WO2014015773A1 - 一种用于碟式太阳能热发电系统的对日跟踪方法和系统 - Google Patents

一种用于碟式太阳能热发电系统的对日跟踪方法和系统 Download PDF

Info

Publication number
WO2014015773A1
WO2014015773A1 PCT/CN2013/079794 CN2013079794W WO2014015773A1 WO 2014015773 A1 WO2014015773 A1 WO 2014015773A1 CN 2013079794 W CN2013079794 W CN 2013079794W WO 2014015773 A1 WO2014015773 A1 WO 2014015773A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
generation system
solar thermal
tracking
concentrating
Prior art date
Application number
PCT/CN2013/079794
Other languages
English (en)
French (fr)
Inventor
马迎召
刘帅
朱楷
党安旺
王旻晖
Original Assignee
湘潭电机股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湘潭电机股份有限公司 filed Critical 湘潭电机股份有限公司
Publication of WO2014015773A1 publication Critical patent/WO2014015773A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/10Control of position or direction without using feedback
    • G05D3/105Solar tracker

Definitions

  • the invention relates to a method and system for tracking a solar thermal power generation system.
  • the application is submitted to the Chinese Patent Office on July 23, 2012, and the application number is 201210255749.1.
  • the invention is entitled "A solar thermal power generation for a dish.”
  • the present invention relates to the field of solar power generation technology, and in particular to a method and system for tracking a day for a dish type solar thermal generation system. Background technique
  • Dish-type concentrating solar thermal power generation is currently the most efficient solar power generation method with a maximum efficiency of 29.4%. It is expected that in the future, industrialized large-scale applications will be realized, and the cost will be greatly reduced, which will become a new energy power generation that competes with large-scale conventional power plants.
  • the dish-type solar thermal power generation system generally has a small power of about 5-100 KW, so that it can realize separate distributed power generation, and it can also carry out large-scale power generation by multiple single-unit networks. The application range is very wide, and it is currently the global solar power generation. Research hotspots.
  • the principle of dish-type concentrating solar thermal power generation is to use the concentrating mirror that automatically tracks the sun to focus the solar energy on the collector of the heat engine, thereby heating the engine to perform motion work, and the engine drags the generator to realize power generation.
  • the automatic tracking system for the sun is one of its key components.
  • the technical problem to be solved by the present invention is to provide a method and system for tracking the sun for a solar thermal power generation system, to improve the tracking accuracy of sunlight, and to enhance the concentrating effect of the solar thermal power generation system on the incident light of sunlight.
  • the present invention provides a day tracking method for a dish type solar thermal power generation system, the solar thermal power generation system is provided with a concentrating disc and a heat collector, and the method for tracking the date includes the following steps:
  • the temperature distribution image of the collector is obtained by using infrared thermal imaging.
  • the method further comprises:
  • Step 4) judging whether the collector is overheated, if yes, proceeding to step 5), if not, performing step 6);
  • the method further comprises:
  • step 10 After performing step 10) and step 3), both return to step 1).
  • the invention provides a tracking method for a solar thermal power generation system of a dish type, firstly obtaining temperature distribution information of the collector; and then determining that the solar incident light is concentrated according to the temperature distribution information Whether the disc is fully focused after concentrating, if it is, keep the current angle of the concentrating disc unchanged, if not, obtain the current angle of the concentrating disc, and the target angle of the concentrating disc required for full focus, and adjust the current angle of the concentrating disc to Target angle.
  • the tracking method provided by the invention obtains the current focusing condition by analyzing the temperature distribution information in the collector, and corrects the position of the concentrating disc by the method of deviation adjustment according to the current focusing condition, thereby realizing accurate tracking of the sun and enhancing the pair.
  • the present invention also provides a day tracking system for a dish type solar thermal power generation system, the solar thermal power generation system including a concentrating disk and a heat collector; the day tracking system includes a collector thermal imaging device, and micro processing And position detecting device;
  • the position detecting device is configured to detect a current angle of the concentrating disc of the solar thermal power generation system, and output the same to the microprocessor;
  • the collector thermal imaging device is aligned with a collector chamber of the collector for collecting a temperature distribution of the collector and its periphery;
  • the microprocessor is connected to the collector thermal imaging device, and configured to determine, according to the temperature distribution information, whether the solar incident light is completely focused after being collected by the concentrating disc, and acquire the poly when the focus is not completely focused.
  • the current angle of the disc is analyzed to calculate the target angle of the concentrating disc required for full focus, and a control command is issued to adjust the current angle of the concentrating disc to the target angle.
  • the thermal imaging device is an infrared thermal imaging device.
  • the controller is further configured to determine whether the heat collector is overheated, and to turn on the overheat protection device of the solar thermal power generation system if the collector is overheated.
  • the method further comprises a wind speed and direction detecting device for detecting the current wind speed, the current wind direction, and outputting the detection result to the microprocessor, wherein the microprocessor is further configured to determine whether the wind speed is too large, and the wind speed is too large.
  • the wind protection device of the solar thermal power generation system is turned on according to the wind direction.
  • the day tracking system is a closed loop control system.
  • DRAWINGS 1 is a flow chart of a specific implementation manner of a tracking method according to the present invention
  • FIG. 2 is a flow chart of another specific implementation manner of a tracking method according to the present invention
  • Figure 3 is an infrared imaging diagram when the current angle of the concentrating disc is the same as the target angle;
  • Figure 4 is an infrared imaging diagram when the current height angle of the concentrating disc is too large;
