WO2014012945A1 - Procédé et dispositif de restitution d'une représentation de champs sonores audio pour une lecture audio - Google Patents

Procédé et dispositif de restitution d'une représentation de champs sonores audio pour une lecture audio Download PDF

Info

Publication number
WO2014012945A1
WO2014012945A1 PCT/EP2013/065034 EP2013065034W WO2014012945A1 WO 2014012945 A1 WO2014012945 A1 WO 2014012945A1 EP 2013065034 W EP2013065034 W EP 2013065034W WO 2014012945 A1 WO2014012945 A1 WO 2014012945A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
decode
decode matrix
rendering
hoa
Prior art date
Application number
PCT/EP2013/065034
Other languages
English (en)
Inventor
Johannes Boehm
Florian Keiler
Original Assignee
Thomson Licensing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2013292057A priority Critical patent/AU2013292057B2/en
Priority to CN201380037816.5A priority patent/CN104584588B/zh
Application filed by Thomson Licensing filed Critical Thomson Licensing
Priority to JP2015522078A priority patent/JP6230602B2/ja
Priority to EP19203226.6A priority patent/EP3629605B1/fr
Priority to KR1020207004422A priority patent/KR102201034B1/ko
Priority to BR122020017389-0A priority patent/BR122020017389B1/pt
Priority to KR1020227044216A priority patent/KR102597573B1/ko
Priority to KR1020217000214A priority patent/KR102479737B1/ko
Priority to BR122020017399-8A priority patent/BR122020017399B1/pt
Priority to EP21214639.3A priority patent/EP4013072B1/fr
Priority to BR112015001128-4A priority patent/BR112015001128B1/pt
Priority to KR1020157000821A priority patent/KR102079680B1/ko
Priority to US14/415,561 priority patent/US9712938B2/en
Priority to KR1020237037407A priority patent/KR20230154111A/ko
Priority to EP23202235.0A priority patent/EP4284026A3/fr
Priority to EP13737262.9A priority patent/EP2873253B1/fr
Publication of WO2014012945A1 publication Critical patent/WO2014012945A1/fr
Priority to HK15111315.8A priority patent/HK1210562A1/xx
Priority to AU2017203820A priority patent/AU2017203820B2/en
Priority to US15/619,935 priority patent/US9961470B2/en
Priority to US15/920,849 priority patent/US10075799B2/en
Priority to US16/114,937 priority patent/US10306393B2/en
Priority to AU2019201900A priority patent/AU2019201900B2/en
Priority to US16/417,515 priority patent/US10595145B2/en
Priority to US16/789,077 priority patent/US10939220B2/en
Priority to US17/189,067 priority patent/US11451920B2/en
Priority to AU2021203484A priority patent/AU2021203484B2/en
Priority to US17/943,965 priority patent/US11743669B2/en
Priority to AU2023203838A priority patent/AU2023203838A1/en
Priority to US18/359,198 priority patent/US20240040327A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/008Systems employing more than two channels, e.g. quadraphonic in which the audio signals are in digital form, i.e. employing more than two discrete digital channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/11Application of ambisonics in stereophonic audio systems

