WO2014012493A1 - 一种电力数据通信传输系统及方法 - Google Patents

一种电力数据通信传输系统及方法 Download PDF

Info

Publication number
WO2014012493A1
WO2014012493A1 PCT/CN2013/079537 CN2013079537W WO2014012493A1 WO 2014012493 A1 WO2014012493 A1 WO 2014012493A1 CN 2013079537 W CN2013079537 W CN 2013079537W WO 2014012493 A1 WO2014012493 A1 WO 2014012493A1
Authority
WO
WIPO (PCT)
Prior art keywords
power data
radio frequency
coaxial cable
transmission network
communication
Prior art date
Application number
PCT/CN2013/079537
Other languages
English (en)
French (fr)
Inventor
李建新
Original Assignee
Li Jianxin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Jianxin filed Critical Li Jianxin
Publication of WO2014012493A1 publication Critical patent/WO2014012493A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5429Applications for powerline communications
    • H04B2203/5433Remote metering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/60Arrangements in telecontrol or telemetry systems for transmitting utility meters data, i.e. transmission of data from the reader of the utility meter

Definitions

  • the invention belongs to the technical field of power data communication, and in particular relates to a power data communication transmission system and method.
  • the micro-power wireless module set on smart meters is a communication method commonly used in smart meter data communication.
  • the communication network diagram is shown in Figure 1.
  • the network includes several smart meters and a centralized collector, among which:
  • Each smart meter and centralized collector has a micro power wireless module, and the micro power wireless module realizes communication of power data between each smart meter and the centralized collector, and then, the centralized collector passes the optical fiber or GPRS. , Ethernet, etc., transfer data to the power meter reading data center.
  • Interference is its weakness, which includes the meaning of being vulnerable to interference from other high-frequency signals and interference with other communication devices;
  • the bit error rate is high.
  • the purpose of the embodiments of the present invention is to provide a power data communication transmission system, which aims to solve the problem that the micro power consumption wireless module has low transmission power, is easily blocked, and has a short transmission distance in the smart meter reading communication network provided by the prior art. And problems such as easy interference and high bit error rate.
  • a power data communication transmission system includes: a main converter for controlling a communication bearer mode of power data, where the communication bearer mode of the power data includes an RS -485 communication interface mode and radio frequency communication mode;
  • the coaxial cable transmission network being a cable television network
  • branch converters respectively connected to the coaxial cable transmission network, the branch converters being used Realizing communication bearer mode conversion of power data;
  • Each of the branch converters corresponds to a plurality of smart meters
  • the plurality of branch converters respectively perform data interaction with the main converter through the coaxial cable transmission network.
  • Another object of the embodiments of the present invention is to provide a power data communication transmission system, where the system includes:
  • the communication bearer mode of the power data comprises an RS-485 communication interface mode and a radio frequency communication mode
  • radio frequency mixer connected to the plurality of main converters, wherein the radio frequency mixer is configured to perform transmission impedance matching on the radio frequency signals after the main converter is converted;
  • the coaxial cable transmission network being a cable television network
  • branch converter configured to implement communication bearer mode conversion of power data
  • Each of the branch converters corresponds to a plurality of smart meters
  • Each of the main converters has a plurality of branch converters, and each of the branch converters respectively performs data interaction with the corresponding main converter through the coaxial cable transmission network.
  • the RF mixer includes a coil, a capacitor, and a resistor component.
  • Another object of the embodiments of the present invention is to provide a power data communication transmission method, the method comprising the following steps:
  • the main converter converts the power data transmitted in the RS-485 communication interface mode into a radio frequency signal, and outputs the radio frequency signal to the coaxial cable transmission network for transmission, wherein the coaxial cable transmission network is a cable television network;
  • a plurality of branch converters receive the radio frequency signals transmitted through the coaxial cable transmission network, and simultaneously convert the radio frequency signals into power data transmitted in the RS-485 communication interface mode, and transmit the power data to the smart meter .
  • Another object of the embodiments of the present invention is to provide a power data communication transmission method, and the method Including the following steps:
  • a plurality of main converters respectively convert power data transmitted in the RS-485 communication interface mode into radio frequency signals
  • the radio frequency mixer performs matching of the transmission impedance on the radio frequency signals converted by the plurality of main converters, and outputs the impedance matched radio frequency signals to the coaxial cable transmission network, where the coaxial cable transmission network is a cable television network;
  • the branch converter respectively receives the radio frequency signal transmitted through the coaxial cable transmission network and corresponds to the receiving frequency thereof, and simultaneously converts the radio frequency signal into power data transmitted in the RS-485 communication interface mode, and the Electrical power data is passed to the smart meter.
  • Another object of the embodiments of the present invention is to provide a power data communication transmission method, the method comprising the following steps:
  • a plurality of branch converters convert the power data transmitted by the smart meter in the RS-485 communication interface mode into a radio frequency signal, and output the radio frequency signal to the coaxial cable transmission network, wherein the coaxial cable transmission network is a cable television The internet;
  • the main converter converts the received RF signal into power data transmitted in the RS-485 communication interface mode.
  • Another object of the embodiments of the present invention is to provide a power data communication transmission method, the method comprising the following steps:
  • a plurality of branch converters convert the power data transmitted by the smart meter in the RS-485 communication interface mode into a radio frequency signal, and output the radio frequency signal to the coaxial cable transmission network, wherein the coaxial cable transmission network is a cable television The internet;
