WO2014013170A1 - Refroidissement du circuit d'huile d'une turbomachine - Google Patents

Refroidissement du circuit d'huile d'une turbomachine Download PDF

Info

Publication number
WO2014013170A1
WO2014013170A1 PCT/FR2013/051680 FR2013051680W WO2014013170A1 WO 2014013170 A1 WO2014013170 A1 WO 2014013170A1 FR 2013051680 W FR2013051680 W FR 2013051680W WO 2014013170 A1 WO2014013170 A1 WO 2014013170A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
exchanger
turbomachine
refrigerant
air
Prior art date
Application number
PCT/FR2013/051680
Other languages
English (en)
Inventor
Alain Pierre GARASSINO
Olivier Robert Michel DELEPIERRE-MASSUE
Marc Missout
Mathieu Jean Pierre TROHEL
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to GB1500548.1A priority Critical patent/GB2519016B/en
Priority to US14/415,313 priority patent/US10352190B2/en
Publication of WO2014013170A1 publication Critical patent/WO2014013170A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/002Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/06Arrangements of bearings; Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N39/00Arrangements for conditioning of lubricants in the lubricating system
    • F16N39/02Arrangements for conditioning of lubricants in the lubricating system by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/213Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a turbomachine, such as a turbojet engine or an airplane turboprop engine, comprising at least one oil circuit and means for cooling the oil of this circuit.
  • a turbomachine comprises an oil circuit for lubricating equipment, such as in particular rolling bearings or gear members, and also comprises a fuel system supplying injectors mounted in a combustion chamber.
  • an oil / fuel heat exchanger arranged in the oil and fuel circuits downstream or upstream of one or more oil / air heat exchanger (s) mounted in the fuel circuit is used. 'oil.
  • the oil / air heat exchanger is traversed or swept by a flow of air coming from outside or inside the turbomachine.
  • the oil / air heat exchanger is necessary to cool the oil when, for certain points of operation of the turbomachine, the oil / fuel heat exchanger does not sufficiently cool the oil.
  • the oil / air heat exchanger is for example of the surface type, that is, it includes oil ducts swept by a cold air stream from a bypass air stream called a secondary air stream.
  • Such an exchanger is for example housed on a wall of the secondary flow channel, immediately downstream of the fan.
  • the oil / air heat exchanger may also be of the plate type and traversed by a stream of air taken from the secondary air stream and reinjected at the outlet therein.
  • the temperature difference that can be used by the exchanger is reduced.
  • the air temperature is of the order of 100 ° C. for example and the temperature of the oil not to be exceeded is, for example, order of 150 ° C.
  • the exchanger must therefore work with a temperature difference of just 50 ° C, which limits the performance of the heat exchanger.
  • the invention aims in particular to provide a simple, effective and economical solution to this problem.
  • a turbomachine such as a turbojet or an airplane turboprop, comprising at least one oil circuit and means for cooling the oil of this circuit, characterized in that the cooling means have a thermodynamic circuit of refrigerant equipped
  • a first heat exchanger capable of exchanging heat between the refrigerant and air and forming a condenser
  • a second heat exchanger capable of exchanging heat between the refrigerant and the oil of the oil circuit and forming an evaporator
  • a regulator mounted downstream of the first exchanger and upstream of the second exchanger, in the direction of circulation of the refrigerant
  • a compressor mounted downstream of the second exchanger and upstream of the first exchanger.
  • the oil circuit is no longer cooled using a simple air / oil type heat exchanger but using a thermodynamic device of the heat pump type.
  • the heat is taken from the oil by the evaporator, then transferred to the air by the condenser, through the refrigerant.
  • air temperature of the order of 100 ° C
  • the gain provided by the invention in terms of performance compensates for the addition of the new elements constituting the heat pump and the disadvantages that are usually related to such an addition (bulk, weight, ).
  • the turbomachine comprises a secondary vein passing a secondary flow from a blower, the first exchanger being disposed in the secondary vein.
  • the first exchanger is designed to exchange heat between the refrigerant and ambient air, external to the turbomachine.
  • the oil circuit is designed to lubricate and / or cool turbomachine engine components and / or equipment, such as an electric generator.
  • FIG. 1 is a schematic perspective view of a turbomachine of the prior art
  • FIG. 2 is a partial schematic representation of an oil circuit of the prior art
  • FIG. 3 is a view corresponding to FIG. 2, illustrating an embodiment of an oil circuit of a turbomachine, equipped with a device of the heat pump type, according to the invention.
