WO2014010685A1 - Preservative agent for use in low-temperature preservation of biological material, and method for preserving biological material at low temperature - Google Patents

Preservative agent for use in low-temperature preservation of biological material, and method for preserving biological material at low temperature Download PDF

Info

Publication number
WO2014010685A1
WO2014010685A1 PCT/JP2013/069012 JP2013069012W WO2014010685A1 WO 2014010685 A1 WO2014010685 A1 WO 2014010685A1 JP 2013069012 W JP2013069012 W JP 2013069012W WO 2014010685 A1 WO2014010685 A1 WO 2014010685A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
group
optionally substituted
biological material
Prior art date
Application number
PCT/JP2013/069012
Other languages
French (fr)
Japanese (ja)
Inventor
小柳 徹
加藤 文法
清三 藤川
Original Assignee
石原産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石原産業株式会社 filed Critical 石原産業株式会社
Publication of WO2014010685A1 publication Critical patent/WO2014010685A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/14Preserving with chemicals not covered by groups A23B4/02 or A23B4/12
    • A23B4/18Preserving with chemicals not covered by groups A23B4/02 or A23B4/12 in the form of liquids or solids
    • A23B4/20Organic compounds; Microorganisms; Enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/14Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10
    • A23B7/153Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10 in the form of liquids or solids
    • A23B7/154Organic compounds; Microorganisms; Enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/04Preserving or maintaining viable microorganisms

Definitions

  • the present invention relates to a preservative for cryopreserving a biological material, and a preservation solution for cryopreserving a biological material containing the preservative. Furthermore, the present invention relates to a method for preserving biological materials at low temperatures.
  • the cells have different ion compositions inside and outside the cell membrane, and the difference in the distribution of ions having this charge brings about a potential difference.
  • the intracellular potential is negative with respect to the outside of the cell (membrane potential), and this membrane potential exists as a basic principle common to living organisms regardless of animals or plants.
  • the regulation mechanism of membrane potential is indispensable for life support and cell function, and its failure directly leads to life or cell death.
  • ion pumps and ion channels on the inner and outer membranes there are various ion pumps and ion channels on the inner and outer membranes, and ion balance is constantly adjusted.
  • the most important regulatory mechanism includes a sodium pump (Na + -K + ATPase) in animal cells and a proton pump (H + -ATPase) in plant cells.
  • Na + -K + ATPase sodium pump
  • H + -ATPase proton pump
  • These ion pumps are membrane proteins that actively transport specific ions using ATP energy. If ATP is depleted for some reason or the ambient temperature deviates from the optimum range, the function of the ion pump will be reduced or stopped.
  • the sodium pump mainly pumps out three intracellular sodium ions each time, and conversely, two potassium ions are pumped into the cell from the outside. Therefore, normally, intracellular potassium concentration is high (sodium concentration is low), and extracellular sodium concentration is high (potassium concentration is low).
  • intracellular potassium concentration is high (sodium concentration is low)
  • extracellular sodium concentration is high (potassium concentration is low).
  • the temperature of the cell falls below a certain temperature
  • the function of the sodium pump declines, so that sodium cannot be pumped out of the cell, and the intracellular sodium concentration increases.
  • the intracellular osmotic pressure rises, and the inflow of water molecules causes the cells to swell and eventually lead to cell rupture (cytotoxicity).
  • the above mechanism is considered to be one of the main causes of cell damage when organs for transplantation are cryopreserved at the time of organ transplantation in the medical field, and the basic composition of the electrolyte is intracellular low sodium and high potassium Organ preservation solutions have been developed. Typical examples are Euro Collins (EC) solution and UW (University Wisconsin) solution. Compared to conventional extracellular (high sodium, low potassium) preservation solutions centering on Ringer's solution, these can greatly extend the organ preservation period and are clinically applied as major organ preservation solutions in Japan and overseas. ing. However, these intracellular storage solutions have a risk of reversing and causing cytotoxicity when the storage temperature rises. Further, these are not applicable to all tissues and organs, and further improvement in performance is expected, including further extension of the storage period.
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • MEF embryonic fibroblast
  • bovine in vitro fertilization technology made it possible to produce high quality in vitro fertilized embryos from ovaries derived from slaughterhouses.
  • bovine in vitro fertilization technology made it possible to produce high quality in vitro fertilized embryos from ovaries derived from slaughterhouses.
  • eggs for bovine in vitro fertilization are collected from bovine living bodies, there is a problem that viability cannot be maintained unless they are cultured immediately under appropriate conditions after being collected from bovine living bodies.
  • Patent Document 1 discloses that immature eggs collected by using a medium containing a protein synthesis inhibitor typified by cycloheximide is stored at room temperature and in the air. A method is disclosed.
  • Patent Document 2 discloses a method for preserving bovine ovary by immersing bovine ovary in a preservation solution and preserving it at 10 to 20 ° C.
  • Patent Document 3 discloses a method for preserving a biological material by adding a preservation solution containing one or more polyphenols to the biological material and cooling.
  • catechins are disclosed as polyphenols. Only.
  • Patent Document 4 discloses a method of refrigerated storage of cells at a temperature at which water does not crystallize, for example, a temperature around 4 ° C., by adding an enkephalin derivative to the cell culture medium.