Definitions

  • This invention relates to a method and a device for rendering an audio soundfield representation, and in particular an Ambisonics formatted audio representation, for audio playback.
  • Ambisonics carry a representation of a desired sound field.
  • the Ambisonics format is based on spherical harmonic decomposition of the soundfield. While the basic Ambisonics format or B-format uses spherical harmonics of order zero and one, the so-called Higher Order Ambisonics (HOA) uses also further spherical harmonics of at least 2 nd order.
  • a decoding or rendering process is required to obtain the individual loudspeaker signals from such Ambisonics formatted signals.
  • the spatial arrangement of loudspeakers is referred to as loudspeaker setup herein.
  • known rendering approaches are suitable only for regular loudspeaker setups, arbitrary loudspeaker setups are much more common. If such rendering approaches are applied to arbitrary loudspeaker setups, sound directivity suffers.
  • the present invention describes a method for rendering/decoding an audio sound field representation for both regular and non-regular spatial loudspeaker distributions, where the rendering/decoding provides highly improved localization properties and is energy preserving.
  • the invention provides a new way to obtain the decode matrix for sound field data, e.g. in HOA format. Since the HOA format describes a sound field, which is not directly related to loudspeaker positions, and since loudspeaker signals to be obtained are necessarily in a channel-based audio format, the decoding of HOA signals is always tightly related to rendering the audio signal. Therefore the present invention relates to both decoding and rendering sound field related audio formats.
  • One advantage of the present invention is that energy preserving decoding with very good directional properties is achieved.
  • energy preserving means that the energy within the HOA directive signal is preserved after decoding, so that e.g. a constant amplitude directional spatial sweep will be perceived with constant loudness.
  • good directional properties refers to the speaker directivity characterized by a directive main lobe and small side lobes, wherein the directivity is increased compared with conventional rendering/decoding.
  • the invention discloses rendering sound field signals, such as Higher-Order Ambisonics (HOA), for arbitrary loudspeaker setups, where the rendering results in highly improved localization properties and is energy preserving. This is obtained by a new type of decode matrix for sound field data, and a new way to obtain the decode matrix.
  • HOA Higher-Order Ambisonics
  • the decode matrix for the rendering to a given arrangement of target loudspeakers is obtained by steps of obtaining a number of target speakers and their positions, positions of a spherical modeling grid and a HOA order, generating a mix matrix from the positions of the modeling grid and the positions of the speakers, generating a mode matrix from the positions of the spherical modeling grid and the HOA order, calculating a first decode matrix from the mix matrix and the mode matrix, and smoothing and scaling the first decode matrix with smoothing and scaling coefficients to obtain an energy preserving decode matrix.
  • the invention relates to a method for decoding and/or rendering an audio sound field representation for audio playback as claimed in claim 1 .
  • the invention relates to a device for decoding and/or rendering an audio sound field representation for audio playback as claimed in claim 9.
  • the invention relates to a computer readable medium having stored on it executable instructions to cause a computer to perform a method for decoding and/or rendering an audio sound field representation for audio playback as claimed in claim 15.
  • the invention uses the following approach.
  • panning functions are derived that are dependent on a loudspeaker setup that is used for playback.
  • a decode matrix e.g. Ambisonics decode matrix
  • the decode matrix is generated and processed to be energy preserving.
  • the decode matrix is filtered in order to smooth the loudspeaker panning main lobe and suppress side lobes. The filtered decode matrix is used to render the audio signal for the given loudspeaker setup. Side lobes are a side effect of rendering and provide audio signals in unwanted directions.
  • a method for rendering/decoding an audio sound field representation for audio playback comprises steps of buffering received HOA time samples b(t), wherein blocks of M samples and a time index ⁇ are formed, filtering the coefficients ⁇ ( ⁇ ) to obtain frequency filtered coefficients ⁇ ( ⁇ ) , rendering the frequency filtered coefficients ⁇ ( ⁇ ) to a spatial domain using a decode matrix D, wherein a spatial signal ⁇ ( ⁇ ) is obtained.
  • further steps comprise delaying the time samples w(t) individually for each of the L channels in delay lines, wherein L digital signals are obtained, and Digital-to-Analog (D/A) converting and amplifying the L digital signals, wherein L analog loudspeaker signals are obtained.
  • the decode matrix D for the rendering step i.e.
  • the decode matrix for rendering to a given arrangement of target speakers, is obtained by steps of obtaining a number of target speakers and positions of the speakers, determining positions of a spherical modeling grid and a HOA order, generating a mix matrix from the positions of a spherical modeling grid and the positions of the speakers, generating a mode matrix from the spherical modeling grid and the HOA order, calculating a first decode matrix from the mix matrix G and the mode matrix ⁇ , and smoothing and scaling the first decode matrix with smoothing and scaling coefficients, wherein the decode matrix is obtained.
  • a computer readable medium has stored on it executable instructions that when executed on a computer cause the computer to perform a method for decoding an audio sound field representation for audio playback as disclosed above.
  • Fig.1 a flow-chart of a method according to one embodiment of the invention
  • Fig.2 a flow-chart of a method for building the mix matrix G
  • Fig.3 a block diagram of a renderer
  • Fig.4 a flow-chart of schematic steps of a decode matrix generation process
  • Fig.5 a block diagram of a decode matrix generation unit
  • Fig.6 an exemplary 16-speaker setup, where speakers are shown as connected nodes;
  • Fig.7 the exemplary 16-speaker setup in natural view, where nodes are shown as
  • Fig.8 an energy diagram showing the E/E ratio being constant for perfect energy
  • Fig.12 an energy diagram showing the E/E ratio having fluctuations smaller than 1 dB as obtained by a method or apparatus according to the invention, where spatial pans with constant amplitude are perceived with equal loudness;
  • Fig.13 a sound pressure diagram for a decode matrix designed with the method
  • the center speaker has a panning beam with small side lobes.
  • the invention relates to rendering (i.e. decoding) sound field formatted audio signals such as Higher Order Ambisonics (HOA) audio signals to loudspeakers, where the loudspeakers are at symmetric or asymmetric, regular or non-regular positions.
  • the audio signals may be suitable for feeding more loudspeakers than available, e.g. the number of HOA coefficients may be larger than the number of loudspeakers.
  • the invention provides energy preserving decode matrices for decoders with very good directional properties, i.e. speaker directivity lobes generally comprise a stronger directive main lobe and smaller side lobes than speaker directivity lobes obtained with
  • Energy preserving means that the energy within the HOA directive signal is preserved after decoding, so that e.g. a constant amplitude directional spatial sweep will be perceived with constant loudness.
  • Fig.1 shows a flow-chart of a method according to one embodiment of the invention.
  • the method for rendering (i.e. decoding) a HOA audio sound field representation for audio playback uses a decode matrix that is generated as follows: first, a number L of target loudspeakers, the positions D L of the loudspeakers, a spherical modeling grid D s and an order N (e.g. HOA order) are determined 1 1 . From the positions D L of the speakers and the spherical modeling grid D s , a mix matrix G is generated 12, and from the spherical modeling grid D s and the HOA order N, a mode matrix ⁇ is generated 13.
  • a decode matrix that is generated as follows: first, a number L of target loudspeakers, the positions D L of the loudspeakers, a spherical modeling grid D s and an order N (e.g. HOA order) are determined 1 1 . From the positions D L of the speakers and the
  • a first decode matrix D is calculated 14 from the mix matrix G and the mode matrix ⁇ .
  • the first decode matrix D is smoothed 15 with smoothing coefficients A , wherein a smoothed decode matrix D is obtained, and the smoothed decode matrix D is scaled 16 with a scaling factor obtained from the smoothed decode matrix D, wherein the decode matrix D is obtained.
  • the smoothing 15 and scaling 16 is performed in a single step.
  • a plurality of decode matrices corresponding to a plurality of different loudspeaker arrangements are generated and stored for later usage.
  • the different loudspeaker arrangements can differ by at least one of the number of loudspeakers, a position of one or more loudspeakers and an order N of an input audio signal. Then, upon initializing the rendering system, a matching decode matrix is determined, retrieved from the storage according to current needs, and used for decoding.
  • the U,V are derived from Unitary matrices, and S is a diagonal matrix with singular value elements of said compact singular value decomposition of the product of the mode matrix ⁇ with the Hermitian transposed mix matrix G H .
  • Decode matrices obtained according to this embodiment are often numerically more stable than decode matrices obtained with an alternative embodiment described below.
  • the Hermitian transposed of a matrix is the conjugate complex transposed of the matrix.
  • the threshold thr depends on the actual values of the singular value decomposition matrix and may be, exemplarily, in the order of 0,06 * Si (the maximum element of S).
  • the S and threshold thr are as described above for the previous embodiment.
  • the threshold thr is usually derived from the largest singular value.
  • A Cf [K N+1 , K N+2 , ⁇ : N+ 2, ⁇ : N + 2, ⁇ : N+3 , K N+3 , ... , K 2N Y with a scaling factor c f .
  • the used elements of the Kaiser window begin with the (N+1 ) st element, which is used only once, and continue with subsequent elements which are used repeatedly: the (N+2) nd element is used three times, etc.
  • the scaling factor is obtained from the smoothed decoding matrix. In particular, in one embodiment it is obtained according to
  • a major focus of the invention is the initialization phase of the renderer, where a decode matrix D is generated as described above.
  • the main focus is a technology to derive the one or more decoding matrices, e.g. for a code book.
  • For generating a decode matrix it is known how many target loudspeakers are available, and where they are located (i.e. their positions).
  • Fig.2 shows a flow-chart of a method for building the mix matrix G, according to one embodiment of the invention.
  • the following section gives a brief introduction to Higher Order Ambisonics (HOA) and defines the signals to be processed, i.e. rendered for loudspeakers.
  • HOA Higher Order Ambisonics
  • HOA Higher Order Ambisonics
  • ⁇ ( ⁇ , ⁇ ) T t ⁇ p ⁇ t, x) ) (1 )
  • denotes the angular frequency (and T t ⁇ ) corresponds to /_ ⁇ p(t, x) e ⁇ ⁇ )
  • SHs Spherical Harmonics
  • SHs are complex valued functions in general. However, by an appropriate linear combination of them, it is possible to obtain real valued functions and perform the expansion with respect to these functions.
  • a source field can be defined as:
  • a source field can consist of far-field/ near- field, discrete/continuous sources [1].
  • the source field coefficients BTM are related to the sound field coefficients ATM by, [1 ]: for the far field
  • the coefficients bTM comprise the Audio information of one time sample t for later reproduction by loudspeakers. They can be stored or transmitted and are thus subject of data rate compression.
  • metadata is sent along the coefficient data, allowing an
  • w D b (9) where w e I L X L represents a time sample of L speaker signals and decode matrix D e C LX ° 3D .
  • a decode matrix can be derived by
  • ⁇ + ( 1 °)
  • ⁇ + is the pseudo inverse of the mode matrix ⁇ .
  • the mode-matrix ⁇ is defined as
  • Spherical convolution can be used for spatial smoothing. This is a spatial filtering process, or a windowing in the coefficient domain (convolution). Its purpose is to minimize the side lobes, so-called panning lobes.
  • a new coefficient bTM is given by the weighted product of the original H nal coefficient h° [5]:
  • weighting coefficients and a constant factor df are so called max r v , max r E and inphase coefficients [4].
  • a renderer architecture is described in terms of its initialization, start-up behavior and processing.
  • the renderer Every time the loudspeaker setup, i.e. the number of loudspeakers or position of any loudspeaker relative to the listening position changes, the renderer needs to perform an initialization process to determine a set of decoding matrices for any HOA-order N that supported HOA input signals have. Also the individual speaker delays d t for the delay lines and speaker gains g> x are determined from the distance between a speaker and a listening position. This process is described below.
  • the derived decoding matrices are stored within a code book. Every time the HOA audio input characteristics change, a renderer control unit determines currently valid characteristics and selects a matching decode matrix from the code book. Code book key can be the HOA order N or, equivalently, 0 3D (see eq.(6)).
  • Fig.3 shows a block diagram of processing blocks of the renderer. These are a first buffer 31 , a Frequency Domain Filtering unit 32, a rendering processing unit 33, a second buffer 34, a delay unit 35 for L channels, and a digital-to-analog converter and amplifier 36.
  • the HOA time samples with time-index t and 0 3D HOA coefficient channels b(i) are first stored in the first buffer 31 to form blocks of M samples with block index ⁇ .
  • the coefficients of ⁇ ( ⁇ ) are frequency filtered in the Frequency Domain Filtering unit 32 to obtain frequency filtered blocks ⁇ ( ⁇ ). This technology is known (see [3]) for
  • the frequency filtered block signals ⁇ ( ⁇ ) are rendered to the spatial domain in the rendering processing unit 33 by.
  • W(ji) D ⁇ ) (19) with 1 ⁇ ( ⁇ ) e I Lx representing a spatial signal in L channels with blocks of M time samples.
  • the signal is buffered in the second buffer 34 and serialized to form single time samples with time index t in L channels, referred to as w(t) in Fig.3.
  • This is a serial signal that is fed to L digital delay lines in the delay unit 35.
  • the delay lines compensate for different distances of listening position to individual speaker I with a delay of d t samples.
  • each delay line is a FIFO (first-in-first-out memory).
  • the delay compensated signals 355 are D/A converted and amplified in the digital-to-analog converter and amplifier 36, which provides signals 365 that can be fed to L loudspeakers.
  • the speaker gain compensation g> x can be considered before D/A conversion or by adapting the speaker channel amplification in analog domain.
  • the renderer initialization works as follows.
  • Various methods may apply, e.g. manual input of the speaker positions or automatic initialization using a test signal. Manual input of the speaker positions D L may be done using an adequate interface, like a connected mobile device or an device-integrated user-interface for selection of predefined position sets.
  • Automatic initialization may be done using a microphone array and dedicated speaker test signals with an evaluation unit to derive D L .
  • the L distances and r max are input to the delay line and gain compensation 35.
  • the number of delay samples for each speaker channel d t are determined by
  • Fig.4 shows, in one embodiment, processing blocks of a corresponding device for generating the decode matrix.
  • Inputs are speaker directions D L , a spherical modeling grid D s and the HOA-order N.
  • the speaker directions D L [ ⁇ 1( ... , n L ] can be expressed as spherical angles
  • the speaker directions D L and the spherical modeling grid D s are input to a Build Mix- Matrix block 41 , which generates a mix matrix G thereof.
  • the a spherical modeling grid D s and the HOA order N are input to a Build Mode-Matrix block 42, which generates a mode matrix ⁇ thereof.
  • the mix matrix G and the mode matrix ⁇ are input to a Build Decode Matrix block 43, which generates a decode matrix D thereof.
  • the decode matrix is input to a Smooth Decode Matrix block 44, which smoothes and scales the decode matrix. Further details are provided below.
  • Output of the Smooth Decode Matrix block 44 is the decode matrix D, which is stored in the code book with related key N (or alternatively 0 3D ).
  • a mix matrix G is created with G e I LxS . It is noted that the mix matrix G is referred to as W ' m [2].
  • An Z th row of the mix matrix G consists of mixing gains to mix S virtual sources from directions D s to speaker I.
  • Vector Base Amplitude Panning (VBAP) [1 1 ] is used to derive these mixing gains, as also in [2].
  • the algorithm to derive G is summarized in the following.
  • the compact singular value decomposition of the matrix product of the mode matrix and the transposed mixing matrix is calculated. This is an important aspect of the present invention, which can be performed in various manners.
  • the compact singular value decomposition S of the matrix product of the mode matrix ⁇ and the transposed mixing matrix G T is calculated according to:
  • the compact singular value decomposition S of the matrix product of the mode matrix ⁇ and the pseudo-inverse mixing matrix G + is calculated according to:
  • G + is the pseudo-inverse of mixing matrix G.
  • a suitable threshold value was found to be around 0.06. Small deviations e.g. within a range of ⁇ 0.01 or a range of ⁇ 1 0% are acceptable.
  • the decode matrix is smoothed. Instead of applying smoothing coefficients to the HOA coefficients before decoding, as known in prior art, it can be combined directly with the decode matrix. This saves one processing step, or processing block respectively.
  • A corresponds to max r E coefficients derived from the zeros of the
  • the elements are created by the Kaiser window formula where 7 0 ( ) denotes the zero-order Modified Bessel function of first kind.
  • the vector -ft is constructed from the elements of :
  • the smoothed decode matrix is scaled. In one embodiment, the scaling is performed in the Smooth Decode Matrix block 44, as shown in Fig.4 a). In a different embodiment, the scaling is performed as a separate step in a Scale Matrix block 45, as shown in Fig.4 b).
  • the constant scaling factor is obtained from the decoding matrix.
  • it can be obtained according to the so-called Frobenius norm of the decoding matrix: where d l q is a matrix element in line I and column q of the matrix D (after smoothing).
  • the smoothing and scaling unit 145 as a smoothing unit 1451 for smoothing the first decode matrix D, wherein a smoothed decode matrix D is obtained, and a scaling unit 1452 for scaling smoothed decode matrix D, wherein the decode matrix D is obtained.
  • Fig.6 shows speaker positions in an exemplary 16-speaker setup in a node schematic, where speakers are shown as connected nodes. Foreground connections are shown as solid lines, background connections as dashed lines.
  • Fig.7 shows the same speaker setup with 16 speakers in a foreshortening view.
  • dark areas correspond to lower volumes down to -2dB and light areas to higher volumes up to +2dB.
  • the ratio E/E shows fluctuations larger than 4dB, which is disadvantageous because spatial pans e.g. from top to center speaker position with constant amplitude cannot be perceived with equal loudness.
  • the corresponding panning beam of the center speaker has very small side lobes, which is beneficial for off-center listening positions.
  • the scale (shown on the right-hand side of Fig.12) of the ratio E/E ranges from 3.15 - 3.45dB.
  • fluctuations in the ratio are smaller than 0.31 dB, and the energy distribution in the sound field is very even. Consequently, any spatial pans with constant amplitude are perceived with equal loudness.
  • the panning beam of the center speaker has very small side lobes, as shown in Fig.13. This is beneficial for off center listening positions, where side lobes may be audible and thus would be disturbing.
  • the present invention provides combined advantages achievable with the prior art in [14] and [2], without suffering from their respective disadvantages.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical functions. It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures.
  • aspects of the present principles can be embodied as a system, method or computer readable medium. Accordingly, aspects of the present principles can take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, and so forth), or an embodiment combining software and hardware aspects that can all generally be referred to herein as a "circuit," "module”, or “system.” Furthermore, aspects of the present principles can take the form of a computer readable storage medium. Any combination of one or more computer readable storage medium(s) may be utilized. A computer readable storage medium as used herein is considered a non-transitory storage medium given the inherent capability to store the information therein as well as the inherent capability to provide retrieval of the information therefrom.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Stereophonic System (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

