WO2014012406A1 - Wlan的信道资源分配方法和设备、无线局域网通信系统 - Google Patents

Wlan的信道资源分配方法和设备、无线局域网通信系统 Download PDF

Info

Publication number
WO2014012406A1
WO2014012406A1 PCT/CN2013/077368 CN2013077368W WO2014012406A1 WO 2014012406 A1 WO2014012406 A1 WO 2014012406A1 CN 2013077368 W CN2013077368 W CN 2013077368W WO 2014012406 A1 WO2014012406 A1 WO 2014012406A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcarrier
allocation information
data
receiving device
subcarrier allocation
Prior art date
Application number
PCT/CN2013/077368
Other languages
English (en)
French (fr)
Inventor
王力
姜艳平
甄斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13819845.2A priority Critical patent/EP2836043B1/en
Publication of WO2014012406A1 publication Critical patent/WO2014012406A1/zh
Priority to US14/543,620 priority patent/US20150071233A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to communications technologies, and in particular, to a WLAN channel resource allocation method and device, and a wireless local area network communication system. Background technique
  • the wireless local area network (WLAN) technology has been widely used in homes, campuses, and corporate offices. When a user arrives at an area with WLAN coverage, the WLAN network can be selected for data services.
  • WLAN wireless local area network
  • OFDM Orthogonal Frequency Division Multiplexing
  • channel resource allocation methods are all based on full bandwidth allocation, that is, a single user terminal usually occupies the entire bandwidth when communicating.
  • Embodiments of the present invention provide a channel resource allocation method and device for a WLAN, and a wireless local area network communication system, to reduce waste of transmission power of the terminal, and to improve modulation order.
  • a first aspect of the embodiments of the present invention provides a channel resource allocation method for a WLAN, including:
  • subcarrier allocation information is used to identify a subcarrier or a subcarrier group used for carrying data, and a channel quality of a subchannel where the subcarrier or subcarrier group is located is greater than or equal to a decision threshold;
  • the acquiring the subcarrier allocation information includes: determining, according to the channel state information CSI sent by the receiving device, and the determining threshold, the subcarrier allocation information.
  • the setting, by the subcarrier allocation information, in a signal domain in a frame that carries the data includes: setting the subcarrier allocation information to a bit in the signal domain; or Adding a new sub-domain in the signal domain, and setting the sub-carrier allocation information in the new sub-domain.
  • the method before the sending, by the subcarrier or subcarrier group, the data to the receiving device, the method further includes: setting the subcarrier allocation information in a frame that carries the data.
  • the signal domain is sent to the receiving device such that the receiving device receives data on the subcarrier or subcarrier group according to the subcarrier allocation information.
  • the acquiring the subcarrier allocation information includes: receiving a CSI feedback message sent by the receiving device, where the CSI feedback message carries the subcarrier allocation information.
  • the acquiring the subcarrier allocation information includes: performing channel estimation according to the measurement signal received from the receiving device to obtain CSI; determining the subcarrier allocation according to the CSI and a preset decision threshold. information.
  • the subcarrier allocation information is used to identify a subcarrier or a subcarrier group used for carrying data, where: the subcarrier allocation information is used to identify a subcarrier group used for carrying data,
  • the channel quality of the sub-channel in which the sub-carrier group is located is greater than or equal to the threshold of the determination.
  • the sending, by the sub-carrier, the data to the receiving device includes: sending data to the receiving device on the sub-carrier group.
  • the subcarrier allocation information includes: at least one bit, each bit corresponding to one subcarrier or subcarrier group, and the bit is used to indicate the corresponding subcarrier Or the subcarrier group is selected; or the subcarrier allocation information includes: an identifier of the first subcarrier or the subcarrier group, and the plurality of subcarriers or subcarrier groups in the plurality of subcarriers or subcarrier groups that are continuously allocated Quantity.
  • the method before the obtaining the subcarrier allocation information, further includes: sending, to the receiving device, high layer signaling, where the high layer signaling is carried in the local support unit The capability information of the molecular carrier scheduling, the partial subcarrier scheduling indication transmitting data on the subcarrier; receiving a capability response sent by the receiving device, where the capability response is used to indicate that the receiving device supports the partial subcarrier Scheduling to perform the acquiring subcarrier allocation information when the receiving device supports the partial subcarrier scheduling according to the capability response.
  • the high-level signaling is sent to the receiving device, and the high-layer signaling carries the capability information for indicating the local-supported partial sub-carrier scheduling, including: sending the medium access control MAC layer to the receiving device And setting the capability information to a spare bit of one of the MAC frames of the MAC layer signaling, or setting the capability information in a new field of the MAC frame.
  • Another aspect of the present invention provides a channel resource allocation method for a WLAN, including: acquiring subcarrier allocation information, where the subcarrier allocation information is used to identify a subcarrier or a subcarrier group used for carrying data, where the subcarrier or The channel quality of the subchannel where the subcarrier group is located is greater than or equal to the decision threshold;
  • the acquiring the subcarrier allocation information includes: performing channel estimation to obtain CSI according to the measurement signal received from the transmitting device; and determining, according to the CSI and the determining threshold, the sub
  • the method further includes: sending a CSI feedback message to the transmitting device, where the CSI feedback message is carried
  • the subcarriers allocate information such that the transmitting device transmits data on the subcarriers according to the subcarrier allocation information.
  • the subcarrier allocation information includes: at least one bit, each bit corresponding to one subcarrier or subcarrier group, and the bit is used to indicate the corresponding subcarrier Or the subcarrier group is selected; or the subcarrier allocation information includes: an identifier of the first subcarrier or the subcarrier group, and the plurality of subcarriers or subcarrier groups in the plurality of subcarriers or subcarrier groups that are continuously allocated quantity.
  • the acquiring the subcarrier allocation information includes: receiving a signal domain sent by the transmitting device, where the subcarrier allocation information is set in the signal domain.
  • the method before the obtaining the subcarrier allocation information, further includes: receiving, by the transmitting device, high layer signaling, where the high layer signaling is carried to indicate the sending
  • the capability device supports partial subcarrier scheduling capability information, the partial subcarrier scheduling indication that the data is sent on the subcarrier, and a capability response is returned to the transmitting device, where the capability response is used to indicate that the local device also supports the Partial subcarrier scheduling, such that the transmitting device performs the acquiring subcarrier allocation information according to the capability response.
  • Yet another aspect of the present invention provides a transmitting device, including:
  • An allocation information acquiring unit configured to acquire subcarrier allocation information, where the subcarrier allocation information is used to identify a subcarrier or a subcarrier group used for carrying data, where a channel quality of the subchannel or subcarrier group is greater than or equal to Decision threshold
  • a carrier data sending unit configured to send data to the receiving device on the subcarrier or subcarrier group according to the subcarrier allocation information.
  • the allocation information acquiring unit is specifically configured to determine the subcarrier allocation information according to the channel state information CSI sent by the receiving device and a preset threshold, where the carrier data sending unit is configured, And being further configured to send the subcarrier allocation information to a signal domain in a frame carrying the data before sending the data to the receiving device on the subcarrier, so that the receiving device is configured according to the The subcarrier allocation information receives data on the subcarriers.
  • the allocation information acquiring unit is specifically configured to perform channel estimation to obtain CSI according to the measurement signal received from the receiving device, and determine the subcarrier according to the CSI and a preset determination threshold. Assign information.
  • the high-level signaling interaction unit is configured to: before the acquiring information acquiring unit acquires the sub-carrier allocation information, send the high-layer signaling to the receiving device, where the high-layer signaling is carried in And the capability information that is used by the receiving device to receive the capability response sent by the receiving device, where the capability response is used to indicate that the receiving device also supports the partial subcarrier scheduling. And instructing, by the capability response, that the allocation information acquiring unit performs the acquiring subcarrier allocation information.
  • the allocation information acquiring unit is specifically configured to receive a CSI feedback message sent by the receiving device, where the CSI feedback message carries the CSI and the subcarrier allocation information.
  • Yet another aspect of the present invention provides a receiving device, including:
  • An allocation information acquiring unit configured to acquire subcarrier allocation information, and the subcarrier allocation information a subcarrier or a subcarrier group used for identifying the bearer data, where a channel quality of the subchannel or the subcarrier group is greater than or equal to a decision threshold;
  • a carrier data receiving unit configured to receive data on the subcarrier or subcarrier group according to the subcarrier allocation information.
  • the allocation information acquiring unit is specifically configured to perform channel estimation to obtain the CSI according to the measurement signal received from the transmitting device, and determine, according to the CSI and a preset decision threshold
  • the channel information feedback unit is configured to: after the determining the subcarrier allocation information, send a CSI feedback message to the transmitting device, before receiving the data on the subcarrier according to the subcarrier allocation information, where The CSI feedback message carries the subcarrier allocation information, so that the transmitting device sends data on the subcarrier according to the subcarrier allocation information.
  • the high-level signaling interaction unit is configured to receive the high-layer signaling sent by the sending device, where the high-level signaling is carried in the high-layer signaling,
  • the transmitting device supports the capability information of the partial subcarrier scheduling, where the partial subcarrier scheduling instruction sends data on the subcarrier;
  • the channel information feedback unit is further configured to return a capability response to the transmitting device, where the capability response.
  • the means for indicating that the partial subcarrier scheduling is also supported locally, so that the transmitting device performs the acquiring subcarrier allocation information according to the capability response.
  • the allocation information acquiring unit is specifically configured to receive a signal domain sent by the transmitting device, where the subcarrier allocation information is set in the signal domain.
  • Still another aspect of an embodiment of the present invention provides a wireless local area network communication system, including: the transmitting device of the present invention, and the receiving device of the present invention.
  • the technical effect of the WLAN channel resource allocation method and device and the WLAN communication system provided by the present invention is: by transmitting data on a subcarrier whose channel quality is greater than or equal to a decision threshold, the waste of transmitting power of the terminal is reduced, and It is no longer limited by the pull-down of subchannels with poor channel quality, and the modulation order can be increased.
  • FIG. 1 is a schematic flowchart of a method for allocating a channel resource of a WLAN according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of another embodiment of a method for allocating a channel resource of a WLAN according to the present invention
  • FIG. 3 is a schematic diagram of signaling of a method for allocating a channel resource of a WLAN according to another embodiment of the present invention
  • FIG. 4 is a schematic diagram of a format of a single user frame in another embodiment of a method for allocating a channel resource of a WLAN according to the present invention
  • FIG. 5 is a schematic diagram of a multi-user frame format in another embodiment of a channel resource allocation method for a WLAN according to the present invention.
  • FIG. 6 is a schematic diagram of signaling of a WLAN channel resource allocation method according to still another embodiment of the present invention
  • FIG. 7 is a schematic diagram of signaling of a WLAN channel resource allocation method according to another embodiment of the present invention
  • FIG. 9 is a schematic diagram of a format of the HT control field in FIG. 8.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an embodiment of a transmitting device according to the present invention.
  • FIG. 12 is a schematic structural diagram of an embodiment of a receiving device according to the present invention.
  • FIG. 13 is a schematic signaling diagram of still another embodiment of a channel resource allocation method for a WLAN according to the present invention. detailed description
  • An embodiment of the present invention provides a channel resource allocation method for an OFDM-based WLAN, where the method only allocates a part of bandwidth, that is, transmits data on a sub-carrier whose channel quality in the channel is greater than or equal to a decision threshold, thereby reducing the pair of terminals. A waste of transmit power.
  • the transmitting device and the receiving device are involved; in the WLAN system, the transmitting device and the receiving device are, for example, a terminal (STA), and an access point (AP).
  • the transmitting device and the receiving device which are described below, may be two terminals, or a terminal and an access point, or two access points, etc., and the device form is not limited in the embodiment of the present invention, and is a WLAN system. Communication between two devices in .
  • the transmitting device is simply referred to as a transmitting end
  • the receiving device is simply referred to as a receiving end, and the transmitting end sends data to the receiving end.
  • FIG. 1 is a schematic flowchart of a method for allocating a channel resource of a WLAN according to an embodiment of the present invention.
  • the method may be performed by a transmitting end. As shown in FIG. 1, the method may include: 101. Acquire subcarrier allocation information.
  • the subcarrier allocation information is used to identify the subcarrier used by the selected bearer data, and the channel quality of the subchannel where the subcarrier is located is greater than or equal to the decision threshold.
  • a channel in an OFDM-based WLAN system, includes a plurality of subchannels, and each subchannel includes a subcarrier for carrying data.
  • each subchannel includes a subcarrier for carrying data.
  • only subcarrier transmission data on a subchannel having a channel quality greater than or equal to a decision threshold is selected.
  • the subcarriers on the subchannels whose remaining channel quality is lower than the decision threshold are not used, so that they are in an idle state. In this way, power waste caused by transmitting data on subcarriers with poor channel quality in the prior art can be avoided, and the coding modulation order can be improved because the subchannels with poor channel quality are no longer limited. Increase the transfer rate.
  • the channel quality may be represented by the channel state information CSI.
  • the specific value of the threshold may be obtained by simulation or testing in a specific configuration and a specific scenario. For example, a channel environment may be simulated to determine the channel quality. In this state, the data transmission effect is better, thereby determining the decision threshold of the channel quality. For example: Assume that the value of the preset decision threshold is 60, and the CSI of the subchannel is 50, indicating that the channel quality of the subchannel is lower than the decision threshold, and the channel quality is poor, and the subcarriers on the subchannel will not be used. Host data.
  • the subcarrier allocation information used in this embodiment is used to identify the subcarrier used for the selected bearer data, where the subcarrier includes the subcarrier group, that is, includes the selected single subcarrier (single subcarrier)
  • the subcarriers on the channel also include the selected subcarrier group (in this case, the subcarrier group composed of a plurality of subcarriers is collectively referred to as a subcarrier, and the subcarriers in the subcarrier group may be physically continuous, also It may be physically discontinuous according to a certain criterion mapping, and multiple subchannels in which the subcarrier group is located are collectively referred to as subchannels.
  • the channel quality of the single subchannel is determined according to the channel quality; for example, as follows: There are 5 subchannels, and it is necessary to separately determine the CSI (five CSIs) of each subchannel, and determine whether to use the corresponding subcarrier according to the CSI of each subchannel. If the subcarrier group is judged, it is based on the channel quality of the plurality of subchannels corresponding to the subcarrier group; for example: Assume that there are 5 subchannels in the channel, and the subcarriers on the first three subchannels are first.
  • Subcarrier group the subcarriers on the last two subchannels form a second subcarrier group, and the first subcarrier is determined according to the overall channel quality of the first three subchannels.
  • the carrier group determines whether to use the second subcarrier group according to the overall channel quality of the last two subchannels; and the overall channel quality may be, for example, averaged by CSI of each subchannel, or the overall measurement of the subchannels is directly obtained.
  • the combined equivalent CSI of the subchannel group and the like.
  • the manner in which the subcarrier allocation information is expressed may be, for example, a bit bitmap, where each bit in the bitmap is used to indicate whether the corresponding subcarrier is selected for use; or, continuous
  • the representation of the allocation is jointly represented by the starting subcarriers of the plurality of subcarriers that are continuously allocated and the number of the multiple subcarriers.
  • the data may be transmitted on the subcarriers identified by the subcarrier allocation information, and the remaining subcarriers in the channel are not used because their channel quality is lower than the decision threshold, and may be idle.
  • the prior art is based on full bandwidth allocation, that is, all subcarriers in the channel are used, and this embodiment actually uses partial bandwidth allocation, and only a part of subcarriers are used, for the channel. Subcarriers with a quality lower than the decision threshold will no longer be used to avoid power wastage.
  • the transmitting end transmits the data on the selected subcarrier according to the subcarrier allocation information, thereby reducing the waste of the transmission power and increasing the modulation order.