  • Patent Document 5 discloses a medical polyphenol solution containing polyphenol and 0.0001 to 0.05% by weight of ascorbic acid or a metal salt of ascorbic acid for use as a cell preservative, tissue preservative, or the like. It is disclosed that decomposition is suppressed and generation of hydrogen peroxide is suppressed. In Examples, only epigallocatechin gallate (EGCg) is disclosed as a polyphenol.
  • Patent Document 6 discloses a composition for a preservative containing 90% by mass or more of epigallocatechin gallate as an active ingredient, and the effect of preserving cells is more constant by using purified epigallocatechin gallate with high purity. It is described that it can be.
  • Patent Document 7 discloses a flavonoid glycoside having an ability to promote the supercooling ability of an aqueous solution.
  • an antifreeze liquid that can be used at about -15 ° C with water. Therefore, it is described that biological materials and the like can be stored in the antifreeze liquid.
  • the following patent documents 8 to 10 also report on the method of using the supercooling promoting substance flavonoid glycoside disclosed in Patent Document 7.
  • Patent Document 8 discloses a beverage that can maintain a supercooled state containing the flavonoid glycoside.
  • Patent Document 9 discloses a cryopreservation solution in which the above flavonoid glycoside is contained in a vitrification solution, which is less toxic than conventional vitrification solutions and increases the viability of cells and the like by storage. It describes what you can do.
  • Patent Document 10 discloses that by using an organ preservation solution containing the flavonoid glycoside, it is possible to preserve an animal organ at a temperature of 0 ° C. or lower without freezing. Has been.
  • Patent Documents 1 to 6 do not substantially disclose the use of a compound having a specific chemical structure described in the following formula (I) in a solution for preserving cells and organs.
  • Patent Documents 7 and 10 disclose that by using a flavonoid glycoside, cells can be stored at 0 ° C. or less without freezing injury because they can be supercooled to a temperature below freezing point without freezing. However, there is no disclosure of reduction of cold injury under normal cold conditions.
  • the present invention provides a preservative for cryopreserving biological materials, a preservation solution for cryopreserving biological materials containing the preservative, and a method for preserving biological materials at low temperatures in order to reduce these low temperature injuries. For the purpose.
  • the present inventors use a compound having a specific chemical structure described in the following formula (I) to store cells at a low temperature from around the freezing point without freezing to a normal refrigeration temperature without freezing. It was found that the survival rate was improved and a cold injury protection effect was obtained.
  • the present invention has been completed based on these findings, and provides the following preservatives, preservatives, and storage methods.
  • R 1 to R 6 are the same or different and each represents a hydrogen atom, a hydroxyl group, —CO 2 R 7 , an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkoxy group, An optionally substituted alkylthio group, an optionally substituted alkylsulfinyl group or an optionally substituted alkylsulfonyl group, at least one of which is a hydroxyl group, and any two of R 1 to R 6 are congruent; And R 7 is a hydrogen atom or an optionally substituted alkyl group.]
  • a preservative for cryopreserving a biological material comprising a compound represented by: (A-2)
  • R 1 to R 5 are the same or different and are a hydrogen atom, a hydroxyl group or an alkoxy group, at least one is a hydroxyl group, and R 6 may be substituted with a hydroxyl group and / or an alkoxy group
  • the compound represented by the formula (I) is caffeic acid methyl ester, caffeic acid ethyl ester, caffeic acid phenethyl ester, ferulic acid ethyl ester, methyl 3- (3,4-dihydroxyphenyl) propanoate, Methyl 2- (3,4-dihydroxyphenyl) acetate, gallic acid methyl ester, gallic acid ethyl ester, gallic acid propyl ester, 3,4-dihydroxybenzoic acid methyl ester, 3,4-dihydroxybenzoic acid ethyl ester, 2, It is at least one selected from the group consisting of 5-dihydroxybenzoic acid methyl ester, 2,3-dihydroxybenzoic acid methyl ester, resveratrol, isolapontigenin, pterostilbene, pinostilbene, lapontigenin, oxyresveratrol and gnetole
  • R 9 and R 10 are a hydrogen atom, a hydroxyl group or a glucose residue, at least one of which is a glucose residue, and R 11 to R 17 are the same or different and represent a hydrogen atom, a hydroxyl group or an alkoxy group]
  • the flavonoid glycoside compound represented by the formula (II) is at least one selected from the group consisting of quercetin-3-glucoside, kaempferol-7-glucoside, and apigenin-7-glucoside.
  • the biological material is egg cell, fertilized egg cell, sperm cell, embryonic stem cell, iPS cell, adult stem cell, fibroblast, feeder cell, vascular endothelial cell, bone marrow cell, immune cell, hepatocyte, kidney Cells, neurons, pancreatic cells, smooth muscle cells, cardiomyocytes, myoblasts, corneal cells, retinal cells, chondrocytes, cartilage progenitor cells, synovial cells, synovial stem cells, osteoblasts, odontoblasts, roots
  • A-8) Any one of (A-1) to (A-5), wherein the biological material is beef, pork, chicken, fish, shellfish, cereals, vegetables or fruits, or flowers as food.
  • the low temperature is a temperature at which the biological material does not completely freeze, that is, a temperature of -5 ° C to 20 ° C, according to any one of (A-1) to (A-8) Preservatives.
  • a low-temperature injury protective agent comprising a compound represented by the formula (I).