L'invention concerne la restitution de signaux de champ sonore, telle qu'une ambiophonie d'ordre supérieur (HOA), pour des configurations de haut-parleurs arbitraires, la restitution conduisant à des propriétés de localisation grandement améliorées et préservant l'énergie. Cela est obtenu par un nouveau type de matrice de décodage pour les données de champs sonores, et une nouvelle manière d'obtenir la matrice de décodage. Dans un procédé de restitution d'une représentation de champ sonore audio destiné à des configurations de haut-parleurs spatiaux arbitraires, la matrice de décodage (D) pour la restitution sur un agencement donné de haut-parleurs cibles est obtenue par les étapes d'obtention d'un certain nombre (L) de haut-parleurs cibles, de leurs positions (I), de leurs positions (II) d'un réseau de modélisation sphérique et d'un ordre HOA (N), de génération (141) d'une matrice mixte (G) à partir des positions (II) du réseau de modélisation et des positions (I) des haut-parleurs, de génération (142) d'une matrice de mode (III) à partir des positions (II) du réseau de modélisation sphérique et de l'ordre HOA, de calcul (143) d'une première matrice de décodage (IV) à partir de la matrice mixte (G) et de la matrice de mode (III), et de lissage et de pondération (144, 145) de la première matrice de décodage (IV) avec des coefficients de lissage et de pondération.
PCT/EP2013/065034 2012-07-16 2013-07-16 Procédé et dispositif de restitution d'une représentation de champs sonores audio pour une lecture audio WO2014012945A1 (fr)