  • the RF mixer outputs the RF signal passing through the coaxial cable transmission network to the main converter
  • a plurality of main converters respectively convert the radio frequency signals corresponding to their frequencies into power data transmitted in the RS-485 communication interface mode.
  • the power data communication transmission system includes a main converter, a coaxial cable transmission network, a plurality of branch converters, and a plurality of smart meters, wherein each branch converter is connected to a plurality of smart meters, thereby overcoming the passage.
  • the wireless module transmits the defects caused by the power data, and at the same time, it effectively expands the capacity of the meter communication network.
  • FIG. 1 is a schematic structural diagram of a power data communication transmission system provided by the prior art
  • FIG. 2 is a structural block diagram of a power data communication transmission system according to a first embodiment of the present invention
  • FIG. 3 is a power data provided by the first embodiment of the present invention
  • FIG. 4 is a flowchart of an implementation of a power data communication transmission method according to a second embodiment of the present invention
  • FIG. 5 is a structural block diagram of a power data communication transmission system according to a second embodiment of the present invention
  • 6 is a schematic structural diagram of an RF mixer provided by an embodiment of the present invention
  • FIG. 7 is a flowchart of an implementation of a power data communication transmission method according to a third embodiment of the present invention.
  • FIG. 8 is a flowchart of an implementation of a power data communication transmission method according to a fourth embodiment of the present invention.
  • the power data communication transmission system includes a main converter, a coaxial cable transmission network, a plurality of branch converters, and a plurality of smart meters, wherein each branch converter is connected to a plurality of smart meters.
  • the main converter, the coaxial cable transmission network and the plurality of branch converters realize communication and transmission of power data, thereby effectively ensuring low-loss transmission of power data, and overcoming the prior art to transmit power data through the wireless module.
  • the foregoing power data transmission system may include a main converter, and may also include multiple main converters.
  • the specific situation is described in two specific embodiments, which are specifically described below;
  • Fig. 2 is a block diagram showing the structure of a power data communication transmission system according to a first embodiment of the present invention. For convenience of explanation, only parts related to the embodiment of the present invention are shown.
  • the power data communication transmission system comprises a main converter, a coaxial cable transmission network, a plurality of branch converters and a plurality of smart meters, wherein each branch converter is connected to a plurality of smart meters, and the plurality of branch converters respectively pass through the main converter
  • the coaxial cable transmission network performs data interaction, and is specifically: a main converter, configured to control conversion of a communication bearer mode of the power data, where the communication bearer mode of the power data includes an RS-485 communication interface mode and a radio frequency Communication mode
  • a coaxial cable transmission network is connected to the main converter
  • the main converter is also connected to a main collector through an RS-485 communication twisted pair, and the main converter transmits the electric energy information of the electric meter transmitted through the coaxial cable transmission network.
  • the main collector is transmitted to the remote power meter reading data monitoring center by using a communication method such as GPRS or Ethernet.
  • the communication frequency of the radio frequency communication mode is 0.01 MHz - 1500 MHz.
  • a plurality of smart meters are sequentially passed through a branch converter, a coaxial cable transmission network, and a main converter to implement information interaction with a remote power meter reading data center (not shown), and the main converter corresponds to The same branch converter communication frequency.
  • the method of using the wireless module and the remote power meter reading data center to realize information interaction is converted into a method using a main converter, a coaxial cable transmission network and a branch converter, thereby overcoming the use of the wireless module.
  • the data interaction between the main converter and the plurality of branch converters is bidirectional, and the following is described in conjunction with a specific implementation:
  • FIG. 3 is a flowchart showing an implementation of a power data communication transmission method according to a first embodiment of the present invention.
  • the implementation process is shown in the power data communication transmission system shown in FIG. 2, that is, a main converter is provided in the system.
  • the specific steps are as follows:
  • step S101 the main converter converts the power data transmitted in the RS-485 communication interface mode into a radio frequency signal.
  • the communication bearer mode of the power data includes the RS-485 communication interface mode and the radio frequency communication mode.
  • the communication bearer mode of the power data includes the RS-485 communication interface mode and the radio frequency communication mode.
  • step S102 the main converter controls to output the radio frequency signal to the coaxial cable transmission network.
  • the coaxial cable transmission network may be an existing cable television network, or may be another transmission network, and is not limited thereto.
  • step S103 a plurality of branch converters receive the radio frequency signals transmitted through the coaxial cable transmission network.
  • each branch converter converts the radio frequency signal into an RS-485 communication interface mode.
  • the transmitted power data and the power data is passed to the smart meter.
  • each of the branch converters receives the radio frequency signal of the same frequency, and then converts the radio frequency signal into power data transmitted in the RS-485 communication interface mode, and provides the connection to the branch converter. Smart meter.
  • FIG. 4 is a flowchart showing an implementation of a power data communication transmission method according to a second embodiment of the present invention, which is based on the power data communication transmission system shown in FIG. 2, that is, the system has a main converter, and the specific The steps are as follows:
  • step S201 a plurality of branch converters convert the power data transmitted by the read smart meter in the RS-485 communication interface mode into a radio frequency signal.