  • FIG. 1 illustrates a turbomachine 1 of the prior art comprising a combustion chamber 2, the combustion gases coming from the chamber driving a high-pressure turbine 3 and a low-pressure turbine 4.
  • the high-pressure turbine 3 is coupled by a shaft a high-pressure compressor arranged upstream of the combustion chamber 2 and supplying the latter with pressurized air.
  • the low-pressure turbine 4 is coupled by another shaft to a fan wheel 5 arranged at the upstream end of the turbomachine 1.
  • a transmission box 6, or accessory box, is connected by a mechanical power take-off 7 to the high-pressure turbine shaft 3 and comprises a set of drive gears of different equipment of the turbomachine, such as pumps. and generators, including electrical. Other power transmissions may also be used.
  • FIG. 2 represents an oil circuit 8 of the turbomachine of FIG. 1.
  • the oil circuit 8 comprises, from upstream to downstream in the direction of flow of the oil, different assemblies 9 using lubricating and / or cooling oil, recovery pumps 10 allowing the recirculating oil from the equipment to a tank 1 1, feed pumps 12 and a filter 13.
  • the overall oil flow may comprise oil used for the lubrication of the accessory box and for the lubrication and cooling of one or more generators electric.
  • the oil circuit 8 comprises three heat exchangers connected in series between the filter 13 and the assemblies 9, namely a main oil / fuel heat exchanger 14, an oil / fuel secondary heat exchanger 15 and an oil heat exchanger / air 16.
  • the oil / air heat exchanger 16 may be of the surface type, that is to say comprising oil ducts swept by a cold air flow coming from a flow of bypass air commonly known as air flow. secondary air. Such an exchanger 16 is for example housed on a wall of the secondary flow channel immediately downstream of the fan ( Figure 1).
  • the oil / air heat exchanger 16 may be of the plate type and traversed by a stream of air taken from the secondary air stream and reinjected at its outlet therein.
  • the air flow can be taken outside (ambient air).
  • the oil passes through the oil / air heat exchanger 16, the secondary oil / fuel heat exchanger 15 and then the main oil / fuel heat exchanger 14.
  • 17 is mounted in the oil circuit 8 bypass on the oil / air heat exchanger 16 and comprises an inlet arranged between the outlet of the filter 13 and the inlet of the oil / air heat exchanger 16 and an outlet arranged between the outlet of the oil / air heat exchanger 16 and the inlet of the secondary oil / fuel heat exchanger 15.
  • a hydraulic valve 18 is mounted in the bypass line 17 and controls the passage of the flow rate. oil in the oil / air exchanger 16 or through the bypass line 17 and the oil / air heat exchanger 16. The oil exiting the main oil / fuel heat exchanger 14 then flows to the fuel tank. oil 1 1.
  • valve 18 opens to allow the passage of oil through the bypass line 17.
  • the oil / air exchangers 16 currently used have relatively low yields, which makes it necessary to use relatively bulky exchangers.
  • they cause aerodynamic disturbances that increase with their dimensions, which penalizes the overall efficiency of the turbomachine.
  • thermodynamic device 19 of the heat pump type.
  • this device 19 comprises a refrigerant circuit 20 equipped with a first heat exchanger 21 able to exchange heat between the refrigerant and the air and forming a condenser, a second heat exchanger 22 adapted to exchange heat between the refrigerant and the oil of the oil circuit 8 and forming an evaporator, a pressure reducer 23 mounted downstream of the first exchanger 21 and upstream of the second exchanger 22, in the direction circulating refrigerant, and a compressor 24 mounted downstream of the second heat exchanger 22 and upstream of the first exchanger 21.
  • the first exchanger 21 may be of the surface type (refrigerant pipes swept by an air flow), or plate types.
  • the compressor 24 In operation, when it is necessary to cool the oil of the circuit 8, the compressor 24 is started.
  • the evaporator 22 then makes it possible to vaporize the refrigerant by taking heat from the oil.
  • the compressor 24 makes it possible to increase the pressure and the temperature of the refrigerant in the vapor phase before the latter passes through the condenser 21 where it releases heat into the air, by passing from the gaseous state to the liquid state. .
  • the refrigerant in the liquid phase then passes through the regulator 23, whose role is to reduce its pressure and lower its temperature, before passing through the evaporator 22 again.
  • Such a device is generally characterized by its coefficient of performance (COP) which can be for example of the order of 5.
  • COP coefficient of performance
  • the size of the exchanger is limited by the fact that there can be exchanges between the refrigerant and the air with significant temperature differences.
  • thermodynamic device could be used in a turbomachine having an oil circuit 8 of a structure different from that illustrated in FIG.