  • (B) Stock solution (B-1) A preservation solution for low-temperature preservation of a biological material containing the preservative according to any one of (A-1) to (A-10).
  • R 1 to R 6 are the same or different and each represents a hydrogen atom, a hydroxyl group, —CO 2 R 7 , an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkoxy group, An optionally substituted alkylthio group, an optionally substituted alkylsulfinyl group or an optionally substituted alkylsulfonyl group, at least one of which is a hydroxyl group, and any two of R 1 to R 6 are congruent;
  • the biological material may be immersed in a solution containing a compound represented by the following formula:
  • R 7 is a hydrogen atom or an optionally substituted alkyl group, and the solution is kept at a low temperature.
  • R 1 to R 5 are the same or different and are a hydrogen atom, a hydroxyl group or an alkoxy group, at least one is a hydroxyl group, and R 6 may be substituted with a hydroxyl group and / or an alkoxy group
  • R 7 is an alkylene group or an alkenylene group
  • R 8 is a hydroxyl group, an alkoxy group or an aralkyloxy group
  • n is an integer of 0 to 2.
  • the compound represented by the formula (I) is caffeic acid methyl ester, caffeic acid ethyl ester, caffeic acid phenethyl ester, ferulic acid ethyl ester, methyl 3- (3,4-dihydroxyphenyl) propanoate, Methyl 2- (3,4-dihydroxyphenyl) acetate, gallic acid methyl ester, gallic acid ethyl ester, gallic acid propyl ester, 3,4-dihydroxybenzoic acid methyl ester, 3,4-dihydroxybenzoic acid ethyl ester, 2, It is at least one selected from the group consisting of 5-dihydroxybenzoic acid methyl ester, 2,3-dihydroxybenzoic acid methyl ester, resveratrol, isolapontigenin, pterostilbene, pinostilbene, lapontigenin, oxyresveratrol and gnetole
  • (C-4) The method according to any one of (C-1) to (C-3), wherein the solution further comprises the flavonoid glycoside compound according to (A-4).
  • the flavonoid glycoside compound is at least one selected from the group consisting of quercetin-3-glucoside, kaempferol-7-glucoside, and apigenin-7-glucoside, according to (C-4).
  • Method. C-6) The method according to any one of (C-1) to (C-5), wherein the biological material is an animal or plant cell, tissue, organ, organ, or cell sheet.
  • the biological material is egg cell, fertilized egg cell, sperm cell, embryonic stem cell, iPS cell, adult stem cell, fibroblast, feeder cell, vascular endothelial cell, bone marrow cell, immune cell, hepatocyte, kidney Cells, neurons, pancreatic cells, smooth muscle cells, cardiomyocytes, myoblasts, corneal cells, retinal cells, chondrocytes, cartilage progenitor cells, synovial cells, synovial stem cells, osteoblasts, odontoblasts, roots Any one of (C-1) to (C-6), which is a membrane cell, oral mucosa cell, mesenchymal stem cell, adipocyte, adipose stem cell, ovary, semen, blood, blood cell, platelet or heart the method of.
  • (C-8) Any one of (C-1) to (C-5), wherein the biological material is beef, pork, chicken, fish, shellfish, cereals, vegetables or fruits, or flowers as food.
  • the method described in 1. (C-9)
  • the low temperature is a temperature at which the biological material does not completely freeze, that is, a temperature of -5 ° C to 20 ° C, according to any one of (C-1) to (C-8) the method of.
  • the preservative and method of the present invention can increase the survival rate of biological materials such as cells. Damage protection effect is obtained. Therefore, since it becomes possible to preserve
  • the preservative and the method of the present invention inhibit the biological material, which is mainly induced by apoptosis induced under low-temperature storage conditions, and inhibit the survival rate of the biological material. Can be increased. Therefore, the present invention can be expected to be applied in fields such as organ transplantation, blood transfusion medicine, regenerative medicine, livestock breeding, and fresh food.
  • 10 is a photograph showing the morphological change of rabbit platelets in Test Example 12.
  • the preservative for cryopreservation of the biological material of the present invention has the formula (I)
  • R 1 to R 6 are the same or different and each represents a hydrogen atom, a hydroxyl group, —CO 2 R 7 , an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkoxy group, An optionally substituted alkylthio group, an optionally substituted alkylsulfinyl group or an optionally substituted alkylsulfonyl group, at least one of which is a hydroxyl group, and any two of R 1 to R 6 are congruent; And R 7 may be a hydrogen atom or an optionally substituted alkyl group].
  • Preferred compounds represented by the formula (I) are those in which R 1 to R 5 are the same or different and are a hydrogen atom, a hydroxyl group or an alkoxy group, at least one is a hydroxyl group, R 6 is a hydroxyl group and / Or a phenylalkenyl group which may be substituted with an alkoxy group, or-(R 7 ) n -COR 8 , R 7 is an alkylene group or an alkenylene group, R 8 is a hydroxyl group, an alkoxy group or an aralkyloxy group, A compound in which n is an integer of 0-2.
  • the method for preserving a biological material of the present invention is characterized in that the biological material is immersed in a solution containing the above compound and the solution is kept at a low temperature.
  • the alkyl group may be linear or branched, and is preferably an alkyl group having 1 to 30 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms.
  • Specific examples of the alkyl group include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, hexyl, octyl, decyl and dodecyl.