  • FIG. 2 is a schematic flowchart of another embodiment of a method for allocating a channel resource of a WLAN according to the present invention.
  • the method may be performed by a receiving end. As shown in FIG. 2, the method may include:
  • the subcarrier allocation information is used to identify the subcarrier used by the selected bearer data, the channel quality of the subchannel where the subcarrier is located is greater than or equal to a decision threshold, and the remaining subcarriers in the channel are idle.
  • the transmitting end transmits the data on the selected subcarrier according to the subcarrier allocation information, thereby reducing waste of the transmitting power, and improving the modulation order; For the receiving end, the receiving end of the receiving end is also reduced.
  • the complexity of the matter is also reduced.
  • FIG. 3 is a schematic diagram of signaling of a method for allocating a channel resource of a WLAN according to the present invention.
  • a transmitter determines a selected subcarrier according to a CSI fed back by a receiving end, and selects the selected subcarrier. Notify the receiving end.
  • the method may include:
  • the receiving end performs channel estimation to obtain CSI
  • the receiving end performs channel estimation according to the signal transmitted by the transmitting end to obtain CSI.
  • This step can be used to measure the channel in a common manner, such as measuring the preamble signal, and will not be described in detail.
  • the receiving end sends a CSI feedback message to the transmitting end, and carries the obtained CSI.
  • the transmitting end determines the subcarrier allocation information according to the CSI and the preset decision threshold.
  • the determining threshold may be pre-configured at the transmitting end.
  • the manner of determining the subcarrier allocation information is as follows: Assume that the channel between the transmitting end and the receiving end includes five subchannels, and the number of CSIs fed back by the receiving end is correspondingly five, respectively corresponding to each subchannel, for example, CSIj (sub Channel 1), CSI 2 (subchannel 2), CSI 3 (subchannel 3), CSI 4 (subchannel 4), and CSI 5 (subchannel 5); and the values of the above five CSIs correspond to 60, 50, respectively. , 70, 72, 76 and 81.
  • the preset threshold is 70, it can be determined that the channel quality of subchannel 1 and subchannel 2 is poor.
  • the subcarriers on the two subchannels will not be used in this embodiment, and the channels of subchannel 3 to subchannel 5 will not be used.
  • the quality is greater than or equal to the decision threshold, and the subcarriers on the three subchannels will use the bearer data.
  • the transmitting ends in 304 and 305 further inform the receiving end of the selected subcarriers, so that the receiving end can receive data on the corresponding subcarriers.
  • the above selection is also expressed in a certain manner, and the subcarrier allocation information used to represent the selected bearer data is subcarrier allocation information.
  • the representation of the subcarrier allocation information is known to both the receiving end and the transmitting end, that is, both parties know the meaning of the representation.
  • the protocol may be pre-defined by the protocol, so when the transmitting end sends the subcarrier allocation information represented by the following manner to the receiving end, the receiving end can understand the meaning:
  • a bitmap may be used: the bitmap includes at least one bit, and in this embodiment, a plurality of bits are taken as an example, each bit corresponds to one subcarrier, and the bit is Used to indicate whether the corresponding subcarrier is selected.
  • bit bitmap includes 5 bits (ie, 5 bits) corresponding to each subcarrier of subchannel 1 to subchannel 5 of the above-mentioned example, and the subcarriers of the current two subchannels are not used, and the latter three
  • subcarriers of subchannels they can be represented by "00111", where "represents that subcarriers are selected for use, and "0" indicates that subcarriers are not selected for use; for the same reason, only subcarriers of the first subchannel are assumed
  • the carrier and the subcarrier of the third subchannel are selected for use, and the corresponding bit bitmap is
  • a continuous allocation representation is employed: the identification of the first subcarrier of the plurality of subcarriers that are continuously allocated, and the number of the plurality of subcarriers are jointly represented.
  • the following two alternative representations of continuous allocation are given below:
  • the representation manner can be as follows: Assume that the number of five subcarriers is 0-4, and the last three subcarriers Used as subcarriers numbered 2, 3, and 4, represented by binary bits as "010+010", where the first three bits 010 represent the number of the first subcarrier of the three consecutively allocated subcarriers, ie " 2", the last three bits plus 1 indicate that the number of consecutively allocated subcarriers is 3, which can be combined to obtain "continuous allocation of three subcarriers starting from the third subcarrier numbered 2, that is, three subcarriers are continuously allocated", that is, the number Subcarriers of 2, 3, and 4 are used; the number of occupied bits in this way is calculated as "Vlog2 (subcarrier (group) number) ® + Vlog2 (subcarrier (group) number) ® ".
  • the subcarrier allocation of the channels of the five subcarriers has multiple possibilities, and the specific subcarrier allocation mode (the first allocated subcarrier number + the number of consecutive subcarrier allocations) and the binary bit representation are used as the mapping of the second hierarchy. For example, “1+2" (that is, the first assigned subcarrier number is 1, and 2 subcarriers are allocated consecutively) corresponding to binary digit "000", or "2+2" corresponds to "1 10", etc., specific per seed
  • the binary bit corresponding to the carrier allocation method can be set autonomously, as long as it can determine which subcarrier allocation mode is based on the mapping relationship. As described above, regardless of the allocation method, the subcarrier allocation information occupies 4 bits of space.
  • the subcarriers may be divided into multiple subcarrier groups in the frequency domain, and according to the overall channel quality of the multiple subchannels occupied by the subcarrier group, it is determined whether the subcarrier group is selected for use, and the judgment basis is the same. It is also whether the overall channel quality of the subcarrier group is greater than or equal to the decision threshold.
  • the advantage of dividing the subcarrier group is that the space occupied by the subcarrier allocation information can be reduced, as follows: Assume that there are five subchannels, the subcarriers of the first three subchannels are used, and the subcarriers of the latter two subchannels are not used. If a single subcarrier is indicated separately, the representation mode is "1 1100", which occupies 5 bits.
  • first three subcarriers are divided into the first subcarrier group and the latter two subcarriers are divided into the second subcarrier group, only the respective subcarriers are separately divided.
  • the subcarriers can be divided into common methods.
  • the channel model can be used to calculate the minimum correlation bandwidth, and the subcarrier groups are divided according to this, so that the overall bandwidth of the subcarrier group is not greater than the minimum coherence bandwidth to ensure the subcarrier.
  • the overall channel flatness in the carrier group, the channel quality will not differ too much.
  • 802.11 ah subcarrier size 31.25KHz according to the indoor channel model TGn F (root mean square delay spread 150ns) and outdoor channel model for SCM (root mean square delay extension 650ns), and 1/(5 X both
  • the square root delay spread yields a minimum coherence bandwidth of 1.33 MHz and 308 KHz, respectively, resulting in a group that can be divided into 40 or 10 subcarriers.
  • the number of subcarriers of the subcarrier group is not necessarily 40 or 10, as long as it is not greater than the minimum coherence bandwidth.
  • the CSI of each subchannel may be averaged to obtain the channel quality of the entire subcarrier group, or the channel quality of the plurality of subchannels occupied by the entire subcarrier group may be measured. ; then the channel quality setting of the subcarrier group as a whole A decision threshold is judged in the same way as described above and will not be described.
  • the transmitting end sets the subcarrier allocation information in the signal domain SIG.
  • the transmitting end After receiving the CSI in 303, the transmitting end sends data to the receiving end, specifically, the subcarrier carrying data indicated by the subcarrier allocation information determined in 303, for example, selecting the last three of the five subcarriers. For the carrier, the data is carried by the last three subcarriers, and the remaining two subcarriers are not used.
  • the receiving end in order for the receiving end to receive the data, it also knows which subcarrier needs to be received, and the transmitting end also sets the subcarrier allocation information in the signal domain and sends it to the receiving end;
  • the signal The domain refers to the fact that when transmitting data, the transmitting end usually carries some information for informing the receiving end how to receive data.
  • the information is set in the signal domain (SIG), for example, to inform the receiving end of the data.
  • SIG signal domain
  • the encoding method is such that the receiving end knows how to decode the obtained data and the like.
  • FIG. 4 is a schematic diagram of a single-user frame format in another embodiment of the WLAN channel resource allocation method according to the present invention
  • FIG. 5 is a channel resource allocation of the WLAN according to the present invention.
  • the J ⁇ port includes a short 1
  • LTF2 in Figure 4 ⁇ for different transmit antennas Channel estimation, MU-LTF1... in Figure 5 is used for channel estimation of different transmit antennas of different users; the frame format of Figures 4 and 5 is a conventional format and therefore will not be described in detail.
  • This embodiment mainly shows the position of the SIG for carrying subcarrier allocation information by means of Figs. 4 and 5.
  • each subfield of SIG (A) includes, for example, a modulation code scheme (abbreviation: MCS), a bandwidth (abbreviation: BW), and a space time.
  • MCS modulation code scheme
  • BW bandwidth
  • STBC space time block code
  • Coding coding method
  • this embodiment provides two alternative ways of setting subcarrier allocation information in the SIG:
  • a subcarrier allocation information is set by setting subcarrier allocation information in a reserved bit in the signal domain, so that the size of the vacant bits in the existing SIG is not changed; Bandwidth, using subcarrier grouping, respectively
  • the subcarrier allocation information sets the occupied space to indicate that the subcarrier allocation information can be carried in the vacant bit, wherein the number of subcarriers in the subcarrier group as exemplified below may be changed in a specific implementation:
  • 1MHz corresponds to 24 data subcarriers, with 4 bit spare:
  • the 24 data sub-carriers are divided into 10 groups and 3 groups in total; the sub-carrier allocation information can be directly represented by the bit bitmap method, and the sub-carrier allocation information needs 3 bits; the second, 2 MHz corresponds to 52 data sub- Carrier, single user su: 5bit, multi-user mu: 12bit:
  • the 52 data subcarriers are divided into 10 or 11 groups, and 5 groups are used; the subcarrier allocation information can be directly represented by the bitmap method, and 5 bits are needed;
  • the 108 data subcarriers are divided into 10 or 11 groups, a total of 10 groups; the subcarrier allocation information is represented by a bitmap method, which requires lObit (for mu);
  • the 108 data subcarriers are divided into 21 or 22 groups, a total of 5 groups; the subcarrier allocation information is represented by a bitmap method, which requires 5 bits;
  • 8MHz corresponds to 234 data subcarriers, su: 5bit, mu: 15bit:
  • the 234 data subcarriers are divided into a group of 10 or 11, a total of 22 groups; continuous distribution represents subcarrier allocation information, can require 8bit (footprint size using known formulas herein may be calculated Vlo g 2 (subcarrier (group) number X [subcarrier (group) number +1] ⁇ 2)®); 234 data subcarriers are divided into 46 or 47 groups, a total of 5 groups; bitmap representation of subcarriers To distribute information, you need 5bits;
  • the 468 data subcarriers are divided into 10 or 11 groups, a total of 43 groups; the continuous allocation method is used to represent the subcarrier allocation information, which requires lObit (applicable to mu, because mu's free bits are larger than the lObit);
  • the 468 data subcarriers are divided into 93 or 94 groups, a total of 5 groups; the subcarrier allocation information is represented by a bitmap method, which requires 5 bits.
  • the subcarrier allocation information representation mode is selected for each type of bandwidth, for example, the bitmap mode or the continuous allocation mode, and can be arbitrarily selected; as long as the vacant bits are sufficient for bearer.
  • the certificate can carry subcarrier allocation information, and the SU data can be transmitted through the frame structure of the MU because there are more spare bits in the MU.
  • Another seed carrier allocation information is set by adding a new subfield in the SIG for carrying subcarrier allocation information; adding a new subi in SIG(A) at 2 MHz as an example:
  • the booster port is sub-carrier allocation for carrying subcarrier allocation information; in Table 4, 5 bits are allocated for the new subdomain sub-carrier allocation. Compare Table 4 with Table 2, in this way, the total bit of the SIG is unchanged, still 48 bits;
  • an indication of the subcarrier packet size may be added to the transmitted SIG to indicate how many subcarriers are divided into one subcarrier group. For example, in Table 4 above, another subfield may be added to indicate the size of the subcarrier grouping.
  • the indication of the subcarrier packet size is optional.
  • the packet size may be preset, and the receiving end and the transmitting end all know the packet, and no notification is needed.
  • the transmitting end sends the data carrying the subcarrier allocation information to the receiving end.
  • the transmitting end sends the data to the receiving end according to the subcarrier indicated by the subcarrier allocation information, and sets the subcarrier in the signal domain.
  • the allocation information is sent to the receiving end.
  • the receiving end receives data on the subcarrier indicated by the subcarrier allocation information.
  • the receiving end can receive data only on the first three subcarriers accordingly.
  • FIG. 6 is a schematic diagram of signaling of a method for allocating a channel resource of a WLAN according to the present invention.
  • the receiving end determines the selected subcarrier according to the local CSI, and notifies the selected subcarrier to the transmitting end.
  • the method may include:
  • the receiving end performs channel estimation to obtain C SI;
  • the receiving end performs channel estimation according to the signal transmitted by the transmitting end to obtain CSI. This step can be used to measure the channel in a common manner, and will not be described in detail.
  • the receiving end determines the subcarrier allocation information according to the CSI and the preset decision threshold.
  • the determining threshold may be pre-configured at the receiving end.
  • the manner in which the receiving end performs the determining of the subcarrier allocation information according to the CSI and the preset threshold is the same as that of the transmitting end in the third embodiment, and the subcarrier allocation information is represented in the same manner. As described in Example 3, it will not be repeated.
  • the receiving end sends a CSI feedback message to the transmitting end, and carries the obtained CSI and the subcarrier allocation information.
  • the receiving end may add the subcarrier allocation information to the CSI feedback message. And feedback to the transmitter.
  • the subcarrier allocation information is added in addition to the CSI.
  • the manner of representing the subcarrier allocation information refer to the third embodiment, which is used to identify the selected subcarrier, and may be in a bitmap manner or Continuous distribution method, etc.
  • the subcarrier group size index may also be added in the C SI feedback message.
  • the CSI feedback message may be sent by using an existing CSI feedback process.
  • NDP null data packet
  • the transmitting end first sends an NDP.
  • Announce empty data packet notification
  • the receiving end can feed back the CSI immediately after the short interframe space (short interframe space, short for: SIFS) time, or the receiving end competes in itself
  • the CSI ie, delay feedback type
  • the transmitting end receives the correct receiving response ACK after receiving the signal
  • the transmitting end may feed back an ACK to the receiving end to inform the receiving end that the subcarrier allocation information has been correctly received, so that the receiving end and the transmitting end can be more surely obtained.
  • the information is consistent.
  • the transmitting end carries data on the subcarrier indicated by the subcarrier allocation information, that is, the selected subcarrier according to the subcarrier allocation information.
  • the transmitting end sends data to the receiving end.
  • the receiving end receives data on the subcarrier indicated by the subcarrier allocation information according to the subcarrier allocation information determined by the receiving end.
  • the receiving end receives the data on the selected subcarrier according to the subcarrier allocation information obtained in 603 in this step.
  • FIG. 7 is a schematic diagram of signaling according to still another embodiment of a method for allocating a channel resource of a WLAN according to the present invention.
  • a selected subcarrier is determined by a transmitting end and a receiving end, respectively, but the transmitting end and the receiving end are the same.
  • the selection method and the decision threshold are used to ensure that the subcarriers determined at both ends are consistent.
  • the transmitting end and the receiving end first learn that the opposite end supports partial subcarrier scheduling by using the high layer signaling, and then perform the respective determination of the selected subcarrier as an example; and, the upper layer signaling is media access.
  • Control Medium Access Control, MAC for short
  • the method may include:
  • the transmitting end sends an NDP announcement to the receiving end, and adds local capability information used to indicate local supported partial subcarrier scheduling in the MAC layer.
  • the partial subcarrier scheduling refers to: transmitting data on the selected subcarrier, and the unselected subcarrier is not used, and is in an idle state, and the full bandwidth allocation according to the prior art is relatively.
  • the NDP announcement is used to notify that the NDP packet is to be sent subsequently.
  • the transmitting end adds the capability information to the MAC layer of the NDP announcement sent to the receiving end, and the capability information is used to notify the receiving end of the transmitting end of the capability.
  • Partial subcarrier scheduling The method for identifying the foregoing capability information is not limited in this embodiment. For example, "1" may be used to support partial subcarrier scheduling, and "0" means partial subcarrier scheduling is not supported.
  • this embodiment also provides two methods for setting the foregoing capability information in the MAC layer:
  • a frame can be newly defined (one of the above control frame, management frame, or data frame). For example, adding a MAC management frame, which is dedicated to the indication function of part of the subcarrier scheduling capability;
  • the domain can be newly added in the frame of the MAC layer, or the spare bits of a certain domain in the frame can be utilized.
  • FIG. 8 is a schematic diagram of a MAC management frame format in another embodiment of a WLAN channel resource allocation method according to the present invention
  • FIG. 9 is a HT (high throughput) control domain in FIG. Schematic diagram.