Priority Applications (29)

Application Number Priority Date Filing Date Title
EP13737262.9A EP2873253B1 (fr) 2012-07-16 2013-07-16 Procédé et dispositif de restitution d'une représentation de champs sonores audio pour une lecture audio
KR1020237037407A KR20230154111A (ko) 2012-07-16 2013-07-16 오디오 재생을 위한 오디오 음장 표현을 렌더링하는 방법 및 장치
JP2015522078A JP6230602B2 (ja) 2012-07-16 2013-07-16 オーディオ再生のためのオーディオ音場表現をレンダリングするための方法および装置
EP19203226.6A EP3629605B1 (fr) 2012-07-16 2013-07-16 Procédé et dispositif de rendu d'une représentation d'un champ acoustique audio
KR1020207004422A KR102201034B1 (ko) 2012-07-16 2013-07-16 오디오 재생을 위한 오디오 음장 표현을 렌더링하는 방법 및 장치
BR122020017389-0A BR122020017389B1 (pt) 2012-07-16 2013-07-16 Método e dispositivo para renderização de uma representação de campo sonoro de áudio para reprodução de áudio e meio legível por computador
KR1020227044216A KR102597573B1 (ko) 2012-07-16 2013-07-16 오디오 재생을 위한 오디오 음장 표현을 렌더링하는 방법 및 장치
KR1020217000214A KR102479737B1 (ko) 2012-07-16 2013-07-16 오디오 재생을 위한 오디오 음장 표현을 렌더링하는 방법 및 장치
CN201380037816.5A CN104584588B (zh) 2012-07-16 2013-07-16 用于渲染音频声场表示以供音频回放的方法和设备
EP21214639.3A EP4013072B1 (fr) 2012-07-16 2013-07-16 Procédé et dispositif de rendu d'une représentation d'un champ acoustique audio
BR112015001128-4A BR112015001128B1 (pt) 2012-07-16 2013-07-16 Método e dispositivo para renderização de uma representação de um som ou campo sonoro e meio legível por computador
KR1020157000821A KR102079680B1 (ko) 2012-07-16 2013-07-16 오디오 재생을 위한 오디오 음장 표현을 렌더링하는 방법 및 장치
US14/415,561 US9712938B2 (en) 2012-07-16 2013-07-16 Method and device rendering an audio soundfield representation for audio playback
AU2013292057A AU2013292057B2 (en) 2012-07-16 2013-07-16 Method and device for rendering an audio soundfield representation for audio playback
BR122020017399-8A BR122020017399B1 (pt) 2012-07-16 2013-07-16 Método e dispositivo para renderizar uma representação de campo sonoro ambisonics de ordem superior para reprodução de áudio, dispositivo para decodificação e meio legível por computador
EP23202235.0A EP4284026A3 (fr) 2012-07-16 2013-07-16 Procédé et dispositif de rendu d'une représentation d'un champ acoustique audio
HK15111315.8A HK1210562A1 (en) 2012-07-16 2015-11-17 Method and device for rendering an audio soundfield representation for audio playback
AU2017203820A AU2017203820B2 (en) 2012-07-16 2017-06-06 Method and device for rendering an audio soundfield representation for audio playback
US15/619,935 US9961470B2 (en) 2012-07-16 2017-06-12 Method and device for rendering an audio soundfield representation
US15/920,849 US10075799B2 (en) 2012-07-16 2018-03-14 Method and device for rendering an audio soundfield representation
US16/114,937 US10306393B2 (en) 2012-07-16 2018-08-28 Method and device for rendering an audio soundfield representation
AU2019201900A AU2019201900B2 (en) 2012-07-16 2019-03-19 Method and device for rendering an audio soundfield representation for audio playback
US16/417,515 US10595145B2 (en) 2012-07-16 2019-05-20 Method and device for decoding a higher-order ambisonics (HOA) representation of an audio soundfield
US16/789,077 US10939220B2 (en) 2012-07-16 2020-02-12 Method and device for decoding a higher-order ambisonics (HOA) representation of an audio soundfield
US17/189,067 US11451920B2 (en) 2012-07-16 2021-03-01 Method and device for decoding a higher-order ambisonics (HOA) representation of an audio soundfield
AU2021203484A AU2021203484B2 (en) 2012-07-16 2021-05-28 Method and device for rendering an audio soundfield representation for audio playback
US17/943,965 US11743669B2 (en) 2012-07-16 2022-09-13 Method and device for decoding a higher-order ambisonics (HOA) representation of an audio soundfield
AU2023203838A AU2023203838A1 (en) 2012-07-16 2023-06-19 Method and device for rendering an audio soundfield representation for audio playback
US18/359,198 US20240040327A1 (en) 2012-07-16 2023-07-26 Method and device for decoding a higher-order ambisonics (hoa) representation of an audio soundfield

