH 3 , N 3 G2C3 (C0 2 Me) is obtained as a yellowish oil. NMR-H (CDCI 3 ): 3.72 (s, COOCH 3 ), 3.24 (s, 2 H, N 3 CH 2 ), 3.22 (s, SCH 2 CO), 2.48 (t, SiCH 2 CH 2 CH 2 S) , 1 .61 (m, 2H, N-CH2-CH2-CH2-CH2-YES), 1 .42 (m, SÍCH2CH2CH2S, SÍCH2CH2CH2S), 1 .38 (m, SiCH 2 CH 2 CH 2 Si, N 3 CH2CH 2 CH2CH 2 Si), 0.80 (t, S1CH2 CH2CH2S), 0.48 (m, SiCH 2 CH2CH2Si (Me) CH2CH2CH 2 S, SiCH 2 CH 2 CH 2 Yes, N3CH2CH2CH2CH2YES), -0.22 (If eCH 2 CH 2 CH 2 S, SiCH 2 CH 2 CH 2 Si e). C37H73N3O8S4YES3
Síntesis de N3G3C3(C02Me)8. Synthesis of N3G3C3 (C0 2 Me) 8 .
Siguiendo el procedimiento descrito para dendrones análogos, partiendo de N3G3Ae y HSCH2CO2CH3 se obtiene N3G3C3(C02Me)8 como un aceite amarillento. C77H153N3O16S8SÍ7 Following the procedure described for analogous dendrons, starting from N3G3Ae and HSCH2CO2CH3, N3G3C3 (C0 2 Me) 8 is obtained as a yellowish oil. C77H153N3O16S8YES7
Síntesis de N3G2C3(C02Na)4. Synthesis of N3G2C3 (C0 2 Na) 4 .
Siguiendo el procedimiento descrito para dendrones análogos, partiendo de N3G2C3(C02Me)4 y NaOH, o bien a partir de BrG2C3(C02Na)4 y NaN3, se obtiene N3G2C3(C02Na)4 como un sólido blanco. RMN- H (D20): 3.24 (m, 2 H, N3CH2), 2.99 (s, SCH2CO), 2.38 (t, SiCH2CH2CH2S), 1 .61 (m, 2H, N-CH2-CH2- CH2-CH2-SÍ), 1 .40 (m, SÍCH2CH2CH2S), 1 .19 (m, SiCH2CH2CH2Si, N3CH2CH2CH2CH2SÍ), 0.80 (t, SÍCH2CH2CH2S), 0.43 (m, SiCH2CH2CH2Si(Me)CH2CH2CH2S, N3CH2CH2CH2CH2SÍ), -0.10 (s, Si e).
Figure imgf000051_0001
Following the procedure described for analogous dendrons, starting from N3G2C3 (C02Me) 4 and NaOH, or from BrG2C3 (C0 2 Na) 4 and NaN 3 , N3G2C3 (C0 2 Na) 4 is obtained as a white solid. NMR-H (D 2 0): 3.24 (m, 2 H, N3CH2), 2.99 (s, SCH 2 CO), 2.38 (t, SiCH 2 CH 2 CH 2 S), 1.61 (m, 2H, N -CH 2 -CH 2 - CH2-CH2-YES), 1 .40 (m, SÍCH2CH2CH2S), 1 .19 (m, SiCH 2 CH 2 CH 2 Si, N3CH2CH2CH2CH2YES), 0.80 (t, SÍCH2CH2CH2S), 0.43 (m , SiCH 2 CH2CH2Si (Me) CH2CH2CH 2 S, N3CH2CH2CH2CH2YES), -0.10 (s, Si e).
Figure imgf000051_0001
Síntesis de N3G1 C3(S03Na)2. Synthesis of N 3 G1 C3 (S0 3 Na) 2 .
Siguiendo el procedimiento descrito para dendrones análogos, partiendo de N3G1A2 y HS(CH2)3S03Na, o bien a partir de BrG1 C3(S03Na)2 y NaN3, se obtiene N3G1 C2(S03Na)2 como un sólido blanco. RMN- H (D20): 3.24 (m, 2 H, N3CH2), 2,79 (t, CH2S03Na), 2.49 (m, CH2S), 1 .84 (m, SCH2CH2CH2S03Na), 1 .65 (m, CH2CH2CH2CH2SÍ), 1 .38 (m, CH2CH2CH2CH2SÍ), 0.76 (m, SiCH2CH2CH2S), 0.38 (m, CH2CH2CH2CH2SÍ), - 0.23 (s, SiMe). C^HssNsl^C^Si Following the procedure described for analogous dendrons, starting from N3G1A 2 and HS (CH 2 ) 3 S0 3 Na, or from BrG1 C3 (S0 3 Na) 2 and NaN 3 , N3G1 C2 (S0 3 Na) 2 is obtained Like a white solid NMR-H (D 2 0): 3.24 (m, 2 H, N 3 CH 2 ), 2.79 (t, CH 2 S0 3 Na), 2.49 (m, CH 2 S), 1.84 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1.65 (m, CH2CH2CH2CH2YES), 1.38 (m, CH2CH2CH2CH2YES), 0.76 (m, SiCH 2 CH 2 CH 2 S), 0.38 (m, CH2CH2CH2CH2YES), - 0.23 (s, SiMe). C ^ HssNsl ^ C ^ Yes
Síntesis de N3G2C3(S03Na)4. Synthesis of N3G2C3 (S0 3 Na) 4 .
Siguiendo el procedimiento descrito para dendrones análogos, partiendo de N3G2A4 y HS(CH2)3S03Na, o bien a partir de BrG2C3(S03Na) y NaN3, se obtiene N3G2C3(S03Na) como un sólido blanco. RMN- H (D20): δ 3.24 (m, 2 H, N3CH2), 2.70 (t, SCH2CH2CH2S03Na), 2.49 (m, SiCH2CH2CH2S), 2.38 (m, SCH2CH2CH2S03Na), 1 .84 (m, SCH2CH2CH2S03Na), 1 .59 (m, N3CH2CH2CH2CH2SÍ), 1 .44 (m, SÍCH2CH2CH2S), 1 .25 (m, SiCH2CH2CH2Si), 0.58 (m, N3CH2CH2CH2CH2SÍ, SiCH2CH2CH2Si(Me)CH2CH2CH2S), 0.14 (s, SiMe). C37H77N3Na4Oi2S8SÍ3 Following the procedure described for analogous dendrons, starting from N3G2A 4 and HS (CH 2 ) 3 S0 3 Na, or from BrG2C3 (S0 3 Na) and NaN 3 , N3G2C3 (S0 3 Na) is obtained as a white solid . NMR-H (D 2 0): δ 3.24 (m, 2 H, N 3 CH 2 ), 2.70 (t, SCH 2 CH 2 CH 2 S0 3 Na), 2.49 (m, SiCH 2 CH 2 CH 2 S) , 2.38 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1 .84 (m, SCH 2 CH 2 CH 2 S0 3 Na), 1.59 (m, N3CH2CH2CH2CH2YES), 1 .44 (m, SÍCH2CH2CH2S) , 1 .25 (m, SiCH 2 CH 2 CH 2 Si), 0.58 (m, N3CH2CH2CH2CH2YES, SiCH 2 CH2CH2Si (Me) CH2CH2CH 2 S), 0.14 (s, SiMe). C37H77N3Na 4 Oi2S 8 YES3
Síntesis de N3G3C3(S03Na)8. Synthesis of N3G3C3 (S0 3 Na) 8 .
Siguiendo el procedimiento descrito para dendrones análogos, partiendo de N3G3Ae y HS(CH2)3S03Na se obtiene N3G3C3(S03Na)4 como un sólido blanco. C77Hi6iN3Na8024Si6SÍ7 ACTIVIDAD DE LOS DENDRÍMEROS CATIÓNICOS COMO VECTORES NO VIRALES PARA EL TRANSPORTE DE ÁCIDOS NUCLEICOS EN PROCESOS DE TERAPIA GÉNICA FRENTE AL VIH. Following the procedure described for analogous dendrons, starting from N3G3Ae and HS (CH 2 ) 3 S0 3 Na, N3G3C3 (S0 3 Na) 4 is obtained as a white solid. C77Hi6iN3Na 8 0 24 Yes 6 YES7 ACTIVITY OF CATIONIC DENDRIMMERS AS NON-VIRAL VECTORS FOR THE TRANSPORT OF NUCLEIC ACIDS IN PROCESSES OF GENE THERAPY AGAINST HIV.
MATERIALES Y MÉTODOSMATERIALS AND METHODS
CÉLULAS MONONUCLEARES DE SANGRE PERIFÉRICA (PBMCs): PERIPHERAL BLOOD MONONUCLEAR CELLS (PBMCs):
La sangre, de buffy coats procedentes de donantes sanos, se diluye 2 veces con solución salina tamponada con fosfato 6,7 mM (PBS, Bio-Whittaker®) y se procede a su centrifugación en gradiente de densidad (Ficoll-lsopaque®). Tras dicha centrifugación se recupera el halo que contiene las CMSP y se procede a dos ciclos de lavado-centrifugado posteriores con PBS (10 minutos a 1 .500 r.p.m.). Las CMSP resultantes se resuspenden en medio de completo y en condiciones de cultivo. The blood, from buffy coats from healthy donors, is diluted twice with 6.7 mM phosphate buffered saline (PBS, Bio-Whittaker®) and centrifuged in density gradient (Ficoll-lsopaque ® ). After said centrifugation, the halo containing the CMSPs is recovered and It proceeds to two subsequent wash-spin cycles with PBS (10 minutes at 1, 500 rpm). The resulting CMSPs are resuspended in complete medium and under culture conditions.
