WO2014013906A1 - Heat sealing agent, laminate using same, and solar cell module - Google Patents

Heat sealing agent, laminate using same, and solar cell module Download PDF

Info

Publication number
WO2014013906A1
WO2014013906A1 PCT/JP2013/068713 JP2013068713W WO2014013906A1 WO 2014013906 A1 WO2014013906 A1 WO 2014013906A1 JP 2013068713 W JP2013068713 W JP 2013068713W WO 2014013906 A1 WO2014013906 A1 WO 2014013906A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mass
resin
compound
heat
Prior art date
Application number
PCT/JP2013/068713
Other languages
French (fr)
Japanese (ja)
Inventor
ちさと 栗山
一彦 千代延
北田 満
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201380038426.XA priority Critical patent/CN104471011B/en
Priority to JP2013552785A priority patent/JP5541553B1/en
Priority to KR1020147033519A priority patent/KR102020256B1/en
Publication of WO2014013906A1 publication Critical patent/WO2014013906A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1021Polyurethanes or derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a heat sealant that can be used for adhesion of various members, in particular, a polar member and a nonpolar member, for example, adhesion of a back sheet layer of a solar cell module.
  • Materials used for manufacturing automobile parts, home appliances, solar power generation devices, etc. have been made of ethylene-vinyl acetate resin, polyolefin resin, etc., which have been excellent in weather resistance, water resistance, etc., and have excellent moldability and recyclability. Members are widely used.
  • the ethylene-vinyl acetate resin is generally easily deteriorated by exposure to heat, water (humidity) or the like, and is insufficient in terms of heat and moisture resistance. For this reason, usually, by combining a member made of ethylene-vinyl acetate resin with a glass or polyethylene terephthalate base material to form a composite member, the moisture-heat resistance level at which the deterioration can be suppressed is reduced. In many cases, it is given to the material.
  • a substrate made of ethylene-vinyl acetate resin or the like is generally a substrate having a low surface polarity
  • an adhesive may be used to bond the ethylene-vinyl acetate resin substrate or the like to the glass or the like. Even if it can be easily peeled off at the interface between the surface of the ethylene-vinyl acetate resin substrate and the adhesive layer or temporarily bonded, the adhesive layer deteriorates due to the influence of heat, water, etc. May cause peeling.
  • the composition of the adhesive it is possible to improve the adhesion to nonpolar substrates such as the ethylene-vinyl acetate resin.
  • the base material to be bonded is a polar base material such as the glass or polyethylene terephthalate base material
  • the adhesion between the polar base material and the adhesive layer is lowered, and also causes peeling over time. was there.
  • an adhesive having excellent adhesion for example, an adhesive made of an aqueous dispersion containing an acid-modified polyolefin resin, a polyurethane resin, a fatty acid amide, and a terpene tackifier in a specific ratio in an aqueous medium is known.
  • Such an adhesive is known to be excellent in adhesion to a thermoplastic resin substrate (see, for example, Patent Document 1).
  • the adhesive does not have excellent adhesion to both the nonpolar base material and the polar base material as described above, it does not deteriorate at the interface between any base material and the adhesive layer. Sometimes peeled off.
  • the adhesive since the adhesive is easily deteriorated by exposure to heat, water (humidity), etc., the adhesive layer is deteriorated or peeled over time due to the influence of heat, water, etc. In some cases, the material itself may deteriorate.
  • the adhesive is usually applied to the surface of one of the substrates immediately before the bonding, and then the adhesive layer is completely formed.
  • the other base material is laminated on the surface of the adhesive layer having a tackiness before being cured, and then bonded together by curing.
  • this method requires the production of the composite member because it is necessary to perform an operation such as applying an adhesive or removing a solvent contained in the adhesive at a work site where the substrates are bonded together. In some cases, the efficiency was significantly reduced.
  • the problem to be solved by the present invention has, for example, excellent adhesion to both the polar substrate and the nonpolar substrate, and due to the influence of heat, water (humidity), etc. It is to provide a heat sealant capable of forming a heat seal layer having a moisture and heat resistance level that does not cause a decrease in adhesion, a laminate using the heat seal agent, and a solar cell module.
  • the problem to be solved by the present invention has, for example, excellent adhesion to both the polar substrate and the nonpolar substrate, and due to the influence of heat, water (humidity), etc.
  • a heat-sealed layer having a heat-and-moisture resistance level that does not cause deterioration or lowering of adhesion can be formed, and heat is crosslinked by applying the heat-sealing agent in advance on one substrate surface and drying it.
  • the other base material is placed on the heat seal layer and heated, whereby the heat seal agent capable of adhering the base material, a laminate using the heat sealant, and a solar cell Is to provide modules.
  • the inventors of the present invention have found that a heat sealant containing a specific compound having a primary amino group or a hydrazide group can solve the above-mentioned problems while studying to solve the above-mentioned problems.
  • the present invention provides a crosslinking agent (C) containing at least one selected from the group consisting of urethane resin (A), polyolefin resin (B), melamine compound, epoxy compound, oxazoline compound, carbodiimide compound and isocyanate compound. And a heat sealing agent comprising a compound (D) having a primary amino group or a hydrazide group and a molecular weight of 20 to 3,000, and an aqueous medium (E).
  • the heat sealant of the present invention has excellent adhesion to not only ethylene-vinyl acetate resin and polyolefin resin widely used in industry but also a substrate made of polyethylene terephthalate, etc. It can be used for bonding nonpolar substrates and polar substrates, and surface coating of these substrates.
  • the heat sealant of the present invention can remarkably improve the production efficiency of a laminate (composite member) obtained by laminating various substrates, particularly a solar cell module.
  • the heat sealant of the present invention comprises a urethane resin (A), a polyolefin resin (B), and a crosslinking agent containing at least one selected from the group consisting of melamine compounds, epoxy compounds, oxazoline compounds, carbodiimide compounds and isocyanate compounds ( C), a compound (D) having a primary amino group or hydrazide group and a molecular weight of 20 to 3,000, and an aqueous medium (E).
  • A urethane resin
  • B polyolefin resin
  • C a compound having a primary amino group or hydrazide group and a molecular weight of 20 to 3,000
  • E aqueous medium
  • the urethane resin (A) and the polyolefin resin (B) are preferably dispersed or dissolved independently in the aqueous medium (E), but a part of them binds to form resin particles.
  • so-called core-shell type composite resin particles may be formed.
  • the said urethane resin (A) and the said polyolefin resin (B) form a resin particle each independently, and can disperse
  • the resin particles preferably have an average particle diameter in the range of about 10 nm to 500 nm in order to improve the smoothness of the coat film that can be formed.
  • the average particle diameter here refers to the average particle diameter on a volume basis measured by a dynamic light scattering method.
  • the mass ratio of the urethane resin (A) and the polyolefin resin (B) [urethane resin (A) / polyolefin resin (B)] is preferably in the range of 9/1 to 2/8, and 8/2 Is more preferably in the range of ⁇ 3 / 7, and more preferably in the range of 8/2 to 5/5 in order to achieve both more excellent heat and moisture resistance and excellent adhesion to various substrates. .
  • the urethane resin (A) and the polyolefin resin (B) may be contained in a range of 5% by mass to 70% by mass with respect to the total amount of the heat sealant of the present invention. It is preferable for maintaining stability and coating workability, and is more preferably contained in the range of 20% by mass to 70% by mass.
  • the urethane resin (A) and the polyolefin resin (B) may have a hydrophilic group from the viewpoint of imparting good dispersion stability in the aqueous medium (E).
  • a hydrophilic group for example, an anionic group, a cationic group, and a polyoxyethylene structure as a nonionic group can be used, and it is more preferable to use an anionic group.
  • anionic group for example, a carboxyl group, a carboxylate group, a sulfonic acid group, a sulfonate group, and the like can be used. Among them, a carboxylate group or a sulfonate partially or completely neutralized with a basic compound. It is preferable to use a group for imparting good water dispersibility to the urethane resin (A) and the polyolefin resin (B).
  • a tertiary amino group or a neutralized group thereof using an acid compound or a quaternizing agent can be used.
  • nonionic group examples include polyoxyalkylene groups such as polyoxyethylene group, polyoxypropylene group, polyoxybutylene group, poly (oxyethylene-oxypropylene) group, and polyoxyethylene-polyoxypropylene group.
  • polyoxyalkylene groups such as polyoxyethylene group, polyoxypropylene group, polyoxybutylene group, poly (oxyethylene-oxypropylene) group, and polyoxyethylene-polyoxypropylene group.
  • urethane resin (A) from the viewpoint of providing the outstanding adhesiveness and durability with respect to polar base material (I) and nonpolar base material (II), it is over 3,000 and 300,000 or less. It is preferable to use one having a weight average molecular weight.
  • a functional group that can react with a functional group such as an epoxy group or a hydrolyzable silyl group [X] it is preferable to use a material having a high heat and heat resistance and excellent adhesion to various substrates.
  • the functional group [X] include a carboxyl group, a hydroxyl group, and an amino group.
  • the urethane resin and polyolefin resin which have hydrophilic groups, such as an anionic group and a cationic group, Is used, the carboxyl group as the hydrophilic group or the carboxylate group neutralized with a basic compound or the like may be used as the functional group [X] during the crosslinking reaction. It can act and react with a part of the crosslinking agent (C).
  • hydrophilic groups such as an anionic group and a cationic group, Is used
  • the carboxyl group as the hydrophilic group or the carboxylate group neutralized with a basic compound or the like may be used as the functional group [X] during the crosslinking reaction. It can act and react with a part of the crosslinking agent (C).
  • the functional group [X] is neutralized by an anionic group such as a carboxylate group or a sulfonate group neutralized by a basic compound or the like which can function as the hydrophilic group, or by an acid group-containing compound.
  • Cationic groups such as amino groups can also be used.
  • a carboxyl group or a carboxylate group is preferable.
  • the urethane resin (A) preferably has an acid value of 5 to 70, and has an acid value of 5 to 50. It is preferable to use in order to improve adhesion to various substrates.
  • the polyolefin resin (B) is preferably one having an acid value of 5 to 300, more preferably one having an acid value of 10 to 250.
  • urethane resin (A) As the urethane resin (A), a urethane resin (A-1) having a urea bond formed by reacting a urethane resin having an isocyanate group with a compound (a3) having a primary amino group or a hydrazide group. Can be used. Thereby, the adhesiveness with respect to various base materials can be improved further. In particular, it exhibits excellent adhesion at each stage with respect to the surface of a substrate such as a polar substrate (I) subjected to corona treatment. This is presumed to be because a carbonyl group is generated on the surface of the substrate by the corona treatment or the like, and the carbonyl group forms a bond with a nitrogen atom that forms the urea bond.
  • the urethane resin (A-1) includes a urethane resin having an isocyanate group and a compound (a3) having a primary amino group or a hydrazide group, and the compound (a3) with respect to the isocyanate group of the urethane resin.
  • Equivalent ratio of primary amino group and hydrazide group [total of primary amino group and hydrazide group possessed by compound (a3) / isocyanate group possessed by urethane resin] is reacted in the range of 0.8 to 2. It is preferable to use a material obtained by reacting under the conditions of 1 to 2, particularly excellent for any substrate such as a polar substrate and a nonpolar substrate. More preferable for forming a heat seal layer having adhesiveness, more preferably more than 1 and 2 or less, 1.05 to 1. It is particularly preferred is.
  • urethane resin (A) for example, those obtained by reacting polyol (a1) and polyisocyanate (a2) can be used.
  • polyester polyol for example, polyester polyol, polycarbonate polyol, polyether polyol, polyolefin polyol and the like can be used alone or in combination of two or more.
  • polyether polyol that can be used for the polyol (a1), for example, one obtained by addition polymerization of alkylene oxide using one or more compounds having two or more active hydrogen atoms as an initiator is used. Can do.
  • the initiator examples include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, bisphenol A, glycerin, and triglyceride. Methylolethane, trimethylolpropane and the like can be used.
  • alkylene oxide examples include ethylene oxide, propylene oxide, butylene oxide, styrene oxide, epichlorohydrin, and tetrahydrofuran.
  • polyether polyol that can be used for the polyol (a1) specifically, polyoxytetramethylene glycol formed by ring opening of tetrahydrofuran is preferably used.
  • polyether polyol it is preferable to use a polyether polyol having a number average molecular weight of 500 to 3,000 in order to further improve the adhesion to the polar substrate (I) and the nonpolar substrate (II).
  • the polyether polyol is preferably used in the range of 1,000 to 3,000 with respect to the entire polyol (a1) used in producing the urethane resin (A).
  • polyester polyol examples include those obtained by esterifying low molecular weight polyols and polycarboxylic acids, and ring-opening polymerization reactions of cyclic ester compounds such as ⁇ -caprolactone. Polyesters obtained by the above, copolymerized polyesters thereof, and the like can be used.
  • low molecular weight polyol examples include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, neopentyl glycol, and 1,3-butane having a molecular weight of about 50 to 300.
  • Aliphatic polyols such as diols, aliphatic cyclic structure-containing polyols such as cyclohexanedimethanol, bisphenol compounds such as bisphenol A and bisphenol F, and aromatic structure-containing polyols such as alkylene oxide adducts thereof can be used. .
  • polycarboxylic acid examples include aliphatic polycarboxylic acids such as succinic acid, adipic acid, sebacic acid, and dodecanedicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, and naphthalene.
  • Aromatic polycarboxylic acids such as dicarboxylic acids, and anhydrides or ester-forming derivatives thereof can be used.
  • the polyester polyol preferably has a number average molecular weight in the range of 200 to 5,000.
  • polycarbonate polyol which can be used for the said polyol (a1)
  • carbonate ester and a polyol react for example, what is obtained by making phosgene, bisphenol A, etc. react can be used.
  • carbonate ester methyl carbonate, dimethyl carbonate, ethyl carbonate, diethyl carbonate, cyclocarbonate, diphenyl carbonate, or the like can be used.
  • polyol that can react with the carbonate ester examples include ethylene glycol, diethylene glycol, 1,2-propylene glycol, dipropylene glycol, 1,4-butanediol, 1,5-pentanediol, and 3-methyl-1,5. -Pentanediol, 1,4-cyclohexanediol, 1,6-hexanediol, cyclohexanedimethanol and other relatively low molecular weight diols having a molecular weight of 50 to 2,000, polyethylene glycol, polypropylene glycol, and polyhexamethylene Polyester polyols such as adipate can be used.
  • polycarbonate polyol use of a polyol having a number average molecular weight in the range of 500 to 4,000 allows the nonpolar substrate (eg, ethylene-vinyl acetate resin or polypropylene) to be used without impairing excellent heat and heat resistance. It is preferable for providing adhesion to II).
  • nonpolar substrate eg, ethylene-vinyl acetate resin or polypropylene
  • polystyrene polyol for example, polyethylene polyol, polypropylene polyol, polyisobutene polyol, hydrogenated (hydrogenated) polybutadiene polyol, and hydrogenated (hydrogenated) polyisoprene polyol are used. Can do.
  • a polyol having a hydrophilic group can be used in combination with the above-described one.
  • polyol having a hydrophilic group for example, a polyol having an anionic group other than the above-described polyol, a polyol having a cationic group, and a polyol having a nonionic group can be used.
  • a polyol having an anionic group or a polyol having a cationic group it is preferable to use a polyol having an anionic group.
  • polyol having an anionic group for example, a polyol having a carboxyl group or a polyol having a sulfonic acid group can be used.
  • polyol having a carboxyl group examples include 2,2′-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, 2,2′-dimethylolbutyric acid, 2,2′-dimethylolvaleric acid, and the like. Among them, it is preferable to use 2,2′-dimethylolpropionic acid.
  • polyester polyol which has a carboxyl group obtained by making the polyol which has the said carboxyl group react with various polycarboxylic acids can also be used.
  • polyol having a sulfonic acid group examples include dicarboxylic acids such as 5-sulfoisophthalic acid, sulfoterephthalic acid, 4-sulfophthalic acid, and 5 [4-sulfophenoxy] isophthalic acid, and salts thereof, and the aromatic structure.
  • a polyester polyol obtained by reacting with a low molecular weight polyol exemplified as being usable for the production of the polyester polyol (a1-1) having a polyester polyol can be used.
  • the polyol having a carboxyl group or the polyol having a sulfonic acid group is preferably used in the range where the acid value of the urethane resin (A) is from 10 to 70, more preferably from 10 to 50. preferable.
  • the acid value said by this invention is the theoretical value computed based on the usage-amount of acid group containing compounds, such as a polyol which has a carboxyl group used for manufacture of the said urethane resin (A).
  • the anionic group is preferably partially or completely neutralized with a basic compound or the like in order to develop good water dispersibility.
  • Examples of basic compounds that can be used for neutralizing the anionic group include organic amines having a boiling point of 200 ° C. or higher, such as ammonia, triethylamine, morpholine, monoethanolamine, diethylethanolamine, sodium hydroxide, water, and the like.
  • a metal hydroxide containing potassium oxide, lithium hydroxide or the like can be used.
  • polyol having a cationic group for example, a polyol having a tertiary amino group can be used.
  • a polyol having a tertiary amino group Specifically, N-methyl-diethanolamine, a compound having two epoxies in one molecule, and 2 A polyol obtained by reacting with a secondary amine can be used.
  • the cationic group is preferably partially or completely neutralized with an acidic compound such as formic acid, acetic acid, propionic acid, succinic acid, glutaric acid, tartaric acid, and adipic acid.
  • an acidic compound such as formic acid, acetic acid, propionic acid, succinic acid, glutaric acid, tartaric acid, and adipic acid.
  • the tertiary amino group as the cationic group is preferably partly or entirely quaternized.
  • the quaternizing agent for example, dimethyl sulfate, diethyl sulfate, methyl chloride, ethyl chloride and the like can be used, and dimethyl sulfate is preferably used.
  • polyol having a nonionic group a polyol having a polyoxyethylene structure or the like can be used.
  • the polyol having a hydrophilic group is preferably used in the range of 0.3% by mass to 10% by mass with respect to the total amount of the polyol (a1) used in the production of the urethane resin (A).
  • polyol (a1) in addition to the above-described polyol, other polyols can be used as necessary.
  • Examples of the other polyol include ethylene glycol, diethylene glycol, 1,2-propylene glycol, dipropylene glycol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, Polyol having a relatively low molecular weight such as 1,4-cyclohexanediol, 1,6-hexanediol, cyclohexanedimethanol, etc. can be used.
  • neopentyl glycol or the like is preferably used in order to further improve the adhesion of the heat sealant to various substrates.
  • polyisocyanate (a2) that can react with the polyol (a1) examples include 4,4′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate, crude diphenylmethane diisocyanate, phenylene diisocyanate, tolylene diisocyanate, Aromatic polyisocyanates such as naphthalene diisocyanate, aliphatic polyisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, cycloaliphatic diisocyanate, dicyclohexylmethane diisocyanate, and aliphatic cyclic structures such as isophorone diisocyanate. Having polyisocyanate It is possible to use the door.
  • the urethane resin (A) can be produced, for example, by reacting the polyol (a1) and the polyisocyanate (a2) in the absence of a solvent or in the presence of an organic solvent.
  • the urethane resin (A-1) obtained by reacting the isocyanate group of the urethane resin with the compound (a3) having a primary amino group or hydrazide group is used as the urethane resin (A).
  • a urethane resin having an isocyanate group is produced by reacting the polyol (a1) with the polyisocyanate (a2) in the absence of a solvent or in the presence of an organic solvent, and then in the urethane resin.
  • hydrophilic group When there is a hydrophilic group, a part of or all of the hydrophilic group is neutralized as necessary, and mixed with the aqueous medium (E) to make it a primary amino group or hydrazide. It can manufacture by mixing with the compound (a3) which has group, and making it react with the isocyanate group which the said urethane resin has.
  • the reaction between the polyol (a1) and the polyisocyanate (a2) is, for example, such that the equivalent ratio of the isocyanate group of the polyisocyanate (a2) to the hydroxyl group of the polyol (a1) is 1.05 to 2.5. Preferably, it is carried out in the range of 1.1 to 2, more preferably.
  • Examples of the organic solvent that can be used for producing the urethane resin (A) include ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran and dioxane; acetate esters such as ethyl acetate and butyl acetate; nitriles such as acetonitrile.
  • ketones such as acetone and methyl ethyl ketone
  • ethers such as tetrahydrofuran and dioxane
  • acetate esters such as ethyl acetate and butyl acetate
  • nitriles such as acetonitrile.
  • Amides such as dimethylformamide and N-methylpyrrolidone can be used alone or in combination of two or more.
  • Examples of the compound (a3) having a primary amino group or hydrazide group that can be used for producing the urethane resin (A-1) among the urethane resin (A) include hydrazine, dicarboxylic acid dihydrazide, Carbohydrazide, 1,3-bis (hydrazinocarbonoethyl) -5-isopropylhydantoin, ethanolamine, etc. can be used, and hydrazine or dicarboxylic acid dihydrazide or carbohydrazide is preferably used, and hydrazine is used. Is more preferable for further improving the heat and moisture resistance.
  • dicarboxylic acid dihydrazide examples include hydrazine, malonic acid dihydrazide, succinic acid dihydrazide, adipic acid dihydrazide, glutaric acid dihydrazide, sebacic acid dihydrazide, isophthalic acid dihydrazide; ⁇ -semicarbazide propionic acid hydrazide and the like. Can be used. Of these, the use of hydrazine is preferable for imparting excellent adhesion.
  • the aqueous formation of the urethane resin (A) produced by the above method can be performed, for example, by the following method.
  • Method 1 After neutralizing or quaternizing some or all of the hydrophilic groups of the urethane resin (A) obtained by reacting the polyol (a1) with the polyisocyanate (a2), water is added.
  • the urethane resin (A) is produced by batch or divided charging into a reaction vessel and chain extension reaction, and then part or all of the hydrophilic groups in the resulting urethane resin (A) are neutralized or quaternary. The method of adding water to disperse the water after conversion.
  • an emulsifier may be used as necessary.
  • a machine such as a homogenizer may be used as necessary.
  • emulsifier examples include nonionic emulsifiers such as polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene styryl phenyl ether, polyoxyethylene sorbitol tetraoleate, and polyoxyethylene / polyoxypropylene copolymer.
  • nonionic emulsifiers such as polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene styryl phenyl ether, polyoxyethylene sorbitol tetraoleate, and polyoxyethylene / polyoxypropylene copolymer.
  • Fatty acid salts such as sodium oleate, alkyl sulfates, alkylbenzene sulfonates, alkyl sulfosuccinates, naphthalene sulfonates, polyoxyethylene alkyl sulfates, alkane sulfonate sodium salts, sodium alkyl diphenyl ether sulfonates, etc.
  • Anionic emulsifiers; cationic amines such as alkylamine salts, alkyltrimethylammonium salts, alkyldimethylbenzylammonium salts It is below.
  • an anionic or nonionic emulsifier it is basically preferable to use an anionic or nonionic emulsifier.
  • the urethane resin (A) aqueous dispersion in which the urethane resin (A) obtained by the above method is dispersed in an aqueous medium (E) is obtained by changing the urethane resin (A) to 10 to 10% relative to the total amount of the aqueous dispersion.
  • the heat sealant having both excellent heat and moisture resistance and excellent adhesion to various substrates is included. Is preferable.
  • the urethane resin (A) aqueous dispersion may be a mixture of two or more urethane resins having different compositions. Specifically, two or more urethane resins having different compositions of the polyol (a1) used for the production of the urethane resin can be used in combination.
  • polystyrene resin (B) used in the present invention examples include homopolymers and copolymers such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene and 1-nonene.
  • polyethylene, polypropylene, polybutadiene, ethylene-propylene copolymer, natural rubber, synthetic isopropylene rubber, ethylene-vinyl acetate copolymer, and the like can be used.
  • the polyolefin resin (B) is a copolymer, it may be a random copolymer or a block copolymer.
  • the polyolefin resin (B) is preferably one having a functional group capable of reacting with a cross-linking agent (C), which will be described later, if necessary, particularly when an epoxy compound is used as the cross-linking agent (C). It is more preferable to use those having a functional group [X] that can react with a functional group such as an epoxy group or a hydrolyzable silyl group.
  • a functional group [X] As said functional group [X], a carboxyl group etc. are mentioned similarly to the functional group [X] which the said urethane resin (A) has, and it is preferable that it is a carboxyl group especially.
  • the functional group [X] may be the same functional group as the hydrophilic group of the polyolefin resin (B). Specifically, when a carboxyl group or a carboxylate group which is an anionic group is used as the hydrophilic group, the carboxyl group or the like may act as the functional group [X] during the crosslinking reaction.
  • the polyolefin resin (B) having a carboxyl group as the functional group [X] is obtained by reacting the above-exemplified polyolefin resin with an unsaturated carboxylic acid, or obtained by reacting with a vinyl monomer. It is preferable to use so-called modified polyolefin resins such as those obtained and chlorinated.
  • a carboxyl group as the functional group [X] can be introduced into the polyolefin resin (B) by reacting the polyolefin resin with an unsaturated dicarboxylic acid such as (anhydrous) maleic acid.
  • Examples of the unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid, citraconic acid, and anhydrides thereof, and unsaturated dicarboxylic acid esters (butyl maleate, dibutyl maleate, butyl itaconate, etc.) One or more of these can be used. Of these, maleic anhydride is preferred.
  • the polyolefin resin (B) modified with the unsaturated carboxylic acid has an acid value in the range of 5 to 250 to prevent deterioration of the cured resin layer due to the influence of heat, water (humidity) or the like. In order to prevent a decrease in adhesion to various substrates, it is preferable.
  • the modification of the polyolefin resin can be performed, for example, by reacting the polyolefin resin as described above with an unsaturated dicarboxylic acid such as maleic acid or the like.
  • the polyolefin resin (B) is 20,000 to 500,000 in order to prevent the cured resin layer from being deteriorated by the influence of heat, water (humidity), etc., and to prevent the adhesion to various substrates from being lowered. It is preferable to use those having a weight average molecular weight of In addition, the said weight average molecular weight points out the value measured using gel permeation chromatography (GPC).
  • crosslinking agent (C) used in the present invention will be described.
  • said crosslinking agent (C) what contains 1 or more types chosen from the group which consists of a melamine compound, an epoxy compound, an oxazoline compound, a carbodiimide compound, and an isocyanate compound can be used.
  • it is preferable to use combining 1 or more types chosen from the group which consists of a melamine compound, an epoxy compound, and an isocyanate compound it is more preferable to use combining a melamine compound and an epoxy compound.
  • the melamine compound it is particularly preferable to use an alkylated methylol melamine resin (c1).
  • the alkylated methylol melamine resin (c1) can form a crosslinked structure by a self-crosslinking reaction. Further, when a functional group such as a hydroxyl group is produced when the functional group [X] of the urethane resin (A) and the polyolefin resin (B) reacts with the epoxy compound, The alkylated methylol melamine resin (c1) reacts to form a crosslinked structure.
  • alkylated methylol melamine resin (c1) for example, a product obtained by reacting a methylolated melamine resin with a lower alcohol (an alcohol having 1 to 6 carbon atoms) such as methyl alcohol or butyl alcohol is used. Can do. Specifically, an imino group-containing alkylated methylol melamine resin, an amino group-containing alkylated methylol melamine resin, or the like can be used.
  • methylolated melamine resin for example, amino group-containing methylol-type melamine resin obtained by condensing melamine and formaldehyde, imino group-containing methylol-type melamine resin, trimethoxymethylol-type melamine resin, hexamethoxymethylol-type melamine resin, etc. are used. It is preferable to use a trimethoxymethylol type melamine resin or a hexamethoxymethylol type melamine resin.
  • the alkylated methylol melamine resin (c1) is preferably used in the range of 3% by mass to 50% by mass with respect to the total mass of the urethane resin (A) and the polyolefin resin (B). It is more preferable to use in the range of 30% by mass. This makes it possible to achieve both excellent heat and moisture resistance that does not cause deterioration of the heat-seal layer and decrease in adhesive strength regardless of heat, water (humidity), etc., and excellent adhesion to various substrates. Is possible.
  • the epoxy compound which can be used for the said crosslinking agent (C) reacts with the functional group [X] which any one or both of the said urethane resin (A) and the said polyolefin resin (B) form, and forms a crosslinked structure.
  • the combination use of the alkylated methylolmelamine resin (c1) and the epoxy compound as the crosslinking agent (C) achieves both excellent heat and heat resistance and excellent adhesion to various substrates. Is particularly preferable.
  • urethane resin (A) and said polyolefin resin (B) are functional groups, such as an epoxy group and a hydrolyzable silyl group, which said epoxy compound has.
  • the functional group possessed by the epoxy compound is specifically an epoxy group, a hydrolyzable silyl group such as an alkoxysilyl group or a silanol group.
  • epoxy compound those having 2 to 5 epoxy groups, more preferably 3 to 4 epoxy groups can be used.
  • Examples of the epoxy compound include bisphenol A epichlorohydrin type epoxy resin, ethylene glycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, 1,6-hexanediol glycidyl ether, trimethylolpropane triglycidyl ether.
  • the epoxy compound preferably has an epoxy equivalent of 100 to 300 for imparting durability.
  • one or two of trimethylolpropane polyglycidyl ether or glycerin triglycidyl ether is used. It is more preferable to use more than one species, and it is more preferable to use trimethylolpropane triglycidyl ether or glycerin triglycidyl ether.
  • an epoxy compound having a hydrolyzable silyl group can also be used.
  • Examples of the epoxy compound having a hydrolyzable silyl group include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxy.
  • Propylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, and the like can be used.
  • the said epoxy compound is the said epoxy compound with respect to the total amount (mole number) of the said functional group [X] which the said urethane resin (A) and the said polyolefin resin (B) have.
  • the ratio of the amount of epoxy group substance (number of moles) of [the amount of epoxy group substance (number of moles) / total amount of functional group [X] (number of moles)] is in the range of 5/1 to 1/5. It is preferable to use it.
  • the use ratio [the amount of the epoxy group substance / the total amount of the functional group [X]] is preferably in the range of 2/1 to 1/5. It is preferable in order to achieve both good adhesion.
  • the crosslinking agent (C) include those other than those described above, for example, 2,2′-bis- (2-oxazoline), 2,2′-methylene-bis- (2-oxazoline), 2,2 ′.
  • the crosslinking agent (C) is preferably used in the range of 1% by mass to 50% by mass with respect to the total mass of the urethane resin (A) and the polyolefin resin (B). More preferably, it is used in the range of 3% by mass to 30% by mass.
  • the compound (D) having a primary amino group or hydrazide group and having a molecular weight of 20 to 3,000 used in the present invention will be described.
  • the compound (D) having a primary amino group or hydrazide group and having a molecular weight of 20 to 3,000 used in the heat sealant of the present invention is used for imparting excellent adhesion to various substrates.
  • the compound (D) having a primary amino group or hydrazide group and having a molecular weight of 20 to 3,000 is dispersed in an aqueous medium (E) in a state of being blended with the urethane resin (A), the polyolefin resin (B), or the like. Alternatively, it is preferably dissolved.
  • the compound (D) may act as the compound (a3) having the primary amino group or hydrazide group, and a part of the compound (D) may react with a part of the isocyanate group of the urethane resin (A). .
  • the compound (D) it is preferable to use a compound having a relatively low molecular weight of 3,000 or less, and using a compound having a molecular weight of 20 to 1,000 increases the crosslinking density and makes it more durable. It is more preferable in improving the property.
  • the molecular weight of the said compound (D) is a value based on the sum total of the atomic weight of the atom which comprises it.
  • Examples of the compound (D) include hydrazine, dicarboxylic acid dihydrazide, carbohydrazide, 1,3-bis (hydrazinocarbonoethyl) -5-isopropylhydantoin, ethanolamine, and the like. Hydrazine or dicarboxylic acid can be used. It is preferable to use acid dihydrazide or carbohydrazide, and it is more preferable to use dicarboxylic acid dihydrazide in order to further improve the heat and humidity resistance.
  • dicarboxylic acid dihydrazide for example, one or two or more of malonic acid dihydrazide, succinic acid dihydrazide, adipic acid dihydrazide, glutaric acid dihydrazide, sebacic acid dihydrazide, isophthalic acid dihydrazide; ⁇ -semicarbazide propionic acid hydrazide are used. be able to. Among them, it is preferable to use adipic acid dihydrazide for imparting excellent adhesion.
  • the compound (D) having the primary amino group or hydrazide group is 0.1% by mass to 20% with respect to 100 parts by mass of the urethane resin (A) from the viewpoint of imparting excellent adhesion to various substrates. It is preferable to use in the range of mass%.
  • Examples of the aqueous medium (E) used in the present invention include water, an organic solvent miscible with water, and a mixture thereof.
  • Examples of the organic solvent miscible with water include alcohols such as methanol, ethanol, n- and isopropanol; ketones such as acetone and methyl ethyl ketone; polyalkylene glycols such as ethylene glycol, diethylene glycol and propylene glycol; alkyl ethers of polyalkylene glycol; And lactams such as N-methyl-2-pyrrolidone.
  • only water may be used, a mixture of water and an organic solvent miscible with water may be used, or only an organic solvent miscible with water may be used.
  • water alone or a mixture of water and an organic solvent miscible with water is preferable, and only water is particularly preferable.
  • the aqueous medium (E) is contained in the range of 10% by mass to 80% by mass with respect to the total amount of the heat sealant of the present invention, which improves the workability of the heat sealant of the present invention. , It is preferable for achieving both adhesion and heat-and-moisture resistance.
  • the heat sealing agent of the present invention is, for example, an aqueous dispersion of the urethane resin (A) obtained by the above method, an aqueous dispersion of the polyolefin resin (B), and the crosslinking agent (C), all at once or divided. Can be supplied and mixed.
  • the crosslinking agent (C) the alkylated methylol melamine resin (c1) and the epoxy compound may be mixed in advance, and these are separately separated into an aqueous dispersion of the urethane resin (A) or the polyolefin resin (B )) Or an aqueous dispersion.
  • the heat sealing agent of the present invention obtained by the above method may contain other additives as required in addition to the above-described components.
  • the additive examples include an antioxidant, a light-resistant agent, a plasticizer, a film-forming aid, a leveling agent, a foaming agent, a thickener, a colorant, a flame retardant, other aqueous resins, and various fillers. It can be used within a range that does not impair the effect.
  • a surfactant can be used from the viewpoint of further improving the dispersion stability of the heat sealant of the present invention.
  • the surfactant since the surfactant may reduce the adhesion and water resistance of the resulting coating, it is 20 parts by mass or less with respect to 100 parts by mass in total of the urethane resin (A) and the polyolefin resin (B). It is preferable to use within a range, and it is preferable not to use as much as possible.
  • the heat sealant of the present invention can form a heat seal layer having excellent adhesion to a substrate and excellent heat and moisture resistance.
  • the heat sealing agent of the present invention has excellent adhesion to both the polar substrate (I) and the nonpolar substrate (II), so the polar substrate (I) and the nonpolar substrate It can be suitably used for a heat sealant for bonding with (II).
  • a non-polar base material composed of polypropylene resin, polyvinyl butyral, glass or the like and a heat sealant for adhesion between a backsheet layer (polar base material) made of polyethylene terephthalate, polypropylene, or the like.
  • Nonpolar substrates include, for example, substrates composed of ethylene-vinyl acetate copolymer, polyvinylidene fluoride resin, polyvinyl fluoride resin, ethylene-vinyl alcohol copolymer, polypropylene resin, polyvinyl butyral, glass, etc. Is mentioned.
  • the surface of the substrate may be subjected to surface treatment in advance, and specifically, corona treatment is preferably performed.
  • the heat sealing agent of the present invention can be applied to the surface of one substrate and dried by placing the other substrate on the surface of the resin layer that has been crosslinked to some extent and then heating, thereby causing the crosslinking reaction. It can be used when the generated hydroxyl group reacts with the hydrolyzable silyl group of the epoxy compound and the two substrates are bonded together. Since the surface of the resin layer formed by applying and drying on the surface of one of the substrates has almost no tackiness before the heating, the resin layer is previously provided on the surface of one of the substrates. It is also possible to store the stacked members in a stacked state.
  • Examples of the method for applying the heat sealant of the present invention to the substrate surface include a spray method, a curtain coater method, a flow coater method, a roll coater method, a brush coating method, and a dipping method.
  • the heat sealant or the like when applied to the surface of a plastic film such as a polyethylene terephthalate film, the heat is applied to the film surface in the course of biaxial stretching of the plastic substrate at about 200 ° C.
  • An in-line coating method can be employed in which a heat seal layer is formed by applying and drying a sealant, causing a crosslinking reaction, and then stretching the film in the transverse direction.
  • the heat sealant or the like is applied to the surface of a plastic film such as a polyethylene terephthalate film
  • the plastic film obtained by the biaxial stretching is once wound around a roll or the like, and then from the roll.
  • An off-line coating method in which a plastic film is drawn and the heat sealant or the like is applied to the surface can be employed.
  • the heat sealant or the like When applying the heat sealant or the like to the surface of the plastic film by the off-line coating method, it is preferable to perform drying at a temperature of approximately 150 ° C. or lower so as not to impair the dimensional stability of the plastic film.
  • a heat seal layer formed by crosslinking and curing of the heat sealant on the substrate surface can be formed.
  • the heat sealing agent of the present invention when applied to one substrate surface as described above, and the heat sealing layer formed by crosslinking and curing the heat sealing agent on the substrate surface is provided, By placing another base material on the surface of the heat seal layer and then heating to approximately 100 ° C. to 160 ° C. in a reduced pressure or pressurized state, a laminated body thereof can be obtained. it can.
  • the laminate Since the laminate is excellent in heat and humidity resistance, it can be used for various purposes including, for example, the production of solar cell modules (solar power generation devices) and the fixing of automobile interior materials.
  • ethylene-vinyl acetate copolymer, polyvinylidene fluoride resin, polyvinyl fluoride resin, ethylene-vinyl alcohol copolymer, polypropylene resin, which constitutes the opposite side (surface) to the light-receiving surface constituting the solar cell It can be suitably used for adhesion between a nonpolar substrate made of polyvinyl butyral, glass or the like and a backsheet layer (nonpolar substrate) made of polyethylene terephthalate or polypropylene or the like.
  • the solar cell module is generally intended to prevent deterioration on the surface of a base material made of an ethylene-vinyl acetate copolymer or the like constituting the surface opposite to the light receiving surface constituting the solar cell.
  • a back sheet layer made of polyethylene terephthalate or polypropylene is provided. They are formed, for example, by curing the heat-sealing agent of the present invention on the substrate surface made of the ethylene-vinyl acetate copolymer constituting the surface opposite to the light receiving surface constituting the solar cell. It can be produced by providing a heat seal layer and then laminating a back sheet layer made of polyethylene terephthalate or polypropylene on the heat seal layer.
  • a laminated sheet having a heat seal layer formed by curing the heat seal agent on a sheet surface made of polyethylene terephthalate or polypropylene or the like that can form the back sheet layer is prepared, and a solar cell.
  • the heat seal layer of the laminated sheet and the substrate surface made of the ethylene-vinyl acetate copolymer are in contact with the substrate surface made of the ethylene-vinyl acetate copolymer on the opposite side to the light receiving surface constituting They can be stacked and stacked by heating.
  • the solar cell module obtained by such a method is excellent in durability such as moisture and heat resistance even when used outdoors for a long period of time.
  • composition (I) 1 part by mass was added, and then 24.6 parts by mass of 80% by mass hydrated hydrazine (hydrazine monohydrate, 80% by mass hydrazine based on the total) was added and reacted. After completion of the reaction, ethyl acetate was distilled off under reduced pressure, and ion-exchanged water was added so that the non-volatile content was 35% by mass to obtain composition (I).
  • composition (V) 1 part by mass was added, and then 18.5 parts by mass of 80% by mass hydrated hydrazine (hydrazine monohydrate, 80% by mass hydrazine based on the total) was added and reacted. After completion of the reaction, ethyl acetate was distilled off under reduced pressure, and ion-exchanged water was added so that the nonvolatile content was 35% by mass to obtain a composition (V).
  • composition (VI) having a nonvolatile content of 20% by mass in which an aqueous urethane resin was dispersed in water.
  • Example 1 100 parts by mass of the composition (I) obtained in Preparation Example 1 and 78 parts by mass of the composition (III) obtained in Preparation Example 3 were mixed. Next, 5 parts by weight of Becamine M-3 (manufactured by DIC Corporation, trimethoxymethylol type melamine resin, non-volatile content 80% by mass) and Denacol EX-321 (manufactured by Nagase ChemteX Corporation, trimethylolpropane triglycidyl ether, non-volatile content 100 parts by mass) and 4 parts by mass, and 3 parts by weight of adipic acid dihydrazide (molecular weight 174.2) and water were added to the aqueous resin composition (X-1) having a nonvolatile content of 20% by mass. A heat sealant (X-1) was obtained.
  • Becamine M-3 manufactured by DIC Corporation, trimethoxymethylol type melamine resin, non-volatile content 80% by mass
  • Example 2 An aqueous resin composition was prepared in the same manner as in Example 1 except that 100 parts by mass of the composition (II) obtained in Preparation Example 2 was used instead of 100 parts by mass of the composition (I) obtained in Preparation Example 1. A heat sealant (X-2) comprising the product (X-2) was obtained.
  • Example 3 Except for changing the amount of Becamine M-3 (trimethoxymethylol type melamine resin manufactured by DIC Corporation, non-volatile content 80% by mass) from 5 parts by mass to 23 parts by mass, the same method as in Example 1 was used. A heat sealant (X-3) comprising the aqueous resin composition (X-3) was obtained.
  • Becamine M-3 trimethoxymethylol type melamine resin manufactured by DIC Corporation, non-volatile content 80% by mass
  • Example 4 The same method as in Example 1 except that the amount of Denacol EX-321 (manufactured by Nagase ChemteX Corporation, trimethylolpropane triglycidyl ether, non-volatile content 100% by mass) was changed from 4 parts by mass to 42 parts by mass To obtain a heat sealant (X-4) comprising the aqueous resin composition (X-4).
  • Example 5 The same method as in Example 1 except that the amount of Denacol EX-321 (manufactured by Nagase ChemteX Corporation, trimethylolpropane triglycidyl ether, non-volatile content: 100% by mass) was changed from 4 parts by mass to 1 part by mass To obtain a heat sealant (X-5) comprising the aqueous resin composition (X-5).
  • Denacol EX-321 manufactured by Nagase ChemteX Corporation, trimethylolpropane triglycidyl ether, non-volatile content: 100% by mass
  • Example 6 The amount of the composition (III) described in Preparation Example 3 was changed from 78 parts by mass to 175 parts by mass, and Beccamin M-3 (a trimethoxymethylol melamine resin manufactured by DIC Corporation, nonvolatile content 80% by mass) was used. The usage amount was changed from 5 parts by mass to 7 parts by mass, and the usage amount of Denacol EX-321 (manufactured by Nagase ChemteX Corporation, trimethylolpropane triglycidyl ether, nonvolatile content 100% by mass) was changed from 4 parts by mass.
  • Beccamin M-3 a trimethoxymethylol melamine resin manufactured by DIC Corporation, nonvolatile content 80% by mass
  • the heat sealant (X-6) comprising the aqueous resin composition (X-6) was prepared in the same manner as in Example 1 except that the amount was changed to 8 parts by mass and the amount of adipic acid dihydrazide (molecular weight 174.2) was changed to 4 parts by weight. -6) was obtained.
  • Example 7 instead of Becamine M-3 (DIC Corporation, trimethoxymethylol type melamine resin, non-volatile content 80% by mass), Becamine J-101 (DIC Corporation, hexamethoxymethylol type melamine resin, non-volatile content 80% by mass)
  • a heat sealant (X-7) composed of the aqueous resin composition (X-7) was obtained in the same manner as in Example 1 except that 5 parts by mass of was used.
  • Example 8 An aqueous resin composition was prepared in the same manner as in Example 1 except that 100 parts by mass of the composition (IV) obtained in Preparation Example 4 was used instead of 100 parts by mass of the composition (I) obtained in Preparation Example 1. Heat sealant (X-8) consisting of product (X-8) was obtained.
  • Example 9 An aqueous resin composition was prepared in the same manner as in Example 1 except that 100 parts by mass of the composition (V) obtained in Preparation Example 5 was used instead of 100 parts by mass of the composition (I) obtained in Preparation Example 1. Heat sealant (X-9) consisting of product (X-9) was obtained.
  • Example 10 An aqueous resin composition was prepared in the same manner as in Example 1 except that 100 parts by mass of the composition (VI) obtained in Preparation Example 6 was used instead of 100 parts by mass of the composition (I) obtained in Preparation Example 1. Heat sealant (X-10) comprising product (X-10) was obtained.
  • a film (length: 5 cm ⁇ width: 1 cm) made of ethylene-vinyl acetate as a nonpolar base material is placed, and then a vacuum pressure bonding apparatus is used for 150. By crimping them at 15 ° C. for 15 minutes, a laminate in which a polyethylene terephthalate film and a polyolefin film were bonded via the resin cured layer (heat seal layer) was obtained.
  • Adhesion test method The adhesion of the laminate immediately after being produced by the above method was evaluated by a T-type peel test (1000 N cell) using a tensile tester (manufactured by Shimadzu Corporation). The adhesion was evaluated based on the adhesion between the heat seal layer and the ethylene-vinyl acetate film.
  • the peel strength measured by the above method was approximately 30 N / cm or more, the adhesion was evaluated as excellent, and when the peel strength was 35 N / cm or more, the adhesion was evaluated as particularly excellent.
  • the peel strength measured by the above method was approximately 25 N / cm or more, the adhesion was evaluated as excellent, and when the peel strength was 35 N / cm or more, the adhesion was evaluated as particularly excellent.
  • “Content of alkylated methylol melamine resin (c1) [% by mass]” in Tables 1 to 3 represents a mass ratio of the alkylated methylol melamine resin to the total mass of the urethane resin and the polyolefin resin.
  • “M-3” represents Becamine M-3 (trimethoxymethylol type melamine resin manufactured by DIC Corporation, non-volatile content 80% by mass)
  • “EX-321” represents Denacol EX-321 ( Represents a product of Nagase ChemteX Corporation, trimethylolpropane triglycidyl ether, non-volatile content of 100% by mass.
  • J-101 represents Becamine J-101 (DIC Corporation, hexamethoxymethylol-type melamine resin, non-volatile content of 80 mass).
  • PZ-33 represents Chemitite PZ-33 (manufactured by Nippon Shokubai Co., Ltd., polyfunctional aziridine, nonvolatile content 100 mass%).