Abstract

L'invention concerne une turbomachine, telle qu'un turboréacteur ou un turbopropulseur d'avion, comportant au moins un circuit d'huile (8) et des moyens de refroidissement (19) comportant un circuit (20) de fluide frigorigène équipé d'un premier échangeur de chaleur (21) apte à échanger de la chaleur entre le fluide frigorigène et de l'air et formant un condenseur, d'un second échangeur de chaleur (22) apte à échanger de la chaleur entre le fluide frigorigène et l'huile du circuit d'huile et formant un évaporateur, d'un détendeur (23) monté en aval du premier échangeur (21) et en amont du second échangeur (22), dans le sens de circulation du fluide frigorigène, et d'un compresseur (24) monté en aval du second échangeur (22) et en amont du premier échangeur (21).

Description

REFROIDISSEMENT DU CIRCUIT D'HUILE D'UNE TURBOMACHINE
La présente invention concerne une turbomachine, telle qu'un turboréacteur ou un turbopropulseur d'avion, comportant au moins un circuit d'huile et des moyens de refroidissement de l'huile de ce circuit.
De façon connue, une turbomachine comprend un circuit d'huile pour la lubrification d'équipements, tels que notamment des paliers à roulements ou des organes d'engrenages, et comprend également un circuit de carburant alimentant des injecteurs montés dans une chambre de combustion.
Il est connu de relier les circuits d'huile et de carburant par des échangeurs de chaleur dans le but d'éviter un échauffement important de l'huile de lubrification, l'huile étant refroidie par échange de chaleur avec le carburant.
A cette fin, on utilise un échangeur de chaleur huile/carburant agencé dans les circuits d'huile et de carburant en aval ou en amont d'un ou plusieurs échangeur(s) de chaleur huile/air monté(s) dans le circuit d'huile. L'échangeur de chaleur huile/air est parcouru ou balayé par un flux d'air provenant de l'extérieur ou de l'intérieur de la turbomachine.
L'échangeur de chaleur huile/air est nécessaire pour refroidir l'huile lorsque, pour certains points de fonctionnement de la turbomachine, l'échangeur de chaleur huile/carburant ne permet pas de suffisamment refroidir l'huile.
D'autres solutions sont également connues de l'art antérieur, comme notamment l'utilisation d'un clapet thermostatique dans une conduite de dérivation à l'entrée de l'échangeur de chaleur huile/air ou encore l'utilisation de volets d'obturation de l'alimentation en air.
Les demandes FR2951228, FR1061 138 et FR1 157953 de la Demanderesse décrivent des architectures de circuits d'huile et de carburant dans une turbomachine.
L'échangeur de chaleur huile/air est par exemple du type surfacique, c'est-à-dire qu'il comprend des conduits d'huile balayés par un flux d'air froid provenant d'un flux d'air de contournement appelé flux d'air secondaire. Un tel échangeur est par exemple logé sur une paroi du canal du flux secondaire, immédiatement en aval de la soufflante.
L'échangeur de chaleur huile/air peut aussi être du type à plaques et traversé par un flux d'air prélevé dans le flux d'air secondaire et réinjecté en sortie dans celui-ci.
Les échangeurs actuels ont des rendements relativement faibles, ce qui oblige à utiliser des échangeurs relativement encombrants. Or, comme ceux-ci sont placés dans le flux d'air secondaire, ils engendrent des perturbations aérodynamiques qui augmentent avec leurs dimensions, ce qui pénalise le rendement global de la turbomachine.
En outre, dans le cas d'un échangeur huile/air par exemple, la différence de température utilisable par l'échangeur est réduite. A titre d'exemple, dans certaines phases de fonctionnement d'un turboréacteur, la température de l'air est de l'ordre de 100°C par exemple et la température de l'huile à ne pas dépasser est par exemple de l'ordre de 150°C. L'échangeur doit donc travailler avec un écart de température d'à peine 50°C, ce qui limite la performance de l'échangeur de chaleur.
L'invention a notamment pour but d'apporter une solution simple, efficace et économique à ce problème.
A cet effet, elle propose une turbomachine, telle qu'un turboréacteur ou un turbopropulseur d'avion, comportant au moins un circuit d'huile et des moyens de refroidissement de l'huile de ce circuit, caractérisée en ce que les moyens de refroidissement comportent un circuit thermodynamique de fluide frigorigène équipé
- d'un premier échangeur de chaleur apte à échanger de la chaleur entre le fluide frigorigène et de l'air et formant un condenseur,