DENDRÍMEROS DENDRÍMEROS
Los dendrímeros G103C2(NMe3l)6, G203C2(NMe3l)i2, G303C2(NMe3l)24, G403C2(NMe3l)48 se corresponden con los compuestos BDEF031 , BDEF032, BDEF033 y BDEF034 respectivamente, mientras que el dendrímero G203C2(NMe3l)n (NHFITC) alude al compuesto BDEF023. The dendrimers G103C2 (NMe 3 l) 6 , G203C2 (NMe 3 l) and 2 , G303C2 (NMe 3 l) 2 4, G403C2 (NMe 3 l) 4 8 correspond to compounds BDEF031, BDEF032, BDEF033 and BDEF034 respectively, while the G203C2 (NMe 3 L) n (NHFITC) dendrimer refers to the BDEF023 compound.
EVALUACIÓN DE LA TOXICIDAD DE LOS DENDRÍMEROS EVALUATION OF TOXICITY OF DENDRÍMEROS
Se utilizó un sistema de screening para determinar las concentraciones biocompatibles de las 4 generaciones de dendrímeros. Primero, se establecieron los límites de solubilidad de los dendrímeros de cada generación en agua. Se disolvieron los dendrímeros a concentraciones de 3 mM, 2 mM y 1 mM, siendo esta última la que mejor solubilidad presentaba sin la ayuda de factores físicos adicionales para su perfecta solubilización (vortex, calor, etc). Una vez seleccionada la concentración de partida de los dendrímeros, se procedió a evaluar su citotoxicidad por MTT. A screening system was used to determine the biocompatible concentrations of the 4 generations of dendrimers. First, the solubility limits of the dendrimers of each generation in water were established. The dendrimers were dissolved at concentrations of 3 mM, 2 mM and 1 mM, the latter being the one with the best solubility without the help of additional physical factors for perfect solubilization (vortex, heat, etc.). Once the starting concentration of dendrimers was selected, their cytotoxicity was evaluated by MTT.
Se utilizó el ensayo MTT con el fin de evaluar la actividad mitocondrial para el estudio de la toxicidad de las generaciones de dendrímeros en cultivos primarios de células mononucleares de sangre periférica ya que son la primera diana del VIH y las más fisiológicas (PBMCs). Esta técnica se utilizó para evidenciar efectos deletéreos sobre el metabolismo celular. Se trata de un ensayo colorimétrico basado en la capacidad selectiva de las células viables para reducir el bromuro de 3-(4,5-dimetiltiazol-2-il)-2,5- difenil tetrazolio (MTT, Sigma®) en cristales insolubles de formazán. Tras el tiempo deseado de incubación de las distintas poblaciones celulares con diferentes concentraciones de dendrímeros en placa de 96 pocilios (100.000 células/pocilio respectivamente), y con 3 pocilios como control positivo de inactividad celular [20% de dimetil sulfóxido (DMSO, Sigma®)], el sobrenadante que contenía dendrímero se retiró y se sustituyó por 200 μΙ de un medio de cultivo sin suero ni rojo fenol (Opti- MEM®). Además de los 200 μΙ de Opti-MEM®, se añadieron 20 μΙ de MTT filtrado previamente para conseguir su esterilidad (Azul de Tiazolil, Sigma®) en PBS a una concentración de 5 mg/ml (concentración final en pocilio de 0,5 mg MTT/ml). Después de 4 horas de incubación en condiciones de cultivo, se procedió a la centrifugación de la placa a 2.000 r.p.m. 10 minutos y a la posterior retirada del sobrenadante con el exceso MTT que no reaccionó. Los cristales de formazán se observaron al microscopio de contraste de fase y se disolvieron posteriormente con 200 μΙ de DMSO. La placa se agitó a 700 r.p.m. en un agitador Eppendorf ® para asegurar la correcta disolución de dichos cristales. La concentración de formazán se determinó por espectrofotometría utilizando un lector de placas a una longitud de onda de 570 nm con una referencia de 690 nm. El espectrofotómetro se calibró utilizando Opti-MEM® sin células. La viabilidad celular relativa (%) respecto del control (células sin tratar) se calculó en base a la fórmula: [A] test / [A] control x 100. Cada concentración de dendrímero se ensayó por triplicado, siguiendo las directivas del ATCC. Se utilizó como control de lisis de las células Tritón x- 100 al 0,2%. The MTT assay was used to assess mitochondrial activity to study the toxicity of generations of dendrimers in primary cultures of peripheral blood mononuclear cells since they are the first target of HIV and the most physiological (PBMCs). This technique was used to show deleterious effects on cell metabolism. It is a colorimetric assay based on the selective ability of viable cells to reduce 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl tetrazolium bromide (MTT, Sigma®) in insoluble crystals of formazan After the desired incubation time of the different cell populations with different concentrations of 96-well plate dendrimers (100,000 cells / well respectively), and with 3 wells as a positive control of cell inactivity [20% dimethyl sulfoxide (DMSO, Sigma®) )], the dendrimer-containing supernatant was removed and replaced with 200 μΙ of a serum-free culture medium or phenol red (Opti-MEM®). In addition to the 200 μΙ of Opti-MEM®, 20 μΙ of previously filtered MTT was added to achieve sterility (Tiazolyl Blue, Sigma®) in PBS at a concentration of 5 mg / ml (final well concentration of 0.5 mg MTT / ml). After 4 hours of incubation under culture conditions, the plate was centrifuged at 2,000 rpm. 10 minutes and after removal of the supernatant with the excess MTT that did not react. Formazan crystals were observed under the phase contrast microscope and subsequently dissolved with 200 μΙ of DMSO. The plate was stirred at 700 rpm. in an Eppendorf ® stirrer to ensure the correct dissolution of said crystals. Formazan concentration was determined by spectrophotometry using a plate reader at a wavelength of 570 nm with a reference of 690 nm. The spectrophotometer was calibrated using Opti-MEM® without cells. The relative cell viability (%) with respect to the control (untreated cells) was calculated based on the formula: [A] test / [A] control x 100. Each dendrimer concentration was tested in triplicate, following the guidelines of the ATCC. It was used as lysis control of 0.2% Triton x-100 cells.
FORMACIÓN DE LA UNIÓN siRNA/DENDRÍMERO: DENDRIPLEXES Se realizaron ensayos para evaluar la capacidad de retención de pequeños ARN de interferencia (siRNA o ARNpi) con los distintos dendrímeros sinterizados. Para ello, se utilizó el ARNi siNEF (5'- GUGCCUGGCUAGAAGCACAdTdT-3', marcado con cianina 3 (cy3) en el extremo 5' de la hebra sentido y el siNEF antisentido: 3'-UGUGCUUCUAGCCAGGCACdTdT-5'. Los complejos se formaron en H20 estéril y se almacenaron a 4°C. La concentración dependió en cada caso del ratio de cargas deseado (desde ratio 1 :1 hasta 1 :12, ver tabla 1). Para comprobar la formación de los complejos, con los siRNA a una concentración de 100nM y valorar su total retención por parte del dendrímero, se realizaron electroforesis en las que se analizó la capacidad del dendrímero para evitar la migración del siRNA al polo positivo. El complejo formado en su totalidad se queda retenido en el pocilio o migra al polo negativo, según el ratio de cargas de cada complejo. Las mezclas se incubaron a 37°C durante 2 h y 24 h, se cargaron en un gel de agarosa al 2% con bromuro de etidio, y se corrieron a 90 V durante 30 min. Los geles se visualizaron con luz UV. La caracterización de la unión siRNA/dendrímero en los complejos se ha ejemplificado con los resultados obtenidos para los dendrímeros BDEF031 , BDEF032, BDEF033, BDEF034. FORMATION OF THE SYRNA / DENDRÍMERO UNION: DENDRIPLEXES Trials were conducted to assess the retention capacity of small interfering RNAs (siRNA or siRNA) with the different sintered dendrimers. For this, siNEF siRNA (5'- GUGCCUGGCUAGAAGCACAdTdT-3 ', labeled with cyanine 3 (cy3) was used at the 5' end of the sense strand and the antisense siNEF: 3'-UGUGCUUCUAGCCAGGCACdTdT-5 '. in sterile H 2 0 and stored at 4 ° C. The concentration depended in each case on the desired load ratio (from 1: 1 to 1: 12 ratio, see table 1). To check the formation of the complexes, with the siRNA at a concentration of 100nM and assessing its total retention by the dendrimer, electrophoresis was performed in which the ability of the dendrimer to prevent the migration of the siRNA to the positive pole was analyzed.The complex formed in its entirety is retained in the well or migrates to the negative pole, according to the charge ratio of each complex.The mixtures were incubated at 37 ° C for 2 h and 24 h, loaded on a 2% agarose gel with ethidium bromide, and run at 90 V for 30 min The gels were visualized with UV light. The union of siRNA / dendrimer in the complexes has been exemplified by the results obtained for the dendrimers BDEF031, BDEF032, BDEF033, BDEF034.
Tabla 1  Table 1
Figure imgf000053_0001
Figure imgf000053_0001
EVALUACIÓN DE LA TOXICIDAD DE LOS COMPLEJOS siRNAs-DENDRÍMEROS EVALUATION OF THE TOXICITY OF THE SIRNA-DENDRÍMEROS COMPLEXES
Tras obtener los resultados de los geles de retención, se seleccionaron los ratios siRNA Nef/dendrímero 1 :8 y 1 :12 y se llevó a cabo un ensayo de toxicidad por MTT para comprobar que los dendriplexes no eran tóxicos a esos ratios siguiendo el mismo procedimiento que en el apartado evaluación de toxicidad de los dendrímeros descrito anteriormente. Se llevó en paralelos el estudio de los dendrímero solos y los complejos. After obtaining the results of the retention gels, the ratios SiRNA Nef / dendrimer 1: 8 and 1: 12 were selected and an MTT toxicity test was carried out to verify that the dendriplexes were not toxic to those ratios following the same procedure that in the toxicity evaluation section of dendrimers described above. The study of dendrimer alone and complexes was carried out in parallel.