  • Figure 5 is an infrared imaging diagram of the current azimuth of the concentrating disc being small
  • FIG. 6 is an infrared imaging diagram of a current height angle of the concentrating disc and a current azimuth angle being small;
  • FIG. 7 is a structural block diagram of a specific embodiment of the tracking system provided by the present invention;
  • microprocessor 1 servo drive system 2; reduction transmission mechanism 3; position detecting device 4; collector thermal imaging device 5; Image interface module 6; wind speed and direction detecting device 7;
  • the core of the present invention is to provide a method and system for tracking the sun for a solar thermal power generation system, which can accurately track the sunlight, improve the concentrating effect of the incident light of the sun on the condensed disk, and enhance the solar heat. Power generation efficiency of power generation systems.
  • FIG. 1 is a flow chart of a specific implementation manner of a tracking method for a day according to the present invention.
  • the present invention provides a method for tracking a day for a solar thermal power generation system.
  • the solar thermal power generation system is provided with a concentrating disk 20 and a heat collector 10, and a concentrating disk. 20 Focusing the incident light of the sun, the collector 10 is mounted in front of the focus of the concentrating disc 20 for collecting the heat generated by the focused sunlight.
  • the above-mentioned tracking method includes the following steps:
  • the heat collector 10 is a device for absorbing solar radiation to convert it into heat energy and transferring it to the heat medium, the portion of the collector 10 having a higher temperature collects more light, so the temperature of the heat collector 10 is The degree distribution information can reflect the focus of the incident light of the sunlight collected by the concentrating disc 20.
  • S12 analyzing and calculating the temperature distribution information of the collector, and extracting the relationship between the incident light of the sun and the parabolic concentrating disc according to the reflection principle of the parabolic parallel light, and determining whether the incident light of the sun is concentrated by the concentrating disc 20 Full focus, if yes, go to step S14, if not, go to step S13;
  • S13 acquiring a current angle of the concentrating disc 20, and further acquiring a target angle of the concentrating disc 20 required for complete focusing according to the temperature distribution information, and adjusting a current angle of the concentrating disc 20 to a target angle;
  • step S13 by comparing the deviation between the current angle of the concentrating disc 20 and the target angle, and adjusting the current angle of the concentrating disc 20 to the target angle by the method of deviation adjustment, it is ensured that the incident light of the sun is concentrated by the concentrating disc 20 to achieve complete focusing. effect.
  • the tracking method provided by the present invention knows the current focusing condition by analyzing the temperature distribution information in the collector 10, and corrects the position of the concentrating disc 20 by the method of deviation adjustment according to the current focusing condition, thereby realizing the sun. Accurate tracking enhances the focus accuracy of the sun's incident light.
  • the above-mentioned method for tracking the sun must be based on the premise that the spot of the sun's incident light is focused on the collector, and therefore the astronomical algorithm must be used before the implementation of the above-mentioned tracking method.
  • the program tracks the sun's trajectory, calculates the coarse elevation angle and azimuth of the sun, and drives the concentrating disc to a direction substantially parallel to the sun's rays to ensure that the focused spot is inside the collector. Since this step is a condition that is inevitably required before the implementation of the present invention, and is a very common step in the prior art, it will not be repeated herein.
  • FIG. 2 is a flow chart of another specific implementation manner of the tracking method according to the present invention.
  • the foregoing tracking method may specifically include the following steps:
  • S21 The temperature distribution image of the heat collector 10 is obtained by infrared thermal imaging.
  • an infrared imaging device such as an infrared camera, an infrared camera, or the like, may be disposed in the heat collector 10, and the infrared imaging device is aligned with the collector cavity, and can be directly obtained through the shooting thereof.
  • the temperature distribution of the collector 10, that is, the final output of the sun tracking is collected, thereby providing accurate and true reflection information, which lays a good foundation for the subsequent control process.
  • the figure is an infrared imaging image when the current angle of the concentrating disc 20 is the same as the target angle.
  • the inner circular shadow portion of the infrared imaging image reflects the position of the concentrating disc 20, and the outer cymbal ring portion reflects the sun incidence.
  • the position of the light, at this time, the concentrating disc 20 coincides with the center of the solar ring, indicating that the incident light of the sun is completely focused by the concentrating disc 20, and it is not necessary to adjust the position of the concentrating disc 20.
  • the figure is an infrared imaging image when the current height angle of the concentrating disc 20 is too large.
  • the center of the concentrating disc 20 is biased directly above the center of the solar ring, indicating that the height angle is large, and the processor is at this time.
  • a control command is issued to reduce the elevation angle of the concentrating disc 20.
  • the figure is an infrared imaging image in which the current azimuth of the concentrating disc 20 is small.
  • the center of the concentrating disc 20 is biased to the left of the center of the solar ring, indicating that the azimuth angle is small, and the processor is at this time.
  • a control command is issued to increase the azimuth of the concentrating disk 20.
  • the figure is an infrared imaging image in which the current elevation angle of the concentrating disc 20 and the current azimuth angle are both small.
  • the center of the concentrating disc 20 is biased to the lower left of the center of the solar ring, and the microprocessor sends out The control command increases the azimuth and elevation angle of the concentrating disk 20.