Abstract

The present invention provides a heat sealing agent characterized by containing: a urethane resin (A); a polyolefin resin (B); a cross-linking agent (C) including at least one type selected from a group comprising a melamine compound, an epoxy compound, an oxazoline compound, a carbodiimide compound, and an isocyanate compound; a compound (D) having a molecular weight of 20-3,000 and having a primary amino group or a hydrazide group; and an aqueous medium (E). This heat sealing agent has excellent adhesiveness to a base material, and can form a heat sealing layer comprising a level of heat and moisture resistance at which a reduction in adhesiveness is not caused by the effects of heat, etc.

Description

ヒートシール剤、それを用いた積層体及び太陽電池モジュールHEAT SEALING AGENT, LAMINATE USING SAME, AND SOLAR CELL MODULE
 本発明は、例えば太陽電池モジュールのバックシート層の接着をはじめ、様々な部材、特に極性部材と非極性部材との接着に使用可能なヒートシール剤に関する。 The present invention relates to a heat sealant that can be used for adhesion of various members, in particular, a polar member and a nonpolar member, for example, adhesion of a back sheet layer of a solar cell module.
 自動車部品や家電製品、太陽光発電装置等の製造に使用する部材としては、従来から耐候性や耐水性等に優れ、易成形性、リサイクル性に優れるエチレン-酢酸ビニル樹脂やポリオレフィン樹脂等からなる部材が広く使用されている。 Materials used for manufacturing automobile parts, home appliances, solar power generation devices, etc., have been made of ethylene-vinyl acetate resin, polyolefin resin, etc., which have been excellent in weather resistance, water resistance, etc., and have excellent moldability and recyclability. Members are widely used.
 前記エチレン-酢酸ビニル樹脂は、一般に、熱や水(湿気)等に晒されることで劣化しやすく、耐湿熱性の点で不十分である。そのため、通常、前記エチレン-酢酸ビニル樹脂からなる部材に、ガラスやポリエチレンテレフタレート基材等を貼り合わせ複合部材とすることによって、前記劣化を抑制可能なレベルの耐湿熱性を、エチレン-酢酸ビニル樹脂基材に付与している場合が多い。 The ethylene-vinyl acetate resin is generally easily deteriorated by exposure to heat, water (humidity) or the like, and is insufficient in terms of heat and moisture resistance. For this reason, usually, by combining a member made of ethylene-vinyl acetate resin with a glass or polyethylene terephthalate base material to form a composite member, the moisture-heat resistance level at which the deterioration can be suppressed is reduced. In many cases, it is given to the material.
 しかし、エチレン-酢酸ビニル樹脂等からなる基材は、一般に表面極性の低い基材であるため、例えば接着剤を用いて前記エチレン-酢酸ビニル樹脂基材等と前記ガラス等と貼り合わせようとしても、前記エチレン-酢酸ビニル樹脂基材等の表面と接着剤層との界面で容易に剥離したり、一時的に接着できても、熱や水等の影響によって接着剤層が劣化し、経時的に剥離を引き起こす場合があった。 However, since a substrate made of ethylene-vinyl acetate resin or the like is generally a substrate having a low surface polarity, for example, an adhesive may be used to bond the ethylene-vinyl acetate resin substrate or the like to the glass or the like. Even if it can be easily peeled off at the interface between the surface of the ethylene-vinyl acetate resin substrate and the adhesive layer or temporarily bonded, the adhesive layer deteriorates due to the influence of heat, water, etc. May cause peeling.
 一方、前記接着剤の組成を調整することによって、前記エチレン-酢酸ビニル樹脂等の非極性基材に対する密着力を向上することは可能である。しかし、それと貼り合わせる基材が前記ガラスやポリエチレンテレフタレート基材等の極性基材である場合には、前記極性基材と接着剤層との密着性が低下し、やはり経時的に剥離を引き起こす場合があった。 On the other hand, by adjusting the composition of the adhesive, it is possible to improve the adhesion to nonpolar substrates such as the ethylene-vinyl acetate resin. However, when the base material to be bonded is a polar base material such as the glass or polyethylene terephthalate base material, the adhesion between the polar base material and the adhesive layer is lowered, and also causes peeling over time. was there.
 このように、非極性基材と極性基材との両方に対して優れた密着力を備えた接着剤を見出すことは、技術上困難であった。 As described above, it has been technically difficult to find an adhesive having excellent adhesion to both the nonpolar substrate and the polar substrate.
 優れた密着性を備えた接着剤としては、例えば水系媒体中に酸変性ポリオレフィン樹脂とポリウレタン樹脂と脂肪酸アミドとテルペン粘着付与材とを特定割合で含有する水性分散体からなる接着剤が知られており、かかる接着剤であれば熱可塑性樹脂基材に対する密着性に優れることが知られている(例えば特許文献1参照。)。 As an adhesive having excellent adhesion, for example, an adhesive made of an aqueous dispersion containing an acid-modified polyolefin resin, a polyurethane resin, a fatty acid amide, and a terpene tackifier in a specific ratio in an aqueous medium is known. Such an adhesive is known to be excellent in adhesion to a thermoplastic resin substrate (see, for example, Patent Document 1).
 しかし、前記接着剤は、前記したような非極性基材と極性基材との両方に対して優れた密着力を有するものではないため、いずれかの基材と接着剤層との界面で経時的に剥離する場合があった。 However, since the adhesive does not have excellent adhesion to both the nonpolar base material and the polar base material as described above, it does not deteriorate at the interface between any base material and the adhesive layer. Sometimes peeled off.
 また、前記接着剤は、熱や水(湿気)等にさらされることで劣化しやすいため、熱や水などの影響によって経時的に前記接着剤層の劣化や剥離を引き起こし、その結果、前記基材自体の劣化をも引き起こす場合があった。 Further, since the adhesive is easily deteriorated by exposure to heat, water (humidity), etc., the adhesive layer is deteriorated or peeled over time due to the influence of heat, water, etc. In some cases, the material itself may deteriorate.
 ところで、前記したような接着剤を用いて基材の貼り合わせを行う場合、通常、貼り合わせを行う直前に、いずれか一方の基材表面に接着剤を塗布し、次いで該接着剤層が完全に硬化する前の、タック感がある接着剤層表面に、他方の基材を積層し、硬化させることによってそれらを貼り合わせる場合が多い。 By the way, when the substrates are bonded using the adhesive as described above, the adhesive is usually applied to the surface of one of the substrates immediately before the bonding, and then the adhesive layer is completely formed. In many cases, the other base material is laminated on the surface of the adhesive layer having a tackiness before being cured, and then bonded together by curing.
 しかし、かかる方法は、基材の貼り合わせを行う作業現場において接着剤を塗工したり、該接着剤中に含まれる溶媒を除去する等の作業を行う必要があるため、前記複合部材の生産効率を著しく低下させる場合があった。 However, this method requires the production of the composite member because it is necessary to perform an operation such as applying an adhesive or removing a solvent contained in the adhesive at a work site where the substrates are bonded together. In some cases, the efficiency was significantly reduced.
特開2009-235289号公報JP 2009-235289 A
 本発明が解決しようとする課題は、例えば極性基材と非極性基材とのいずれの基材に対しても優れた密着性を有し、かつ、熱や水(湿気)等の影響によって、密着性の低下を引き起こさないレベルの耐湿熱性を備えたヒートシール層を形成可能なヒートシール剤、それを用いた積層体及び太陽電池モジュールを提供することである。 The problem to be solved by the present invention has, for example, excellent adhesion to both the polar substrate and the nonpolar substrate, and due to the influence of heat, water (humidity), etc. It is to provide a heat sealant capable of forming a heat seal layer having a moisture and heat resistance level that does not cause a decrease in adhesion, a laminate using the heat seal agent, and a solar cell module.
 また、本発明が解決しようとする課題は、例えば極性基材と非極性基材とのいずれの基材に対しても優れた密着性を有し、熱や水(湿気)等の影響によって、劣化や密着性の低下を引き起こさないレベルの耐湿熱性を備えたヒートシール層を形成可能であり、かつ、一方の基材表面に、予め前記ヒートシール剤を塗工し乾燥することによって架橋したヒートシール層を形成した後、該ヒートシール層上に他方の基材を載置し加熱することによって、それらの基材を接着することの可能なヒートシール剤、それを用いた積層体及び太陽電池モジュールを提供することである。 In addition, the problem to be solved by the present invention has, for example, excellent adhesion to both the polar substrate and the nonpolar substrate, and due to the influence of heat, water (humidity), etc. A heat-sealed layer having a heat-and-moisture resistance level that does not cause deterioration or lowering of adhesion can be formed, and heat is crosslinked by applying the heat-sealing agent in advance on one substrate surface and drying it. After forming the seal layer, the other base material is placed on the heat seal layer and heated, whereby the heat seal agent capable of adhering the base material, a laminate using the heat sealant, and a solar cell Is to provide modules.
 本発明者等は前記課題を解決すべく検討するなかで、1級アミノ基またはヒドラジド基を有する特定の化合物を含有するヒートシール剤が、前記課題を解決できることを見出した。 The inventors of the present invention have found that a heat sealant containing a specific compound having a primary amino group or a hydrazide group can solve the above-mentioned problems while studying to solve the above-mentioned problems.
 すなわち、本発明は、ウレタン樹脂(A)と、ポリオレフィン樹脂(B)と、メラミン化合物、エポキシ化合物、オキサゾリン化合物、カルボジイミド化合物及びイソシアネート化合物からなる群より選ばれる1種以上を含む架橋剤(C)と、1級アミノ基またはヒドラジド基を有する分子量20~3,000の化合物(D)と、水性媒体(E)とを含有することを特徴とするヒートシール剤に関するものである。 That is, the present invention provides a crosslinking agent (C) containing at least one selected from the group consisting of urethane resin (A), polyolefin resin (B), melamine compound, epoxy compound, oxazoline compound, carbodiimide compound and isocyanate compound. And a heat sealing agent comprising a compound (D) having a primary amino group or a hydrazide group and a molecular weight of 20 to 3,000, and an aqueous medium (E).
 本発明のヒートシール剤は、産業界において幅広く使用されているエチレン-酢酸ビニル樹脂やポリオレフィン樹脂だけでなく、ポリエチレンテレフタレート等からなる基材に対しても優れた密着性を有することから、例えば各種非極性基材や極性基材の貼り合わせや、それらの基材の表面被覆等に使用することができる。 The heat sealant of the present invention has excellent adhesion to not only ethylene-vinyl acetate resin and polyolefin resin widely used in industry but also a substrate made of polyethylene terephthalate, etc. It can be used for bonding nonpolar substrates and polar substrates, and surface coating of these substrates.
 また、本発明のヒートシール剤は、各種基材を積層して得られる積層体(複合部材)、特に、太陽電池モジュールの生産効率を著しく向上することも可能である。 Also, the heat sealant of the present invention can remarkably improve the production efficiency of a laminate (composite member) obtained by laminating various substrates, particularly a solar cell module.
 本発明のヒートシール剤は、ウレタン樹脂(A)と、ポリオレフィン樹脂(B)と、メラミン化合物、エポキシ化合物、オキサゾリン化合物、カルボジイミド化合物及びイソシアネート化合物からなる群より選ばれる1種以上を含む架橋剤(C)と、1級アミノ基またはヒドラジド基を有する分子量20~3,000の化合物(D)と、水性媒体(E)とを含有することを特徴とする。 The heat sealant of the present invention comprises a urethane resin (A), a polyolefin resin (B), and a crosslinking agent containing at least one selected from the group consisting of melamine compounds, epoxy compounds, oxazoline compounds, carbodiimide compounds and isocyanate compounds ( C), a compound (D) having a primary amino group or hydrazide group and a molecular weight of 20 to 3,000, and an aqueous medium (E).
 前記ウレタン樹脂(A)と前記ポリオレフィン樹脂(B)とは、前記水性媒体(E)中にそれぞれ独立して分散または溶解することが好ましいが、それらの一部が結合し樹脂粒子を形成しても、いわゆるコア・シェル型の複合樹脂粒子を形成していてもよい。 The urethane resin (A) and the polyolefin resin (B) are preferably dispersed or dissolved independently in the aqueous medium (E), but a part of them binds to form resin particles. Alternatively, so-called core-shell type composite resin particles may be formed.
 なかでも、前記ウレタン樹脂(A)と前記ポリオレフィン樹脂(B)とは、それぞれ独立して樹脂粒子を形成し、前記水性媒体(E)中に分散できることが好ましい。 Especially, it is preferable that the said urethane resin (A) and the said polyolefin resin (B) form a resin particle each independently, and can disperse | distribute it in the said aqueous medium (E).
 前記樹脂粒子は、形成しうる塗膜の平滑性を高めるうえで、概ね10nm~500nmの範囲の平均粒子径であることが好ましい。ここで言う平均粒子径とは、動的光散乱法により測定した体積基準での平均粒子径を指す。 The resin particles preferably have an average particle diameter in the range of about 10 nm to 500 nm in order to improve the smoothness of the coat film that can be formed. The average particle diameter here refers to the average particle diameter on a volume basis measured by a dynamic light scattering method.
 前記ウレタン樹脂(A)と前記ポリオレフィン樹脂(B)との質量割合[ウレタン樹脂(A)/ポリオレフィン樹脂(B)]は、9/1~2/8の範囲であることが好ましく、8/2~3/7の範囲であることがより好ましく、8/2~5/5の範囲であることが、より一層優れた耐湿熱性と各種基材に対する優れた密着性とを両立するうえでさらに好ましい。 The mass ratio of the urethane resin (A) and the polyolefin resin (B) [urethane resin (A) / polyolefin resin (B)] is preferably in the range of 9/1 to 2/8, and 8/2 Is more preferably in the range of ˜3 / 7, and more preferably in the range of 8/2 to 5/5 in order to achieve both more excellent heat and moisture resistance and excellent adhesion to various substrates. .
 また、前記ウレタン樹脂(A)及び前記ポリオレフィン樹脂(B)は、本発明のヒートシール剤の全量に対して5質量%~70質量%の範囲で含まれることが、ヒートシール剤の良好な分散安定性及び塗工作業性を維持するうえで好ましく、20質量%~70質量%の範囲で含まれることがより好ましい。 In addition, the urethane resin (A) and the polyolefin resin (B) may be contained in a range of 5% by mass to 70% by mass with respect to the total amount of the heat sealant of the present invention. It is preferable for maintaining stability and coating workability, and is more preferably contained in the range of 20% by mass to 70% by mass.
 また、前記ウレタン樹脂(A)及び前記ポリオレフィン樹脂(B)は、前記水性媒体(E)中における良好な分散安定性を付与する観点から、親水性基を有していてもよい。前記親水性基としては、例えばアニオン性基、カチオン性基、及び、ノニオン性基としてのポリオキシエチレン構造を使用することができる、なかでもアニオン性基を使用することがより好ましい。 In addition, the urethane resin (A) and the polyolefin resin (B) may have a hydrophilic group from the viewpoint of imparting good dispersion stability in the aqueous medium (E). As the hydrophilic group, for example, an anionic group, a cationic group, and a polyoxyethylene structure as a nonionic group can be used, and it is more preferable to use an anionic group.
 前記アニオン性基としては、例えばカルボキシル基、カルボキシレート基、スルホン酸基、スルホネート基等を使用することができ、なかでも、一部または全部が塩基性化合物によって中和されたカルボキシレート基やスルホネート基を使用することが、良好な水分散性を前記ウレタン樹脂(A)や前記ポリオレフィン樹脂(B)に付与する上で好ましい。 As the anionic group, for example, a carboxyl group, a carboxylate group, a sulfonic acid group, a sulfonate group, and the like can be used. Among them, a carboxylate group or a sulfonate partially or completely neutralized with a basic compound. It is preferable to use a group for imparting good water dispersibility to the urethane resin (A) and the polyolefin resin (B).
 また、前記カチオン性基としては、例えば3級アミノ基やそれを酸化合物や4級化剤を用いて中和したもの等を使用することができる。 Further, as the cationic group, for example, a tertiary amino group or a neutralized group thereof using an acid compound or a quaternizing agent can be used.
 また、前記ノニオン性基としては、例えばポリオキシエチレン基、ポリオキシプロピレン基、ポリオキシブチレン基、ポリ(オキシエチレン-オキシプロピレン)基、及びポリオキシエチレン-ポリオキシプロピレン基等のポリオキシアルキレン基を使用することができる。
 前記ウレタン樹脂(A)としては、極性基材(I)や非極性基材(II)に対する優れた密着性と耐久性とを付与する観点から、3,000を超え300,000以下の範囲の重量平均分子量を有するものを使用することが好ましい。
 また、前記ウレタン樹脂(A)としては、後述する架橋剤(C)としてエポキシ化合物を使用した場合に、それが有するエポキシ基や加水分解性シリル基等の官能基と反応し得る官能基[X]を有するものを使用することが、より一層優れた耐湿熱性と各種基材に対する優れた密着性とを両立したヒートシール剤を得るうえで好ましい。
 前記官能基[X]としては、例えばカルボキシル基や水酸基、アミノ基等が挙げられる。なお、前記ウレタン樹脂(A)及び前記ポリオレフィン樹脂(B)を水性媒体(E)中に安定して存在させるために、アニオン性基やカチオン性基等の親水性基を有するウレタン樹脂やポリオレフィン樹脂を使用する場合には、該親水性基としてのカルボキシル基や、それを塩基性化合物等を用いて中和したカルボキシレート基等が、前記架橋反応の際に、前記官能基[X]としても作用し、前記架橋剤(C)の一部と反応しうる。したがって、前記官能基[X]としては、前記親水性基として機能しうる、塩基性化合物等によって中和されたカルボキシレート基やスルホネート基等のアニオン性基や、酸基含有化合物によって中和されたアミノ基等のカチオン性基を使用することもできる。前記官能基[X]としては、前記したなかでも、カルボキシル基やカルボキシレート基であることが好ましい。
Examples of the nonionic group include polyoxyalkylene groups such as polyoxyethylene group, polyoxypropylene group, polyoxybutylene group, poly (oxyethylene-oxypropylene) group, and polyoxyethylene-polyoxypropylene group. Can be used.
As said urethane resin (A), from the viewpoint of providing the outstanding adhesiveness and durability with respect to polar base material (I) and nonpolar base material (II), it is over 3,000 and 300,000 or less. It is preferable to use one having a weight average molecular weight.
In addition, as the urethane resin (A), when an epoxy compound is used as a cross-linking agent (C) described later, a functional group that can react with a functional group such as an epoxy group or a hydrolyzable silyl group [X It is preferable to use a material having a high heat and heat resistance and excellent adhesion to various substrates.
Examples of the functional group [X] include a carboxyl group, a hydroxyl group, and an amino group. In addition, in order to make the said urethane resin (A) and the said polyolefin resin (B) exist stably in an aqueous medium (E), the urethane resin and polyolefin resin which have hydrophilic groups, such as an anionic group and a cationic group, Is used, the carboxyl group as the hydrophilic group or the carboxylate group neutralized with a basic compound or the like may be used as the functional group [X] during the crosslinking reaction. It can act and react with a part of the crosslinking agent (C). Therefore, the functional group [X] is neutralized by an anionic group such as a carboxylate group or a sulfonate group neutralized by a basic compound or the like which can function as the hydrophilic group, or by an acid group-containing compound. Cationic groups such as amino groups can also be used. Among the above functional groups [X], a carboxyl group or a carboxylate group is preferable.
 特に、前記官能基[X]としてカルボキシル基を使用する場合、前記ウレタン樹脂(A)としては、5~70の酸価を有するものを使用することが好ましく、5~50の酸価を有するものを使用することが各種基材に対する密着性を向上するうえで好ましい。また、前記ポリオレフィン樹脂(B)としては、5~300の酸価を有するものを使用することが好ましく、10~250の酸価を有するものを使用することがより好ましい。 In particular, when a carboxyl group is used as the functional group [X], the urethane resin (A) preferably has an acid value of 5 to 70, and has an acid value of 5 to 50. It is preferable to use in order to improve adhesion to various substrates. The polyolefin resin (B) is preferably one having an acid value of 5 to 300, more preferably one having an acid value of 10 to 250.
 前記ウレタン樹脂(A)としては、イソシアネート基を有するウレタン樹脂と、1級アミノ基またはヒドラジド基を有する化合物(a3)とを反応させることによって形成されるウレア結合を有するウレタン樹脂(A-1)を使用することができる。これにより、各種基材に対する密着性をより一層向上することができる。特に、コロナ処理等の施された極性基材(I)等の基材の表面に対して、各段に優れた密着性を発現する。これは、前記コロナ処理等によって前記基材表面にカルボニル基が生成され、かかるカルボニル基が、前記ウレア結合を形成する窒素原子と結合を形成するためであると推測される。
 前記ウレタン樹脂(A-1)としては、イソシアネート基を有するウレタン樹脂と、1級アミノ基またはヒドラジド基を有する化合物(a3)とを、前記ウレタン樹脂が有するイソシアネート基に対する前記化合物(a3)が有する1級アミノ基及びヒドラジド基の当量割合[前記化合物(a3)が有する1級アミノ基及びヒドラジド基の合計/前記ウレタン樹脂が有するイソシアネート基]が0.8~2の範囲で反応させて得られるものを使用することが好ましく、1~2となる条件で反応させることによって得られるものを使用することが、例えば極性基材と非極性基材とのいずれの基材に対して、特に優れた密着性を備えたヒートシール層を形成するうえでより好ましく、1を超え2以下であることがさらに好ましく、1.05~1.5であることが特に好ましい。
As the urethane resin (A), a urethane resin (A-1) having a urea bond formed by reacting a urethane resin having an isocyanate group with a compound (a3) having a primary amino group or a hydrazide group. Can be used. Thereby, the adhesiveness with respect to various base materials can be improved further. In particular, it exhibits excellent adhesion at each stage with respect to the surface of a substrate such as a polar substrate (I) subjected to corona treatment. This is presumed to be because a carbonyl group is generated on the surface of the substrate by the corona treatment or the like, and the carbonyl group forms a bond with a nitrogen atom that forms the urea bond.
The urethane resin (A-1) includes a urethane resin having an isocyanate group and a compound (a3) having a primary amino group or a hydrazide group, and the compound (a3) with respect to the isocyanate group of the urethane resin. Equivalent ratio of primary amino group and hydrazide group [total of primary amino group and hydrazide group possessed by compound (a3) / isocyanate group possessed by urethane resin] is reacted in the range of 0.8 to 2. It is preferable to use a material obtained by reacting under the conditions of 1 to 2, particularly excellent for any substrate such as a polar substrate and a nonpolar substrate. More preferable for forming a heat seal layer having adhesiveness, more preferably more than 1 and 2 or less, 1.05 to 1. It is particularly preferred is.
 前記ウレタン樹脂(A)としては、例えばポリオール(a1)とポリイソシアネート(a2)とを反応させることによって得られたものを使用することができる。 As the urethane resin (A), for example, those obtained by reacting polyol (a1) and polyisocyanate (a2) can be used.
 前記ポリオール(a1)としては、例えばポリエステルポリオールやポリカーボネートポリオール、ポリエーテルポリオール、ポリオレフィンポリオール等を単独または2以上を併用して使用することができる。 As the polyol (a1), for example, polyester polyol, polycarbonate polyol, polyether polyol, polyolefin polyol and the like can be used alone or in combination of two or more.
 なかでも、ポリエーテルポリオールを使用することが、非極性基材(II)に対する密着性をより一層向上できるため好ましい。 Among these, it is preferable to use a polyether polyol because the adhesion to the nonpolar substrate (II) can be further improved.
 前記ポリオール(a1)に使用可能な前記ポリエーテルポリオールとしては、例えば活性水素原子を2個以上有する化合物の1種または2種以上を開始剤として、アルキレンオキサイドを付加重合させたものを使用することができる。 As the polyether polyol that can be used for the polyol (a1), for example, one obtained by addition polymerization of alkylene oxide using one or more compounds having two or more active hydrogen atoms as an initiator is used. Can do.