ENSAYO CP COMPETICIÓN DE EXCLUSIÓN CON HEPARINA CP TEST EXCLUSION COMPETITION WITH HEPARINA
Posteriormente se realizó un ensayo de competición de exclusión con heparina para analizar las uniones entre los dendrímeros y el siRNA. Se realizaron con mezclas de dendriplexes (+/- ratio 1 :8 y 1 :12) de los dendrímeros BDEF031 , BDEF032, BDEF033, BDEF034 con concentraciones variables de heparina (0, 1 , 0,2, 0,3 y 0,6 U/\IQ siRNA). La mezcla se corrió en un gel a 2% de agarosa durante 2 y 16 horas.  Subsequently, a heparin exclusion competition trial was performed to analyze the junctions between dendrimers and siRNA. They were carried out with mixtures of dendriplexes (+/- ratio 1: 8 and 1: 12) of the dendrimers BDEF031, BDEF032, BDEF033, BDEF034 with varying concentrations of heparin (0, 1, 0.2, 0.3 and 0.6 U / \ IQ siRNA). The mixture was run on a 2% agarose gel for 2 and 16 hours.
ENSAYOS DE INHIBICIÓN DEL VIH a) Preparación de la cepa X4 VIH-1 NL4-3 HIV INHIBITION TESTS a) Preparation of strain X4 HIV-1 N L4-3
El aislado viral X4 VIH-1 NL4-3 es una cepa viral de laboratorio establecida y se utilizaron células MT-2 (línea celular de leucemia de células T con ADN de HTLV-1 integrado, que se obtuvieron del American Type Culture Collection (ATCC) para la expansión del virus. Se lavaron 2x106 células MT-2 dos veces con medio completo (RPMI 1640 (Gibco) suplementado con con 10% de Suero Fetal de Ternera (SFT), 2mM L-glutamina y antibióticos (1 % cloxaciclina, 1 % ampicilina y 0,32% gentamicina)] en placas de 24 o 96 pocilios, en condiciones de cultivo (37°C en una atmósfera de 5% C02 y 95% de humedad relativa) y se transfirieron a un tubo cónico de 15 mi a una concentración de 2x106 células/ml en medio completo. Posteriormente, se añadió VIH-1 NL4-3 a una concentración de 1 partícula por célula o lo que es lo mismo, 1 M.O.I . ("Multiplicity Of Infection'). Se cultivaron las MT-2 con el virus durante 2 horas en condiciones de cultivo, agitando el cultivo cada 15-30 minutos. Finalmente se lavaron los cultivos (células-virus) dos veces para retirar el virus no integrado en el genoma celular. Las células se transfirieron a un pocilio de placa de seis pocilios en un volumen de 3-4 mi. Se dejó en cultivo durante 2-3 días y se observó la presencia de sincitios en el pocilio. Cuando la presencia de sincitios alcanzó un 80-90% de producción, se añadieron 12 mi de medio completo con 20x106 MT-2 y se dispensaron en placa petri. A los 2-3 días, se centrifugó todo el volumen y se recogió el sobrenadante. Se añadieron 12 mi de medio completo con 20x106 MT-2 a las células anteriores (MT-2 infectadas) y se dispensaron en placa petri. Se repitió este proceso hasta 3 veces. El sobrenadante se alicuotó y se almacenó en un tanque de nitrógeno líquido, para posteriormente ser titulado. b) Titulación de los virus The viral isolate X4 HIV-1 N L4-3 is an established laboratory viral strain and MT-2 cells (T-cell leukemia cell line with integrated HTLV-1 DNA were used, obtained from the American Type Culture Collection ( ATCC) for virus expansion 2x10 6 MT-2 cells were washed twice with complete medium (RPMI 1640 (Gibco) supplemented with 10% Fetal Calf Serum (SFT), 2mM L-glutamine and antibiotics (1% cloxacycline, 1% ampicillin and 0.32% gentamicin)] in 24 or 96 well plates, under culture conditions (37 ° C in an atmosphere of 5% C0 2 and 95% relative humidity) and transferred to a tube 15 ml conical at a concentration of 2x10 6 cells / ml in complete medium Subsequently, HIV-1 N L4-3 was added at a concentration of 1 particle per cell or what is the same, 1 MOI. ("Multiplicity Of Infection ') The MT-2 were cultured with the virus for 2 hours under culture conditions, shaking the culture every 15-30 minutes. The cultures (virus cells) were washed twice to remove the virus not integrated into the cell genome. The cells were transferred to a six-well plate well in a volume of 3-4 ml. It was left in culture for 2-3 days and the presence of syncytia was observed in the well. When the presence of syncytia reached 80-90% of production, 12 ml of complete medium with 20x10 6 MT-2 was added and dispensed in petri dish. At 2-3 days, the entire volume was centrifuged and the supernatant was collected. 12 ml of complete medium with 20x10 6 MT-2 was added to the previous cells (infected MT-2) and dispensed in petri dish. This process was repeated up to 3 times. The supernatant was aliquoted and stored in a liquid nitrogen tank, for later titration. b) Virus titration
El aislado viral VIH-1 NL4-3 se tituló en la línea celular MT-2. Se cultivaron 2x104 células MT-2 con medio completo en placas de 96 pocilios y se añadieron 40μΙ de la preparación viral a distintas concentraciones, para lo que se realizaron las correspondientes diluciones. Se dispusieron las diluciones por octuplicado y se mantuvieron en condiciones de cultivo durante una semana. Transcurrido este tiempo se procedió a la lectura de la titulación por visualización del efecto citopático. El título se calculó aplicando la fórmula de Spearman-Karber. También se tituló mediante cuantificación de proteína p24 por un inmunoensayo enzimático (ELISA p24. INNOTEST™ HIV antigen mAB, Innogenetics®) con el que se establece la relación partículas infectivas por mi y \IQ de virus por mi. El aislado viral VIH-1 Ba-L se tituló mediante cuantificación de proteína p24 por ELISA. Para asegurar la pureza del virus, las alícuotas descongeladas se filtraron a través de filtros de 0,22 μπι antes de la cuantificación. c) Infección in vitro de los cultivos células mononucleares de sangre periférica (PBMCs) The HIV-1 N L4-3 viral isolate was titrated in the MT-2 cell line. 2x10 4 MT-2 cells were cultured with complete medium in 96-well plates and 40μΙ of the viral preparation was added at different concentrations, for which the corresponding dilutions were made. The dilutions were placed in octuplicate and kept under culture conditions for one week. After this time, the titration was read by visualization of the cytopathic effect. The title was calculated applying the Spearman-Karber formula. It was also titrated by quantification of p24 protein by an enzymatic immunoassay (ELISA p24. INNOTEST ™ HIV antigen mAB, Innogenetics®) with which the ratio of infective particles is established by me and? Virus by me. The HIV-1 Ba -L viral isolate was titrated by quantification of p24 protein by ELISA. To ensure virus purity, thawed aliquots were filtered through 0.22 μπι filters before quantification. c) In vitro infection of peripheral blood mononuclear cell cultures (PBMCs)
Las PBMCs se estimularon durante 48 horas con 2 Mg/ml de PHA (fitohemaglutinina) y 50 Ul de IL-2 (interleuquina 2), para provocar una activación policlonal; a las 48 horas se lavan las células con PBS. La concentración deseada de células se incubó con el número de partículas de VIH deseado en medio completo durante 2 horas en condiciones de cultivo. Tras este tiempo se recogen las células del cultivo y se lavan tres veces con PBS para eliminar el virus no integrado en el genoma celular. A continuación , las PBMC previamente infectadas se colocan en una placa de 96 pocilios (2x105 células por pocilio) en medio completo (200 μΙ por pocilio) y se les añade los distintos complejos a ratio 1 :8 (en este caso se ponen como ejemplos el siNef/BDEF33 y siNEf/BDEF34. Como controles se usan los fármacos AZT (Zidovudina®), inhibidor de la retrotranscriptasa análogo de nucleósido y T20 (Fuzeon®), inhibidor de la entrada viral, en particular de la fusión. Tras la adición de los dendrímeros se incuba a 37°C y 5% C02 durante 24 horas. Trascurrido el tiempo se recoge el sobrenadante para cuantificar antígeno p24 por ELISA. PBMCs were stimulated for 48 hours with 2 Mg / ml of PHA (phytohemagglutinin) and 50 Ul of IL-2 (interleukin 2), to cause polyclonal activation; at 48 hours the cells are washed with PBS. The desired cell concentration was incubated with the desired number of HIV particles in complete medium for 2 hours under culture conditions. After this time the cells of the culture are collected and washed three times with PBS to eliminate the virus not integrated in the cellular genome. Next, the previously infected PBMCs are placed in a 96-well plate (2x10 5 cells per well) in complete medium (200 μΙ per well) and the different complexes are added at a 1: 8 ratio (in this case they are placed as Examples are siNef / BDEF33 and siNEf / BDEF34 As controls, AZT drugs are used (Zidovudine®), nucleoside analogue retrotranscriptase inhibitor and T20 (Fuzeon®), viral entry inhibitor, in particular of fusion. After the addition of the dendrimers, it is incubated at 37 ° C and 5% C0 2 for 24 hours. After the time the supernatant is collected to quantify p24 antigen by ELISA.