  • alkyl group can be applied to the alkyl moiety in the alkoxy group, alkylthio group, alkylsulfinyl group, and alkylsulfonyl group.
  • the alkenyl group may be linear or branched, and has at least one double bond, preferably an alkenyl group having 2 to 30 carbon atoms, more preferably 2 to 6 carbon atoms.
  • alkenyl group examples include vinyl, allyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl and the like.
  • alkenyl group can also be applied to the alkenyl part in the phenylalkenyl group.
  • the alkylene group may be linear or branched, and is preferably an alkylene group having 1 to 6 carbon atoms. Specific examples of the alkylene group include methylene, ethylene, trimethylene, propane-2,2-diyl, tetramethylene, 1,1-dimethylethylene and the like.
  • the alkenylene group may be linear or branched, and is preferably an alkenylene group having 2 to 6 carbon atoms. Specific examples of the alkenylene group include vinylene, arylene, propenylene, 2-methyl-2-propenylene and the like.
  • the aralkyloxy (arylalkyloxy) group is preferably an aralkyloxy group having 7 to 12 carbon atoms.
  • the alkyl part of the aralkyloxy group may be linear or branched.
  • Specific examples of the aralkyloxy group include benzyloxy, phenethyloxy, 3-phenylpropyloxy and the like.
  • aryl means a monocyclic or polycyclic group composed of a 5- or 6-membered aromatic hydrocarbon ring, and specific examples thereof include phenyl and naphthyl.
  • “optionally substituted” means alkoxycarbonyl, aralkyloxycarbonyl, —COOH, alkylthiocarbonyl, alkyldithiocarbonyl, alkoxythiocarbonyl, dialkylaminocarbonyl, aryloxycarbonyl, alkenyloxycarbonyl, alkynyloxycarbonyl. , Alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, arylcarbonyl, aralkylcarbonyl, cyano, nitro and the like.
  • the definitions of the alkyl group, aralkyloxy group, alkenyl group and aryl group can be applied to the alkyl part, aralkyloxy part, alkenyl part and aryl part of each group here.
  • the alkynyloxycarbonyl and the alkynyl part of alkynylcarbonyl may be either linear or branched, preferably alkynyl having 2 to 30 carbon atoms, more preferably alkynyl having 2 to 6 carbon atoms.
  • the aralkyl moiety of the aralkylcarbonyl is preferably an aralkyl group having 7 to 12 carbon atoms.
  • the alkyl part of the aralkyl moiety may be linear or branched.
  • Examples of the compound represented by the formula (I) include caffeic acid methyl ester, caffeic acid ethyl ester, caffeic acid phenethyl ester, and ferulic acid ethyl ester. acid etylester), methyl 3- (3,4-dihydroxyphenyl) propanoate, methyl 2- (3,4-dihydroxyphenyl) acetate (methyl 2- (3,4 -dihydroxyphenyl) acetate), gallic acid methyl ester, gallic acid ethyl ester, gallic acid propyl ester, 3,4-dihydroxybenzoic acid methyl ester (3,4- Dihydroxybenzoic acid metylester), 3,4-Dihydroxybenzoic acid ethyl ester (3,4-Dihydroxybenzoic acid etylester), 2,5-dihydroxybenzoic acid methyl ester (2,5-Dihydroxybenzoic acid methylester), 2,3-dihydroxybenzoic
  • the preservative for cryopreservation of the biological material of the present invention includes formula (II):
  • R 9 and R 10 are a hydrogen atom, a hydroxyl group or a glucose residue, at least one of which is a glucose residue, and R 11 to R 17 are the same or different and represent a hydrogen atom, a hydroxyl group or an alkoxy group]
  • flavonoid glycoside compound represented by the formula (II) examples include quercetin-3-Glucoside (Q3G), kaempferol-7-Glucoside (K7G) And Apigenin-7-Glucoside (A7G).
  • the above compounds can be chemically synthesized by known methods, and those contained in organisms such as plants can be obtained by extracting them from these by known methods. Moreover, it is also possible to obtain with a commercial item.
  • the low temperature means a temperature at which the biological material does not completely freeze, that is, ⁇ 5 ° C. or higher, preferably ⁇ 3 ° C. or higher, more preferably higher than 0 ° C. and 20 ° C. or lower, preferably 15 ° C. or lower. More preferably, the temperature is 10 ° C or lower.
  • low temperature injury means cell injury caused by low temperature
  • low temperature injury protection effect means an effect of protecting cells from the low temperature injury. Therefore, taking this meaning into consideration, the preservative of the present invention can also be referred to as a low-temperature injury protective agent.
  • the biological material used in the present invention is not limited as long as the effects of the present invention can be obtained, but any biological material can be used. Examples thereof include animals or plant cells, tissues, organs, organs, and individuals. Can be mentioned. The tissue, organ and individual may be derived from any animal or plant. Mammals (humans, monkeys, cows, pigs, horses, dogs, cats, rabbits, mice, rats, etc.) are desirable as animals targeted by the present invention.