  • the height angle and the azimuth angle of the concentrating disc 20 are in the thermal imaging image of the collector 10 corresponding to other large or small cases, and the height angle and the azimuth angle of the concentrating disc 20 are adjusted accordingly to make the concentrating disc. 20 is completely focused. It can be seen that the direct output of the tracking of the daily tracking by the infrared thermal imaging method can provide a clear and straightforward basis for the subsequent control process, so that the entire tracking method has the advantages of novel conception and operation. . Of course, the above-mentioned day tracking method can also obtain the temperature distribution information of the heat collector 10 by other means.
  • the method further includes:
  • Step S24 determining whether the heat collector 10 is overheated, and if yes, proceeding to step S25, if not, Then executing step S26;
  • the collector 10 can be protected to prevent the collector 10 from being ablated due to excessive temperature, thereby further ensuring the operational stability and reliability of the solar thermal power generation system. Since the structure of the overheat protection device is prior art, it will not be described here.
  • the foregoing tracking method may further include: Step S27: Acquire a current wind speed and direction signal;
  • Step S28 determining whether the wind speed is too large, if yes, executing step S29, if not, executing step S210;
  • control method can prevent the damage caused by the excessive wind speed on the concentrating disc 20, and further ensure the working stability of the solar thermal power generation system.
  • the collector 10 protects the collector according to whether the collector 10 is overheated, and the method of protecting the condensed disc according to the wind speed and direction signals.
  • the steps S24 to S26 are as shown in the foregoing steps S24 to S26.
  • the operation, the operations shown in steps S27 to S210 are not limited to the above-described order, and the former may be performed at any time after the temperature distribution information of the heat collector is acquired, and the latter may be performed at any time without limitation. Users can choose according to their actual needs.
  • the protection method may return to the step S11, that is, the method for tracking the date may be specifically a closed loop control method.
  • the closed-loop control method can realize real-time tracking of the sun by real-time detection of a real-time feedback and real-time control to ensure that the sunlight is completely focused after being collected by the concentrating disc 20.
  • the above-mentioned daily tracking method can also adopt other methods of open-loop control such as timing control, and the user can select according to actual needs.
  • FIG. 7 is a structural block diagram of a specific implementation manner of a day tracking system according to the present invention
  • FIG. 8 is a physical structure cartridge diagram of the day tracking system shown in FIG.
  • the present invention further provides a day tracking system for a dish type solar thermal power generation system, comprising a collector thermal imaging device 5, a microprocessor 1 and a position detecting device 4;
  • the position detecting device 4 may be specifically a position encoder installed at a terminal of the azimuth and elevation angles of the concentrating disc 10 for detecting the current angle of the concentrating disc 10 of the solar thermal power generation system and outputting it to the microprocessor 1 .
  • the collector thermal imaging device 5 is aligned with the collector chamber of the collector 10, as shown in FIG. 8, and may be specifically mounted on a support beam parallel to the collector 20 for the collector thermal imaging device 5
  • the temperature distribution information of the collector 20 and its periphery is collected, and the temperature distribution information is actually a temperature distribution image. After the collector thermal imaging device 5 collects the temperature distribution image, the image may be specifically sent to the micro processing through the image interface module 6.
  • the microprocessor 1 is connected to the thermal imaging device 5 of the collector for determining whether the incident light of the sun is completely focused after being collected by the concentrating disc 10 according to the temperature distribution information, and acquiring the current angle of the concentrating disc 10 under the condition of incomplete focusing.
  • the analysis calculates the target angle of the concentrating disc 10 required for complete focusing, and then calculates the deviation angle between the current angle and the target angle, and issues a control command to the servo drive system 2 of the concentrating disc 10.
  • the servo drive system 2 changes the angle of the concentrating disc 10 by a deceleration transmission mechanism 3 (for example, a multi-stage reduction gear or a screw jack), and finally adjusts the concentrating disc 10 Current angle to target angle. Since the servo drive system 2 and the reduction transmission mechanism 3 are commonly used devices in the prior art, they will not be described again.
  • a deceleration transmission mechanism 3 for example, a multi-stage reduction gear or a screw jack
  • the day-to-day tracking system uses the analysis of the temperature distribution information in the collector 20 to know the current focus condition, and corrects the position of the concentrating disk 10 by the deviation adjustment method according to the current focus condition. Accurate tracking of the sun is achieved, and the focusing accuracy of the incident light of the sun is enhanced.
  • the thermal imaging device is an infrared thermal imaging device, such as an infrared camera or an infrared camera.
  • the microprocessor 1 is further configured to determine whether the heat collector 20 is overheated, and to turn on the overheat protection device of the solar thermal power generation system when the heat collector 20 is overheated.
  • the foregoing tracking system may further include a wind speed and wind direction inspection.
  • the measuring device 7 is configured to detect the current wind speed and the current wind direction, and output the detection result to the microprocessor 1.
  • the microprocessor 1 is further configured to determine whether the wind speed is too large, and turn on the solar energy according to the wind direction when the wind speed is too large. Wind protection device for thermal power generation systems.
  • the above-mentioned day tracking system may be a closed loop control system.
  • the tracking system corresponding to the above-mentioned Japanese tracking method should also have corresponding technical effects, and details are not described herein again.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Photovoltaic Devices (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种用于碟式太阳能热发电系统的对日跟踪方法,所述太阳能热发电系统设有聚光碟(20)和集热器(10),所述对日跟踪方法包括如下步骤:1)获取所述集热器(10)的温度分布信息;2)根据所述温度分布信息判断太阳入射光线经所述聚光碟(20)聚光后是否完全聚焦,若是,执行步骤10),若不是,执行步骤3);3)获取所述聚光碟(20)的当前角度,以及完全聚焦时所需的聚光碟(20)的目标角度,并调整所述聚光碟(20)的所述当前角度至所述目标角度;10)保持聚光碟的当前角度不变。这种方法实现了对太阳的准确跟踪,增强对太阳入射光线的聚焦精度。一种与上述对日跟踪方法对应的用于碟式太阳能热发电系统的对日跟踪系统,具有相同效果。