ENSAYO DE BIODISTRIBUCIÓN BIODISTRIBUTION TEST
Se utilizaron hembras de la cepa de ratones BALB/c (H-2d) de 4 a 8 semanas de edad. Los ratones fueron inyectados en la vena de la cola con el dendrímero BDEF023 a concentraciones de 1 mg/kg, 5 mg/kg, 40 mg/kg y 80 mg/kg durante 30 min y 1 hora, BDEF023 a concentración de 20mg/Kg, siRNA Nef marcado con Cy5.5 a concentración de 2 μΜ y el complejo siRNA Nef./BDEF023. Posteriormente se sacrificaron a los animales y se estudió la emisión de fluorescencia en bazo, hígado, riñon y cerebro en el IVIS Lumina (Xenogen).  Females of the BALB / c (H-2d) mouse strain of 4 to 8 weeks of age were used. Mice were injected into the tail vein with the BDEF023 dendrimer at concentrations of 1 mg / kg, 5 mg / kg, 40 mg / kg and 80 mg / kg for 30 min and 1 hour, BDEF023 at a concentration of 20 mg / kg , Cy5.5 labeled Nef siRNA at a concentration of 2 μΜ and the Nef./BDEF023 siRNA complex. The animals were subsequently sacrificed and fluorescence emission in spleen, liver, kidney and brain was studied in the IVIS Lumina (Xenogen).
Se cuantificó la intensidad de la fluorescencia y se observó que tanto en bazo como hígado, riñon y cerebro había un incremento de la fluorescencia cuando fueron tratados durante 1 hora hasta la concentración de 40 mg/kg. En la Figura 6 se muestran los resultados obtenidos en bazo. Sin embargó cuando se trataron a los ratones durante 30 min con el dendrímero no se observó fluorescencia a concentraciones de 1 y 5 mg/kg , observándose un incremento a partir de 40 mg/kg, siendo la máxima expresión a 80 mg/kg (Fig. 6). The intensity of the fluorescence was quantified and it was observed that in both spleen and liver, kidney and brain there was an increase in fluorescence when treated for 1 hour until the concentration of 40 mg / kg. The results obtained in spleen are shown in Figure 6. However, when the mice were treated for 30 min with the dendrimer no fluorescence was observed at concentrations of 1 and 5 mg / kg, an increase from 40 mg / kg was observed, the maximum expression being at 80 mg / kg (Fig 6).
Posteriormente se estudió la biodistribución del dendriplex, complejo dendrímero BDEF023 y el siRNA Nef marcado con Cy5.5. Las concentraciones seleccionadas fueran 20 mg/kg de dendrímero al que se le unía por fuerzas electrostáticas el siRNA Nef marcado con Cy5.5 a concentración de 2 μΜ. El dendriplex se observó en bazo, hígado, riñon y cerebro, aunque se pone como ejemplo el bazo. Subsequently, the biodistribution of dendriplex, BDEF023 dendrimer complex and Cy5.5 Nef siRNA was studied. The selected concentrations were 20 mg / kg dendrimer to which the Nef siRNA labeled with Cy5.5 was joined by electrostatic forces at a concentration of 2 μΜ. Dendriplex was observed in spleen, liver, kidney and brain, although the spleen is used as an example.
RESULTADOS RESULTS
Viabilidad celular Cell viability
Se realizó unensayo MTT tras 24 horas de tratamiento de las PBMCs con los dendrímeros BDEF31 , BDEF32, BDEF33 y BDEF34 observando mas de un 80% de viabilidad de las mismas cuando los dendrímeros se utilizaban a las concentraciones de 20 μΜ para BDEF31 , 5 μΜ para BDEF32 y 1 μΜ para BDEF33 y BDEF34. El control de células tratadas con una molécula inerte como el dextrano no mostró toxicidad y el control positivo de muerte celular DMSO si mostró toxicidad (Fig. 1). Formación complejo dendrímero/siRNA  An MTT test was carried out after 24 hours of treatment of the PBMCs with the BDEF31, BDEF32, BDEF33 and BDEF34 dendrimers observing more than 80% viability of the same when the dendrimers were used at concentrations of 20 μΜ for BDEF31, 5 μΜ BDEF32 and 1 μΜ for BDEF33 and BDEF34. The control of cells treated with an inert molecule such as dextran did not show toxicity and the positive control of DMSO cell death did show toxicity (Fig. 1). Dendrimer / siRNA complex formation
Tras la formación de dendriplexes tal como se describe en materiales y métodos, se seleccionaron los ratios 1 : 12 para los complejos siRNA-Nef -BDEF31 y siRNA-Nef-BDEF32 y ratio 1 :8 para los complejos siRNA-Nef- BDEF33 y siRNA-Nef-BDEF34. A ratios inferiores, se observa menor unión caracterizada por una menor expresión de banda a nivel del siRNA a partir del ratio 1 :2 (Fig. 2). Como se muestra en la Fig. 3 tras 24 horas de tratamiento con los distintos dendriplexes las PBMC fueron viables, utilizando como control de viabilidad dextrano (Dx) y de muerte celular o toxicidad DMSO. Además, se observó la estabilidad de los complejos por un ensayo de competición con heparina en un gel de agarosa al 2% donde se muestra la banda de siRNA que queda liberado de las distintas generaciones del dendrímero ya que éste se una a la heparina (Fig. 4A-4D). After the formation of dendriplexes as described in materials and methods, the ratios 1: 12 were selected for the siRNA-Nef -BDEF31 and siRNA-Nef-BDEF32 complexes and 1: 8 ratio for the siRNA-Nef-BDEF33 and siRNA complexes -Nef-BDEF34. At lower ratios, less union is observed characterized by a lower band expression at the level of the siRNA from the 1: 2 ratio (Fig. 2). As shown in Fig. 3 after 24 hours of treatment with the different dendriplexes, PBMCs were viable, using dextran (Dx) and cell death or DMSO toxicity as a control of viability. In addition, the stability of the complexes was observed by a competition test with heparin in a 2% agarose gel showing the band of siRNA that is released from the different generations of the dendrimer as it binds to heparin (Fig 4A-4D).
Inhibición de la replicación del VIH HIV replication inhibition
Las PBMCs previamente estimuladas con PHA se infectaron con 20ng/1x106 células con VIH-NL4.3 durante 2 h. Posteriormente se añadieron los dendriplexes siNef/BDEF33 y siNEf/BDEF34 y los antirretrovirales AZT y T20 como controles positivos de inhibición del VIH durante 24 h y se recogió el sobrenadante de los cultivos para cuantificar por ELISA la producción de Agp24 por ELISA. BDEF33 Y BDEF34 mostraron una capacidad de inhibición del VIH del 85% y 65%, respectivamente. Este dato confirmaría que podrían tener una aplicación terapéutica frente al VIH. La inhibición observada debida a los dendriplexes fue mayor cuando se utilizó la cuarta generación siNEF/ BDEF34 con un 35% que cuando se utilizó el SÍRNA/BDEF33 que la inhibición fue del 15%. (Fig. 5). PBMCs previously stimulated with PHA were infected with 20ng / 1x106 cells with HIV-NL4.3 for 2 h. Subsequently, the siNef / BDEF33 and siNEf / BDEF34 dendriplexes and the AZT and T20 antiretrovirals were added as positive controls for HIV inhibition for 24 h and the culture supernatant was collected to quantify by ELISA the production of Agp24 by ELISA. BDEF33 and BDEF34 showed an HIV inhibition capacity of 85% and 65%, respectively. This data would confirm that they could have a therapeutic application against HIV. The inhibition observed due to dendriplexes was greater when the fourth generation siNEF / BDEF34 was used with 35% than when the SYRNA / BDEF33 was used, the inhibition was 15%. (Fig. 5).
Biodistribución del dendrímero/dendriplex en bazo de ratón Biodistribution of dendrimer / dendriplex in mouse spleen
En la Figura 6 se muestran los resultados obtenidos en bazo tras inyectar en la cola de los ratones BALB/c 40 mg/kg del dendrímero sólo. Sin embargó cuando se trataron a los ratones durante 30 min con el dendrímero no se observó fluorescencia a concentraciones de 1 y 5 mg/kg, observándose un incremento a partir de 40 mg/kg, siendo la máxima expresión a 80 mg/kg. La presencia del dendrímero, siRNA y dendriplex en el bazo de un ratón fue observada en el IVIS Lumina (Xenogen) tras 1 y 24 horas de tratamiento. Se observó mayor mareaje cuando se utiliza el dendriplex. Los datos indican que podría ser posible la utilización de los dendriplexes in vivo y por lo tanto podría llegar a tener aplicación en distintas terapias. ACTIVIDAD BIOLÓGICA DE DENDRÍMEROS ANIÓNICOS COMO AGENTES ANTIVIRALES FRENTE AL VIH. Figure 6 shows the results obtained in spleen after injecting in the tail of BALB / c mice 40 mg / kg of the dendrimer alone. However, when the mice were treated for 30 min with the dendrimer no fluorescence was observed at concentrations of 1 and 5 mg / kg, an increase from 40 mg / kg was observed, the maximum expression being at 80 mg / kg. The presence of the dendrimer, siRNA and dendriplex in the spleen of a mouse was observed in the IVIS Lumina (Xenogen) after 1 and 24 hours of treatment. Increased tide was observed when using dendriplex. The data indicate that it may be possible to use dendriplexes in vivo and therefore could have application in different therapies. BIOLOGICAL ACTIVITY OF ANIONIC DENDRÍMEROS AS ANTIVIRAL AGENTS AGAINST HIV.