 前記開始剤としては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、トリメチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ビスフェノールA、グリセリン、トリメチロールエタン、トリメチロールプロパン等を使用することができる。 Examples of the initiator include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, bisphenol A, glycerin, and triglyceride. Methylolethane, trimethylolpropane and the like can be used.
 前記アルキレンオキサイドとしては、例えばエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイド、エピクロルヒドリン、テトラヒドロフラン等を使用することができる。
 前記ポリオール(a1)に使用可能なポリエーテルポリオールとしては、具体的にはテトラヒドロフランが開環して形成されたポリオキシテトラメチレングリコールを使用することが好ましい。
 前記ポリエーテルポリオールとしては、極性基材(I)や非極性基材(II)に対する密着性をより一層向上するうえで、数平均分子量500~3,000のものを使用することが好ましい。
 前記ポリエーテルポリオールは、前記ウレタン樹脂(A)を製造する際に使用するポリオール(a1)全体に対して1,000~3,000の範囲で使用することが好ましい。
Examples of the alkylene oxide include ethylene oxide, propylene oxide, butylene oxide, styrene oxide, epichlorohydrin, and tetrahydrofuran.
As the polyether polyol that can be used for the polyol (a1), specifically, polyoxytetramethylene glycol formed by ring opening of tetrahydrofuran is preferably used.
As the polyether polyol, it is preferable to use a polyether polyol having a number average molecular weight of 500 to 3,000 in order to further improve the adhesion to the polar substrate (I) and the nonpolar substrate (II).
The polyether polyol is preferably used in the range of 1,000 to 3,000 with respect to the entire polyol (a1) used in producing the urethane resin (A).
 また、前記ポリオール(a1)に使用可能なポリエステルポリオールとしては、例えば低分子量のポリオールとポリカルボン酸とをエステル化反応して得られるものや、ε-カプロラクトン等の環状エステル化合物を開環重合反応して得られるポリエステルや、これらの共重合ポリエステル等を使用することができる。 Examples of the polyester polyol that can be used for the polyol (a1) include those obtained by esterifying low molecular weight polyols and polycarboxylic acids, and ring-opening polymerization reactions of cyclic ester compounds such as ε-caprolactone. Polyesters obtained by the above, copolymerized polyesters thereof, and the like can be used.
 前記低分子量のポリオールとしては、例えば概ね分子量が50~300程度である、エチレングリコールやプロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、ネオペンチルグリコール、1,3-ブタンジオール等の脂肪族ポリオールや、シクロヘキサンジメタノール等の脂肪族環式構造含有ポリオール、ビスフェノールAやビスフェノールF等のビスフェノール化合物及びそれらのアルキレンオキサイド付加物等の芳香族構造含有ポリオールを使用することができる。 Examples of the low molecular weight polyol include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, neopentyl glycol, and 1,3-butane having a molecular weight of about 50 to 300. Aliphatic polyols such as diols, aliphatic cyclic structure-containing polyols such as cyclohexanedimethanol, bisphenol compounds such as bisphenol A and bisphenol F, and aromatic structure-containing polyols such as alkylene oxide adducts thereof can be used. .
 また、前記ポリエステルポリオールの製造に使用可能な前記ポリカルボン酸としては、例えばコハク酸、アジピン酸、セバシン酸、ドデカンジカルボン酸等の脂肪族ポリカルボン酸や、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸等の芳香族ポリカルボン酸、及びそれらの無水物またはエステル形成性誘導体等を使用することができる。 Examples of the polycarboxylic acid that can be used in the production of the polyester polyol include aliphatic polycarboxylic acids such as succinic acid, adipic acid, sebacic acid, and dodecanedicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, and naphthalene. Aromatic polycarboxylic acids such as dicarboxylic acids, and anhydrides or ester-forming derivatives thereof can be used.
 前記ポリエステルポリオールとしては、200~5,000の範囲の数平均分子量を有するものを使用することが好ましい。 The polyester polyol preferably has a number average molecular weight in the range of 200 to 5,000.
 また、前記ポリオール(a1)に使用可能なポリカーボネートポリオールとしては、例えば炭酸エステルとポリオールとを反応させて得られるものや、ホスゲンとビスフェノールA等とを反応させて得られるものを使用することができる。 Moreover, as a polycarbonate polyol which can be used for the said polyol (a1), what is obtained by making carbonate ester and a polyol react, for example, what is obtained by making phosgene, bisphenol A, etc. react can be used. .
 前記炭酸エステルとしては、メチルカーボネートや、ジメチルカーボネート、エチルカーボネート、ジエチルカーボネート、シクロカーボネート、ジフェニルカーボネート等を使用することできる。 As the carbonate ester, methyl carbonate, dimethyl carbonate, ethyl carbonate, diethyl carbonate, cyclocarbonate, diphenyl carbonate, or the like can be used.
 前記炭酸エステルと反応しうるポリオールとしては、例えば、エチレングリコール、ジエチレングリコール、1,2-プロピレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,4-シクロヘキサンジオール、1,6-ヘキサンジオール、シクロヘキサンジメタノール等の概ね分子量50~2,000である比較的低分子量のジオールや、ポリエチレングリコール、ポリプロピレングリコールや、ポリヘキサメチレンアジペート等のポリエステルポリオール等を使用することができる。 Examples of the polyol that can react with the carbonate ester include ethylene glycol, diethylene glycol, 1,2-propylene glycol, dipropylene glycol, 1,4-butanediol, 1,5-pentanediol, and 3-methyl-1,5. -Pentanediol, 1,4-cyclohexanediol, 1,6-hexanediol, cyclohexanedimethanol and other relatively low molecular weight diols having a molecular weight of 50 to 2,000, polyethylene glycol, polypropylene glycol, and polyhexamethylene Polyester polyols such as adipate can be used.
 前記ポリカーボネートポリオールとしては、500~4,000の範囲の数平均分子量を有するものを使用することが、優れた耐湿熱性を損なうことなく、エチレン-酢酸ビニル樹脂やポリプロピレン等からなる非極性基材(II)に対する密着性を付与するうえで好ましい。 As the polycarbonate polyol, use of a polyol having a number average molecular weight in the range of 500 to 4,000 allows the nonpolar substrate (eg, ethylene-vinyl acetate resin or polypropylene) to be used without impairing excellent heat and heat resistance. It is preferable for providing adhesion to II).
 また、前記ポリオール(a1)に使用可能な前記ポリオレフィンポリオールとしては、例えばポリエチレンポリオール、ポリプロピレンポリオール、ポリイソブテンポリオール、水素添加(水添)ポリブタジエンポリオール、水素添加(水添)ポリイソプレンポリオール、を使用することができる。 In addition, as the polyolefin polyol that can be used for the polyol (a1), for example, polyethylene polyol, polypropylene polyol, polyisobutene polyol, hydrogenated (hydrogenated) polybutadiene polyol, and hydrogenated (hydrogenated) polyisoprene polyol are used. Can do.
 また、前記ポリオール(a1)としては、前記ウレタン樹脂(A)に良好な水分散安定性を付与する観点から、前記したものの他に、親水性基を有するポリオールを組み合わせ使用することができる。 Further, as the polyol (a1), from the viewpoint of imparting good water dispersion stability to the urethane resin (A), a polyol having a hydrophilic group can be used in combination with the above-described one.
 前記親水性基を有するポリオールとしては、例えば前記したポリオール以外のアニオン性基を有するポリオール、カチオン性基を有するポリオール、及び、ノニオン性基を有するポリオールを使用することができる。なかでも、アニオン性基を有するポリオールまたはカチオン性基を有するポリオールを使用することが好ましく、アニオン性基を有するポリオールを使用することがより好ましい。 As the polyol having a hydrophilic group, for example, a polyol having an anionic group other than the above-described polyol, a polyol having a cationic group, and a polyol having a nonionic group can be used. Among these, it is preferable to use a polyol having an anionic group or a polyol having a cationic group, and it is more preferable to use a polyol having an anionic group.
 前記アニオン性基を有するポリオールとしては、例えばカルボキシル基を有するポリオールや、スルホン酸基を有するポリオールを使用することができる。 As the polyol having an anionic group, for example, a polyol having a carboxyl group or a polyol having a sulfonic acid group can be used.
 前記カルボキシル基を有するポリオールとしては、例えば2,2’-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、2,2’-ジメチロール酪酸、2,2’-ジメチロール吉草酸等を使用することができ、なかでも2,2’-ジメチロールプロピオン酸を使用することが好ましい。また、前記カルボキシル基を有するポリオールと各種ポリカルボン酸とを反応させて得られるカルボキシル基を有するポリエステルポリオールも使用することもできる。 Examples of the polyol having a carboxyl group include 2,2′-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, 2,2′-dimethylolbutyric acid, 2,2′-dimethylolvaleric acid, and the like. Among them, it is preferable to use 2,2′-dimethylolpropionic acid. Moreover, the polyester polyol which has a carboxyl group obtained by making the polyol which has the said carboxyl group react with various polycarboxylic acids can also be used.
 前記スルホン酸基を有するポリオールとしては、例えば5-スルホイソフタル酸、スルホテレフタル酸、4-スルホフタル酸、5[4-スルホフェノキシ]イソフタル酸等のジカルボン酸またそれらの塩と、前記芳香族構造を有するポリエステルポリオール(a1-1)の製造に使用可能なものとして例示した低分子量ポリオールとを反応させて得られるポリエステルポリオールを使用することができる。 Examples of the polyol having a sulfonic acid group include dicarboxylic acids such as 5-sulfoisophthalic acid, sulfoterephthalic acid, 4-sulfophthalic acid, and 5 [4-sulfophenoxy] isophthalic acid, and salts thereof, and the aromatic structure. A polyester polyol obtained by reacting with a low molecular weight polyol exemplified as being usable for the production of the polyester polyol (a1-1) having a polyester polyol can be used.
 前記カルボキシル基を有するポリオールやスルホン酸基を有するポリオールは、前記ウレタン樹脂(A)の酸価が10~70となる範囲で使用することが好ましく、10~50となる範囲で使用することがより好ましい。なお、本発明で言う酸価は、前記ウレタン樹脂(A)の製造に使用したカルボキシル基を有するポリオール等の酸基含有化合物の使用量に基づいて算出した理論値である。 The polyol having a carboxyl group or the polyol having a sulfonic acid group is preferably used in the range where the acid value of the urethane resin (A) is from 10 to 70, more preferably from 10 to 50. preferable. In addition, the acid value said by this invention is the theoretical value computed based on the usage-amount of acid group containing compounds, such as a polyol which has a carboxyl group used for manufacture of the said urethane resin (A).
 前記アニオン性基は、それらの一部または全部が塩基性化合物等によって中和されていることが、良好な水分散性を発現するうえで好ましい。 The anionic group is preferably partially or completely neutralized with a basic compound or the like in order to develop good water dispersibility.
 前記アニオン性基を中和する際に使用可能な塩基性化合物としては、例えばアンモニア、トリエチルアミン、モルホリン、モノエタノールアミン、ジエチルエタノールアミン等の沸点が200℃以上の有機アミンや、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等を含む金属水酸化物等を使用することができる。前記塩基性化合物は、得られるヒートシール剤の水分散安定性を向上させる観点から、塩基性化合物/アニオン性基=0.5~3.0(モル比)となる範囲で使用することが好ましく、0.8~2.0(モル比)となる範囲で使用することがより好ましい。 Examples of basic compounds that can be used for neutralizing the anionic group include organic amines having a boiling point of 200 ° C. or higher, such as ammonia, triethylamine, morpholine, monoethanolamine, diethylethanolamine, sodium hydroxide, water, and the like. A metal hydroxide containing potassium oxide, lithium hydroxide or the like can be used. The basic compound is preferably used in the range of basic compound / anionic group = 0.5 to 3.0 (molar ratio) from the viewpoint of improving the water dispersion stability of the obtained heat sealant. More preferably, it is used in the range of 0.8 to 2.0 (molar ratio).
 また、前記カチオン性基を有するポリオールとしては、例えば3級アミノ基を有するポリオールを使用することができ、具体的にはN-メチル-ジエタノールアミンや、1分子中にエポキシを2個有する化合物と2級アミンとを反応させて得られるポリオールなどを使用することができる。 Further, as the polyol having a cationic group, for example, a polyol having a tertiary amino group can be used. Specifically, N-methyl-diethanolamine, a compound having two epoxies in one molecule, and 2 A polyol obtained by reacting with a secondary amine can be used.
 前記カチオン性基は、その一部または全部が、蟻酸、酢酸、プロピオン酸、コハク酸、グルタル酸、酒石酸、アジピン酸等の酸性化合物で中和されていることが好ましい。 The cationic group is preferably partially or completely neutralized with an acidic compound such as formic acid, acetic acid, propionic acid, succinic acid, glutaric acid, tartaric acid, and adipic acid.
 また、前記カチオン性基としての3級アミノ基は、その一部または全部が4級化されていることが好ましい。前記4級化剤としては、例えばジメチル硫酸、ジエチル硫酸、メチルクロライド、エチルクロライド等を使用することができ、ジメチル硫酸を使用することが好ましい。 The tertiary amino group as the cationic group is preferably partly or entirely quaternized. As the quaternizing agent, for example, dimethyl sulfate, diethyl sulfate, methyl chloride, ethyl chloride and the like can be used, and dimethyl sulfate is preferably used.
 また、前記ノニオン性基を有するポリオールとしては、ポリオキシエチレン構造を有するポリオール等を使用することができる。 Also, as the polyol having a nonionic group, a polyol having a polyoxyethylene structure or the like can be used.
 前記親水性基を有するポリオールは、前記ウレタン樹脂(A)の製造に使用するポリオール(a1)の全量に対して、0.3質量%~10質量%の範囲で使用することが好ましい。 The polyol having a hydrophilic group is preferably used in the range of 0.3% by mass to 10% by mass with respect to the total amount of the polyol (a1) used in the production of the urethane resin (A).
 また、前記ポリオール(a1)としては、前記したポリオールの他に、必要に応じてその他のポリオールを使用することができる。 Moreover, as the polyol (a1), in addition to the above-described polyol, other polyols can be used as necessary.
 前記その他のポリオールとしては、例えばエチレングリコール、ジエチレングリコール、1,2-プロピレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,4-シクロヘキサンジオール、1,6-ヘキサンジオール、シクロヘキサンジメタノール等の比較的低分子量のポリオールを使用することができる。
 本発明では、ヒートシール剤の各種基材への密着性をより一層向上するうえで、ネオペンチルグリコール等を使用することが好ましい。
Examples of the other polyol include ethylene glycol, diethylene glycol, 1,2-propylene glycol, dipropylene glycol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, Polyol having a relatively low molecular weight such as 1,4-cyclohexanediol, 1,6-hexanediol, cyclohexanedimethanol, etc. can be used.
In the present invention, neopentyl glycol or the like is preferably used in order to further improve the adhesion of the heat sealant to various substrates.
 前記ポリオール(a1)と反応しうるポリイソシアネート(a2)としては、例えば4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、カルボジイミド変性ジフェニルメタンジイソシアネート、クルードジフェニルメタンジイソシアネート、フェニレンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネートなどの芳香族ポリイソシアネートや、ヘキサメチレンジイソシアネート、リジンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネートなどの脂肪族ポリイソシアネート、シクロヘキサンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート等の脂肪族環式構造を有するポリイソシアネートを使用することができる。 Examples of the polyisocyanate (a2) that can react with the polyol (a1) include 4,4′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate, crude diphenylmethane diisocyanate, phenylene diisocyanate, tolylene diisocyanate, Aromatic polyisocyanates such as naphthalene diisocyanate, aliphatic polyisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, cycloaliphatic diisocyanate, dicyclohexylmethane diisocyanate, and aliphatic cyclic structures such as isophorone diisocyanate. Having polyisocyanate It is possible to use the door.
 前記ウレタン樹脂(A)は、例えば無溶剤下または有機溶剤の存在下で、前記ポリオール(a1)と前記ポリイソシアネート(a2)とを反応させることによって製造することができる。
 また、前記ウレタン樹脂(A)として、ウレタン樹脂が有するイソシアネート基と、1級アミノ基またはヒドラジド基を有する化合物(a3)とが反応して得られたウレタン樹脂(A-1)を使用する場合には、例えば無溶剤下または有機溶剤の存在下で、前記ポリオール(a1)と前記ポリイソシアネート(a2)とを反応させることによってイソシアネート基を有するウレタン樹脂を製造し、次いで、前記ウレタン樹脂中に親水性基がある場合には、該親水性基の一部または全部を必要に応じて中和し、それを水性媒体(E)中に混合し水性化する際に、1級アミノ基またはヒドラジド基を有する化合物(a3)と混合し、前記ウレタン樹脂の有するイソシアネート基と反応させることによって製造することができる。
The urethane resin (A) can be produced, for example, by reacting the polyol (a1) and the polyisocyanate (a2) in the absence of a solvent or in the presence of an organic solvent.
When the urethane resin (A-1) obtained by reacting the isocyanate group of the urethane resin with the compound (a3) having a primary amino group or hydrazide group is used as the urethane resin (A). For example, a urethane resin having an isocyanate group is produced by reacting the polyol (a1) with the polyisocyanate (a2) in the absence of a solvent or in the presence of an organic solvent, and then in the urethane resin. When there is a hydrophilic group, a part of or all of the hydrophilic group is neutralized as necessary, and mixed with the aqueous medium (E) to make it a primary amino group or hydrazide. It can manufacture by mixing with the compound (a3) which has group, and making it react with the isocyanate group which the said urethane resin has.
 前記ポリオール(a1)とポリイソシアネート(a2)との反応は、例えば、前記ポリオール(a1)が有する水酸基に対する、前記ポリイソシアネート(a2)が有するイソシアネート基の当量割合が、1.05~2.5の範囲で行うことが好ましく、1.1~2の範囲で行うことがより好ましい。 The reaction between the polyol (a1) and the polyisocyanate (a2) is, for example, such that the equivalent ratio of the isocyanate group of the polyisocyanate (a2) to the hydroxyl group of the polyol (a1) is 1.05 to 2.5. Preferably, it is carried out in the range of 1.1 to 2, more preferably.
 また、前記ウレタン樹脂(A)を製造する際に使用可能な有機溶剤としては、例えばアセトン、メチルエチルケトン等のケトン;テトラヒドロフラン、ジオキサン等のエーテル;酢酸エチル、酢酸ブチル等の酢酸エステル;アセトニトリル等のニトリル;ジメチルホルムアミド、N-メチルピロリドン等のアミドを、単独で使用または2種以上を使用することができる。 Examples of the organic solvent that can be used for producing the urethane resin (A) include ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran and dioxane; acetate esters such as ethyl acetate and butyl acetate; nitriles such as acetonitrile. Amides such as dimethylformamide and N-methylpyrrolidone can be used alone or in combination of two or more.
 また、前記ウレタン樹脂(A)のうち前記ウレタン樹脂(A-1)を製造する際に使用可能な1級アミノ基またはヒドラジド基を有する化合物(a3)としては、例えばヒドラジンや、ジカルボン酸ジヒドラジド、カルボヒドラジド、1,3-ビス(ヒドラジノカルボノエチル)-5-イソプロピルヒダントイン、エタノールアミン等を使用することができ、ヒドラジンまたはジカルボン酸ジヒドラジドまたはカルボヒドラジドを使用することが好ましく、ヒドラジンを使用することが、耐湿熱性をより一層向上するうえでより好ましい。
 前記ジカルボン酸ジヒドラジドとしては、例えばヒドラジン、マロン酸ジヒドラジド、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、グルタル酸ジヒドラジド、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド;β-セミカルバジドプロピオン酸ヒドラジド等の1種または2種以上を組み合わせ使用することができる。なかでもヒドラジンを使用することが、優れた密着性を付与するうえで好ましい。
Examples of the compound (a3) having a primary amino group or hydrazide group that can be used for producing the urethane resin (A-1) among the urethane resin (A) include hydrazine, dicarboxylic acid dihydrazide, Carbohydrazide, 1,3-bis (hydrazinocarbonoethyl) -5-isopropylhydantoin, ethanolamine, etc. can be used, and hydrazine or dicarboxylic acid dihydrazide or carbohydrazide is preferably used, and hydrazine is used. Is more preferable for further improving the heat and moisture resistance.
Examples of the dicarboxylic acid dihydrazide include hydrazine, malonic acid dihydrazide, succinic acid dihydrazide, adipic acid dihydrazide, glutaric acid dihydrazide, sebacic acid dihydrazide, isophthalic acid dihydrazide; β-semicarbazide propionic acid hydrazide and the like. Can be used. Of these, the use of hydrazine is preferable for imparting excellent adhesion.
 前記方法で製造したウレタン樹脂(A)の水性化は、例えば、次のような方法で行うことができる。 The aqueous formation of the urethane resin (A) produced by the above method can be performed, for example, by the following method.
 〔方法1〕ポリオール(a1)とポリイソシアネート(a2)とを反応させて得られたウレタン樹脂(A)の親水性基の一部又は全てを中和又は4級化した後、水を投入して水分散せしめ、必要に応じて鎖伸長することによりウレタン樹脂(A)を水分散させる方法。 [Method 1] After neutralizing or quaternizing some or all of the hydrophilic groups of the urethane resin (A) obtained by reacting the polyol (a1) with the polyisocyanate (a2), water is added. A method in which the urethane resin (A) is dispersed in water by dispersing in water and extending the chain as necessary.
 〔方法2〕ポリオール(a1)とポリイソシアネート(a2)とを反応させて得られたウレタン樹脂(A)と、必要に応じて前記1級アミノ基またはヒドラジド基を有する化合物(a3)とを、反応容器中に一括又は分割して仕込み、鎖伸長反応させることでウレタン樹脂(A)を製造し、次いで得られたウレタン樹脂(A)中の親水基の一部又は全てを中和又は4級化した後、水を投入して水分散せしめる方法。 [Method 2] A urethane resin (A) obtained by reacting the polyol (a1) with the polyisocyanate (a2) and, if necessary, the compound (a3) having the primary amino group or hydrazide group, The urethane resin (A) is produced by batch or divided charging into a reaction vessel and chain extension reaction, and then part or all of the hydrophilic groups in the resulting urethane resin (A) are neutralized or quaternary. The method of adding water to disperse the water after conversion.
 前記〔方法1〕~〔方法2〕では、必要に応じて乳化剤を使用してもよい。また、水溶解や水分散の際には、必要に応じてホモジナイザー等の機械を使用しても良い。 In the above [Method 1] to [Method 2], an emulsifier may be used as necessary. In addition, when water is dissolved or dispersed, a machine such as a homogenizer may be used as necessary.
 前記乳化剤としては、例えば、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンスチリルフェニルエーテル、ポリオキシエチレンソルビトールテトラオレエート、ポリオキシエチレン・ポリオキシプロピレン共重合体等のノニオン系乳化剤;オレイン酸ナトリウム等の脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルフォン酸塩、アルキルスルホコハク酸塩、ナフタレンスルフォン酸塩、ポリオキシエチレンアルキル硫酸塩、アルカンスルフォネートナトリウム塩、アルキルジフェニルエーテルスルフォン酸ナトリウム塩等のアニオン系乳化剤;アルキルアミン塩、アルキルトリメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩等のカチオン系乳化剤が挙げられる。なかでも本発明のコーティング剤の優れた保存安定性を維持する観点から、基本的にアニオン性又はノニオン性の乳化剤を使用することが好ましい。 Examples of the emulsifier include nonionic emulsifiers such as polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene styryl phenyl ether, polyoxyethylene sorbitol tetraoleate, and polyoxyethylene / polyoxypropylene copolymer. Fatty acid salts such as sodium oleate, alkyl sulfates, alkylbenzene sulfonates, alkyl sulfosuccinates, naphthalene sulfonates, polyoxyethylene alkyl sulfates, alkane sulfonate sodium salts, sodium alkyl diphenyl ether sulfonates, etc. Anionic emulsifiers; cationic amines such as alkylamine salts, alkyltrimethylammonium salts, alkyldimethylbenzylammonium salts It is below. Among these, from the viewpoint of maintaining the excellent storage stability of the coating agent of the present invention, it is basically preferable to use an anionic or nonionic emulsifier.