  • step S202 a plurality of branch converters output the radio frequency signals to the coaxial cable transmission network.
  • step S203 the main converter converts the radio frequency signal transmitted via the coaxial cable transmission network into power data transmitted in the RS-485 communication interface mode.
  • FIG. 3 and FIG. 4 show a main converter in the power data communication transmission system
  • FIG. 3 shows an implementation flow of outputting power data from the remote meter reading center to the smart meter
  • Figure 4 shows the implementation flow of the smart meter to deliver power data to the remote meter reading center.
  • FIG. 5 is a block diagram showing the configuration of a power data communication transmission system according to a second embodiment of the present invention. For convenience of explanation, only parts related to the embodiment of the present invention are shown.
  • the power data communication transmission system comprises a plurality of main converters, a radio frequency mixer, a coaxial cable transmission network, a plurality of branch converters and a plurality of smart meters, wherein each main converter corresponds to a plurality of branch converters, each branch conversion
  • the device is connected to a plurality of smart meters, and the plurality of branch converters respectively exchange information with the main converter through the coaxial cable transmission network.
  • main converter 1 corresponding branch converter 1-1 to 1-N1;
  • Main converter 2 corresponding branch converters 2-1 to 2-N2; main converter M: corresponding branch converters M-1 to M-Nm; main converter N: corresponding branch converters N-1 to N-Nn ; Among them, n, M, N, Nl, N2 Nm, and Nn are all natural numbers.
  • Each of the above branch converters corresponds to a plurality of smart meters.
  • a plurality of smart meters are sequentially passed through a branch converter, a coaxial cable transmission network, a radio frequency mixer, and a main converter to implement information interaction with a remote power meter reading data center, and each main converter corresponds to one
  • the transmission frequency of the group because each of the main converters has different transmission frequencies, it needs to be impedance matched by the RF mixer, so that it can be transmitted through the coaxial cable transmission network, wherein: as shown in FIG. 6, the radio frequency conversion
  • the device comprises a coil, a capacitor and a resistor component, which mainly completes the matching of the impedance of the RF signal converted by each main converter.
  • the RF mixer is an impedance matching device, and realizes between the main converter and the coaxial cable transmission network.
  • the impedance matching, the RF signal outputted by each main converter cannot be directly sent to the coaxial cable transmission network. Because the impedance of the coaxial cable transmission network is not matched, the loss of the RF signal is easily caused. Therefore, the embodiment of the present invention is required.
  • the RF mixer is provided for transmission impedance matching to balance the RF power and sensitivity of the main converter Degree, to achieve better transmission of RF signals.
  • one main converter corresponds to a plurality of branch converters, each main converter outputs a radio frequency signal of a frequency, and the plurality of branch converters corresponding to the main converter respectively output the radio frequency of the main converter output corresponding thereto
  • the signal is received and parsed, and the receiving basis may be a common address resolution receiving manner, which is not described here, but is not limited to the present invention.
  • the data interaction between the plurality of main converters and the plurality of branch converters is bidirectional, and the following is described in conjunction with a specific implementation
  • FIG. 7 is a flowchart showing an implementation of a power data communication transmission method according to a third embodiment of the present invention, which is based on the power data communication transmission system shown in FIG. 5, that is, a situation in which several main converters are provided in the system.
  • the specific steps are as follows:
  • step S301 a plurality of main converters respectively convert the power data transmitted in the RS-485 communication interface mode into the radio frequency signals.
  • step S302 the RF mixer performs impedance matching on the RF signals converted by the plurality of main converters, and outputs the impedance-matched RF signals to the coaxial cable transmission network.
  • step S303 the branch converters respectively receive the radio frequency signals transmitted through the coaxial cable transmission network corresponding to the received frequencies.
  • step S304 the radio frequency signal is converted into the number of powers transmitted in the RS-485 communication interface mode. According to, and pass the power data to the smart meter.
  • each of the branch converters respectively receives a radio frequency signal of a frequency corresponding thereto, and then converts the radio frequency signal into power data transmitted in an RS-485 communication interface mode, and provides the connection to the branch converter.
  • FIG. 8 is a flowchart showing an implementation of a power data communication transmission method according to a fourth embodiment of the present invention, which is based on the power data communication transmission system shown in FIG. 5, that is, a case in which several main converters are provided in the system.
  • the specific steps are as follows:
  • step S401 a plurality of branch converters convert the power data transmitted by the read smart meter in the RS-485 communication interface mode into a radio frequency signal.
  • step S402 a plurality of branch converters output the radio frequency signals to the coaxial cable transmission network.
  • step S403 the radio frequency mixer outputs the radio frequency signal passing through the coaxial cable transmission network to the main converter.
  • step S404 a plurality of main converters respectively convert the radio frequency signals corresponding to their frequencies into power data transmitted in the RS-485 communication interface mode.
  • FIG. 7 and FIG. 8 show that a plurality of main converters are arranged in the power data communication transmission system, and the realization of outputting power data from the remote power meter reading data center to the smart meter is shown in FIG. 7 .
  • the process, and Figure 8 shows the implementation flow of the smart meter to deliver power data to the remote meter reading data center.
  • the power data communication transmission system includes a main converter, a coaxial cable transmission network, a plurality of branch converters, and a plurality of smart meters, wherein each branch converter is connected to a plurality of smart meters, thereby overcoming the use of wireless
  • each branch converter can be connected with multiple smart meters to expand the capacity of the meter communication network.