MATERIALES Y MÉTODOS CÉLULAS MATERIALS AND METHODS CELLS
Human Endometrial Carcinoma cells (HEC-1A): línea celular endometrial humana, derivada de un adenocarcinoma humano de endometrio. Se obtuvieron del American Type Culture Collection (ATCC). Las HEC-1A se cultivaron en medio completo [RPMI 1640 (Gibco) suplementado con 10% de Suero Fetal de Ternera (SFT), 2mM L-glutamina y antibióticos en placas de 24 o 96 pocilios o transwell de 12 pocilios con soporte permeable de policarbonato de 0,4 μπι de poro (Costar, Cambridge, MA), en condiciones de cultivo (37°C en una atmósfera de 5% C02 y 95% de humedad relativa). Células Mononucleares de Sangre Periférica (PBMC): La sangre se obtuvo de buffy coats procedentes de donantes sanos. Dicha sangre se diluye ½ con solución salina tamponada con fosfato 6,7 mM (PBS, Bio-Whittaker®) y se procede a su centrifugación en gradiente de densidad (Ficoll-lsopaque®). Tras dicha centrifugación se recupera el halo que contiene las PBMC y se procede a varios ciclos de lavado- centrifugado posteriores con PBS (10 minutos a 1500 r.p.m.) para la purificación de las mismas. Las PBMC resultantes se resuspenden en medio de cultivo completo. Human Endometrial Carcinoma cells (HEC-1A): human endometrial cell line, derived from a human adenocarcinoma of the endometrium. They were obtained from the American Type Culture Collection (ATCC). HEC-1A were grown in complete medium [RPMI 1640 (Gibco) supplemented with 10% Fetal Serum Serum (SFT), 2mM L-glutamine and antibiotics in 24 or 96 well plates or 12 well transwell plates with permeable support of 0.4 μπι pore polycarbonate (Costar, Cambridge, MA), under culture conditions (37 ° C in an atmosphere of 5% C0 2 and 95% relative humidity). Peripheral Blood Mononuclear Cells (PBMC): Blood was obtained from buffy coats from healthy donors. Said blood is diluted ½ with 6.7 mM phosphate buffered saline (PBS, Bio-Whittaker®) and centrifuged in a density gradient (Ficoll-lsopaque ® ). After said centrifugation, the halo containing the PBMCs is recovered and several subsequent wash-spin cycles with PBS (10 minutes at 1500 rpm) are carried out for purification thereof. The resulting PBMCs are resuspended in complete culture medium.
VK2/E6E7: Línea celular humana de epitelio vaginal. Obtenida del American Type Culture Collection (ATCC), se cultivaron en Keratinocyte-Serum Free médium (Gibco) con 0.1 ng/ml EGF humana, 0.05 mg/ml extracto de pituitaria bovina y 44,1 mg/l de cloruro cálcico (concentración final 0,4 mM), en diferentes formatos de placa (6, 24 o 96 pocilios, transwells) y en condiciones de cultivo. VK2 / E6E7: Human vaginal epithelial cell line. Obtained from the American Type Culture Collection (ATCC), they were grown in Keratinocyte-Serum Free medium (Gibco) with 0.1 ng / ml human EGF, 0.05 mg / ml bovine pituitary extract and 44.1 mg / l calcium chloride (final concentration 0.4 mM), in different plate formats (6, 24 or 96 wells, transwells) and under culture conditions.
TZM.bl: Expresa los marcadores CD4 y CCR5, y los genes de la luciferasa y β-galactosidasa bajo el control del promotor de HIV-1 . Es muy sensible a la infección por aislados HIV-1 . Su medio de cultivo es DMEM (90%), 10% FBS, 100 u. de penicilina y 0, 1 mg/ml de estreptomicina. TZM.bl: Expresses the CD4 and CCR5 markers, and the luciferase and β-galactosidase genes under the control of the HIV-1 promoter. It is very sensitive to infection by HIV-1 isolates. Its culture medium is DMEM (90%), 10% FBS, 100 u. of penicillin and 0.1 mg / ml streptomycin.
HeLa: línea celular epitelial humana, procedente de un adenocarcinoma de cérvix. Se obtuvieron a través del NIH AIDS Research and Reference Reagent Program. Crecida en "Dulbecco's Modified Eagle Médium" suplementado con 5% SFT, 1 % de penicilina/estreptomicina, y 2 mM de L-glutamina a 37°C en una atmósfera de 5% de C02. HeLa: human epithelial cell line, from a cervical adenocarcinoma. They were obtained through the NIH AIDS Research and Reference Reagent Program. Grown in "Dulbecco ' s Modified Eagle Medium" supplemented with 5% SFT, 1% penicillin / streptomycin, and 2 mM L-glutamine at 37 ° C in an atmosphere of 5% C0 2 .
DENDRÍMEROS DENDRÍMEROS
Se utilizan los dendrímeros descritos en el apartado anterior. Y además los dendrímeros G2SiC3(S03Na)i6, y, G2SiC3(C02Na)i6 que se corresponden con los compuestos BDMG017 y BDMG018, respectivamente. The dendrimers described in the previous section are used. And also the dendrimers G2SiC3 (S0 3 Na) i6, and, G2SiC3 (C0 2 Na) i 6 corresponding to the compounds BDMG017 and BDMG018, respectively.
ESTUDIO DE VIABILIDAD CELULAR CELLULAR VIABILITY STUDY
La técnica empleada para el estudio de las concentraciones a la que los dendrímeros BDMG017 y BDMG018 eran viables fue el MTS que mide la citotoxicidad en relación a la actividad mitocondrial. Este método se aplicó para el estudio de la toxicidad de la segunda generación de dendrímeros (desde 1 a 1000 μΜ) en PBMCs y distintas líneas celulares: HEC-1A, HeLa, TZM.bl y VK2.  The technique used to study the concentrations at which BDMG017 and BDMG018 dendrimers were viable was the MTS that measures cytotoxicity in relation to mitochondrial activity. This method was applied to study the toxicity of the second generation of dendrimers (from 1 to 1000 μΜ) in PBMCs and different cell lines: HEC-1A, HeLa, TZM.bl and VK2.
Esta técnica se utilizó para evidenciar efectos deletéreos de los dendrímeros sobre el metabolismo celular. Se trata de un ensayo colorimétrico basado en la capacidad selectiva de las células viables para reducir el (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H- tetrazolium) (Promega) en cristales insolubles de formazán. Tras el tiempo deseado de incubación de las distintas poblaciones celulares con diferentes concentraciones de dendrímeros en placa de 96 pocilios, y con 3 pocilios como control positivo de inactividad celular [10% de dimetil sulfóxido (DMSO, Sigma). Tras el tiempo de incubación con los dendrímeros, se añadió la mezcla del MTS según las especificaciones del fabricante. La concentración de formazán se determinó por espectrofotometría utilizando un lector de placas a una longitud de onda de 490 nm. La viabilidad celular relativa (%) respecto del control (células sin tratar) se calculó en base a la fórmula: [A] test / [A] control x 100. Cada concentración de dendrímero se ensayó por triplicado, siguiendo las directivas del ATCC. This technique was used to demonstrate deleterious effects of dendrimers on cell metabolism. It is a colorimetric assay based on the selective ability of viable cells to reduce (3- (4,5-dimethylthiazol-2-yl) -5- (3-carboxymethoxyphenyl) -2- (4-sulfophenyl) -2H - tetrazolium) (Promega) in insoluble crystals of formazan. After the desired incubation time of the different cell populations with different concentrations of 96-well plate dendrimers, and with 3 wells as a positive control of cell inactivity [10% dimethyl sulfoxide (DMSO, Sigma). After the incubation time with the dendrimers, the mixture of the MTS was added according to the manufacturer's specifications. Formazan concentration was determined by spectrophotometry using a plate reader at a wavelength of 490 nm. Relative cell viability (%) Regarding the control (untreated cells) it was calculated based on the formula: [A] test / [A] control x 100. Each concentration of dendrimer was tested in triplicate, following the guidelines of the ATCC.
INTERNALIZACIÓN DEL VIH-1 EN CÉLULAS HEC-1A. INTERNALIZATION OF HIV-1 IN HEC-1A CELLS.
Se cultivaron 100.000 células HEC-1A en placas de 12 pocilios en medio de cultivo. Para estudiar la internalización del VIH en HEC-1A se pre-trataron las células con los dendrímeros BDMG017 y BDMG018 a dosis de 10 μΜ y 100 μΜ durante 1 hora, antes de llevar a cabo la infección . Una vez cumplido el tiempo se procedió a infectar las HEC-1A con los aislados virales X4 VIH-1 NL .3 y R5 VI H- 1 a 100 ng de VIH/106 células durante dos horas. Tras ese periodo de tiempo se procedió a lavar las células con PBS estéril y se procedió a la lisis celular mediante Tritón x-100 0,2% durante 40 minutos a 37°C. Se cuantificó el Agp24 del lisado celular por ELISA según las instrucciones del ensayo. 100,000 HEC-1A cells were grown in 12-well plates in culture medium. To study the internalization of HIV in HEC-1A, the cells were pre-treated with the BDMG017 and BDMG018 dendrimers at doses of 10 μΜ and 100 μΜ for 1 hour, before carrying out the infection. Once the time was up, the HEC-1A was infected with the viral isolates X4 HIV-1 NL . 3 and R5 VI H- 1 at 100 ng of HIV / 10 6 cells for two hours. After that period of time the cells were washed with sterile PBS and the cell lysis was carried out using Triton x-100 0.2% for 40 minutes at 37 ° C. Agp24 of the cell lysate was quantified by ELISA according to the test instructions.