  • the HT control field of the MAC management frame there are 7 bits of reserved bits (Reserved), which can be used to carry the capability information of part of the subcarrier scheduling.
  • the receiving end sends a CSI feedback message to the transmitting end, and carries a capability response.
  • the C SI feedback message of the feedback C SI carries a capability response for the capability information transmitted by the transmitter in 701, and the capability response is used to indicate that the receiver also supports partial subcarrier scheduling.
  • the capability response may be represented by fields 0 and 1. Whether, for example, 1 indicates support, 0 indicates that it is not supported, or may be expressed in the form of a field, for example, the field indicates support, and the The field indicates that it is not supported.
  • the receiving end does not support partial subcarrier scheduling, the capability response will not be fed back. If the transmitting end does not receive the capability response, the transmitting end will no longer adopt partial subcarrier scheduling mode, and still use full bandwidth allocation.
  • the transmitting end acquires CSI, and determines the subcarrier allocation information according to the CSI and a preset threshold.
  • the transmitting end receives the capability response in 702, it is learned that the receiving end also supports partial subcarrier scheduling, and the transmitting end acquires the CSI by itself, and determines the subcarrier allocation information according to the CSI and the preset decision threshold.
  • the method for obtaining the CSI by the transmitting end may be the feedback CSI received from the receiving end in 702, or the transmitting end may perform the channel estimation by using the preamble signal sent by the receiving end according to the channel reciprocity.
  • the channel reciprocity refers to that the channel CSI from the transmitting end to the receiving end is approximately equal to the CSI from the receiving end to the transmitting end, and can be mutually replaced. Therefore, if the transmitting end does not use the receiving end feedback
  • the CSI can measure the CSI from the receiving end to the transmitting end by itself, and can represent the CSI fed back by the receiving end.
  • the transmitting end sends data to the receiving end.
  • the receiving end itself determines subcarrier allocation information, and receives data on the corresponding subcarrier.
  • the difference between this embodiment and the previous embodiment is that the transmitting end does not inform the receiving end of the subcarrier allocation information obtained by the transmitting end, and the receiving end and the transmitting end respectively acquire the subcarrier allocation information.
  • the receiving end receives the capability information sent by the transmitting end during the NDP announcement, and learns that the transmitting end supports partial subcarrier scheduling, and the receiving end performs local measurement to obtain CSI, and acquires the subcarrier allocation according to the CSI and the preset decision threshold. Information, so as to know on which subcarriers the transmitting end transmits data, and then receive data on these subcarriers. Since the receiving end and the transmitting end adopt the same CSI and are the same decision threshold (the decision thresholds at both ends may be pre-configured), the obtained subcarrier allocation information is also the same.
  • the receiving end may also measure the power level on each subcarrier to determine on which subcarriers the transmitting end transmits data; when judging by the subcarrier power, there is also a preset.
  • the decision threshold is the same as the decision threshold when using the CSI decision, and is the same as the decision threshold used by the transmitting side. Since the CSI and subcarrier power are substantially power measurements, the same threshold can be used. Value; the judgment method is the same.
  • the communication device 120 includes a transmitting circuit 1201, a receiving circuit 1202, a power controller 1203, a codec processor 1204, a processing unit 1205, a memory 1206, and an antenna 1207.
  • the processing unit 1205 controls the operation of the communication device 120, and the processing unit 1205 may also be referred to as a central processing unit CPU.
  • Memory 1206 can include read only memory and random access memory and provides instructions and data to processing unit 1205. A portion of the memory 1206 may also include non-volatile line random access memory (NVRAM).
  • the communication device 120 may be embedded or may itself be a wireless communication device such as a mobile phone, and may further include a carrier that houses the transmitting circuit 1201 and the receiving circuit 1202 to allow communication between the communication device 120 and the remote device.
  • the communication device 120 may also be a communication system device such as a base station.
  • Transmitting circuit 1201 and receiving circuit 1202 can be coupled to antenna 1207.
  • the various components of the communication device 120 are coupled together by a bus system 1208, which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • bus system 1208 various buses are labeled as bus system 1208 in the figure.
  • Processing unit 1205 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processing unit 1205 or an instruction in a form of software. These instructions can be implemented and controlled by the processing unit 1205 therein.
  • the codec processor and the processing unit may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA), or Other programmable logic devices, discrete gates or transistor logic devices, logic blocks.
  • the general purpose processor may be a microprocessor or the processor may be any conventional Processor, decoder, etc.
  • the steps of the method disclosed in the embodiment of the present invention may be directly implemented by the hardware codec processor, or may be performed by a combination of hardware and software modules in the codec processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1206, and the decoding unit reads the information in the memory 1206, and completes the steps of the above method in combination with the hardware thereof.
  • FIG. 11 is a schematic structural diagram of an embodiment of a transmitting device according to the present invention.
  • the transmitting device can perform a channel resource allocation method for a WLAN according to any embodiment of the present invention.
  • the transmitting device in this embodiment can implement various steps and functions in the foregoing method embodiments. Specifically, in the process of completing the channel resource allocation of the WLAN, the specific process is as described in the method embodiment.
  • the transmitting device may be, for example, a STA, or an AP.
  • the transmitting device may include: an allocation information acquiring unit 1001, a carrier data transmitting unit 1002, wherein
  • the allocation information acquiring unit 1001 is configured to acquire subcarrier allocation information, where the subcarrier allocation information is used to identify a subcarrier or a subcarrier group used for the selected bearer data, and a channel of the subchannel where the subcarrier or the subcarrier group is located The quality is greater than or equal to the decision threshold;
  • the carrier data transmitting unit 1002 is configured to send data on the selected subcarrier according to the subcarrier allocation information, and the unselected subcarriers may be idle.
  • the above-mentioned allocation information acquiring unit 1001 may be one logical unit or logic circuit or a function module in the processing unit 1205 in the communication device 120.
  • the information acquiring unit 1001 may be the processing unit 1205 itself or a part thereof.
  • the carrier data transmitting unit 1002 may be part of the transmitting circuit 1201 or itself, and then perform data transmission through the coupled antenna.
  • the allocation information acquiring unit 1001 is specifically configured to determine the subcarrier allocation information according to the channel state information CSI fed back by the receiving device and a preset threshold
  • the carrier data sending unit 1002 is further configured to: Sending subcarrier allocation information to the receiving device before transmitting the data on the selected subcarrier, for example, setting the subcarrier allocation information in a signal domain and transmitting the data to the receiving device, so that the receiving device according to the Subcarrier The allocation information receives data on the selected subcarriers.
  • the allocation information acquiring unit 1001 is specifically configured to perform channel estimation to obtain the CSI according to the measurement signal received from the receiving device, and determine the subcarrier allocation information according to the CSI and a preset decision threshold.
  • the transmitting device may further include: a high layer signaling interaction unit 1003, configured to send, to the receiving device, high layer signaling, in the high layer signaling, before the allocation information acquiring unit 1001 acquires the subcarrier allocation information Carrying capability information indicating that the local support part of the subcarrier scheduling is performed;
  • the allocation information obtaining unit 1001 is further configured to receive a capability response that is sent by the receiving device, where the capability response is used to indicate that the receiving device also supports the partial subcarrier scheduling, to indicate the allocation according to the capability response.
  • the information acquisition unit performs the acquisition subcarrier allocation information.
  • the above-mentioned high-layer signaling interaction unit 1003 may be the transmitting circuit 1201 in the communication device 120 itself or a part thereof, and complete data transmission through the coupling antenna.
  • allocation information acquiring unit 1001 is specifically configured to receive and send by the receiving device.
  • the CSI feedback message carries the CSI and the subcarrier allocation information.
  • the receiving device can perform a channel resource allocation method for a WLAN according to any embodiment of the present invention.
  • the transmitting device in this embodiment can implement various steps and functions in the foregoing method embodiments. Specifically, in the process of completing the channel resource allocation of the WLAN, the specific process is as described in the method embodiment.
  • the receiving device may be, for example, a STA, or an AP.
  • the transmitting device may include: an allocation information acquiring unit 1101 and a carrier data receiving unit 1102; wherein the allocation information acquiring unit 1101 is configured to acquire subcarrier allocation information, where the subcarrier allocation information is used to identify the selected bearer data.
  • Subcarrier or subcarrier group, the channel quality of the subchannel where the subcarrier or subcarrier group is located is greater than or equal to a decision threshold, and the remaining subcarriers in the channel are idle;
  • the carrier data receiving unit 1102 is configured to receive data on the selected subcarrier or the subcarrier group according to the subcarrier allocation information.
  • the foregoing allocation information acquiring unit 1101 may be one logical unit or logic circuit or a functional module in the processing unit 1205 in the communication device 120.
  • the allocation information acquiring unit 1101 may be the processing unit 1205 itself or a part thereof.
  • the carrier data receiving unit 1102 may be part of the transmitting circuit 1201 or itself, and then perform data transmission through the coupled antenna.
  • the allocation information acquiring unit 1101 is specifically configured to perform channel estimation to obtain the CSI according to the measurement signal received from the transmitting device, and determine the subcarrier allocation information according to the CSI and a preset decision threshold.
  • the method further includes: a channel information feedback unit 1103, configured to: after the allocation information acquiring unit 1101 determines the subcarrier allocation information, send the subcarrier allocation information to the transmitting device, for example, before receiving the data on the selected subcarrier according to the subcarrier allocation information, eg, Sending a CSI feedback message to the transmitting device, where the CSI feedback message carries the subcarrier allocation information, so that the transmitting device sends data on the selected subcarrier according to the subcarrier allocation information.
  • a channel information feedback unit 1103 configured to: after the allocation information acquiring unit 1101 determines the subcarrier allocation information, send the subcarrier allocation information to the transmitting device, for example, before receiving the data on the selected subcarrier according to the subcarrier allocation information, eg, Sending a CSI feedback message to the transmitting device, where the CSI feedback message carries the subcarrier allocation information, so that the transmitting device sends data on the selected subcarrier according to the subcarrier allocation information.
  • the receiving device may further include: a high-layer signaling interaction unit 1104, configured to receive, according to the acquiring the sub-carrier allocation information, the high-layer signaling sent by the transmitting device, where the high-layer signaling is carried in the representation
  • the transmitting device supports capability information of a part of subcarrier scheduling, where the partial subcarrier scheduling is that the subcarriers that are not transmitted on the selected subcarrier are idle;
  • the channel information feedback unit 1103 is further configured to return a capability response to the transmitting device, where the capability response is used to indicate that the partial subcarrier scheduling is also supported locally.
  • the above-mentioned channel information feedback unit 1103 may be part of the transmitting circuit 1201 in the communication device 120 or itself; the high-level signaling interaction unit 1104 may be part of the receiving circuit 1202 in the communication device 120 or itself; channel information The feedback unit 1103 and the high layer signaling interaction unit 1104 perform transmission or reception of data through the coupling antenna.
  • the allocation information acquiring unit 1101 is specifically configured to receive a signal domain sent by the transmitting device, where the subcarrier allocation information is set in the signal domain.
  • the embodiment of the present invention provides a wireless local area network communication system, including the transmitting device according to any embodiment of the present invention, and the receiving device according to any embodiment of the present invention.
  • the structure and working principle of the transmitting device and the receiving device can be referred to the method embodiment and device implementation of the present invention. As stated in the example.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the above method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • FIG. 13 is a schematic diagram of signaling of a method for allocating a channel resource of a WLAN according to another embodiment of the present invention.
  • a receiving end receives a previous frame sent by a transmitting end, and obtains local CSI according to channel measurement information of a previous frame and determines The selected subcarriers are notified to the transmitting end of the selected subcarrier.
  • the method may include:
  • the sending end sends a data frame to the receiving end;
  • the data frame can be a MAC control frame, a MAC management frame, a normal data frame, etc., without limitation.
  • the receiving end performs channel estimation to obtain channel information
  • the receiving end performs channel estimation according to the signal transmitted by the transmitting end to obtain channel information, and the step of measuring the channel in a common manner is not described in detail.
  • the channel information may be CSI, or CQI (channel quality indicator), or SNR (signal to noise ratio) Ratio, or SINR (signal to interference and noise ratio).
  • the measurement signal may be LTF and STF in the preamble, pilot signals in the data domain and the signal domain, etc., without limitation.
  • the LTF in the preamble includes LTF in 1 la/g, L-LTF in 1 In (Non-High Throughput Long Training field, HT-LTF (High Throughput Long Training Field), HT-LTF1 (First High Throughput Long Training Field), HT-LTFs (Additional High throughput long training fields, l 1 length to pay port force bad sequence EAST 1 J), VHT-LTF 1 lac is (very High throughput long training field, very high throughput long training sequence), l D-LTF in lah, etc., no restrictions.
  • the receiving end determines the subcarrier allocation information according to the channel information and the preset threshold.
  • the decision threshold may be pre-configured at the receiving end.
  • the manner in which the receiving end performs the determining of the subcarrier allocation information according to the channel information and the preset threshold is the same as that of the transmitting end described in the third embodiment, and the subcarrier allocation information is represented in the same manner. The description in the third embodiment will not be repeated.
  • the receiving end sends a feedback message to the transmitting end, and carries the feedback information and the subcarrier allocation information.
  • the receiving end may add the subcarrier allocation information in the feedback message and feed back to the transmitting end.
  • the subcarrier allocation information is also added.
  • the manner of the subcarrier allocation information is shown in the third embodiment, which is used to identify the selected subcarrier, and may be in a bitmap manner. Or continuous distribution methods, etc.
  • an indication of the subcarrier packet size may also be added in the feedback message.
  • the feedback message may be an acknowledgement frame (ACK frame) or a block acknowledgement feedback frame (block)
  • ACK frame acknowledgement frame
  • block block acknowledgement feedback frame
  • ACK frame ) , or short AC K frame , or short block ACK frame, or other MAC control frame, MAC management frame, normal data frame, etc.
  • the physical layer bearer position of the feedback message may be a data field of an acknowledgement frame (ACK frame), or a data field of a block acknowledgement frame (block ACK frame), or a short acknowledgement frame (short ACK)
  • ACK frame acknowledgement frame
  • block ACK frame block acknowledgement frame
  • short ACK short acknowledgement frame
  • the signal field ( SIG field ) of the frame or the signal field ( SIG field ) of the short block ACK frame, the MAC control frame, the MAC management frame, the data field of the normal data frame, or the signal domain.
  • the sending of the feedback message may use an existing acknowledgement feedback process.
  • the transmitting end first sends a data frame (data frame); after receiving the leading LTF, the receiving end may be in a short interframe space (short interframe space) , abbreviation: SIFS ) Immediately after the time, the ACK is fed back, or the receiving end feeds back the ACK after it competes for the channel (ie, delay feedback type).
  • SIFS short interframe space
  • the transmitting end After receiving, the transmitting end feeds back the correct response ACK;
  • the transmitting end may feed back an ACK to the receiving end to inform the receiving end that the subcarrier allocation information has been correctly received, so that the receiving end and the transmitting end can be more surely obtained.
  • the information is consistent.
  • the transmitting end carries data according to the subcarrier allocation information, on the subcarrier indicated by the subcarrier allocation information, that is, the selected subcarrier.
  • the transmitting end sends data to the receiving end.
  • the receiving end receives data according to the subcarrier allocation information determined by itself, on the subcarrier indicated by the subcarrier allocation information.
  • the receiving end receives data in the selected subcarrier according to the subcarrier allocation information obtained in 1303 in this step.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the above method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种WLAN的信道资源分配方法和设备、无线局域网通信系统,其中方法包括:获取子载波分配信息,所述子载波分配信息用于标识承载数据所用的子载波,所述子载波所在子信道的信道质量大于或等于判决门限;根据所述子载波分配信息,在所述子载波上发送数据。本发明减少了对终端发射功率的浪费,并且,由于不再受限于信道质量很差的子信道的拉低,可以提高调制阶数。