 前記方法で得られたウレタン樹脂(A)が水性媒体(E)中に分散したウレタン樹脂(A)水分散体は、前記ウレタン樹脂(A)を、該水分散体の全量に対して10~50の範囲で含むものであることが、本発明のヒートシール剤の製造のしやすさやを向上するとともに、優れた耐湿熱性と各種基材に対する優れた密着性とを両立したヒートシール剤を調製するうえで好ましい。 The urethane resin (A) aqueous dispersion in which the urethane resin (A) obtained by the above method is dispersed in an aqueous medium (E) is obtained by changing the urethane resin (A) to 10 to 10% relative to the total amount of the aqueous dispersion. In addition to improving the ease of production of the heat sealant of the present invention, the heat sealant having both excellent heat and moisture resistance and excellent adhesion to various substrates is included. Is preferable.
 前記ウレタン樹脂(A)水分散体は、組成の異なる2種以上のウレタン樹脂を混合したものであってもよい。具体的には、ウレタン樹脂の製造に使用するポリオール(a1)の組成が異なるウレタン樹脂を2種以上組み合わせ使用することができる。 The urethane resin (A) aqueous dispersion may be a mixture of two or more urethane resins having different compositions. Specifically, two or more urethane resins having different compositions of the polyol (a1) used for the production of the urethane resin can be used in combination.
 次に、本発明のヒートシール剤の製造に使用するポリオレフィン樹脂(B)について説明する。 Next, the polyolefin resin (B) used for the production of the heat sealant of the present invention will be described.
 本発明で使用するポリオレフィン樹脂(B)としては、例えばエチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン等のホモポリマーやコポリマー等を使用することができ、具体的には、ポリエチレン、ポリプロピレン、ポリブタジエン、エチレン-プロピレン共重合体、天然ゴム、合成イソプロピレンゴム、エチレン-酢酸ビニル共重合体等を使用することができる。前記ポリオレフィン樹脂(B)がコポリマーである場合には、ランダムコポリマーであってもブロックコポリマーであっても良い。 Examples of the polyolefin resin (B) used in the present invention include homopolymers and copolymers such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene and 1-nonene. Specifically, polyethylene, polypropylene, polybutadiene, ethylene-propylene copolymer, natural rubber, synthetic isopropylene rubber, ethylene-vinyl acetate copolymer, and the like can be used. When the polyolefin resin (B) is a copolymer, it may be a random copolymer or a block copolymer.
 前記ポリオレフィン樹脂(B)は、必要に応じて後述する架橋剤(C)と反応し得る官能基を有するものを使用することが好ましく、特に、架橋剤(C)としてエポキシ化合物を使用する場合には、それが有するエポキシ基や加水分解性シリル基等の官能基と反応し得る官能基[X]を有するものを使用することがより好ましい。
 前記官能基[X]としては、前記ウレタン樹脂(A)の有する官能基[X]と同様に例えばカルボキシル基等が挙げられ、なかでもカルボキシル基であることが好ましい。なお、前記官能基[X]は、ポリオレフィン樹脂(B)の有する親水性基と同様の官能基であっても良い。具体的には、前記親水性基としてアニオン性基であるカルボキシル基やカルボキシレート基を使用した場合、前記カルボキシル基等は、架橋反応の際に前記官能基[X]として作用してもよい。
The polyolefin resin (B) is preferably one having a functional group capable of reacting with a cross-linking agent (C), which will be described later, if necessary, particularly when an epoxy compound is used as the cross-linking agent (C). It is more preferable to use those having a functional group [X] that can react with a functional group such as an epoxy group or a hydrolyzable silyl group.
As said functional group [X], a carboxyl group etc. are mentioned similarly to the functional group [X] which the said urethane resin (A) has, and it is preferable that it is a carboxyl group especially. The functional group [X] may be the same functional group as the hydrophilic group of the polyolefin resin (B). Specifically, when a carboxyl group or a carboxylate group which is an anionic group is used as the hydrophilic group, the carboxyl group or the like may act as the functional group [X] during the crosslinking reaction.
 前記官能基[X]としてのカルボキシル基を有するポリオレフィン樹脂(B)としては、上記で例示したポリオレフィン樹脂と不飽和カルボン酸と反応させて得られたものや、ビニル単量体と反応させて得られたものや、塩素化したもの等の、いわゆる変性ポリオレフィン樹脂を使用することが好ましい。 The polyolefin resin (B) having a carboxyl group as the functional group [X] is obtained by reacting the above-exemplified polyolefin resin with an unsaturated carboxylic acid, or obtained by reacting with a vinyl monomer. It is preferable to use so-called modified polyolefin resins such as those obtained and chlorinated.
 前記官能基[X]としての、例えばカルボキシル基は、ポリオレフィン樹脂と、(無水)マレイン酸等の不飽和ジカルボン酸とを反応させることによって、ポリオレフィン樹脂(B)に導入することができる。 For example, a carboxyl group as the functional group [X] can be introduced into the polyolefin resin (B) by reacting the polyolefin resin with an unsaturated dicarboxylic acid such as (anhydrous) maleic acid.
 前記不飽和ジカルボン酸としては、たとえばマレイン酸、フマール酸、イタコン酸、シトラコン酸、およびこれらの無水物、不飽和ジカルボン酸エステル(マレイン酸ブチル、マレイン酸ジブチル、イタコン酸ブチル等)が挙げられ、これら1種以上を用いることができる。このうち好ましいのは、無水マレイン酸である。 Examples of the unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid, citraconic acid, and anhydrides thereof, and unsaturated dicarboxylic acid esters (butyl maleate, dibutyl maleate, butyl itaconate, etc.) One or more of these can be used. Of these, maleic anhydride is preferred.
 前記不飽和カルボン酸で変性されたポリオレフィン樹脂(B)は、5~250の範囲の酸価を有するものであることが、熱や水(湿気)等の影響による樹脂硬化層の劣化を防止し、各種基材に対する密着性の低下を防止するうえで好ましい。 The polyolefin resin (B) modified with the unsaturated carboxylic acid has an acid value in the range of 5 to 250 to prevent deterioration of the cured resin layer due to the influence of heat, water (humidity) or the like. In order to prevent a decrease in adhesion to various substrates, it is preferable.
 前記ポリオレフィン樹脂の変性は、例えば、前記したようなポリオレフィン樹脂とマレイン酸等の不飽和ジカルボン酸等とを加熱等し反応させることによって行うことができる。 The modification of the polyolefin resin can be performed, for example, by reacting the polyolefin resin as described above with an unsaturated dicarboxylic acid such as maleic acid or the like.
 また、前記ポリオレフィン樹脂(B)としては、熱や水(湿気)等の影響による樹脂硬化層の劣化を防止し、各種基材に対する密着性の低下を防止するうえで20,000~500,000の重量平均分子量を有するものを使用することが好ましい。なお、前記重量平均分子量はゲル浸透クロマトグラフィー(GPC)を用いて測定された値を指す。 The polyolefin resin (B) is 20,000 to 500,000 in order to prevent the cured resin layer from being deteriorated by the influence of heat, water (humidity), etc., and to prevent the adhesion to various substrates from being lowered. It is preferable to use those having a weight average molecular weight of In addition, the said weight average molecular weight points out the value measured using gel permeation chromatography (GPC).
 次に、本発明で使用する架橋剤(C)について説明する。
 前記架橋剤(C)としては、メラミン化合物、エポキシ化合物、オキサゾリン化合物、カルボジイミド化合物及びイソシアネート化合物からなる群より選ばれる1種以上を含むものを使用することができる。
 なかでも、メラミン化合物、エポキシ化合物及びイソシアネート化合物からなる群より選ばれる1種以上を組み合わせ使用することが好ましく、メラミン化合物とエポキシ化合物とを組み合わせ使用することがより好ましい。
 前記メラミン化合物としては、特にアルキル化メチロールメラミン樹脂(c1)を使用することが好ましい。
 前記アルキル化メチロールメラミン樹脂(c1)は、自己架橋反応によって架橋構造を形成しうる。また、前記ウレタン樹脂(A)及び前記ポリオレフィン樹脂(B)の有する官能基[X]と、前記エポキシ化合物とが反応した際に水酸基等の官能基が生成された場合には、該水酸基と前記アルキル化メチロールメラミン樹脂(c1)とが反応し架橋構造を形成する。
Next, the crosslinking agent (C) used in the present invention will be described.
As said crosslinking agent (C), what contains 1 or more types chosen from the group which consists of a melamine compound, an epoxy compound, an oxazoline compound, a carbodiimide compound, and an isocyanate compound can be used.
Especially, it is preferable to use combining 1 or more types chosen from the group which consists of a melamine compound, an epoxy compound, and an isocyanate compound, and it is more preferable to use combining a melamine compound and an epoxy compound.
As the melamine compound, it is particularly preferable to use an alkylated methylol melamine resin (c1).
The alkylated methylol melamine resin (c1) can form a crosslinked structure by a self-crosslinking reaction. Further, when a functional group such as a hydroxyl group is produced when the functional group [X] of the urethane resin (A) and the polyolefin resin (B) reacts with the epoxy compound, The alkylated methylol melamine resin (c1) reacts to form a crosslinked structure.
 前記アルキル化メチロールメラミン樹脂(c1)としては、例えばメチロール化メラミン樹脂と、メチルアルコールやブチルアルコール等の低級アルコール(炭素原子数1~6のアルコール)とを反応して得られるものを使用することができる。具体的には、イミノ基含有アルキル化メチロールメラミン樹脂やアミノ基含有アルキル化メチロールメラミン樹脂等を使用することができる。 As the alkylated methylol melamine resin (c1), for example, a product obtained by reacting a methylolated melamine resin with a lower alcohol (an alcohol having 1 to 6 carbon atoms) such as methyl alcohol or butyl alcohol is used. Can do. Specifically, an imino group-containing alkylated methylol melamine resin, an amino group-containing alkylated methylol melamine resin, or the like can be used.
 前記メチロール化メラミン樹脂としては、例えばメラミンとホルムアルデヒドを縮合して得られるアミノ基含有メチロール型メラミン樹脂、イミノ基含有メチロール型メラミン樹脂、トリメトキシメチロール型メラミン樹脂、ヘキサメトキシメチロール型メラミン樹脂等を使用することができ、トリメトキシメチロール型メラミン樹脂、ヘキサメトキシメチロール型メラミン樹脂を使用することが好ましい。 As the methylolated melamine resin, for example, amino group-containing methylol-type melamine resin obtained by condensing melamine and formaldehyde, imino group-containing methylol-type melamine resin, trimethoxymethylol-type melamine resin, hexamethoxymethylol-type melamine resin, etc. are used. It is preferable to use a trimethoxymethylol type melamine resin or a hexamethoxymethylol type melamine resin.
 前記アルキル化メチロールメラミン樹脂(c1)は、前記ウレタン樹脂(A)及び前記ポリオレフィン樹脂(B)の合計質量に対して3質量%~50質量%の範囲で使用することが好ましく、3質量%~30質量%の範囲で使用することがより好ましい。これにより、熱や水(湿気)等の影響によらず前記ヒートシール層の劣化や密着力の低下を引き起こすことのない優れた耐湿熱性と、各種基材に対する優れた密着性とを両立することが可能となる。 The alkylated methylol melamine resin (c1) is preferably used in the range of 3% by mass to 50% by mass with respect to the total mass of the urethane resin (A) and the polyolefin resin (B). It is more preferable to use in the range of 30% by mass. This makes it possible to achieve both excellent heat and moisture resistance that does not cause deterioration of the heat-seal layer and decrease in adhesive strength regardless of heat, water (humidity), etc., and excellent adhesion to various substrates. Is possible.
 また、前記架橋剤(C)に使用可能なエポキシ化合物は、前記ウレタン樹脂(A)及び前記ポリオレフィン樹脂(B)のいずれか一方または両方が有する官能基[X]と反応し架橋構造を形成し、その結果、優れた耐湿熱性と、各種基材に対する優れた密着性とを付与するうえで使用することができる。
 本発明では、前記架橋剤(C)として記アルキル化メチロールメラミン樹脂(c1)と前記エポキシ化合物とを組み合わせ使用することが、優れた耐湿熱性と各種基材に対する優れた密着性とを両立するうえで特に好ましい。
Moreover, the epoxy compound which can be used for the said crosslinking agent (C) reacts with the functional group [X] which any one or both of the said urethane resin (A) and the said polyolefin resin (B) form, and forms a crosslinked structure. As a result, it can be used for imparting excellent moisture and heat resistance and excellent adhesion to various substrates.
In the present invention, the combination use of the alkylated methylolmelamine resin (c1) and the epoxy compound as the crosslinking agent (C) achieves both excellent heat and heat resistance and excellent adhesion to various substrates. Is particularly preferable.
 また、前記架橋剤(C)としてエポキシ化合物を使用する場合にには、ウレタン樹脂(A)及び前記ポリオレフィン樹脂(B)は、前記エポキシ化合物が有するエポキシ基や加水分解性シリル基等の官能基と反応しうる官能基[X]を有するものを使用する。前記エポキシ化合物が有する官能基は、具体的にはエポキシ基や、アルコキシシリル基またはシラノール基等の加水分解性シリル基である。 Moreover, when using an epoxy compound as said crosslinking agent (C), urethane resin (A) and said polyolefin resin (B) are functional groups, such as an epoxy group and a hydrolyzable silyl group, which said epoxy compound has. Those having a functional group [X] capable of reacting with. The functional group possessed by the epoxy compound is specifically an epoxy group, a hydrolyzable silyl group such as an alkoxysilyl group or a silanol group.
 前記エポキシ化合物としては、エポキシ基を好ましくは2~5個、より好ましくは3~4個有するものを使用することができる。 As the epoxy compound, those having 2 to 5 epoxy groups, more preferably 3 to 4 epoxy groups can be used.
 前記エポキシ化合物としては、例えばビスフェノールAエピクロルヒドリン型のエポキシ樹脂、エチレングリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、1,6-ヘキサンジオールグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリシジルアニリン、ジアミングリシジルアミン、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N’-ジアミングリシジルアミノメチル)シクロヘキサン等を使用することができる。 Examples of the epoxy compound include bisphenol A epichlorohydrin type epoxy resin, ethylene glycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, 1,6-hexanediol glycidyl ether, trimethylolpropane triglycidyl ether. Diglycidyl aniline, diamine glycidyl amine, N, N, N ′, N′-tetraglycidyl-m-xylylenediamine, 1,3-bis (N, N′-diamine glycidylaminomethyl) cyclohexane, etc. Can do.
 なかでも、前記エポキシ化合物としては、エポキシ当量が100~300であることが耐久性を付与するうえで好ましく、具体的にはトリメチロールプロパンポリグリシジルエーテル、または、グリセリントリグリシジルエーテルの1種または2種以上を使用することがより好ましく、トリメチロールプロパントリグリシジルエーテル、または、グリセリントリグリシジルエーテルを使用することがさらに好ましい。 Among them, the epoxy compound preferably has an epoxy equivalent of 100 to 300 for imparting durability. Specifically, one or two of trimethylolpropane polyglycidyl ether or glycerin triglycidyl ether is used. It is more preferable to use more than one species, and it is more preferable to use trimethylolpropane triglycidyl ether or glycerin triglycidyl ether.
 また、前記エポキシ化合物としては、加水分解性シリル基を有するエポキシ化合物を使用することもできる。 Further, as the epoxy compound, an epoxy compound having a hydrolyzable silyl group can also be used.
 前記加水分解性シリル基を有するエポキシ化合物としては、例えば3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等を使用することができる。 Examples of the epoxy compound having a hydrolyzable silyl group include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxy. Propylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, and the like can be used.
 また、前記架橋剤(C)としては、前記エポキシ化合物を、前記ウレタン樹脂(A)及び前記ポリオレフィン樹脂(B)が有する前記官能基[X]の合計物質量(モル数)に対する、前記エポキシ化合物の有するエポキシ基の物質量(モル数)の割合〔エポキシ基の物質量(モル数)/官能基[X]の合計物質量(モル数)〕が5/1~1/5となる範囲で使用することが好ましい。これにより、加熱等によって、より一層、硬化する際に強固な架橋密度を形成したヒートシール層を形成できるため、熱や水(湿気)等の影響によらず前記ヒートシール層の劣化や密着力の低下を引き起こすことのない、優れた耐湿熱性と、各種基材に対する優れた密着性とを両立することが可能となる。 Moreover, as said crosslinking agent (C), the said epoxy compound is the said epoxy compound with respect to the total amount (mole number) of the said functional group [X] which the said urethane resin (A) and the said polyolefin resin (B) have. The ratio of the amount of epoxy group substance (number of moles) of [the amount of epoxy group substance (number of moles) / total amount of functional group [X] (number of moles)] is in the range of 5/1 to 1/5. It is preferable to use it. This makes it possible to form a heat-seal layer that has a stronger crosslink density when cured by heating or the like, so that deterioration and adhesion of the heat-seal layer are not affected by heat or water (humidity). It is possible to achieve both excellent heat and moisture resistance without causing deterioration of the film and excellent adhesion to various substrates.
 前記使用割合〔エポキシ基の物質量/官能基[X]の合計物質量〕は、好ましくは2/1~1/5の範囲であることが、より一層優れた耐湿熱性と各種基材に対する優れた密着性とを両立するうえで好ましい。 The use ratio [the amount of the epoxy group substance / the total amount of the functional group [X]] is preferably in the range of 2/1 to 1/5. It is preferable in order to achieve both good adhesion.
 また、前記アルキル化メチロールメラミン樹脂(c1)と前記エポキシ化合物とは、より一層優れた耐湿熱性と各種基材に対する優れた密着性とを両立するうえで、質量割合〔前記アルキル化メチロールメラミン樹脂(c1)/前記エポキシ化合物〕=7/1~1/4の範囲で使用することが好ましく、5/1~1/4の範囲で使用することがより好ましい。
 また、前記架橋剤(C)としては、前記したもののほかに、例えば2,2’-ビス-(2-オキサゾリン)、2,2’-メチレン-ビス-(2-オキサゾリン)、2,2’-エチレン-ビス-(2-オキサゾリン)、2,2’-トリメチレン-ビス-(2-オキサゾリン)、2,2’-テトラメチレン-ビス-(2-オキサゾリン)、2,2’-ヘキサメチレン-ビス-(2-オキサゾリン)、2,2’-オクタメチレン-ビス-(2-オキサゾリン)、2,2’-エチレン-ビス-(4,4’-ジメチル-2-オキサゾリン)、2,2’-p-フェニレン-ビス-(2-オキサゾリン)、2,2’-m-フェニレン-ビス-(2-オキサゾリン)、2,2’-m-フェニレン-ビス-(4,4’-ジメチル-2-オキサゾリン)、ビス-(2-オキサゾリニルシクロヘキサン)スルフィド、ビス-(2-オキサゾリニルノルボルナン)スルフィド、市販品としてはエポクロスWS-500、WS-700(日本触媒株式会社)等のオキサゾリン化合物、ポリ[フェニレンビス(ジメチルメチレン)カルボジイミド]やポリ(メチル-1,3-フェニレンカルボジイミド)、市販品では、例えばカルボジライトV-02、V-04、E-01,E-02など(日清紡(株)製)、UCARLINK XL-29SE、XL-29MP(ユニオンカーバイド(株)製)等のカルボジイミド化合物、トリレンジイソシアネート、クロルフェニレンジイソシアネート、ヘキサメチレンジイソシアネート、テトラメチレンジイソシアネート、イソホロンジイソシアネート、ジフェニルメタンジイソシアネート、水添されたジフェニルメタンジイソシアネートなどのイソシアネートモノマーや、それらをトリメチロールプロパンなどの2価以上のアルコール化合物等に付加反応させたもの等の各種イソシアネート化合物を使用することもできる。
 前記架橋剤(C)は、前記ウレタン樹脂(A)及びポリオレフィン樹脂(B)の合計質量に対して、1質量%~50質量%の範囲で使用することが好ましく、3質量%~30質量%の範囲で使用することがより好ましく、3質量%~30質量%の範囲で使用することがさらに好ましい。
The alkylated methylol melamine resin (c1) and the epoxy compound have a mass ratio [the alkylated methylol melamine resin ( c1) / epoxy compound] = 7/1 to ¼, preferably 5/1 to ¼.
Examples of the crosslinking agent (C) include those other than those described above, for example, 2,2′-bis- (2-oxazoline), 2,2′-methylene-bis- (2-oxazoline), 2,2 ′. -Ethylene-bis- (2-oxazoline), 2,2'-trimethylene-bis- (2-oxazoline), 2,2'-tetramethylene-bis- (2-oxazoline), 2,2'-hexamethylene- Bis- (2-oxazoline), 2,2′-octamethylene-bis- (2-oxazoline), 2,2′-ethylene-bis- (4,4′-dimethyl-2-oxazoline), 2,2 ′ -P-phenylene-bis- (2-oxazoline), 2,2'-m-phenylene-bis- (2-oxazoline), 2,2'-m-phenylene-bis- (4,4'-dimethyl-2) -Oxazoline), bis- (2-oxazolinyl) Cyclohexane) sulfide, bis- (2-oxazolinyl norbornane) sulfide, commercially available products include oxazoline compounds such as Epocross WS-500, WS-700 (Nippon Shokubai Co., Ltd.), poly [phenylenebis (dimethylmethylene) carbodiimide], Poly (methyl-1,3-phenylenecarbodiimide), commercially available products such as Carbodilite V-02, V-04, E-01, E-02 (manufactured by Nisshinbo Co., Ltd.), UCALINK XL-29SE, XL-29MP Carbodiimide compounds such as (Union Carbide Co., Ltd.), tolylene diisocyanate, chlorophenylene diisocyanate, hexamethylene diisocyanate, tetramethylene diisocyanate, isophorone diisocyanate, diphenylmethane diisocyanate, hydrogenated And isocyanate monomers such as diphenyl methane diisocyanate, they can also be used various isocyanate compounds such as those obtained by addition reaction dihydric or higher alcohol compounds such as trimethylol propane.
The crosslinking agent (C) is preferably used in the range of 1% by mass to 50% by mass with respect to the total mass of the urethane resin (A) and the polyolefin resin (B). More preferably, it is used in the range of 3% by mass to 30% by mass.
 次に、本発明で使用する1級アミノ基またはヒドラジド基を有する分子量20~3,000の化合物(D)について説明する。
 本発明のヒートシール剤に使用する1級アミノ基またはヒドラジド基を有する分子量20~3,000の化合物(D)は、各種基材に対して優れた密着性を付与するうえで使用する。
 前記1級アミノ基またはヒドラジド基を有する分子量20~3,000の化合物(D)は、前記ウレタン樹脂(A)や前記ポリオレフィン樹脂(B)等とブレンドされた状態で水性媒体(E)に分散または溶解されていることが好ましい。また、前記化合物(D)が、前記1級アミノ基またはヒドラジド基を有する化合物(a3)として作用し、その一部が、ウレタン樹脂(A)のイソシアネート基の一部と反応していてもよい。
 前記化合物(D)としては、分子量が3,000以下である比較的低分子量のものを使用することが好ましく、20~1,000のものを使用することが、架橋密度を高め、より一層耐久性を向上するうえでより好ましい。なお、前記化合物(D)の分子量は、それを構成する原子の原子量の総和に基づく値である。
 前記化合物(D)としては、例えばヒドラジンや、ジカルボン酸ジヒドラジド、カルボヒドラジド、1,3-ビス(ヒドラジノカルボノエチル)-5-イソプロピルヒダントイン、エタノールアミン等を使用することができ、ヒドラジンまたはジカルボン酸ジヒドラジドまたはカルボヒドラジドを使用することが好ましく、ジカルボン酸ジヒドラジドを使用することが、耐湿熱性をより一層向上するうえでより好ましい。
 前記ジカルボン酸ジヒドラジドとしては、例えばマロン酸ジヒドラジド、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、グルタル酸ジヒドラジド、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド;β-セミカルバジドプロピオン酸ヒドラジド等の1種または2種以上を組み合わせ使用することができる。なかでもアジピン酸ジヒドラジドを使用することが、優れた密着性を付与するうえで好ましい。
 前記1級アミノ基またはヒドラジド基を有する化合物(D)は、各種基材に対して優れた密着性を付与する観点から、ウレタン樹脂(A)100質量部に対して0.1質量%~20質量%の範囲で使用することが好ましい。
Next, the compound (D) having a primary amino group or hydrazide group and having a molecular weight of 20 to 3,000 used in the present invention will be described.
The compound (D) having a primary amino group or hydrazide group and having a molecular weight of 20 to 3,000 used in the heat sealant of the present invention is used for imparting excellent adhesion to various substrates.
The compound (D) having a primary amino group or hydrazide group and having a molecular weight of 20 to 3,000 is dispersed in an aqueous medium (E) in a state of being blended with the urethane resin (A), the polyolefin resin (B), or the like. Alternatively, it is preferably dissolved. The compound (D) may act as the compound (a3) having the primary amino group or hydrazide group, and a part of the compound (D) may react with a part of the isocyanate group of the urethane resin (A). .
As the compound (D), it is preferable to use a compound having a relatively low molecular weight of 3,000 or less, and using a compound having a molecular weight of 20 to 1,000 increases the crosslinking density and makes it more durable. It is more preferable in improving the property. In addition, the molecular weight of the said compound (D) is a value based on the sum total of the atomic weight of the atom which comprises it.