Abstract

本发明涉及电力数据通信技术领域,提供了一种电力数据通信传输系统及方法,该电力数据通信传输系统包括主转换器、同轴电缆传输网、若干分支转换器及若干智能电表,其中,每个分支转换器对应连接若干个智能电表,从而克服了通过无线模块传输电力数据所带来的缺陷,同时,还有效扩充了电表通信网络的容量。

Description

一种电力数据通信传输系统及方法 技术领域
本发明属于电力数据通信技术领域, 尤其涉及一种电力数据通信传输系统 及方法。
背景技术
近年来, 智能电表广泛的在智能电网中使用, 设置在智能电表上的微功耗 无线模块是智能电表数据通信中普遍使用的一种通信方式,其通信组网图如图 1 所示, 该组网中包括若干个智能电表和一个集中釆集器, 其中:
各个智能电表和集中釆集器都有一个微功耗无线模块, 该微功耗无线模块 实现各个智能电表与集中釆集器之间的电力数据的通信, 然后, 集中釆集器通 过光纤或者 GPRS、 以太网等方式, 将数据传输到电力抄表数据中心。
但是, 使用上述微功耗无线模对电表的数据进行传输存在较多缺陷, 具体 地:
发射功率低, 绕射能力较差, 不能穿越建筑物的遮挡, 较易受到阻挡; 传输距离近;
干扰是其弱点, 其具体包括易受到其他高频信号的干扰和干扰其他通信设 备两个层面的含义;
误码率高。
发明内容
本发明实施例的目的在于提供一种电力数据通信传输系统, 旨在解决现有 技术提供的在智能抄表通信组网中, 微功耗无线模块存在发射功率低、 容易受 到阻挡, 传输距离近以及容易干扰, 误码率高等问题。
本发明实施例是这样实现的, 一种电力数据通信传输系统, 所述系统包括: 一个主转换器, 用以控制对电力数据的通信承载模式进行转换, 所述电力 数据的通信承载模式包括 RS-485通信接口模式和射频通信模式;
与所述主转换器连接的同轴电缆传输网, 所述同轴电缆传输网是有线电视 网络;
分别与所述同轴电缆传输网连接的若干分支转换器, 所述分支转换器用于 实现电力数据的通信承载模式转换;
若干个智能电表;
所述每个分支转换器对应多个智能电表;
所述若干分支转换器分别与所述主转换器通过所述同轴电缆传输网进行数 据交互。
本发明实施例的另一目的在于提供一种电力数据通信传输系统, 所述系统 包括:
若干个主转换器, 用以控制对电力数据的通信承载模式进行转换, 所述电 力数据的通信承载模式包括 RS-485通信接口模式和射频通信模式;
与所述若干个主转换器连接的射频混合器, 所述射频混合器用于对所述主 转换器转换之后的射频信号进行传输阻抗的匹配;
与所述射频混合器连接的同轴电缆传输网, 所述同轴电缆传输网是有线电 视网络;
分别与所述同轴电缆传输网连接的若干分支转换器, 所述分支转换器用于 实现电力数据的通信承载模式转换;
若干个智能电表;
所述每个分支转换器对应多个智能电表;
所述每个主转换器对应有若干个分支转换器, 每个分支转换器分别与所对 应的主转换器通过所述同轴电缆传输网进行数据交互。
所述射频混合器包括线圈、 电容和电阻元器件。
本发明实施例的另一目的在于提供一种电力数据通信传输方法, 所述方法 包括下述步骤:
主转换器将以 RS-485通信接口模式传输的电力数据转换为射频信号, 并将 所述射频信号输出到同轴电缆传输网进行传输, 所述同轴电缆传输网是有线电 视网络;
若干个分支转换器对经过同轴电缆传输网传输的射频信号进行接收, 同时, 将所述射频信号转换为以 RS-485通信接口模式传输的电力数据, 并将所述电力 数据传递到智能电表。
本发明实施例的另一目的在于提供一种电力数据通信传输方法, 所述方法 包括下述步骤:
若干个主转换器分别将以 RS-485通信接口模式传输的电力数据转换为射频 信号;
射频混合器将所述若干个主转换器转换得到的射频信号进行传输阻抗的匹 配, 并将阻抗匹配后的射频信号输出到同轴电缆传输网, 所述同轴电缆传输网 是有线电视网络;
分支转换器分别对经过同轴电缆传输网传输的、 与其接收频率相对应的射 频信号进行接收, 同时, 将所述射频信号转换为以 RS-485通信接口模式传输的 电力数据, 并将所述电电力数据传递到智能电表。
本发明实施例的另一目的在于提供一种电力数据通信传输方法, 所述方法 包括下述步骤:
若干个分支转换器将读取的智能电表的以 RS-485通信接口模式传输的电力 数据转换为射频信号, 并将射频信号输出到同轴电缆传输网, 所述同轴电缆传 输网是有线电视网络;
主转换器将接收到的射频信号转换为以 RS-485通信接口模式传输的电力数 据。
本发明实施例的另一目的在于提供一种电力数据通信传输方法, 所述方法 包括下述步骤:
若干个分支转换器将读取的智能电表的以 RS-485通信接口模式传输的电力 数据转换为射频信号, 并将射频信号输出到同轴电缆传输网, 所述同轴电缆传 输网是有线电视网络;
射频混合器将经过同轴电缆传输网的射频信号输出到主转换器;
若干个主转换器分别将与其频率相对应的射频信号转换为以 RS-485通信接 口模式传输的电力数据。