PRE- TRATAMIENTO DE PBMC PBMC PRE-TREATMENT
Se utilizaron células mononucleares de sangre periférica (PBMC), estimuladas con PHA e IL-2, dispensadas a razón de 2x105 células en 200 μί de medio de cultivo completo en pocilios de placa p96 de fondo plano. Para el experimento de pre-tratamiento, se trataron las células a las concentraciones de 10μΜ y 100μΜ de dendrímeros BDMG017 y BDMG018 durante 1 hora antes de la infección con 10 ng del aislado viral VIH-1 -3 por millón de células durante 2 horas en condiciones de cultivo. Tras este tiempo, se lavó la placa tres veces con PBS y se incubó en condiciones de cultivo. La concentración de VIH en el sobrenadante de los cultivos de PBMC a los 3 días se cuantificó por ELISA de p24 según las instrucciones del kit. Peripheral blood mononuclear cells (PBMC), stimulated with PHA and IL-2, dispensed at a rate of 2x10 5 cells in 200 µί of complete culture medium in flat-bottomed p96 plate wells were used. For the pre-treatment experiment, the cells were treated at the concentrations of 10μΜ and 100μΜ of BDMG017 and BDMG018 dendrimers for 1 hour before infection with 10 ng of the HIV-1 -3 viral isolate per million cells for 2 hours in growing conditions After this time, the plate was washed three times with PBS and incubated under culture conditions. The concentration of HIV in the supernatant of the PBMC cultures at 3 days was quantified by p24 ELISA according to the kit instructions.
POST- TRATAMIENTO DE PBMC POST- PBMC TREATMENT
Las PBMC se infectaron primero con los aislados virales X4 VIHNL4.3 y R5 VIHBaL durante 2 horas, usándose las mismas condiciones experimentales que en el experimento de pre-tratamiento. Tras este tiempo, se lavó tres veces la placa de cultivo con PBS para eliminar el exceso de virus y se trataron las células con los dendrímeros BDMG017 y BDMG018. A los 3 días se recogió el sobrenadante del cultivo y se cuantificó la infección viral mediante un ELISA de p24. PBMCs were first infected with viral isolates X4 HIVNL4.3 and R5 HIVBaL for 2 hours, using the same experimental conditions as in the pre-treatment experiment. After this time, the culture plate was washed three times with PBS to remove excess virus and the cells were treated with the dendrimers BDMG017 and BDMG018. After 3 days the culture supernatant was collected and the viral infection was quantified by a p24 ELISA.
Resultados Results
Ensayo de viabilidad Feasibility test
En las distintas líneas celulares se realizó un ensayo MTS a distintas concentraciones de dendrímeros y se observó que a 100 μΜ el dendrímero BDMG017 no resultaba tóxico en ninguna de las células utilizadas (Fig.7A). Los resultados con el dendrímero BDMG018 fueron similares, siendo no tóxico por debajo de la concentración de 100 μΜ para las líneas celulares HEC-1A, HeLa y PBMC, mientras que para el resto, la dosis no tóxica fue la de 10 μΜ (Fig. 7B). Se escogió el límite de 80% de viabilidad como rango para establecer la toxicidad o no de los distintos compuestos  In the different cell lines an MTS test was carried out at different concentrations of dendrimers and it was observed that at 100 μΜ the BDMG017 dendrimer was not toxic in any of the cells used (Fig. 7A). The results with the BDMG018 dendrimer were similar, being non-toxic below the concentration of 100 μΜ for the HEC-1A, HeLa and PBMC cell lines, while for the rest, the non-toxic dose was 10 μΜ (Fig. 7B). The 80% viability limit was chosen as the range to establish the toxicity or not of the different compounds
Ensayos de internalización Para su posible uso como microbicidas, se evaluó la capacidad de los dendrímeros BDMG017 (SÍG2SS03) y BDMG018 (SÍG2SCBX) para interaccionar con las partículas virales en el proceso de adhesión de éstas a la superficie de la membrana celular. Los dendrímeros actuarían como una barrera física en la prevención de la infección por VIH de las células endometriales, bloqueando el paso del virus a través de las mucosas y la infección de otras células dianas como la CMSP. Internalization tests For their possible use as microbicides, the ability of the dendrimers BDMG017 (SIG2SS03) and BDMG018 (SIG2SCBX) to interact with the viral particles in the process of adhesion of these to the surface of the cell membrane was evaluated. The dendrimers would act as a physical barrier in preventing HIV infection of the endometrial cells, blocking the passage of the virus through the mucous membranes and the infection of other target cells such as CMSP.
Para evaluar si los dendrímeros impiden la adhesión de los virus a la superficie celular y la capacidad de éstos de frenar la internalización del virus en HEC-1A, se diseñó un experimento con el BDMG017 y BDMG018. El uso tópico de estas moléculas hace necesario evaluar si los tiempos de tratamiento previos a la infección (pre-tratamiento) son limitantes a la hora de comprobar la eficacia. Se realizaron ensayos a diferentes tiempos y se estableció un pre-tratamiento de 1 h en todos los experimentos. Como controles de la inhibición de adhesión se utilizó el antirretroviral T20 (un inhibidor de la fusión del VIH a las células debido a su unión a la gp41 de VIH); un antagonista específico del CXCR4 que además bloquea las variantes T-trópicos y los dual-trópicos (R5 X4) las cuales necesitan del CXCR4 para poder entrar a las células, el AMD3100 o Biciclamo; un compuesto no peptídico que interactúa con el CCR5, es un derivado del amonio cuaternario llamado TAK-779; un antagonista de los co-receptores CCR5 utilizado como fármaco en el TARGA, el Maraviroc. En la figura 8 se puede ver el efecto que tienen los dendrímeros en la entrada del virus en las células de epitelio vaginal. Para reproducir de la mejor forma posible la función que el dendrímero aniónico desarrollaría en la superficie del endometrio y estudiar el paso de los viriones a través de la mucosa estratificada del epitelio vaginal, se utilizaron dispositivos de transwell que permiten recrear el fenómeno de la transcitosis (transporte de macromoléculas desde un espacio extracelular a otro a través del citoplasma de una célula por medio de una vesícula endocítica) debido a la posibilidad de formar una monocapa perfecta de células adherentes en su interior y recolectar información de los sobrenadantes de la cara apical y basolateral de la monocapa. Se usaron virus R5 ya que son las cepas que aparecen en los primeros momentos de la infección (también se uso virus tipo X4). To assess whether dendrimers prevent the adhesion of viruses to the cell surface and their ability to curb the internalization of the virus in HEC-1A, an experiment was designed with BDMG017 and BDMG018. The topical use of these molecules makes it necessary to evaluate whether the treatment times prior to infection (pre-treatment) are limiting when it comes to checking efficacy. Trials were performed at different times and a pre-treatment of 1 h was established in all experiments. As controls of the inhibition of adhesion, the antiretroviral T20 (an inhibitor of HIV fusion to cells due to its binding to HIV gp41) was used; a specific CXCR4 antagonist that also blocks the T-tropic and dual-tropic variants (R5 X4) which need the CXCR4 to enter the cells, the AMD3100 or Biciclamo; a non-peptide compound that interacts with CCR5 is a quaternary ammonium derivative called TAK-779; a CCR5 co-receptor antagonist used as a drug in HAART, Maraviroc. Figure 8 shows the effect that dendrimers have on the entry of the virus into vaginal epithelial cells. To reproduce in the best possible way the function that the anionic dendrimer would develop on the surface of the endometrium and study the passage of virions through the stratified mucosa of the vaginal epithelium, transwell devices were used to recreate the phenomenon of transcytosis ( transport of macromolecules from one extracellular space to another through the cytoplasm of a cell by means of an endocytic vesicle) due to the possibility of forming a perfect monolayer of adherent cells inside and collecting information from the supernatants of the apical and basolateral face of the monolayer. R5 viruses were used as they are the strains that appear in the first moments of infection (type X4 virus was also used).