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12305862.0 2012-07-16
EP12305862 2012-07-16

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14/415,561 A-371-Of-International US9712938B2 (en) 2012-07-16 2013-07-16 Method and device rendering an audio soundfield representation for audio playback
US15/619,935 Division US9961470B2 (en) 2012-07-16 2017-06-12 Method and device for rendering an audio soundfield representation
US15/619,935 Continuation US9961470B2 (en) 2012-07-16 2017-06-12 Method and device for rendering an audio soundfield representation

Publications (1)

Publication Number Publication Date
WO2014012945A1 true WO2014012945A1 (fr) 2014-01-23

Family

ID=48793263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/065034 WO2014012945A1 (fr) 2012-07-16 2013-07-16 Procédé et dispositif de restitution d'une représentation de champs sonores audio pour une lecture audio

Country Status (9)

Country Link
US (9) US9712938B2 (fr)
EP (4) EP2873253B1 (fr)
JP (7) JP6230602B2 (fr)
KR (5) KR102597573B1 (fr)
CN (6) CN107071686B (fr)
AU (5) AU2013292057B2 (fr)
BR (3) BR122020017389B1 (fr)
HK (1) HK1210562A1 (fr)
WO (1) WO2014012945A1 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059081A1 (fr) 2013-10-23 2015-04-30 Thomson Licensing Procédé et appareil de décodage de représentation de champ acoustique à audio ambiophonique pour la lecture audio utilisant des configurations 2d
WO2015184316A1 (fr) * 2014-05-30 2015-12-03 Qualcomm Incoprporated Obtention d'informations de symétrie pour des moteurs de rendu audio ambiophonique d'ordre supérieur
WO2015184307A1 (fr) * 2014-05-30 2015-12-03 Qualcomm Incorporated Obtention d'informations de dispersion pour des moteurs de rendu audio ambiophonique d'ordre supérieur
US20170006401A1 (en) * 2013-11-28 2017-01-05 Dolby International Ab Method and apparatus for higher order ambisonics encoding and decoding using singular value decomposition
WO2017017262A1 (fr) * 2015-07-30 2017-02-02 Dolby International Ab Procédé et appareil permettant de générer une représentation de signal hoa au format mezzanine à partir d'une représentation de signal hoa
US9609452B2 (en) 2013-02-08 2017-03-28 Qualcomm Incorporated Obtaining sparseness information for higher order ambisonic audio renderers
WO2017066300A3 (fr) * 2015-10-14 2017-05-18 Qualcomm Incorporated Adaptation écran de contenu ambisonique d'ordre supérieur
US9883310B2 (en) 2013-02-08 2018-01-30 Qualcomm Incorporated Obtaining symmetry information for higher order ambisonic audio renderers
US10178489B2 (en) 2013-02-08 2019-01-08 Qualcomm Incorporated Signaling audio rendering information in a bitstream
CN110415712A (zh) * 2014-06-27 2019-11-05 杜比国际公司 用于解码声音或声场的高阶高保真度立体声响复制(hoa)表示的方法
CN107210045B (zh) * 2015-02-03 2020-11-17 杜比实验室特许公司 会议搜索以及搜索结果的回放
WO2023275218A3 (fr) * 2021-06-30 2023-02-23 Telefonaktiebolaget Lm Ericsson (Publ) Réglage du niveau de réverbération
CN116582803A (zh) * 2023-06-01 2023-08-11 广州市声讯电子科技股份有限公司 扬声器阵列的自适应控制方法、系统、存储介质及终端