- d'un second échangeur de chaleur apte à échanger de la chaleur entre le fluide frigorigène et l'huile du circuit d'huile et formant un évaporateur, - d'un détendeur monté en aval du premier échangeur et en amont du second échangeur, dans le sens de circulation du fluide frigorigène, et
- d'un compresseur monté en aval du second échangeur et en amont du premier échangeur.
De cette manière, le circuit d'huile n'est plus refroidi à l'aide d'un simple échangeur de chaleur de type air/huile mais à l'aide d'un dispositif thermodynamique du type pompe à chaleur.
Dans ce dispositif, la chaleur est prélevée sur l'huile par l'évaporateur, puis transférée à l'air par le condenseur, par l'intermédiaire du fluide frigorigène. En reprenant l'exemple précédent (température de l'air de l'ordre de 100°C), il est possible de porter le fluide frigorigène à des températures largement supérieures à 150°C, de manière à pouvoir travailler avec un écart de température bien supérieur à 50°C, ce qui augmente l'efficacité du condenseur et permet en particulier de limiter la taille de ce condenseur de façon à ne pas impacter les performances globales de la turbomachine.
De façon surprenante, le gain apporté par l'invention en termes de performance compense l'ajout des nouveaux éléments constituant la pompe à chaleur et les inconvénients qui sont habituellement liés à un tel ajout (encombrement, poids, ...).
De préférence, la turbomachine comporte une veine secondaire de passage d'un flux secondaire issu d'une soufflante, le premier échangeur étant disposé dans la veine secondaire.
En variante, le premier échangeur est conçu pour échanger de la chaleur entre le fluide frigorigène et de l'air ambiant, externe à la turbomachine.
Selon une caractéristique de l'invention, le circuit d'huile est conçu pour lubrifier et/ou refroidir des éléments du moteur de la turbomachine et/ou un équipement, tel qu'un générateur électrique.
L'invention sera mieux comprise et d'autres détails, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante faite à titre d'exemple non limitatif en référence aux dessins annexés dans lesquels :
- la figure 1 est une vue schématique en perspective d'une turbomachine de l'art antérieur ;
- la figure 2 est une représentation schématique partielle d'un circuit d'huile de l'art antérieur ;
- la figure 3 est une vue correspondant à la figure 2, illustrant une forme de réalisation d'un circuit d'huile d'une turbomachine, équipé d'un dispositif du type pompe à chaleur, conformément à l'invention.
La figure 1 illustre une turbomachine 1 de l'art antérieur comprenant une chambre de combustion 2, les gaz de combustion issus de la chambre entraînant une turbine haute pression 3 et une turbine basse pression 4. La turbine haute pression 3 est couplée par un arbre à un compresseur haute pression agencé en amont de la chambre de combustion 2 et alimentant cette dernière en air sous pression. La turbine basse pression 4 est couplée par un autre arbre à une roue de soufflante 5 agencée à l'extrémité amont de la turbomachine 1 .
Une boite de transmission 6, ou boite d'accessoires, est reliée par une prise de puissance mécanique 7 à l'arbre de turbine haute pression 3 et comprend un ensemble de pignons d'entraînement de différents équipements de la turbomachine, tels que des pompes et des générateurs, notamment électriques. D'autres transmissions de puissance peuvent également être utilisées.
La figure 2 représente un circuit d'huile 8 de la turbomachine de la figure 1 .
Le circuit d'huile 8 comprend, de l'amont vers l'aval dans le sens d'écoulement de l'huile, différents ensembles 9 utilisant de l'huile de lubrification et/ou de refroidissement, des pompes 10 de récupération permettant la recirculation d'huile depuis les équipements vers un réservoir 1 1 , des pompes d'alimentation 12 et un filtre 13.
Outre l'huile utilisée pour la lubrification et le refroidissement de la turbomachine 1 , notamment des paliers d'arbres de turbines et de compresseurs, le flux d'huile global peut comprendre de l'huile utilisée pour la lubrification de la boite d'accessoires et pour la lubrification et le refroidissement d'un ou plusieurs générateurs électriques.
Le circuit d'huile 8 comprend trois échangeurs de chaleur montés en série entre le filtre 13 et les ensembles 9, à savoir un échangeur de chaleur principal huile/carburant 14, un échangeur de chaleur secondaire huile/carburant 15 et un échangeur de chaleur huile/air 16.