在本发明实施例中, 电力数据通信传输系统包括主转换器、 同轴电缆传输 网、 若干分支转换器及若干智能电表, 其中, 每个分支转换器对应连接若干个 智能电表, 从而克服了通过无线模块传输电力数据所带来的缺陷, 同时, 还有 效扩充了电表通信网络的容量。
附图说明 图 1是现有技术提供的电力数据通信传输系统的构架示意图; 图 2是本发明第一实施例提供的电力数据通信传输系统的结构框图; 图 3是本发明第一实施例提供的电力数据通信传输方法的实现流程图; 图 4是本发明第二实施例提供的电力数据通信传输方法的实现流程图; 图 5是本发明第二实施例提供的电力数据通信传输系统的结构框图; 图 6是本发明实施例提供的射频混合器的结构示意图;
图 7是本发明第三实施例提供的电力数据通信传输方法的实现流程图; 图 8是本发明第四实施例提供的电力数据通信传输方法的实现流程图。 具体实施方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实 施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅 仅用以解释本发明, 并不用于限定本发明。
在本发明实施例中, 电力数据通信传输系统包括主转换器、 同轴电缆传输 网、 若干分支转换器及若干智能电表, 其中, 每个分支转换器对应连接若干个 智能电表。
在该实施例中, 主转换器、 同轴电缆传输网和若干分支转换器实现电力数 据的通信传输, 有效保障了电力数据的低损耗的传输, 同时克服了现有技术通 过无线模块传输电力数据的缺陷, 而且也有效对通信网络的容量进行了扩充。
其中, 上述电力数据传输系统可以包括一个主转换器, 也可以包括多个主 转换器, 具体的情形给出两个具体的实施例进行介绍, 其具体如下所述;
图 2 示出了本发明第一实施例提供的电力数据通信传输系统的结构框图, 为了便于说明, 图中仅给出了与本发明实施例相关的部分。
电力数据通信传输系统包括一个主转换器、 同轴电缆传输网、 若干分支转 换器及若干智能电表, 其中, 每个分支转换器对应连接若干个智能电表, 若干 分支转换器分别与主转换器通过所述同轴电缆传输网进行数据交互 , 其具体为: 主转换器, 用以控制对电力数据的通信承载模式进行转换, 其中, 该电力 数据的通信承载模式包括 RS-485通信接口模式和射频通信模式;
同轴电缆传输网与主转换器连接;
若干分支转换器分别与同轴电缆传输网连接, 该分支转换器用于实现电力 数据的通信承载模式转换。
当然, 如上述图 2中所示, 上述主转换器还通过 RS-485通信双绞线与一主 釆集器连接, 主转换器将经同轴电缆传输网传输的电表用电信息数据, 传送给 该主釆集器, 该主釆集器通过 GPRS、 以太网等通讯方式, 将该电表用电信息数 据传输到远端的电力抄表数据监控中心。
在该实施例中, 射频通信模式的使用通信频率为 0. 01MHz-1500MHz。
在该实施例中, 若干智能电表依次通过分支转换器、 同轴电缆传输网和主 转换器, 实现与远端的电力抄表数据中心 (图中未示出) 的信息交互, 主转换 器对应相同的分支转换器通信频率。
在本实用新型中, 将原先使用无线模块与远端电力抄表数据中心实现信息 交互的方式, 转换为使用主转换器、 同轴电缆传输网和分支转换器的方式, 克 服了使用无线模块的各种缺陷, 例如传输距离近, 发射功率低, 容易受到干扰, 误码率高等问题, 同时, 每个分支转换器可以连接多个智能电表, 对电表通信 网络的容量进行扩充。
在该实施例中, 该主转换器和若干分支转换器之间的数据交互是双向的, 下述结合具体的实现来说明:
图 3示出了本发明第一实施例提供的电力数据通信传输方法的实现流程图, 该实现过程 于图 2 所示的电力数据通信传输系统, 即该系统中设置有一个 主转换器, 其具体的步骤如下所述:
在步骤 S101 中, 主转换器将以 RS-485通信接口模式传输的电力数据转换 为射频信号。
在该步骤中, 电力数据的通信承载模式包括 RS-485通信接口模式和射频通 信模式, 当然也可以有其他模式, 在此不再赘述, 但不用以限制本发明。
在步骤 S102中, 主转换器控制将射频信号输出到同轴电缆传输网。
在该步骤中, 该同轴电缆传输网可以是现有的有线电视网络, 也可以是其 他可以使用的传输网, 在此不用以限制本发明。
在步骤 S103中, 若干个分支转换器对经过同轴电缆传输网传输的射频信号 进行接收。
在步骤 S104 中, 每个分支转换器将射频信号转换为以 RS-485通信接口模 式传输的电力数据, 并将电力数据传递到智能电表。
在该实施例中, 该每个分支转换器都对同一频率的射频信号进行接收, 然 后将射频信号转换为以 RS-485通信接口模式传输的电力数据, 提供给与该分支 转换器连接的若干智能电表。
图 4示出了本发明第二实施例提供的电力数据通信传输方法的实现流程图, 该实现是基于图 2 所示的电力数据通信传输系统, 即该系统中具有一个主转换 器, 其具体的步骤如下所述:
在步骤 S201 中, 若干个分支转换器将读取的智能电表的以 RS-485通信接 口模式传输的电力数据转换为射频信号。