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9288603B2 (en) 2012-07-15 2016-03-15 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for backward-compatible audio coding
US9473870B2 (en) 2012-07-16 2016-10-18 Qualcomm Incorporated Loudspeaker position compensation with 3D-audio hierarchical coding
US9761229B2 (en) 2012-07-20 2017-09-12 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for audio object clustering
US9479886B2 (en) 2012-07-20 2016-10-25 Qualcomm Incorporated Scalable downmix design with feedback for object-based surround codec
US9736609B2 (en) 2013-02-07 2017-08-15 Qualcomm Incorporated Determining renderers for spherical harmonic coefficients
US9883312B2 (en) 2013-05-29 2018-01-30 Qualcomm Incorporated Transformed higher order ambisonics audio data
US9466305B2 (en) 2013-05-29 2016-10-11 Qualcomm Incorporated Performing positional analysis to code spherical harmonic coefficients
EP2892250A1 (fr) * 2014-01-07 2015-07-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Appareil et procédé permettant de générer une pluralité de canaux audio
US9922656B2 (en) 2014-01-30 2018-03-20 Qualcomm Incorporated Transitioning of ambient higher-order ambisonic coefficients
US9489955B2 (en) 2014-01-30 2016-11-08 Qualcomm Incorporated Indicating frame parameter reusability for coding vectors
CN109087653B (zh) * 2014-03-24 2023-09-15 杜比国际公司 对高阶高保真立体声信号应用动态范围压缩的方法和设备
US9620137B2 (en) 2014-05-16 2017-04-11 Qualcomm Incorporated Determining between scalar and vector quantization in higher order ambisonic coefficients
US9852737B2 (en) 2014-05-16 2017-12-26 Qualcomm Incorporated Coding vectors decomposed from higher-order ambisonics audio signals
US10770087B2 (en) 2014-05-16 2020-09-08 Qualcomm Incorporated Selecting codebooks for coding vectors decomposed from higher-order ambisonic audio signals
US9736606B2 (en) * 2014-08-01 2017-08-15 Qualcomm Incorporated Editing of higher-order ambisonic audio data
US9747910B2 (en) 2014-09-26 2017-08-29 Qualcomm Incorporated Switching between predictive and non-predictive quantization techniques in a higher order ambisonics (HOA) framework
WO2016210174A1 (fr) 2015-06-25 2016-12-29 Dolby Laboratories Licensing Corporation Système et procédé de transformation par réalisation de panoramique audio
US10249312B2 (en) 2015-10-08 2019-04-02 Qualcomm Incorporated Quantization of spatial vectors
US9961467B2 (en) * 2015-10-08 2018-05-01 Qualcomm Incorporated Conversion from channel-based audio to HOA
FR3052951B1 (fr) * 2016-06-20 2020-02-28 Arkamys Procede et systeme pour l'optimisation du rendu sonore de basses frequences d'un signal audio
EP3625974B1 (fr) 2017-05-15 2020-12-23 Dolby Laboratories Licensing Corporation Procédés, systèmes et appareil de conversion de formats audio spatiaux en signaux de haut-parleurs
US10182303B1 (en) * 2017-07-12 2019-01-15 Google Llc Ambisonics sound field navigation using directional decomposition and path distance estimation
US10015618B1 (en) * 2017-08-01 2018-07-03 Google Llc Incoherent idempotent ambisonics rendering
CN107820166B (zh) * 2017-11-01 2020-01-07 江汉大学 一种声音对象的动态渲染方法
US10264386B1 (en) * 2018-02-09 2019-04-16 Google Llc Directional emphasis in ambisonics
US11798569B2 (en) * 2018-10-02 2023-10-24 Qualcomm Incorporated Flexible rendering of audio data
EP4005248A1 (fr) * 2019-07-30 2022-06-01 Dolby Laboratories Licensing Corporation Gestion de lecture de plusieurs flux audio sur plusieurs haut-parleurs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998012896A1 (fr) * 1996-09-18 1998-03-26 Bauck Jerald L Dispositif stereo transaural
WO2011117399A1 (fr) 2010-03-26 2011-09-29 Thomson Licensing Procédé et dispositif pour le décodage d'une représentation d'un champ sonore audio pour une lecture audio
WO2012023864A1 (fr) * 2010-08-20 2012-02-23 Industrial Research Limited Système de son surround
EP2451196A1 (fr) * 2010-11-05 2012-05-09 Thomson Licensing Procédé et appareil pour générer et décoder des données de champ sonore incluant des données de champ sonore d'ambiophonie d'un ordre supérieur à trois

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645261B2 (en) 2000-03-06 2003-11-11 Cargill, Inc. Triacylglycerol-based alternative to paraffin wax
US7949141B2 (en) * 2003-11-12 2011-05-24 Dolby Laboratories Licensing Corporation Processing audio signals with head related transfer function filters and a reverberator
CN1677493A (zh) * 2004-04-01 2005-10-05 北京宫羽数字技术有限责任公司 一种增强音频编解码装置及方法
EP2094032A1 (fr) 2008-02-19 2009-08-26 Deutsche Thomson OHG Signal audio, procédé et appareil pour coder ou transmettre celui-ci et procédé et appareil pour le traiter
JP5773540B2 (ja) * 2009-10-07 2015-09-02 ザ・ユニバーシティ・オブ・シドニー 記録された音場の再構築
TWI444989B (zh) * 2010-01-22 2014-07-11 Dolby Lab Licensing Corp 針對改良多通道上混使用多通道解相關之技術
US9271081B2 (en) * 2010-08-27 2016-02-23 Sonicemotion Ag Method and device for enhanced sound field reproduction of spatially encoded audio input signals
EP2450880A1 (fr) * 2010-11-05 2012-05-09 Thomson Licensing Structure de données pour données audio d'ambiophonie d'ordre supérieur

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998012896A1 (fr) * 1996-09-18 1998-03-26 Bauck Jerald L Dispositif stereo transaural
WO2011117399A1 (fr) 2010-03-26 2011-09-29 Thomson Licensing Procédé et dispositif pour le décodage d'une représentation d'un champ sonore audio pour une lecture audio
WO2012023864A1 (fr) * 2010-08-20 2012-02-23 Industrial Research Limited Système de son surround
EP2451196A1 (fr) * 2010-11-05 2012-05-09 Thomson Licensing Procédé et appareil pour générer et décoder des données de champ sonore incluant des données de champ sonore d'ambiophonie d'un ordre supérieur à trois

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
"ambisonic net links equipment for ambisonic production & listening", 29 September 2011 (2011-09-29), XP055081150, Retrieved from the Internet <URL:http://web.archive.org/web/20110929055121/http://www.ambisonic.net/gear.html> [retrieved on 20130926] *
AES CONVENTION PAPER 5788 PRESENTED AT THE 114TH CONVENTION, March 2003 (2003-03-01), pages 4795
BOAZ RAFAELY.: "Plane-wave decomposition of the sound field on a sphere by spherical convolution.", J. ACOUST. SOC. AM., vol. 4, no. 116, October 2004 (2004-10-01), pages 2149 - 2157
BOEHM ET AL: "Decoding for 3-D", AES CONVENTION 130; MAY 2011, AES, 60 EAST 42ND STREET, ROOM 2520 NEW YORK 10165-2520, USA, 13 May 2011 (2011-05-13), XP040567441 *
EARL G. WILLIAMS.: "Applied Mathematical Sciences.", vol. 93, 1999, ACADEMIC PRESS, article "Fourier Acoustics"
F. ZOTTER; H. POMBERGER; M. NOISTERNIG: "Energy-preserving ambisonic decoding", ACTA ACUSTICA UNITED WITH ACUSTICA, vol. 98, no. 1, January 2012 (2012-01-01), pages 37 - 47, XP009180661, DOI: doi:10.3813/AAA.918490
JAMES R. DRISCOLL; DENNIS M. HEALY JR.: "Computing Fourier transforms and convolutions on the 2-sphere", ADVANCES IN APPLIED MATHEMATICS, vol. 15, 1994, pages 202 - 250
JEROME DANIEL: "Representation de champs acoustiques, application a la transmission et a la reproduction de scenes sonores complexes dans un contexte multimedia", PHD THESIS, 2001
JÉRÔME DANIEL: "Représentation de champs acoustiques,application à la transmission et à la reproduction de scènes sonores complexes dans un contexte multimédia; Thèse de doctorat de l'Université Paris 6", 31 July 2001 (2001-07-31), pages 177-200,281,282,311-315, XP055082088, Retrieved from the Internet <URL:http://pcfarina.eng.unipr.it/Public/phd-thesis/jd-these-original-version.pdf> [retrieved on 20131002] *
JOHANN-MARKUS BATKE ET AL: "Using VBAP-derived panning functions for 3D ambisonics decoding", PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON AMBISONICS AND SPHERICAL ACOUSTICS, 6 May 2010 (2010-05-06), pages 1 - 4, XP055035920, Retrieved from the Internet <URL:http://ambisonics10.ircam.fr/drupal/files/proceedings/presentations/O14_47.pdf> [retrieved on 20120821] *
JORG FLIEGE, INTEGRATION NODES FOR THE SPHERE, 1 June 2012 (2012-06-01), Retrieved from the Internet <URL:http://www.personal.soton.ac.uk/jf1w07/nodes/nodes.html>
JORG FLIEGE; ULRIKE MAIER.: "A two-stage approach for computing cubature formulae for the sphere", TECHNICAL REPORT, FACHBEREICH MATHEMATIK, 1999
M. A. POLETTI.: "Three-dimensional surround sound systems based on spherical harmonics", J. AUDIO ENG. SOC., vol. 53, no. 11, November 2005 (2005-11-01), pages 1004 - 1025
POLETTI ET AL: "Three-Dimensional Surround Sound Systems Based on Spherical Harmonics", JAES, AES, 60 EAST 42ND STREET, ROOM 2520 NEW YORK 10165-2520, USA, vol. 53, no. 11, 1 November 2005 (2005-11-01), pages 1004 - 1025, XP040507486 *
R. H. HARDIN; N. J. A. SLOANE.: "Mclaren's improved snub cube and other new spherical designs in three dimensions", DISCRETE AND COMPUTATIONAL GEOMETRY, vol. 15, 1996, pages 429 - 441
R. H. HARDIN; N. J. A. SLOANE: "Webpage: Spherical designs", SPHERICAL T-DESIGNS, Retrieved from the Internet <URL:http://www2.research.att.com/-njas/sphdesigns>
T.D. ABHAYAPALA.: "Generalized framework for spherical microphone arrays: Spatial and frequency decomposition", PROC. IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP, vol. X, April 2008 (2008-04-01)
VILLE PULKKI.: "Spatial Sound Generation and Perception by Amplitude Panning Techniques", PHD THESIS, 2001