Ensayos de inhibición Inhibition assays
En la Fig. 9 los resultados obtenidos en pre-tratamiento, con los dendrímeros BDMG017 y BDMG018 fueron muy significativos, ya que ambos dendrímeros protegen mas de un 90% la infección de las PBMC que son la primera diana del virus, a las concentraciones mas bajas de 10μΜ. Este efecto se observó con los dos dendrímeros y ambos aislados virales VIHNL.4 y VIHBa. En la misma figura 9 podemos observar los resultados obtenidos cuando primero infectamos las PBMC y luego las tratamos con los dendrímeros, en esta situación también se observa entre un 25-50% de inhibición de la replicación de los dos aislados virales R5 y X4, aunque no es tan drástica como cuando el dendrímero se utiliza como pre-tratamiento. Estos datos claramente indican que ambos dendrímeros podrían ser utilizados como microbicidas, aunque deben realizarse mas experimentos in vitro. ACTIVIDAD BIOLÓGICA DE DENDRÍMEROS CATIÓNICOS Y ANIÓNICOS FRENTE A LA LEISHMANIA. Se probaron dendrímeros carbosilanos (BDEF031 ; BDEF032; BDEF033 y BDEF0347) en explantes esplénicos de ratón Balc/c infectados con Leishmania infantum BCN-150 expresando la proteína fluorescente IFP1 .4. Los resultados después de 72 h de incubación muestran una concentración inhibitoria de IC50 de 0,84 ± 0,20; 1 , 15 ± 0,42; 0.21 ± 0,04; 0, 13 ± 0,003 μΜ respectivamente. El mismo tipo de ensayo utilizando explantes esplénicos no infectados, o cultivos celulares en macrófagos murinos Raw 264.7 y heopatocarcinoma celular humano HepG-2, obteniendo valores de IC50 21 ,66 ± 4,3; 4,99 ± 0,4; 8,41 ± 1 ,41 y 2,84 ±1 ,01 μΜ respectivamente. Los índices de selectividad IC50 no infectado /IC50 infectado son de 25; 4,33; 40 y 23. Estos resultados nos indican que dichos dendrímeros pueden utilizarse en futuros ensayos con fines terapéuticos. In Fig. 9 the results obtained in pre-treatment, with the BDMG017 and BDMG018 dendrimers were very significant, since both dendrimers protect more than 90% the infection of the PBMC that are the first target of the virus, at the highest concentrations 10μΜ low. This effect was observed with the two dendrimers and both HIVNL.4 and HIVBa viral isolates. In the same figure 9 we can observe the results obtained when we first infected the PBMC and then treated them with the dendrimers, in this situation there is also between 25-50% inhibition of the replication of the two viral isolates R5 and X4, although It is not as drastic as when the dendrimer is used as a pre-treatment. These data clearly indicate that both dendrimers could be used as microbicides, although more experiments should be performed in vitro. BIOLOGICAL ACTIVITY OF CATIÓNIC AND ANIONIC DENDRÍMEROS IN FRONT OF LEISHMANIA. Carbosilane dendrimers (BDEF031; BDEF032; BDEF033 and BDEF0347) were tested in splenic explants of Balc / c mice infected with Leishmania infantum BCN-150 expressing the fluorescent protein IFP1 .4. The results after 72 h of incubation show an inhibitory concentration of IC50 of 0.84 ± 0.20; 1, 15 ± 0.42; 0.21 ± 0.04; 0.13 ± 0.003 μΜ respectively. The same type of assay using uninfected splenic explants, or cell cultures in Raw 264.7 murine macrophages and HepG-2 human cell heopatocarcinoma, obtaining IC50 values 21, 66 ± 4.3; 4.99 ± 0.4; 8.41 ± 1, 41 and 2.84 ± 1.01 μΜ respectively. The uninfected IC50 / infected IC50 selectivity indices are 25; 4.33; 40 and 23. These results indicate that such dendrimers can be used in future trials for therapeutic purposes.

Claims

REIVINDICACIONES
1 . Compuesto dendrítico carbosilano que comprende: one . Dendritic carbosilane compound comprising:
una capa externa, que consiste, total o parcialmente, en unidades iguales o diferentes del grupo de fórmula (I):
Figure imgf000061_0001
an outer layer, consisting, totally or partially, of equal or different units of the group of formula (I):
Figure imgf000061_0001
(I)  (I)
donde:R2 es un grupo alquilo (C1-C4) , where: R 2 is a (C1-C4) alkyl group,
p es un número entero y varía entre 1 y 3, y  p is an integer and varies between 1 and 3, and
Ri es el siguiente grupo -(CH2),cS-(CI-l2)y-R3; Ri is the following group - (CH 2 ), cS- (CI-l 2 ) and R 3 ;
x representa un número entero que varía de 2 a 5;  x represents an integer that varies from 2 to 5;
y representa un número entero que varía de 1 a 10; y  and represents an integer that varies from 1 to 10; Y
R3 es un grupo -OH, -S03H, -OS03H, -COOR', -NR"R"', donde R', R" y R'", representan de manera independiente un grupo alquilo (CrC4) o un hidrógeno; R 3 is a group -OH, -S0 3 H, -OS0 3 H, -COOR ', -NR "R"', where R ', R "and R'" independently represent an alkyl group (CrC 4 ) or a hydrogen;
o cualquiera de sus sales.  or any of its salts.
2. Compuesto según cualquiera de las reivindicaciones anteriores, donde p es 2.  2. Compound according to any of the preceding claims, wherein p is 2.
3. Compuesto según cualquiera de las reivindicaciones anteriores, donde R2 es un grupo metilo.3. Compound according to any of the preceding claims, wherein R 2 is a methyl group.
4. Compuesto según cualquiera de las reivindicaciones anteriores, donde x es 2 ó 3. 4. Compound according to any of the preceding claims, wherein x is 2 or 3.
5. Compuesto según cualquiera de las reivindicaciones anteriores, donde R3 es un grupo -N(CH3)2.5. Compound according to any of the preceding claims, wherein R 3 is a group -N (CH 3 ) 2 .
6. Compuesto según la reivindicación anterior, donde y es 2. 6. Compound according to the preceding claim, wherein y is 2.
7. Compuesto según cualquiera de las reivindicaciones 1 a 4, donde R3 es un grupo -C02H o - C02Me. 7. Compound according to any of claims 1 to 4, wherein R 3 is a group -C0 2 H or - C0 2 Me.
8. Compuesto según la reivindicación anterior, donde y es 1 ó 2.  8. Compound according to the preceding claim, wherein y is 1 or 2.
9. Compuesto según cualquiera de las reivindicaciones 1 a 4, donde R3 es un grupo -S03H o - OS03H. 9. A compound according to any one of claims 1 to 4, wherein R 3 is a group -S0 3 H or - OS0 3 H.
10. Compuesto según según la reivindicación anterior, donde y es 2 ó 3.  10. Compound according to claim 1, wherein y is 2 or 3.
1 1 . Compuesto según cualquiera de las reivindicaciones anteriores, donde en la capa externa además comprende un grupo Ri donde al menos uno de los grupos R3 es un grupo R3 diferente al resto de grupos R3 que forman la capa externa del compuesto dendrítico, un grupo -NHR5 o un grupo -R5, y donde dicho R5 es un grupo director, una molécula etiqueta, preferiblemente un fluoroforo, o un principio activo. eleven . Compound according to any of the preceding claims, wherein in the outer layer it further comprises a group Ri where at least one of the groups R 3 is a group R 3 different from the rest of groups R 3 that form the outer layer of the dendritic compound, a group -NHR 5 or a group -R 5 , and wherein said R 5 is a leader group, a tag molecule, preferably a fluorophore, or an active ingredient.
12. Compuesto según la reivindicación anterior, donde R5 es un fluoroforo que se selecciona de lista que comprende fluoresceína, rodamina y dansilo. 12. Compound according to the preceding claim, wherein R 5 is a fluorophore that is selected from the list comprising fluorescein, rhodamine and dansyl.
13. Compuesto según la reivindicación anterior, donde dicho compuesto es un dendrímero o una cuña dendrítica.  13. A compound according to the preceding claim, wherein said compound is a dendrimer or dendritic wedge.
14. Compuesto según cualquiera de las reivindicaciones anteriores, donde dicho compuesto es un dendrímero que comprende un núcleo polifuncional seleccionado entre un grupo sililo o un polifenol.  14. A compound according to any of the preceding claims, wherein said compound is a dendrimer comprising a polyfunctional core selected from a silyl group or a polyphenol.
15. Compuesto según la reivindicación anterior, donde el polifenol es 1 ,3,5-trihidroxibenceno.  15. Compound according to the preceding claim, wherein the polyphenol is 1,3,5-trihydroxybenzene.
16. Compuesto según cualquiera de las reivindicaciones 1 a 13, donde dicho compuesto es una cuña dendrítica con un punto focal seleccionado del grupo -(CH2)Z-R4; donde z es un número entero que varía de 1 a 10 y R4 es grupo seleccionado de la lista que comprende -OH, -SH, Br, -COOR4'", - NR4'R4", ftalimida, -N3, -0-CH2-CCH, -O-CCH, -NHR5, R5, -SCOCH3 o - p-O- C6H4-(CH2) -OH donde R ' y R " representan de manera independiente un grupo alquilo (CrC ) o un hidrógeno, x' es un valor entero que varia de entre 1 a 4 y R5 esta descrito en cualquiera de las reivindicaciones 1 1 o 12. 16. Compound according to any of claims 1 to 13, wherein said compound is a wedge dendritic with a focal point selected from the group - (CH 2 ) Z -R4; where z is an integer ranging from 1 to 10 and R 4 is a group selected from the list comprising -OH, -SH, Br, -COOR 4 '", - NR 4 ' R 4 ", phthalimide, -N 3 , -0-CH 2 -CCH, -O-CCH, -NHR 5 , R 5 , -SCOCH 3 or - pO- C 6 H 4 - (CH 2 ) -OH where R 'and R "independently represent a alkyl group (CrC) or a hydrogen, x 'is an integer value ranging from 1 to 4 and R 5 is described in any one of claims 1 1 or 12.
17. Compuesto según cualquiera de las reivindicaciones anteriores, donde dicho compuesto es catiónico, cuando R3 es un grupo amino, o aniónico para el resto de grupos R3 descritos en la reivindicación 1 . 17. Compound according to any of the preceding claims, wherein said compound is cationic, when R 3 is an amino group, or anionic for the rest of R 3 groups described in claim 1.
18. Compuestos según la reivindicación anterior, donde dicho compuesto está en forma de sal.  18. Compounds according to the preceding claim, wherein said compound is in the form of salt.
19. Procedimiento de obtención de los compuestos descritos según cualquiera de las reivindicaciones 1 a 18, que comprende una reacción tiol-eno o tiol-ino, entre un precursor de dicho compuesto con olefinas o alquinos terminales, respectivamente, y el grupo tiol SH-(CH2)y-R3, donde R3 e y están descritos en la reivindicación 1 . 19. Process for obtaining the compounds described according to any one of claims 1 to 18, which comprises a thiol-ene or thiol-ino reaction, between a precursor of said compound with olefins or terminal alkynes, respectively, and the thiol group SH- (CH 2 ) and -R 3 , wherein R 3 e and are described in claim 1.