在步骤 S202中, 若干个分支转换器将射频信号输出到同轴电缆传输网。 在步骤 S203中, 主转换器将经同轴电缆传输网传输过来的射频信号转换为 以 RS-485通信接口模式传输的电力数据。
在本发明实施例中, 图 3和图 4给出的是电力数据通信传输系统中设置一 个主转换器, 图 3给出的从远端抄表中心向智能电表输出电力数据的实现流程, 而图 4给出的智能电表向远端的抄表中心输送电力数据的实现流程。
作为本发明的另一个实施例, 图 5 示出了本发明第二实施例提供的电力数 据通信传输系统的结构框图, 为了便于说明, 图中仅给出了与本发明实施例相 关的部分。
电力数据通信传输系统包括若干个主转换器、 射频混合器、 同轴电缆传输 网、 若干分支转换器及若干智能电表, 其中, 每个主转换器对应有若干个分支 转换器, 每个分支转换器对应连接若干个智能电表, 若干分支转换器分别与主 转换器通过所述同轴电缆传输网进行信息交互。
其中, 在图中, 主转换器为 1至 N, 那么其与分支转换器的对应关系为: 主转换器 1 : 对应分支转换器 1-1至 1-N1 ;
主转换器 2: 对应分支转换器 2-1至 2-N2; 主转换器 M: 对应分支转换器 M-1至 M-Nm; 主转换器 N: 对应分支转换器 N-1至 N-Nn; 其中, n、 M、 N、 Nl、 N2 Nm、 Nn均为自然数。
上述每个分支转换器对应若干个智能电表。
在该实施例中, 若干智能电表依次通过分支转换器、 同轴电缆传输网、 射 频混合器和主转换器, 实现与远端的电力抄表数据中心的信息交互, 每一主转 换器对应一组发射频率, 由于每个主转换器对应的发射频率不同, 则需要通过 射频混合器对其进行阻抗匹配, 使其能够通过同轴电缆传输网进行传输, 其中: 如图 6所示, 射频转换器包括线圈、 电容和电阻元器件, 其主要完成各路 主转换器转换完成的射频信号的阻抗的匹配, 该射频混合器是阻抗匹配器, 实 现各个主转换器与同轴电缆传输网之间的阻抗匹配, 由各个主转换器输出的射 频信号不能直接送入同轴电缆传输网, 因同轴电缆传输网的阻抗不匹配, 易造 成射频信号的损耗过大, 因此, 需要本发明实施例提供的射频混合器进行传输 阻抗的匹配, 以平衡主转换器的射频功率和灵敏度, 实现了实现射频信号更好 的传输。
在该实施例中, 一个主转换器对应若干分支转换器, 每个主转换器输出一 种频率的射频信号, 该主转换器对应的若干分支转换器分别对与其对应的主转 换器输出的射频信号进行接收解析, 其接收依据可以是常用的地址解析接收的 方式, 在此不再赘述, 但不用以限制本发明。
在该实施例中, 该若干主转换器和若干分支转换器之间的数据交互是双向 的, 下述结合具体的实现来说明;
图 7示出了本发明第三实施例提供的电力数据通信传输方法的实现流程图, 该实现是基于图 5 所示的电力数据通信传输系统, 即该系统中具有若干个主转 换器的情形, 其具体的步骤如下所述:
在步骤 S301 中, 若干个主转换器分别将以 RS-485通信接口模式传输的电 力数据转换为射频信号。
在步骤 S302中, 射频混合器将所述若干个主转换器转换得到的射频信号进 行阻抗匹配, 并将阻抗匹配后的射频信号输出到同轴电缆传输网。
在步骤 S303中, 分支转换器分别对经过同轴电缆传输网传输的、 与其接收 频率相对应的射频信号进行接收。
在步骤 S304 中, 将射频信号转换为以 RS-485通信接口模式传输的电力数 据, 并将电力数据传递到智能电表。
在该实施例中, 该每个分支转换器分别对与其对应的频率的射频信号进行 接收, 然后将射频信号转换为以 RS-485通信接口模式传输的电力数据, 提供给 与该分支转换器连接的若干智能电表。
图 8示出了本发明第四实施例提供的电力数据通信传输方法的实现流程图, 该实现是基于图 5 所示的电力数据通信传输系统, 即该系统中具有若干个主转 换器的情形, 其具体的步骤如下所述:
在步骤 S401 中, 若干个分支转换器将读取的智能电表的以 RS-485通信接 口模式传输的电力数据转换为射频信号。
在步骤 S402中, 若干个分支转换器将射频信号输出到同轴电缆传输网。 在步骤 S403中, 射频混合器将经过同轴电缆传输网的射频信号输出到主转 换器。
在步骤 S404中, 若干个主转换器分别将与其频率相对应的射频信号转换为 以 RS-485通信接口模式传输的电力数据。
在本发明实施例中, 图 7和图 8给出的是电力数据通信传输系统中设置有 若干主转换器, 图 7 给出的从远端电力抄表数据中心向智能电表输出电力数据 的实现流程, 而图 8 给出的智能电表向远端的抄表数据中心输送电力数据的实 现流程。
在本发明实施例中, 电力数据通信传输系统包括主转换器、 同轴电缆传输 网、 若干分支转换器及若干智能电表, 其中, 每个分支转换器对应连接若干个 智能电表, 克服了使用无线模块的各种缺陷, 例如传输距离近, 发射功率低, 容易受到干扰, 误码率高等问题, 同时, 每个分支转换器可以连接多个智能电 表, 对电表通信网络的容量进行扩充。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明 的保护范围之内。

Claims

权 利 要 求 书
1、 一种电力数据通信传输系统, 其特征在于, 所述系统包括:
一个主转换器, 用以控制对电力数据的通信承载模式进行转换, 所述电力 数据的通信承载模式包括 RS-485通信接口模式和射频通信模式;
与所述主转换器连接的同轴电缆传输网, 所述同轴电缆传输网是有线电视 网络;
分别与所述同轴电缆传输网连接的若干分支转换器, 所述分支转换器用于 实现电力数据的通信承载模式转换;
若干个智能电表;
所述每个分支转换器对应多个智能电表;
所述若干分支转换器分别与所述主转换器通过所述同轴电缆传输网进行信 息交互。
2、 一种电力数据通信传输系统, 其特征在于, 所述系统包括:
若干个主转换器, 用以控制对电力数据的通信承载模式进行转换, 所述电 力数据的通信承载模式包括 RS-485通信接口模式和射频通信模式;
与所述若干个主转换器连接的射频混合器, 所述射频混合器用于对所述主 转换器转换之后的射频信号进行传输阻抗的匹配;
与所述射频混合器连接的同轴电缆传输网, 所述同轴电缆传输网是有线电 视网络;
分别与所述同轴电缆传输网连接的若干分支转换器, 所述分支转换器用于 实现电力数据的通信承载模式转换;
若干个智能电表;
所述每个分支转换器对应多个智能电表;
所述每个主转换器对应有若干个分支转换器, 每个分支转换器分别与所对 应的主转换器通过所述同轴电缆传输网进行信息交互。
3、 根据权利要求 2所述的电力数据通信传输系统, 其特征在于, 所述射频 混合器包括线圈、 电容和电阻元器件。
4、 一种电力数据通信传输方法, 其特征在于, 所述方法包括下述步骤: 主转换器将以 RS-485通信接口模式传输的电力数据转换为射频信号, 并将 所述射频信号输出到同轴电缆传输网进行传输, 所述同轴电缆传输网是有线电 视网络;
若干个分支转换器对经过同轴电缆传输网传输的射频信号进行接收, 同时, 将所述射频信号转换为以 RS-485通信接口模式传输的电力数据, 并将所述电力 数据传递到智能电表。
5、 一种电力数据通信传输方法, 其特征在于, 所述方法包括下述步骤: 若干个主转换器分别将以 RS-485通信接口模式传输的电力数据转换为射频 信号;
射频混合器将所述若干个主转换器转换得到的射频信号进行传输阻抗的匹 配, 并将功率匹配后的射频信号输出到同轴电缆传输网, 所述同轴电缆传输网 是有线电视网络;
分支转换器分别对经过同轴电缆传输网传输的、 与其接收频率相对应的射 频信号进行接收, 同时, 将所述射频信号转换为以 RS-485通信接口模式传输的 电力数据, 并将所述电力数据传递到智能电表。
6、 一种电力数据通信传输方法, 其特征在于, 所述方法包括下述步骤: 若干个分支转换器将读取的智能电表的以 RS-485通信接口模式传输的电力 数据转换为射频信号, 并将射频信号输出到同轴电缆传输网, 所述同轴电缆传 输网是有线电视网络;
主转换器将接收到的射频信号转换为以 RS-485通信接口模式传输的电力数 据。
7、 一种电力数据通信传输方法, 其特征在于, 所述方法包括下述步骤: 若干个分支转换器将读取的智能电表的以 RS-485通信接口模式传输的电力 数据转换为射频信号, 并将射频信号输出到同轴电缆传输网, 所述同轴电缆传 输网是有线电视网络;
射频混合器将经过同轴电缆传输网的射频信号输出到主转换器;
若干个主转换器分别将与其频率相对应的射频信号转换为以 RS-485通信接 口模式传输的电力数据。
PCT/CN2013/079537 2012-07-20 2013-07-17 一种电力数据通信传输系统及方法 WO2014012493A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210253415.0 2012-07-20
CN2012102534150A CN102750817A (zh) 2012-07-20 2012-07-20 一种电力数据通信传输系统及方法