Description

WLAN的信道资源分配方法和设备、 无线局域网通信系统 技术领域 本发明涉及通信技术, 尤其涉及一种 WLAN的信道资源分配方法和 设备、 无线局域网通信系统。 背景技术
无线局 i或网 ( wireless local area network, 简称: WLAN )技术已广泛应 用于家庭、 校园、 企业办公等场合, 当用户到达有 WLAN覆盖的区域时, 可 以选择该 WLAN 网络进行数据业务。 在基于正交频分复用(Orthogonal Frequency Division Multiplexing, 简称: OFDM)技术的 WLAN系统中,信道 资源分配方式都是基于全带宽分配的, 即单个用户的终端在通信时通常要占 用整个带宽。
随着 WLAN技术的发展, 对其覆盖范围的要求也不断增加, 例如提出了 覆盖达到 1公里的要求; 而在覆盖范围扩大时的室外场景下不可避免会面临 信道频选性较强的环境, 即整个带宽内的各子信道的信道质量差异性很大。 在这种场景下, 如果仍在信道质量很差的子信道上传输数据实际上是极大地 浪费了终端的发射功率; 并且, 受限于信道质量很差的子信道的拉低效果, 很难获得高阶调制。 发明内容
本发明实施例提供一种 WLAN的信道资源分配方法和设备、 无线局 域网通信系统, 以减少对终端发射功率的浪费, 且提高调制阶数。
本发明实施例的第一个方面是提供一种 WLAN的信道资源分配方法, 包括:
获取子载波分配信息, 所述子载波分配信息用于标识承载数据所用的 子载波或子载波组, 所述子载波或子载波组所在子信道的信道质量大于或 等于判决门限;
根据所述子载波分配信息, 在所述子载波或子载波组上向接收设备发 送数据。
一种可能的实现方式中, 所述获取子载波分配信息, 包括: 根据所述 接收设备发送的信道状态信息 CSI、 以及所述判决门限, 确定所述子载波 分配信息。
另一种可能的实现方式中, 所述将子载波分配信息设置在承载所述数 据的帧中的信号域, 包括: 将所述子载波分配信息设置在所述信号域中的 比特位; 或者, 在所述信号域中增加新的子域, 并将所述子载波分配信息 设置在所述新的子域中。
又一种可能的实现方式中, 所述在所述子载波或子载波组上向所述接 收设备发送数据之前, 还包括: 将所述子载波分配信息设置在承载所述数 据的帧中的信号域发送至所述接收设备, 以使得所述接收设备根据所述子 载波分配信息在所述子载波或子载波组上接收数据。
又一种可能的实现方式中, 所述获取子载波分配信息, 包括: 接收接 收设备发送的 CSI反馈消息,所述 CSI反馈消息中携带所述子载波分配信 息。
又一种可能的实现方式中, 所述获取子载波分配信息, 包括: 根据从 接收设备接收的测量信号进行信道估计获得 CSI; 根据所述 CSI以及预设 的判决门限, 确定所述子载波分配信息。
又一种可能的实现方式中, 所述子载波分配信息用于标识承载数据所 用的子载波或子载波组, 包括: 所述子载波分配信息用于标识承载数据所 用的子载波组, 所述子载波组所在子信道的信道质量大于或等于判决门 限; 相应的, 所述在子载波上向接收设备发送数据, 包括: 在子载波组上 向接收设备发送数据。
又一种可能的实现方式中, 所述子载波分配信息包括: 至少一个比特 位, 每个比特位与一个子载波或者子载波组对应, 且所述比特位用于表示 对应的所述子载波或者子载波组是否被选择; 或者, 所述子载波分配信息 包括: 连续分配的多个子载波或者子载波组中, 首个子载波或者子载波组 的标识以及所述多个子载波或者子载波组的数量。
又一种可能的实现方式中,在所述获取子载波分配信息之前,还包括: 向所述接收设备发送高层信令, 所述高层信令中携带用于表示本地支持部 分子载波调度的能力信息, 所述部分子载波调度指示在所述子载波上发送 数据; 接收所述接收设备发送的能力响应, 所述能力响应用于表示所述接 收设备支持所述部分子载波调度, 以根据所述能力响应, 在所述接收设备 支持所述部分子载波调度时执行所述获取子载波分配信息。
又一种可能的实现方式中, 所述向接收设备发送高层信令, 所述高层 信令携带用于表示本地支持部分子载波调度的能力信息, 包括: 向接收设 备发送介质访问控制 MAC层信令, 并将所述能力信息设置在所述 MAC 层信令的 MAC帧中其中一个域的空余比特位, 或者, 将所述能力信息设 置在所述 MAC帧的新增域中。
本发明的另一个方面是提供一种 WLAN的信道资源分配方法, 包括: 获取子载波分配信息, 所述子载波分配信息用于标识承载数据所用的 子载波或子载波组, 所述子载波或子载波组所在子信道的信道质量大于或 等于判决门限;
根据所述子载波分配信息, 在所述子载波或子载波组上接收数据。 一种可能的实现方式中, 所述获取子载波分配信息, 包括: 根据从所 述发射设备接收的测量信号, 进行信道估计获得 CSI; 并根据所述 CSI以 及所述判决门限, 确定所述子载波分配信息; 相应的, 在所述确定子载波 分配信息之后, 根据子载波分配信息在子载波上接收数据之前, 还包括: 向所述发射设备发送 CSI反馈消息,所述 CSI反馈消息中携带所述子载波 分配信息, 以使得所述发射设备根据所述子载波分配信息在所述子载波上 发送数据。
又一种可能的实现方式中, 所述子载波分配信息包括: 至少一个比特 位, 每个比特位与一个子载波或者子载波组对应, 且所述比特位用于表示 对应的所述子载波或者子载波组是否被选择; 或者, 所述子载波分配信息 包括: 连续分配的多个子载波或者子载波组中, 首个子载波或者子载波组 的标识、 以及所述多个子载波或者子载波组的数量。
又一种可能的实现方式中, 所述获取子载波分配信息, 包括: 接收发 射设备发送的信号域, 所述信号域中设置有所述子载波分配信息。
又一种可能的实现方式中,在所述获取子载波分配信息之前,还包括: 接收所述发射设备发送的高层信令, 所述高层信令中携带用于表示所述发 射设备支持部分子载波调度的能力信息, 所述部分子载波调度指示所述在 所述子载波上发送数据; 向所述发射设备返回能力响应, 所述能力响应用 于表示本地也支持所述部分子载波调度, 以使得所述发射设备根据所述能 力响应执行所述获取子载波分配信息。
本发明的又一个方面是提供一种发射设备, 包括:
分配信息获取单元, 用于获取子载波分配信息, 所述子载波分配信息 用于标识承载数据所用的子载波或子载波组, 所述子载波或子载波组所在 子信道的信道质量大于或等于判决门限;
载波数据发送单元, 用于根据所述子载波分配信息, 在所述子载波或 子载波组上向接收设备发送数据。
一种可能的实现方式中, 所述分配信息获取单元, 具体用于根据接收 设备发送的信道状态信息 CSI、 以及预设的判决门限, 确定所述子载波分 配信息; 所述载波数据发送单元, 还用于在所述子载波上向接收设备发送 数据之前, 将所述子载波分配信息设置在承载所述数据的帧中的信号域发 送至所述接收设备, 以使得所述接收设备根据所述子载波分配信息在所述 子载波上接收数据。
另一种可能的实现方式中, 所述分配信息获取单元, 具体用于根据从 接收设备接收的测量信号, 进行信道估计获得 CSI; 根据所述 CSI以及预 设的判决门限, 确定所述子载波分配信息。
又一种可能的实现方式中, 高层信令交互单元, 用于在所述分配信息 获取单元获取子载波分配信息之前, 向所述接收设备发送高层信令, 所述 高层信令中携带用于表示本地支持部分子载波调度的能力信息; 所述分配 信息获取单元, 还用于接收所述接收设备发送的能力响应, 所述能力响应 用于表示所述接收设备也支持所述部分子载波调度, 以根据所述能力响 应, 指示所述分配信息获取单元执行所述获取子载波分配信息。
又一种可能的实现方式中, 所述分配信息获取单元, 具体用于接收接 收设备发送的 CSI反馈消息, 所述 CSI反馈消息中携带所述 CSI、 以及所 述子载波分配信息。
本发明的又一个方面是提供一种接收设备, 包括:
分配信息获取单元, 用于获取子载波分配信息, 所述子载波分配信息 用于标识承载数据所用的子载波或子载波组, 所述子载波或子载波组所在 子信道的信道质量大于或等于判决门限;
载波数据接收单元, 用于根据所述子载波分配信息, 在所述子载波或 子载波组上接收数据。
—种可能的实现方式中, 所述分配信息获取单元, 具体用于根据从发 射设备接收的测量信号, 进行信道估计获得所述 CSI; 并根据所述 CSI以 及预设的判决门限, 确定所述子载波分配信息; 还包括: 信道信息反馈单 元, 用于在所述确定子载波分配信息之后, 根据子载波分配信息在子载波 上接收数据之前, 向所述发射设备发送 CSI反馈消息, 所述 CSI反馈消息 中携带所述子载波分配信息, 以使得所述发射设备根据所述子载波分配信 息在所述子载波上发送数据。
另一种可能的实现方式中, 高层信令交互单元, 用于在所述获取子载 波分配信息之前, 接收所述发射设备发送的高层信令, 所述高层信令中携 带用于表示所述发射设备支持部分子载波调度的能力信息, 所述部分子载 波调度指示在所述子载波上发送数据; 所述信道信息反馈单元, 还用于向 所述发射设备返回能力响应, 所述能力响应用于表示本地也支持所述部分 子载波调度, 以使得所述发射设备根据所述能力响应执行所述获取子载波 分配信息。
又一种可能的实现方式中, 所述分配信息获取单元, 具体用于接收发 射设备发送的信号域, 所述信号域中设置有所述子载波分配信息。
本发明的实施例又一个方面是提供一种无线局域网通信系统, 包括: 本发明所述的发射设备、 以及本发明所述的接收设备。
本发明提供的 WLAN的信道资源分配方法和设备、 无线局域网通信 系统的技术效果是: 通过在信道质量大于或等于判决门限的子载波上发送 数据, 减少了对终端发射功率的浪费, 并且, 由于不再受限于信道质量很 差的子信道的拉低, 可以提高调制阶数。 附图说明
图 1为本发明 WLAN的信道资源分配方法一实施例的流程示意图; 图 2为本发明 WLAN的信道资源分配方法另一实施例的流程示意图; 图 3为本发明 WLAN的信道资源分配方法又一实施例的信令示意图; 图 4为本发明 WLAN的信道资源分配方法又一实施例中的单用户帧 格式示意图;
图 5为本发明 WLAN的信道资源分配方法又一实施例中的多用户帧 格式示意图;
图 6为本发明 WLAN的信道资源分配方法又一实施例的信令示意图; 图 7为本发明 WLAN的信道资源分配方法又一实施例的信令示意图; 图 8为本发明 WLAN的信道资源分配方法又一实施例中的 MAC管理 帧格式示意图;
图 9为图 8中的 HT control域的格式示意图;
图 10为本发明实施例中一种通信设备的结构示意图;
图 11为本发明发射设备实施例的结构示意图;
图 12为本发明接收设备实施例的结构示意图;
图 13为本发明 WLAN的信道资源分配方法又一实施例的信令示意 图。 具体实施方式
本发明实施例提供了一种基于 OFDM的 WLAN的信道资源分配方法, 该方法是仅分配部分带宽, 即在信道中的信道质量大于或等于判决门限的 子载波上传输数据, 从而减少了对终端发射功率的浪费。
在如下的各实施例中, 涉及到发射设备和接收设备; 在 WLAN系统 中, 所述的发射设备和接收设备例如是终端 (station, 简称: STA ) 、 接 入点 (access point , 简称: AP ) 等, 下文中所述的发射设备和接收设备 可以是两个终端、 或者终端和接入点、 或者是两个接入点等, 本发明实施 例中对设备形式不做限制, 是 WLAN系统中的两个设备之间的通信。 为 描述简单, 在方法实施例中, 将发射设备简称为发射端, 将接收设备简称 为接收端, 由发射端将数据发送至接收端。
实施例一
图 1为本发明 WLAN的信道资源分配方法一实施例的流程示意图, 该方法可以是由发射端执行, 如图 1所示, 该方法可以包括: 101、 获取子载波分配信息;
其中, 所述子载波分配信息用于标识所选择的承载数据所用的子载 波, 并且, 该子载波所在子信道的信道质量大于或等于判决门限。
在基于 OFDM的 WLAN系统中, 信道包括多个子信道, 每个子信道 上包括一个用于承载数据的子载波; 本实施例是仅选择信道质量大于或等 于判决门限的子信道上的子载波传输数据, 而剩余的信道质量低于判决门 限的子信道上的子载波不做使用, 使其处于空闲状态。 这样就可以避免现 有技术中的在信道质量差的子载波上传输数据造成的功率浪费, 并且, 由 于不再受限于信道质量很差的子信道的拉低, 可以提高编码调制阶数, 提 高传输速率。
上述的信道质量例如可以采用信道状态信息 CSI表示, 所述的判决门 限的具体数值可以通过在特定配置及特定场景下通过仿真或者测试获得, 例如可以模拟某个信道环境, 判断在信道质量处于何种状态下时数据的传 输效果较好, 从而确定信道质量的判决门限。 举例如下: 假设预设的判决 门限的数值是 60, 子信道的 CSI是 50, 则表明该子信道的信道质量低于 判决门限, 信道质量较差, 将不再使用该子信道上的子载波承载数据。
本实施例中所述的子载波分配信息用于标识所选择的承载数据所用 的子载波, 其中的子载波包括了子载波组的意思, 即, 包括了所选择的单 个的子载波(单个子信道上的子载波) 、 也包括了所选择的子载波组(此 时相当于将多个子载波组成的子载波组统称为子载波, 子载波组内的子载 波可以是物理上连续的, 也可以是根据一定准则映射而物理上不连续的, 将该子载波组所在的多个子信道统称为子信道) 。