L'échangeur de chaleur huile/air 16 peut être du type surfacique, c'est-à-dire comprenant des conduits d'huile balayés par un flux d'air froid provenant d'un flux d'air de contournement communément appelé flux d'air secondaire. Un tel échangeur 16 est par exemple logé sur une paroi du canal du flux secondaire immédiatement en aval de la soufflante (figure 1 ).
En variante, l'échangeur de chaleur huile/air 16 peut être du type à plaques et traversé par un flux d'air prélevé dans le flux d'air secondaire et réinjecté en sortie dans celui-ci. Selon encore une variante, le flux d'air peut être prélevé à l'extérieur (air ambiant).
En fonctionnement, en sortie des pompes d'alimentation 12, l'huile traverse l'échangeur de chaleur huile/air 16, l'échangeur de chaleur secondaire huile/carburant 15 puis l'échangeur de chaleur principal huile/carburant 14. Une conduite 17 est montée dans le circuit d'huile 8 en dérivation sur l'échangeur de chaleur huile/air 16 et comprend une entrée agencée entre la sortie du filtre 13 et l'entrée de l'échangeur de chaleur huile/air 16 et une sortie agencée entre la sortie de l'échangeur de chaleur huile/air 16 et l'entrée de l'échangeur de chaleur secondaire huile/carburant 15. Un clapet hydraulique 18 est monté dans la conduite de dérivation 17 et commande le passage du débit d'huile dans l'échangeur huile/air 16 ou à travers la conduite de dérivation 17 et l'échangeur de chaleur huile/air 16. L'huile sortant de l'échangeur de chaleur principal huile/carburant 14 circule ensuite vers le réservoir d'huile 1 1 .
En conditions froides de fonctionnement, le clapet 18 s'ouvre pour autoriser le passage d'huile à travers la conduite de dérivation 17.
Comme indiqué précédemment, les échangeurs huile/air 16 utilisés actuellement ont des rendements relativement faibles ce qui oblige à utiliser des échangeurs relativement encombrants. Or, comme ceux-ci sont placés dans le flux d'air secondaire, ils engendrent des perturbations aérodynamiques qui augmentent avec leurs dimensions, ce qui pénalise le rendement global de la turbomachine.
Afin d'éviter cela, l'invention propose de remplacer l'échangeur huile/air 16 par un dispositif thermodynamique 19 du type pompe à chaleur. Comme cela est illustré à la figure 3, ce dispositif 19 comporte un circuit de fluide frigorigène 20 équipé d'un premier échangeur de chaleur 21 apte à échanger de la chaleur entre le fluide frigorigène et de l'air et formant un condenseur, un second échangeur 22 de chaleur apte à échanger de la chaleur entre le fluide frigorigène et l'huile du circuit d'huile 8 et formant un évaporateur, un détendeur 23 monté en aval du premier échangeur 21 et en amont du second échangeur 22, dans le sens de circulation du fluide frigorigène, et un compresseur 24 monté en aval du second échangeur 22 et en amont du premier échangeur 21 .
Le premier échangeur 21 peut être de type surfacique (conduits de fluide frigorigène balayés par un flux d'air), ou de types à plaques.
En fonctionnement, lorsqu'il est nécessaire de refroidir l'huile du circuit 8, le compresseur 24 est mis en route. L'évaporateur 22 permet alors vaporiser le fluide frigorigène en prélevant de la chaleur sur l'huile. Le compresseur 24 permet d'augmenter la pression et la température du fluide frigorigène en phase vapeur avant que ce dernier ne traverse le condenseur 21 où il libère de la chaleur dans l'air, par passage de l'état gazeux à l'état liquide. Le fluide frigorigène en phase liquide traverse ensuite le détendeur 23 qui a pour rôle de réduire sa pression et d'abaisser sa température, avant de traverser à nouveau l'évaporateur 22.
Un tel dispositif est en général caractérisé par son coefficient de performance (COP) qui peut être par exemple de l'ordre de 5. Ceci signifie que, pour une unité d'énergie apportée au compresseur 24 (sous forme d'énergie électrique), 5 unités d'énergie (sous forme de chaleur) sont prélevées à l'huile et transférées à l'air.
Le très bon rendement d'un tel dispositif 19 permet donc de limiter la taille de l'échangeur 21 entre l'air et le fluide frigorigène, de façon à ne pas impacter fortement le rendement de la turbomachine.
En particulier, la taille de l'échangeur est limitée par le fait que l'on peut avoir des échanges entre le fluide frigorigène et l'air avec des différences de température importantes.
Bien entendu, un tel dispositif thermodynamique pourrait être utilisé dans une turbomachine ayant un circuit d'huile 8 de structure différente de celle illustrée à la figure 3.