Publications (1)

Publication Number Publication Date
WO2014012493A1 true WO2014012493A1 (zh) 2014-01-23

Family

ID=47030963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079537 WO2014012493A1 (zh) 2012-07-20 2013-07-17 一种电力数据通信传输系统及方法

Country Status (2)

Country Link
CN (1) CN102750817A (zh)
WO (1) WO2014012493A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019157789A1 (zh) * 2018-02-14 2019-08-22 Oppo广东移动通信有限公司 资源上报的方法、终端设备和网络设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102750817A (zh) * 2012-07-20 2012-10-24 李建新 一种电力数据通信传输系统及方法
CN103647730B (zh) * 2013-12-31 2016-06-22 李建新 一种用电信息通信系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006119185A2 (en) * 2005-05-02 2006-11-09 Energy Technology Group, Inc. Automated meter reading system, communication and control network for automated meter reading, meter data collector program product, and associated methods
CN202331782U (zh) * 2011-12-07 2012-07-11 北京北方胜达机电科技发展有限公司 一种北斗卫星电力自动抄表系统
CN102594411A (zh) * 2012-04-01 2012-07-18 潍坊开发区蓝岭科学研究中心 电力载波通信传输装置
CN102750817A (zh) * 2012-07-20 2012-10-24 李建新 一种电力数据通信传输系统及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102354441A (zh) * 2011-09-20 2012-02-15 深圳市科陆电子科技股份有限公司 一种基于集中器网络的抄表系统和抄表方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006119185A2 (en) * 2005-05-02 2006-11-09 Energy Technology Group, Inc. Automated meter reading system, communication and control network for automated meter reading, meter data collector program product, and associated methods
CN202331782U (zh) * 2011-12-07 2012-07-11 北京北方胜达机电科技发展有限公司 一种北斗卫星电力自动抄表系统
CN102594411A (zh) * 2012-04-01 2012-07-18 潍坊开发区蓝岭科学研究中心 电力载波通信传输装置
CN102750817A (zh) * 2012-07-20 2012-10-24 李建新 一种电力数据通信传输系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019157789A1 (zh) * 2018-02-14 2019-08-22 Oppo广东移动通信有限公司 资源上报的方法、终端设备和网络设备

Also Published As

Publication number Publication date
CN102750817A (zh) 2012-10-24

Similar Documents

Publication Publication Date Title
CN102201827B (zh) 一种音频信号接收、转接装置和音频信号传输系统
JP2013540409A (ja) ワイヤレス電源
BRPI0610480A2 (pt) agrupamento de aglomerados de malhas
WO2014012493A1 (zh) 一种电力数据通信传输系统及方法
CN109495135A (zh) 一种基于电力线载波通信的调试系统和方法
US9543789B2 (en) Apparatus and method for transmitting/receiving wireless energy in energy transmission system
CN100508461C (zh) 两线制电缆供电装置、受电装置、系统和方法
CN105245736A (zh) 一种总线型消防通信系统
CN204993548U (zh) 一种总线型消防通信系统
CN202662158U (zh) 一种电力数据通信传输系统
EP2869475B1 (en) Transformer for power line communication
CN203457168U (zh) 三合一智能综合光节点设备
CN106604120A (zh) 一种远距离传输超清音视频信号的延长器装置
CN202662157U (zh) 一种电力数据通信传输系统
CN202662156U (zh) 一种电表用电信息传输系统
CN203434973U (zh) 载波无线转换器
CN201215995Y (zh) 数据通过型分支、分配器
CN206259935U (zh) 一种中压载波通信装置
CN210629876U (zh) 一种wifi智能转换器
CN201733318U (zh) 一种经由同轴电缆传输并以poe供电的基频式以太网延伸器
CN203301509U (zh) 用于同轴电缆以太网的三合一智能综合光节点设备
CN202998137U (zh) 家庭信号接入终端
KR20130015807A (ko) 배전 자동화 시스템 및 저압 원격검침 시스템을 위한 고정 무선 브릿지
CN203942529U (zh) 直通型poi信号中转装置及直通型poi设备
CN103067698B (zh) 基于2.4g的宽带无线多点影音传输方法及其系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13819819

Country of ref document: EP

Kind code of ref document: A1