Examples of the compound (D) include hydrazine, dicarboxylic acid dihydrazide, carbohydrazide, 1,3-bis (hydrazinocarbonoethyl) -5-isopropylhydantoin, ethanolamine, and the like. Hydrazine or dicarboxylic acid can be used. It is preferable to use acid dihydrazide or carbohydrazide, and it is more preferable to use dicarboxylic acid dihydrazide in order to further improve the heat and humidity resistance.
As the dicarboxylic acid dihydrazide, for example, one or two or more of malonic acid dihydrazide, succinic acid dihydrazide, adipic acid dihydrazide, glutaric acid dihydrazide, sebacic acid dihydrazide, isophthalic acid dihydrazide; β-semicarbazide propionic acid hydrazide are used. be able to. Among them, it is preferable to use adipic acid dihydrazide for imparting excellent adhesion.
The compound (D) having the primary amino group or hydrazide group is 0.1% by mass to 20% with respect to 100 parts by mass of the urethane resin (A) from the viewpoint of imparting excellent adhesion to various substrates. It is preferable to use in the range of mass%.
 次に、本発明で使用する水性媒体(E)について説明する。
 本発明で使用する水性媒体(E)として、例えば、水、水と混和する有機溶剤、及び、これらの混合物が挙げられる。水と混和する有機溶剤としては、例えば、メタノール、エタノール、n-及びイソプロパノール等のアルコール;アセトン、メチルエチルケトン等のケトン;エチレングリコール、ジエチレングリコール、プロピレングリコール等のポリアルキレングリコール;ポリアルキレングリコールのアルキルエーテル;N-メチル-2-ピロリドン等のラクタム等が挙げられる。本発明では、水のみを用いても良く、また水及び水と混和する有機溶剤との混合物を用いても良く、水と混和する有機溶剤のみを用いても良い。安全性や環境に対する負荷の点から、水のみ、又は、水及び水と混和する有機溶剤との混合物が好ましく、水のみが特に好ましい。
Next, the aqueous medium (E) used in the present invention will be described.
Examples of the aqueous medium (E) used in the present invention include water, an organic solvent miscible with water, and a mixture thereof. Examples of the organic solvent miscible with water include alcohols such as methanol, ethanol, n- and isopropanol; ketones such as acetone and methyl ethyl ketone; polyalkylene glycols such as ethylene glycol, diethylene glycol and propylene glycol; alkyl ethers of polyalkylene glycol; And lactams such as N-methyl-2-pyrrolidone. In the present invention, only water may be used, a mixture of water and an organic solvent miscible with water may be used, or only an organic solvent miscible with water may be used. From the viewpoint of safety and load on the environment, water alone or a mixture of water and an organic solvent miscible with water is preferable, and only water is particularly preferable.
 前記水性媒体(E)は、本発明のヒートシール剤の全量に対して、10質量%~80質量%の範囲で含まれることが、本発明のヒートシール剤の塗工作業性等の向上と、密着性や耐湿熱性とを両立するうえで好ましい。 The aqueous medium (E) is contained in the range of 10% by mass to 80% by mass with respect to the total amount of the heat sealant of the present invention, which improves the workability of the heat sealant of the present invention. , It is preferable for achieving both adhesion and heat-and-moisture resistance.
 本発明のヒートシール剤は、例えば前記方法で得られたウレタン樹脂(A)の水分散体と、前記ポリオレフィン樹脂(B)の水分散体と、前記架橋剤(C)とを、一括または分割して供給し、混合することによって製造することができる。前記架橋剤(C)は、前記アルキル化メチロールメラミン樹脂(c1)や前記エポキシ化合物が予め混合されていてもよく、それらを別々に、ウレタン樹脂(A)の水分散体や前記ポリオレフィン樹脂(B)の水分散体と混合しても良い。 The heat sealing agent of the present invention is, for example, an aqueous dispersion of the urethane resin (A) obtained by the above method, an aqueous dispersion of the polyolefin resin (B), and the crosslinking agent (C), all at once or divided. Can be supplied and mixed. In the crosslinking agent (C), the alkylated methylol melamine resin (c1) and the epoxy compound may be mixed in advance, and these are separately separated into an aqueous dispersion of the urethane resin (A) or the polyolefin resin (B )) Or an aqueous dispersion.
 前記方法で得られた本発明のヒートシール剤は、前記した成分のほかに、必要に応じてその他の添加剤等を含有していても良い。 The heat sealing agent of the present invention obtained by the above method may contain other additives as required in addition to the above-described components.
 前記添加剤としては、例えば酸化防止剤、耐光剤、可塑剤、造膜助剤、レベリング剤、発泡剤、増粘剤、着色剤、難燃剤、他の水性樹脂、各種フィラー等を、本発明の効果を損なわない範囲で使用することができる。 Examples of the additive include an antioxidant, a light-resistant agent, a plasticizer, a film-forming aid, a leveling agent, a foaming agent, a thickener, a colorant, a flame retardant, other aqueous resins, and various fillers. It can be used within a range that does not impair the effect.
 また、前記添加剤としては、本発明のヒートシール剤の分散安定性をより一層向上する観点から、例えば界面活性剤を使用することができる。しかし、界面活性剤は、得られる被膜の密着性や耐水性を低下する場合があることから、ウレタン樹脂(A)及びポリオレフィン樹脂(B)の合計100質量部に対して、20質量部以下の範囲で使用することが好ましく、できるだけ使用しないことが好ましい。 Further, as the additive, for example, a surfactant can be used from the viewpoint of further improving the dispersion stability of the heat sealant of the present invention. However, since the surfactant may reduce the adhesion and water resistance of the resulting coating, it is 20 parts by mass or less with respect to 100 parts by mass in total of the urethane resin (A) and the polyolefin resin (B). It is preferable to use within a range, and it is preferable not to use as much as possible.
 本発明のヒートシール剤は、基材に対する優れた密着性と耐湿熱性に優れたヒートシール層を形成できる。とりわけ、本発明のヒートシール剤は、極性基材(I)と非極性基材(II)のいずれに対しても優れた密着力を有することから、極性基材(I)と非極性基材(II)との接着用のヒートシール剤に好適に使用することができる。具体的には、太陽電池を構成する受光面に対して反対側(面)を構成しうる、エチレン-酢酸ビニル共重合体やポリフッ化ビニリデン樹脂、ポリフッ化ビニル樹脂、エチレン-ビニルアルコール共重合体、ポリプロピレン樹脂、ポリビニルブチラール、ガラス等によって構成される非極性基材と、ポリエチレンテレフタレートやポリプロピレン等からなるバックシート層(極性基材)との接着用のヒートシール剤として好適に使用することができる。 The heat sealant of the present invention can form a heat seal layer having excellent adhesion to a substrate and excellent heat and moisture resistance. In particular, the heat sealing agent of the present invention has excellent adhesion to both the polar substrate (I) and the nonpolar substrate (II), so the polar substrate (I) and the nonpolar substrate It can be suitably used for a heat sealant for bonding with (II). Specifically, an ethylene-vinyl acetate copolymer, a polyvinylidene fluoride resin, a polyvinyl fluoride resin, an ethylene-vinyl alcohol copolymer that can constitute the opposite side (surface) to the light receiving surface constituting the solar cell. , A non-polar base material composed of polypropylene resin, polyvinyl butyral, glass or the like and a heat sealant for adhesion between a backsheet layer (polar base material) made of polyethylene terephthalate, polypropylene, or the like. .
 前記ヒートシール層を形成可能な基材としては、例えば各種プラスチックやそのフィルム、金属、ガラス、紙、木材等が挙げられる。具体的には、極性基材としてはポリエチレンテレフタレート基材等が挙げられる。また、非極性基材としては、例えばエチレン-酢酸ビニル共重合体やポリフッ化ビニリデン樹脂、ポリフッ化ビニル樹脂、エチレン-ビニルアルコール共重合体、ポリプロピレン樹脂、ポリビニルブチラール、ガラス等から構成される基材が挙げられる。
 前記基材の表面には、予め表面処理が施されていてもよく、具体的にはコロナ処理の施されていることが好ましい。コロナ処理によって、前記基材の表面にカルボニル基等の反応性基が形成された場合、本発明のヒートシール剤に含まれる前記ウレタン樹脂(A)のウレア結合と結合を形成し、その結果、密着性をより一層向上できるものと推測される。
As a base material which can form the said heat seal layer, various plastics and its film, a metal, glass, paper, wood, etc. are mentioned, for example. Specifically, a polyethylene terephthalate base material etc. are mentioned as a polar base material. Nonpolar substrates include, for example, substrates composed of ethylene-vinyl acetate copolymer, polyvinylidene fluoride resin, polyvinyl fluoride resin, ethylene-vinyl alcohol copolymer, polypropylene resin, polyvinyl butyral, glass, etc. Is mentioned.
The surface of the substrate may be subjected to surface treatment in advance, and specifically, corona treatment is preferably performed. When a reactive group such as a carbonyl group is formed on the surface of the substrate by corona treatment, it forms a bond with the urea bond of the urethane resin (A) contained in the heat sealant of the present invention. It is presumed that the adhesion can be further improved.
 また、本発明のヒートシール剤は、一方の基材表面に塗布し乾燥することによってある程度架橋し形成した樹脂層表面に、他の基材を載置し、加熱することによって、前記架橋反応によって生成した水酸基と、前記エポキシ化合物の有する加水分解性シリル基とが反応し、両基材を貼り合わる際に使用することができる。前記一方の基材表面に塗布し乾燥することによって形成された樹脂層の表面は、前記加熱をする前であればほとんどタック感がないため、一方の基材表面に予め前記樹脂層が設けられた部材を、積層した状態で保管等することも可能である。 In addition, the heat sealing agent of the present invention can be applied to the surface of one substrate and dried by placing the other substrate on the surface of the resin layer that has been crosslinked to some extent and then heating, thereby causing the crosslinking reaction. It can be used when the generated hydroxyl group reacts with the hydrolyzable silyl group of the epoxy compound and the two substrates are bonded together. Since the surface of the resin layer formed by applying and drying on the surface of one of the substrates has almost no tackiness before the heating, the resin layer is previously provided on the surface of one of the substrates. It is also possible to store the stacked members in a stacked state.
 一方で、前記基材表面に予め前記ヒートシール層表面に他方の基材を載置し、加熱すると、該ヒートシール層の溶融と架橋反応とが進行し、両基材を強固に接着することが可能である。また、前記架橋反応後に形成されるヒートシール層は、耐湿熱性にも優れるため、熱や水(湿気)等の影響による該ヒートシール層の劣化を防止することが可能である。 On the other hand, when the other base material is placed on the heat seal layer surface in advance on the base material surface and heated, melting and crosslinking reaction of the heat seal layer proceeds, and both base materials are firmly bonded. Is possible. In addition, since the heat seal layer formed after the crosslinking reaction is also excellent in heat and moisture resistance, it is possible to prevent the heat seal layer from being deteriorated due to the influence of heat, water (humidity) or the like.
 本発明のヒートシール剤を、基材表面に塗工する方法としては、例えばスプレー法、カーテンコーター法、フローコーター法、ロールコーター法、刷毛塗り法、浸漬法等が挙げられる。 Examples of the method for applying the heat sealant of the present invention to the substrate surface include a spray method, a curtain coater method, a flow coater method, a roll coater method, a brush coating method, and a dipping method.
 特に、ポリエチレンテレフタレートフィルム等のプラスチックフィルム表面に前記ヒートシール剤等を塗布する場合には、プラスチック基材を約200℃程度の条件下で二軸延伸する工程の途中で、そのフィルム表面に前記ヒートシール剤を塗布及び乾燥し、架橋反応させることによってヒートシール層を形成し、次いで、該フィルムを横方向に延伸する、インラインコーティング法を採用することができる。 In particular, when the heat sealant or the like is applied to the surface of a plastic film such as a polyethylene terephthalate film, the heat is applied to the film surface in the course of biaxial stretching of the plastic substrate at about 200 ° C. An in-line coating method can be employed in which a heat seal layer is formed by applying and drying a sealant, causing a crosslinking reaction, and then stretching the film in the transverse direction.
 また、ポリエチレンテレフタレートフィルム等のプラスチックフィルム表面に前記ヒートシール剤等を塗布する場合には、前記二軸延伸することによって得られたプラスチックフィルムを、一度、ロール等に巻き取り、次いで、該ロールからプラスチックフィルムを引きだし、その表面に前記ヒートシール剤等を塗布する、オフラインコーティング法を採用することができる。 In addition, when the heat sealant or the like is applied to the surface of a plastic film such as a polyethylene terephthalate film, the plastic film obtained by the biaxial stretching is once wound around a roll or the like, and then from the roll. An off-line coating method in which a plastic film is drawn and the heat sealant or the like is applied to the surface can be employed.
 前記オフラインコーティング法によって、前記プラスチックフィルム表面に前記ヒートシール剤等を塗布する場合には、前記プラスチックフィルムの寸法安定性を損なわないよう、概ね150℃以下の温度で乾燥等を行うことが好ましい。 When applying the heat sealant or the like to the surface of the plastic film by the off-line coating method, it is preferable to perform drying at a temperature of approximately 150 ° C. or lower so as not to impair the dimensional stability of the plastic film.
 以上の方法によって、基材表面に前記ヒートシール剤が架橋し硬化して形成されたヒートシール層を形成することができる。 By the above method, a heat seal layer formed by crosslinking and curing of the heat sealant on the substrate surface can be formed.
 また、一方の基材表面に、本発明のヒートシール剤を、前記したように塗布し、該基材表面に前記ヒートシール剤が架橋し硬化して形成されたヒートシール層を設けた場合、該ヒートシール層の表面に、他の基材を載置し、次いで、減圧または加圧した状態で概ね100℃~160℃に加熱することによって、それらの貼り合わせられた積層体を得ることができる。 In addition, when the heat sealing agent of the present invention is applied to one substrate surface as described above, and the heat sealing layer formed by crosslinking and curing the heat sealing agent on the substrate surface is provided, By placing another base material on the surface of the heat seal layer and then heating to approximately 100 ° C. to 160 ° C. in a reduced pressure or pressurized state, a laminated body thereof can be obtained. it can.
 前記積層体は、耐湿熱性にも優れることから、例えば太陽電池モジュール(太陽光発電装置)の製造場面や、自動車内装材の固定をはじめとする様々な用途に使用することが可能である。特に、太陽電池を構成する受光面に対して反対側(面)を構成する、エチレン-酢酸ビニル共重合体やポリフッ化ビニリデン樹脂、ポリフッ化ビニル樹脂、エチレン-ビニルアルコール共重合体、ポリプロピレン樹脂、ポリビニルブチラール、ガラス等からなる非極性基材と、ポリエチレンテレフタレートまたはポリプロピレン等からなるバックシート層(非極性基材)との接着に、好適に使用することが可能である。 Since the laminate is excellent in heat and humidity resistance, it can be used for various purposes including, for example, the production of solar cell modules (solar power generation devices) and the fixing of automobile interior materials. In particular, ethylene-vinyl acetate copolymer, polyvinylidene fluoride resin, polyvinyl fluoride resin, ethylene-vinyl alcohol copolymer, polypropylene resin, which constitutes the opposite side (surface) to the light-receiving surface constituting the solar cell, It can be suitably used for adhesion between a nonpolar substrate made of polyvinyl butyral, glass or the like and a backsheet layer (nonpolar substrate) made of polyethylene terephthalate or polypropylene or the like.
 前記太陽電池モジュールは、一般に、太陽電池を構成する受光面に対して反対側の面を構成するエチレン-酢酸ビニル共重合体等からなる基材表面上に、その劣化等を防止することを目的として、ポリエチレンテレフタレートやポリプロピレン等からなるバックシート層が設けられていることが多い。それらは、例えば太陽電池を構成する受光面に対して反対側の面を構成する前記エチレン-酢酸ビニル共重合体からなる基材表面上に、本発明のヒートシール剤が硬化して形成されるヒートシール層を設け、次いで、前記ヒートシール層上に、ポリエチレンテレフタレートまたはポリプロピレン等からなるバックシート層を積層することによって製造することができる。 The solar cell module is generally intended to prevent deterioration on the surface of a base material made of an ethylene-vinyl acetate copolymer or the like constituting the surface opposite to the light receiving surface constituting the solar cell. In many cases, a back sheet layer made of polyethylene terephthalate or polypropylene is provided. They are formed, for example, by curing the heat-sealing agent of the present invention on the substrate surface made of the ethylene-vinyl acetate copolymer constituting the surface opposite to the light receiving surface constituting the solar cell. It can be produced by providing a heat seal layer and then laminating a back sheet layer made of polyethylene terephthalate or polypropylene on the heat seal layer.
 より具体的には、前記バックシート層を形成しうるポリエチレンテレフタレートまたはポリプロピレン等からなるシート表面に、前記ヒートシール剤が硬化して形成されるヒートシール層を備えた積層シートを準備し、太陽電池を構成する受光面に対して反対側の、エチレン-酢酸ビニル共重合体からなる基材表面上に、前記積層シートのヒートシール層と前記エチレン-酢酸ビニル共重合体からなる基材表面が接触するように載置し、加熱することによってそれらを積層することができる。 More specifically, a laminated sheet having a heat seal layer formed by curing the heat seal agent on a sheet surface made of polyethylene terephthalate or polypropylene or the like that can form the back sheet layer is prepared, and a solar cell. The heat seal layer of the laminated sheet and the substrate surface made of the ethylene-vinyl acetate copolymer are in contact with the substrate surface made of the ethylene-vinyl acetate copolymer on the opposite side to the light receiving surface constituting They can be stacked and stacked by heating.
 このような方法で得られた太陽電池モジュールは、長期間、屋外で使用した場合であっても、耐湿熱性等に耐久性に優れる。 The solar cell module obtained by such a method is excellent in durability such as moisture and heat resistance even when used outdoors for a long period of time.
 以下、本発明を実施例及び比較例により具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples.
 [調製例1]
 撹拌機、還流冷却管、温度計及び窒素吹き込み管を備えた4ツ口フラスコに、窒素気流下、ポリオキシテトラメチレングリコール(重量平均分子量:2,000)1000質量部、2.2’-ジメチロールプロピオン酸79.4質量部、酢酸エチル884.3質量部を加え、均一に混合した後、トリレンジイソシアネート247.2質量部を加え、次いでジブチル錫ジラウレート0.1質量部を加え、80℃で約4時間反応させることによって、分子末端にイソシアネート基を有するウレタンプレポリマー(前記ウレタンプレポリマーに対するイソシアネート基の質量割合(イソシアネート基含有量);2.1質量%)の酢酸エチル溶液を得た。
 次いで、前記方法で得られたウレタンプレポリマーの酢酸エチル溶液を40℃まで冷却し、トリエチルアミン65.9質量部を加え、前記ウレタンプレポリマー中のカルボキシル基を中和した後、イオン交換水2849.1質量部を加え、次いで、80質量%水加ヒドラジン(ヒドラジンの一水和物、全体に対して80質量%がヒドラジン)24.6質量部を加え反応させた。
 反応終了後、酢酸エチルを減圧下留去し、その不揮発分が35質量%となるようイオン交換水を加えることによって組成物(I)を得た。
[Preparation Example 1]
In a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube, 1000 parts by mass of polyoxytetramethylene glycol (weight average molecular weight: 2,000), 2.2'-diethyl under a nitrogen stream. After adding 79.4 parts by mass of methylolpropionic acid and 884.3 parts by mass of ethyl acetate and mixing uniformly, add 247.2 parts by mass of tolylene diisocyanate, then add 0.1 parts by mass of dibutyltin dilaurate, and add 80 ° C. For about 4 hours to obtain an ethyl acetate solution of a urethane prepolymer having an isocyanate group at the molecular terminal (mass ratio of isocyanate group to the urethane prepolymer (isocyanate group content); 2.1% by mass). .
Next, the ethyl acetate solution of the urethane prepolymer obtained by the above method was cooled to 40 ° C., 65.9 parts by mass of triethylamine was added to neutralize the carboxyl group in the urethane prepolymer, and then ion-exchanged water 2849. Next, 1 part by mass was added, and then 24.6 parts by mass of 80% by mass hydrated hydrazine (hydrazine monohydrate, 80% by mass hydrazine based on the total) was added and reacted.
After completion of the reaction, ethyl acetate was distilled off under reduced pressure, and ion-exchanged water was added so that the non-volatile content was 35% by mass to obtain composition (I).
 [調製例2]
 撹拌機、還流冷却管、温度計及び窒素吹き込み管を備えた4ツ口フラスコに、窒素気流下、ポリオキシテトラメチレングリコール(重量平均分子量:2,000)1000質量部、2.2’-ジメチロールプロピオン酸79.4質量部、酢酸エチル668.2質量部を加え、均一に混合した後、トリレンジイソシアネート247.2質量部を加え、次いでジブチル錫ジラウレート0.1質量部を加え、80℃で約4時間反応させることによって、分子末端にイソシアネート基を有するウレタンプレポリマー(イソシアネート基含有量;2.1質量%)の酢酸エチル溶液を得た。
 次いで、前記方法で得られたウレタンプレポリマーの酢酸エチル溶液を40℃まで冷却し、トリエチルアミン65.4質量部を加え、前記ウレタンプレポリマー中のカルボキシル基を中和した後、イオン交換水3174.1質量部を加え、次いで、アジピン酸ジヒドラジド136.9質量部を加え反応させた。
 反応終了後、酢酸エチルを減圧下留去し、その不揮発分が35質量%となるようイオン交換水を加えることによって組成物(II)を得た。
[Preparation Example 2]
In a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube, 1000 parts by mass of polyoxytetramethylene glycol (weight average molecular weight: 2,000), 2.2'-diethyl under a nitrogen stream. After adding 79.4 parts by mass of methylolpropionic acid and 668.2 parts by mass of ethyl acetate and mixing uniformly, 247.2 parts by mass of tolylene diisocyanate was added, then 0.1 part by mass of dibutyltin dilaurate was added, and Was allowed to react for about 4 hours to obtain an ethyl acetate solution of a urethane prepolymer having an isocyanate group at the molecular end (isocyanate group content; 2.1% by mass).
Then, the ethyl acetate solution of the urethane prepolymer obtained by the above method was cooled to 40 ° C., 65.4 parts by mass of triethylamine was added to neutralize the carboxyl group in the urethane prepolymer, and then ion-exchanged water 3174. 1 part by mass was added, and then 136.9 parts by mass of adipic acid dihydrazide was added and reacted.
After completion of the reaction, ethyl acetate was distilled off under reduced pressure, and ion-exchanged water was added so that the nonvolatile content was 35% by mass, thereby obtaining a composition (II).
 [調製例3]
 温度計、窒素ガス導入管、攪拌機を備えた反応器中で窒素ガスを導入しながら、ポレスターVS-1236(星光PMC株式会社製、無水マレイン酸変性ポリオレフィンの水分散体、重量平均分子量70000)を1000質量部入れ、80℃で3時間攪拌し溶融させ、次いで50℃まで冷却し、トリエチルアミン180質量部加えて中和した後、水2153質量部を加えて水溶化することにより、不揮発分30質量%の組成物(III)を得た。
[Preparation Example 3]
While introducing a nitrogen gas into a reactor equipped with a thermometer, a nitrogen gas introduction tube, and a stirrer, Poresta VS-1236 (manufactured by Seiko PMC, aqueous dispersion of maleic anhydride-modified polyolefin, weight average molecular weight 70000) 1000 parts by mass, stirred at 80 ° C. for 3 hours to melt, then cooled to 50 ° C., neutralized by adding 180 parts by mass of triethylamine, and then water-solubilized by adding 2153 parts by mass of water, so that the nonvolatile content is 30 parts by mass. % Composition (III) was obtained.