Claims

REVENDICATIONS
1 . Turbomachine (1 ), telle qu'un turboréacteur ou un turbopropulseur d'avion, comportant au moins un circuit d'huile (8) et des moyens de refroidissement (19) de l'huile de ce circuit, caractérisée en ce que les moyens de refroidissement (19) comportent un circuit thermodynamique (20) de fluide frigorigène équipé
- d'un premier échangeur de chaleur (21 ) apte à échanger de la chaleur entre le fluide frigorigène et de l'air et formant un condenseur,
- d'un second échangeur de chaleur (22) apte à échanger de la chaleur entre le fluide frigorigène et l'huile du circuit d'huile et formant un évaporateur,
- d'un détendeur (23) monté en aval du premier échangeur (21 ) et en amont du second échangeur (22), dans le sens de circulation du fluide frigorigène, et
- d'un compresseur (24) monté en aval du second échangeur (22) et en amont du premier échangeur (21 ).
2. Turbomachine (1 ) selon la revendication 1 , caractérisée en ce qu'elle comporte une veine secondaire de passage d'un flux secondaire issu d'une soufflante, le premier échangeur (21 ) étant disposé dans la veine secondaire.
3. Turbomachine selon la revendication 1 , caractérisée en ce que le premier échangeur (21 ) est conçu pour échanger de la chaleur entre le fluide frigorigène et de l'air ambiant, externe à la turbomachine.
4. Turbomachine (1 ) selon l'une des revendications 1 à 3, caractérisée en ce que le circuit d'huile (8) est conçu pour lubrifier et/ou refroidir des éléments du moteur de la turbomachine et/ou un équipement, tel qu'un générateur électrique.
PCT/FR2013/051680 2012-07-19 2013-07-12 Refroidissement du circuit d'huile d'une turbomachine WO2014013170A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1500548.1A GB2519016B (en) 2012-07-19 2013-07-12 Cooling of an oil circuit of a turbomachine
US14/415,313 US10352190B2 (en) 2012-07-19 2013-07-12 Cooling of an oil circuit of a turbomachine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1257015 2012-07-19
FR1257015A FR2993610B1 (fr) 2012-07-19 2012-07-19 Refroidissement du circuit d'huile d'une turbomachine

Publications (1)

Publication Number Publication Date
WO2014013170A1 true WO2014013170A1 (fr) 2014-01-23

Family

ID=46963910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/051680 WO2014013170A1 (fr) 2012-07-19 2013-07-12 Refroidissement du circuit d'huile d'une turbomachine

Country Status (4)

Country Link
US (1) US10352190B2 (fr)
FR (1) FR2993610B1 (fr)
GB (1) GB2519016B (fr)
WO (1) WO2014013170A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2534003A (en) * 2014-10-27 2016-07-13 Snecma Circuit for de-icing an air inlet lip of an aircraft propulsion assembly
WO2016156756A1 (fr) * 2015-04-03 2016-10-06 Snecma Refroidissement du circuit d'huile d'une turbomachine
WO2017198965A1 (fr) 2016-05-20 2017-11-23 Safran Systeme reversible pour la dissipation de puissances thermiques generees dans un moteur a turbine a gaz
WO2018055307A1 (fr) 2016-09-23 2018-03-29 Safran Système de refroidissement d'un circuit d'un premier fluide d'une turbomachine

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10087777B2 (en) * 2016-04-29 2018-10-02 Hamilton Sundstrand Corporation Lubricant cooling systems for high speed turbomachines
US11028775B2 (en) * 2018-08-23 2021-06-08 The Boeing Company Bleed air boosted engine oil cooler
FR3094744B1 (fr) * 2019-04-03 2021-12-10 Safran Nacelles Fluide caloporteur pour système de refroidissement de turboréacteur pour aéronef
FR3094749B1 (fr) * 2019-04-03 2021-11-19 Safran Nacelles Système de refroidissement de turboréacteur pour aéronef
FR3094750B1 (fr) * 2019-04-03 2021-11-26 Safran Nacelles Système de refroidissement de turboréacteur pour aéronef
EP3726027A1 (fr) * 2019-04-17 2020-10-21 United Technologies Corporation Système de gestion thermique intégré pour refroidissement de carburant
US11638889B2 (en) * 2019-09-25 2023-05-02 Pratt & Whitney Canada Corp. Filter cover protection against external contamination
CN112879788A (zh) * 2021-01-22 2021-06-01 宁波云德半导体材料有限公司 一种外置式的石英加工中心润滑液冷却系统装置
GB2622208A (en) * 2022-09-06 2024-03-13 Rolls Royce Plc A thermal management system for an aircraft