20. Procedimiento según la reivindicación anterior, donde dicha reacción se lleva a cabo en presencia de un disolvente polar y preferiblemente en presencia de un fotoiniciador.  20. Method according to the preceding claim, wherein said reaction is carried out in the presence of a polar solvent and preferably in the presence of a photoinitiator.
21 . Uso de los compuestos catiónicos descritos según cualquiera de las reivindicaciones 1 a 18, como vector no viral.  twenty-one . Use of the cationic compounds described according to any of claims 1 to 18, as a non-viral vector.
22. Uso según la reivindicación anterior, donde el vector no viral es empleado para la transfección o internalización de material nucleico en procesos de terapia génica.  22. Use according to the preceding claim, wherein the non-viral vector is used for transfection or internalization of nucleic material in gene therapy processes.
23. Uso según la reivindicación anterior, donde el material nucleico se selecciona entre oligonucleotidos, siRNA o ADN.  23. Use according to the preceding claim, wherein the nucleic material is selected from oligonucleotides, siRNA or DNA.
24. Uso de los compuestos descritos según cualquiera de las reivindicaciones 1 a 18, para la elaboración de un medicamento.  24. Use of the compounds described according to any of claims 1 to 18, for the preparation of a medicament.
25. Uso de los compuestos descritos según cualquiera de las reivindicaciones 1 a 18, para la elaboración de un medicamento para la prevención y/o el tratamiento de enfermedades causadas por un microorganismo.  25. Use of the compounds described according to any of claims 1 to 18, for the preparation of a medicament for the prevention and / or treatment of diseases caused by a microorganism.
26. Uso según la reivindicación anterior, donde la enfermedad es causada por el VIH.  26. Use according to the preceding claim, wherein the disease is caused by HIV.
27. Uso de los compuestos descritos según cualquiera de las reivindicaciones 1 a 18, para la elaboración de un medicamento para la prevención y/o el tratamiento de leishmaniasis.  27. Use of the compounds described according to any of claims 1 to 18, for the preparation of a medicament for the prevention and / or treatment of leishmaniasis.
28. Composición farmacéutica que comprende un compuesto según cualquiera de las reivindicaciones 1 a 18.  28. Pharmaceutical composition comprising a compound according to any one of claims 1 to 18.
29. Composición farmacéutica que además comprende un vehículo farmacéuticamente aceptable y/o otro principio activo, preferiblemente un antibiótico, antiinflamatorio o antiviral.  29. Pharmaceutical composition further comprising a pharmaceutically acceptable carrier and / or other active ingredient, preferably an antibiotic, anti-inflammatory or antiviral.
30. Vector no viral que comprende al menos un compuesto catiónico según cualquiera de las reivindicaciones 1 a 18.  30. Non-viral vector comprising at least one cationic compound according to any one of claims 1 to 18.
31 . Vector según la reivindicación anterior, que además comprende material nucleico.  31. Vector according to the preceding claim, which further comprises nucleic material.
32. Vector según la reivindicación anterior, donde el material nucleico se selecciona de entre oligonucleotidos, siRNA o ADN.  32. Vector according to the preceding claim, wherein the nucleic material is selected from oligonucleotides, siRNA or DNA.
33. Uso del vector no viral según cualquiera de las reivindicaciones 30 a 32, para la elaboración de un medicamento.  33. Use of the non-viral vector according to any of claims 30 to 32, for the preparation of a medicament.
34. Uso del vector no viral según cualquiera de las reivindicaciones 30 a 32, para la elaboración de un medicamento para el tratamiento de la infección por VIH o del cáncer en terapia génica. 34. Use of the non-viral vector according to any of claims 30 to 32, for the preparation of a medicine for the treatment of HIV infection or cancer in gene therapy.
35. Uso del compuesto según cualquiera de las reivindicaciones 1 a 18, como vehículo de transporte de moléculas.  35. Use of the compound according to any of claims 1 to 18, as a molecule transport vehicle.
36. Uso según la reivindicación anterior, donde la molécula es aniónica o catiónica.  36. Use according to the preceding claim, wherein the molecule is anionic or cationic.
37. Uso según la reivindicación anterior, donde la molécula es un fármaco, preferiblemente un antibiótico. 37. Use according to the preceding claim, wherein the molecule is a drug, preferably an antibiotic.
38. Uso del compuesto según cualquiera de las reivindicaciones 1 a 18, como agente biocida.  38. Use of the compound according to any of claims 1 to 18, as a biocidal agent.
PCT/ES2013/070529 2012-07-25 2013-07-19 Homo- and hetero-functionalised carbosilane dendritic compounds WO2014016460A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201231187A ES2444490B1 (en) 2012-07-25 2012-07-25 Homo and hetero-functionalized carbosilane dendritic compounds
ESP201231187 2012-07-25

Publications (1)

Publication Number Publication Date
WO2014016460A1 true WO2014016460A1 (en) 2014-01-30

Family

ID=49996650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070529 WO2014016460A1 (en) 2012-07-25 2013-07-19 Homo- and hetero-functionalised carbosilane dendritic compounds

Country Status (2)

Country Link
ES (1) ES2444490B1 (en)
WO (1) WO2014016460A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2543640A1 (en) * 2014-02-19 2015-08-20 Universidad De Alcalá Carbysilane dendrimers that have terminal thiol groups on their surface, their preparation and their uses (Machine-translation by Google Translate, not legally binding)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2657282B1 (en) * 2016-09-02 2018-12-17 Universidad De Alcalá Carbonylane dendrones functionalized with fatty acids: micelle formation and uses
ES2677242B1 (en) * 2017-01-31 2019-03-27 Univ Alcala Henares Nanoconjugates formed by dendritic molecules and peptides as antitumor agents against cancer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
B RASINES ET AL.: "Synthesis and fluorescent properties of cationic carbosilane dendrimers containing augenol linkers for their use in biomedical applications", NEW JOURNAL OF CHEMISTRY 2012, vol. 36, February 2012 (2012-02-01), pages 360 - 370 *
CHUN-FANG LI ET AL.: "Optical-gain enhancement of carbosilane dendrimer containing fluorescein groups in the periphery", JOURNAL OF LUMINISCENCE 2010, vol. 130, April 2010 (2010-04-01), pages 544 - 548 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2543640A1 (en) * 2014-02-19 2015-08-20 Universidad De Alcalá Carbysilane dendrimers that have terminal thiol groups on their surface, their preparation and their uses (Machine-translation by Google Translate, not legally binding)

Also Published As

Publication number Publication date
ES2444490A1 (en) 2014-02-25
ES2444490B1 (en) 2014-12-04

Similar Documents

Publication Publication Date Title
ES2625109T3 (en) Macromolecular compounds that have controlled stoichiometry
ES2265291B1 (en) NEW CARBOSILAN DENDRIMEROS, ITS PREPARATION AND ITS USES.
ES2257672T3 (en) POLYMERIC OR EXCIPIENT BIOMOLECULES OF DRUG CONTROLLED MEDICATIONS AND SYNTHESIS METHOD OF SUCH EXCIPIENTS.
WO2014053629A1 (en) Cell penetrating peptides for intracellular delivery of molecules
WO2014053881A1 (en) Cell penetrating peptides for intracellular delivery of molecules
BRPI0014652B1 (en) manufacture of therapeutic agent-polyglutamate conjugates
CA3007559A1 (en) Methods of preparing epoxide-functionalized polymers
CA3024371C (en) Multi-arm polymeric targeting anticancer conjugate
Chen et al. Self‐Assembled BolA‐like Amphiphilic Peptides as Viral‐Mimetic Gene Vectors for Cancer Cell Targeted Gene Delivery
Huang et al. Dendritic molecular transporters provide control of delivery to intracellular compartments
KR20100014255A (en) Self-assembling amphiphilic polymers as antiviral agents
Hussein et al. Peptide-based targeted polymeric nanoparticles for siRNA delivery
WO2014016460A1 (en) Homo- and hetero-functionalised carbosilane dendritic compounds
Ravula et al. Gemini lipopeptide bearing an ultrashort peptide for enhanced transfection efficiency and cancer-cell-specific cytotoxicity
Li et al. Endoplasmic reticulum localization of poly (ω-aminohexyl methacrylamide) s conjugated with (l-)-arginines in plasmid DNA delivery
CA3131007A1 (en) Peptide-functionalized biodegradable polymers for efficient delivery of various rnas
ES2374243B1 (en) NON-VIRAL VECTORS FOR GENE THERAPY.
JP2005515990A (en) Compound
US20150196657A1 (en) Dendritic Polypeptide-Based Nanocarriers for the Delivery of Therapeutic Agents
ES2657282B1 (en) Carbonylane dendrones functionalized with fatty acids: micelle formation and uses
ES2609464B2 (en) Metal nanoparticles stabilized with carbosilane dendrons and their uses
Sun et al. New amphiphilic N-phosphoryl oligopeptides designed for gene delivery
TW201807025A (en) Active-targeting-type polymer derivative, composition containing said polymer derivative, and uses of said polymer derivative and said composition
ES2370638B1 (en) DENDRIMEROS AS NON-VIRAL VEHICLES FOR GENE THERAPY
WO2011101520A2 (en) Carbosilane dendrimers and the use thereof as antiviral agents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13823654

Country of ref document: EP

Kind code of ref document: A1