Description

一种用于碟式太阳能热发电系统的对日跟踪方法和系统 本申请要求于 2012 年 07 月 23 日提交中国专利局、 申请号为 201210255749.1、 发明名称为"一种用于碟式太阳能热发电系统的对日跟踪 方法和系统"的中国专利申请的优先权,其全部内容通过引用结合在本申请 中。
技术领域
本发明涉及太阳能发电技术领域, 尤其涉及一种用于碟式太阳能热发 电系统的对日跟踪方法和系统。 背景技术
随着世界经济的发展, 全球对能源需求日益增长, 传统的化石能源越 来越不能满足人类的发展要求, 全球面临着严重的能源短缺和燃烧化石能 源产生的污染问题, 世界各国均在寻找可替代化石能源的可持续发展的无 污染的新能源。 太阳能具有取之不尽, 用之不竭, 且无污染不受地域限制 等特点, 被认为是最理想的新能源之一。
碟式聚光太阳能热发电是目前效率最高的一种太阳能发电方式, 最高 效率可达 29.4%。 预计在未来形成产业化大规模应用, 其成本将会大幅降 低, 成为与大规模常规电厂进行成本竟争的新能源发电。 碟式太阳能热发 电系统一般功率较小, 约为 5-100KW, 因此可实现单独的分布式发电, 也 可以多台单机组网进行大规模电厂发电, 应用范围十分广泛, 是目前全球 太阳能发电的研究热点。
碟式聚光太阳能热发电的原理是利用自动跟踪太阳的聚光镜将太阳能 聚焦到热机的集热器,从而加热发动机进行运动做功,发动机拖动发电机, 从而实现发电。 由其原理可知,对太阳的自动跟踪系统是其关键部件之一。
现有的太阳自动跟踪装置大多采用定时跟踪方式、 光敏传感器跟踪方 式或定时跟踪与光敏传感器相结合的跟踪方式, 但其对日跟踪精度不高, 不能完全满足现有碟式太阳能发电的要求。
有鉴于此, 亟待针对上述技术问题, 另辟蹊径设计一种用于碟式太阳 能热发电系统的对日跟踪方法和系统, 实现对太阳光的准确跟踪, 提高太 阳能热发电系统对太阳光入射光线的聚光效果, 从而增强热发电效率。 发明内容
本发明要解决的技术问题为提供一种用于碟式太阳能热发电系统的 对日跟踪方法和系统, 提高对太阳光的跟踪精度, 增强太阳能热发电系统 对太阳光入射光线的聚光效果。
为解决上述技术问题, 本发明提供一种用于碟式太阳能热发电系统的 对日跟踪方法, 所述太阳能热发电系统设有聚光碟和集热器, 所述对日跟 踪方法包括如下步骤:
1 )获取所述集热器的温度分布信息;
2 )根据所述温度分布信息判断太阳入射光线经所述聚光碟聚光后是否 完全聚焦, 若是, 执行步骤 10 ), 若不是, 执行步骤 3 );
3 )获取所述聚光碟的当前角度,根据所述温度分布信息获取以及完全 聚焦时所需的聚光碟的目标角度, 并调整所述聚光碟的所述当前角度至所 述目标角度;
10 )保持所述聚光碟的当前角度不变。
优选地, 所述步骤 1 ) 中具体采用红外热成像的方法获取所述集热器 的温度分布图像。
优选地, 在所述步骤 1 )后还包括:
步骤 4 )判断所述集热器是否过热, 若是, 则进行步骤 5 ), 若不是, 则执行步骤 6 );
5 )开启所述太阳能热发电系统的过热保护装置;
6 )保持所述过热保护装置为关闭状态。
优选地, 还包括:
获取当前风速、 当前风向信号, 并判断所述风速是否过大, 若是, 则 根据所述风向开启所述太阳能热发电系统的避风保护装置; 若不是, 则保 持所述避风保护装置为关闭状态。
优选地, 执行所述步骤 10 )和所述步骤 3 )后均返回步骤 1 )。
本发明提供一种用于碟式太阳能热发电系统的对日跟踪方法, 首先获 取集热器的温度分布信息; 然后根据温度分布信息判断太阳入射光线经聚 光碟聚光后是否完全聚焦, 若是则保持聚光碟的当前角度不变, 如不是则 获取聚光碟的当前角度, 以及完全聚焦时所需的聚光碟的目标角度, 并调 整聚光碟的当前角度至目标角度。
本发明提供的对日跟踪方法通过对集热器中温度分布信息的分析获 知当前聚焦情况, 并根据当前聚焦情况通过偏差调整的方法校正聚光碟的 位置, 实现了对太阳的准确跟踪, 增强对太阳入射光线的聚焦精度。
本发明还提供一种用于碟式太阳能热发电系统的对日跟踪系统, 所述 太阳能热发电系统包括聚光碟和集热器; 所述对日跟踪系统包括集热器热 成像装置、 微处理器和位置检测装置;
所述位置检测装置用于检测太阳能热发电系统的聚光碟的当前角度, 并输出给所述微处理器;
所述集热器热成像装置对准所述集热器的集热器腔, 用于采集所述集 热器及其周边的温度分布;
所述微处理器与所述集热器热成像装置连接, 用于根据温度分布信息 判断太阳入射光线经所述聚光碟聚光后是否完全聚焦, 并在非完全聚焦的 情况下获取所述聚光碟的当前角度, 分析计算出完全聚焦时所需的聚光碟 的目标角度, 并发出控制命令调整所述聚光碟的所述当前角度至所述目标 角度。
优选地, 所述热成像装置为红外热成像装置。
优选地, 所述控制器还用于判断所述集热器是否过热, 并在所示集热 器过热的情况下开启所述太阳能热发电系统的过热保护装置。
优选地, 还包括风速风向检测装置, 用于检测当前风速、 当前风向, 并将其检测结果输出至微处理器,所述微处理器还用于判断风速是否过大, 并在风速过大的情况下根据所述风向开启所述太阳能热发电系统的避风保 护装置。
优选地, 所述对日跟踪系统为闭环控制系统。
由于对日跟踪方法具有上述技术效果, 因此, 与上述对日跟踪方法对 应的对日跟踪系统也应当具有相同的技术效果, 在此不再赘述。 附图说明 图 1为本发明所提供对日跟踪方法的一种具体实施方式的流程框图; 图 2 为本发明所提供对日跟踪方法的另一种具体实施方式的流程框 图;