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1895124A2 (fr) * 2006-08-31 2008-03-05 General Electric Company Dispositif de refroidissement de l'huile dans le capot de ventilateur et procédé
FR2914365A1 (fr) * 2007-03-28 2008-10-03 Airbus France Sas Systeme de refroidissement et de regulation en temperature d'equipements d'un ensemble propulsif d'aeronef.
WO2009140100A1 (fr) * 2008-05-13 2009-11-19 General Electric Company Procédé et appareil pour commander du carburant dans un moteur à turbine à gaz
WO2010051011A1 (fr) * 2008-11-03 2010-05-06 Smith J Walter Systèmes et procédés de gestion thermique dans une centrale électrique à turbine à gaz

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2979293A (en) * 1956-03-02 1961-04-11 Jay A Mount Cooling for supersonic aircraft
US3705496A (en) * 1963-11-20 1972-12-12 Texaco Experiment Inc Reaction propulsion engine and method of operation
US4151710A (en) * 1977-03-11 1979-05-01 United Technologies Corporation Lubrication cooling system for aircraft engine accessory
US4254618A (en) * 1977-08-18 1981-03-10 General Electric Company Cooling air cooler for a gas turbofan engine
US4273304A (en) * 1979-01-31 1981-06-16 Frosch Robert A Cooling system for high speed aircraft
US4773212A (en) * 1981-04-01 1988-09-27 United Technologies Corporation Balancing the heat flow between components associated with a gas turbine engine
US4474001A (en) * 1981-04-01 1984-10-02 United Technologies Corporation Cooling system for the electrical generator of a turbofan gas turbine engine
US4505124A (en) * 1983-09-22 1985-03-19 The United States Of America As Represented By The Secretary Of The Air Force Heat management system for aircraft
US5121599A (en) * 1991-02-21 1992-06-16 United Technologies Corporation Oil filtration system and method
US6182435B1 (en) * 1997-06-05 2001-02-06 Hamilton Sundstrand Corporation Thermal and energy management method and apparatus for an aircraft
US6948331B1 (en) * 2003-09-12 2005-09-27 Norhrop Grumman Corporation Environmental control system for an aircraft
US7373771B2 (en) * 2004-07-09 2008-05-20 Pratt & Whitney Canada Corp. Cooling arrangement for an accessory gearbox and method of cooling
US7377100B2 (en) * 2004-08-27 2008-05-27 Pratt & Whitney Canada Corp. Bypass duct fluid cooler
US7793505B2 (en) * 2006-05-04 2010-09-14 Pratt & Whitney Canada Corp Gas turbine engine oil system operation
US7861512B2 (en) * 2006-08-29 2011-01-04 Pratt & Whitney Canada Corp. Turbofan bypass duct air cooled fluid cooler installation
US8522572B2 (en) * 2010-07-01 2013-09-03 General Electric Company Adaptive power and thermal management system
US8757086B2 (en) * 2010-07-28 2014-06-24 Randel Brandstrom Cladding the interior of a straight pipe section
US8967531B2 (en) * 2011-03-28 2015-03-03 Rolls-Royce Corporation Aircraft and airborne electrical power and thermal management system
US8789376B2 (en) * 2011-05-27 2014-07-29 General Electric Company Flade duct turbine cooling and power and thermal management
US9254920B2 (en) * 2012-05-30 2016-02-09 General Electric Company Aircraft energy management system including engine fan discharge air boosted environmental control system
US9739171B2 (en) * 2012-11-16 2017-08-22 United Technologies Corporation Turbine engine cooling system with an open loop circuit
FR3034464B1 (fr) * 2015-04-03 2017-03-24 Snecma Refroidissement du circuit d'huile d'une turbomachine
US10676205B2 (en) * 2016-08-19 2020-06-09 General Electric Company Propulsion engine for an aircraft
US10800539B2 (en) * 2016-08-19 2020-10-13 General Electric Company Propulsion engine for an aircraft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1895124A2 (fr) * 2006-08-31 2008-03-05 General Electric Company Dispositif de refroidissement de l'huile dans le capot de ventilateur et procédé
FR2914365A1 (fr) * 2007-03-28 2008-10-03 Airbus France Sas Systeme de refroidissement et de regulation en temperature d'equipements d'un ensemble propulsif d'aeronef.
WO2009140100A1 (fr) * 2008-05-13 2009-11-19 General Electric Company Procédé et appareil pour commander du carburant dans un moteur à turbine à gaz
WO2010051011A1 (fr) * 2008-11-03 2010-05-06 Smith J Walter Systèmes et procédés de gestion thermique dans une centrale électrique à turbine à gaz

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2534003A (en) * 2014-10-27 2016-07-13 Snecma Circuit for de-icing an air inlet lip of an aircraft propulsion assembly
WO2016156756A1 (fr) * 2015-04-03 2016-10-06 Snecma Refroidissement du circuit d'huile d'une turbomachine
FR3034464A1 (fr) * 2015-04-03 2016-10-07 Snecma Refroidissement du circuit d'huile d'une turbomachine
WO2017198965A1 (fr) 2016-05-20 2017-11-23 Safran Systeme reversible pour la dissipation de puissances thermiques generees dans un moteur a turbine a gaz
FR3051509A1 (fr) * 2016-05-20 2017-11-24 Safran Systeme reversible pour la dissipation de puissances thermiques generees dans un moteur a turbine a gaz
US10794231B2 (en) 2016-05-20 2020-10-06 Safran Reversible system for dissipating thermal power generated in a gas-turbine engine
WO2018055307A1 (fr) 2016-09-23 2018-03-29 Safran Système de refroidissement d'un circuit d'un premier fluide d'une turbomachine
FR3056641A1 (fr) * 2016-09-23 2018-03-30 Safran Systeme de refroidissement d'un circuit d'un premier fluide d'une turbomachine
US10954832B2 (en) 2016-09-23 2021-03-23 Safran System for cooling a circuit of a first fluid of a turbomachine

Also Published As

Publication number Publication date
US10352190B2 (en) 2019-07-16
FR2993610B1 (fr) 2014-07-11
GB2519016B (en) 2019-10-16
FR2993610A1 (fr) 2014-01-24
GB2519016A (en) 2015-04-08
US20150192033A1 (en) 2015-07-09
GB201500548D0 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
WO2014013170A1 (fr) Refroidissement du circuit d'huile d'une turbomachine
EP3277938B2 (fr) Refroidissement du circuit d'huile d'une turbomachine
FR3050761B1 (fr) Regulation du debit d'huile dans un circuit de refroidissement d'une turbomachine
BE1024081B1 (fr) Refroidissement de turbomachine par evaporation
FR2979671A1 (fr) Circuits d'huile et de carburant dans une turbomachine
CA2752526C (fr) Moteur aeronautique avec refroidissement d'un dispositif electrique de demarrage
CA2619146A1 (fr) Dispositif de refroidissement d'un equipement electrique dans une turbomachine
WO2008132400A2 (fr) Systeme de refroidissement et de regulation en temperature d'equipements d'un ensemble propulsif d'aeronef
FR3028888A1 (fr) Dispositif de refroidissement pour une turbomachine alimente par un circuit de decharge
EP2665900B1 (fr) Procédé et dispositif d'alimentation en lubrifiant
FR3110938A1 (fr) Installation de réchauffement d’un carburant cryogénique
FR2991384A1 (fr) Circuit de fluide dans une turbomachine
WO2019162601A1 (fr) Turbomachine comportant un echangeur de chaleur dans la veine secondaire
WO2018055307A1 (fr) Système de refroidissement d'un circuit d'un premier fluide d'une turbomachine
EP0473494B1 (fr) Circuit d'alimentation en carburant d'un turbo-moteur
EP3026246B1 (fr) Dispositif de récupération d'énergie à cycle rankine ayant une source froide régulée et véhicule équipé d'un tel dispositif, procédé de récupération d'énergie correspondant
EP3458695B1 (fr) Système reversible pour la dissipation de puissances thermiques générées dans un moteur à turbine à gaz
WO2023152232A1 (fr) Turbomachine de chauffage pour un système de conditionnement de carburant configuré pour alimenter un turbomoteur d'aéronef à partir de carburant issu d'un réservoir cryogénique
WO2023072614A1 (fr) Système de conditionnement de carburant pour alimenter une turbomachine d'aéronef, aéronef et procédé d'utilisation
FR3117172A1 (fr) Turbomachine pour un aéronef
FR3133404A1 (fr) Système de suralimentation en air pour système de conditionnement de carburant et procédé d’utilisation
FR3078368A1 (fr) Turbomachine comportant un echangeur de chaleur dans la veine secondaire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13747443

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1500548

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20130712

WWE Wipo information: entry into national phase

Ref document number: 1500548.1

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 14415313

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13747443

Country of ref document: EP

Kind code of ref document: A1