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9609452B2 (en) 2013-02-08 2017-03-28 Qualcomm Incorporated Obtaining sparseness information for higher order ambisonic audio renderers
US10178489B2 (en) 2013-02-08 2019-01-08 Qualcomm Incorporated Signaling audio rendering information in a bitstream
US9883310B2 (en) 2013-02-08 2018-01-30 Qualcomm Incorporated Obtaining symmetry information for higher order ambisonic audio renderers
US9870778B2 (en) 2013-02-08 2018-01-16 Qualcomm Incorporated Obtaining sparseness information for higher order ambisonic audio renderers
US11451918B2 (en) 2013-10-23 2022-09-20 Dolby Laboratories Licensing Corporation Method for and apparatus for decoding/rendering an Ambisonics audio soundfield representation for audio playback using 2D setups
WO2015059081A1 (fr) 2013-10-23 2015-04-30 Thomson Licensing Procédé et appareil de décodage de représentation de champ acoustique à audio ambiophonique pour la lecture audio utilisant des configurations 2d
US10986455B2 (en) 2013-10-23 2021-04-20 Dolby Laboratories Licensing Corporation Method for and apparatus for decoding/rendering an ambisonics audio soundfield representation for audio playback using 2D setups
EP3742763A1 (fr) 2013-10-23 2020-11-25 Dolby International AB Procédé et appareil pour décoder une représentation du champ acoustique audio d'ambiophonie pour lecture audio au moyen de configurations 2d
EP4213508A1 (fr) 2013-10-23 2023-07-19 Dolby International AB Procédé et appareil de décodage d'une représentation de champ sonore audio ambiophonique pour lecture audio à l'aide d'installations 2d
US10694308B2 (en) 2013-10-23 2020-06-23 Dolby Laboratories Licensing Corporation Method for and apparatus for decoding/rendering an ambisonics audio soundfield representation for audio playback using 2D setups
US11770667B2 (en) 2013-10-23 2023-09-26 Dolby Laboratories Licensing Corporation Method for and apparatus for decoding/rendering an ambisonics audio soundfield representation for audio playback using 2D setups
US10158959B2 (en) 2013-10-23 2018-12-18 Dolby Laboratories Licensing Corporation Method for and apparatus for decoding an ambisonics audio soundfield representation for audio playback using 2D setups
EP3300391A1 (fr) 2013-10-23 2018-03-28 Dolby International AB Procédé et appareil pour décoder une représentation du champ acoustique audio d'ambiophonie pour lecture audio au moyen de configurations 2d
US9813834B2 (en) 2013-10-23 2017-11-07 Dolby Laboratories Licensing Corporation Method for and apparatus for decoding an ambisonics audio soundfield representation for audio playback using 2D setups
US11750996B2 (en) 2013-10-23 2023-09-05 Dolby Laboratories Licensing Corporation Method for and apparatus for decoding/rendering an Ambisonics audio soundfield representation for audio playback using 2D setups
US20170006401A1 (en) * 2013-11-28 2017-01-05 Dolby International Ab Method and apparatus for higher order ambisonics encoding and decoding using singular value decomposition
US20170374485A1 (en) * 2013-11-28 2017-12-28 Dolby International Ab Method and Apparatus for Higher Order Ambisonics Encoding and Decoding Using Singular Value Decomposition
US9736608B2 (en) * 2013-11-28 2017-08-15 Dolby International Ab Method and apparatus for higher order ambisonics encoding and decoding using singular value decomposition
US10244339B2 (en) 2013-11-28 2019-03-26 Dolby International Ab Method and apparatus for higher order ambisonics encoding and decoding using singular value decomposition
US10602293B2 (en) 2013-11-28 2020-03-24 Dolby International Ab Methods and apparatus for higher order ambisonics decoding based on vectors describing spherical harmonics
JP2017520174A (ja) * 2014-05-30 2017-07-20 クゥアルコム・インコーポレイテッドQualcomm Incorporated 高次アンビソニックオーディオレンダラのためのシンメトリ情報を取得すること
CN110827839B (zh) * 2014-05-30 2023-09-19 高通股份有限公司 用于渲染高阶立体混响系数的装置和方法
KR101941764B1 (ko) 2014-05-30 2019-01-23 퀄컴 인코포레이티드 고차 앰비소닉 오디오 렌더러들에 대한 대칭성 정보의 획득
CN106465029B (zh) * 2014-05-30 2018-05-08 高通股份有限公司 用于渲染高阶立体混响系数及产生位流的装置和方法
CN106415712A (zh) * 2014-05-30 2017-02-15 高通股份有限公司 获得用于高阶立体混响音频渲染器的稀疏性信息
CN106465029A (zh) * 2014-05-30 2017-02-22 高通股份有限公司 获得用于高阶立体混响音频渲染器的对称性信息
CN106415712B (zh) * 2014-05-30 2019-11-15 高通股份有限公司 用于渲染高阶立体混响系数的装置和方法
WO2015184316A1 (fr) * 2014-05-30 2015-12-03 Qualcomm Incoprporated Obtention d'informations de symétrie pour des moteurs de rendu audio ambiophonique d'ordre supérieur
CN110827839A (zh) * 2014-05-30 2020-02-21 高通股份有限公司 用于渲染高阶立体混响系数的装置和方法
JP2017520177A (ja) * 2014-05-30 2017-07-20 クゥアルコム・インコーポレイテッドQualcomm I 高次アンビソニックオーディオレンダラのための希薄情報を取得すること
KR20170015898A (ko) * 2014-05-30 2017-02-10 퀄컴 인코포레이티드 고차 앰비소닉 오디오 렌더러들에 대한 대칭성 정보의 획득
WO2015184307A1 (fr) * 2014-05-30 2015-12-03 Qualcomm Incorporated Obtention d'informations de dispersion pour des moteurs de rendu audio ambiophonique d'ordre supérieur
CN110415712B (zh) * 2014-06-27 2023-12-12 杜比国际公司 用于解码声音或声场的高阶高保真度立体声响复制(hoa)表示的方法
CN110415712A (zh) * 2014-06-27 2019-11-05 杜比国际公司 用于解码声音或声场的高阶高保真度立体声响复制(hoa)表示的方法
CN107210045B (zh) * 2015-02-03 2020-11-17 杜比实验室特许公司 会议搜索以及搜索结果的回放
US10515645B2 (en) 2015-07-30 2019-12-24 Dolby Laboratories Licensing Corporation Method and apparatus for transforming an HOA signal representation
US11043224B2 (en) 2015-07-30 2021-06-22 Dolby Laboratories Licensing Corporation Method and apparatus for encoding and decoding an HOA representation
WO2017017262A1 (fr) * 2015-07-30 2017-02-02 Dolby International Ab Procédé et appareil permettant de générer une représentation de signal hoa au format mezzanine à partir d'une représentation de signal hoa
EP3739578A1 (fr) * 2015-07-30 2020-11-18 Dolby International AB Procédé et appareil de génération d'une représentation d'un signal hoa de mezzanine à partir d'une représentation d'un signal hoa
US10468037B2 (en) 2015-07-30 2019-11-05 Dolby Laboratories Licensing Corporation Method and apparatus for generating from an HOA signal representation a mezzanine HOA signal representation
WO2017066300A3 (fr) * 2015-10-14 2017-05-18 Qualcomm Incorporated Adaptation écran de contenu ambisonique d'ordre supérieur
US10070094B2 (en) 2015-10-14 2018-09-04 Qualcomm Incorporated Screen related adaptation of higher order ambisonic (HOA) content
WO2023275218A3 (fr) * 2021-06-30 2023-02-23 Telefonaktiebolaget Lm Ericsson (Publ) Réglage du niveau de réverbération
CN116582803A (zh) * 2023-06-01 2023-08-11 广州市声讯电子科技股份有限公司 扬声器阵列的自适应控制方法、系统、存储介质及终端
CN116582803B (zh) * 2023-06-01 2023-10-20 广州市声讯电子科技股份有限公司 扬声器阵列的自适应控制方法、系统、存储介质及终端