需要说明的是, 本实施例在根据信道质量判断是否分配使用该信道上 的子载波时, 如果是对单个子载波进行判断, 则依据的是单个子信道的信 道质量; 举例如下: 假设信道中有 5个子信道, 则需要分别确定各个子信 道的 CSI (共五个 CSI ) , 并分别根据各个子信道的 CSI判断是否使用对 应的子载波。 如果是对子载波组进行判断, 则依据的是该子载波组所对应 的多个子信道整体的信道质量; 举例如下: 假设信道中有 5个子信道, 前 三个子信道上的子载波组成第一子载波组, 后两个子信道上的子载波组成 第二子载波组, 则依据前三个子信道的整体信道质量判断是否使用第一子 载波组, 依据后两个子信道的整体信道质量判断是否使用第二子载波组; 而所述的整体信道质量例如可以是各个子信道的 CSI进行平均化处理, 或 者整体测量这几个子信道直接得到该子信道组的合并后的等效 CSI等。
其中, 所述的子载波分配信息的表示方式, 例如可以采用比特位图, 该比特位图中的每个比特位用于表示其所对应的子载波是否被选择使用; 或者, 也可以采用连续分配的表示方式, 通过连续分配的多个子载波中的 起点子载波和该多个子载波的数量联合表示。
102、 根据所述子载波分配信息, 在所选择的子载波或子载波组上发 送数据;
其中, 本实施例可以在子载波分配信息所标识的子载波上传输数据, 而信道中剩余的子载波, 由于其信道质量低于判决门限而不被使用, 可以 空闲。 与现有技术相比较, 现有技术是基于全带宽的分配, 即信道中所有 的子载波都会被使用, 而本实施例实际是采用部分带宽分配的方式, 仅使 用了一部分子载波, 对于信道质量低于判决门限的子载波将不再使用, 以 避免功率浪费。
本实施例的 WLAN的信道资源分配方法, 发射端通过根据所述子载 波分配信息, 在所选择的所述子载波上发送数据, 减少了对发射功率的浪 费, 并且, 提高了调制阶数。
实施例二
图 2为本发明 WLAN的信道资源分配方法另一实施例的流程示意图, 该方法可以是由接收端执行, 如图 2所示, 该方法可以包括:
201、 获取子载波分配信息;
其中, 所述子载波分配信息用于标识所选择的承载数据所用的子载 波, 所述子载波所在子信道的信道质量大于或等于判决门限, 信道中剩余 的子载波空闲。
202、 根据子载波分配信息, 在所选择的子载波或子载波组上接收数 据。
本实施例的 WLAN的信道资源分配方法, 发射端通过根据所述子载 波分配信息, 在所选择的所述子载波上发送数据, 减少了对发射功率的浪 费, 并且, 提高了调制阶数; 对于接收端来说, 也降低了接收端的接收处 理的复杂度。
在如下的几个实施例中, 将从发射端和接收端交互的方式, 列举了本 发明实施例的信道资源分配方法的几种实现方式。
实施例三
图 3为本发明 WLAN的信道资源分配方法又一实施例的信令示意图, 在本实施例中, 是由发射端根据接收端反馈的 CSI确定所选择的子载波, 并将该选择的子载波通知接收端。 如图 3所示, 该方法可以包括:
301、 接收端进行信道估计获得 CSI;
其中, 接收端根据发射端发射的信号进行信道估计获得 CSI, 该步骤 采用常用方式测量信道即可, 如测量前导信号, 不再详细说明。
302、 接收端向发射端发送 CSI反馈消息, 携带获得的 CSI;
303、 发射端根据该 CSI以及预设的判决门限, 确定子载波分配信息; 其中, 判决门限可以是预先配置在发射端的。 上述确定子载波分配信 息的方式举例如下: 假设发射端和接收端之间的信道包括五个子信道, 接 收端反馈的 CSI的数量相应的也是五个, 分别对应各个子信道, 例如是 CSIj (子信道 1 ) 、 CSI2 (子信道 2 ) 、 CSI3 (子信道 3 ) 、 CSI4 (子信道 4 )和 CSI5 (子信道 5 ) ; 并且上述五个 CSI的数值对应的分别是 60、 50、 70、 72、 76和 81。 预设的判决门限是 70, 则可以确定, 子信道 1和子信 道 2的信道质量较差, 这两个子信道上的子载波本实施例将不做使用, 而 子信道 3〜子信道 5的信道质量大于等于判决门限,这三个子信道上的子载 波将使用承载数据。
在通过上述判断方式确定了选择的子载波后, 由于后续在 304和 305 中发射端还要将其所选择的子载波告知接收端, 以使得接收端能够在对应 的子载波上接收数据, 所以, 还要以一定的方式将上述的选择表示出来, 这种用于表示所选择的承载数据所用的子载波的即为子载波分配信息。
下面说明子载波分配信息的两种可选的表示方式, 需要说明的是, 对 于子载波分配信息的表示方式接收端和发射端都是已知的, 即双方都知道 这种表示方式的含义, 例如可以是协议预先定义的, 所以当发射端将以如 下方式表示的子载波分配信息发送至接收端时, 接收端是可以理解其含义 的: 一种方式为, 可以采用比特位图 (bitmap ) : 该比特位图包括至少一 个比特位, 本实施例以多个比特位为例, 每个比特位与一个子载波对应, 且所述比特位用于表示对应的子载波是否被选择。 举例如下: 假设比特位 图包括 5个比特位(即 5bit ) , 分别对应上面所述的例子的子信道 1〜子信 道 5的各子载波, 当前两个子信道的子载波不做使用, 后三个子信道的子 载波被使用时, 可以通过 "00111 " 表示, 其中的 " 表示子载波被选择 使用, "0" 表示子载波未被选择使用; 同理, 假设仅有第一个子信道的 子载波和第三个子信道的子载波被选择使用, 则对应的比特位图是
" 10100" 。
另一种方式为, 采用连续分配的表示方式: 通过连续分配的多个子载 波中的首个子载波的标识、 以及所述多个子载波的数量联合表示。 如下列 举两种可选的连续分配的表示方式:
仍以上面所述的例子说明, 假设信道中的五个子载波中, 只有后三个 子载波被使用, 则表示方式可以采用如下方式: 假设五个子载波的编号分 别是 0-4, 后三个子载波被使用就是编号为 2、 3和 4的子载波, 采用二进 制比特表示为 "010+010" , 其中, 前三个比特 010表示这三个连续分配 的子载波中的首个子载波的编号即 "2" , 后三个比特加 1表示该连续分 配的子载波的数量即 3, 综合起来可以得到 "从编号为 2的子载波即第三 个子载波开始, 连续分配三个子载波" , 那就是编号为 2、 3和 4的子载 波被使用; 这种方式的占用比特数目的计算公式为 "Vlog2(子载波(组) 数) ®+ Vlog2(子载波(组)数) ® " 。
或者, 采用映射方式确定: 首先, 将子载波分配信息占用空间与信道 总的子载波数作为第一层次的映射, 例如, 根据公式 "子载波分配信息占 用空间大小 =子载波(组)数 X [子载波(组)数 +1] ÷ 2" , 将每一种信道 总的子载波数都对应一个特定的比特数值, 比如信道中共有 10个子载波, 该信道的子载波分配信息占用 A比特; 信道中共有 5个子载波, 该信道的 子载波分配信息占用 B比特等,这样就可以根据子载波分配信息的占用空 间大小得到该信道中总的子载波数; 具体的占用比特数可以根据 "Vlog2 ( 5 x ( 5+l ) /2 ) ®', 确定, 例如本实施例中, 5个子载波的信道共需要 Vlog2 ( 5 X ( 5+1 ) /2 ) ®=4 bit, 即如果子载波分配信息占用 4 bit, 则表 明是 5个子载波的信道的子载波分配。 接着, 该 5个子载波的信道的子载 波分配又有多种可能, 将具体的子载波分配方式(首个分配的子载波编号 +子载波连续分配数量) 与二进制比特表示作为第二层次的映射; 比如, " 1+2" (即首个分配的子载波编号是 1, 连续分配 2个子载波)对应二进 制比特 "000" 、 或者 "2+2" 对应 " 1 10" 等, 具体的每种子载波分配方 式对应的二进制比特可以自主设定, 只要能够根据映射关系确定是哪种子 载波分配方式即可。 如上所述的, 不论哪种分配方式, 子载波分配信息占 用的空间大小都是 4 bit。
进一步的, 本实施例还可以将子载波划分为频域上的多个子载波组, 根据子载波组所占用的多个子信道的整体信道质量, 判断该子载波组是否 被选择使用, 判断依据同样也是该子载波组的整体信道质量是否大于或等 于判决门限。 划分子载波组的优点是, 可以减少子载波分配信息所占用的 空间大小, 举例如下: 假设有五个子信道, 前三个子信道的子载波使用, 后两个子信道的子载波不做使用, 则如果单个子载波分别指示, 表示方式 为 " 1 1100" , 占用 5bit; 而如果将前三个子载波划分为第一子载波组, 将 后两个子载波划分为第二子载波组, 则仅需要分别指示这两个子载波组整 体是否被使用, 表示方式为 " 10" , 占用 2bit, 明显节省了子载波分配信 息所占用的空间。
其中, 子载波的划分方式可以采用常用方法, 例如, 可以按照信道模 型进行计算, 得到最小相关带宽, 据此划分子载波组, 使得子载波组的整 体的带宽不大于最小相干带宽, 以保证子载波组内整体的信道平坦性, 信 道质量不会相差太大。 举例如下: 802.11 ah的子载波大小 31.25KHz, 按 照室内信道模型 TGn F (均方根时延扩展 150ns ) 和室外信道模型为 SCM (均方根时延扩展 650ns ) , 以及 1/(5 X均方根时延扩展)得到最小相干带 宽分别为 1.33MHz和 308KHz,则得到可以划分为 40或 10个子载波一组。 这里只是举例, 具体实施中, 子载波组的子载波数量不一定是 40或 10, 只要使得尽量不大于最小相干带宽即可。
此外, 对于子载波组的信道质量的判断, 例如可以是将各个子信道的 CSI进行平均化处理得到子载波组整体的信道质量, 或者整体测量子载波 组所占用的多个子信道的信道质量等; 再对子载波组整体的信道质量设定 一个判决门限, 其判断方式与上面所述的方法相同, 不再说明。
304、 发射端将子载波分配信息设置在信号域 SIG中;
其中, 发射端在 303中接收到 CSI后, 将向接收端发送数据, 具体是 采用 303中确定的子载波分配信息所指示的子载波承载数据, 例如, 选择 了五个子载波中的后三个子载波, 则采用该后三个子载波承载数据即可, 剩余的两个子载波不做使用。
本实施例中, 为了让接收端在接收到该数据时, 也知道需要从哪个子 载波上接收, 发射端还将子载波分配信息设置在信号域中一并发送至接收 端; 所述的信号域指的是, 发射端在发送数据时, 通常还会同时携带一些 用于告知接收端如何接收数据的信息, 这些信息就设置在信号域(SIG ) 中, 比如, 告知接收端数据所采用的编码方式, 以使得接收端知道如何解 码获得数据等。
为了清楚的说明信号域 SIG的格式, 参见图 4和图 5, 图 4为本发明 WLAN的信道资源分配方法又一实施例中的单用户帧格式示意图,图 5为 本发明 WLAN的信道资源分配方法又一实施例中的多用户帧格式示意图。 这是 802.11ah中的帧格式, 从图中可以看到 SIG所在的位置; 在单用户 ( SU )的帧中只有一个 SIG, 在多用户 ( MU )的帧中包括 SIGA和 SIGB, 其中, SIGA主要是出于兼容性的考虑能够让仅支持 SU 帧格式而不支持 的 MU的用户能够通过 SIGA识别出该帧为 MU帧。其中,在该帧格式中, J ^口, 包括短 1| 东 i或( Short Training field, 简称: STF )、 长 i| 东 i或( Long Training field, 简称: LTF )、 双倍保护间隔( double guard interval , 简称: DGI )、 长训练符号 ( long training symbol, 简称: LTS )、 信号域( signal, 简称: SIG ) 等, 图 4中的 LTF2 ··· ···用于不同发射天线的信道估计, 图 5 中的 MU-LTF1……用于不同用户的不同发射天线的信道估计; 该图 4和 图 5的帧格式是常规格式, 因此不再详述。 本实施例主要是通过图 4和图 5来显示用于承载子载波分配信息的 SIG的位置。
在 SIG中, 是存在空余比特位的, 可以参见如下的表 1、 表 2和表 3, 将以 802.11 ah标准中的带宽大于等于 2MHz的 SIG(A)和 SIGB为例,说明 SIG中的空余比特位的数目:
表 1 SIG(A)的格式 sub field su MU
Length /
9 9 Duration
MCS 4
BW 2 2
Aggregation 1
STBC 1 1
Coding 2 5
SGI 1 1
GID 6
Nsts 2 8
PAID 9
ACK
2 2 Indication
Reserved 5 4
CRC 4 4
Tail 6 6
Total 48 48
表 2 SIGB的格式
BW
2MHz 4MHz 8MHz 16MHz
MCS 4 4 4 4
Tail 6 6 6 6
CRC 8 8 8 8
Reserved 8 9 11 11
Total 26 11 29 29 例如, 在上述的表 1中, SIG ( A )的各子域(sub field ) 中例如包括: 编码调制阶数( modulation code scheme , 简称: MCS )、 带宽( bandwidth, 简称: BW ) 、 空时块编码 ( space time block code , 简称: STBC ) 、 编码 方式(Coding )等等, 该格式是常规格式, 因此不再详述; 本实施例主要 是通过表 1和表 2来说明, 在 SIG中是存在空余比特位的, 即表格中的 Reserved,,
SIG中的空余比特位数目及子载波数目
Figure imgf000015_0001
在上面介绍 SIG格式的基础上,本实施例提供了两种可选的在 SIG中 设置子载波分配信息的方式:
一种子载波分配信息的设置方式是, 将子载波分配信息设置在信号域 中的空余比特位 (reserved ) , 这样可以不用改变现有 SIG中的空余比特 位的大小; 如下对表 3中的各个带宽, 采用子载波分组的方式, 分别说明 子载波分配信息设置所占用的空间, 以说明在空余比特位是可以承载该子 载波分配信息的, 其中, 如下举例的子载波组中的子载波数量在具体实施 中可以变动:
第一、 1MHz对应 24个数据子载波, 有 4 bit空余:
将 24个数据子载波划分为 10个一组, 共 3组; 可以直接采用比特位 图 bitmap方式表示子载波分配信息, 该子载波分配信息需要 3bit即可; 第二、 2MHz对应 52个数据子载波, 单用户 su: 5bit, 多用户 mu: 12bit:
将 52个数据子载波划分为 10或 1 1个一组, 共 5组; 可以直接采用 bitmap方式表示子载波分配信息, 需要 5bit即可;
第三、 4MHz对应 108个数据子载波, su: 5bit, mu: 13bit:
将 108个数据子载波划分为 10或 11个一组, 共 10组; 采用 bitmap 方式表示子载波分配信息, 需要 lObit即可 (适用于 mu ) ;
将 108个数据子载波划分为 21或 22个一组, 共 5组; 采用 bitmap 方式表示子载波分配信息, 需要 5bit即可;
第四、 8MHz对应 234个数据子载波, su: 5bit, mu: 15bit:
将 234个数据子载波划分为 10或 11个一组, 共 22组; 采用连续分 配方式表示子载波分配信息, 需要 8bit即可(此处的占用空间大小可以采 用已知公式计算得出 Vlog2(子载波(组)数 X [子载波(组)数 +1] ÷ 2)® ); 将 234个数据子载波划分为 46或 47个一组, 共 5组; 采用 bitmap 方式表示子载波分配信息, 需要 5bit即可;
第五、 16MHz对应 468个数据子载波, su: 5bit, mu: 15bit:
将 468个数据子载波划分为 10或 11个一组, 共 43组; 采用连续分 配方式表示子载波分配信息, 需要 lObit即可 (适用于 mu, 因为 mu的空 余比特大于该 lObit ) ;
将 468个数据子载波划分为 93或 94个一组, 共 5组; 采用 bitmap 方式表示子载波分配信息, 需要 5bit即可。
其中, 在上述的例子中, 每种带宽具体选用何种子载波分配信息表示 方式, 例如, bitmap方式或者连续分配方式, 可以任意选择; 只要空余比 特位足够承载即可。 此外, 考虑到 SU在大带宽下空余比特较少, 为了保 证能够承载子载波分配信息, 可以通过 MU的帧结构来发送 SU的数据, 因为 MU中的空余比特较多。
另一种子载波分配信息的设置方式是, 在 SIG中添加新的子域(sub field )用于 载子载波分配信息; 如下以 2MHz时在 SIG(A)中增加新的子 i或为例:
SIG(A)的格式
Figure imgf000017_0001
如上的表 4中, 增力口了 sub-carrier allocation, 用于承载子载波分配信 息; 表 4中为该新的子域 sub-carrier allocation分配了 5bit。 将表 4与表 2 相比较, 这种方式下, SIG的总比特是不变的, 仍然是 48bit;
进一步的, 如果采用子载波分组的方式, 还可以在发送的 SIG中添加 子载波分组大小的指示, 用于表示划分多少个子载波为一个子载波组。 例 如, 在上面的表 4中, 可以再增加一个子域, 用于指示子载波分组的大小。 在具体实施中, 子载波分组大小的指示是可选的, 比如, 可以预设分组大 小, 接收端和发射端都知道该分组, 则不需要通知了。
305、 发射端将携带所述子载波分配信息的数据发送至接收端; 发射端将数据承载在子载波分配信息指示的子载波上发送至接收端, 并且在信号域中设置所述的子载波分配信息一并发送至接收端。
306、 接收端在子载波分配信息指示的子载波上接收数据。
例如, 假设子载波分配信息是 " 11 100" , 表明仅在前三个子载波上 传输数据, 则接收端可以据此仅在前三个子载波上接收数据。
实施例四
图 6为本发明 WLAN的信道资源分配方法又一实施例的信令示意图, 在本实施例中, 是由接收端根据本地 CSI确定所选择的子载波, 并将该选 择的子载波通知发射端。 如图 6所示, 该方法可以包括:
601、 接收端进行信道估计获得 C SI;
其中, 接收端根据发射端发射的信号进行信道估计获得 CSI, 该步骤 采用常用方式测量信道即可, 不再详细说明。
根据从发射设备接收的测量信号, 进行信道估计获得所述 CSI;
602、 接收端根据 CSI以及预设的判决门限, 确定子载波分配信息; 其中, 判决门限可以是预先配置在接收端的。 接收端执行所述的根据 CSI以及预设的判决门限确定子载波分配信息的方式与实施例三中所述的 发射端的执行方式相同, 子载波分配信息的表示方式也相同, 具体可以结 合参见实施例三所述, 不再赘述。
603、 接收端向发射端发送 CSI反馈消息, 携带获得的 CSI、 以及子 载波分配信息;
本实施例中,接收端可以将子载波分配信息添加在 CSI反馈消息中一 并反馈至发射端。 参见如下的表 5所示, 在 CSI之外, 还增加了子载波 配信息, 该子载波分配信息的表示方式参见实施例三, 是用于标识所选择 的子载波的, 可以采用 bitmap方式或者连续分配方式等。 可选的, 如果采 载波分组的方式,还可以在 C SI反馈消息中添加子载波分组大小的指
CSI反馈消息中的携带信息
CSI 子载波分配信息 子载波分组大小 具体实施中, CSI反馈消息的发送可以采用现有的 CSI反馈流程, 例如, 采用空数据分组 (null data packet, 简称: NDP )模式, 发射端先 发送一个 NDP announcement (空数据分组通知) , 然后发送 NDP包; 接 收端在接收到 NDP包之后, 可以在短帧间距 ( short interframe space , 简 称: SIFS ) 时间之后立即反馈 CSI, 或者接收端在自己竟争到信道后再反 馈 CSI (即延迟反馈型) 。
604、 发射端在接收到后反馈正确接收响应 ACK;
优选的, 发射端在接收到 CSI反馈消息中的子载波分配信息之后, 可 以向接收端反馈 ACK, 以告知接收端自己已经正确接收到子载波分配信 息, 这样可以更加确保接收端和发射端获得的信息一致。
605、 发射端根据子载波分配信息, 在子载波分配信息指示的子载波 上即所选择的所述子载波上承载数据;
606、 发射端将数据发送至接收端;
607、 接收端根据其自身确定的子载波分配信息, 在子载波分配信息 指示的子载波上接收数据。
其中,接收端在本步骤中是根据自己在 603中获得的子载波分配信息, 在所选择的子载波上接收数据。
实施例五
图 7为本发明 WLAN的信道资源分配方法又一实施例的信令示意图, 在本实施例中, 是由发射端和接收端各自确定所选择的子载波, 但是该发 射端和接收端采用相同的选择方式以及判决门限, 以保证两端确定的子载 波一致。 本实施例中, 是以发射端和接收端首先通过高层信令获知对端支持部 分子载波调度,然后再执行各自确定所选择的子载波为例进行说明;并且, 高层信令是以介质访问控制 ( Medium Access Control , 简称: MAC ) 层 信令为例。 如图 7所示, 该方法可以包括:
701、 发射端向接收端发送 NDP announcement, 并在其中的 MAC层 添加用于表示本地支持部分子载波调度的本地能力信息;
其中, 所述的部分子载波调度指的是, 在所选择的所述子载波上发送 数据, 而未被选择的子载波不做使用, 处于空闲状态, 与现有技术的基于 全带宽分配是相对的。
NDP announcement是用于通告后续将有 NDP包发送, 本实施例中, 发射端在向接收端发送的 NDP announcement的 MAC层添加所述的能力信 息, 该能力信息用于告知接收端发射端自身支持部分子载波调度。 其中, 对于上述能力信息的标识方式本实施例不做限制, 例如, 可以用 " 1 " 代 表支持部分子载波调度, "0" 代表不支持部分子载波调度。
可选的, 本实施例也提供了将上述能力信息设置在 MAC层的两种方 式:
一种方式是: 由于 MAC层不区分指令帧和数据帧, 只区分控制帧、 管理帧、 数据帧, 因此, 可以新定义一种帧 (上述的控制帧、 管理帧或数 据帧中的一种) ; 例如增加一种 MAC管理帧, 专用于部分子载波调度能 力的指示功能;
另一种方式是: 与前面所述的子载波分配信息的设置方式类似, 可以 在 MAC层的帧中新增加域, 或者利用帧中的某个域的空余比特位
( reserved比特位 ) ;
例如, 可以参见图 8和图 9所示, 图 8为本发明 WLAN的信道资源 分配方法又一实施例中的 MAC管理帧格式示意图, 图 9为图 8中的 HT ( high throughput ) control域的格式示意图。在 MAC管理帧的 HT control 域中, 有 7bit的空余比特位 (Reserved ) , 可以用于承载部分子载波调度 的能力信息。
702、 接收端向发射端发送 CSI反馈消息, 携带能力响应;
其中, 接收端在接收到 NDP包之后, 将向发射端反馈 CSI, 同时可以 在反馈 C SI的 C SI反馈消息中携带对于 701中发射端发送的能力信息的能 力响应, 该能力响应用于表示接收端也支持部分子载波调度。 例如, 该能 力响应可以是通过字段 0和 1来表示是否支持, 比如 1表示支持, 0表示 不支持; 或者, 也可以是采取字段有无的方式表示, 比如具有该字段则表 示支持, 没有该字段则表示不支持。
如果接收端自身不支持部分子载波调度, 则不会反馈能力响应, 则发 射端在未接收到该能力响应时, 将不再采取部分子载波调度方式, 仍然采 用全带宽分配。
703、 发射端获取 CSI, 并根据 CSI以及预设的判决门限, 确定所述 子载波分配信息;
其中, 发射端在接收到 702中的能力响应时, 获知接收端也支持部分 子载波调度,则发射端将自己获取 CSI,并根据 CSI以及预设的判决门限, 确定所述子载波分配信息。
可选的, 发射端获取 CSI的方式, 可以是在 702中从接收端接收的反 馈 CSI, 或者, 也可以是发射端根据信道互易性, 通过接收接收端发送的 前导信号进行信道估计得到 CSI; 所述的信道互易性指的是, 从发射端到 接收端方向的信道 CSI与从接收端到发射端方向的 CSI近似相等,可以相 互替换, 所以, 发射端如果不采用接收端反馈的 CSI, 可以自己测量从接 收端到发射端方向的 CSI, 可以代表接收端反馈的 CSI。
704、 发射端将数据发送至接收端;
705、 接收端自身确定子载波分配信息, 并在对应的子载波上接收数 据;
本实施例与前边实施例的不同在于, 发射端不用将其获得的子载波分 配信息告知接收端, 接收端和发射端是各自获取子载波分配信息的。
例如,接收端在 NDP announcement时接收到发射端发送的能力信息, 得知发射端支持部分子载波调度, 则接收端自己进行本地测量获得 CSI, 并根据 CSI以及预设的判决门限获取子载波分配信息,从而获知发射端是 在哪些子载波上发送数据的, 进而在这些子载波上接收数据。 由于接收端 和发射端采用的是相同的 CSI, 并且是相同的判决门限(两端的判决门限 可以是预先配置的) , 所以获得的子载波分配信息也是相同的。 再例如, 接收端还可以在接收到发射端发送的数据后, 测量各子载波 上的功率大小判断发射端是在哪些子载波上发送数据; 在通过子载波功率 判断时, 同样会有预设的判决门限, 该判决门限与采用 CSI判决时的判决 门限是相同的, 也是与发射端侧采用的判决门限相同, 因为 CSI和子载波 功率实质上都是功率的测量,所以可以采用相同的门限值;判断方法相同。 施例; 为了对本发明实施例的装置结构进行清楚的说明, 如下首先提供一种 通信设备的结构示意图, 图 10 为本发明实施例中一种通信设备的结构示意 图, 如图 10所示, 该通信设备 120包括发射电路 1201、 接收电路 1202、 功 率控制器 1203、编解码处理器 1204、处理单元 1205、存储器 1206及天线 1207。 处理单元 1205控制该通信设备 120的操作, 处理单元 1205还可以称为中央 处理器 CPU。存储器 1206可以包括只读存储器和随机存取存储器,并向处理 单元 1205提供指令和数据。 存储器 1206的一部分还可以包括非易失行随机 存取存储器(NVRAM ) 。 具体的应用中, 该通信设备 120 可以嵌入或者本 身可以就是例如移动电话之类的无线通信设备, 还可以包括容纳发射电路 1201和接收电路 1202的载体, 以允许该通信设备 120和远程设备之间进行 数据发射和接收。 该通信设备 120也有可能是基站等通信系统设备。 发射电 路 1201和接收电路 1202可以耦合到天线 1207。该通信设备 120的各个组件 通过总线系统 1208耦合在一起, 其中总线系统 1208除包括数据总线之外, 还包括电源总线、 控制总线和状态信号总线。 但是为了清楚说明起见, 在图 中将各种总线都标为总线系统 1208。
