WO2014013981A1 - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
WO2014013981A1
WO2014013981A1 PCT/JP2013/069285 JP2013069285W WO2014013981A1 WO 2014013981 A1 WO2014013981 A1 WO 2014013981A1 JP 2013069285 W JP2013069285 W JP 2013069285W WO 2014013981 A1 WO2014013981 A1 WO 2014013981A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery pack
outer container
pack according
housing
Prior art date
Application number
PCT/JP2013/069285
Other languages
French (fr)
Japanese (ja)
Inventor
小杉 伸一郎
陽一郎 竹内
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2014013981A1 publication Critical patent/WO2014013981A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to a battery pack.
  • the lithium ion battery is vulnerable to moisture, and its life is shortened when water enters the cell.
  • the LIB outer container is made of a material having almost no moisture permeability such as an aluminum can or an aluminum laminate film.
  • reaction product gas such as hydrogen gas generated by the side reaction is very small like water molecules, and thus cannot pass through an outer container made of an aluminum can or a laminate film, and is enclosed inside the cell. For this reason, when the reaction product gas is generated, the gas pressure inside the cell increases and the cell swells.
  • LIB is expected to be applied to electric vehicles because of its large charge / discharge current.
  • charge and discharge with a large current in an electric vehicle heat generation of the cell increases, and thus the cell needs to be cooled.
  • the thermal conductivity of the reaction product gas is low, and the cell cannot be effectively cooled.
  • the distance between the electrodes increases, so that the resistance of the cell increases and heat generation increases.
  • the cooling efficiency also decreases, so the cell temperature further increases. At high temperatures, the amount of reaction product gas generated increases, creating a vicious circle.
  • the problem to be solved by the present invention is to provide a battery pack capable of suppressing battery swelling and cooling the battery.
  • a battery pack including a battery, a metal casing, and insulating oil.
  • the battery includes a plastic outer container, an electrode accommodated in the outer container, an electrolytic solution accommodated in the outer container, and an electrode terminal provided in the outer container and electrically connected to the electrode. .
  • the battery and insulating oil are stored in a metal casing.
  • FIG. 3 is a perspective view of the unit cell shown in FIG. 2. It is sectional drawing obtained when the unit cell of FIG. 3 is cut
  • the battery pack 1 includes a metal housing 2, an assembled battery 3 housed in the housing 2, an insulating oil 4 housed in the housing 2, and a housing. And a hygroscopic material housed in the body 2.
  • the housing 2 has a battery box 2a and a lid 2b fixed to the battery box 2a by caulking.
  • the metal forming the battery box 2a and the lid 2b include aluminum and iron.
  • the positive electrode terminal 5 and the negative electrode terminal 6 for current input / output are fixed to the lid 2 b via an insulating member 7.
  • the voltage / temperature monitor terminal 8 is attached to the lid 2b.
  • a voltage / temperature sensor (not shown) is attached to the assembled battery 3, and the voltage and temperature of the battery constituting the assembled battery 3 are communicated to the outside of the battery pack through the voltage / temperature monitor terminal 8.
  • the pressure equalizing valve 9 is attached to the lid 2b and discharges the gas inside the battery box 2a.
  • the cooling device 10 is one in which a refrigerant is circulated through cooling pipes 11 provided in a meandering shape on both side surfaces of the long side of the battery box 2a.
  • the assembled battery 3 is a battery in which a plurality of batteries (unit cells) 12 are connected in series or in parallel.
  • a non-aqueous electrolyte secondary battery can be used.
  • each battery 12 includes a flat outer container, an electrode group 13 accommodated in the outer container, and an electrolytic solution impregnated in the electrode group 13.
  • the exterior container has a bottomed rectangular cylindrical plastic container 14 and a rectangular plate-shaped plastic lid 15 attached to the opening of the container 14 by melting.
  • the positive electrode terminal 16 and the negative electrode terminal 17 for current input / output are attached to the lid 15 by being caulked and fixed to the lid 15 or cast when the lid 15 is molded.
  • the rupture portion 18 is provided with an X-shaped groove portion in a thin portion located between the positive electrode terminal 16 and the negative electrode terminal 17 of the lid 15.
  • the electrode group 13 includes a positive electrode 19, a negative electrode 20, and a separator 21 disposed between the positive electrode 19 and the negative electrode 20.
  • the positive electrode 19 includes a positive electrode current collector 19a and a positive electrode active material-containing layer 19b formed on the positive electrode current collector 19a.
  • the negative electrode 20 includes a negative electrode current collector 20a and a negative electrode active material-containing layer 20b formed on the negative electrode current collector 20a.
  • the electrolytic solution 22 is impregnated in the electrode group 13.
  • the positive electrode lead 23 has one end electrically connected to the positive electrode current collector 19 a and the other end electrically connected to the positive electrode terminal 16.
  • the negative electrode lead 24 has one end electrically connected to the negative electrode current collector 20 a and the other end electrically connected to the negative electrode terminal 17.
  • the batteries 12 are stored in the housing 2 with the bottom surface of the container 14 facing down, and are arranged in the housing 2 so that the long side surfaces face each other.
  • a current path formed by electrically connecting the positive and negative terminals 16 and 17 of each battery 12 with a bus bar or the like is electrically connected to the positive terminal 5 and the negative terminal 6 of the housing 2.
  • the plastic forming the container 14 and the lid 15 is not particularly limited as long as it does not have electrical conductivity and has corrosion resistance to the electrolytic solution. In addition, the moisture permeability and gas permeability of the plastic are better. Specific examples of the plastic include polypropylene, polyethylene (for example, high density polyethylene (HDPE), low density polyethylene (LDPE)), polytetrafluoroethylene (PTFE), polyethylene terephthalate (PET) and the like.
  • the type of plastic used can be one type or two or more types.
  • the inner walls of the container 14 and the lid 15 are preferably covered with an oxide film. Thereby, since lithium ion can be prevented from passing through the container 14 and the lid 15, it is possible to prevent lithium from being deposited on another battery or an exposed electrode in the housing 2.
  • the plurality of protrusions 25 are formed on the outer surface of the container 14. As shown in FIG. 3, some of the protrusions 25 are provided at the four corners of the long side surface of each battery 12. The position where the protrusion 25 of each battery 12 is provided is substantially the same. Therefore, as shown in FIG. 2, in adjacent batteries 12, the protrusions 25 of one battery 12 come into contact with the protrusions 25 of the other battery 12, and the protrusions 25 function as spacers between the batteries 12.
  • a part of the protrusions 25 (first protrusions) of one battery 12 and a part of the protrusions 25 (second protrusions) of the other battery are in contact with each other, and the first protrusion and the second protrusion
  • the protrusion functions as a spacer between the batteries 12.
  • the remaining protrusions 25 are provided at both ends of the short side surface of each battery 12.
  • a gap can be provided between the battery 12 and the inner wall of the battery box 2a as shown in FIG.
  • the insulating oil 4 is accommodated in the gap between the batteries 12 and the gap between the battery 12 and the battery box 2 a.
  • the atmosphere in the housing 2 is preferably an inert gas atmosphere such as N 2 or Ar.
  • a spacer 26 may be disposed between the lid 2 b in the housing 2 and the assembled battery 3. Thereby, since the position in the housing
  • Inevitable impurities such as LiO, Li 2 CO 3 , H 2 O, and LiOH are mixed in the positive electrode or negative electrode of the battery (unit cell) constituting the battery pack in the manufacturing process. Due to these inevitable impurities, gas (for example, H 2 , O 2 , CO, CO 2 ) is generated in the battery.
  • gas for example, H 2 , O 2 , CO, CO 2
  • the container 14 and the lid 15 constituting the battery 12 are made of plastic. Plastic is highly permeable to reaction product gases inside the battery, such as H 2 , O 2 , CO, and CO 2 .
  • Table 1 shows the permeability of H 2 , N 2 , O 2 , CO 2 , and water vapor of low density polyethylene (LDPE) and high density polyethylene (HDPE), which are examples of plastics.
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • the container 14 and the lid 15 of the battery 12 By forming the container 14 and the lid 15 of the battery 12 from plastic, the gas pressure generated in the battery 12 and the pressure in the housing 2 are equalized by the gas permeability of the plastic, thereby preventing the battery 12 from expanding. be able to. As a result, the battery 12 need not be provided with an explosion-proof mechanism. Further, when the electrode group 13 is accommodated in the container 14, it is not necessary to dispose an insulating member between the container 14 and the electrode group 13, so that the battery 12 can be reduced in size. Even if the electrode group 13 is moved by the impact applied to the battery pack and contacts the container 14 or the lid 15, an internal short circuit does not occur, so that the spacer can be omitted.
  • a structure such as an uneven portion, a flange, or a support for fixing the relative position between the batteries and the position of the battery with respect to the housing can be freely formed on the container or the lid.
  • pouring electrolyte solution in the container 14 can be easily sealed by heat melting after liquid injection.
  • the insulating oil 4 is used as cooling oil.
  • the battery temperature can be effectively lowered, so that the battery temperature is stabilized and the battery life can be improved.
  • the insulating oil include phosphate esters such as trioctyl phosphate (TOP), tributyl phosphate (TOB), triphenyl phosphate, trimethyl phosphate, and tripropyl phosphate, and trans oil.
  • TOP trioctyl phosphate
  • TOB tributyl phosphate
  • triphenyl phosphate trimethyl phosphate
  • tripropyl phosphate tripropyl phosphate
  • trans oil trans oil.
  • the type of insulating oil to be used can be one type or two or more types.
  • the insulating oil 4 functions as a hygroscopic agent
  • the moisture in the battery 12 is released into the housing 2, which may reduce the moisture concentration in the battery 12. it can.
  • the life of the battery 12 can be improved, the life of the battery pack can be improved.
  • An example of the insulating oil that functions as a hygroscopic agent is TOP. The water absorption reaction by TOP is shown in equation (1).
  • H 3 PO 4 forms a phosphoric acid film on the surface of the metal component in the battery pack.
  • the metal parts include an inner wall of the housing 2, a voltage detection terminal, a screw fixing portion of the voltage detection terminal, a screw, and a washer.
  • the voltage detection terminal is fixed to the positive electrode terminal 16 or the negative electrode terminal 17 of the battery 12 with screws, if a phosphoric acid film is generated in the gap between the components, the phosphonic acid film is an insulator, so that conduction between the components is interrupted. .
  • the formation of a phosphoric acid film on these components can be suppressed, so that electrical conduction between the components can be maintained.
  • a phosphoric acid film is formed on the voltage detection terminal by coating the metal constituting the voltage detection terminal with a metal having a lower ionization tendency than hydrogen such as copper or gold (metal having an ionization potential higher than that of hydrogen). Can be suppressed.
  • a metal having a lower ionization tendency than hydrogen such as copper or gold (metal having an ionization potential higher than that of hydrogen).
  • a metal having a low ionization tendency is used for the corresponding portion, so that the formation of a phosphate film can be suppressed.
  • the formation of the phosphoric acid film is concentrated on the aluminum plate and the formation of the phosphoric acid film on other metal parts is suppressed. It is also possible.
  • the safety of the battery pack can be improved.
  • the insulating oil functioning as a flame retardant include TOP.
  • a hygroscopic material (not shown) may be accommodated in the battery box 2a.
  • the hygroscopic material for example, (a) the powder is dispersed in the insulating oil 4, or (b) is immersed in the insulating oil 4 in a state of being accommodated in a bag or the like (the bag is porous, or the insulating oil (C) mixed in the plastic forming the container 14 of the battery 12, or (d) contained in the separator 21, or (e) a mixture of a moisture absorbent and an adhesive.
  • the outer surface of the container 14 may be mentioned.
  • moisture absorbent examples include lithium oxide (Li 2 O), sodium oxide (Na 2 O), potassium oxide (K 2 O), calcium oxide (CaO), magnesium oxide (MgO), and the like.
  • the kind of hygroscopic agent to be used can be one kind or two or more kinds.
  • the moisture absorbent can reduce the moisture concentration in the housing 2 and the insulating oil 4, the moisture in the battery 12 can be released to the outside due to the concentration difference, and the life of the battery 12 can be improved.
  • An example of the water absorption reaction by the hygroscopic material is shown in (2) to (5).
  • the hygroscopic material can absorb carbon dioxide by reacting with carbon dioxide generated from the battery.
  • An example of carbon dioxide absorption reaction by the hygroscopic material is shown in (6) to (9).
  • the insulating oil 4 can react with the hydroxide generated by the moisture absorption by the hygroscopic agent to reduce the hydroxide concentration. Thereby, while being able to improve the moisture absorption effect by a hygroscopic agent, it can prevent that the hydroxide produced
  • Examples of the insulating oil that functions as a reaction agent with a hydroxide include phosphate esters such as trioctyl phosphate (TOP), tributyl phosphate (TOB), triphenyl phosphate, trimethyl phosphate, and tripropyl phosphate.
  • TOP trioctyl phosphate
  • TOB tributyl phosphate
  • triphenyl phosphate trimethyl phosphate
  • tripropyl phosphate tripropyl phosphate
  • TOP trioctyl phosphate
  • TOB tributyl phosphate
  • each battery 12 is vertically placed in the battery box 2a by placing the battery 14 in the battery box 2a with the bottom surface (short side surface) of the container 14 facing down.
  • the arrangement of the batteries 12 is not limited to this.
  • the batteries 12 can be placed horizontally in the battery box 2a by placing the long sides of the containers 14 of the batteries 12 in the battery box 2a. Also good.
  • the number of the batteries 12 is not limited to a plurality, and may be one.
  • the negative electrode 20 As the negative electrode 20, the positive electrode 19, the separator 21, and the electrolytic solution 22 of the battery 12, for example, those described below can be used.
  • Negative electrode 20 The negative electrode 20 includes a negative electrode current collector 20a and a negative electrode active material-containing layer 20b.
  • the negative electrode active material-containing layer 20b is supported on one surface or both surfaces of the negative electrode current collector 20a and includes a negative electrode active material, a conductive agent, and a binder.
  • the negative electrode current collector a metal foil such as an aluminum foil or an aluminum alloy foil can be used.
  • the average crystal particle size of the negative electrode current collector is preferably 50 ⁇ m or less.
  • the thickness of the negative electrode current collector is preferably 20 ⁇ m or less in order to increase the capacity. A more preferable range is 12 ⁇ m or less. Further, the lower limit value of the thickness of the negative electrode current collector is desirably 3 ⁇ m.
  • the purity of aluminum used for the negative electrode current collector is preferably 99.99% or more for improving corrosion resistance and increasing strength.
  • the aluminum alloy is preferably an alloy containing one or more elements selected from the group consisting of iron, magnesium, zinc, manganese and silicon in addition to aluminum.
  • an Al—Fe alloy, an Al—Mn alloy, and an Al—Mg alloy can obtain higher strength than aluminum.
  • the content of transition metals such as nickel and chromium in aluminum and aluminum alloys is preferably 100 ppm or less (including 0 ppm).
  • the aluminum content in the aluminum alloy is desirably 95% by weight or more and 99.5% by weight or less.
  • a more preferable aluminum content is 98% by weight or more and 99.5% by weight or less.
  • the average particle diameter of the primary particles of the negative electrode active material is desirably 1 ⁇ m or less.
  • the negative electrode active material a material that absorbs and releases lithium can be used, and among these, metal oxides, metal sulfides, metal nitrides, alloys, and the like can be given.
  • the lithium occlusion potential of the negative electrode active material is preferably 0.4 V or more in terms of the open circuit potential relative to the open circuit potential of lithium metal. Thereby, the progress of the alloying reaction between the aluminum component of the negative electrode current collector and lithium and the pulverization of the negative electrode current collector can be suppressed. Furthermore, the lithium occlusion potential is preferably in the range of 0.4 V or more and 3 V or less in terms of open circuit potential with respect to the open circuit potential of lithium metal. Thereby, a battery voltage can be improved. A more preferable potential range is 0.4 V or more and 2 V or less.
  • a metal oxide capable of occluding lithium in the range of 0.4 V or more and 3 V or less for example, a titanium oxide such as TiO 2 , for example, Li 4 + x Ti 5 O 12 (x is ⁇ 1 ⁇ x ⁇ 3) and lithium titanium oxides such as Li 2 Ti 3 O 7 , tungsten oxides such as WO 3 , amorphous tin oxides such as SnB 0.4 P 0.6 O 3.1 , tin silicon oxides such as SnSiO 3, etc. Examples thereof include silicon oxide such as SiO. Among these, lithium titanium oxide is preferable.
  • Examples of the metal sulfide capable of occluding lithium in the range of 0.4 V or more and 3 V or less include lithium sulfide such as TiS 2 , molybdenum sulfide such as MoS 2 , such as FeS, FeS 2 , and Li x FeS 2. And iron sulfide.
  • Examples of the metal nitride capable of occluding lithium in the range of 0.4 V or more and 3 V or less include lithium cobalt nitride such as Li x Co y N (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 0.5). Thing etc. are mentioned.
  • a carbon material can be used as a conductive agent for enhancing electron conductivity and suppressing contact resistance with the current collector.
  • Examples thereof include acetylene black, carbon black, coke, carbon fiber, and graphite.
  • binder for binding the active material and the conductive agent examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, and styrene butadiene rubber.
  • the negative electrode active material is 80% by weight to 95% by weight
  • the conductive agent is 3% by weight to 18% by weight
  • the binder is 2% by weight or more. It is preferable to make it into the range of 7 weight% or less.
  • the conductive agent the effect described above can be exhibited when it is 3% by weight or more, and when it is 18% by weight or less, the decomposition of the nonaqueous electrolyte on the surface of the conductive agent under high temperature storage is reduced. be able to.
  • the binder is 2% by weight or more, sufficient electrode strength can be obtained, and when it is 7% by weight or less, the insulating portion of the electrode can be reduced.
  • the density of the negative electrode is desirably 1.5 g / cm 3 or more and 5 g / cm 3 or less. Thereby, a high battery capacity can be obtained.
  • a more preferable range is 2 g / cm 3 or more and 4 g / cm 3 or less.
  • the negative electrode is produced, for example, by suspending a negative electrode active material, a conductive agent, and a binder in a suitable solvent, applying the suspension to the negative electrode current collector, drying, and pressing.
  • Positive electrode 19 The positive electrode 19 includes a positive electrode current collector 19a and a positive electrode active material-containing layer 19b.
  • the positive electrode active material-containing layer 19b is carried on one side or both sides of the positive electrode current collector 19a and includes a positive electrode active material, a conductive agent, and a binder.
  • a metal foil such as an aluminum foil or an aluminum alloy foil can be used.
  • Each of the aluminum foil and the aluminum alloy foil preferably has an average crystal particle diameter of 50 ⁇ m or less.
  • the thickness of the positive electrode current collector is preferably 20 ⁇ m or less in order to increase the capacity. A more preferable range is 15 ⁇ m or less. Moreover, it is desirable that the lower limit value of the thickness of the positive electrode current collector be 3 ⁇ m.
  • Examples of the positive electrode active material include oxides, sulfides, and polymers.
  • manganese dioxide MnO 2
  • iron oxide copper oxide
  • nickel oxide lithium manganese composite oxide
  • Li x Mn 2 O 4 lithium manganese composite oxide
  • Li x NiO 2 lithium such as Li x NiO 2, etc.
  • nickel composite oxide for example, Li x lithium-cobalt composite oxides such as CoO 2, for example, LiNi 1-y Co y O 2 lithium-nickel-cobalt composite oxide such as, for example, lithium manganese cobalt such as LiMn y Co 1-y O 2 composite oxides, for example olivine, such as Li x Mn 2-y Ni y O 4 spinel-type lithium-manganese-nickel composite oxide such as, for example, Li x FePO 4, Li x Fe 1-y Mn y PO 4, Li x CoPO 4 Lithium phosphorus oxide having a structure, for example, iron sulfate such as Fe 2 (SO 4 ) 3 , for example, vanadium oxide such as V 2 O 5 And so on.
  • X and y are preferably in the range of 0 to 1.
  • examples of the polymer include conductive polymer materials such as polyaniline and polypyrrole, and disulfide polymer materials.
  • sulfur (S), carbon fluoride, and the like can be used.
  • lithium manganese composite oxide such as Li x Mn 2 O 4
  • lithium nickel composite oxide lithium cobalt composite oxide, lithium nickel cobalt composite oxide, spinel Type lithium manganese nickel composite oxide, lithium manganese cobalt composite oxide, and lithium iron phosphate such as Li x FePO 4 .
  • Examples of the conductive agent for increasing the electron conductivity and suppressing the contact resistance with the current collector include acetylene black, carbon black, and graphite.
  • binder for binding the active material and the conductive agent examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and fluorine-based rubber.
  • the positive electrode active material is 80% by weight to 95% by weight
  • the conductive agent is 3% by weight to 18% by weight
  • the binder is 2% by weight to 7%. It is preferable to make it into the range below weight%.
  • the conductive agent the effect described above can be exhibited when it is 3% by weight or more, and when it is 18% by weight or less, the decomposition of the nonaqueous electrolyte on the surface of the conductive agent under high temperature storage is reduced. be able to.
  • the binder is 2% by weight or more, sufficient electrode strength can be obtained, and when it is 7% by weight or less, the insulating portion of the electrode can be reduced.
  • the positive electrode is produced, for example, by suspending a positive electrode active material, a conductive agent, and a binder in an appropriate solvent, applying the suspension to the positive electrode current collector, drying, and pressing.
  • Electrolytic solution is prepared by dissolving an electrolyte in an organic solvent.
  • the electrolyte concentration can be in the range of 0.5 to 2 mol / L.
  • Examples of the electrolyte include LiBF 4 .
  • Examples of the organic solvent include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and vinylene carbonate (VC), chains such as dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC).
  • Carbonates, cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran (2MeTHF), chain ethers such as dimethoxyethane (DME), ⁇ -butyrolactone (BL), acetonitrile (AN), sulfolane (SL), phosphate esters Etc.
  • These organic solvents can be used alone or in the form of a mixture of two or more.
  • Separator 21 for example, a synthetic resin nonwoven fabric, a polyethylene porous film, a polypropylene porous film, or the like can be used.
  • FIGS. 6 and 7 are examples of batteries using metal containers and lids.
  • the same members as those in FIG. 1 to FIG. The electrode group 13 is accommodated in a metal container 31 such as aluminum via an insulator 32.
  • a lid 33 made of metal such as aluminum is welded to the container 31.
  • the positive terminal 16 and the negative terminal 17 are attached to the lid 33 via an insulating gasket 34.
  • the battery shown in FIGS. 6 and 7 is highly effective in preventing moisture from entering the container 31, the container 31 swells due to the gas generated by the side reaction, so that the battery life is shortened.
  • the pressure of the gas generated in the battery and the pressure in the casing are determined by the gas permeability of the plastic. It can be made equal and it can prevent that a battery swells. Since the swelling of the battery is suppressed, the battery can be efficiently cooled by the insulating oil stored in the housing. As a result, it is possible to improve the life of the battery pack.

Abstract

According to the embodiment of the present invention, a battery pack (1) that includes a battery (12), a metallic case (2), and an insulating oil (4) is provided. The battery (12) includes: a plastic outer container; electrodes contained in the outer container; an electrolytic solution contained in the outer container; and electrode terminals, which are provided to the outer container, and which are electrically connected to the electrodes. The battery (12) and the insulating oil (4) are contained in the metallic case (2).

Description

電池パックBattery pack
 本発明の実施形態は、電池パックに関する。 Embodiments of the present invention relate to a battery pack.
 リチウムイオン電池(LIB)は、水分に弱く、水がセル内部に入ると寿命が短くなる。セル内部に外部から水分が浸入するのを避けるため、LIBの外装容器は、アルミニウム缶や、アルミニウムラミネートフィルムなどの水分透過性のほとんど無い材料で構成される。しかしながら、副反応により発生する水素ガスなどの反応生成ガスは、水分子と同様に非常に小さいため、アルミニウム缶やラミネートフィルムで構成された外装容器を透過できず、セル内部に封入される。このため、反応生成ガスが発生すると、セル内部のガス圧が高くなり、セルが膨れるという問題を生じる。 The lithium ion battery (LIB) is vulnerable to moisture, and its life is shortened when water enters the cell. In order to prevent moisture from entering the inside of the cell, the LIB outer container is made of a material having almost no moisture permeability such as an aluminum can or an aluminum laminate film. However, reaction product gas such as hydrogen gas generated by the side reaction is very small like water molecules, and thus cannot pass through an outer container made of an aluminum can or a laminate film, and is enclosed inside the cell. For this reason, when the reaction product gas is generated, the gas pressure inside the cell increases and the cell swells.
 LIBは、大きな充放電電流が取れるため、電気自動車への応用が期待されている。電気自動車における大電流での充放電ではセルの発熱が大きくなるため、セルを冷却する必要がある。ところが、セルが反応生成ガスにより膨れると、反応生成ガスの熱伝導率が低いため、セルを効果的に冷却できなくなる。また、セルが膨れると、電極間の距離も開くため、セルの抵抗は上がり、発熱も大きくなる。セルが膨れるに従って冷却効率も低下するため、セル温度はさらに上がる。高温では反応生成ガスの発生量が多くなるので、悪循環に陥る。 LIB is expected to be applied to electric vehicles because of its large charge / discharge current. In charge and discharge with a large current in an electric vehicle, heat generation of the cell increases, and thus the cell needs to be cooled. However, when the cell is swollen by the reaction product gas, the thermal conductivity of the reaction product gas is low, and the cell cannot be effectively cooled. Further, when the cell swells, the distance between the electrodes increases, so that the resistance of the cell increases and heat generation increases. As the cell expands, the cooling efficiency also decreases, so the cell temperature further increases. At high temperatures, the amount of reaction product gas generated increases, creating a vicious circle.
特開平7-237457号公報JP-A-7-237457
 本発明が解決しようとする課題は、電池の膨れが抑えられ、かつ電池の冷却を行うことの可能な電池パックを提供することである。 The problem to be solved by the present invention is to provide a battery pack capable of suppressing battery swelling and cooling the battery.
 実施形態によると、電池と、金属製筐体と、絶縁油とを含む電池パックが提供される。電池は、プラスチック製の外装容器と、外装容器内に収納される電極と、外装容器内に収納される電解液と、外装容器に設けられ、電極と電気的に接続された電極端子とを含む。電池及び絶縁油は、金属製の筐体内に収納される。 According to the embodiment, a battery pack including a battery, a metal casing, and insulating oil is provided. The battery includes a plastic outer container, an electrode accommodated in the outer container, an electrolytic solution accommodated in the outer container, and an electrode terminal provided in the outer container and electrically connected to the electrode. . The battery and insulating oil are stored in a metal casing.
実施形態の電池パックの斜視図である。It is a perspective view of the battery pack of an embodiment. 図1の電池パックを長辺に平行に切断した際に得られる断面図である。It is sectional drawing obtained when the battery pack of FIG. 1 is cut | disconnected in parallel with a long side. 図2に示す単位セルの斜視図である。FIG. 3 is a perspective view of the unit cell shown in FIG. 2. 図3の単位セルを長辺に平行に切断した際に得られる断面図である。It is sectional drawing obtained when the unit cell of FIG. 3 is cut | disconnected in parallel with a long side. 図3の単位セルの周囲に絶縁油4が存在する状態を模式的に示した図である。It is the figure which showed typically the state in which the insulating oil 4 exists around the unit cell of FIG. 金属製外装容器を用いた電池の斜視図である。It is a perspective view of the battery using a metal exterior container. 図6の電池を長辺に平行に切断した際に得られる断面図である。It is sectional drawing obtained when the battery of FIG. 6 is cut | disconnected in parallel with a long side.
 以下、実施の形態について、図面を参照して説明する。 Hereinafter, embodiments will be described with reference to the drawings.
 図1及び図2に示すように、電池パック1は、金属製の筐体2と、筐体2内に収納される組電池3と、筐体2内に収納される絶縁油4と、筐体2内に収納される吸湿材とを含む。 As shown in FIGS. 1 and 2, the battery pack 1 includes a metal housing 2, an assembled battery 3 housed in the housing 2, an insulating oil 4 housed in the housing 2, and a housing. And a hygroscopic material housed in the body 2.
 筐体2は、電池ボックス2aと、電池ボックス2aにかしめ加工によって固定された蓋2bとを有する。電池ボックス2a及び蓋2bを形成する金属には、アルミニウム、鉄等が挙げられる。電流入出力用の正極端子5及び負極端子6は、絶縁部材7を介して蓋2bに固定されている。電圧・温度モニター端子8は、蓋2bに取り付けられている。組電池3には、電圧・温度センサー(図示しない)が取り付けられ、組電池3を構成する電池の電圧及び温度は、電圧・温度モニター端子8を通して電池パック外部に通信される。均圧バルブ9は、蓋2bに取り付けられ、電池ボックス2a内部のガスを排出するためのものである。均圧バルブ9をメンテナンス時などに開き、内部のガスを放出させることで電池パック内部の圧力が高まるのを防止することができる。電池の副反応により水素が発生するが、水素は微小なため、水素ガスの排出用として、蓋2bに開口されたガス抜き孔をプラスチック製栓で閉塞したものを均圧バルブ9として用いることができる。冷却装置10は、電池ボックス2aの長辺側の両側面に蛇行形状に設けられた冷却パイプ11に冷媒を循環させたものである。 The housing 2 has a battery box 2a and a lid 2b fixed to the battery box 2a by caulking. Examples of the metal forming the battery box 2a and the lid 2b include aluminum and iron. The positive electrode terminal 5 and the negative electrode terminal 6 for current input / output are fixed to the lid 2 b via an insulating member 7. The voltage / temperature monitor terminal 8 is attached to the lid 2b. A voltage / temperature sensor (not shown) is attached to the assembled battery 3, and the voltage and temperature of the battery constituting the assembled battery 3 are communicated to the outside of the battery pack through the voltage / temperature monitor terminal 8. The pressure equalizing valve 9 is attached to the lid 2b and discharges the gas inside the battery box 2a. It is possible to prevent the pressure inside the battery pack from increasing by opening the pressure equalizing valve 9 during maintenance or the like and releasing the internal gas. Hydrogen is generated by a side reaction of the battery. Since hydrogen is very small, a pressure equalizing valve 9 in which a vent hole opened in the lid 2b is closed with a plastic plug is used for discharging hydrogen gas. it can. The cooling device 10 is one in which a refrigerant is circulated through cooling pipes 11 provided in a meandering shape on both side surfaces of the long side of the battery box 2a.
 組電池3は、複数の電池(単位セル)12が直列または並列に接続されたものである。電池12には、例えば、非水電解質二次電池を用いることができる。各電池12は、図3及び図4に示すように、扁平形状の外装容器と、外装容器内に収納される電極群13と、電極群13に含浸される電解液とを有する。外装容器は、有底矩形筒状のプラスチック製容器14と、容器14の開口部に溶融によって取り付けられた矩形板状のプラスチック製蓋15とを有する。電流入出力用の正極端子16及び負極端子17は、蓋15にかしめ固定されるか、あるいは蓋15を成形する際に鋳込まれることで蓋15に取り付けられている。ラプチャー部18は、蓋15の正極端子16と負極端子17の間に位置する薄肉部にX字状の溝部を設けたものである。 The assembled battery 3 is a battery in which a plurality of batteries (unit cells) 12 are connected in series or in parallel. For the battery 12, for example, a non-aqueous electrolyte secondary battery can be used. As shown in FIGS. 3 and 4, each battery 12 includes a flat outer container, an electrode group 13 accommodated in the outer container, and an electrolytic solution impregnated in the electrode group 13. The exterior container has a bottomed rectangular cylindrical plastic container 14 and a rectangular plate-shaped plastic lid 15 attached to the opening of the container 14 by melting. The positive electrode terminal 16 and the negative electrode terminal 17 for current input / output are attached to the lid 15 by being caulked and fixed to the lid 15 or cast when the lid 15 is molded. The rupture portion 18 is provided with an X-shaped groove portion in a thin portion located between the positive electrode terminal 16 and the negative electrode terminal 17 of the lid 15.
 電極群13は、図5に示すように、正極19と、負極20と、正極19及び負極20の間に配置されたセパレータ21とを含む。正極19は、正極集電体19aと、正極集電体19aに形成された正極活物質含有層19bとを有する。一方、負極20は、負極集電体20aと、負極集電体20aに形成された負極活物質含有層20bとを有する。電解液22は、電極群13に含浸されている。正極リード23は、一端が正極集電体19aに電気的に接続され、かつ他端が正極端子16に電気的に接続されている。負極リード24は、一端が負極集電体20aに電気的に接続され、かつ他端が負極端子17に電気的に接続されている。 As shown in FIG. 5, the electrode group 13 includes a positive electrode 19, a negative electrode 20, and a separator 21 disposed between the positive electrode 19 and the negative electrode 20. The positive electrode 19 includes a positive electrode current collector 19a and a positive electrode active material-containing layer 19b formed on the positive electrode current collector 19a. On the other hand, the negative electrode 20 includes a negative electrode current collector 20a and a negative electrode active material-containing layer 20b formed on the negative electrode current collector 20a. The electrolytic solution 22 is impregnated in the electrode group 13. The positive electrode lead 23 has one end electrically connected to the positive electrode current collector 19 a and the other end electrically connected to the positive electrode terminal 16. The negative electrode lead 24 has one end electrically connected to the negative electrode current collector 20 a and the other end electrically connected to the negative electrode terminal 17.
 電池12は、容器14の底面を下にして筐体2内に収納され、筐体2内において長辺側側面が向かい合うように並べられている。各電池12の正負極端子16,17がバスバー等で電気的に接続されることで形成された電流経路が、筐体2の正極端子5及び負極端子6と電気的に接続されている。 The batteries 12 are stored in the housing 2 with the bottom surface of the container 14 facing down, and are arranged in the housing 2 so that the long side surfaces face each other. A current path formed by electrically connecting the positive and negative terminals 16 and 17 of each battery 12 with a bus bar or the like is electrically connected to the positive terminal 5 and the negative terminal 6 of the housing 2.
 容器14及び蓋15を形成するプラスチックは、電気伝導性を持たず、電解液に対する耐食性を有するものであれば、特に限定されない。また、プラスチックの水分透過性及びガス透過性は高いほうが良い。プラスチックの具体例には、ポリプロピレン、ポリエチレン(例えば、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE))、ポリテトラフルオロエチレン(PTFE)、ポリエチレンテレフタレート(PET)等が含まれる。使用するプラスチックの種類は、1種類又は2種類以上にすることができる。容器14及び蓋15それぞれの内壁は、酸化物皮膜で被覆されていることが望ましい。これにより、リチウムイオンが容器14及び蓋15を透過するのを防止することができるため、筐体2内の別の電池や露出電極にリチウムが析出するのを防止することができる。 The plastic forming the container 14 and the lid 15 is not particularly limited as long as it does not have electrical conductivity and has corrosion resistance to the electrolytic solution. In addition, the moisture permeability and gas permeability of the plastic are better. Specific examples of the plastic include polypropylene, polyethylene (for example, high density polyethylene (HDPE), low density polyethylene (LDPE)), polytetrafluoroethylene (PTFE), polyethylene terephthalate (PET) and the like. The type of plastic used can be one type or two or more types. The inner walls of the container 14 and the lid 15 are preferably covered with an oxide film. Thereby, since lithium ion can be prevented from passing through the container 14 and the lid 15, it is possible to prevent lithium from being deposited on another battery or an exposed electrode in the housing 2.