图 3为聚光碟的当前角度与目标角度相同时的红外成像图; 图 4为聚光碟的当前高度角偏大时的红外成像图;
图 5为聚光碟的当前方位角偏小时的红外成像图;
图 6为聚光碟的当前高度角、 当前方位角均偏小时的红外成像图; 图 7为本发明所提供对日跟踪系统的一种具体实施方式的结构框图; 图 8为图 7所示的对日跟踪系统的实物结构筒图。
其中, 图 7和图 8中的附图标记与部件名称之间的对应关系为: 微处理器 1 ; 伺服驱动系统 2; 减速传动机构 3; 位置检测装置 4; 集 热器热成像装置 5; 图像接口模块 6; 风速风向检测装置 7;
集热器 20; 聚光碟 10。 具体实施方式
本发明的核心为提供一种用于碟式太阳能热发电系统的对日跟踪方 法和系统, 其能够实现对太阳光的准确跟踪, 提高太阳入射光线经聚光碟 的聚光效果, 进而增强太阳能热发电系统的发电效率。
为了使本领域的技术人员更好地理解本发明的技术方案, 下面结合附 图和具体实施例对本发明作进一步的详细说明。
请参考图 1 , 图 1为本发明所提供对日跟踪方法的一种具体实施方式 的流程框图。
在一种具体实施方式中, 如图 1所示, 本发明提供一种用于碟式太阳 能热发电系统的对日跟踪方法,太阳能热发电系统设有聚光碟 20和集热器 10, 聚光碟 20将太阳入射光线聚焦, 集热器 10安装于聚光碟 20的焦点前 方, 用于收集聚焦后的太阳光产生的热量, 上述对日跟踪方法包括如下步 骤:
S11 : 获取集热器 10的温度分布信息;
由于集热器 10是用来吸收太阳辐射使之转换为热能并传递给热介质 的装置, 集热器 10温度越高的部分采集的光线越多, 因此集热器 10的温 度分布信息可以反映出太阳光入射光线经聚光碟 20聚光后的聚焦情况。 S12: 对集热器温度分布信息进行分析、计算处理, 并根据抛物面对平 行光线的反射原理, 提取出太阳入射光线与抛物面聚光碟的关系, 进而判 断太阳入射光线经聚光碟 20聚光后是否完全聚焦, 若是, 执行步骤 S14, 若不是, 执行步骤 S13;
S13: 获取聚光碟 20的当前角度, 并根据温度分布信息进一步获取完 全聚焦时所需的聚光碟 20的目标角度, 并调整聚光碟 20的当前角度至目 标角度;
S14: 保持聚光碟的当前角度不变。
步骤 S13通过比较聚光碟 20的当前角度与目标角度的偏差,并通过偏 差调整的方法将聚光碟 20的当前角度调整至目标角度,能够保证太阳入射 光线经聚光碟 20聚光后达到完全聚焦的效果。
由此可见,本发明提供的对日跟踪方法通过对集热器 10中温度分布信 息的分析获知当前聚焦情况, 并根据当前聚焦情况通过偏差调整的方法校 正聚光碟 20的位置, 实现了对太阳的准确跟踪,增强对太阳入射光线的聚 焦精度。
可以想到, 上述对日跟踪方法必然是建立在太阳入射光线经聚光碟聚 焦后的光斑落在集热器内的前提上, 因此在进行上述对日跟踪方法开始实 施之前, 必然需要先采用天文算法程序跟踪太阳轨迹, 计算出太阳的粗调 高度角和方位角, 将聚光碟驱动至与太阳光线大致平行的方向, 保证聚焦 的光斑在集热器内。 由于该步骤是本发明实施前必然需要的条件, 又是现 有技术中非常常见的步骤, 因此本文不再赘述。
还可以进一步设置上述对日跟踪方法的具体执行步骤。
请参考图 2, 图 2为本发明所提供对日跟踪方法的另一种具体实施方 式的流程框图。
在另一种具体实施方式中, 如图 2所示, 上述对日跟踪方法可以具体 包括如下步骤:
S21 : 采用红外热成像的方法获取集热器 10的温度分布图像。
具体地, 可以在集热器 10 中设置红外成像装置, 例如红外摄像头、 红外摄像机等, 该红外成像装置对准集热器腔, 通过其拍摄能够直接获取 集热器 10的温度分布, 即采集到太阳跟踪的最终输出结果,从而提供了准 确、 真实的反映信息, 为后续控制过程奠定了较好的基础。
S22: 根据温度分布信息判断太阳入射光线经聚光碟 20聚光后是否完 全聚焦, 若是, 执行步骤 S211 ; 若不是, 执行步骤 S23;
S23: 获取聚光碟 20 的当前角度, 以及完全聚焦时所需的聚光碟 20 的目标角度, 并调整聚光碟 20的当前角度至目标角度。
S211 : 保持聚光碟的当前角度不变。
下面分四种情况分别描述上述步骤 S22、 步骤 S23的判断聚光效果、 调整方位角和 /或高度角的具体过程:
如图 3所示,该图为聚光碟 20的当前角度与目标角度相同时的红外成 像图,该红外成像图中内部圓形阴影部分反映聚光碟 20的位置,外圏圓环 部分反映太阳入射光线的位置,此时聚光碟 20与太阳光环的中心重合,表 示太阳入射光线经聚光碟 20后完全聚焦, 无需调整聚光碟 20位置。
如图 4所示,该图为聚光碟 20的当前高度角偏大时的红外成像图,此 时聚光碟 20的中心偏向于太阳光环中心的正上方,表示高度角偏大,此时 处理器发出控制指令, 减小聚光碟 20的高度角。
如图 5所示,该图为聚光碟 20的当前方位角偏小时的红外成像图,此 时聚光碟 20的中心偏向于太阳光环中心的正左方,表示方位角偏小,此时 处理器发出控制指令, 增大聚光碟 20的方位角。
如图 6所示,该图为聚光碟 20的当前高度角、 当前方位角均偏小的红 外成像图,此时聚光碟 20的中心偏向于太阳光环中心的左下方,此时微处 理器发出控制指令, 增大聚光碟 20的方位角和高度角。