上述本发明实施例揭示的方法可以应用于该通信设备 120 中。 处理单元 1205可能是一种集成电路芯片, 具有信号的处理能力。 在实现过程中, 上述 方法的各步骤可以通过处理单元 1205 中的硬件的集成逻辑电路或者软件形 式的指令完成。 这些指令可以通过其中的处理单元 1205以配合实现及控制。 用于执行本发明实施例揭示的方法, 上述的编解码处理器及处理单元可以是 通用处理器、 数字信号处理器(DSP ) 、 专用集成电路(ASIC ) 、 现成可编 程门阵列 (FPGA )或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 逻辑框图。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处 理器, 解码器等。 结合本发明实施例所公开的方法的步骤可以直接体现为硬 件编解码处理器执行完成, 或者用编解码处理器中的硬件及软件模块组合执 行完成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只读存 储器或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存 储介质位于存储器 1206, 解码单元读取存储器 1206 中的信息, 结合其硬件 完成上述方法的步骤。
下面结合上述的通信设备 120的结构, 对本发明实施例中的发射设备和 接收设备的结构进行说明。
实施例六
图 1 1为本发明发射设备实施例的结构示意图, 该发射设备可以执行 本发明任意实施例的 WLAN的信道资源分配方法, 本实施例的发射设备 能够实现上述方法实施例中的各步骤及功能, 具体在完成 WLAN的信道 资源分配的过程中, 其具体的流程如方法实施例所述。
如图 1 1所示, 该发射设备可以是例如 STA、 或者 AP。 该发射设备可 以包括: 分配信息获取单元 1001、 载波数据发送单元 1002; 其中,
分配信息获取单元 1001, 用于获取子载波分配信息, 所述子载波分配 信息用于标识所选择的承载数据所用的子载波或子载波组, 所述子载波或 子载波组所在子信道的信道质量大于或等于判决门限;
载波数据发送单元 1002, 用于根据所述子载波分配信息, 在所选择的 所述子载波上发送数据, 未被选择的子载波可以空闲。
其中, 上述的分配信息获取单元 1001可以为通信设备 120中的处理 单元 1205中的一个逻辑单元或者逻辑电路或者一个功能模块, 总之分配 信息获取单元 1001可以为处理单元 1205本身或者其一部分。 载波数据发 送单元 1002可以是发射电路 1201的一部分或者其本身, 再通过耦合天线 完成数据发射。
进一步的, 所述分配信息获取单元 1001, 具体用于根据接收设备反馈 的信道状态信息 CSI、 以及预设的判决门限, 确定所述子载波分配信息; 所述载波数据发送单元 1002,还用于在所选择的所述子载波上发送数 据之前, 向接收设备发送子载波分配信息, 例如将所述子载波分配信息设 置在信号域中发送至所述接收设备, 以使得所述接收设备根据所述子载波 分配信息在选择的所述子载波上接收数据。
进一步的, 分配信息获取单元 1001, 具体用于根据从接收设备接收的 测量信号, 进行信道估计获得所述 CSI; 根据所述 CSI以及预设的判决门 限, 确定所述子载波分配信息。
进一步的, 该发射设备还可以包括: 高层信令交互单元 1003, 用于在 所述分配信息获取单元 1001获取子载波分配信息之前, 向所述接收设备 发送高层信令, 所述高层信令中携带用于表示本地支持部分子载波调度的 能力信息;
分配信息获取单元 1001, 还用于接收所述接收设备反馈的能力响应, 所述能力响应用于表示所述接收设备也支持所述部分子载波调度, 以根据 所述能力响应, 指示所述分配信息获取单元执行所述获取子载波分配信 息。
其中, 上述的高层信令交互单元 1003可以为通信设备 120中的发射 电路 1201的本身或者其一部分, 通过耦合天线完成数据发射。
进一步的, 分配信息获取单元 1001, 具体用于接收接收设备发送的
CSI反馈消息, 所述 CSI反馈消息中携带所述 CSI、 以及所述子载波分配 信息。
实施例七
图 12为本发明接收设备实施例的结构示意图, 该接收设备可以执行 本发明任意实施例的 WLAN的信道资源分配方法, 本实施例的发射设备 能够实现上述方法实施例中的各步骤及功能, 具体在完成 WLAN的信道 资源分配的过程中, 其具体的流程如方法实施例所述。
如图 12所示, 该接收设备可以是例如 STA、 或者 AP。 该发射设备可 以包括: 分配信息获取单元 1101 以及载波数据接收单元 1102; 其中, 分配信息获取单元 1101, 用于获取子载波分配信息, 所述子载波分配 信息用于标识所选择的承载数据所用的子载波或子载波组, 所述子载波或 子载波组所在子信道的信道质量大于或等于判决门限, 信道中剩余的子载 波空闲;
载波数据接收单元 1102, 用于根据所述子载波分配信息, 在所选择的 所述子载波上或子载波组接收数据。 其中, 上述的分配信息获取单元 1101可以为通信设备 120中的处理 单元 1205中的一个逻辑单元或者逻辑电路或者一个功能模块, 总之分配 信息获取单元 1101可以为处理单元 1205本身或者其一部分。 载波数据接 收单元 1102可以是发射电路 1201的一部分或者其本身, 再通过耦合天线 完成数据发射。
进一步的, 分配信息获取单元 1101, 具体用于根据从发射设备接收的 测量信号, 进行信道估计获得所述 CSI; 并根据所述 CSI以及预设的判决 门限, 确定所述子载波分配信息;
还包括: 信道信息反馈单元 1103, 用于在分配信息获取单元 1101确 定子载波分配信息之后, 根据子载波分配信息在所选择的子载波上接收数 据之前, 向发射设备发送子载波分配信息, 例如向所述发射设备发送 CSI 反馈消息, 所述 CSI反馈消息中携带所述子载波分配信息, 以使得所述发 射设备根据所述子载波分配信息在所选择的所述子载波上发送数据。
进一步的, 该接收设备还可以包括: 高层信令交互单元 1104, 用于在 所述获取子载波分配信息之前, 接收所述发射设备发送的高层信令, 所述 高层信令中携带用于表示所述发射设备支持部分子载波调度的能力信息, 所述部分子载波调度为所述在所选择的所述子载波上发送数据且未被选 择的子载波空闲;
信道信息反馈单元 1103, 还用于向所述发射设备返回能力响应, 所述 能力响应用于表示本地也支持所述部分子载波调度。
其中, 上述的信道信息反馈单元 1103可以为通信设备 120中的发射 电路 1201中的一部分或者其本身; 高层信令交互单元 1104可以为通信设 备 120中的接收电路 1202的一部分或者其本身; 信道信息反馈单元 1103 和高层信令交互单元 1104通过耦合天线完成数据的发射或者接收。
进一步的, 分配信息获取单元 1101, 具体用于接收发射设备发送的信 号域, 所述信号域中设置有所述子载波分配信息。
实施例八
本发明实施例提供了一种无线局域网通信系统, 包括本发明任意实施 例所述的发射设备、 以及本发明任意实施例所述的接收设备。 该发射设备 和接收设备的结构和工作原理可以参见本发明的方法实施例和设备实施 例所述。
本领域普通技术人员可以理解: 实现上述各方法实施例的全部或部分 步骤可以通过程序指令相关的硬件来完成。 前述的程序可以存储于一计算 机可读取存储介质中。 该程序在执行时, 执行包括上述各方法实施例的步 骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存 储程序代码的介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非 对其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进 行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或 者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范 围。
实施例九
图 13为本发明 WLAN的信道资源分配方法又一实施例的信令示意 图, 在本实施例中, 接收端接收发送端发送的上一帧, 根据上一帧的信道 测量信息获得本地 CSI并确定所选择的子载波, 并将该选择的子载波通知 发射端。 如图 13所示, 该方法可以包括:
1301、 发送端向接收端发送数据帧;
其中, 数据帧可以为 MAC控制帧, MAC管理帧, 普通数据帧等, 不 做限制。
1302、 接收端进行信道估计获得信道信息;
其中, 接收端根据发射端发射的信号进行信道估计获得信道信息, 该 步骤采用常用方式测量信道即可, 不再详细说明。
根据从发射设备接收的测量信号, 进行信道估计获得所述信道信息; 其中, 所述信道信息可以为 CSI, 或者 CQI ( channel quality indicator, 信道质量指示) , 或者 SNR ( signal to noise ratio , 信噪比) , 或者 SINR ( signal to interference and noise ratio , 信干噪比 ) 等。
其中, 测量信号可以为前导中的 LTF和 STF, 数据域和信号域的导频 信号等, 不做限制。
其中,前导中的 LTF包括 1 la/g中的 LTF, 1 In中的 L-LTF( Non- High Throughput Long Training field, 非高吞吐量长训练序列), HT-LTF ( High Throughput Long Training field, 高吞吐量长训练序列) , HT-LTF1 ( First High Throughput Long Training field, 第一长训练序列) , HT-LTFs ( Additional High Throughput Long Training fields, l1付力口长川 东序歹1 J ), 1 lac 中的 VHT-LTF ( very High Throughput Long Training field , 超高吞吐量长 训练序列) , l lah中的 D-LTF等, 不做限制。
1303、 接收端根据信道信息以及预设的判决门限, 确定子载波分配信 息;
其中, 判决门限可以是预先配置在接收端的。 接收端执行所述的根据 信道信息以及预设的判决门限确定子载波分配信息的方式与实施例三中 所述的发射端的执行方式相同, 子载波分配信息的表示方式也相同, 具体 可以结合参见实施例三所述, 不再赘述。
1304、 接收端向发射端发送反馈消息, 携带反馈信息和子载波分配信 息;
本实施例中, 接收端可以将子载波分配信息添加在反馈消息中一并反 馈至发射端。 参见如下的表 6所示, 在反馈消息之外, 还增加了子载波分 配信息, 该子载波分配信息的表示方式参见实施例三, 是用于标识所选择 的子载波的, 可以采用 bitmap方式或者连续分配方式等。 可选的, 如果采 用子载波分组的方式, 还可以在反馈消息中添加子载波分组大小的指示。
其中,反馈消息可以为确认帧( ACK frame ),或者块确认反馈帧( Block
ACK frame ) , 或者短确认帧 ( short AC K frame ) , 或者短块确认反馈帧 ( short Block ACK frame ) , 或者其他 MAC控制帧, MAC管理帧, 普通 数据帧等。
其中, 反馈消息的物理层承载位置可以为确认帧 (ACK frame ) 的数 据域( data field ), 或者块确认反馈帧( Block ACK frame )的数据域( data field ) , 或者短确认帧 ( short ACK frame ) 的信号域( SIG field ) , 或者 短块确认反馈帧 ( short Block ACK frame ) 的信号域( SIG field ) , MAC 控制帧, MAC管理帧, 普通数据帧的数据域和或信号域等。
表 6 反馈消息中的携带信息
反馈消息 子载波分配信息 子载波分组大 'J 具体实施中, 反馈消息的发送可以采用现有的确认反馈流程, 例如, 发射端先发送一个数据帧 (data frame ) ; 接收端在接收到前导中 LTF之 后, 可以在短帧间距( short interframe space, 简称: SIFS ) 时间之后立即 反馈 ACK,或者接收端在自己竟争到信道后再反馈 ACK(即延迟反馈型)。
1305、 发射端在接收到后反馈正确接收响应 ACK;
优选的, 发射端在接收到 CSI反馈消息中的子载波分配信息之后, 可 以向接收端反馈 ACK, 以告知接收端自己已经正确接收到子载波分配信 息, 这样可以更加确保接收端和发射端获得的信息一致。
1306、 发射端根据子载波分配信息, 在子载波分配信息指示的子载波 上即所选择的所述子载波上承载数据;
1307、 发射端将数据发送至接收端;
1308、 接收端根据其自身确定的子载波分配信息, 在子载波分配信息 指示的子载波上接收数据。
其中, 接收端在本步骤中是根据自己在 1303中获得的子载波分配信 息, 在所选择的子载波上接收数据。
本领域普通技术人员可以理解: 实现上述各方法实施例的全部或部分 步骤可以通过程序指令相关的硬件来完成。 前述的程序可以存储于一计算 机可读取存储介质中。 该程序在执行时, 执行包括上述各方法实施例的步 骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存 储程序代码的介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非 对其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进 行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或 者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范 围。