 複数の突起25は、容器14の外面に形成されている。一部の突起25は、図3に示すように、各電池12の長辺側側面の四隅に設けられている。各電池12の突起25が設けられる位置は、ほぼ同じである。このため、図2に示すように、隣り合う電池12において、一方の電池12の突起25が他方の電池12の突起25と接触し、突起25が電池12間のスペーサとして機能する。一方の電池12の一部の突起25(第1の突起)と、他方の電池の一部の突起25(第2の突起)が、互いに対向して接触し、第1の突起と第2の突起が電池12間のスペーサとして機能する。また、残りの突起25は、図3に示すように、各電池12の短辺側側面の両端に設けられている。この突起25が電池ボックス2aの内壁と接触することにより、図5に示すように、電池12と電池ボックス2aの内壁との間に隙間を設けることができる。電池12間の隙間及び電池12と電池ボックス2aとの隙間には、図2及び図5に示すように、絶縁油4が収容される。筐体2内の雰囲気は、N2またはArのような不活性ガス雰囲気にすると良い。 The plurality of protrusions 25 are formed on the outer surface of the container 14. As shown in FIG. 3, some of the protrusions 25 are provided at the four corners of the long side surface of each battery 12. The position where the protrusion 25 of each battery 12 is provided is substantially the same. Therefore, as shown in FIG. 2, in adjacent batteries 12, the protrusions 25 of one battery 12 come into contact with the protrusions 25 of the other battery 12, and the protrusions 25 function as spacers between the batteries 12. A part of the protrusions 25 (first protrusions) of one battery 12 and a part of the protrusions 25 (second protrusions) of the other battery are in contact with each other, and the first protrusion and the second protrusion The protrusion functions as a spacer between the batteries 12. Further, as shown in FIG. 3, the remaining protrusions 25 are provided at both ends of the short side surface of each battery 12. When the protrusion 25 comes into contact with the inner wall of the battery box 2a, a gap can be provided between the battery 12 and the inner wall of the battery box 2a as shown in FIG. As shown in FIGS. 2 and 5, the insulating oil 4 is accommodated in the gap between the batteries 12 and the gap between the battery 12 and the battery box 2 a. The atmosphere in the housing 2 is preferably an inert gas atmosphere such as N 2 or Ar.
 図2に示すように、筐体2内の蓋2bと組電池3との間に、スペーサ26を配置しても良い。これにより、組電池3の筐体2内での位置を固定することができるため、電池パックに衝撃が加わった際に組電池3が筐体2内を移動するのを防止することができる。 As shown in FIG. 2, a spacer 26 may be disposed between the lid 2 b in the housing 2 and the assembled battery 3. Thereby, since the position in the housing | casing 2 of the assembled battery 3 can be fixed, when the impact is added to the battery pack, the assembled battery 3 can be prevented from moving in the housing 2.
 電池パックを構成する電池(単位セル)の正極または負極には、製造工程でLiO、Li2CO3、H2O、LiOH等の不可避不純物が混入する。これら不可避不純物が原因となって電池内にガス(例えば、H2、O2、CO、CO2)が発生する。図1~図5に示す電池パック1によると、電池12を構成する容器14及び蓋15がプラスチックから形成されている。プラスチックは、H2、O2、CO、CO2などの電池内部の反応生成ガスに対して透過性は高い。プラスチックの一例である低密度ポリエチレン(LDPE)及び高密度ポリエチレン(HDPE)のH2、N2、O2、CO2、水蒸気の透過性を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
Inevitable impurities such as LiO, Li 2 CO 3 , H 2 O, and LiOH are mixed in the positive electrode or negative electrode of the battery (unit cell) constituting the battery pack in the manufacturing process. Due to these inevitable impurities, gas (for example, H 2 , O 2 , CO, CO 2 ) is generated in the battery. According to the battery pack 1 shown in FIGS. 1 to 5, the container 14 and the lid 15 constituting the battery 12 are made of plastic. Plastic is highly permeable to reaction product gases inside the battery, such as H 2 , O 2 , CO, and CO 2 . Table 1 shows the permeability of H 2 , N 2 , O 2 , CO 2 , and water vapor of low density polyethylene (LDPE) and high density polyethylene (HDPE), which are examples of plastics.
Figure JPOXMLDOC01-appb-T000001
 電池12の容器14及び蓋15をプラスチックから形成することによって、電池12内に発生したガス圧と筐体2内の圧力はプラスチックのガス透過性により等しくなるため、電池12が膨れるのを防止することができる。その結果、電池12に防爆機構を設ける必要をなくすことができる。また、容器14内に電極群13を収納する際、容器14と電極群13との間に絶縁部材を配置する必要がないため、電池12を小型化することができる。電池パックに加わった衝撃によって電極群13が移動して容器14または蓋15と接触しても内部短絡を生じないことから、スペーサを省略することも可能である。さらに、電池間の相対位置の固定、筐体に対する電池の位置固定のための凹凸部、フランジあるいは支柱などの構造物を容器や蓋に自由に作ることができる。また、容器14内に電解液を注入するための注液口は、注液後、熱溶融によって容易に封止することができる。 By forming the container 14 and the lid 15 of the battery 12 from plastic, the gas pressure generated in the battery 12 and the pressure in the housing 2 are equalized by the gas permeability of the plastic, thereby preventing the battery 12 from expanding. be able to. As a result, the battery 12 need not be provided with an explosion-proof mechanism. Further, when the electrode group 13 is accommodated in the container 14, it is not necessary to dispose an insulating member between the container 14 and the electrode group 13, so that the battery 12 can be reduced in size. Even if the electrode group 13 is moved by the impact applied to the battery pack and contacts the container 14 or the lid 15, an internal short circuit does not occur, so that the spacer can be omitted. Furthermore, a structure such as an uneven portion, a flange, or a support for fixing the relative position between the batteries and the position of the battery with respect to the housing can be freely formed on the container or the lid. Moreover, the liquid injection port for inject | pouring electrolyte solution in the container 14 can be easily sealed by heat melting after liquid injection.
 また、筐体2内に絶縁油4を収容することによって、絶縁油4は、冷却油として用いられる。絶縁油を介しての熱伝導か、絶縁油を強制対流もしくは自然対流することにより、電池温度を効果的に下げることができるため、電池温度が安定化し、電池の寿命を向上することができる。絶縁油には、燐酸トリオクチル(TOP)、燐酸トリブチル(TOB)、燐酸トリフェニル、燐酸トリメチル、燐酸トリプロピルなどのなどの燐酸エステル、トランス油を挙げることができる。使用する絶縁油の種類は、1種類または2種類以上にすることができる。 Further, by accommodating the insulating oil 4 in the housing 2, the insulating oil 4 is used as cooling oil. By conducting heat through the insulating oil or by forced convection or natural convection of the insulating oil, the battery temperature can be effectively lowered, so that the battery temperature is stabilized and the battery life can be improved. Examples of the insulating oil include phosphate esters such as trioctyl phosphate (TOP), tributyl phosphate (TOB), triphenyl phosphate, trimethyl phosphate, and tripropyl phosphate, and trans oil. The type of insulating oil to be used can be one type or two or more types.
 水分についてもプラスチックは透過性が高いため、電池12内に水蒸気が混入することは避けられず、電池12の内部と筐体2内の水分濃度は等しくなる。絶縁油4が吸湿剤として機能することにより、筐体2内の水分濃度が低下すると、電池12内の水分が筐体2内に放出されるため、電池12内の水分濃度を低下させることができる。その結果、電池12の寿命を改善することができるため、電池パックの寿命を向上させることができる。吸湿剤として機能する絶縁油には、TOP等を挙げることができる。TOPによる水分吸収反応を(1)式に示す。 As for moisture, since plastic has high permeability, it is inevitable that water vapor is mixed into the battery 12, and the moisture concentration in the battery 12 and the housing 2 are equal. When the insulating oil 4 functions as a hygroscopic agent, when the moisture concentration in the housing 2 decreases, the moisture in the battery 12 is released into the housing 2, which may reduce the moisture concentration in the battery 12. it can. As a result, since the life of the battery 12 can be improved, the life of the battery pack can be improved. An example of the insulating oil that functions as a hygroscopic agent is TOP. The water absorption reaction by TOP is shown in equation (1).
  TOP+H2O→H3PO4+3C817OH  (1)
 生成したH3PO4は、電池パック内の金属部品の表面に燐酸皮膜を形成する。その際、金属表面とH3PO4が反応してH2が生成するため、H2Oの分解が促進され、水分濃度を低下させることができる。金属部品には、例えば、筐体2の内壁、電圧検出端子、電圧検出端子のネジ止め部、ネジ、ワッシャー等が挙げられる。電池12の正極端子16又は負極端子17に電圧検出端子をネジ止めで固定する場合に、部品間の隙間に燐酸皮膜が生成すると、燐酸皮膜は絶縁体のため、部品間の導通が寸断される。ネジ、ネジ止め部及びワッシャーの表面を導電性プラスチックで被覆することによって、これら部品への燐酸皮膜の形成を抑えることができるため、部品間の導通を維持することができる。
TOP + H 2 O → H 3 PO 4 + 3C 8 H 17 OH (1)
The produced H 3 PO 4 forms a phosphoric acid film on the surface of the metal component in the battery pack. At that time, since the metal surface and the H 3 PO 4 is generated by H 2 reacts, decomposition of H 2 O is promoted, it is possible to reduce the water concentration. Examples of the metal parts include an inner wall of the housing 2, a voltage detection terminal, a screw fixing portion of the voltage detection terminal, a screw, and a washer. When the voltage detection terminal is fixed to the positive electrode terminal 16 or the negative electrode terminal 17 of the battery 12 with screws, if a phosphoric acid film is generated in the gap between the components, the phosphonic acid film is an insulator, so that conduction between the components is interrupted. . By covering the surfaces of the screws, screwing portions, and washers with the conductive plastic, the formation of a phosphoric acid film on these components can be suppressed, so that electrical conduction between the components can be maintained.
 また、電圧検出端子を構成する金属を、銅、金等の水素よりもイオン化傾向の低い金属(イオン化電位が水素よりも高い金属)でコーティングすることによって、電圧検出端子に燐酸皮膜が形成されるのを抑えることができる。一方、出力端子のボルト部分の金属を、銅又は銅に金コーティングしたものを用いることによって、該当部分にイオン化傾向の低い金属が使用されるため、燐酸皮膜が形成されるのを抑えることができる。 In addition, a phosphoric acid film is formed on the voltage detection terminal by coating the metal constituting the voltage detection terminal with a metal having a lower ionization tendency than hydrogen such as copper or gold (metal having an ionization potential higher than that of hydrogen). Can be suppressed. On the other hand, by using the metal of the bolt portion of the output terminal that is copper or copper coated with gold, a metal having a low ionization tendency is used for the corresponding portion, so that the formation of a phosphate film can be suppressed. .
 電池パックの筐体2内に、最低電位あるいは最高電位に固定したアルミニウム板を配置することにより、燐酸皮膜の形成をアルミニウム板に集中させ、その他の金属部品に燐酸皮膜が形成されるのを抑えることも可能である。 By disposing an aluminum plate fixed at the lowest potential or the highest potential in the battery pack housing 2, the formation of the phosphoric acid film is concentrated on the aluminum plate and the formation of the phosphoric acid film on other metal parts is suppressed. It is also possible.
 絶縁油4が難燃剤として機能することにより、電池パックの安全性を向上することができる。難燃剤として機能する絶縁油には、TOP等を挙げることができる。 When the insulating oil 4 functions as a flame retardant, the safety of the battery pack can be improved. Examples of the insulating oil functioning as a flame retardant include TOP.
 吸湿材(図示しない)を電池ボックス2a内に収容しても良い。吸湿材の使用例として、例えば、(a)粉末を絶縁油4に分散させるか、(b)袋などに収容した状態で絶縁油4中に浸漬させるか(袋は多孔質か、あるいは絶縁油に溶解するものを使用)、(c)電池12の容器14を形成するプラスチックに混入するか、(d)セパレータ21中に含有させるか、(e)吸湿材に接着材を混合させたものを容器14の外面に塗布する等が挙げられる。吸湿剤としては、例えば、酸化リチウム(Li2O)、酸化ナトリウム(Na2O)、酸化カリウム(K2O)、酸化カルシウム(CaO)、酸化マグネシウム(MgO)などを挙げることができ、使用する吸湿剤の種類は1種類または2種類以上にすることができる。 A hygroscopic material (not shown) may be accommodated in the battery box 2a. As an example of use of the hygroscopic material, for example, (a) the powder is dispersed in the insulating oil 4, or (b) is immersed in the insulating oil 4 in a state of being accommodated in a bag or the like (the bag is porous, or the insulating oil (C) mixed in the plastic forming the container 14 of the battery 12, or (d) contained in the separator 21, or (e) a mixture of a moisture absorbent and an adhesive. Application to the outer surface of the container 14 may be mentioned. Examples of the moisture absorbent include lithium oxide (Li 2 O), sodium oxide (Na 2 O), potassium oxide (K 2 O), calcium oxide (CaO), magnesium oxide (MgO), and the like. The kind of hygroscopic agent to be used can be one kind or two or more kinds.
 吸湿材は、筐体2内及び絶縁油4の水分濃度を低くすることができるため、濃度差により電池12内部の水分を外部に放出させることができ、電池12の寿命を向上することができる。吸湿材による水分吸収反応の一例を(2)~(5)に示す。 Since the moisture absorbent can reduce the moisture concentration in the housing 2 and the insulating oil 4, the moisture in the battery 12 can be released to the outside due to the concentration difference, and the life of the battery 12 can be improved. . An example of the water absorption reaction by the hygroscopic material is shown in (2) to (5).
  Li2O+H2O→2LiOH  (2)
  Na2O+H2O→2NaOH  (3)
  CaO+H2O→Ca(OH)2 (4)
  MgO+H2O→Mg(OH)2 (5)
 また、吸湿材は、電池から発生する炭酸ガスと反応して炭酸ガスを吸収することができる。吸湿材による炭酸ガス吸収反応の一例を(6)~(9)に示す。
Li 2 O + H 2 O → 2LiOH (2)
Na 2 O + H 2 O → 2 NaOH (3)
CaO + H 2 O → Ca (OH) 2 (4)
MgO + H 2 O → Mg (OH) 2 (5)
Further, the hygroscopic material can absorb carbon dioxide by reacting with carbon dioxide generated from the battery. An example of carbon dioxide absorption reaction by the hygroscopic material is shown in (6) to (9).
  Li2O+CO2→Li2CO3 (6)
  Na2O+CO2→Na2CO3 (7)
  CaO+CO2→CaCO3  (8)
  MgO+CO2→MgCO3  (9)
 吸湿剤が吸湿して発生した水酸化物、例えば、LiOH、NaOH、Ca(OH)2、Mg(OH)2などの水酸化物は炭酸ガスを吸収して水分を放出する。LiOHの場合の反応式を(10)に示す。
Li 2 O + CO 2 → Li 2 CO 3 (6)
Na 2 O + CO 2 → Na 2 CO 3 (7)
CaO + CO 2 → CaCO 3 (8)
MgO + CO 2 → MgCO 3 (9)
Hydroxides generated by moisture absorption by the hygroscopic agent, for example, hydroxides such as LiOH, NaOH, Ca (OH) 2 and Mg (OH) 2 , absorb carbon dioxide and release moisture. The reaction formula in the case of LiOH is shown in (10).
  2LiOH+CO2→LiCO3+H2O  (10)
 絶縁油4は、吸湿剤が吸湿して発生した水酸化物と反応し、水酸化物濃度を下げることができる。これにより、吸湿剤による吸湿効果を改善することができると共に、吸湿剤が反応して生成した水酸化物が炭酸ガスと反応して水分を放出するのを防止することができる。水酸化物との反応剤として機能する絶縁油には、例えば、燐酸トリオクチル(TOP)、燐酸トリブチル(TOB)、燐酸トリフェニル、燐酸トリメチル、燐酸トリプロピルなどの燐酸エステルを挙げることができる。水酸化物との反応例を下記(11)に示す。
2LiOH + CO 2 → LiCO 3 + H 2 O (10)
The insulating oil 4 can react with the hydroxide generated by the moisture absorption by the hygroscopic agent to reduce the hydroxide concentration. Thereby, while being able to improve the moisture absorption effect by a hygroscopic agent, it can prevent that the hydroxide produced | generated by the reaction of a hygroscopic agent reacts with a carbon dioxide gas, and discharge | releases a water | moisture content. Examples of the insulating oil that functions as a reaction agent with a hydroxide include phosphate esters such as trioctyl phosphate (TOP), tributyl phosphate (TOB), triphenyl phosphate, trimethyl phosphate, and tripropyl phosphate. A reaction example with a hydroxide is shown in the following (11).
  3LiOH+TOP→Li3PO4+3C817OH  (11)
 絶縁油の中でも、燐酸トリオクチル(TOP)又は燐酸トリブチル(TOB)が好ましい。TOP、TOBは、冷却油として機能するだけではなく、吸湿剤が吸湿して発生した水酸化物との反応性に優れているからである。
3LiOH + TOP → Li 3 PO 4 + 3C 8 H 17 OH (11)
Among insulating oils, trioctyl phosphate (TOP) or tributyl phosphate (TOB) is preferable. This is because TOP and TOB not only function as cooling oil but also have excellent reactivity with the hydroxide generated by absorbing moisture by the hygroscopic agent.
 なお、図1~図5では、各電池12の容器14の底面(短辺側側面)を下にして電池ボックス2a内に配置することにより、各電池12を電池ボックス2a内に縦置きしたが、電池12の配置はこれに限定されず、例えば、各電池12の容器14の長辺側側面を下にして電池ボックス2a内に配置することで電池12を電池ボックス2a内に横置きしても良い。 1 to 5, each battery 12 is vertically placed in the battery box 2a by placing the battery 14 in the battery box 2a with the bottom surface (short side surface) of the container 14 facing down. The arrangement of the batteries 12 is not limited to this. For example, the batteries 12 can be placed horizontally in the battery box 2a by placing the long sides of the containers 14 of the batteries 12 in the battery box 2a. Also good.
 また、電池12の数は複数に限定されず、1個でも良い。 Further, the number of the batteries 12 is not limited to a plurality, and may be one.
 電池12の負極20、正極19、セパレータ21及び電解液22には、例えば、以下に説明するものを使用することができる。 As the negative electrode 20, the positive electrode 19, the separator 21, and the electrolytic solution 22 of the battery 12, for example, those described below can be used.
 1)負極20
 この負極20は、負極集電体20aと、負極活物質含有層20bとを有する。負極活物質含有層20bは、負極集電体20aの片面もしくは両面に担持され、負極活物質、導電剤および結着剤を含む。
1) Negative electrode 20
The negative electrode 20 includes a negative electrode current collector 20a and a negative electrode active material-containing layer 20b. The negative electrode active material-containing layer 20b is supported on one surface or both surfaces of the negative electrode current collector 20a and includes a negative electrode active material, a conductive agent, and a binder.
 負極集電体には、アルミニウム箔、アルミニウム合金箔等の金属箔を用いることができる。また、負極集電体の平均結晶粒子径は50μm以下であることが好ましい。 As the negative electrode current collector, a metal foil such as an aluminum foil or an aluminum alloy foil can be used. The average crystal particle size of the negative electrode current collector is preferably 50 μm or less.
 負極集電体の厚さは、高容量化のため、20μm以下が好ましい。より好ましい範囲は12μm以下である。また、負極集電体の厚さの下限値は、3μmにすることが望ましい。 The thickness of the negative electrode current collector is preferably 20 μm or less in order to increase the capacity. A more preferable range is 12 μm or less. Further, the lower limit value of the thickness of the negative electrode current collector is desirably 3 μm.
 負極集電体に用いられるアルミニウムの純度は、耐食性の向上および高強度化のため、99.99%以上が好ましい。アルミニウム合金としては、アルミニウムの他に、鉄、マグネシウム、亜鉛、マンガン及びケイ素よりなる群から選択される1種類以上の元素を含む合金が好ましい。例えば、Al-Fe合金、Al-Mn系合金およびAl-Mg系合金は、アルミニウムよりさらに高い強度を得ることが可能である。一方、アルミニウムおよびアルミニウム合金中のニッケル、クロムなどの遷移金属の含有量は100ppm以下(0ppmを含む)にすることが好ましい。 The purity of aluminum used for the negative electrode current collector is preferably 99.99% or more for improving corrosion resistance and increasing strength. The aluminum alloy is preferably an alloy containing one or more elements selected from the group consisting of iron, magnesium, zinc, manganese and silicon in addition to aluminum. For example, an Al—Fe alloy, an Al—Mn alloy, and an Al—Mg alloy can obtain higher strength than aluminum. On the other hand, the content of transition metals such as nickel and chromium in aluminum and aluminum alloys is preferably 100 ppm or less (including 0 ppm).
 アルミニウム合金中のアルミニウム含有量は、95重量%以上、99.5重量%以下にすることが望ましい。より好ましいアルミニウム含有量は、98重量%以上、99.5重量%以下である。 The aluminum content in the aluminum alloy is desirably 95% by weight or more and 99.5% by weight or less. A more preferable aluminum content is 98% by weight or more and 99.5% by weight or less.
 負極活物質の一次粒子の平均粒子径は1μm以下とすることが望ましい。 The average particle diameter of the primary particles of the negative electrode active material is desirably 1 μm or less.
 負極活物質としては、リチウムを吸蔵放出する物質を使用することができ、中でも、金属酸化物、金属硫化物、金属窒化物、合金などが挙げられる。 As the negative electrode active material, a material that absorbs and releases lithium can be used, and among these, metal oxides, metal sulfides, metal nitrides, alloys, and the like can be given.
 負極活物質のリチウム吸蔵電位は、リチウム金属の開回路電位に対して開回路電位で0.4V以上であることが好ましい。これにより、負極集電体のアルミニウム成分とリチウムとの合金化反応の進行および負極集電体の微紛化を抑制できる。さらに、リチウム吸蔵電位は、リチウム金属の開回路電位に対して開回路電位で0.4V以上、3V以下の範囲であることが好ましい。これにより、電池電圧を向上させることができる。さらに好ましい電位範囲は、0.4V以上、2V以下である。 The lithium occlusion potential of the negative electrode active material is preferably 0.4 V or more in terms of the open circuit potential relative to the open circuit potential of lithium metal. Thereby, the progress of the alloying reaction between the aluminum component of the negative electrode current collector and lithium and the pulverization of the negative electrode current collector can be suppressed. Furthermore, the lithium occlusion potential is preferably in the range of 0.4 V or more and 3 V or less in terms of open circuit potential with respect to the open circuit potential of lithium metal. Thereby, a battery voltage can be improved. A more preferable potential range is 0.4 V or more and 2 V or less.
 0.4V以上、3V以下の範囲でリチウムを吸蔵することが可能な金属酸化物としては、例えばTiO2などのチタン酸化物、例えばLi4+xTi512(xは-1≦x≦3)やLi2Ti37などのリチウムチタン酸化物、例えばWO3などのタングステン酸化物、例えばSnB0.40.63.1などのアモルファススズ酸化物、例えばSnSiO3などのスズ珪素酸化物、例えばSiOなどの酸化珪素などが挙げられる。中でも、リチウムチタン酸化物が好ましい。 As a metal oxide capable of occluding lithium in the range of 0.4 V or more and 3 V or less, for example, a titanium oxide such as TiO 2 , for example, Li 4 + x Ti 5 O 12 (x is −1 ≦ x ≦ 3) and lithium titanium oxides such as Li 2 Ti 3 O 7 , tungsten oxides such as WO 3 , amorphous tin oxides such as SnB 0.4 P 0.6 O 3.1 , tin silicon oxides such as SnSiO 3, etc. Examples thereof include silicon oxide such as SiO. Among these, lithium titanium oxide is preferable.
 0.4V以上、3V以下の範囲でリチウムを吸蔵することが可能な金属硫化物としては、例えばTiS2などの硫化リチウム、例えばMoS2などの硫化モリブデン、例えばFeS、FeS2、LixFeS2などの硫化鉄等が挙げられる。 Examples of the metal sulfide capable of occluding lithium in the range of 0.4 V or more and 3 V or less include lithium sulfide such as TiS 2 , molybdenum sulfide such as MoS 2 , such as FeS, FeS 2 , and Li x FeS 2. And iron sulfide.
 0.4V以上、3V以下の範囲でリチウムを吸蔵することが可能な金属窒化物としては、例えばLixCoyN(0<x<4,0<y<0.5)などのリチウムコバルト窒化物等が挙げられる。 Examples of the metal nitride capable of occluding lithium in the range of 0.4 V or more and 3 V or less include lithium cobalt nitride such as Li x Co y N (0 <x <4, 0 <y <0.5). Thing etc. are mentioned.
 電子伝導性を高め、集電体との接触抵抗を抑えるための導電剤として、炭素材料を用いることができる。例えば、アセチレンブラック、カーボンブラック、コークス、炭素繊維、黒鉛等を挙げることができる。 A carbon material can be used as a conductive agent for enhancing electron conductivity and suppressing contact resistance with the current collector. Examples thereof include acetylene black, carbon black, coke, carbon fiber, and graphite.
 活物質と導電剤を結着させるための結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレンブタジェンゴムなどが挙げられる。 Examples of the binder for binding the active material and the conductive agent include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, and styrene butadiene rubber.
 負極の活物質、導電剤及び結着剤の配合比については、負極活物質は80重量%以上95重量%以下、導電剤は3重量%以上18重量%以下、結着剤は2重量%以上7重量%以下の範囲にすることが好ましい。導電剤については、3重量%以上であることにより上述した効果を発揮することができ、18重量%以下であることにより、高温保存下での導電剤表面での非水電解質の分解を低減することができる。結着剤については、2重量%以上であることにより十分な電極強度が得られ、7重量%以下であることにより、電極の絶縁部を減少させることが出来る。 Regarding the mixing ratio of the negative electrode active material, the conductive agent, and the binder, the negative electrode active material is 80% by weight to 95% by weight, the conductive agent is 3% by weight to 18% by weight, and the binder is 2% by weight or more. It is preferable to make it into the range of 7 weight% or less. With respect to the conductive agent, the effect described above can be exhibited when it is 3% by weight or more, and when it is 18% by weight or less, the decomposition of the nonaqueous electrolyte on the surface of the conductive agent under high temperature storage is reduced. be able to. When the binder is 2% by weight or more, sufficient electrode strength can be obtained, and when it is 7% by weight or less, the insulating portion of the electrode can be reduced.
 負極の密度は、1.5g/cm3以上、5g/cm3以下にすることが望ましい。これにより、高い電池容量を得ることができる。さらに好ましい範囲は、2g/cm3以上、4g/cm3以下である。 The density of the negative electrode is desirably 1.5 g / cm 3 or more and 5 g / cm 3 or less. Thereby, a high battery capacity can be obtained. A more preferable range is 2 g / cm 3 or more and 4 g / cm 3 or less.
 負極は、例えば、負極活物質、導電剤及び結着剤を適当な溶媒に懸濁し、この懸濁物を負極集電体に塗布し、乾燥し、プレスを施すことにより作製される。 The negative electrode is produced, for example, by suspending a negative electrode active material, a conductive agent, and a binder in a suitable solvent, applying the suspension to the negative electrode current collector, drying, and pressing.
 2)正極19
 この正極19は、正極集電体19aと、正極活物質含有層19bとを有する。正極活物質含有層19bは、正極集電体19aの片面もしくは両面に担持され、正極活物質、導電剤および結着剤を含む。
2) Positive electrode 19
The positive electrode 19 includes a positive electrode current collector 19a and a positive electrode active material-containing layer 19b. The positive electrode active material-containing layer 19b is carried on one side or both sides of the positive electrode current collector 19a and includes a positive electrode active material, a conductive agent, and a binder.
 正極集電体には、例えば、アルミニウム箔、アルミニウム合金箔等の金属箔を用いることができる。アルミニウム箔及びアルミニウム合金箔は、それぞれ、平均結晶粒子径が50μm以下であることが好ましい。 As the positive electrode current collector, for example, a metal foil such as an aluminum foil or an aluminum alloy foil can be used. Each of the aluminum foil and the aluminum alloy foil preferably has an average crystal particle diameter of 50 μm or less.
 正極集電体の厚さは、高容量化のため、20μm以下が好ましい。より好ましい範囲は15μm以下である。また、正極集電体の厚さの下限値は、3μmにすることが望ましい。 The thickness of the positive electrode current collector is preferably 20 μm or less in order to increase the capacity. A more preferable range is 15 μm or less. Moreover, it is desirable that the lower limit value of the thickness of the positive electrode current collector be 3 μm.
 正極活物質としては、酸化物、硫化物、ポリマーなどが挙げられる。 Examples of the positive electrode active material include oxides, sulfides, and polymers.
 酸化物として、例えば、二酸化マンガン(MnO2)、酸化鉄、酸化銅、酸化ニッケル、例えばLixMn24またはLixMnO2などのリチウムマンガン複合酸化物、例えばLixNiO2などのリチウムニッケル複合酸化物、例えばLixCoO2などのリチウムコバルト複合酸化物、例えばLiNi1-yCoy2などのリチウムニッケルコバルト複合酸化物、例えばLiMnyCo1-y2などのリチウムマンガンコバルト複合酸化物、例えばLixMn2-yNiy4などのスピネル型リチウムマンガンニッケル複合酸化物、例えばLixFePO4、LixFe1-yMnyPO4、LixCoPO4などのオリピン構造を有するリチウムリン酸化物、例えばFe2(SO43などの硫酸鉄、例えばV25などのバナジウム酸化物などが挙げられる。なお、x、yは0~1の範囲であることが好ましい。 As the oxide, for example, manganese dioxide (MnO 2 ), iron oxide, copper oxide, nickel oxide, lithium manganese composite oxide such as Li x Mn 2 O 4 or Li x MnO 2 , lithium such as Li x NiO 2, etc. nickel composite oxide, for example, Li x lithium-cobalt composite oxides such as CoO 2, for example, LiNi 1-y Co y O 2 lithium-nickel-cobalt composite oxide such as, for example, lithium manganese cobalt such as LiMn y Co 1-y O 2 composite oxides, for example olivine, such as Li x Mn 2-y Ni y O 4 spinel-type lithium-manganese-nickel composite oxide such as, for example, Li x FePO 4, Li x Fe 1-y Mn y PO 4, Li x CoPO 4 Lithium phosphorus oxide having a structure, for example, iron sulfate such as Fe 2 (SO 4 ) 3 , for example, vanadium oxide such as V 2 O 5 And so on. X and y are preferably in the range of 0 to 1.
 例えば、ポリマーとしては、ポリアニリンやポリピロールなどの導電性ポリマー材料、ジスルフィド系ポリマー材料などが挙げられる。その他に、イオウ(S)、フッ化カーボンなども使用できる。 For example, examples of the polymer include conductive polymer materials such as polyaniline and polypyrrole, and disulfide polymer materials. In addition, sulfur (S), carbon fluoride, and the like can be used.
 好ましい正極活物質としては、高い正極電圧が得られるため、LixMn24のようなリチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムコバルト複合酸化物、リチウムニッケルコバルト複合酸化物、スピネル型リチウムマンガンニッケル複合酸化物、リチウムマンガンコバルト複合酸化物、LixFePO4のようなリチウムリン酸鉄などが挙げられる。 As a preferable positive electrode active material, since a high positive electrode voltage can be obtained, lithium manganese composite oxide such as Li x Mn 2 O 4 , lithium nickel composite oxide, lithium cobalt composite oxide, lithium nickel cobalt composite oxide, spinel Type lithium manganese nickel composite oxide, lithium manganese cobalt composite oxide, and lithium iron phosphate such as Li x FePO 4 .
 電子伝導性を高め、集電体との接触抵抗を抑えるための導電剤としては、例えば、アセチレンブラック、カーボンブラック、黒鉛等を挙げることができる。 Examples of the conductive agent for increasing the electron conductivity and suppressing the contact resistance with the current collector include acetylene black, carbon black, and graphite.
 活物質と導電剤を結着させるための結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴムなどが挙げられる。 Examples of the binder for binding the active material and the conductive agent include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and fluorine-based rubber.
 正極活物質、導電剤及び結着剤の配合比については、正極活物質は80重量%以上95重量%以下、導電剤は3重量%以上18重量%以下、結着剤は2重量%以上7重量%以下の範囲にすることが好ましい。導電剤については、3重量%以上であることにより上述した効果を発揮することができ、18重量%以下であることにより、高温保存下での導電剤表面での非水電解質の分解を低減することができる。結着剤については、2重量%以上であることにより十分な電極強度が得られ、7重量%以下であることにより、電極の絶縁部を減少させることが出来る。 Regarding the mixing ratio of the positive electrode active material, the conductive agent and the binder, the positive electrode active material is 80% by weight to 95% by weight, the conductive agent is 3% by weight to 18% by weight, and the binder is 2% by weight to 7%. It is preferable to make it into the range below weight%. With respect to the conductive agent, the effect described above can be exhibited when it is 3% by weight or more, and when it is 18% by weight or less, the decomposition of the nonaqueous electrolyte on the surface of the conductive agent under high temperature storage is reduced. be able to. When the binder is 2% by weight or more, sufficient electrode strength can be obtained, and when it is 7% by weight or less, the insulating portion of the electrode can be reduced.
 正極は、例えば、正極活物質、導電剤及び結着剤を適当な溶媒に懸濁し、この懸濁物を正極集電体に塗布し、乾燥し、プレスを施すことにより作製される。 The positive electrode is produced, for example, by suspending a positive electrode active material, a conductive agent, and a binder in an appropriate solvent, applying the suspension to the positive electrode current collector, drying, and pressing.
 3)電解液
 電解液は、電解質を有機溶媒に溶解することにより調製される。電解質濃度は、0.5~2mol/Lの範囲内にすることができる。
3) Electrolytic solution The electrolytic solution is prepared by dissolving an electrolyte in an organic solvent. The electrolyte concentration can be in the range of 0.5 to 2 mol / L.
 電解質としては、LiBFが挙げられる。有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)などの環状カーボネート、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)などの鎖状カーボネート、テトラヒドロフラン(THF)、2メチルテトラヒドロフラン(2MeTHF)などの環状エーテル、ジメトキシエタン(DME)などの鎖状エーテル、γ-ブチロラクトン(BL)、アセトニトリル(AN)、スルホラン(SL)、リン酸エステル等を挙げることができる。これらの有機溶媒は、単独または2種以上の混合物の形態で用いることができる。 Examples of the electrolyte include LiBF 4 . Examples of the organic solvent include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and vinylene carbonate (VC), chains such as dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC). Carbonates, cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran (2MeTHF), chain ethers such as dimethoxyethane (DME), γ-butyrolactone (BL), acetonitrile (AN), sulfolane (SL), phosphate esters Etc. These organic solvents can be used alone or in the form of a mixture of two or more.
 4)セパレータ21
 セパレータ21としては、例えば、合成樹脂製不織布、ポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルムなどを用いることができる。
4) Separator 21
As the separator 21, for example, a synthetic resin nonwoven fabric, a polyethylene porous film, a polypropylene porous film, or the like can be used.
 ところで、図6及び図7は、金属製の容器及び蓋を使用した電池の例である。図1~図5と同じ部材は、同符号を付して説明を省略する。電極群13は、アルミニウムのような金属製容器31内に絶縁体32を介して収納される。アルミニウムのような金属製の蓋33は、容器31に溶接される。正極端子16及び負極端子17は、絶縁ガスケット34を介して蓋33に取り付けられている。 Incidentally, FIGS. 6 and 7 are examples of batteries using metal containers and lids. The same members as those in FIG. 1 to FIG. The electrode group 13 is accommodated in a metal container 31 such as aluminum via an insulator 32. A lid 33 made of metal such as aluminum is welded to the container 31. The positive terminal 16 and the negative terminal 17 are attached to the lid 33 via an insulating gasket 34.
 図6及び図7に示す電池は、容器31内に水分が浸入するのを防止する効果が高いものの、副反応によって発生したガスによって容器31が膨れるため、電池の寿命が短くなる。 Although the battery shown in FIGS. 6 and 7 is highly effective in preventing moisture from entering the container 31, the container 31 swells due to the gas generated by the side reaction, so that the battery life is shortened.
 以上説明した実施形態の電池パックによれば、プラスチック製外装容器を備えた電池を金属製筐体内に収納するため、電池内に発生したガスの圧力と筐体内の圧力をプラスチックのガス透過性により等しくすることができ、電池が膨れるのを防止することができる。電池の膨れが抑えられたことから、筐体内に収納された絶縁油によって、電池の冷却を効率良く行うことができる。その結果、電池パックの寿命を改善することが可能となる。 According to the battery pack of the embodiment described above, since the battery including the plastic outer container is stored in the metal casing, the pressure of the gas generated in the battery and the pressure in the casing are determined by the gas permeability of the plastic. It can be made equal and it can prevent that a battery swells. Since the swelling of the battery is suppressed, the battery can be efficiently cooled by the insulating oil stored in the housing. As a result, it is possible to improve the life of the battery pack.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 1…電池パック、2…筐体、2a…電池ボックス、2b…蓋、3…電池(単位セル)、4…絶縁油、5,16…正極端子、6,17…負極端子、7…絶縁部材、8…電圧・温度モニター端子、9…均圧バルブ、10…冷却装置、11…冷却パイプ、12…電池、13…電極群、14…容器、15…蓋、18…ラプチャー部、19…正極、19a…正極集電体、19b…正極活物質含有層、20…負極、20a…負極集電体、20b…負極活物質含有層、21…セパレータ、22…電解液、23…正極リード、24…負極リード、25…突起部。 DESCRIPTION OF SYMBOLS 1 ... Battery pack, 2 ... Housing, 2a ... Battery box, 2b ... Lid, 3 ... Battery (unit cell), 4 ... Insulating oil, 5, 16 ... Positive electrode terminal, 6, 17 ... Negative electrode terminal, 7 ... Insulating member 8 ... Voltage / temperature monitor terminal, 9 ... Pressure equalizing valve, 10 ... Cooling device, 11 ... Cooling pipe, 12 ... Battery, 13 ... Electrode group, 14 ... Container, 15 ... Lid, 18 ... Rupture part, 19 ... Positive electrode , 19a ... positive electrode current collector, 19b ... positive electrode active material containing layer, 20 ... negative electrode, 20a ... negative electrode current collector, 20b ... negative electrode active material containing layer, 21 ... separator, 22 ... electrolytic solution, 23 ... positive electrode lead, 24 ... negative electrode lead, 25 ... projection.

Claims (11)

  1.  プラスチック製の外装容器と、前記外装容器内に収納される電極と、前記外装容器内に収納される電解液と、前記外装容器に設けられ、前記電極と電気的に接続された電極端子とを含む電池と、
     前記電池が収納される金属製の筐体と、
     前記筐体内に収納される絶縁油と
    を含む電池パック。
    A plastic outer container, an electrode housed in the outer container, an electrolytic solution housed in the outer container, and an electrode terminal provided in the outer container and electrically connected to the electrode Including batteries,
    A metal housing for storing the battery;
    A battery pack including insulating oil stored in the housing.
  2.  前記絶縁油は、燐酸エステルを含む請求項1記載の電池パック。 The battery pack according to claim 1, wherein the insulating oil contains a phosphate ester.
  3.  前記筐体内に収納される吸湿材をさらに含む請求項1記載の電池パック。 The battery pack according to claim 1, further comprising a hygroscopic material housed in the housing.
  4.  前記吸湿材は、炭酸ガス吸収能を有する請求項3記載の電池パック。 4. The battery pack according to claim 3, wherein the hygroscopic material has carbon dioxide absorption ability.
  5.  前記外装容器の外面から突出した複数の突起をさらに含む請求項1記載の電池パック。 The battery pack according to claim 1, further comprising a plurality of protrusions protruding from an outer surface of the outer container.
  6.  前記電池を複数個備え、隣り合う電池において、一方の電池が前記外装容器の外面に第1の突起を有し、他方の電池が前記外装容器の外面に、前記第1の突起と対向する第2の突起を有する請求項1記載の電池パック。 A plurality of the batteries are provided, and in adjacent batteries, one battery has a first protrusion on the outer surface of the outer container, and the other battery faces the first protrusion on the outer surface of the outer container. The battery pack according to claim 1, comprising two protrusions.
  7.  前記外装容器は扁平形状を有し、前記電池は、前記外装容器の短辺側側面を底面にして前記筐体内に収納される請求項1記載の電池パック。 The battery pack according to claim 1, wherein the outer container has a flat shape, and the battery is housed in the casing with a short side surface of the outer container being a bottom surface.
  8.  前記外装容器は扁平形状を有し、前記電池は、前記外装容器の長辺側側面を底面にして前記筐体内に収納される請求項1記載の電池パック。 The battery pack according to claim 1, wherein the outer container has a flat shape, and the battery is housed in the casing with a long side surface of the outer container being a bottom surface.
  9.  前記筐体に設けられた冷却装置をさらに備える請求項1記載の電池パック。 The battery pack according to claim 1, further comprising a cooling device provided in the housing.
  10.  前記プラスチックは、ポリプロピレン、ポリエチレン、ポリテトラフルオロエチレン及びポリエチレンテレフタレートよりなる群から選択される少なくとも1種類を含む、請求項1記載の電池パック。 The battery pack according to claim 1, wherein the plastic includes at least one selected from the group consisting of polypropylene, polyethylene, polytetrafluoroethylene, and polyethylene terephthalate.
  11.  前記電池は、非水電解質二次電池である、請求項1記載の電池パック。 The battery pack according to claim 1, wherein the battery is a non-aqueous electrolyte secondary battery.
PCT/JP2013/069285 2012-07-17 2013-07-16 Battery pack WO2014013981A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-158685 2012-07-17
JP2012158685A JP6091783B2 (en) 2012-07-17 2012-07-17 Battery pack

Publications (1)

Publication Number Publication Date
WO2014013981A1 true WO2014013981A1 (en) 2014-01-23

Family

ID=49948807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069285 WO2014013981A1 (en) 2012-07-17 2013-07-16 Battery pack

Country Status (2)

Country Link
JP (1) JP6091783B2 (en)
WO (1) WO2014013981A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2953189A4 (en) * 2014-01-28 2016-03-02 Lg Chemical Ltd Battery module
EP3297065A1 (en) * 2016-09-15 2018-03-21 Jaroslav Polívka High capacity lithium accumulator with enhanced safety
WO2018054100A1 (en) * 2016-09-21 2018-03-29 比亚迪股份有限公司 Power battery pack
CN108028322A (en) * 2015-06-30 2018-05-11 法拉第未来公司 Partially submerged single battery for vehicle energy storage system
CN110620282A (en) * 2018-06-19 2019-12-27 罗伯特·博世有限公司 Battery module with a plurality of battery cells
CN111247689A (en) * 2018-04-25 2020-06-05 株式会社Lg化学 Battery module, battery pack including the same, and vehicle including the battery pack
EP4116391A1 (en) * 2021-07-07 2023-01-11 Lanxess Corporation Phosphate ester heat transfer fluids and their use in an immersion cooling system
WO2023283117A1 (en) * 2021-07-07 2023-01-12 Lanxess Corporation Phosphate ester heat transfer fluids and their use in an immersion cooling system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5563195B2 (en) 2005-01-21 2014-07-30 コモンウェルス サイエンティフィック アンドインダストリアル リサーチ オーガナイゼーション Activation method using a modifying substance
KR101760398B1 (en) * 2014-05-19 2017-07-21 주식회사 엘지화학 Pouch type secondary battery with improved safety
KR102061745B1 (en) 2016-04-25 2020-01-02 주식회사 엘지화학 Battery pack and vehicle comprising the battery pack
KR101834846B1 (en) * 2016-08-08 2018-03-06 보성파워텍 주식회사 Battery-module
JP6961454B2 (en) * 2017-10-17 2021-11-05 矢崎総業株式会社 Battery pack
TWI793638B (en) * 2021-06-16 2023-02-21 陳樹錦 Flame-retardant and explosion-proof battery packs and manufacturing method thereof for electric vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110385A (en) * 1999-10-08 2001-04-20 Matsushita Electric Ind Co Ltd Unit cell
JP2004055491A (en) * 2002-07-24 2004-02-19 Miyagawa Kasei Ind Co Ltd Battery case structure of sealed type battery
JP2009037934A (en) * 2007-08-02 2009-02-19 Sanyo Electric Co Ltd Power supply device for vehicle
JP2009048965A (en) * 2007-08-23 2009-03-05 Toyota Motor Corp Battery pack, and manufacturing method thereof
JP2010045001A (en) * 2008-08-18 2010-02-25 Toyota Motor Corp Fault detecting system for power supply, and vehicle
JP2011049139A (en) * 2009-07-31 2011-03-10 Sanyo Electric Co Ltd Battery device
JP2011154985A (en) * 2010-01-28 2011-08-11 Sanyo Electric Co Ltd Power supply device, and vehicle equipped with this
JP2011192642A (en) * 2010-02-17 2011-09-29 Hitachi Ltd Assembled battery system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110385A (en) * 1999-10-08 2001-04-20 Matsushita Electric Ind Co Ltd Unit cell
JP2004055491A (en) * 2002-07-24 2004-02-19 Miyagawa Kasei Ind Co Ltd Battery case structure of sealed type battery
JP2009037934A (en) * 2007-08-02 2009-02-19 Sanyo Electric Co Ltd Power supply device for vehicle
JP2009048965A (en) * 2007-08-23 2009-03-05 Toyota Motor Corp Battery pack, and manufacturing method thereof
JP2010045001A (en) * 2008-08-18 2010-02-25 Toyota Motor Corp Fault detecting system for power supply, and vehicle
JP2011049139A (en) * 2009-07-31 2011-03-10 Sanyo Electric Co Ltd Battery device
JP2011154985A (en) * 2010-01-28 2011-08-11 Sanyo Electric Co Ltd Power supply device, and vehicle equipped with this
JP2011192642A (en) * 2010-02-17 2011-09-29 Hitachi Ltd Assembled battery system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2953189A4 (en) * 2014-01-28 2016-03-02 Lg Chemical Ltd Battery module
US10044070B2 (en) 2014-01-28 2018-08-07 Lg Chem, Ltd. Battery module
CN108028322A (en) * 2015-06-30 2018-05-11 法拉第未来公司 Partially submerged single battery for vehicle energy storage system
CN108028322B (en) * 2015-06-30 2022-06-24 法拉第未来公司 Partially submerged battery cell for vehicle energy storage system
EP3297065A1 (en) * 2016-09-15 2018-03-21 Jaroslav Polívka High capacity lithium accumulator with enhanced safety
WO2018054100A1 (en) * 2016-09-21 2018-03-29 比亚迪股份有限公司 Power battery pack
US10916750B2 (en) 2016-09-21 2021-02-09 Byd Company Limited Power battery pack
CN111247689A (en) * 2018-04-25 2020-06-05 株式会社Lg化学 Battery module, battery pack including the same, and vehicle including the battery pack
US11764425B2 (en) * 2018-04-25 2023-09-19 Lg Energy Solution, Ltd. Battery module, battery pack including same battery module, and vehicle including same battery pack
CN110620282A (en) * 2018-06-19 2019-12-27 罗伯特·博世有限公司 Battery module with a plurality of battery cells
EP4116391A1 (en) * 2021-07-07 2023-01-11 Lanxess Corporation Phosphate ester heat transfer fluids and their use in an immersion cooling system
WO2023283117A1 (en) * 2021-07-07 2023-01-12 Lanxess Corporation Phosphate ester heat transfer fluids and their use in an immersion cooling system

Also Published As

Publication number Publication date
JP2014022151A (en) 2014-02-03
JP6091783B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6091783B2 (en) Battery pack
KR101702818B1 (en) Active material, nonaqueous electrolyte battery, and battery pack
US9263747B2 (en) Positive electrode, nonaqueous electrolyte battery and battery pack
JP4915390B2 (en) Non-aqueous electrolyte battery
CN108281658B (en) Nonaqueous electrolyte battery and battery pack
US9647252B2 (en) Nonaqueous electrolyte battery pack with gas-releasing portion for transferring heat
US20090087727A1 (en) Battery pack
US9698411B2 (en) Electrode for battery and production method thereof, nonaqueous electrolyte battery, battery pack, and active material
JP5725358B2 (en) Lithium secondary battery
JP6139194B2 (en) Nonaqueous electrolyte secondary battery
WO2016068286A1 (en) Nonaqueous electrolyte battery and battery pack
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JP6184588B2 (en) Nonaqueous electrolyte battery and battery pack
US20120202110A1 (en) Secondary battery cell and a battery pack
JP2010073580A (en) Nonaqueous electrolyte battery
US20140045002A1 (en) Nonaqueous electrolyte secondary battery
US9979020B2 (en) Nonaqueous electrolyte battery and battery pack
WO2011058979A1 (en) Lithium secondary battery
JP6903683B2 (en) Non-aqueous electrolyte batteries and battery packs
US10230102B2 (en) Positive electrode active material, nonaqueous electrolyte battery and battery pack
WO2017110059A1 (en) Nonaqueous electrolyte secondary battery
JP2015084326A (en) Secondary battery
CN112913051A (en) Secondary battery
US9531034B2 (en) Nonaqueous electrolyte battery and battery pack
US20220149384A1 (en) Current collector, conductive layer forming paste, electrode, and energy storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13819206

Country of ref document: EP

Kind code of ref document: A1