同理可以推断出聚光碟 20 的高度角和方位角处于其他偏大或偏小情 况对应的集热器 10热成像图像, 并相应地调整聚光碟 20的高度角和方位 角, 以使聚光碟 20完全聚焦。 由此可见, 通过红外热成像的方法直接采集 对日跟踪的最终输出结果, 能够为后续控制过程提供清楚直接、 筒单明了 的依据, 使得整个对日跟踪方法具有构思新颖、 操作筒单的优点。 当然, 上述对日跟踪方法还可以采用其他方式获取集热器 10的温度分布信息。
在另一种具体实施方式中, 上述步骤 S21之后还包括:
步骤 S24: 判断集热器 10是否过热, 若是, 则进行步骤 S25 , 若不是, 则执行步骤 S26;
S25: 开启太阳能热发电系统的过热保护装置;
S26: 保持过热保护装置为关闭状态。
采用上述控制方法, 能够对集热器 10起到一定的保护作用, 防止集 热器 10由于温度过高而被烧蚀等现象的发生,进一步保证太阳能热发电系 统的工作稳定性和可靠性。 由于过热保护装置的结构是现有技术, 在此不 在赘述。
在另一种具体实施方式中, 上述对日跟踪方法还可以包括: 步骤 S27: 获取当前风速风向信号;
步骤 S28: 判断风速是否过大, 若是, 则执行步骤 S29, 若不是, 执 行步骤 S210;
S29: 根据风向开启太阳能热发电系统的避风保护装置;
S210: 保持避风保护装置为关闭状态。
相类似地, 采用这种控制方法能够防止风速过大对聚光碟 20造成的 破坏, 进一步保证太阳能热发电系统的工作稳定性。
需要说明的是, 上文仅以一种具体实施方式描述根据集热器 10是否 过热保护集热器, 并根据风速风向信号保护聚光碟的方法, 事实上, 上述 步骤 S24至步骤 S26所示的动作、 步骤 S27至步骤 S210所示的动作并不 仅限于上述顺序, 前者可以在获取集热器的温度分布信息之后的任意时间 进行, 后者可以不受限制地在任意时间进行。 用户可以根据实际需要自行 选择。
另一种具体实施方式中, 上述保护方法可以在执行完步骤 S13、 步骤 S14后, 返回执行步骤 S11 , 即上述对日跟踪方法可以具体为闭环控制方 法。
采用闭环控制方法能够通过实时检测一实时反馈一实时控制的方式 实现对太阳的实时跟踪,保证太阳光经聚光碟 20后时刻保持完全聚焦的效 果。 当然, 上述对日跟踪方法也可以采用定时控制等其他方式的开环控制 方法, 用户可以根据实际需要自行选择。
请参考图 7和图 8, 图 7为本发明所提供对日跟踪系统的一种具体实 施方式的结构框图; 图 8为图 7所示的对日跟踪系统的实物结构筒图。 在一种具体实施方式中, 本发明还提供一种用于碟式太阳能热发电系 统的对日跟踪系统, 其包括集热器热成像装置 5、 微处理器 1和位置检测 装置 4;
位置检测装置 4可以具体为位置编码器, 该位置编码器安装在聚光碟 10方位角和高度角的终端, 用于检测太阳能热发电系统的聚光碟 10的当 前角度, 并输出给微处理器 1。
集热器热成像装置 5对准集热器 10的集热器腔,如图 8所示,可以具 体安装在与集热器 20平行的支撑横梁上,该集热器热成像装置 5用于采集 集热器 20及其周边的温度分布信息,该温度分布信息实际上为温度分布图 像, 集热器热成像装置 5采集温度分布图像后, 可以具体通过图像接口模 块 6将图像发送至微处理器 1。
微处理器 1与集热器热成像装置 5连接, 用于根据温度分布信息判断 太阳入射光线经聚光碟 10聚光后是否完全聚焦,并在非完全聚焦的情况下 获取聚光碟 10的当前角度, 分析计算出完全聚焦时所需的聚光碟 10的目 标角度, 然后计算出当前角度与目标角度的偏差角度, 发出控制指令给聚 光碟 10的伺服驱动系统 2。 和电机 (伺服电机或步进电机等其他电机 ),该伺服驱动系统 2通过减速传 动机构 3 (比如, 多级减速齿轮或螺旋升降机)将聚光碟 10的角度改变偏 差角度, 最终调整聚光碟 10的当前角度至目标角度。 由于伺服驱动系统 2 和减速传动机构 3为现有技术中常用装置, 不再赘述。
与上述对日跟踪方法类似地, 采用这种对日跟踪系统通过对集热器 20 中温度分布信息的分析获知当前聚焦情况, 并根据当前聚焦情况通过偏差 调整的方法校正聚光碟 10的位置, 实现了对太阳的准确跟踪,增强对太阳 入射光线的聚焦精度。
进一步的方案中, 上述热成像装置为红外热成像装置, 比如红外摄像 头或是红外摄像机。
更具体的方案中, 上述微处理器 1还用于判断集热器 20是否过热, 并在集热器 20过热的情况下开启太阳能热发电系统的过热保护装置。
在另一种具体实施方式中, 上述对日跟踪系统还可以包括风速风向检 测装置 7, 用于检测当前风速、 当前风向, 并将其检测结果输出至微处理 器 1 , 微处理器 1还用于判断风速是否过大, 并在风速过大的情况下根据 风向开启太阳能热发电系统的避风保护装置。
此外, 上述对日跟踪系统可以为闭环控制系统。
由于上述对日跟踪方法具有上述技术效果, 因此, 与上述对日跟踪方 法对应的对日跟踪系统也应当具有相应的技术效果, 在此不再赘述。
以上对本发明所提供的一种用于碟式太阳能热发电系统的对日跟踪方 方式进行了阐述, 以上实施例的说明只是用于帮助理解本发明的方法及其 核心思想。 应当指出, 对于本技术领域的普通技术人员来说, 在不脱离本 发明原理的前提下, 还可以对本发明进行若干改进和修饰, 这些改进和修 饰也落入本发明权利要求的保护范围内。

Claims

1、一种用于碟式太阳能热发电系统的对日跟踪方法,所述太阳能热发 电系统设有聚光碟(20)和集热器(10), 其特征在于, 所述对日跟踪方法 包括如下步骤:
1)获取所述集热器(10) 的温度分布信息;
2 )根据所述温度分布信息判断太阳入射光线经所述聚光碟( 20 )聚光 后是否完全聚焦, 若是, 执行权步骤 10), 若不是, 执行步骤 3);
3 )获取所述聚光碟( 20 )的当前角度, 根据所述温度分布信息获取完 利 _
全聚焦时所需的聚光碟 (20) 的目标 - I角度, 并调整所述聚光碟(20) 的所 o
述当前角度至所述目标角度; 要
10)保持所述聚光碟的当前角度不变。求
2、 根据权利要求 1 所述的用于碟式太阳能热发电系统的对日跟踪方 法, 其特征在于, 所述步骤 1) 中具体采用红外热成像的方法获取所述集 热器(10) 的温度分布图像。
3、 根据权利要求 2所述的用于碟式太阳能热发电系统的对日跟踪方 法, 其特征在于, 在所述步骤 1)后还包括:
步骤 4)判断所述集热器(10)是否过热, 若是, 则进行步骤 5), 若 不是, 则执行步骤 6);
5 )开启所述太阳能热发电系统的过热保护装置;
6)保持所述过热保护装置为关闭状态。
4、 根据权利要求 2所述的用于碟式太阳能热发电系统的对日跟踪方 法, 其特征在于, 还包括:
获取当前风速、 当前风向信号, 并判断所述风速是否过大, 若是, 则 根据所述风向开启所述太阳能热发电系统的避风保护装置; 若不是, 则保 持所述避风保护装置为关闭状态。
5、根据权利要求 1-4任一项所述的用于碟式太阳能热发电系统的对日 跟踪方法, 其特征在于, 执行所述步骤 10)和所述步骤 3)后均返回步骤 1)。
6、一种用于碟式太阳能热发电系统的对日跟踪系统,所述太阳能热发 电系统包括聚光碟 ( 20 )和集热器( 10 ); 其特征在于, 所述对日跟踪系统 包括集热器热成像装置(5)、 微处理器(1)和位置检测装置(4);
所述位置检测装置( 4 )用于检测太阳能热发电系统的聚光碟( 20 )的 当前角度, 并输出给所述微处理器(1);
所述集热器热成像装置(5)对准所述集热器(10)的集热器腔, 用于 采集所述集热器(10)及其周边的温度分布信息;
所述微处理器(1) 与所述集热器热成像装置(5)连接, 用于根据温 度分布信息判断太阳入射光线经所述聚光碟 (20) 聚光后是否完全聚焦, 并在非完全聚焦的情况下获取所述聚光碟(20) 的当前角度, 分析计算出 完全聚焦时所需的聚光碟(20) 的目标角度, 并发出控制命令调整所述聚 光碟 (20) 的所述当前角度至所述目标角度。
7、 根据权利要求 6所述的用于碟式太阳能热发电系统的对日跟踪系 统, 其特征在于, 所述热成像装置(5) 为红外热成像装置(5)。
8、 根据权利要求 7所述的用于碟式太阳能热发电系统的对日跟踪系 统, 其特征在于, 所述控制器还用于判断所述集热器(10)是否过热, 并 在所示集热器(10)过热的情况下开启所述太阳能热发电系统的过热保护 装置。
9、 根据权利要求 7所述的用于碟式太阳能热发电系统的对日跟踪系 统, 其特征在于, 还包括风速风向检测装置(7), 用于检测当前风速、 当 前风向, 并将其检测结果输出至微处理器( 1 ), 所述微处理器( 1 )还用于 判断风速是否过大, 并在风速过大的情况下根据所述风向开启所述太阳能 热发电系统的避风保护装置。
10、 根据权利要求 6-9任一项所述的用于碟式太阳能热发电系统的对 日跟踪系统, 其特征在于, 所述对日跟踪系统为闭环控制系统。
PCT/CN2013/079794 2012-07-23 2013-07-22 一种用于碟式太阳能热发电系统的对日跟踪方法和系统 WO2014015773A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012102557491A CN102749933A (zh) 2012-07-23 2012-07-23 一种用于碟式太阳能热发电系统的对日跟踪方法和系统
CN201210255749.1 2012-07-23

Publications (1)

Publication Number Publication Date
WO2014015773A1 true WO2014015773A1 (zh) 2014-01-30

Family

ID=47030215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079794 WO2014015773A1 (zh) 2012-07-23 2013-07-22 一种用于碟式太阳能热发电系统的对日跟踪方法和系统

Country Status (2)