Claims

权 利 要 求 书
1、 一种 WLAN的信道资源分配方法, 其特征在于, 包括: 获取子载波分配信息, 所述子载波分配信息用于标识承载数据所用的 子载波或子载波组, 所述子载波或子载波组所在子信道的信道质量大于或 等于判决门限;
根据所述子载波分配信息, 在所述子载波或子载波组上向接收设备发 送数据。
2、 根据权利要求 1所述的方法, 其特征在于, 所述获取子载波分配 信息, 包括: 接收由接收设备发送的信道状态信息 CSI反馈消息, 所述 CSI反馈消息中携带所述子载波分配信息。
3、 根据权利要求 1所述的方法, 其特征在于, 所述获取子载波分配 信息, 包括:
根据接收到的由所述接收设备发送的测量信号进行信道估计获得
CSI;
根据所述 CSI以及预设的判决门限, 确定所述子载波分配信息。
4、 根据权利要求 1所述的方法, 其特征在于, 所述获取子载波分配 信息, 包括: 接收所述接收设备发送的信道状态信息 CSI, 根据所述信道 状态信息 CSI、 以及所述判决门限, 确定所述子载波分配信息;
所述在所述子载波或子载波组上向所述接收设备发送数据之前, 所述 方法还包括: 向所述接收设备发送所述子载波分配信息, 以使得所述接收 设备根据所述子载波分配信息在所述子载波或子载波组上接收数据。
5、 根据权利要求 4所述的方法, 其特征在于, 所述向所述接收设备 发送所述子载波分配信息包括:
将所述子载波分配信息设置在承载所述数据的帧中的信号域并发送 至所述接收设备。
6、 根据权利要求 5所述的方法, 其特征在于, 所述将子载波分配信 息设置在承载所述数据的帧中的信号域, 包括:
将所述子载波分配信息设置在所述信号域中的比特位;
或者, 在所述信号域中增加新的子域, 并将所述子载波分配信息设置 在所述新的子域中。
7、 根据权利要求 2、 3或 4所述的方法, 其特征在于, 在所述获取子 载波分配信息之前, 还包括:
向所述接收设备发送高层信令, 所述高层信令中携带用于表示本地支 持部分子载波调度的能力信息;
接收所述接收设备发送的对所述能力信息的能力响应, 所述能力响应 用于表示所述接收设备支持所述部分子载波调度, 以根据所述能力响应, 在所述接收设备支持所述部分子载波调度时执行所述获取子载波分配信 息。
8、 根据权利要求 7所述的方法, 其特征在于, 所述向接收设备发送 高层信令, 所述高层信令携带用于表示本地支持部分子载波调度的能力信 息, 包括:
向接收设备发送介质访问控制 MAC层信令, 并将所述能力信息设置 在所述 MAC层信令的 MAC帧中其中一个域的空余比特位, 或者
将所述能力信息设置在所述 MAC帧的新增域中。
9、 根据权利要求 1-8任一项所述的方法, 其特征在于,
所述子载波分配信息包括: 至少一个比特位, 每个比特位与一个子载 波或者子载波组对应, 且所述比特位用于表示对应的所述子载波或者子载 波组是否被选择;
或者, 所述子载波分配信息包括: 连续分配的多个子载波或者子载波 组中, 首个子载波或者子载波组的标识以及所述多个子载波或者子载波组 的数量。
10、 一种 WLAN的信道资源分配方法, 其特征在于, 包括: 获取子载波分配信息, 所述子载波分配信息用于标识承载数据所用的 子载波或子载波组, 所述子载波或子载波组所在子信道的信道质量大于或 等于判决门限;
根据所述子载波分配信息, 在所述子载波或子载波组上接收发射设备 发送的数据。
11、 根据权利要求 10所述的方法, 其特征在于, 所述获取子载波分 配信息, 包括:
根据从所述发射设备接收的测量信号, 进行信道估计获得信道状态信 息 CSI; 并根据所述 CSI以及所述判决门限, 确定所述子载波分配信息; 在所述确定子载波分配信息之后, 根据子载波分配信息在子载波或子载波 组上接收数据之前, 所述方法还包括: 向所述发射设备发送所述子载波分 配信息, 以使得所述发射设备根据所述子载波分配信息在所述子载波或子 载波组上发送数据。
12、 根据权利要求 11所述的方法, 其特征在于, 所述向所述发射设 备发送所述子载波分配信息包括:
向所述发射设备发送 CSI反馈消息,所述 CSI反馈消息中携带所述子 载波分配信息。
13、 根据权利要求 10所述的方法, 其特征在于, 所述获取子载波分 配信息, 包括: 接收所述发射设备发送的数据帧的信号域, 所述信号域携 带所述子载波分配信息。
14、 根据权利要求 11或 13所述的方法, 其特征在于, 在所述获取子 载波分配信息之前, 还包括:
接收所述发射设备发送的高层信令, 所述高层信令中携带用于表示所 述发射设备支持部分子载波调度的能力信息, 所述部分子载波调度指示所 述在所述子载波或子载波组上发送数据;
向所述发射设备返回能力响应, 所述能力响应用于表示本地也支持所 述部分子载波调度, 以使得所述发射设备根据所述能力响应执行所述获取 子载波分配信息。
15、 根据权利要求 10-14任一项所述的方法, 其特征在于,
所述子载波分配信息包括: 至少一个比特位, 每个比特位与一个子载 波或者子载波组对应, 且所述比特位用于表示对应的所述子载波或者子载 波组是否被选择;
或者, 所述子载波分配信息包括: 连续分配的多个子载波或者子载波 组中, 首个子载波或者子载波组的标识、 以及所述多个子载波或者子载波 组的数量。
16、 一种发射设备, 其特征在于, 包括:
分配信息获取单元, 用于获取子载波分配信息, 所述子载波分配信息 用于标识承载数据所用的子载波或子载波组, 所述子载波或子载波组所在 子信道的信道质量大于或等于判决门限;
载波数据发送单元, 用于根据所述子载波分配信息, 在所述子载波上 或子载波组向接收设备发送数据。
17、 根据权利要求 16所述的发射设备, 其特征在于,
所述分配信息获取单元, 具体用于根据从所述接收设备接收的测量信 号, 进行信道估计获得 CSI; 根据所述 CSI以及预设的判决门限, 确定所 述子载波分配信息。
18、 根据权利要求 16所述的发射设备, 其特征在于,
所述分配信息获取单元,具体用于接收接收设备发送的 CSI反馈消息, 所述 C SI反馈消息中携带所述子载波分配信息。
19、 根据权利要求 16所述的发射设备, 其特征在于,
所述分配信息获取单元, 具体用于根据接收设备发送的信道状态信息 CSI、 以及预设的判决门限, 确定所述子载波分配信息;
所述载波数据发送单元, 还用于在所述子载波上或子载波组向接收设 备发送数据之前, 向所述接收设备发送所述子载波分配信息, 以使得所述 接收设备根据所述子载波分配信息在所述子载波或子载波组上接收数据。
20、 根据权利要求 19所述的发射设备, 其特征在于, 所述载波数据 发送单元具体用于在所述子载波上或子载波组向接收设备发送数据之前, 将所述子载波分配信息设置在承载所述数据的帧中的信号域并发送至所 述接收设备, 以使得所述接收设备根据所述子载波分配信息在所述子载波 或子载波组上接收数据。
21、 根据权利要求 16、 17或 18所述的发射设备, 其特征在于, 还包 括:
高层信令交互单元, 用于在所述分配信息获取单元获取子载波分配信 息之前, 向所述接收设备发送高层信令, 所述高层信令中携带用于表示本 地支持部分子载波调度的能力信息;
所述分配信息获取单元, 还用于接收所述接收设备发送的能力响应, 所述能力响应用于表示所述接收设备也支持所述部分子载波调度, 以根据 所述能力响应, 指示所述分配信息获取单元执行所述获取子载波分配信 息。
22、 一种接收设备, 其特征在于, 包括:
分配信息获取单元, 用于获取子载波分配信息, 所述子载波分配信息 用于标识承载数据所用的子载波或子载波组, 所述子载波或子载波组所在 子信道的信道质量大于或等于判决门限;
载波数据接收单元, 用于根据所述子载波分配信息, 在所述子载波或 子载波组上接收数据。
23、 根据权利要求 22所述的接收设备, 其特征在于,
所述分配信息获取单元, 具体用于根据从发射设备接收的测量信号, 进行信道估计获得信道状态信息 CSI; 并根据所述 CSI以及预设的判决门 限, 确定所述子载波分配信息;
所述接收设备还包括: 信道信息反馈单元, 用于在所述确定子载波分 配信息之后, 根据子载波分配信息在所述子载波或子载波组上接收数据之 前, 向所述发射设备发送所述子载波分配信息, 以使得所述发射设备根据 所述子载波分配信息在所述子载波或子载波组上发送数据。
24、 根据权利要求 23所述的接收设备, 其特征在于, 所述信道信息 反馈单元具体用于在所述确定子载波分配信息之后, 根据子载波分配信息 在所述子载波或子载波组上接收数据之前, 向所述发射设备发送 CSI反馈 消息, 所述 CSI反馈消息中携带所述子载波分配信息, 以使得所述发射设 备根据所述子载波分配信息在所述子载波上或子载波组发送数据。
25、 根据权利要求 23所述的接收设备, 其特征在于, 还包括: 高层信令交互单元, 用于在所述获取子载波分配信息之前, 接收所述 发射设备发送的高层信令, 所述高层信令中携带用于表示所述发射设备支 持部分子载波调度的能力信息, 所述部分子载波调度指示在所述子载波或 子载波组上发送数据;
所述信道信息反馈单元, 还用于向所述发射设备返回能力响应, 所述 能力响应用于表示本地也支持所述部分子载波调度, 以使得所述发射设备 根据所述能力响应执行所述获取子载波分配信息。
26、 根据权利要求 21-25任一所述的接收设备, 其特征在于, 所述分配信息获取单元, 具体用于接收发射设备发送的信号域以获取 所述子载波分配信息, 所述信号域中设置有所述子载波分配信息。
27、 一种无线局域网通信系统, 其特征在于, 包括: 权利要求 16〜21 任一所述的发射设备、 以及权利要求 22〜26任一所述的接收设备。
PCT/CN2013/077368 2012-07-19 2013-06-18 Wlan的信道资源分配方法和设备、无线局域网通信系统 WO2014012406A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13819845.2A EP2836043B1 (en) 2012-07-19 2013-06-18 Method and device for allocating channel resources of wlan and wireless local area network communication system
US14/543,620 US20150071233A1 (en) 2012-07-19 2014-11-17 Method and device for allocating wlan channel resources and wireless local area network communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210250635.8 2012-07-19
CN201210250635 2012-07-19
CN201210325486.7A CN103582137B (zh) 2012-07-19 2012-09-05 Wlan的信道资源分配方法和设备、无线局域网通信系统
CN201210325486.7 2012-09-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/543,620 Continuation US20150071233A1 (en) 2012-07-19 2014-11-17 Method and device for allocating wlan channel resources and wireless local area network communication system

Publications (1)

Publication Number Publication Date
WO2014012406A1 true WO2014012406A1 (zh) 2014-01-23

Family

ID=49948246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077368 WO2014012406A1 (zh) 2012-07-19 2013-06-18 Wlan的信道资源分配方法和设备、无线局域网通信系统

Country Status (4)

Country Link
US (1) US20150071233A1 (zh)
EP (1) EP2836043B1 (zh)
CN (1) CN103582137B (zh)
WO (1) WO2014012406A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170070208A (ko) * 2014-10-20 2017-06-21 후아웨이 테크놀러지 컴퍼니 리미티드 무선 근거리 통신망(wlan)에서 시그널링을 송수신하는 방법 및 장치

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105007147B (zh) * 2014-10-15 2019-01-22 魅族科技(中国)有限公司 一种无线通信方法、装置及系统
WO2016176680A1 (en) 2015-04-30 2016-11-03 Newracom, Inc. Multi-user communication in wireless networks
CN106612522B (zh) * 2015-10-26 2020-06-30 大唐移动通信设备有限公司 在lte-a异构网络中配置成员载波的方法和装置
US10383092B2 (en) 2015-11-03 2019-08-13 Qualcomm Incorporated Beamforming report structure
US10123331B2 (en) * 2015-12-15 2018-11-06 Lg Electronics Inc. Method and apparatus for transmitting feedback frame in wireless local area network system
CN107027145B (zh) * 2016-02-01 2021-01-01 华为技术有限公司 信道测量方法及装置
US9967073B2 (en) * 2016-06-15 2018-05-08 Qualcomm Incorporated Full bandwidth multicast indication to multiple users
JP6729152B2 (ja) * 2016-08-04 2020-07-22 富士通オプティカルコンポーネンツ株式会社 光伝送システムおよび光送信器
US10644924B2 (en) 2016-09-29 2020-05-05 At&T Intellectual Property I, L.P. Facilitating a two-stage downlink control channel in a wireless communication system
US10602507B2 (en) * 2016-09-29 2020-03-24 At&T Intellectual Property I, L.P. Facilitating uplink communication waveform selection
US10206232B2 (en) 2016-09-29 2019-02-12 At&T Intellectual Property I, L.P. Initial access and radio resource management for integrated access and backhaul (IAB) wireless networks
CN108282439B (zh) 2017-01-06 2020-08-14 华为技术有限公司 一种信号发送、接收方法及装置
US10511411B2 (en) * 2018-01-12 2019-12-17 Huawei Technologies Co., Ltd. Method for configuring channel state information reporting band and communications apparatus
CN108601084B (zh) 2018-01-12 2019-04-19 华为技术有限公司 信道状态信息上报频带的配置方法及通信装置
US11088800B2 (en) * 2018-05-31 2021-08-10 Qualcomm Incorporated Autonomous reference signal transmission configuration
US11502771B2 (en) * 2019-05-14 2022-11-15 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
JP7453774B2 (ja) * 2019-11-18 2024-03-21 キヤノン株式会社 通信装置、情報処理装置、制御方法、及び、プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101056156A (zh) * 2006-04-14 2007-10-17 华为技术有限公司 一种信道质量反馈方法及其用户终端、系统
CN102281087A (zh) * 2010-06-11 2011-12-14 中国移动通信集团公司 通信方法、载波调度方法、基站和终端
US20120149410A1 (en) * 2010-12-13 2012-06-14 Chenxi Zhu Method and system for power allocation in a transmission system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7672381B1 (en) * 2000-10-17 2010-03-02 Motorola, Inc. Method of multiple-carrier communication within a noncontiguous wideband spectrum and apparatus therefor
RU2408986C2 (ru) * 2003-08-20 2011-01-10 Панасоник Корпорэйшн Устройство беспроводной связи и способ выделения поднесущих
CN1973492B (zh) * 2004-06-24 2010-12-08 皇家飞利浦电子股份有限公司 用于发送mc网络中子载波状态的方法和用于自适应分配mc网络中子载波的方法
EP1750405B1 (en) * 2005-08-01 2007-06-27 Alcatel Lucent Reducing overhead for channel allocation in downlink of a multicarrier system
KR100946901B1 (ko) * 2006-02-07 2010-03-09 삼성전자주식회사 통신 시스템에서 자원 할당 방법 및 시스템
US8867453B2 (en) * 2006-04-24 2014-10-21 Samsung Electronics Co., Ltd. System and method for subcarrier allocation signaling in a multicarrier wireless network
CN101212282B (zh) * 2006-12-27 2010-12-08 华为技术有限公司 基于多输入多输出的通信方法和系统
WO2009038350A1 (en) * 2007-09-21 2009-03-26 Lg Electronics Inc. Method of mapping physical resource to logical resource in wireless communication system
US7933350B2 (en) * 2007-10-30 2011-04-26 Telefonaktiebolaget Lm Ericsson (Publ) Channel-dependent frequency-domain scheduling in an orthogonal frequency division multiplexing communications system
CN102281133B (zh) * 2010-06-13 2014-02-19 华为技术有限公司 一种在物理上行控制信道上传输信息的方法及装置
US9119203B2 (en) * 2010-06-22 2015-08-25 Lg Electronics Inc. Method and apparatus for transmitting channel state information
US8934413B2 (en) * 2011-05-13 2015-01-13 Qualcomm Incorporated Systems and methods for wireless communication of packets having a plurality of formats

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101056156A (zh) * 2006-04-14 2007-10-17 华为技术有限公司 一种信道质量反馈方法及其用户终端、系统
CN102281087A (zh) * 2010-06-11 2011-12-14 中国移动通信集团公司 通信方法、载波调度方法、基站和终端
US20120149410A1 (en) * 2010-12-13 2012-06-14 Chenxi Zhu Method and system for power allocation in a transmission system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2836043A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170070208A (ko) * 2014-10-20 2017-06-21 후아웨이 테크놀러지 컴퍼니 리미티드 무선 근거리 통신망(wlan)에서 시그널링을 송수신하는 방법 및 장치
EP3200418A4 (en) * 2014-10-20 2017-09-13 Huawei Technologies Co., Ltd. Method and apparatus for sending and receiving signalling in wireless local area network(wlan)
JP2017535220A (ja) * 2014-10-20 2017-11-24 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 無線ローカルエリアネットワークにおいてシグナリングを送受信するための方法および装置
KR101922579B1 (ko) * 2014-10-20 2018-11-27 후아웨이 테크놀러지 컴퍼니 리미티드 무선 근거리 통신망(wlan)에서 시그널링을 송수신하는 방법 및 장치
US10342042B2 (en) 2014-10-20 2019-07-02 Huawei Technologies Co., Ltd. Method and apparatus for sending and receiving signaling in wireless local area network
JP2020074556A (ja) * 2014-10-20 2020-05-14 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 無線ローカルエリアネットワークにおいてシグナリングを送受信するための方法および装置
US10721768B2 (en) 2014-10-20 2020-07-21 Huawei Technologies Co., Ltd. Method and apparatus for sending and receiving signaling in wireless local area network
JP7135013B2 (ja) 2014-10-20 2022-09-12 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 無線ローカルエリアネットワークにおいてシグナリングを送受信するための方法および装置
JP2022173220A (ja) * 2014-10-20 2022-11-18 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 無線ローカルエリアネットワークにおいてシグナリングを送受信するための方法および装置
US11601972B2 (en) 2014-10-20 2023-03-07 Huawei Technologies Co., Ltd. Method and apparatus for sending and receiving signaling in wireless local area network
EP4171167A1 (en) * 2014-10-20 2023-04-26 Huawei Technologies Co., Ltd. Method and apparatus for sending and receiving signaling in wireless local area network
US11889549B2 (en) 2014-10-20 2024-01-30 Huawei Technologies Co., Ltd. Method and apparatus for sending and receiving signaling in wireless local area network

Also Published As

Publication number Publication date
EP2836043A1 (en) 2015-02-11
US20150071233A1 (en) 2015-03-12
EP2836043A4 (en) 2015-05-20
EP2836043B1 (en) 2020-08-26
CN103582137A (zh) 2014-02-12
CN103582137B (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
WO2014012406A1 (zh) Wlan的信道资源分配方法和设备、无线局域网通信系统
JP7322203B2 (ja) マルチユーザパケットをシグナリングするための無線通信方法及び無線通信端末
CN109995497B (zh) 下行控制信息传输方法
JP6816023B2 (ja) ワイヤレス通信のためのヌルデータパケットフレーム構造
JP6498707B2 (ja) リソース標識処理方法及び処理装置、アクセスポイント、並びにステーション
EP3849157A1 (en) Wireless communication method and wireless communication terminal, which use discontinuous channel
RU2704627C2 (ru) Устройство передачи и способ передачи информации о назначении ресурсов
KR20170108974A (ko) 다중 사용자 전송을 위한 시그널링 방법 및 이를 이용한 무선 통신 단말과 무선 통신 방법
KR20190008559A (ko) 공간적 재사용 동작을 위한 무선 통신 방법 및 무선 통신 단말
WO2009089766A1 (fr) Procédé d'attribution et de réception de ressources sans fil, appareil associé
KR102117635B1 (ko) 무선 통신 방법 및 무선 통신 단말
KR20180026768A (ko) 시그널링 필드를 이용하는 무선 통신 방법 및 무선 통신단말
WO2016187854A1 (zh) 通信方法、接入点和站点
TWI817661B (zh) 實體層協定資料單元傳輸方法及相關裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819845

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013819845

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE