WO2014013667A1 - Meter reading device - Google Patents

Meter reading device Download PDF

Info

Publication number
WO2014013667A1
WO2014013667A1 PCT/JP2013/003575 JP2013003575W WO2014013667A1 WO 2014013667 A1 WO2014013667 A1 WO 2014013667A1 JP 2013003575 W JP2013003575 W JP 2013003575W WO 2014013667 A1 WO2014013667 A1 WO 2014013667A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
meter
meter reading
slave
relay
Prior art date
Application number
PCT/JP2013/003575
Other languages
French (fr)
Japanese (ja)
Inventor
崇士 渡邊
山本 雅弘
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014525696A priority Critical patent/JP6161006B2/en
Priority to CN201380032213.6A priority patent/CN104396274B/en
Publication of WO2014013667A1 publication Critical patent/WO2014013667A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/60Arrangements in telecontrol or telemetry systems for transmitting utility meters data, i.e. transmission of data from the reader of the utility meter

Definitions

  • the present invention relates to a meter-reading device that collects meter-reading value information from a plurality of meters that measure usage amounts of electricity, gas, water, and the like.
  • Patent Document 2 efficiently collects meter reading value information without causing congestion on the telephone line due to simultaneous calls from a plurality of meter reading terminal devices even when wireless calling is performed simultaneously from the meter reading central device.
  • the purpose is to do. Therefore, the value of the transmission time interval and the range of the user ID of the meter reading terminal device to be called are included in the message at the time of simultaneous calling from the meter reading central device, and each meter reading terminal device has a plurality of called meter reading terminals.
  • the terminal device recognizes from the user ID of its own device the number of times the own device should start transmission, calculates the wait time from the simultaneous call time based on the value of the transmission time interval, and this wait time Start sending when it has passed. Thereby, in response to the simultaneous call from the meter-reading central device, the plurality of called meter-reading terminal devices sequentially transmit the meter-reading value information at different times.
  • a synchronous wireless communication system in which a parent device periodically transmits a beacon signal and a child device periodically receives the beacon signal. Since the slave unit sets its own clock to the master unit clock and waits for reception of polling data from the master unit at a predetermined timing, it is particularly effective for power saving in a battery-powered slave unit.
  • a relay unit that relays and transmits a radio signal is used.
  • Patent Document 1 The technique of Patent Document 1 described above is to prevent a collision in re-calling, and cannot prevent the collision at the first transmission.
  • the centralized meter-reading device needs to set a recall time for each meter, it is difficult to flexibly respond to changes in the network configuration.
  • the technique of the said patent document 2 set the transmission time interval to each meter-reading terminal device by the meter-reading central device, the burden of the meter-reading central device was large. Further, the technique is not suitable for a meter reading device using a synchronous communication system including a repeater.
  • An object of the present invention is to provide a meter reading device that efficiently and automatically collects meter reading value information from a plurality of meters using a synchronous communication system including a repeater.
  • the present invention relates to a meter-reading device that collects meter-reading value information from a plurality of meters, each of which is associated with a master unit, at least one relay device, and each of the plurality of meters.
  • the master unit sequentially receives notification of meter reading value information from each of the plurality of slave units.
  • each of the plurality of slave units is periodically started from a subordinate destination of the slave unit among the master unit and the relay unit.
  • a beacon receiving unit that receives a beacon signal that is transmitted automatically, a wait time from when a meter-reading event occurs to when a meter-reading value is notified, the interval between the beacon signals, and between the own device and the parent device Depending on the number of stages of the repeater Out, and in which it was decided to have a call wait control unit for controlling the timing of the call according to the wait time the calculated.
  • the information indicating the number of stages of the repeater is included in the beacon signal received by the slave unit.
  • each of the plurality of slave units further calculates the wait time using its own identification number.
  • FIG. 1 It is a hierarchical structure figure of the radio
  • (A) is a figure which shows the structure of a basic slot
  • (b) is a figure which shows the structure of the link connection slot in a basic slot, respectively.
  • (A) is a figure which shows the structure of a link connection signal
  • (b) is a figure which respectively shows the structure of the repetition frame in a link connection signal, or the frame structure of a beacon signal. It is a figure which shows the internal structure of each apparatus in the radio
  • FIG. 1 Comprising: (a) is a main
  • FIG. 2 is a timing diagram in the case of 1-channel transmission in the wireless communication system of FIG. 1.
  • FIG. 2 is a timing diagram in the case of 2-channel transmission in the wireless communication system of FIG. 1.
  • FIG. 1 is a hierarchical structure diagram of a wireless communication system used in a meter reading device of a gas meter according to an embodiment of the present invention.
  • one master unit, ten relay units, and 330 slave units constitute a tree-shaped network.
  • Each of the slave units is attached to or built in the gas meter. That is, the wireless communication system of FIG. 1 constitutes a meter-reading device that collects meter-reading value information from, for example, a slave unit of a gas meter arranged in each of 330 units in one apartment house.
  • the master unit transmits the collected meter reading value information to a data center (not shown) via a telephone line or the like.
  • slave units having identification numbers 000 to 029 are arranged so as to be subordinate to the master unit. These child devices having identification numbers 000 to 029 communicate directly with the parent device without using a relay device.
  • Thirty slave units having identification numbers 100 to 129 are arranged so as to be subordinate to the relay unit having identification number 10.
  • the slave units having the identification numbers 100 to 129 communicate with the master unit via one relay unit having the identification number 10.
  • Thirty slave units having identification numbers 200 to 229 are arranged so as to be subordinate to the relay unit having identification number 20.
  • the slave units having the identification numbers 200 to 229 communicate with the master unit via two relay units having the identification numbers 20 and 10, respectively.
  • Thirty slave units having identification numbers 300 to 329 are arranged so as to be subordinate to the relay unit having identification number 30.
  • the slave units having the identification numbers 300 to 329 communicate with the master unit via three relay units having the identification numbers 30, 20, and 10, respectively. Although description in the middle is omitted, 30 slave units having identification numbers A00 to A29 are arranged to be subordinate to the relay unit having the identification number A0.
  • the slave units having the identification numbers A00 to A29 communicate with the master unit via 10 relay units having the identification numbers A0, 90, 80, 70, 60, 50, 40, 30, 20, and 10, respectively.
  • the identification number of the relay device may be referred to as a relay device ID
  • the identification number of the slave device may be referred to as a slave device ID.
  • a clock signal called a beacon signal is periodically transmitted from the master unit.
  • the slave units ID000 to 029 and the relay unit ID10 directly connected to the master unit periodically capture the beacon signal from the master unit and synchronize with the clock of the master unit.
  • the parent device is defined as the upper device
  • the child devices with ID000 to 029 and the relay device with ID10 directly connected to the parent device that is the upper device are defined as the lower devices.
  • the relay unit with ID 10 works as the master unit. That is, the ID10 repeater periodically transmits a beacon signal for clock adjustment.
  • the ID100 to 129 slave units and ID20 relay units directly connected to the ID10 relay unit periodically capture the beacon signal from the ID10 relay unit and synchronize with the clock of the ID10 relay unit.
  • the upper device is an ID10 relay device
  • the lower device is an ID100 to 129 slave device and an ID20 relay device directly connected to the ID10 relay device.
  • FIG. 2 is a diagram showing a slot position relationship between devices in the wireless communication system of FIG.
  • FIG. 3A shows the configuration of the basic slot
  • FIG. 3B shows the configuration of the link connection slot in the basic slot.
  • the basic slot is composed of T1 [seconds], and this basic slot is repeated on the time axis.
  • the basic slot is further composed of a lower slot and an upper slot.
  • the lower slot length and the upper slot length are each half the time of T1.
  • the lower slot is a slot for communicating with the lower apparatus
  • the upper slot is a slot for communicating with the upper apparatus.
  • the lower slot is divided into a beacon transmission slot (BT) 31, a link connection slot (L) 32, and a data communication slot (D) 33.
  • the upper slot is divided into a beacon receiving slot (BR) 34, a link connecting slot (L) 35, and a data communication slot (D) 36.
  • the host device periodically transmits a beacon signal using a beacon transmission slot (BT) 31.
  • the lower device periodically receives a beacon signal from the upper device in a beacon receiving slot (BR) 34.
  • the link connection slots (L) 32 and 35 are slots for communication between the upper device and the lower device for link connection.
  • the data communication slots (D) 33 and 36 are slots for performing communication for exchanging data after the link connection between the upper device and the lower device.
  • the link connection slots (L) 32 and 35 are composed of a lower call slot 37 and an upper response / upper call slot 38.
  • the lower call slot 37 is a slot for the lower device to transmit a link connection request signal when it is desired to establish a link connection from the lower device.
  • the upper response / upper call slot 38 is a slot for the upper device to return a response to the link connection request signal from the lower device, or when the upper device wishes to perform link connection from the upper device, the upper device transmits the link connection request signal. Is a slot for transmitting.
  • T2 is the slot length of the lower call slot 37
  • T3 is the slot length of the higher response / upper call slot 38.
  • FIG. 2 shows the slot position relationship among the parent device, the relay devices with IDs 10, 20, and 30 and the child devices with IDs 200, 201, and 300.
  • the notation “lower” represents the lower slot of FIG.
  • the notation “upper” represents the upper slot in FIG.
  • slot numbers 1 to 256 are assigned to the basic slots in order, and the slot number 256 is followed by the slot number 1.
  • the upper part of the slot configuration shown in FIG. 2 is the slot number.
  • signals indicated by arrows such as B1 to B4 indicate beacon signals
  • signals indicated by arrows C1 to C6 indicate signals for entry.
  • the beacon signal is transmitted from the beacon transmission slot 31 in the lower slot of every other basic slot.
  • the beacon signal transmitted from the parent device is periodically received by the relay device with ID10.
  • the repeater with ID10 is configured to receive the beacon signal B1 transmitted from the slot number 1 of the master unit.
  • the beacon signal B1 transmitted from the slot number 1 includes information on the beacon number 1.
  • the start position of the lower slot of the basic slot number 1 of the master unit becomes the start position of the upper slot of the basic slot number 255 of the repeater ID10. Reconfigure the slots.
  • the repeater of ID10 transmits a beacon signal at the odd-numbered basic slot number, like the master unit.
  • the lower device receives the beacon signal transmitted from the basic slot number 1 of the upper device by the same operation, and reconfigures its own slot in synchronization with the timing of the upper device.
  • the slave unit with ID 200 performs a beacon signal reception operation in a continuous reception state for a period longer than the beacon transmission interval T5. This operation is called a search mode as shown in FIG.
  • the master unit and the repeaters with IDs 10, 20, and 30 always transmit a beacon signal at least once.
  • the slave unit of ID200 recognizes that the beacon signal B3 from the relay unit of ID20 is equal to or higher than a predetermined level, the slave unit of ID20 subordinates to the relay unit of ID20, and therefore enters the entry request signal C1 in the upper slot of slot number 253. It transmits to the relay machine of ID20.
  • the ID20 relay device Upon receiving the entry request signal C1, the ID20 relay device transmits a signal C2 that relays the entry request signal from the ID200 slave device to the ID10 relay device. Further, the repeater with ID10 transmits a signal C3 for relaying the entry request signal to the parent device. When receiving the signal C3, the parent device transmits an entry permission signal to the ID 200 child device via the relay signals C4, C5, and C6. Through the operation described above, the slave unit with ID 200 is subordinated under the relay unit with ID 20.
  • C1 to C6 representing the entry request signal, the entry permission signal, and the relay signal use the data communication slots 33 and 36 after performing link connection using the link connection slots 32 and 35 shown in FIG. Sent and received.
  • FIG. 4A shows the signal format of the link connection signal transmitted / received in the link connection slots 32 and 35.
  • the link connection signal is composed of n (n is an integer) repetitive frames 51 to 56 and a main body frame 57.
  • FIG. 4B shows the structure of the repeated frame.
  • the repetitive frame includes a bit synchronization signal 58 for determining a bit sampling position, a frame synchronization signal 59 for detecting the head of data included in the frame, a control signal 60 carrying various control information, It consists of a simple ID 61 in which the ID for identification is shortened.
  • the ID is, for example, 64 bits, and the simple ID is 16 bits obtained by dividing the ID into four.
  • the information indicating which 16 bits of the ID divided into four are used as the simple ID 61 is in the control signal 60.
  • Repetitive frames 51 to 56 are given repetitive frame numbers 1 to n, and the repetitive frame number is added to the control signal 60.
  • the repeat frame is transmitted from a repeat frame having a large repeat number as shown in FIG. 4A, and the repeat frame number is decremented one by one, and the repeat frame number immediately before the main body frame 57 is 1.
  • the signal format of the beacon signal is the same as the repetitive frame configuration shown in FIG. 4B, and the relay stage number information is on the control signal 60.
  • the simple ID 61 is replaced with a beacon ID in the case of a beacon signal.
  • the repeater and the master that are transmitting the beacon signal can be identified by the beacon ID, and at the same time, the number of relay stages can be easily recognized by the slave. More specifically, the base unit has information indicating that the number of relay stages is 0, the ID 10 relay apparatus has information indicating that the number of relay stages is 1, and the ID 20 relay apparatus has 2 relay stages. Is put on the beacon signal transmitted by each.
  • FIG. 5 (a) to FIG. 5 (c) show the internal configuration of each layer of the wireless communication apparatus in the wireless communication system of FIG.
  • FIG. 5 (a) is a block diagram showing a master unit
  • FIG. 5 (b) is a relay unit
  • FIG. 5 (c) is a block diagram showing a slave unit.
  • the transmission / reception unit 2 includes a wireless transmission / reception circuit for performing wireless communication via the antenna 1.
  • the transmission / reception unit 12 includes a wireless transmission / reception circuit for performing wireless communication via the antenna 11.
  • Reference numeral 21 denotes an antenna
  • 22 denotes a transmission / reception unit
  • 23 denotes a beacon reception unit
  • 24 denotes a link connection unit
  • 25 denotes a call weight control unit
  • 26 denotes a control unit
  • 27 denotes a storage unit.
  • the control unit 26 performs time management of the entire wireless communication device and control of each unit.
  • the transmission / reception unit 22 includes a wireless transmission / reception circuit for performing wireless communication via the antenna 21.
  • the beacon transmission in the beacon transmission slot 31 in FIG. 3 (a) is performed using the beacon transmission units 3 and 13 in FIG. 5 (a) and FIG. 5 (b).
  • Beacon reception in the beacon reception slot 34 in FIG. 3A is performed using the beacon receiving units 14 and 23 in FIGS. 5B and 5C.
  • the link connection communication in the link connection slots 32 and 35 in FIG. 3A is performed using the link connection portions 4, 15 and 24 in FIGS. 5A to 5C.
  • the call waiting control unit 25 of the slave unit in FIG. 5 (c) determines the wait time from when the meter reading event occurs until the meter reading value is notified, between the interval between the beacon signals and the own unit and the master unit. Calculation is made according to the number of repeater stages and the ID of the own machine, and the call timing is controlled according to the calculated wait time. Since the slaves collide when calling out the meter reading value notification all at once, a call waiting time is added to delay the notification timing.
  • the storage unit 27 stores the wait time calculated by the call waiting control unit 25.
  • FIG. 6 is a flowchart showing the initial setting operation of the slave shown in FIG.
  • step S01 the network is entered using the procedure described with reference to FIG.
  • step S02 a periodic meter reading setting is received from the master unit.
  • the meter reading time can be set as what hour and minute every day of the month. Daily, weekly, or monthly time settings are also possible.
  • step S03 the relay stage number information is acquired from the beacon signal.
  • step S04 the wait time of the own device is calculated and stored.
  • the beacon signal interval is BI [seconds]
  • FIG. 7 is a flowchart showing the meter reading operation of the slave shown in FIG. 5 (c).
  • step S11 it is checked whether a meter reading event has occurred, that is, whether the set meter reading time has come. If the meter reading time has not yet arrived, it waits until that time. When the meter reading time comes, the process proceeds to step S12.
  • step S12 a call waiting state is entered according to the calculated wait time. When the wait time has elapsed, the process proceeds to step S13.
  • step S13 after the initial transmission of the meter reading value notification is executed, the process proceeds to step S14.
  • step S14 the presence or absence of an acknowledge (ACK) signal from the parent device is checked.
  • ACK acknowledge
  • step S15 a call waiting state before the first retransmission is entered.
  • step S16 after executing the first retransmission of the meter reading value notification, the process proceeds to step S17.
  • step S17 the presence / absence of an ACK signal from the parent device is checked.
  • step S19 the presence or absence of an ACK signal from the parent device is checked. If the ACK signal is received, it is determined that the meter reading value notification has been received by the master unit, and the process returns to step S11. If the ACK signal is not received, it is determined that the meter reading value notification has not been received by the master unit, and the process proceeds to step S20. In step S20, a retransmission error is stored.
  • FIG. 8 shows the order of the meter reading value notification operation of each slave unit in the wireless communication system of FIG.
  • the meter reading time 0:00 (0: 0) is set from the master unit.
  • the time reaches 0:00 the 330 slave units simultaneously determine the meter reading value information.
  • the call waiting time differs for each slave unit.
  • the slave unit of ID100 whose wait time at the time of initial transmission is 30 ⁇ BI sets a value obtained by adding 330 ⁇ BI to the wait time at the time of initial transmission as the first wait time for retransmission. That is, the wait time of the own device is determined as (330 + 30) ⁇ BI, and waits until the time becomes 0: 00+ (330 + 30) ⁇ BI, and the meter reading value notification to the parent device is called.
  • the slave device with ID 200 whose initial transmission wait time is 60 ⁇ BI sets a value obtained by adding 330 ⁇ BI to the initial transmission wait time as the first retransmission wait time. That is, the wait time of the own device is determined to be (330 + 60) ⁇ BI, and waits until the time becomes 0: 00+ (330 + 60) ⁇ BI, and the meter reading value notification to the parent device is issued.
  • the ID100 handset succeeds in the meter reading notification, but the ID200 handset fails in the meter reading notification.
  • the latter executes a second retransmission after a predetermined call waiting time.
  • the slave device with ID 200 whose first retransmission wait time is (330 + 60) ⁇ BI sets a value obtained by adding 330 ⁇ BI to the first retransmission wait time as the second retransmission wait time. That is, the wait time of the own device is determined to be (330 ⁇ 2 + 60) ⁇ BI, and waits until the time becomes 0: 00+ (330 ⁇ 2 + 60) ⁇ BI, and the meter reading value notification to the parent device is issued. In the example of FIG. 8, it is assumed that the slave unit with ID 200 succeeds in the meter reading value notification in the second retransmission.
  • N 0, 1, 2,..., M ⁇ 1
  • Wait time BI x (number of relay stages x M + N) It is.
  • the value of N may be generated by a random function.
  • FIG. 9 is a timing chart in the case of 1-channel transmission in the wireless communication system of FIG. However, the relay device interposed between the parent device and the child device is not shown.
  • the slave unit that has failed in the initial transmission retransmits the meter reading value at the timing of the first received beacon signal after the call waiting for a predetermined time.
  • retransmission may fail for the same reason as the first transmission.
  • FIG. 10 is a timing chart in the case of 2-channel transmission in the wireless communication system of FIG.
  • the base unit transmits a beacon signal by alternately using the A channel and the B channel.
  • a communication failure has occurred when the handset first transmits a meter reading value using the A channel.
  • the slave unit that has failed in the initial transmission retransmits the meter reading value at the timing of the beacon signal first received on the B channel different from the A channel used for the initial transmission after the call waiting for a predetermined time.
  • the possibility of retransmission failure is reduced. Of course, it is possible to use more than two channels.
  • the time stamp included in the meter reading value information is not the transmission time from the slave unit but the meter reading time of the slave unit.
  • the meter-reading device has an effect of being able to efficiently and automatically process calls such as periodic meter-reading, and measures a plurality of usage amounts of electricity, gas, water, etc. This is useful as a technique for collecting meter reading value information from these meters.

Abstract

A synchronous communication system including server devices, at least one relay device, and a plurality of client devices respectively associated with any of a plurality of meters and respectively subordinate to any of the server devices and relay devices is utilized. Each of the plurality of client devices has: a beacon reception unit (23) for receiving a beacon signal periodically transmitted by a device to which the client device is subordinate, from among the server devices and relay devices; and a call wait control unit (25) for calculating a wait time of a duration from the time at which a meter reading event occurs until a meter reading value notification is made, doing so according to the beacon signal interval, and the number of stages of relay devices between the device itself and the client device, and for controlling the timing of calls according to the calculated wait time.

Description

検針装置Meter reading device
 本発明は、各々電気、ガス、水道等の使用量を計測する複数のメータから検針値情報を収集する検針装置に関するものである。 The present invention relates to a meter-reading device that collects meter-reading value information from a plurality of meters that measure usage amounts of electricity, gas, water, and the like.
 特許文献1の技術によれば、同一通信線上に接続された複数の通信機能付きメータが同時に発呼を行うことにより通信の衝突が生じた場合に、各メータの再発呼タイミングが互いにずれるように集中検針装置が各メータに再発呼時間を設定することで、再発呼における通信の衝突を防止する。 According to the technique of Patent Document 1, when a communication collision occurs when a plurality of meters with communication functions connected on the same communication line make a call at the same time, the re-call timings of the meters are shifted from each other. The centralized meter-reading apparatus sets a re-calling time for each meter, thereby preventing communication collision in re-calling.
 特許文献2の技術は、検針中央装置から一斉に無線呼出を行った場合でも、複数の検針端末装置からの同時発呼による電話回線上の輻輳を発生することなく、効率良く検針値情報を収集することを目的とする。そのため、検針中央装置からの一斉呼出時のメッセージ中に送信時間間隔の値と、呼び出し対象の検針端末装置のユーザIDの範囲とを含めておき、各検針端末装置は、呼び出された複数の検針端末装置のうち自機が何番目に送信を開始すべきかを自機のユーザIDから認識し、送信時間間隔の値をもとに一斉呼び出しの時刻からのウェイト時間を算出し、このウェイト時間が経過した時点で送信を開始する。これにより、検針中央装置からの一斉呼出に応答して、呼び出された複数の検針端末装置が順次時間をずらして検針値情報を送信する。 The technology of Patent Document 2 efficiently collects meter reading value information without causing congestion on the telephone line due to simultaneous calls from a plurality of meter reading terminal devices even when wireless calling is performed simultaneously from the meter reading central device. The purpose is to do. Therefore, the value of the transmission time interval and the range of the user ID of the meter reading terminal device to be called are included in the message at the time of simultaneous calling from the meter reading central device, and each meter reading terminal device has a plurality of called meter reading terminals. The terminal device recognizes from the user ID of its own device the number of times the own device should start transmission, calculates the wait time from the simultaneous call time based on the value of the transmission time interval, and this wait time Start sending when it has passed. Thereby, in response to the simultaneous call from the meter-reading central device, the plurality of called meter-reading terminal devices sequentially transmit the meter-reading value information at different times.
 一方、親機が定期的にビーコン信号を送信し、当該ビーコン信号を子機が定期的に受信するように構成された、同期方式の無線通信システムが知られている。子機は親機の時計に自機の時計を合わせ、所定のタイミングで親機からのポーリングデータを受信待ち受けするので、特にバッテリ駆動の子機における省電力化に有効である。このような同期方式の無線通信システムにおいて、親機と子機との間で直接通信ができない場合、無線信号を中継伝送する中継機が用いられる。 On the other hand, there is known a synchronous wireless communication system in which a parent device periodically transmits a beacon signal and a child device periodically receives the beacon signal. Since the slave unit sets its own clock to the master unit clock and waits for reception of polling data from the master unit at a predetermined timing, it is particularly effective for power saving in a battery-powered slave unit. In such a synchronous radio communication system, when direct communication is not possible between a master unit and a slave unit, a relay unit that relays and transmits a radio signal is used.
特開2008-258715号公報JP 2008-258715 A 特開2001-86574号公報JP 2001-86574 A
 上記特許文献1の技術は、再発呼における衝突を防止するものであって、初送時の衝突防止を実現できなかった。また、集中検針装置が各メータに再発呼時間を設定する必要があったので、ネットワーク構成の変化への柔軟な対応が困難であった。 The technique of Patent Document 1 described above is to prevent a collision in re-calling, and cannot prevent the collision at the first transmission. In addition, since the centralized meter-reading device needs to set a recall time for each meter, it is difficult to flexibly respond to changes in the network configuration.
 また、上記特許文献2の技術は、検針中央装置が各検針端末装置に送信時間間隔を設定するものであったので、検針中央装置の負担が大きかった。また、中継機を含む同期方式の通信システムを利用した検針装置に適した技術ではなかった。 Moreover, since the technique of the said patent document 2 set the transmission time interval to each meter-reading terminal device by the meter-reading central device, the burden of the meter-reading central device was large. Further, the technique is not suitable for a meter reading device using a synchronous communication system including a repeater.
 本発明の目的は、中継機を含む同期方式の通信システムを利用して、複数のメータから検針値情報を効率的かつ自動的に収集する検針装置を提供することにある。 An object of the present invention is to provide a meter reading device that efficiently and automatically collects meter reading value information from a plurality of meters using a synchronous communication system including a repeater.
 上記目的を達成するため、本発明は、複数のメータから検針値情報を収集する検針装置において、親機と、少なくとも1つの中継機と、各々前記複数のメータのいずれかに対応付けられかつ各々前記親機及び前記中継機のうちのいずれかに従属する複数の子機とを含む同期方式の通信システムにて、前記親機は前記複数の子機の各々から検針値情報の通知を順次受けるように、前記複数の子機と前記親機との間の中継ディレイを考慮して、前記複数の子機の各々は、前記親機及び前記中継機のうちの当該子機の従属先から定期的に送信されるビーコン信号を受信するビーコン受信部と、検針イベントが発生してから検針値通知を行うまでのウェイト時間を、前記ビーコン信号の間隔と、自機と前記親機との間の前記中継機の段数とに応じて算出し、かつ当該算出したウェイト時間に従って発呼のタイミングを制御する発呼ウェイト制御部とを有することとしたものである。 In order to achieve the above object, the present invention relates to a meter-reading device that collects meter-reading value information from a plurality of meters, each of which is associated with a master unit, at least one relay device, and each of the plurality of meters. In a synchronous communication system including a plurality of slave units subordinate to either the master unit or the relay unit, the master unit sequentially receives notification of meter reading value information from each of the plurality of slave units. As described above, in consideration of the relay delay between the plurality of slave units and the master unit, each of the plurality of slave units is periodically started from a subordinate destination of the slave unit among the master unit and the relay unit. A beacon receiving unit that receives a beacon signal that is transmitted automatically, a wait time from when a meter-reading event occurs to when a meter-reading value is notified, the interval between the beacon signals, and between the own device and the parent device Depending on the number of stages of the repeater Out, and in which it was decided to have a call wait control unit for controlling the timing of the call according to the wait time the calculated.
 前記中継機の段数を示す情報は、当該子機が受信する前記ビーコン信号の中に含まれていることが好ましい。 It is preferable that the information indicating the number of stages of the repeater is included in the beacon signal received by the slave unit.
 また、前記複数の子機の各々は、更に自機の識別番号を用いて前記ウェイト時間を算出することが好ましい。 Further, it is preferable that each of the plurality of slave units further calculates the wait time using its own identification number.
 本発明によれば、定期検針等の発呼を効率的かつ自動的に処理することができる。 According to the present invention, it is possible to efficiently and automatically process calls such as periodic meter reading.
本発明の実施形態に係るガスメータの検針装置で利用される無線通信システムの階層構造図である。It is a hierarchical structure figure of the radio | wireless communications system utilized with the meter-reading apparatus of the gas meter which concerns on embodiment of this invention. 図1の無線通信システムにおける機器間のスロット位置関係を示す図である。It is a figure which shows the slot positional relationship between the apparatuses in the radio | wireless communications system of FIG. (a)は基本スロットの構成を、(b)は基本スロット中のリンク接続スロットの構成をそれぞれ示す図である。(A) is a figure which shows the structure of a basic slot, (b) is a figure which shows the structure of the link connection slot in a basic slot, respectively. (a)はリンク接続信号の構成を、(b)はリンク接続信号中の繰返しフレームの構成又はビーコン信号のフレーム構成をそれぞれ示す図である。(A) is a figure which shows the structure of a link connection signal, (b) is a figure which respectively shows the structure of the repetition frame in a link connection signal, or the frame structure of a beacon signal. 図1の無線通信システム中の各機器の内部構成を示す図であって、(a)は親機を、(b)は中継機を、(c)は子機をそれぞれ示すブロック図である。It is a figure which shows the internal structure of each apparatus in the radio | wireless communications system of FIG. 1, Comprising: (a) is a main | base station, (b) is a relay machine, (c) is a block diagram which respectively shows a subunit | mobile_unit. 図5(c)に示された子機の初期設定動作を示すフロー図である。It is a flowchart which shows the initial setting operation | movement of the subunit | mobile_unit shown by FIG.5 (c). 図5(c)に示された子機の検針動作を示すフロー図である。It is a flowchart which shows the meter-reading operation | movement of the subunit | mobile_unit shown by FIG.5 (c). 図1の無線通信システムにおける各子機の検針値通知動作の順番を示す図である。It is a figure which shows the order of the meter-reading value notification operation | movement of each subunit | mobile_unit in the radio | wireless communications system of FIG. 図1の無線通信システムにおける1チャンネル伝送の場合のタイミング図である。FIG. 2 is a timing diagram in the case of 1-channel transmission in the wireless communication system of FIG. 1. 図1の無線通信システムにおける2チャンネル伝送の場合のタイミング図である。FIG. 2 is a timing diagram in the case of 2-channel transmission in the wireless communication system of FIG. 1.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、この実施形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.
 図1は、本発明の実施形態に係るガスメータの検針装置で利用される無線通信システムの階層構造図である。図1の無線通信システムでは、1台の親機と、10台の中継機と、330台の子機とがツリー状のネットワークを構成している。子機の各々は、ガスメータに取り付けられ、又は内蔵されている。つまり、図1の無線通信システムは、例えば1棟の集合住宅における330戸の各々に配置されたガスメータの子機から検針値情報を親機へ収集する検針装置を構成する。親機は、電話回線等を介して不図示のデータセンタへ、収集した検針値情報を伝送する。 FIG. 1 is a hierarchical structure diagram of a wireless communication system used in a meter reading device of a gas meter according to an embodiment of the present invention. In the wireless communication system of FIG. 1, one master unit, ten relay units, and 330 slave units constitute a tree-shaped network. Each of the slave units is attached to or built in the gas meter. That is, the wireless communication system of FIG. 1 constitutes a meter-reading device that collects meter-reading value information from, for example, a slave unit of a gas meter arranged in each of 330 units in one apartment house. The master unit transmits the collected meter reading value information to a data center (not shown) via a telephone line or the like.
 図1の構成を、更に詳細に説明する。まず、識別番号000~029を持つ30台の子機が、親機に従属するように配置されている。これら識別番号000~029の子機は、中継機を介さずに親機と直接通信を行う。識別番号100~129を持つ30台の子機が、識別番号10を持つ中継機に従属するように配置されている。これら識別番号100~129の子機は、識別番号10を持つ1台の中継機を介して親機と通信を行う。識別番号200~229を持つ30台の子機が、識別番号20を持つ中継機に従属するように配置されている。これら識別番号200~229の子機は、識別番号20及び10をそれぞれ持つ2台の中継機を介して親機と通信を行う。識別番号300~329を持つ30台の子機が、識別番号30を持つ中継機に従属するように配置されている。これら識別番号300~329の子機は、識別番号30、20及び10をそれぞれ持つ3台の中継機を介して親機と通信を行う。途中の説明は省略するが、識別番号A00~A29を持つ30台の子機が、識別番号A0を持つ中継機に従属するように配置されている。これら識別番号A00~A29の子機は、識別番号A0、90、80、70、60、50、40、30、20及び10をそれぞれ持つ10台の中継機を介して親機と通信を行う。 1 will be described in more detail. First, 30 slave units having identification numbers 000 to 029 are arranged so as to be subordinate to the master unit. These child devices having identification numbers 000 to 029 communicate directly with the parent device without using a relay device. Thirty slave units having identification numbers 100 to 129 are arranged so as to be subordinate to the relay unit having identification number 10. The slave units having the identification numbers 100 to 129 communicate with the master unit via one relay unit having the identification number 10. Thirty slave units having identification numbers 200 to 229 are arranged so as to be subordinate to the relay unit having identification number 20. The slave units having the identification numbers 200 to 229 communicate with the master unit via two relay units having the identification numbers 20 and 10, respectively. Thirty slave units having identification numbers 300 to 329 are arranged so as to be subordinate to the relay unit having identification number 30. The slave units having the identification numbers 300 to 329 communicate with the master unit via three relay units having the identification numbers 30, 20, and 10, respectively. Although description in the middle is omitted, 30 slave units having identification numbers A00 to A29 are arranged to be subordinate to the relay unit having the identification number A0. The slave units having the identification numbers A00 to A29 communicate with the master unit via 10 relay units having the identification numbers A0, 90, 80, 70, 60, 50, 40, 30, 20, and 10, respectively.
 以下の説明では、m=0、1、2、3、…、10とする場合に子機がm台の中継機を介して親機と接続するとき、中継段数がm段であると表現する。また、中継機の識別番号を中継機IDと呼び、子機の識別番号を子機IDと呼ぶことがある。 In the following description, when m = 0, 1, 2, 3,..., 10, when the slave unit is connected to the master unit via m relay units, it is expressed that the number of relay stages is m. . Also, the identification number of the relay device may be referred to as a relay device ID, and the identification number of the slave device may be referred to as a slave device ID.
 親機からは、ビーコン信号と呼ばれる時計合わせのための信号が定期的に送信される。親機に直接つながるID000~029の子機とID10の中継機とは、親機からのビーコン信号を定期的に捕捉し、親機の時計と同期を取る。ここで親機を上位機器と定義し、上位機器である親機に直接つながるID000~029の子機とID10の中継機とを下位機器と定義する。 A clock signal called a beacon signal is periodically transmitted from the master unit. The slave units ID000 to 029 and the relay unit ID10 directly connected to the master unit periodically capture the beacon signal from the master unit and synchronize with the clock of the master unit. Here, the parent device is defined as the upper device, and the child devices with ID000 to 029 and the relay device with ID10 directly connected to the parent device that is the upper device are defined as the lower devices.
 以下同様に、ID100~129の子機に対しては、ID10の中継機が親機として働く。すなわち、ID10の中継機は、時計合わせのためのビーコン信号を定期的に送信する。ID10の中継機に直接つながるID100~129の子機とID20の中継機とは、ID10の中継機からのビーコン信号を定期的に捕捉し、ID10の中継機の時計と同期を取る。上位機器はID10の中継機であり、下位機器はID10の中継機に直接つながるID100~129の子機とID20の中継機である。 Similarly, for the slave units with IDs 100 to 129, the relay unit with ID 10 works as the master unit. That is, the ID10 repeater periodically transmits a beacon signal for clock adjustment. The ID100 to 129 slave units and ID20 relay units directly connected to the ID10 relay unit periodically capture the beacon signal from the ID10 relay unit and synchronize with the clock of the ID10 relay unit. The upper device is an ID10 relay device, and the lower device is an ID100 to 129 slave device and an ID20 relay device directly connected to the ID10 relay device.
 図2は、図1の無線通信システムにおける機器間のスロット位置関係を示す図である。また、図3(a)は基本スロットの構成を、図3(b)は基本スロット中のリンク接続スロットの構成をそれぞれ示す図である。図2を詳細に説明する前に、図3(a)及び図3(b)を用いて、各機が管理するスロットの構成を説明する。 FIG. 2 is a diagram showing a slot position relationship between devices in the wireless communication system of FIG. FIG. 3A shows the configuration of the basic slot, and FIG. 3B shows the configuration of the link connection slot in the basic slot. Before describing FIG. 2 in detail, the configuration of the slots managed by each device will be described with reference to FIGS. 3 (a) and 3 (b).
 図3(a)に示すように、基本スロットはT1[秒]で構成され、この基本スロットが時間軸上で繰返される。基本スロットは、更に下位スロットと上位スロットとで構成されている。下位スロット長と上位スロット長とは、それぞれT1の半分の時間である。下位スロットは下位機器と通信を行うためのスロット、上位スロットは上位機器と通信を行うためのスロットである。下位スロットは、ビーコン送信用スロット(BT)31と、リンク接続用スロット(L)32と、データ通信用スロット(D)33とに分割されている。上位スロットは、ビーコン受信用スロット(BR)34と、リンク接続用スロット(L)35と、データ通信用スロット(D)36とに分割されている。上位機器は、ビーコン送信用スロット(BT)31を用いて定期的にビーコン信号を送信する。下位機器は、ビーコン受信用スロット(BR)34において定期的に上位機器からのビーコン信号を受信する。リンク接続用スロット(L)32,35は、上位機器と下位機器とがリンク接続のための通信を行うスロットである。データ通信用スロット(D)33,36は、上位機器と下位機器とがリンク接続後にデータのやり取りを行うための通信を行うスロットである。 As shown in FIG. 3A, the basic slot is composed of T1 [seconds], and this basic slot is repeated on the time axis. The basic slot is further composed of a lower slot and an upper slot. The lower slot length and the upper slot length are each half the time of T1. The lower slot is a slot for communicating with the lower apparatus, and the upper slot is a slot for communicating with the upper apparatus. The lower slot is divided into a beacon transmission slot (BT) 31, a link connection slot (L) 32, and a data communication slot (D) 33. The upper slot is divided into a beacon receiving slot (BR) 34, a link connecting slot (L) 35, and a data communication slot (D) 36. The host device periodically transmits a beacon signal using a beacon transmission slot (BT) 31. The lower device periodically receives a beacon signal from the upper device in a beacon receiving slot (BR) 34. The link connection slots (L) 32 and 35 are slots for communication between the upper device and the lower device for link connection. The data communication slots (D) 33 and 36 are slots for performing communication for exchanging data after the link connection between the upper device and the lower device.
 図3(b)に示すように、リンク接続用スロット(L)32,35は、下位発呼用スロット37と、上位応答/上位発呼用スロット38とから構成されている。下位発呼用スロット37は、下位機器からリンク接続を行いたいときに下位機器がリンク接続要求信号を送信するためのスロットである。上位応答/上位発呼用スロット38は、下位機器からのリンク接続要求信号に対して上位機器が応答を返すためのスロット、あるいは上位機器からリンク接続を行いたいときに上位機器がリンク接続要求信号を送信するためのスロットである。T2は下位発呼用スロット37のスロット長、T3は上位応答/上位発呼用スロット38のスロット長である。 As shown in FIG. 3B, the link connection slots (L) 32 and 35 are composed of a lower call slot 37 and an upper response / upper call slot 38. The lower call slot 37 is a slot for the lower device to transmit a link connection request signal when it is desired to establish a link connection from the lower device. The upper response / upper call slot 38 is a slot for the upper device to return a response to the link connection request signal from the lower device, or when the upper device wishes to perform link connection from the upper device, the upper device transmits the link connection request signal. Is a slot for transmitting. T2 is the slot length of the lower call slot 37, and T3 is the slot length of the higher response / upper call slot 38.