 [調製例4]
 撹拌機、還流冷却管、温度計及び窒素吹き込み管を備えた4ツ口フラスコに、窒素気流下、ポリオキシテトラメチレングリコール(重量平均分子量:2,000)1000質量部、2.2’-ジメチロールプロピオン酸79.4質量部、酢酸エチル668.2質量部を加え、均一に混合した後、トリレンジイソシアネート247.2質量部を加え、次いでジブチル錫ジラウレート0.1質量部を加え、80℃で約4時間反応させることによって、分子末端にイソシアネート基を有するウレタンプレポリマー(イソシアネート基含有量;2.1質量%)の酢酸エチル溶液を得た。
 次いで、前記方法で得られたウレタンプレポリマーの酢酸エチル溶液を40℃まで冷却し、トリエチルアミン65.9質量部を加え、前記ウレタンプレポリマー中のカルボキシル基を中和した後、イオン交換水3111.0質量部を加え、次いで、カルボヒドラジド70.8質量部を加え反応させた。
 反応終了後、酢酸エチルを減圧下留去し、その不揮発分が35質量%となるようイオン交換水を加えることによって組成物(IV)を得た。
[Preparation Example 4]
In a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube, 1000 parts by mass of polyoxytetramethylene glycol (weight average molecular weight: 2,000), 2.2'-diethyl under a nitrogen stream. After adding 79.4 parts by mass of methylolpropionic acid and 668.2 parts by mass of ethyl acetate and mixing uniformly, 247.2 parts by mass of tolylene diisocyanate was added, then 0.1 part by mass of dibutyltin dilaurate was added, and Was allowed to react for about 4 hours to obtain an ethyl acetate solution of a urethane prepolymer having an isocyanate group at the molecular end (isocyanate group content; 2.1% by mass).
Next, the ethyl acetate solution of the urethane prepolymer obtained by the above method was cooled to 40 ° C., 65.9 parts by mass of triethylamine was added to neutralize the carboxyl group in the urethane prepolymer, and then ion-exchanged water 3111. 0 parts by mass was added, and then 70.8 parts by mass of carbohydrazide was added and reacted.
After completion of the reaction, ethyl acetate was distilled off under reduced pressure, and ion-exchanged water was added so that the nonvolatile content was 35% by mass, thereby obtaining a composition (IV).
 [調製例5]
 撹拌機、還流冷却管、温度計及び窒素吹き込み管を備えた4ツ口フラスコに、窒素気流下、ポリオキシテトラメチレングリコール(重量平均分子量:2,000)1000質量部、2.2’-ジメチロールプロピオン酸79.4質量部、酢酸エチル884.3質量部を加え、均一に混合した後、トリレンジイソシアネート247.2質量部を加え、次いでジブチル錫ジラウレート0.1質量部を加え、80℃で約4時間反応させることによって、分子末端にイソシアネート基を有するウレタンプレポリマー(前記ウレタンプレポリマーに対するイソシアネート基の質量割合(イソシアネート基含有量);2.1質量%)の酢酸エチル溶液を得た。
 次いで、前記方法で得られたウレタンプレポリマーの酢酸エチル溶液を40℃まで冷却し、トリエチルアミン65.9質量部を加え、前記ウレタンプレポリマー中のカルボキシル基を中和した後、イオン交換水2849.1質量部を加え、次いで、80質量%水加ヒドラジン(ヒドラジンの一水和物、全体に対して80質量%がヒドラジン)18.5質量部を加え反応させた。
 反応終了後、酢酸エチルを減圧下留去し、その不揮発分が35質量%となるようイオン交換水を加えることによって組成物(V)を得た。
[Preparation Example 5]
In a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube, 1000 parts by mass of polyoxytetramethylene glycol (weight average molecular weight: 2,000), 2.2'-diethyl under a nitrogen stream. After adding 79.4 parts by mass of methylolpropionic acid and 884.3 parts by mass of ethyl acetate and mixing uniformly, add 247.2 parts by mass of tolylene diisocyanate, then add 0.1 parts by mass of dibutyltin dilaurate, and add 80 ° C. For about 4 hours to obtain an ethyl acetate solution of a urethane prepolymer having an isocyanate group at the molecular terminal (mass ratio of isocyanate group to the urethane prepolymer (isocyanate group content); 2.1% by mass). .
Next, the ethyl acetate solution of the urethane prepolymer obtained by the above method was cooled to 40 ° C., 65.9 parts by mass of triethylamine was added to neutralize the carboxyl group in the urethane prepolymer, and then ion-exchanged water 2849. Next, 1 part by mass was added, and then 18.5 parts by mass of 80% by mass hydrated hydrazine (hydrazine monohydrate, 80% by mass hydrazine based on the total) was added and reacted.
After completion of the reaction, ethyl acetate was distilled off under reduced pressure, and ion-exchanged water was added so that the nonvolatile content was 35% by mass to obtain a composition (V).
 [調整例6]
 温度計、窒素ガス導入管、攪拌機を備えた反応器中で窒素ガスを導入しながら、テレフタル酸830質量部、イソフタル酸830質量部、エチレングリコール374質量部、ネオペンチルグリコール604質量部及びジブチル錫オキサイド0.5質量部を仕込み180~230℃で5時間エステル化した後、酸価が1未満になるまで260℃で6時間重縮合反応することによって、酸価0.2、水酸基価74.5のポリエステルポリオール(a1’)を得た。
 前記ポリエステルポリオール(a1’)1000質量部を減圧下100℃で脱水した後、80℃まで冷却し、メチルエチルケトン690質量部を加え十分に攪拌し溶解させ、2,2’-ジメチロールプロピオン酸77質量部を加え、更にヘキサメチレンジイソシアネート209質量部を加え75℃で8時間反応させた。
 前記反応混合物中に残存する未反応のイソシアネート基の質量割合が0.1質量%以下になったのを確認した後、50℃まで冷却し、トリエチルアミン58質量部及び水5100質量部を加え、減圧下、40~60℃の温度下でメチルエチルケトンを除去し、水を加えて濃度調節を行うことによって、水性ウレタン樹脂が水中に分散した不揮発分20質量%の組成物(VI)を得た。
[Adjustment Example 6]
While introducing nitrogen gas in a reactor equipped with a thermometer, a nitrogen gas inlet tube, and a stirrer, 830 parts by mass of terephthalic acid, 830 parts by mass of isophthalic acid, 374 parts by mass of ethylene glycol, 604 parts by mass of neopentyl glycol and dibutyltin After 0.5 parts by mass of oxide was charged and esterified at 180 to 230 ° C. for 5 hours, a polycondensation reaction was carried out at 260 ° C. for 6 hours until the acid value was less than 1, whereby an acid value of 0.2 and a hydroxyl value of 74. 5 polyester polyol (a1 ′) was obtained.
After dehydrating 1000 parts by mass of the polyester polyol (a1 ′) at 100 ° C. under reduced pressure, cooling to 80 ° C., adding 690 parts by mass of methyl ethyl ketone, sufficiently stirring and dissolving, 77 parts by mass of 2,2′-dimethylolpropionic acid. Then, 209 parts by mass of hexamethylene diisocyanate was further added and reacted at 75 ° C. for 8 hours.
After confirming that the mass ratio of unreacted isocyanate groups remaining in the reaction mixture became 0.1 mass% or less, the mixture was cooled to 50 ° C., 58 parts by mass of triethylamine and 5100 parts by mass of water were added, and the pressure was reduced. Then, methyl ethyl ketone was removed at a temperature of 40 to 60 ° C., and the concentration was adjusted by adding water to obtain a composition (VI) having a nonvolatile content of 20% by mass in which an aqueous urethane resin was dispersed in water.
 [実施例1]
 調製例1で得た組成物(I)を100質量部と、調製例3で得た組成物(III)78質量部とを混合した。次いで、ベッカミンM-3(DIC株式会社製のトリメトキシメチロール型メラミン樹脂、不揮発分80質量%)5質量部とデナコールEX-321(ナガセケムテックス株式会社製、トリメチロールプロパントリグリシジルエーテル、不揮発分100質量%)4質量部とを添加、攪拌し、アジピン酸ジヒドラジド(分子量174.2)を3重量部と水を加えることによって、不揮発分20質量%の水性樹脂組成物(X-1)からなるヒートシール剤(X-1)を得た。
[Example 1]
100 parts by mass of the composition (I) obtained in Preparation Example 1 and 78 parts by mass of the composition (III) obtained in Preparation Example 3 were mixed. Next, 5 parts by weight of Becamine M-3 (manufactured by DIC Corporation, trimethoxymethylol type melamine resin, non-volatile content 80% by mass) and Denacol EX-321 (manufactured by Nagase ChemteX Corporation, trimethylolpropane triglycidyl ether, non-volatile content 100 parts by mass) and 4 parts by mass, and 3 parts by weight of adipic acid dihydrazide (molecular weight 174.2) and water were added to the aqueous resin composition (X-1) having a nonvolatile content of 20% by mass. A heat sealant (X-1) was obtained.
 [実施例2]
 調製例1で得た組成物(I)100質量部の代わりに、調製例2で得た組成物(II)を100質量部使用すること以外は、実施例1と同様の方法で水性樹脂組成物(X-2)からなるヒートシール剤(X-2)を得た。
[Example 2]
An aqueous resin composition was prepared in the same manner as in Example 1 except that 100 parts by mass of the composition (II) obtained in Preparation Example 2 was used instead of 100 parts by mass of the composition (I) obtained in Preparation Example 1. A heat sealant (X-2) comprising the product (X-2) was obtained.
 [実施例3]
 ベッカミンM-3(DIC株式会社製のトリメトキシメチロール型メラミン樹脂、不揮発分80質量%)の使用量を、5質量部から23質量部に変更すること以外は、実施例1と同様の方法で水性樹脂組成物(X-3)からなるヒートシール剤(X-3)を得た。
[Example 3]
Except for changing the amount of Becamine M-3 (trimethoxymethylol type melamine resin manufactured by DIC Corporation, non-volatile content 80% by mass) from 5 parts by mass to 23 parts by mass, the same method as in Example 1 was used. A heat sealant (X-3) comprising the aqueous resin composition (X-3) was obtained.
 [実施例4]
 デナコールEX-321(ナガセケムテックス株式会社製、トリメチロールプロパントリグリシジルエーテル、不揮発分100質量%)の使用量を4質量部から42質量部に変更すること以外は、実施例1と同様の方法で水性樹脂組成物(X-4)からなるヒートシール剤(X-4)を得た。
[Example 4]
The same method as in Example 1 except that the amount of Denacol EX-321 (manufactured by Nagase ChemteX Corporation, trimethylolpropane triglycidyl ether, non-volatile content 100% by mass) was changed from 4 parts by mass to 42 parts by mass To obtain a heat sealant (X-4) comprising the aqueous resin composition (X-4).
 [実施例5]
 デナコールEX-321(ナガセケムテックス株式会社製、トリメチロールプロパントリグリシジルエーテル、不揮発分100質量%)の使用量を4質量部から1質量部に変更すること以外は、実施例1と同様の方法で水性樹脂組成物(X-5)からなるヒートシール剤(X-5)を得た。
[Example 5]
The same method as in Example 1 except that the amount of Denacol EX-321 (manufactured by Nagase ChemteX Corporation, trimethylolpropane triglycidyl ether, non-volatile content: 100% by mass) was changed from 4 parts by mass to 1 part by mass To obtain a heat sealant (X-5) comprising the aqueous resin composition (X-5).
 [実施例6]
 調製例3記載の組成物(III)の使用量を、78質量部から175質量部に変更し、ベッカミンM-3(DIC株式会社製のトリメトキシメチロール型メラミン樹脂、不揮発分80質量%)の使用量を、5質量部から7質量部に変更し、かつ、デナコールEX-321(ナガセケムテックス株式会社製、トリメチロールプロパントリグリシジルエーテル、不揮発分100質量%)の使用量を4質量部から8質量部に変更し、アジピン酸ジヒドラジド(分子量174.2)を4重量部とすること以外は、実施例1と同様の方法で水性樹脂組成物(X-6)からなるヒートシール剤(X-6)を得た。
[Example 6]
The amount of the composition (III) described in Preparation Example 3 was changed from 78 parts by mass to 175 parts by mass, and Beccamin M-3 (a trimethoxymethylol melamine resin manufactured by DIC Corporation, nonvolatile content 80% by mass) was used. The usage amount was changed from 5 parts by mass to 7 parts by mass, and the usage amount of Denacol EX-321 (manufactured by Nagase ChemteX Corporation, trimethylolpropane triglycidyl ether, nonvolatile content 100% by mass) was changed from 4 parts by mass. The heat sealant (X-6) comprising the aqueous resin composition (X-6) was prepared in the same manner as in Example 1 except that the amount was changed to 8 parts by mass and the amount of adipic acid dihydrazide (molecular weight 174.2) was changed to 4 parts by weight. -6) was obtained.
 [実施例7]
 ベッカミンM-3(DIC株式会社製のトリメトキシメチロール型メラミン樹脂、不揮発分80質量%)の代わりに、ベッカミンJ-101(DIC株式会社製、ヘキサメトキシメチロール型メラミン樹脂、不揮発分80質量%)を5質量部使用すること以外は、実施例1と同様の方法で水性樹脂組成物(X-7)からなるヒートシール剤(X-7)を得た。
[Example 7]
Instead of Becamine M-3 (DIC Corporation, trimethoxymethylol type melamine resin, non-volatile content 80% by mass), Becamine J-101 (DIC Corporation, hexamethoxymethylol type melamine resin, non-volatile content 80% by mass) A heat sealant (X-7) composed of the aqueous resin composition (X-7) was obtained in the same manner as in Example 1 except that 5 parts by mass of was used.
 [実施例8]
 調製例1で得た組成物(I)100質量部の代わりに、調製例4で得た組成物(IV)を100質量部使用すること以外は、実施例1と同様の方法で水性樹脂組成物(X-8)からなるヒートシール剤(X-8)を得た。
[Example 8]
An aqueous resin composition was prepared in the same manner as in Example 1 except that 100 parts by mass of the composition (IV) obtained in Preparation Example 4 was used instead of 100 parts by mass of the composition (I) obtained in Preparation Example 1. Heat sealant (X-8) consisting of product (X-8) was obtained.
 [実施例9]
 調製例1で得た組成物(I)100質量部の代わりに、調製例5で得た組成物(V)を100質量部使用すること以外は、実施例1と同様の方法で水性樹脂組成物(X-9)からなるヒートシール剤(X-9)を得た。
[Example 9]
An aqueous resin composition was prepared in the same manner as in Example 1 except that 100 parts by mass of the composition (V) obtained in Preparation Example 5 was used instead of 100 parts by mass of the composition (I) obtained in Preparation Example 1. Heat sealant (X-9) consisting of product (X-9) was obtained.
 [実施例10]
 調製例1で得た組成物(I)100質量部の代わりに、調製例6で得た組成物(VI)を100質量部使用すること以外は、実施例1と同様の方法で水性樹脂組成物(X-10)からなるヒートシール剤(X-10)を得た。
[Example 10]
An aqueous resin composition was prepared in the same manner as in Example 1 except that 100 parts by mass of the composition (VI) obtained in Preparation Example 6 was used instead of 100 parts by mass of the composition (I) obtained in Preparation Example 1. Heat sealant (X-10) comprising product (X-10) was obtained.
 [比較例1]
 調製例1で得た組成物(I)100質量部と、調製例3で得た組成物(III)78質量部とを混合、攪拌し、水を加えることによって、不揮発分20質量%の水性樹脂組成物(X’-1)からなるヒートシール剤(X’-1)を得た。
[Comparative Example 1]
100 parts by mass of the composition (I) obtained in Preparation Example 1 and 78 parts by mass of the composition (III) obtained in Preparation Example 3 were mixed and stirred, and water was added thereto to add an aqueous solution having a nonvolatile content of 20% by mass. A heat sealant (X′-1) comprising the resin composition (X′-1) was obtained.
 [比較例2]
 調製例3で得た組成物(III)100質量部と、ベッカミンM-3(DIC株式会社製のトリメトキシメチロール型メラミン樹脂、不揮発分80質量%)2質量部と、デナコールEX-321(ナガセケムテックス株式会社製、トリメチロールプロパントリグリシジルエーテル、不揮発分100質量%)4質量部とを添加、攪拌し、水を加えることによって、不揮発分20質量%の水性樹脂組成物(X’-2)からなるヒートシール剤(X’-2)を得た。
[Comparative Example 2]
100 parts by mass of the composition (III) obtained in Preparation Example 3, 2 parts by mass of Becamine M-3 (a trimethoxymethylol-type melamine resin manufactured by DIC Corporation, non-volatile content 80% by mass), and Denacol EX-321 (Nagase) 4 parts by mass of Chemtex Co., Ltd., trimethylolpropane triglycidyl ether (non-volatile content: 100% by mass) was added, stirred, and water added to add an aqueous resin composition (X′-2) having a non-volatile content of 20% by mass. A heat sealant (X′-2) consisting of
 [比較例3]
 ベッカミンM-3(DIC株式会社製のトリメトキシメチロール型メラミン樹脂、不揮発分80質量%)5質量部とデナコールEX-321(ナガセケムテックス株式会社製、トリメチロールプロパントリグリシジルエーテル、不揮発分100質量%)4質量部との代わりに、ケミタイトPZ-33を(日本触媒社株式会社製、多官能アジリジン、不揮発分100質量%)使用すること以外は、実施例1と同様の方法で水性樹脂組成物(X’-3)からなるヒートシール剤(X’-3)を得た。
[Comparative Example 3]
5 parts by weight of becamine M-3 (manufactured by DIC Corporation, trimethoxymethylol type melamine resin, nonvolatile content 80% by mass) and Denacol EX-321 (manufactured by Nagase ChemteX Corporation, trimethylolpropane triglycidyl ether, nonvolatile content 100 masses) %) Aqueous resin composition in the same manner as in Example 1 except that Chemitite PZ-33 (manufactured by Nippon Shokubai Co., Ltd., polyfunctional aziridine, non-volatile content 100% by mass) was used instead of 4 parts by mass. A heat sealant (X′-3) comprising the product (X′-3) was obtained.
 [比較例4]
 調製例1で得た組成物(I)100質量部の代わりに、調製例6で得た組成物(VI)を100質量部使用すること以外は、比較例3と同様の方法で水性樹脂組成物(X’-4)からなるヒートシール剤(X’-4)を得た。
[Comparative Example 4]
Instead of 100 parts by mass of the composition (I) obtained in Preparation Example 1, 100 parts by weight of the composition (VI) obtained in Preparation Example 6 was used in the same manner as in Comparative Example 3, except that the aqueous resin composition was used. A heat sealant (X′-4) comprising the product (X′-4) was obtained.
 [極性基材及び非極性基材に対する密着性の評価方法]
 極性基材であるポリエチレンテレフタレートフィルムの表面に、乾燥膜厚が5μmとなるよう、前記実施例及び比較例で得たヒートシール剤を塗布し、150℃の条件で5分間乾燥することによって、前記フィルム用面に架橋した樹脂硬化層(ヒートシール層)が設けられた積層体を得た。
[Method for evaluating adhesion to polar and non-polar substrates]
The surface of the polyethylene terephthalate film, which is a polar substrate, is coated with the heat sealant obtained in the examples and comparative examples so that the dry film thickness is 5 μm, and is dried at 150 ° C. for 5 minutes. A laminate having a cured resin layer (heat seal layer) crosslinked on the film surface was obtained.
 前記積層体の前記樹脂硬化層(ヒートシール層)の表面に、非極性基材であるエチレン-酢酸ビニルからなるフィルム(縦5cm×幅1cm)を載置し、次いで真空圧着装置を用いて150℃で15分間それらを圧着することによって、ポリエチレンテレフタレートフィルムとポリオレフィンフィルムとが、前記樹脂硬化層(ヒートシール層)を介して接着された積層体を得た。 On the surface of the cured resin layer (heat seal layer) of the laminate, a film (length: 5 cm × width: 1 cm) made of ethylene-vinyl acetate as a nonpolar base material is placed, and then a vacuum pressure bonding apparatus is used for 150. By crimping them at 15 ° C. for 15 minutes, a laminate in which a polyethylene terephthalate film and a polyolefin film were bonded via the resin cured layer (heat seal layer) was obtained.
 〔密着性の試験方法〕
 前記方法で製造した直後の積層体の密着性は、引張り試験機(株式会社 島津製作所製オートグラフ)を用いT型剥離試験(1000Nセル)によって評価した。前記密着性は、ヒートシール層と、前記エチレン-酢酸ビニルからなるフィルムとの間の密着性に基づいて評価した。
[Adhesion test method]
The adhesion of the laminate immediately after being produced by the above method was evaluated by a T-type peel test (1000 N cell) using a tensile tester (manufactured by Shimadzu Corporation). The adhesion was evaluated based on the adhesion between the heat seal layer and the ethylene-vinyl acetate film.
 前記方法で測定した剥離強度が概ね30N/cm以上であるものを、密着性に優れるものとし、35N/cm以上であるものを、特に密着性に優れるものと評価した。 When the peel strength measured by the above method was approximately 30 N / cm or more, the adhesion was evaluated as excellent, and when the peel strength was 35 N / cm or more, the adhesion was evaluated as particularly excellent.
 〔耐湿熱性の評価〕
 前記で得た積層体を120℃×100%RHの条件に設定された恒温恒湿機内に72時間静置し湿熱試験を行った。前記静置後の積層体の密着力を、前記と同様の方法によって測定し評価した。
[Evaluation of heat and humidity resistance]
The laminate obtained above was left in a constant temperature and humidity chamber set at 120 ° C. × 100% RH for 72 hours to perform a wet heat test. The adhesion of the laminate after standing was measured and evaluated by the same method as described above.
 前記方法で測定した剥離強度が概ね25N/cm以上であるものを、密着性に優れるものとし、35N/cm以上であるものを、特に密着性に優れるものと評価した。 When the peel strength measured by the above method was approximately 25 N / cm or more, the adhesion was evaluated as excellent, and when the peel strength was 35 N / cm or more, the adhesion was evaluated as particularly excellent.
 〔剥離界面の観察(湿熱試験後)〕
 前記で得た積層体を121℃×100%RHの条件に設定された恒温恒湿機内に72時間静置し湿熱試験を行った。
 前記湿熱試験後の積層体の剥離界面を、目視で観察した。その結果、前記エチレン-酢酸ビニルからなるフィルム自体が凝集破壊により破断したものを「A」と評価し、ヒートシール剤層が凝集破壊により破断したものを「B」と評価し、前記フィルム及び前記層ともに破断せず、前記エチレン-酢酸ビニルからなるフィルムと前記ヒートシール剤層との界面剥離が生じたものを「C」と評価し、前記フィルム及び前記層ともに破断せず、前記ポリエチレンテレフタレートフィルムと前記ヒートシール剤層との界面剥離が生じたものを「D」と評価した。A~Cと評価されたものは、実用上使用することができ、特にA~Bと評価されたものが、より一層高いレベルの特性が求められる場合に好適に使用することができる。
[Observation of peeled interface (after wet heat test)]
The laminate obtained above was left in a constant temperature and humidity chamber set at 121 ° C. × 100% RH for 72 hours to perform a wet heat test.
The peel interface of the laminate after the wet heat test was visually observed. As a result, the film itself made of ethylene-vinyl acetate was evaluated as “A” when the film was broken by cohesive failure, and the film and the above-mentioned film was evaluated as “B” when the heat sealant layer was broken by cohesive failure. The layer was not broken, and the film where the film made of ethylene-vinyl acetate and the heat sealant layer were peeled off was evaluated as “C”. Both the film and the layer were not broken, and the polyethylene terephthalate film And “D” were evaluated as those where interfacial peeling occurred between the heat sealant layer and the heat sealant layer. Those evaluated as A to C can be used practically, and those evaluated as A to B can be preferably used when higher level characteristics are required.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~3中の「アルキル化メチロールメラミン樹脂(c1)の含有量[質量%]」は、ウレタン樹脂及びポリオレフィン樹脂の合計質量に対するアルキル化メチロールメラミン樹脂の質量割合を表す。
 また、表中の「M-3」は、ベッカミンM-3(DIC株式会社製のトリメトキシメチロール型メラミン樹脂、不揮発分80質量%)を表し、「EX-321」は、デナコールEX-321(ナガセケムテックス株式会社製、トリメチロールプロパントリグリシジルエーテル、不揮発分100質量%)を表し、「J-101」はベッカミンJ-101(DIC株式会社製、ヘキサメトキシメチロール型メラミン樹脂、不揮発分80質量%)を表し、「PZ-33」はケミタイトPZ-33を(日本触媒社株式会社製、多官能アジリジン、不揮発分100質量%)を表す。
“Content of alkylated methylol melamine resin (c1) [% by mass]” in Tables 1 to 3 represents a mass ratio of the alkylated methylol melamine resin to the total mass of the urethane resin and the polyolefin resin.
In the table, “M-3” represents Becamine M-3 (trimethoxymethylol type melamine resin manufactured by DIC Corporation, non-volatile content 80% by mass), and “EX-321” represents Denacol EX-321 ( Represents a product of Nagase ChemteX Corporation, trimethylolpropane triglycidyl ether, non-volatile content of 100% by mass. “J-101” represents Becamine J-101 (DIC Corporation, hexamethoxymethylol-type melamine resin, non-volatile content of 80 mass). “PZ-33” represents Chemitite PZ-33 (manufactured by Nippon Shokubai Co., Ltd., polyfunctional aziridine, nonvolatile content 100 mass%).