Country Link
CN (1) CN102749933A (zh)
WO (1) WO2014015773A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104142693A (zh) * 2014-08-07 2014-11-12 中国电子科技集团公司第五十四研究所 一种基于卡尔曼滤波的窄波束角跟踪方法
RU2606049C2 (ru) * 2014-09-12 2017-01-10 Федеральное государственное бюджетное научное учреждение Федеральный научный агроинженерный центр ВИМ (ФГБНУ ФНАЦ ВИМ) Способ автоматической ориентации по Солнцу источников гелиоэнергетики и контур управления следящей системой
CN110456828A (zh) * 2019-08-08 2019-11-15 西安工业大学 小型碟式太阳能温度闭环跟踪系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749933A (zh) * 2012-07-23 2012-10-24 湘电集团有限公司 一种用于碟式太阳能热发电系统的对日跟踪方法和系统
CN102929300B (zh) * 2012-11-22 2016-04-13 宁夏光合能源科技有限公司 塔式太阳能集热系统定日镜场顶层控制装置
CN102929298B (zh) * 2012-11-22 2015-06-24 宁夏光合能源科技有限公司 一种基于多层架构的塔式太阳能集热定日镜场控制系统
CN103984360A (zh) * 2013-02-07 2014-08-13 浙江同景科技有限公司 碟式太阳能热发电系统对日跟踪的四象限测量控制系统
CN104932543B (zh) * 2015-05-21 2017-10-24 张智博 用于碟式太阳能发电装置的太阳跟踪控制系统及控制方法
CN104914880A (zh) * 2015-05-21 2015-09-16 张智博 一种用于碟式太阳能发电系统的追日控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794909A (en) * 1987-04-16 1989-01-03 Eiden Glenn E Solar tracking control system
CN101534074A (zh) * 2009-04-10 2009-09-16 保定天威集团有限公司 一种最大功率跟踪控制方法
CN102064743A (zh) * 2011-02-01 2011-05-18 河海大学常州校区 碟式太阳能跟踪与方向角驱动系统
CN102749933A (zh) * 2012-07-23 2012-10-24 湘电集团有限公司 一种用于碟式太阳能热发电系统的对日跟踪方法和系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201286143Y (zh) * 2009-01-22 2009-08-05 杭州美盛红外光电技术有限公司 一种基于红外热像监控装置的移动式工作站
CN101788500A (zh) * 2009-01-23 2010-07-28 宇创视觉科技股份有限公司 太阳能电池光学检测装置及其方法
CN101841270A (zh) * 2009-03-22 2010-09-22 北京智慧剑科技发展有限责任公司 一种太阳能多向跟踪斯特林机发电系统
CN101581286A (zh) * 2009-06-04 2009-11-18 浙江大学 太阳能斯特林发动机装置
US8373758B2 (en) * 2009-11-11 2013-02-12 International Business Machines Corporation Techniques for analyzing performance of solar panels and solar cells using infrared diagnostics
CN101859150B (zh) * 2010-04-20 2012-08-22 南京航空航天大学 用于斯特林太阳能发电系统的太阳跟踪对准装置与方法
CN102545706B (zh) * 2012-01-10 2016-08-03 容云 太阳能光热混合利用系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794909A (en) * 1987-04-16 1989-01-03 Eiden Glenn E Solar tracking control system
CN101534074A (zh) * 2009-04-10 2009-09-16 保定天威集团有限公司 一种最大功率跟踪控制方法
CN102064743A (zh) * 2011-02-01 2011-05-18 河海大学常州校区 碟式太阳能跟踪与方向角驱动系统
CN102749933A (zh) * 2012-07-23 2012-10-24 湘电集团有限公司 一种用于碟式太阳能热发电系统的对日跟踪方法和系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104142693A (zh) * 2014-08-07 2014-11-12 中国电子科技集团公司第五十四研究所 一种基于卡尔曼滤波的窄波束角跟踪方法
RU2606049C2 (ru) * 2014-09-12 2017-01-10 Федеральное государственное бюджетное научное учреждение Федеральный научный агроинженерный центр ВИМ (ФГБНУ ФНАЦ ВИМ) Способ автоматической ориентации по Солнцу источников гелиоэнергетики и контур управления следящей системой
CN110456828A (zh) * 2019-08-08 2019-11-15 西安工业大学 小型碟式太阳能温度闭环跟踪系统

Also Published As

Publication number Publication date
CN102749933A (zh) 2012-10-24

Similar Documents

Publication Publication Date Title
WO2014015773A1 (zh) 一种用于碟式太阳能热发电系统的对日跟踪方法和系统
WO2014029254A1 (zh) 用于碟式太阳能热发电系统的对日跟踪方法和跟踪系统
CN101236287A (zh) 定日镜装置
KR20130057992A (ko) 태양열 집열 시스템
US8290207B2 (en) Solar power device
CN101192632A (zh) 聚光太阳电池单元
Natarajan et al. Experimental analysis of a two‐axis tracking system for solar parabolic dish collector
CN111130444A (zh) 一种高精度聚光太阳电池双轴太阳跟踪系统与方法
KR20110087159A (ko) 집광형 태양광 발전장치
CN109857154B (zh) 一种菲涅尔光热发电系统中反射镜太阳跟踪方法和装置
JP2010151980A (ja) 太陽光集光システム
CN103474508A (zh) 一种太阳能反射聚光光伏系统及其反射聚光热电供应方法
JP2003279165A (ja) 太陽放射集中装置
WO2011055788A1 (ja) 太陽光集光システム、及び太陽光集光システムの反射鏡調整方法
CN103135600A (zh) 一种定日镜控制系统
TWM471570U (zh) 追日裝置
CN101458529B (zh) 太阳跟踪定位装置
JP2008052229A (ja) 焦点距離の異なる「輪帯型放物面鏡」によって構成される新型集光鏡
JP2014098505A (ja) 太陽熱発電装置
KR100350374B1 (ko) 접시형 태양열 집광 시스템
CN203387465U (zh) 一种太阳能反射聚光光伏系统
CN103941755B (zh) 一种反射镜跟踪对准控制装置的工作方法
CN108762316A (zh) 一种光电传感器、太阳能集热控制系统及方法
CN103955230A (zh) 聚光功率调节装置和太阳能发电设备
KR20130059215A (ko) 태양광 추적 장치 및 방법 그리고 이것을 적용한 에너지 수집 장치 및 그 운영 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13822634

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205N DATED 01.04.2015

122 Ep: pct application non-entry in european phase

Ref document number: 13822634

Country of ref document: EP

Kind code of ref document: A1