Also Published As

Publication number Publication date
AU2021203484B2 (en) 2023-04-20
KR20210005321A (ko) 2021-01-13
JP2020129811A (ja) 2020-08-27
JP2019092181A (ja) 2019-06-13
US20210258708A1 (en) 2021-08-19
HK1210562A1 (en) 2016-04-22
CN106658343A (zh) 2017-05-10
BR112015001128A8 (pt) 2017-12-05
CN106658342B (zh) 2020-02-14
KR20200019778A (ko) 2020-02-24
CN107071687A (zh) 2017-08-18
JP6472499B2 (ja) 2019-02-20
JP2024009944A (ja) 2024-01-23
EP4284026A3 (fr) 2024-02-21
CN107071685B (zh) 2020-02-14
US9961470B2 (en) 2018-05-01
US10075799B2 (en) 2018-09-11
JP7119189B2 (ja) 2022-08-16
JP6934979B2 (ja) 2021-09-15
KR20150036056A (ko) 2015-04-07
US20150163615A1 (en) 2015-06-11
JP2022153613A (ja) 2022-10-12
EP4284026A2 (fr) 2023-11-29
JP2015528248A (ja) 2015-09-24
US20230080860A1 (en) 2023-03-16
CN104584588B (zh) 2017-03-29
JP6696011B2 (ja) 2020-05-20
JP7368563B2 (ja) 2023-10-24
BR112015001128B1 (pt) 2021-09-08
US10939220B2 (en) 2021-03-02
AU2017203820B2 (en) 2018-12-20
US11451920B2 (en) 2022-09-20
US20170289725A1 (en) 2017-10-05
KR20230154111A (ko) 2023-11-07
JP2018038055A (ja) 2018-03-08
KR102079680B1 (ko) 2020-02-20
KR20230003380A (ko) 2023-01-05
EP2873253B1 (fr) 2019-11-13
CN107071686A (zh) 2017-08-18
US20200252737A1 (en) 2020-08-06
CN106658343B (zh) 2018-10-19
JP6230602B2 (ja) 2017-11-15
KR102597573B1 (ko) 2023-11-02
EP3629605A1 (fr) 2020-04-01
US10306393B2 (en) 2019-05-28
US11743669B2 (en) 2023-08-29
AU2021203484A1 (en) 2021-06-24
EP2873253A1 (fr) 2015-05-20
AU2017203820A1 (en) 2017-06-22
BR122020017399B1 (pt) 2022-05-03
KR102201034B1 (ko) 2021-01-11
CN107071686B (zh) 2020-02-14
EP4013072A1 (fr) 2022-06-15
CN104584588A (zh) 2015-04-29
AU2013292057A1 (en) 2015-03-05
AU2019201900B2 (en) 2021-03-04
EP4013072B1 (fr) 2023-10-11
US20180367934A1 (en) 2018-12-20
US10595145B2 (en) 2020-03-17
US9712938B2 (en) 2017-07-18
US20180206051A1 (en) 2018-07-19
AU2019201900A1 (en) 2019-04-11
US20190349700A1 (en) 2019-11-14
US20240040327A1 (en) 2024-02-01
AU2023203838A1 (en) 2023-07-13
JP2021185704A (ja) 2021-12-09
CN107071685A (zh) 2017-08-18
CN106658342A (zh) 2017-05-10
KR102479737B1 (ko) 2022-12-21
BR122020017389B1 (pt) 2022-05-03
AU2013292057B2 (en) 2017-04-13
EP3629605B1 (fr) 2022-03-02
CN107071687B (zh) 2020-02-14
BR112015001128A2 (pt) 2017-06-27

Similar Documents

Publication Publication Date Title
US11743669B2 (en) Method and device for decoding a higher-order ambisonics (HOA) representation of an audio soundfield

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13737262

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013737262

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157000821

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015522078

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14415561

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013292057

Country of ref document: AU

Date of ref document: 20130716

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015001128

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015001128

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150116