Claims (9)

  1.  ウレタン樹脂(A)と、ポリオレフィン樹脂(B)と、メラミン化合物、エポキシ化合物、オキサゾリン化合物、カルボジイミド化合物及びイソシアネート化合物からなる群より選ばれる1種以上を含む架橋剤(C)と、1級アミノ基またはヒドラジド基を有する分子量20~3,000の化合物(D)と、水性媒体(E)とを含有することを特徴とするヒートシール剤。 Cross-linking agent (C) containing at least one selected from the group consisting of urethane resin (A), polyolefin resin (B), melamine compound, epoxy compound, oxazoline compound, carbodiimide compound and isocyanate compound, and primary amino group Alternatively, a heat sealant comprising a compound (D) having a hydrazide group and a molecular weight of 20 to 3,000, and an aqueous medium (E).
  2.  前記化合物(D)がヒドラジン、ジカルボン酸ジヒドラジドまたはカルボヒドラジドである請求項1に記載のヒートシール剤。 The heat sealant according to claim 1, wherein the compound (D) is hydrazine, dicarboxylic acid dihydrazide or carbohydrazide.
  3.  前記架橋剤(C)が、メラミン化合物としてのアルキル化メチロールメラミン樹脂(c1)と、エポキシ化合物(c2)とを含有し、かつ、前記ウレタン樹脂(A)及びポリオレフィン樹脂(B)のいずれか一方または両方がエポキシ基と反応しうる官能基[X]を有するものである請求項1に記載のヒートシール剤。 The cross-linking agent (C) contains an alkylated methylol melamine resin (c1) as an melamine compound and an epoxy compound (c2), and one of the urethane resin (A) and the polyolefin resin (B). Or both have the functional group [X] which can react with an epoxy group, The heat seal agent of Claim 1 characterized by the above-mentioned.
  4.  前記アルキル化メチロールメラミン樹脂(c1)が、前記ウレタン樹脂(A)及び前記ポリオレフィン樹脂(B)の合計質量に対して5質量%~50質量%の範囲で含まれ、前記ウレタン樹脂(A)及びポリオレフィン樹脂(B)のいずれか一方または両方が有する前記官能基[X]の合計物質量に対する前記エポキシ化合物(c2)の有するエポキシ基の物質量の割合〔エポキシ基の物質量/官能基[X]の合計物質量〕が5/1~1/5である請求項3に記載のヒートシール剤。 The alkylated methylol melamine resin (c1) is included in the range of 5% by mass to 50% by mass with respect to the total mass of the urethane resin (A) and the polyolefin resin (B), and the urethane resin (A) and Ratio of the substance amount of the epoxy group of the epoxy compound (c2) to the total substance amount of the functional group [X] possessed by one or both of the polyolefin resin (B) [substance quantity of epoxy group / functional group [X The heat sealing agent according to claim 3, wherein the total amount of the substance] is 5/1 to 1/5.
  5.  極性基材(I)の表面に、請求項1~4のいずれか1項に記載のヒートシール剤を塗布し乾燥することによって形成されるヒートシール層を設け、前記ヒートシール層表面に非極性基材(II)を載置し、次いで80℃~180℃で加熱することによって得られる積層体。 A heat seal layer formed by applying and drying the heat sealant according to any one of claims 1 to 4 is provided on the surface of the polar substrate (I), and the surface of the heat seal layer is non-polar. A laminate obtained by placing the substrate (II) and then heating at 80 ° C. to 180 ° C.
  6.  前記極性基材(I)がポリエチレンテレフタレート基材、ポリプロピレン基材、ポリカーボネート基材またはポリアミド基材であり、かつ、前記非極性基材(II)がエチレン-酢酸ビニル共重合体からなる基材である請求項5に記載の積層体。 The polar substrate (I) is a polyethylene terephthalate substrate, a polypropylene substrate, a polycarbonate substrate or a polyamide substrate, and the nonpolar substrate (II) is a substrate made of an ethylene-vinyl acetate copolymer. The laminate according to claim 5.
  7.  極性基材(I)表面に、請求項1~4のいずれか1項に記載のヒートシール剤を塗布し乾燥することによって、前記ウレタン樹脂(A)及び前記ポリオレフィン樹脂(B)のいずれか一方または両方が有する官能基[X]と、前記エポキシ化合物(c2)が有するエポキシ基とを反応させるとともに、
    前記アルキル化メチロールメラミン樹脂(c1)の自己架橋反応、
    及び/または、
    前記官能基[X]と前記エポキシ化合物(c2)との反応によって生成した水酸基と前記アルキル化メチロールメラミン樹脂(c1)との反応
    を進行させることによってヒートシール層を設け、次いで、前記ヒートシール層表面に非極性基材(II)を載置し、次いで80℃~180℃で加熱することによって、前記極性基材(I)及び非極性基材(II)を接着することを特徴とする積層体の製造方法。
    Either one of the urethane resin (A) and the polyolefin resin (B) is obtained by applying the heat sealant according to any one of claims 1 to 4 to the surface of the polar substrate (I) and drying it. Alternatively, the functional group [X] possessed by both reacts with the epoxy group possessed by the epoxy compound (c2),
    A self-crosslinking reaction of the alkylated methylolmelamine resin (c1),
    And / or
    A heat seal layer is provided by advancing the reaction between the hydroxyl group generated by the reaction between the functional group [X] and the epoxy compound (c2) and the alkylated methylol melamine resin (c1), and then the heat seal layer. Lamination characterized by adhering the polar substrate (I) and the nonpolar substrate (II) by placing the nonpolar substrate (II) on the surface and then heating at 80 ° C. to 180 ° C. Body manufacturing method.
  8.  太陽電池を構成する受光面に対して反対側の、エチレン-酢酸ビニル共重合体からなる基材表面上に、請求項1~4のいずれか1項に記載のヒートシール剤を用いて形成されるヒートシール層を有し、該ヒートシール層上に、ポリエチレンテレフタレート基材、ポリプロピレン基材、ポリカーボネート基材またはポリアミド基材からなるバックシート層を有することを特徴とする太陽電池モジュール。 The heat sealant according to any one of claims 1 to 4 is formed on the surface of a base material made of an ethylene-vinyl acetate copolymer, on the opposite side to the light receiving surface constituting the solar cell. And a back sheet layer made of a polyethylene terephthalate base material, a polypropylene base material, a polycarbonate base material, or a polyamide base material on the heat seal layer.
  9.  ポリエチレンテレフタレート基材、ポリプロピレン基材、ポリカーボネート基材またはポリアミド基材からなるシート表面に、請求項1~4のいずれか1項に記載のヒートシール剤を用いて形成されるヒートシール層を備えた積層シートを、
    太陽電池を構成する受光面に対して反対側の面を構成するエチレン-酢酸ビニル共重合体からなる基材表面に、
    前記積層シートのヒートシール層と前記エチレン-酢酸ビニル共重合体からなる基材表面とが接触するように載置し、加熱することを特徴とする太陽電池モジュールの製造方法。
    A heat seal layer formed using the heat seal agent according to any one of claims 1 to 4 is provided on a sheet surface comprising a polyethylene terephthalate base material, a polypropylene base material, a polycarbonate base material, or a polyamide base material. Laminated sheet,
    On the surface of the substrate made of an ethylene-vinyl acetate copolymer constituting the surface opposite to the light receiving surface constituting the solar cell,
    A method for producing a solar cell module, wherein the heat sealing layer of the laminated sheet and the substrate surface made of the ethylene-vinyl acetate copolymer are placed in contact with each other and heated.
PCT/JP2013/068713 2012-07-20 2013-07-09 Heat sealing agent, laminate using same, and solar cell module WO2014013906A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380038426.XA CN104471011B (en) 2012-07-20 2013-07-09 Sealant, the duplexer using this sealant and solar module
JP2013552785A JP5541553B1 (en) 2012-07-20 2013-07-09 HEAT SEALING AGENT, LAMINATE USING SAME, AND SOLAR CELL MODULE
KR1020147033519A KR102020256B1 (en) 2012-07-20 2013-07-09 Heat sealing agent, laminate using same, and solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-161540 2012-07-20
JP2012161540 2012-07-20

Publications (1)

Publication Number Publication Date
WO2014013906A1 true WO2014013906A1 (en) 2014-01-23

Family

ID=49948736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068713 WO2014013906A1 (en) 2012-07-20 2013-07-09 Heat sealing agent, laminate using same, and solar cell module

Country Status (5)

Country Link
JP (1) JP5541553B1 (en)
KR (1) KR102020256B1 (en)
CN (1) CN104471011B (en)
TW (1) TWI579335B (en)
WO (1) WO2014013906A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9852443B1 (en) 2015-11-09 2017-12-26 Radiumone, Inc. Robust geolocation system implementation for serving targeted advertisement and personalized content
WO2021124782A1 (en) * 2019-12-20 2021-06-24 Dic株式会社 Aqueous resin composition, aqueous surface treatment agent, and article

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3296361B1 (en) 2015-05-15 2019-12-04 Sumitomo Chemical Company, Limited Aqueous dispersion mixture
CN108368400A (en) * 2016-02-04 2018-08-03 丸善药品产业株式会社 aqueous adhesive and coating method
JP6902827B2 (en) * 2016-02-08 2021-07-14 藤森工業株式会社 Adhesive resin composition, adherend bonding method, and adhesive resin film
JP6907927B2 (en) * 2017-01-11 2021-07-21 東洋インキScホールディングス株式会社 Adhesive compositions, laminates, packaging materials for power storage devices, containers for power storage devices and power storage devices
US11541645B2 (en) * 2017-10-31 2023-01-03 Denka Company Limited Cover film
KR102403718B1 (en) * 2021-07-22 2022-06-07 애경특수도료 주식회사 Water-soluble organic-inorganic hybrid surface coating agent having excellent stain resistance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892427A (en) * 1994-09-27 1996-04-09 Nippon Paper Ind Co Ltd Water-based resin composition
JP2005349769A (en) * 2004-06-11 2005-12-22 Daicel Chem Ind Ltd Laminated film
JP2012074424A (en) * 2010-09-27 2012-04-12 Unitika Ltd Adhesive for solar cell module, protective sheet for sealing and solar cell module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI443120B (en) * 2005-12-15 2014-07-01 Dainippon Ink & Chemicals Thermosetting resin composition
JP2009235289A (en) 2008-03-28 2009-10-15 Unitika Ltd Aqueous dispersion and laminated body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892427A (en) * 1994-09-27 1996-04-09 Nippon Paper Ind Co Ltd Water-based resin composition
JP2005349769A (en) * 2004-06-11 2005-12-22 Daicel Chem Ind Ltd Laminated film
JP2012074424A (en) * 2010-09-27 2012-04-12 Unitika Ltd Adhesive for solar cell module, protective sheet for sealing and solar cell module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9852443B1 (en) 2015-11-09 2017-12-26 Radiumone, Inc. Robust geolocation system implementation for serving targeted advertisement and personalized content
WO2021124782A1 (en) * 2019-12-20 2021-06-24 Dic株式会社 Aqueous resin composition, aqueous surface treatment agent, and article
JPWO2021124782A1 (en) * 2019-12-20 2021-06-24
JP7363923B2 (en) 2019-12-20 2023-10-18 Dic株式会社 Aqueous resin composition, aqueous surface treatment agent, and article

Also Published As

Publication number Publication date
JPWO2014013906A1 (en) 2016-06-30
KR20150035558A (en) 2015-04-06
KR102020256B1 (en) 2019-09-10
JP5541553B1 (en) 2014-07-09
CN104471011B (en) 2016-08-24
TW201406861A (en) 2014-02-16
TWI579335B (en) 2017-04-21
CN104471011A (en) 2015-03-25

Similar Documents

Publication Publication Date Title
JP5522500B1 (en) HEAT SEALING AGENT, LAMINATE USING SAME, AND SOLAR CELL MODULE
JP5071750B1 (en) HEAT SEALING AGENT, LAMINATE USING SAME, AND SOLAR CELL MODULE
JP5541553B1 (en) HEAT SEALING AGENT, LAMINATE USING SAME, AND SOLAR CELL MODULE
JP6090157B2 (en) Easy-adhesive back surface protection sheet and solar cell module using the same
JP5700415B2 (en) Polyester film for solar cell back surface protection material
JP6036047B2 (en) Easy-adhesive back surface protection sheet and solar cell module using the same
JP5418742B1 (en) HEAT SEALING AGENT, LAMINATE USING SAME, AND SOLAR CELL MODULE
WO2013008455A1 (en) Solar cell backside protective sheet and solar cell
JP6398535B2 (en) Aqueous resin composition, coating agent and article
JP2013100399A (en) Anchor coating agent
JP5899754B2 (en) Easy-adhesive layer composition and easy-adhesive back surface protective sheet using the same
JP5928770B2 (en) Resin composition, heat sealant, laminate, solar cell module
JP2012138490A (en) Polyester film for solar cell back surface protective material, and member for solar cell back surface protective material

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013552785

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13820148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147033519

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13820148

Country of ref document: EP

Kind code of ref document: A1