 次に、図2について説明する。図2は、親機と、ID10、20及び30の中継機と、ID200、201及び300の子機とのスロット位置関係を示している。図2のスロット構成において「下」という表記は図3(a)の下位スロットを表す。同様に「上」という表記は図3(a)の上位スロットを表す。そして基本スロットには1から256までのスロット番号が順番に付与され、スロット番号256の次にはスロット番号1に戻る。図2に示すスロット構成の上段がスロット番号である。図2においてB1~B4のような矢印で表示される信号はビーコン信号、C1~C6の矢印で表示される信号は参入のための信号を示している。 Next, FIG. 2 will be described. FIG. 2 shows the slot position relationship among the parent device, the relay devices with IDs 10, 20, and 30 and the child devices with IDs 200, 201, and 300. In the slot configuration of FIG. 2, the notation “lower” represents the lower slot of FIG. Similarly, the notation “upper” represents the upper slot in FIG. Then, slot numbers 1 to 256 are assigned to the basic slots in order, and the slot number 256 is followed by the slot number 1. The upper part of the slot configuration shown in FIG. 2 is the slot number. In FIG. 2, signals indicated by arrows such as B1 to B4 indicate beacon signals, and signals indicated by arrows C1 to C6 indicate signals for entry.
 図2の例では、ビーコン信号は1つおきの基本スロットの下位スロット中のビーコン送信用スロット31から送信される。親機より送信されるビーコン信号は、ID10の中継機で定期的に受信される。ID10の中継機は、親機のスロット番号1から送信されるビーコン信号B1を受信するように構成されている。スロット番号1から送信されるビーコン信号B1には、ビーコン番号1の情報が含まれている。そして、ID10の中継機でビーコン番号1のビーコン信号B1を受信すると、親機の基本スロット番号1の下位スロットの先頭位置をID10の中継機の基本スロット番号255の上位スロットの先頭位置となるようにスロットを構成しなおす。そして、ID10の中継機は、親機と同様に奇数番目の基本スロット番号のところでビーコン信号を送信する。以下同様の動作で下位機器は上位機器の基本スロット番号1から送信されるビーコン信号を受信し、上位機器のタイミングに同期して自機のスロットを構成しなおす。 In the example of FIG. 2, the beacon signal is transmitted from the beacon transmission slot 31 in the lower slot of every other basic slot. The beacon signal transmitted from the parent device is periodically received by the relay device with ID10. The repeater with ID10 is configured to receive the beacon signal B1 transmitted from the slot number 1 of the master unit. The beacon signal B1 transmitted from the slot number 1 includes information on the beacon number 1. When the beacon signal B1 with the beacon number 1 is received by the repeater ID10, the start position of the lower slot of the basic slot number 1 of the master unit becomes the start position of the upper slot of the basic slot number 255 of the repeater ID10. Reconfigure the slots. And the repeater of ID10 transmits a beacon signal at the odd-numbered basic slot number, like the master unit. Thereafter, the lower device receives the beacon signal transmitted from the basic slot number 1 of the upper device by the same operation, and reconfigures its own slot in synchronization with the timing of the upper device.
 次に、ID200の子機が無線通信システムに参入する場合の動作について説明する。ID200の子機はビーコン送信間隔T5よりも長い期間連続受信状態でビーコン信号の受信動作を行う。この動作を図2に示すようにサーチモードと呼ぶことにする。サーチモードの期間に、親機及びID10、20、30の中継機は必ず1回以上ビーコン信号を送信する。例えば、ID200の子機は、ID20の中継機からのビーコン信号B3が所定レベル以上であると認識すると、ID20の中継機の下に従属するためにスロット番号253の上位スロットで参入要求信号C1をID20の中継機宛てに送信する。ID20の中継機は、参入要求信号C1を受信すると、ID10の中継機にID200の子機からの参入要求信号を中継する信号C2を送信する。そして、更にID10の中継機は、参入要求信号を中継する信号C3を親機宛てに送信する。親機は、信号C3を受信すると、中継信号C4,C5,C6を介してID200の子機宛てに参入許可信号を送信する。以上述べた動作によりID200の子機はID20の中継機の下に従属することになる。 Next, the operation when the ID200 slave enters the wireless communication system will be described. The slave unit with ID 200 performs a beacon signal reception operation in a continuous reception state for a period longer than the beacon transmission interval T5. This operation is called a search mode as shown in FIG. During the search mode period, the master unit and the repeaters with IDs 10, 20, and 30 always transmit a beacon signal at least once. For example, when the slave unit of ID200 recognizes that the beacon signal B3 from the relay unit of ID20 is equal to or higher than a predetermined level, the slave unit of ID20 subordinates to the relay unit of ID20, and therefore enters the entry request signal C1 in the upper slot of slot number 253. It transmits to the relay machine of ID20. Upon receiving the entry request signal C1, the ID20 relay device transmits a signal C2 that relays the entry request signal from the ID200 slave device to the ID10 relay device. Further, the repeater with ID10 transmits a signal C3 for relaying the entry request signal to the parent device. When receiving the signal C3, the parent device transmits an entry permission signal to the ID 200 child device via the relay signals C4, C5, and C6. Through the operation described above, the slave unit with ID 200 is subordinated under the relay unit with ID 20.
 参入要求信号、参入許可信号及び中継信号を表すC1~C6は、図3(b)に示すリンク接続用スロット32,35を用いてリンク接続を行った後、データ通信用スロット33,36を用いて送受信される。 C1 to C6 representing the entry request signal, the entry permission signal, and the relay signal use the data communication slots 33 and 36 after performing link connection using the link connection slots 32 and 35 shown in FIG. Sent and received.
 図4(a)にリンク接続用スロット32,35で送受信されるリンク接続信号の信号フォーマットを示す。リンク接続信号はn個(nは整数)の繰返しフレーム51~56と本体フレーム57とから構成されている。図4(b)に繰返しフレームの構成を示す。繰返しフレームは、ビットのサンプリング位置を決めるためのビット同期信号58と、フレームに含まれるデータの先頭を検出するためのフレーム同期信号59と、各種制御情報が乗っている制御信号60と、機器を識別するためのIDを短縮した簡易ID61とから構成されている。IDは例えば64ビットであり、簡易IDはIDを4分割した16ビットである。そして、IDを4分割したうちのどの16ビットを簡易ID61としたかという情報は制御信号60に乗っている。繰返しフレーム長はT6である。したがって、n個の繰返しフレーム長T7は、T7=n×T6を満たす。そして、繰返しフレーム51~56には繰返しフレーム番号が1からnまで付与され、制御信号60に繰返しフレーム番号が乗っている。繰返しフレームは図4(a)に示すように大きな繰返し番号の繰返しフレームから送信され、1つずつ繰返しフレーム番号がディクリメントしていき、本体フレーム57の直前の繰返しフレーム番号は1である。 FIG. 4A shows the signal format of the link connection signal transmitted / received in the link connection slots 32 and 35. The link connection signal is composed of n (n is an integer) repetitive frames 51 to 56 and a main body frame 57. FIG. 4B shows the structure of the repeated frame. The repetitive frame includes a bit synchronization signal 58 for determining a bit sampling position, a frame synchronization signal 59 for detecting the head of data included in the frame, a control signal 60 carrying various control information, It consists of a simple ID 61 in which the ID for identification is shortened. The ID is, for example, 64 bits, and the simple ID is 16 bits obtained by dividing the ID into four. The information indicating which 16 bits of the ID divided into four are used as the simple ID 61 is in the control signal 60. The repetitive frame length is T6. Therefore, n repetitive frame lengths T7 satisfy T7 = n × T6. Repetitive frames 51 to 56 are given repetitive frame numbers 1 to n, and the repetitive frame number is added to the control signal 60. The repeat frame is transmitted from a repeat frame having a large repeat number as shown in FIG. 4A, and the repeat frame number is decremented one by one, and the repeat frame number immediately before the main body frame 57 is 1.
 ビーコン信号の信号フォーマットは、図4(b)に示す繰返しフレーム構成と同じ構成であり、制御信号60のところに中継段数情報が乗っている。簡易ID61は、ビーコン信号の場合にはビーコンIDに置き換わる。ビーコンIDによりビーコン信号を送信している中継機及び親機を識別することができると同時に、子機にて中継段数が容易に認識できる。具体的に説明すると、親機は中継段数が0であることを示す情報を、ID10の中継機は中継段数が1であることを示す情報を、ID20の中継機は中継段数が2であることを示す情報を、それぞれが送信するビーコン信号に乗せるのである。 The signal format of the beacon signal is the same as the repetitive frame configuration shown in FIG. 4B, and the relay stage number information is on the control signal 60. The simple ID 61 is replaced with a beacon ID in the case of a beacon signal. The repeater and the master that are transmitting the beacon signal can be identified by the beacon ID, and at the same time, the number of relay stages can be easily recognized by the slave. More specifically, the base unit has information indicating that the number of relay stages is 0, the ID 10 relay apparatus has information indicating that the number of relay stages is 1, and the ID 20 relay apparatus has 2 relay stages. Is put on the beacon signal transmitted by each.
 図1の無線通信システム中の各階層の無線通信装置の内部構成を図5(a)~図5(c)に示す。図5(a)は親機を、図5(b)は中継機を、図5(c)は子機をそれぞれ示すブロック図である。 FIG. 5 (a) to FIG. 5 (c) show the internal configuration of each layer of the wireless communication apparatus in the wireless communication system of FIG. FIG. 5 (a) is a block diagram showing a master unit, FIG. 5 (b) is a relay unit, and FIG. 5 (c) is a block diagram showing a slave unit.
 まず、図5(a)を参照しながら、親機の構成の概略について説明する。1はアンテナ、2は送受信部、3はビーコン送信部、4はリンク接続部、5は制御部である。制御部5は、無線通信装置全体の時間管理や各部の制御を行う。送受信部2は、アンテナ1を介して無線通信を行うための無線送受信回路で構成されている。 First, an outline of the configuration of the parent device will be described with reference to FIG. 1 is an antenna, 2 is a transmission / reception unit, 3 is a beacon transmission unit, 4 is a link connection unit, and 5 is a control unit. The control unit 5 performs time management of the entire wireless communication device and control of each unit. The transmission / reception unit 2 includes a wireless transmission / reception circuit for performing wireless communication via the antenna 1.
 次に、図5(b)を参照しながら、中継機の構成の概略について説明する。11はアンテナ、12は送受信部、13はビーコン送信部、14はビーコン受信部、15はリンク接続部、16は制御部である。制御部16は、無線通信装置全体の時間管理や各部の制御を行う。送受信部12は、アンテナ11を介して無線通信を行うための無線送受信回路で構成されている。 Next, an outline of the configuration of the repeater will be described with reference to FIG. 11 is an antenna, 12 is a transmission / reception unit, 13 is a beacon transmission unit, 14 is a beacon reception unit, 15 is a link connection unit, and 16 is a control unit. The control unit 16 performs time management of the entire wireless communication device and control of each unit. The transmission / reception unit 12 includes a wireless transmission / reception circuit for performing wireless communication via the antenna 11.
 次に、図5(c)を参照しながら、子機の構成の概略について説明する。21はアンテナ、22は送受信部、23はビーコン受信部、24はリンク接続部、25は発呼ウェイト制御部、26は制御部、27は記憶部である。制御部26は、無線通信装置全体の時間管理や各部の制御を行う。送受信部22はアンテナ21を介して無線通信を行うための無線送受信回路で構成されている。 Next, an outline of the configuration of the slave unit will be described with reference to FIG. Reference numeral 21 denotes an antenna, 22 denotes a transmission / reception unit, 23 denotes a beacon reception unit, 24 denotes a link connection unit, 25 denotes a call weight control unit, 26 denotes a control unit, and 27 denotes a storage unit. The control unit 26 performs time management of the entire wireless communication device and control of each unit. The transmission / reception unit 22 includes a wireless transmission / reception circuit for performing wireless communication via the antenna 21.
 図3(a)のビーコン送信用スロット31でのビーコン送信は、図5(a)及び図5(b)におけるビーコン送信部3,13を用いて行われる。図3(a)のビーコン受信用スロット34でのビーコン受信は、図5(b)及び図5(c)におけるビーコン受信部14,23を用いて行われる。また、図3(a)のリンク接続用スロット32,35でのリンク接続通信は、図5(a)~図5(c)におけるリンク接続部4,15,24を用いて行われる。 The beacon transmission in the beacon transmission slot 31 in FIG. 3 (a) is performed using the beacon transmission units 3 and 13 in FIG. 5 (a) and FIG. 5 (b). Beacon reception in the beacon reception slot 34 in FIG. 3A is performed using the beacon receiving units 14 and 23 in FIGS. 5B and 5C. Further, the link connection communication in the link connection slots 32 and 35 in FIG. 3A is performed using the link connection portions 4, 15 and 24 in FIGS. 5A to 5C.
 図5(c)における子機の発呼ウェイト制御部25は、検針イベントが発生してから検針値通知を行うまでのウェイト時間を、ビーコン信号の間隔と、自機と親機との間の中継機段数と、自機のIDとに応じて算出し、かつ当該算出したウェイト時間に従って発呼のタイミングを制御する。子機が一斉に検針値通知を発呼すると衝突するため、発呼ウェイトを入れて、通知するタイミングを遅らせるのである。記憶部27は、発呼ウェイト制御部25が算出したウェイト時間等を記憶する。 The call waiting control unit 25 of the slave unit in FIG. 5 (c) determines the wait time from when the meter reading event occurs until the meter reading value is notified, between the interval between the beacon signals and the own unit and the master unit. Calculation is made according to the number of repeater stages and the ID of the own machine, and the call timing is controlled according to the calculated wait time. Since the slaves collide when calling out the meter reading value notification all at once, a call waiting time is added to delay the notification timing. The storage unit 27 stores the wait time calculated by the call waiting control unit 25.
 図6は、図5(c)に示された子機の初期設定動作を示すフロー図である。ステップS01では、図2を用いて説明した手順でネットワークに参入する。ステップS02では、親機からの定期検針設定を受領する。例えば、毎月何日の何時何分との検針時刻の設定が可能である。毎日、毎週、あるいは毎月の時刻設定も可能である。ステップS03では、ビーコン信号から中継段数情報を取得する。ステップS04では、自機のウェイト時間を算出し、これを記憶する。ビーコン信号の間隔をBI[秒]とするとき、ウェイト時間[秒]は、
 ウェイト時間=BI×(中継段数×30+子機IDの下位2桁)
により算出される。ビーコン間隔BIは、例えば12.8秒である。
FIG. 6 is a flowchart showing the initial setting operation of the slave shown in FIG. In step S01, the network is entered using the procedure described with reference to FIG. In step S02, a periodic meter reading setting is received from the master unit. For example, the meter reading time can be set as what hour and minute every day of the month. Daily, weekly, or monthly time settings are also possible. In step S03, the relay stage number information is acquired from the beacon signal. In step S04, the wait time of the own device is calculated and stored. When the beacon signal interval is BI [seconds], the wait time [seconds] is
Wait time = BI x (number of relay stages x 30 + lower 2 digits of slave unit ID)
Is calculated by The beacon interval BI is 12.8 seconds, for example.
 図7は、図5(c)に示された子機の検針動作を示すフロー図である。ステップS11では、検針イベントが発生したか、つまり設定された検針時刻が到来したかを調べる。検針時刻が未だ到来していない場合には、その時刻まで待つ。検針時刻が到来すると、ステップS12へ進む。ステップS12では、算出したウェイト時間に従って発呼ウェイトの状態に入る。当該ウェイト時間が経過すると、ステップS13へ進む。ステップS13では、検針値通知の初送を実行した後、ステップS14へ進む。ステップS14では、親機からのアクノリッジ(ACK)信号の有無を調べる。ACK信号を受信した場合には、検針値通知が親機により受領されたものと判断し、ステップS11へ戻る。ACK信号を受信しない場合には、検針値通知が親機により受領されなかったものと判断し、ステップS15へ進む。ステップS15では、1回目の再送の前の発呼ウェイトの状態に入る。所定のウェイト時間が経過すると、ステップS16へ進む。ステップS16では、検針値通知の1回目の再送を実行した後、ステップS17へ進む。ステップS17では、親機からのACK信号の有無を調べる。ACK信号を受信した場合には、検針値通知が親機により受領されたものと判断し、ステップS11へ戻る。ACK信号を受信しない場合には、検針値通知が親機により受領されなかったものと判断し、次のステップへ進む。そして、ステップS18にて検針値通知の20回目の再送を実行した後、ステップS19へ進む。ステップS19では、親機からのACK信号の有無を調べる。ACK信号を受信した場合には、検針値通知が親機により受領されたものと判断し、ステップS11へ戻る。ACK信号を受信しない場合には、検針値通知が親機により受領されなかったものと判断し、ステップS20へ進む。ステップS20では、再送エラーを記憶する。 FIG. 7 is a flowchart showing the meter reading operation of the slave shown in FIG. 5 (c). In step S11, it is checked whether a meter reading event has occurred, that is, whether the set meter reading time has come. If the meter reading time has not yet arrived, it waits until that time. When the meter reading time comes, the process proceeds to step S12. In step S12, a call waiting state is entered according to the calculated wait time. When the wait time has elapsed, the process proceeds to step S13. In step S13, after the initial transmission of the meter reading value notification is executed, the process proceeds to step S14. In step S14, the presence or absence of an acknowledge (ACK) signal from the parent device is checked. If the ACK signal is received, it is determined that the meter reading value notification has been received by the master unit, and the process returns to step S11. If the ACK signal is not received, it is determined that the meter reading value notification has not been received by the master unit, and the process proceeds to step S15. In step S15, a call waiting state before the first retransmission is entered. When the predetermined wait time has elapsed, the process proceeds to step S16. In step S16, after executing the first retransmission of the meter reading value notification, the process proceeds to step S17. In step S17, the presence / absence of an ACK signal from the parent device is checked. If the ACK signal is received, it is determined that the meter reading value notification has been received by the master unit, and the process returns to step S11. If the ACK signal is not received, it is determined that the meter reading value notification has not been received by the master unit, and the process proceeds to the next step. Then, after executing the 20th retransmission of the meter reading notification in step S18, the process proceeds to step S19. In step S19, the presence or absence of an ACK signal from the parent device is checked. If the ACK signal is received, it is determined that the meter reading value notification has been received by the master unit, and the process returns to step S11. If the ACK signal is not received, it is determined that the meter reading value notification has not been received by the master unit, and the process proceeds to step S20. In step S20, a retransmission error is stored.
 図8は、図1の無線通信システムにおける各子機の検針値通知動作の順番を示している。この例では、親機から検針時刻0:00(0時0分)の設定がなされたものとしている。時刻が0:00になると、330台の子機は一斉に検針値情報を確定させる。ただし、発呼ウェイト時間は子機ごとに異なる。 FIG. 8 shows the order of the meter reading value notification operation of each slave unit in the wireless communication system of FIG. In this example, it is assumed that the meter reading time 0:00 (0: 0) is set from the master unit. When the time reaches 0:00, the 330 slave units simultaneously determine the meter reading value information. However, the call waiting time differs for each slave unit.
 親機に直接従属するID000の子機は、中継段数=0、ID下位2桁=0から、自機のウェイト時間が0秒と決定されているので、直ちに親機への検針値通知を発呼する。親機に直接従属するID001の子機は、同様に中継段数=0であるが、ID下位2桁=1から自機のウェイト時間が1×BIと決定されているので、時刻が0:00+1×BIになるまで待って、親機への検針値通知を発呼する。途中の説明を省略するが、親機に直接従属するID029の子機は、中継段数=0、ID下位2桁=29から、自機のウェイト時間が29×BIと決定されているので、時刻が0:00+29×BIになるまで待って、親機への検針値通知を発呼する。 Since the slave unit of ID000, which is directly subordinate to the master unit, determines that the wait time of its own unit is 0 seconds from the number of relay stages = 0 and the lower two digits of ID = 0, it immediately issues a meter reading value notification to the master unit. Call. Similarly, the slave unit of ID001 directly subordinate to the master unit has the number of relay stages = 0, but since the wait time of the own unit is determined to be 1 × BI from the lower two digits of ID = 1, the time is 0: 00 + 1 X Wait until it becomes BI, and issue a meter reading notification to the master unit. Although explanation in the middle is omitted, since the slave unit of ID029 that is directly subordinate to the master unit has its own wait time determined to be 29 × BI from the relay stage number = 0 and the ID lower two digits = 29, Waits until 0: 00 + 29 × BI, and calls for reading of the meter reading value to the master unit.
 ID10の中継機に従属するID100の子機は、中継段数=1、ID下位2桁=00から、自機のウェイト時間が30×BIと決定されているので、時刻が0:00+30×BIになるまで待って、親機への検針値通知を発呼する。ID20の中継機に従属するID200の子機は、中継段数=2、ID下位2桁=00から、自機のウェイト時間が60×BIと決定されているので、時刻が0:00+60×BIになるまで待って、親機への検針値通知を発呼する。以下、順次発呼が実行され、A0のIDを持つ中継機に従属するA29のIDを持つ子機が、最後に検針値通知を発呼する子機となる。この子機は、中継段数=10、ID下位2桁=29から、自機のウェイト時間が329×BIと決定されているので、時刻が0:00+329×BIになるまで待って、親機への検針値通知を発呼する。 Since the slave unit of ID100 subordinate to the relay unit of ID10 determines that its own wait time is 30 × BI from the number of relay stages = 1 and the lower two digits of ID = 00, the time is set to 0: 00 + 30 × BI. Wait until it becomes, and call the meter reading value notification to the main unit. Since the slave unit with ID 200 subordinate to the relay unit with ID 20 has its own wait time of 60 × BI determined from the number of relay stages = 2 and the lower 2 digits of ID = 00, the time is 0: 00 + 60 × BI. Wait until it becomes, and call the meter reading value notification to the main unit. Thereafter, the calling is sequentially executed, and the slave having the ID of A29 subordinate to the relay having the ID of A0 is the slave that finally issues the meter reading value notification. Since this slave unit has been determined that the wait time of its own unit is 329 × BI from the relay stage number = 10 and the lower 2 digits of ID = 29, it waits until the time becomes 0: 00 + 329 × BI and returns to the master unit. Call the meter reading notification.
 以上で330台の子機が全て発呼を終えることになるが、BI=12.8秒とすると、これに要する時間は330×BI=4224秒=1時間10分24秒である。ただし、図8の例では、ID100の子機と、ID200の子機とが何らかの通信障害で検針値通知に失敗したものとしている。これら2台の子機は、所定の発呼ウェイトの後に再送1回目を実行する。 Thus, all 330 slave units have finished making calls, but if BI = 12.8 seconds, the time required for this is 330 × BI = 4224 seconds = 1 hour 10 minutes 24 seconds. However, in the example of FIG. 8, it is assumed that the slave device with ID 100 and the slave device with ID 200 fail to notify the meter reading value due to some communication failure. These two slave units execute the first retransmission after a predetermined call waiting time.
 初送時のウェイト時間が30×BIであったID100の子機は、初送時のウェイト時間に330×BIを加えた値を再送1回目のウェイト時間とする。すなわち、自機のウェイト時間が(330+30)×BIと決定され、時刻が0:00+(330+30)×BIになるまで待って、親機への検針値通知を発呼する。初送時のウェイト時間が60×BIであったID200の子機は、初送時のウェイト時間に330×BIを加えた値を再送1回目のウェイト時間とする。すなわち、自機のウェイト時間が(330+60)×BIと決定され、時刻が0:00+(330+60)×BIになるまで待って、親機への検針値通知を発呼する。 The slave unit of ID100 whose wait time at the time of initial transmission is 30 × BI sets a value obtained by adding 330 × BI to the wait time at the time of initial transmission as the first wait time for retransmission. That is, the wait time of the own device is determined as (330 + 30) × BI, and waits until the time becomes 0: 00+ (330 + 30) × BI, and the meter reading value notification to the parent device is called. The slave device with ID 200 whose initial transmission wait time is 60 × BI sets a value obtained by adding 330 × BI to the initial transmission wait time as the first retransmission wait time. That is, the wait time of the own device is determined to be (330 + 60) × BI, and waits until the time becomes 0: 00+ (330 + 60) × BI, and the meter reading value notification to the parent device is issued.
 図8の例では、再送1回目にて、ID100の子機は検針値通知に成功したが、ID200の子機は検針値通知に失敗したものとしている。後者は、所定の発呼ウェイトの後に再送2回目を実行する。 In the example of FIG. 8, it is assumed that, at the first retransmission, the ID100 handset succeeds in the meter reading notification, but the ID200 handset fails in the meter reading notification. The latter executes a second retransmission after a predetermined call waiting time.
 再送1回目のウェイト時間が(330+60)×BIであったID200の子機は、再送1回目のウェイト時間に330×BIを加えた値を再送2回目のウェイト時間とする。すなわち、自機のウェイト時間が(330×2+60)×BIと決定され、時刻が0:00+(330×2+60)×BIになるまで待って、親機への検針値通知を発呼する。図8の例では、再送2回目でID200の子機が検針値通知に成功したものとしている。 The slave device with ID 200 whose first retransmission wait time is (330 + 60) × BI sets a value obtained by adding 330 × BI to the first retransmission wait time as the second retransmission wait time. That is, the wait time of the own device is determined to be (330 × 2 + 60) × BI, and waits until the time becomes 0: 00+ (330 × 2 + 60) × BI, and the meter reading value notification to the parent device is issued. In the example of FIG. 8, it is assumed that the slave unit with ID 200 succeeds in the meter reading value notification in the second retransmission.
 以上の説明から明らかなとおり、図1中の親機と10台の中継機とが子機の検針値通知タイミングを制御しなくとも、通信の衝突は生じない。図1中の330台の子機のうち例えばID200の子機の参入前後のいずれの状態でも、この点に違いはない。つまり、本実施形骸は、ネットワーク構成の変化に柔軟に対応できることが判る。 As is clear from the above description, no communication collision occurs even if the master unit and the ten relay units in FIG. 1 do not control the meter reading value notification timing of the slave unit. There is no difference in this point in any of the states before and after the entry of the ID200 slave unit among the 330 slave units in FIG. In other words, it can be seen that this embodiment can flexibly cope with changes in the network configuration.
 なお、上記ウェイト時間の計算式は、ネットワーク構成に応じて変更可能である。例えば、図1のように各中継機配下の子機の最大数が実際には30であっても少し余裕を持たせ、かつ子機IDの2進数表記を用いて、
 ウェイト時間=BI×(中継段数×32+子機IDの下位5ビット)
としてもよい。
The wait time calculation formula can be changed according to the network configuration. For example, as shown in FIG. 1, even if the maximum number of slave units under each relay device is actually 30, allow a little margin and use the binary notation of the slave unit ID,
Wait time = BI x (number of relay stages x 32 + lower 5 bits of slave unit ID)
It is good.
 一般化すれば、各中継機の配下に接続できる子機の数をMとし、N=0、1、2、…、M-1とするとき、
 ウェイト時間=BI×(中継段数×M+N)
である。Nの値はランダム関数で発生させてもよい。
Generally speaking, when M is the number of slave units that can be connected to each relay unit, and N = 0, 1, 2,..., M−1,
Wait time = BI x (number of relay stages x M + N)
It is. The value of N may be generated by a random function.
 なお、同じ中継機に従属する複数の子機にて偶然にNの値が一致すれば、検針値通知にて通信の衝突が発生する。ただし、このような場合でも、図7で説明した再送シーケンスにより、高い確率で通信成功に導くことができる。 In addition, if the value of N coincides by chance in a plurality of slave units subordinate to the same repeater, a communication collision occurs in the meter reading value notification. However, even in such a case, it is possible to lead to successful communication with a high probability by the retransmission sequence described in FIG.
 図9は、図1の無線通信システムにおける1チャンネル伝送の場合のタイミング図である。ただし、親機と子機との間に介在する中継機は、図示を省略している。 FIG. 9 is a timing chart in the case of 1-channel transmission in the wireless communication system of FIG. However, the relay device interposed between the parent device and the child device is not shown.
 図9によれば、初送に失敗した子機は、所定時間の発呼ウェイトの後に、最初に受信したビーコン信号のタイミングで検針値を再送する。ただし、初送の場合と同じ原因で再送が失敗する可能性がある。 According to FIG. 9, the slave unit that has failed in the initial transmission retransmits the meter reading value at the timing of the first received beacon signal after the call waiting for a predetermined time. However, retransmission may fail for the same reason as the first transmission.
 図10は、図1の無線通信システムにおける2チャンネル伝送の場合のタイミング図である。親機は、AチャンネルとBチャンネルとを交互に使ってビーコン信号を送信する。図10の例では、子機がAチャンネルを使って検針値を初送した際に通信障害が生じたものとしている。初送に失敗した子機は、所定時間の発呼ウェイトの後に、初送に用いたAチャンネルとは異なるBチャンネルで最初に受信したビーコン信号のタイミングで、検針値を再送する。複数チャンネルを利用した再送動作により、再送失敗の可能性が低減される。3以上のチャンネルの利用も勿論可能である。 FIG. 10 is a timing chart in the case of 2-channel transmission in the wireless communication system of FIG. The base unit transmits a beacon signal by alternately using the A channel and the B channel. In the example of FIG. 10, it is assumed that a communication failure has occurred when the handset first transmits a meter reading value using the A channel. The slave unit that has failed in the initial transmission retransmits the meter reading value at the timing of the beacon signal first received on the B channel different from the A channel used for the initial transmission after the call waiting for a predetermined time. By the retransmission operation using a plurality of channels, the possibility of retransmission failure is reduced. Of course, it is possible to use more than two channels.
 なお、検針値情報に含まれるタイムスタンプは、子機からの送信時刻でなく、子機の検針時刻とするのが、親機にとって好都合である。 Note that it is convenient for the master unit that the time stamp included in the meter reading value information is not the transmission time from the slave unit but the meter reading time of the slave unit.
 以上説明してきたとおり、本発明に係る検針装置は、定期検針等の発呼を効率的かつ自動的に処理することができる効果を有し、電気、ガス、水道等の使用量を計測する複数のメータから検針値情報を収集する技術として有用である。 As described above, the meter-reading device according to the present invention has an effect of being able to efficiently and automatically process calls such as periodic meter-reading, and measures a plurality of usage amounts of electricity, gas, water, etc. This is useful as a technique for collecting meter reading value information from these meters.
1 アンテナ
2 送受信部
3 ビーコン送信部
4 リンク接続部
5 制御部
11 アンテナ
12 送受信部
13 ビーコン送信部
14 ビーコン受信部
15 リンク接続部
16 制御部
21 アンテナ
22 送受信部
23 ビーコン受信部
24 リンク接続部
25 発呼ウェイト制御部
26 制御部
27 記憶部
DESCRIPTION OF SYMBOLS 1 Antenna 2 Transmission / reception part 3 Beacon transmission part 4 Link connection part 5 Control part 11 Antenna 12 Transmission / reception part 13 Beacon transmission part 14 Beacon reception part 15 Link connection part 16 Control part 21 Antenna 22 Transmission / reception part 23 Beacon reception part 24 Link connection part 25 Calling wait control unit 26 Control unit 27 Storage unit

Claims (9)

  1.  複数のメータから検針値情報を収集する検針装置であって、
     親機と、少なくとも1つの中継機と、各々前記複数のメータのいずれかに対応付けられかつ各々前記親機及び前記中継機のうちのいずれかに従属する複数の子機とを含む同期方式の通信システムにて、前記親機は前記複数の子機の各々から検針値情報の通知を順次受けるように、
     前記複数の子機の各々は、
     前記親機及び前記中継機のうちの当該子機の従属先から定期的に送信されるビーコン信号を受信するビーコン受信部と、
     検針イベントが発生してから検針値通知を行うまでのウェイト時間を、前記ビーコン信号の間隔と、自機と前記親機との間の前記中継機の段数とに応じて算出し、かつ当該算出したウェイト時間に従って発呼のタイミングを制御する発呼ウェイト制御部とを有することを特徴とする検針装置。
    A meter reading device that collects meter reading value information from a plurality of meters,
    A synchronous system including a master unit, at least one repeater, and a plurality of slave units respectively associated with any of the plurality of meters and subordinate to any of the master unit and the repeater In the communication system, the master unit sequentially receives notification of meter reading value information from each of the plurality of slave units,
    Each of the plurality of slave units is
    A beacon receiving unit for receiving a beacon signal periodically transmitted from a subordinate of the slave unit among the master unit and the relay unit;
    The wait time from when the meter reading event occurs until the meter reading value is notified is calculated according to the interval of the beacon signal and the number of stages of the relay device between the own device and the parent device, and the calculation And a call waiting control unit for controlling a call timing according to the wait time.
  2.  請求項1記載の検針装置において、
     前記中継機の段数を示す情報は、当該子機が受信する前記ビーコン信号の中に含まれていることを特徴とする検針装置。
    In the meter-reading apparatus of Claim 1,
    Information indicating the number of stages of the relay device is included in the beacon signal received by the slave device.
  3.  請求項1記載の検針装置において、
     前記複数の子機の各々は、更に自機の識別番号を用いて前記ウェイト時間を算出することを特徴とする検針装置。
    In the meter-reading apparatus of Claim 1,
    Each of the plurality of slave units further calculates the wait time using an identification number of the own unit.
  4.  請求項1記載の検針装置において、
     前記検針イベントは、当該子機が前記親機から受領した定期検針設定に基づくイベントであることを特徴とする検針装置。
    In the meter-reading apparatus of Claim 1,
    The meter reading device according to claim 1, wherein the meter reading event is an event based on a periodic meter reading setting received by the slave unit from the master unit.
  5.  請求項1記載の検針装置において、
     前記検針値情報に含まれるタイムスタンプは、当該子機の検針時刻を表すことを特徴とする検針装置。
    In the meter-reading apparatus of Claim 1,
    The time stamp included in the meter reading value information represents a meter reading time of the slave unit.
  6.  請求項1記載の検針装置において、
     前記複数の子機の各々は、前記検針値通知が前記親機により受領されなかった場合には、更なるウェイト時間の後に所定回数を限度として再送動作を実行することを特徴とする検針装置。
    In the meter-reading apparatus of Claim 1,
    Each of the plurality of slave units performs a retransmission operation up to a predetermined number of times after a further wait time when the meter reading value notification is not received by the master unit.
  7.  請求項6記載の検針装置において、
     前記再送動作は、複数チャンネルを利用して実行されることを特徴とする検針装置。
    In the meter-reading apparatus of Claim 6,
    The re-transmission operation is performed using a plurality of channels.
  8.  請求項7記載の検針装置において、
     前記複数の子機の各々は、初送に用いたチャンネルとは異なるチャンネルを用いて前記検針値情報を再送することを特徴とする検針装置。
    The meter-reading apparatus according to claim 7,
    Each of the plurality of slave units retransmits the meter reading value information using a channel different from the channel used for initial transmission.
  9.  親機と少なくとも1つの中継機とを含む同期方式の通信システムにて、前記親機及び前記中継機のうちのいずれかに従属する子機として動作することにより、前記親機へ検針値情報を通知する機能を備えたガスメータであって、
     前記親機及び前記中継機のうちの当該子機の従属先から定期的に送信されるビーコン信号を受信するビーコン受信部と、
     検針イベントが発生してから検針値通知を行うまでのウェイト時間を、前記ビーコン信号の間隔と、自機と前記親機との間の前記中継機の段数と、自機の識別番号とに応じて算出し、かつ当該算出したウェイト時間に従って発呼のタイミングを制御する発呼ウェイト制御部とを有し、
     前記中継機の段数を示す情報は、当該子機が受信する前記ビーコン信号の中に含まれていることを特徴とするガスメータ。
    By operating as a slave unit subordinate to either the master unit or the relay unit in a synchronous communication system including the master unit and at least one relay unit, meter reading value information is sent to the master unit. A gas meter with a notification function,
    A beacon receiving unit for receiving a beacon signal periodically transmitted from a subordinate of the slave unit among the master unit and the relay unit;
    The wait time from when the meter reading event occurs until the meter reading value is notified depends on the interval of the beacon signal, the number of stages of the repeater between the own device and the parent device, and the identification number of the own device And a call weight control unit that controls the timing of the call according to the calculated wait time,
    Information indicating the number of stages of the relay device is included in the beacon signal received by the slave device.
PCT/JP2013/003575 2012-07-19 2013-06-06 Meter reading device WO2014013667A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014525696A JP6161006B2 (en) 2012-07-19 2013-06-06 Meter reading device
CN201380032213.6A CN104396274B (en) 2012-07-19 2013-06-06 Meter Reading Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012160446 2012-07-19
JP2012-160446 2012-07-19

Publications (1)

Publication Number Publication Date
WO2014013667A1 true WO2014013667A1 (en) 2014-01-23

Family

ID=49948511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003575 WO2014013667A1 (en) 2012-07-19 2013-06-06 Meter reading device

Country Status (3)

Country Link
JP (1) JP6161006B2 (en)
CN (1) CN104396274B (en)
WO (1) WO2014013667A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152307A1 (en) * 2015-03-25 2016-09-29 日本電気株式会社 Communication device, communication method and program
KR101969486B1 (en) * 2019-01-15 2019-04-16 (주)가암테크 Telemetering device evading simultaneous acess in IoT conditions
WO2020212722A1 (en) * 2019-04-19 2020-10-22 Bespoon Sas Ultra-wideband location systems and methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0923283A (en) * 1995-07-05 1997-01-21 Tokyo Gas Co Ltd Simultaneous metering method
WO2012056633A1 (en) * 2010-10-27 2012-05-03 パナソニック株式会社 Wireless communication device and wireless communication method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007567A1 (en) * 2009-07-15 2011-01-20 パナソニック株式会社 Radio communication device, radio communication system, radio communication method, and program for executing the radio communication method
CN101751761B (en) * 2009-12-30 2011-08-31 河南新天科技股份有限公司 Efficient wireless meter reading method for automatic network router
CN102401848B (en) * 2010-09-08 2014-05-07 国基电子(上海)有限公司 Electricity meter and communication relaying method for same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0923283A (en) * 1995-07-05 1997-01-21 Tokyo Gas Co Ltd Simultaneous metering method
WO2012056633A1 (en) * 2010-10-27 2012-05-03 パナソニック株式会社 Wireless communication device and wireless communication method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152307A1 (en) * 2015-03-25 2016-09-29 日本電気株式会社 Communication device, communication method and program
JPWO2016152307A1 (en) * 2015-03-25 2018-01-18 日本電気株式会社 COMMUNICATION DEVICE, COMMUNICATION METHOD, AND PROGRAM
KR101969486B1 (en) * 2019-01-15 2019-04-16 (주)가암테크 Telemetering device evading simultaneous acess in IoT conditions
WO2020212722A1 (en) * 2019-04-19 2020-10-22 Bespoon Sas Ultra-wideband location systems and methods
US11743696B2 (en) 2019-04-19 2023-08-29 Be Spoon Ultra-wideband location systems and methods

Also Published As

Publication number Publication date
JPWO2014013667A1 (en) 2016-06-30
CN104396274A (en) 2015-03-04
CN104396274B (en) 2019-01-11
JP6161006B2 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
EP3298710B1 (en) Low power sensor node operation for wireless network
US7693173B2 (en) Communication system, communication control method, communication control apparatus, and communication control program
CN109996325B (en) Clock synchronization system and method of wireless sensor network
JP5626349B2 (en) Wireless communication apparatus, wireless communication system, and wireless communication method
JP6161006B2 (en) Meter reading device
CN113994719B (en) Communication system, communication method, and communication device
JP2011101276A (en) Radio communication device
JP2014057279A (en) Radio communication device, radio communication system and radio communication control method
EP4221292A1 (en) Acquiring current time in a network
WO2019154214A1 (en) Synchronization signal configuration method and related device
JPWO2012056633A1 (en) Wireless communication apparatus and wireless communication method
JP3443207B2 (en) Wireless communication system
KR101046991B1 (en) How to Improve Time Synchronization Performance of Superframe Structure
JP2001224082A (en) Communication system
JP5691016B2 (en) Wireless communication system, wireless terminal, and program
JP3510315B2 (en) Communication procedure execution method for wireless network system using spread spectrum communication system
JPH11298975A (en) Communication system for distributed data collection
JP2005184480A (en) Radio data communication system
JP5099037B2 (en) Wireless device, wireless system, wireless communication method and program
JP3853189B2 (en) Wireless slave unit and wireless communication system including the same
JP2005294943A (en) Radio slave unit, radio master unit and specific low power radio two-way communication system
JP2011182346A (en) Radio telemetry system
JP3506927B2 (en) Data communication device
JP2002217878A (en) Radio data communication system
CN102550114A (en) Shared use of time slots

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13820395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014525696

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13820395

Country of ref document: EP

Kind code of ref document: A1