  • Animal cells include egg cells, fertilized egg cells, sperm cells, ES (embryonic stem) cells, iPS (induced pluripotent stem) cells, adult stem cells, hematopoietic stem cells, tissue stem cells, mesenchymal stem cells, fibroblasts, feeder cells , Bone marrow cells, immune cells, hepatocytes, blood cells (blood cells) (red blood cells, white blood cells and platelets), myocytes, cardiomyocytes, smooth muscle cells, myoblasts, osteoblasts, neurons, neuroblasts, vascular endothelium Cells, smooth muscle cells, bone cells, chondrocytes, cartilage progenitor cells, synovial cells, synovial stem cells, odontocytes, periodontal ligament cells, oral mucosal cells, corneal cells, retinal cells, adipocytes, adipose stem cells, kidneys Examples include cells, spleen cells, pancreatic cells, pancreatic parenchymal cells, pancreatic duct
  • An immune cell means a cell involved in an immune reaction, such as thymocyte, T cell, B cell, NK cell, NKT cell, monocyte, dendritic cell, macrophage, eosinophil Examples include spheres, neutrophils, and basophils.
  • the cells may be in a free state in the preservation solution, in an adherent state on a culture dish, or in a cell sheet state.
  • animal tissues include epithelial tissues, connective tissues, muscle tissues, and nerve tissues.
  • Animal organs and organs include ovary, semen, blood, lymph nodes, thymus, skin, blood vessels, diaphragm, cornea, kidney, heart, brain, liver, pancreas, eyeball, spleen, lung, intestine, nerve, placenta, umbilical cord And retina.
  • the biological material used in the present invention may be meat, animals and plants used as food, and examples include beef, pork, chicken, fish, shellfish, cereals, vegetables, fruits and the like. .
  • Other biological materials include flower buds, which are ornamental plants.
  • the preservative of the present invention may contain a known additive as appropriate in addition to the compound (I).
  • the preservation solution for low temperature preservation of the biological material of the present invention is characterized by containing the above preservative.
  • the compound (I) when the biological material is stored at a low temperature, the compound (I) is usually used as a solution.
  • the solvent that dissolves the compound (I) is not particularly limited.
  • physiological saline infusions (electrolyte infusion, nutrient infusion, sugar infusion, amino acid infusion, glucose solution, Ringer's solution, acetate Ringer's solution, lactated Ringer's solution, etc.)
  • Buffer solution PBS, Tris buffer solution, Hepes buffer solution, MOPS buffer solution, PIPES buffer solution, etc.
  • sodium citrate preparation for blood transfusion Alsever solution
  • cell culture solution Medium199, RPMI1640, DMEM, etc.
  • organ preservation solution EC liquid, UW liquid
  • modena liquid and the like.
  • the concentration of compound (I) in the preservation solution of the present invention is usually 0.001 to 1000 ⁇ g / ml, preferably 0.01 to 100 ⁇ g / ml.
  • the concentration of the flavonoid glycoside compound (II) in the preservation solution of the present invention is usually 0.001 to 1000 ⁇ g / ml, preferably 0.01 to 100 ⁇ g / ml.
  • other conventional components such as buffers, antibiotics, antibacterial agents, antioxidants, serum, fetal bovine serum, saccharides, lipids, vitamins, proteins, peptides, amino acids, pH indicators , Chelating agents, osmotic pressure regulators and the like.
  • the biological material can be stored by immersing the biological material in a solution containing the compound (I).
  • the solution may be cooled to a low temperature before immersing the biological material, or may be cooled to a low temperature after immersing the biological material.
  • the solution containing the biological material is cooled to a low temperature, it is kept at a low temperature.
  • it is not always necessary to maintain a constant temperature, and the temperature may be outside the low temperature range for a short time.
  • the viability of the biological material can be significantly increased by storing the cells at a low temperature, and a low-temperature injury protection effect can be obtained. Since the present invention can suppress low temperature injury caused by low temperature suitable for storage of biological materials, it can store biological materials such as cells and organs in an appropriate state.
  • the preservation solution of the present invention having the characteristics as described above is a preservation solution for an isolated organ in the field of organ transplantation, a preservation solution for blood cell components in the field of transfusion medicine, a preservation solution for ES cells, iPS cells, and feeder cells in the field of regenerative medicine.
  • Test example 1 For the compounds of the present invention, the protective effect against cold injury of cells was evaluated by the following method.
  • RPMI-1640 (SIGMA, No.1) containing 10% fetal calf serum (Thermo Fisher Scientific, No.SH3D396.03) in an incubator (Sanyo Electric Co., Ltd., MCO-17AIC) at 5% carbon dioxide, 37 ° C. R8758) (10% FBS-RPMI)
  • Human promyelocytic leukemia cell line HL-60 ATCC, No.CCL-240
  • HL-60 cells cultured in a culture solution was collected, 4 ° C., 1,000 rpm, After centrifugation for 5 minutes (TOMY, EIX-135), the supernatant was removed and resuspended in physiological saline to 2 ⁇ 10 6 cells / ml.
  • the mixture of the cell suspension and the test compound was allowed to stand for about 24 hours in a cooling vessel (No. SC-DF25, manufactured by TWINBIRD) set at 4 ° C. Thereafter, 2.5 ml of 10% FBS-RPMI culture solution was added and centrifuged at 4 ° C. and 1,000 rpm for 5 minutes. After removing the supernatant, it is suspended in 2.5 ml of 10% FBS-RPMI culture solution, added to a 96-well microplate (IWAKI, No. 3860-096) at 0.1 ml / well, 5% carbon dioxide, 37 ° C. The cells were cultured for about 24 hours in an incubator.
  • a cooling vessel No. SC-DF25, manufactured by TWINBIRD
  • Test example 2 The test was performed according to the same test method as in Test Example 1 except that the temperature during low-temperature storage was changed from 4 ° C to -5 ° C, 0 ° C or 10 ° C. As a result, as shown in Table 3, the low temperature injury protection effect was confirmed at all storage temperatures.
  • Test example 3 Solvents to which the compounds to be added during low-temperature storage are added from physiological saline, phosphate buffered saline (PBS, SIGMA No. D 8537), EC solution (composition K 2 HPO 4 ; 7.4 g / L, KH 2 PO 4 2.05 g / L, KCl; 1.12 g / L, NaHCO 3 ; 0.84 g / L, glucose; 35 g / L), UW solution (Biaspan; manufactured by Astellas Pharma Inc.), RPMI1640 culture solution (RPMI), or 10% FBS -The same test as in Test Example 1 was performed by changing to the RPMI culture solution.
  • PBS phosphate buffered saline
  • EC solution composition K 2 HPO 4 ; 7.4 g / L, KH 2 PO 4 2.05 g / L, KCl; 1.12 g / L, NaHCO 3 ; 0.84 g / L, glucose; 35
  • the low temperature injury protection effect was confirmed in all the solvents used. That is, the solvent of the compound of the present invention is not limited to physiological saline, and it has been confirmed that it exhibits a low-temperature injury protection effect even in widely used solvents such as physiological buffers, organ preservation solutions, and cell culture solutions. It was done.
  • Test Example 4 Cold storage of MEF cells
  • MEF mouse fetal fibroblast
  • the cells were suspended in a culture medium for MEF cells, seeded in a 96-well microplate at 5 ⁇ 10 3 cells / 0.1 ml / well, and cultured in an incubator at 37 ° C. with 5% carbon dioxide. Thereafter, the supernatant was removed, and a test compound (final concentration 10 ⁇ g / ml, 1 ⁇ g / ml, 0.1 ⁇ g / ml, or 0.01 ⁇ g / ml) whose concentration was adjusted with physiological saline was added to the cells at 0.1 ml / well.
  • the 96-well microplate was stored in a cooling container set at 4 ° C. for 3 days (72 hours).
  • composition of the culture solution for MEF cells used in this test example is as follows. Composition of MEF cell culture medium (100 ml) Iscove's Modified Dulbecco's Medium (IMDM) (invtrogen, No. 12440) 88 ml MEM Non-Essential Amino Acids Solution 10 mM (100X), liquid (MEAA) (invtrogen, No.11140) 1 ml Penicillin-Streptomycin-Glutamine (100X), liquid (invtrogen, No.10378) 1 ml Fetal Bovine Serum (FBS) 10 ml
  • IMDM Iscove's Modified Dulbecco's Medium
  • FBS Fetal Bovine Serum
  • Test Example 5 Hs68 cell cryopreservation
  • Hs68 human normal diploid fibroblasts human foreskin fibroblast, ATCC, No. CRL-1635
  • the cells were suspended in a culture medium for Hs68 cells, seeded in a 96-well microplate so as to be 1 ⁇ 10 4 cells / 0.1 ml / well, and cultured for 2 hours in an incubator at 5% carbon dioxide and 37 ° C. Thereafter, the supernatant was removed, and compound (2) (final concentration 10 ⁇ g / ml, 1 ⁇ g / ml, 0.1 ⁇ g / ml, or 0.01 ⁇ g / ml) adjusted in concentration with physiological saline was added to the cells at 0.1 ml / well. .
  • the 96-well microplate was stored in a cooling container set at 4 ° C. for 3 days (72 hours).
  • composition of the culture solution for Hs68 cells used in this test example is as follows. Composition of culture medium for Hs68 cells (100 ml) Dulbecco's Modified Eagles Medium (DMEM) (SIGMA, No.D5791) 90 ml Fetal Bovine Serum (FBS) 10 ml
  • DMEM Dulbecco's Modified Eagles Medium
  • FBS Fetal Bovine Serum
  • Test Example 6 (HUVEC low-temperature storage) The protective effect of the compound of the present invention against cold injury of normal human umbilical vein endothelial cells (HUVEC) (Toyobo Co., Ltd., No.GCA200K05N) was evaluated by the following method.
  • Test Example 7 Measurement of the protective effect of the compound of the present invention against cold injury of normal human aortic endothelial cells (HAEC) (Lonza, No. CC-2535) was evaluated by the following method.
  • the cells were stored at 4 ° C. for 7 days (cold injury), so that the number of viable cells started from 10,000 initial cells / well when no addition was made in physiological saline. The number decreased to 1867 / well and 40 / well in the culture medium for HAEC.
  • compound (2) added to cells at a concentration of 0.01 to 10 ⁇ g / ml during low-temperature storage, the number of viable cells is maintained up to 2.3 times higher than when no compound is added in physiological saline, The low temperature injury protection effect of the compound of the present invention was confirmed.
  • Test Example 8 Cold storage of mES cells
  • mES mouse embryonic stem cells
  • the cells were stored at 4 ° C. for 3 days (cold injury), so that the number of viable cells started from 15,000 cells / well in the case of no addition in physiological saline. The number decreased to 583 cells / well, and to 556 cells / well in the medium for ES cells.
  • compound (2) added to cells at a concentration of 0.01 to 10 ⁇ g / ml during low-temperature storage, the number of viable cells is maintained at a maximum of 7.8 times higher than when no compound is added in physiological saline, The low temperature injury protection effect of the compound of the present invention was confirmed.
  • composition of the ES cell medium used in this test example is as follows. Composition of mES cell culture medium (100 ml) Stem Medium (DS Pharma Biomedical, No.DSRK100) 99 ml ⁇ -2 mercaptoethanol for ES cells, No, R-ES-007E (MEAA) (invtrogen, No. 11140) 1 ml LIF (Leukemia Inhibitory Factor from mouse, SIGMA, No.L5158, 10 ⁇ g / ml) 0.1 ml
  • Test Example 9 The protective effect of the compounds of the present invention against cold injury of rat mesenchymal stem (rMS) cells (RIKEN, No. AESO125) was evaluated by the following method.
  • the cells were suspended in a culture solution for rMS cells, seeded in a 96-well microplate at 5 ⁇ 10 3 cells / 0.1 ml / well, and cultured for 5 hours in an incubator at 37 ° C. with 5% carbon dioxide. Thereafter, the supernatant was removed, and compound (2) (final concentration 10 ⁇ g / ml, 1 ⁇ g / ml, 0.1 ⁇ g / ml, or 0.01 ⁇ g / ml) adjusted in concentration with physiological saline was added to the cells at 0.1 ml / well. .
  • the 96-well microplate was stored in a cooling container set at 4 ° C. for 3 days (72 hours).
  • composition of the culture solution for rMS cells used in this test example is as follows. Composition of rMS cell culture solution (100 ml) Eagle's Minimum Essential Medium wih Earle's salts (E-MEM) (Wako Pure Chemical Industries, No.051-07615) 85 ml Fetal Bovine Serum (FBS) 15 ml
  • E-MEM Eagle's Minimum Essential Medium wih Earle's salts
  • FBS Fetal Bovine Serum
  • Test Example 10 Cold preservation of mouse thymocytes
  • the protective effect of the compound of the present invention against cold injury of mouse thymocytes was evaluated by the following method.
  • BALB / cAnNCrlCrlj female, purchased from Nihon Charles River Co., Ltd.
  • BALB / cAnNCrlCrlj female, purchased from Nihon Charles River Co., Ltd.
  • the thymus was removed, and the cells were suspended in physiological saline using a stainless steel mesh and rubber stick. It seed
  • compound (2) final concentration 10 ⁇ g / ml, 1 ⁇ g / ml, 0.1 ⁇ g / ml, or 0.01 ⁇ g / ml
  • adjusted in concentration with physiological saline was added to the cells at 0.05 ml / well.
  • the test group in which cells were treated with 0.2% Tween20-containing physiological saline was used as a positive control (cytotoxicity rate 100%).
  • the 96-well microplate was stored in a cooling container set at 4 ° C. for 3 days.
  • 0.05 ml of the supernatant was added to the wells of another 96-well microplate, and the lactate dehydrogenase (LDH) activity in the supernatant was changed to LDH-Cytotoxic Measurement was performed using Test wako [Wako 299-50601].
  • Test Example 11 (Cryogenic preservation of mouse skin tissue section) The protective effect of the compound of the present invention against cold injury of mouse skin tissue sections was evaluated by the following method.
  • BALB / cAnNCrlCrlj female, purchased from Nihon Charles River Co., Ltd. was exsanguinated under anesthesia, and then the tail was removed and the entire skin tissue was peeled off. This was cut into 4 to 4.5 mm square skin tissue sections using a scalpel. Each section was immersed in 0.5 ml / well (24-well culture plate) of physiological saline or physiological saline containing compound (2) that had been cooled to 4 ° C. in advance. The test group in which the skin tissue section was immersed in 0.5 ml / well (24-well culture plate) of 0.2% Tween20-containing physiological saline was used as a positive control (tissue injury rate 100%).
  • Tissue injury rate (%) (S ⁇ N) / (P ⁇ N) ⁇ 100 (Formula II)
  • S is the absorbance in the specimen
  • N is the absorbance in the negative control
  • P is the absorbance in the positive control.
  • Test Example 12 (rabbit platelet cryopreservation) The protective effect of the compound of the present invention against low temperature injury of rabbit platelets was evaluated by the following method.
  • Test Example 13 Combination effect of Compound (I) and Compound (II) The protective effect against cold injury of HL-60 cells when compound (I) and compound (II) were used in combination was evaluated.
  • Compound (I) and Compound (II) were dissolved in DMSO at 100 mg / ml prior to the test, and Compound (I) was further diluted with a 1: 0.01 mg / ml dilution (DMSO) at a 100-fold common ratio.
  • Compound (II) was prepared in a diluted solution (DMSO) of 10, 1, 0.1 mg / ml at a 10-fold common ratio. Each compound was added alone or in a mixture so as to be diluted 500-fold in physiological saline to prepare a test compound preparation solution. Other test conditions were the same as in Test Example 1.
  • Fig. 2 shows compound (2) (1 ⁇ g / ml) and apigenin-7-glucoside (A7G) (0.1-100 ⁇ g / ml), and (B) shows compound (2) (0.01 ⁇ g / ml) and quercetin- The results of the combined use of 3-glucoside (Q3G) (0.1 to 100 ⁇ g / ml) are shown.
  • the compound (II) alone has almost no low-temperature injury protection effect or a concentration range (0.1 to 100 ⁇ g at which sufficient effect cannot be obtained). / ml), it was confirmed that the combined use of compound (II) and compound (I) acted synergistically to obtain a low-temperature injury protection effect that exceeded expectations.
  • Test Example 14 (Effects on cell apoptosis induced by cryopreservation) The effect of the compounds of the present invention on cell apoptosis induced by cryopreservation was evaluated by the following method. HL-60 cells cultured in 10% FBS-RPMI medium in a 5% carbon dioxide, 37 ° C incubator were collected, centrifuged at room temperature at 1,000 rpm for 5 minutes, and the supernatant was removed to 2 ⁇ 10 6 cells. It was resuspended in physiological saline so as to be / ml. 0.25 ml of this cell suspension and 0.25 ml of the test compound were mixed in a 2 ml sterilized microtube.
  • test compound was dissolved in DMSO at 100 mg / ml before the test, and 10 and 1 mg / ml dilutions (DMSO) were prepared at a 10-fold common ratio, and then diluted 500-fold with physiological saline. Those prepared as 20 and 2 ⁇ g / ml physiological saline solutions were used. The mixture of the cell suspension and the test compound was allowed to stand for about 24 hours in a cooling container set at 4 ° C.
  • FLICA reagent ImmunoChemistry Technologies, LLC, # 91FAM FLICA TM Poly Caspases Assay Kit

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Food Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Disclosed are: a preservative agent for use in the low-temperature preservation of a biological material, which comprises a compound represented by formula (I); a preservative solution for use in the low-temperature preservation of a biological material, which contains the preservative agent; and a method for preserving a biological material, which is characterized by soaking the biological material in a solution containing a compound represented by formula (I) and keeping the solution at a low temperature.

Description

生物材料の低温保存用の保存剤及び低温での生物材料の保存方法Preservative for cryopreservation of biological material and method for preserving biological material at low temperature
 本発明は、生物材料の低温保存用の保存剤、及び該保存剤を含む生物材料の低温保存用の保存液に関する。さらに、本発明は、低温での生物材料の保存方法に関する。 The present invention relates to a preservative for cryopreserving a biological material, and a preservation solution for cryopreserving a biological material containing the preservative. Furthermore, the present invention relates to a method for preserving biological materials at low temperatures.
 細胞は細胞膜を挟んで細胞内外でイオンの組成が異なっており、この電荷を持つイオンの分布の差が、電位差をもたらす。通常、細胞内は細胞外に対して負の電位にあり(膜電位)、この膜電位は生物共通の基本原理として動植物を問わず存在している。膜電位の調節機構は生命維持や細胞の機能を発揮するのに必須であり、その破綻は生命あるいは細胞の死に直結する。 The cells have different ion compositions inside and outside the cell membrane, and the difference in the distribution of ions having this charge brings about a potential difference. Usually, the intracellular potential is negative with respect to the outside of the cell (membrane potential), and this membrane potential exists as a basic principle common to living organisms regardless of animals or plants. The regulation mechanism of membrane potential is indispensable for life support and cell function, and its failure directly leads to life or cell death.
 このため、細胞内外の膜上には様々なイオンポンプやイオンチャンネルがあり、恒常的にイオンバランスの調節が行われている。その最も重要な調節機構として、動物細胞ではナトリウムポンプ(Na+-K+ATPase)が、植物細胞ではプロトンポンプ(H+-ATPase)が挙げられる。これらのイオンポンプはATPエネルギーを利用して特定のイオンを能動輸送する膜タンパク質である。何らかの原因によりATPが枯渇あるいは環境温度が至適範囲から逸脱するとイオンポンプの機能は低下あるいは停止することになる。 For this reason, there are various ion pumps and ion channels on the inner and outer membranes, and ion balance is constantly adjusted. The most important regulatory mechanism includes a sodium pump (Na + -K + ATPase) in animal cells and a proton pump (H + -ATPase) in plant cells. These ion pumps are membrane proteins that actively transport specific ions using ATP energy. If ATP is depleted for some reason or the ambient temperature deviates from the optimum range, the function of the ion pump will be reduced or stopped.
 動物細胞では生理的条件下では主にナトリウムポンプの働きによって、1回毎に細胞内のナトリウムイオン3つが細胞外に汲み出され、逆にカリウムイオン2つが細胞外から細胞内に汲み入れられる。したがって、通常は細胞内はカリウム濃度が高く(ナトリウム濃度は低く)、細胞外はナトリウム濃度が高く(カリウム濃度は低く)維持されている。細胞は一定の温度以下の低温になるとナトリウムポンプの機能が低下し、ナトリウムを細胞外に汲み出すことができなくなり、細胞内のナトリウム濃度が上昇する。ナトリウム濃度の上昇に伴い細胞内浸透圧が上昇し、水分子の流入により細胞が膨潤、最終的に細胞破裂(細胞傷害)に至る。 In physiological cells, under physiological conditions, the sodium pump mainly pumps out three intracellular sodium ions each time, and conversely, two potassium ions are pumped into the cell from the outside. Therefore, normally, intracellular potassium concentration is high (sodium concentration is low), and extracellular sodium concentration is high (potassium concentration is low). When the temperature of the cell falls below a certain temperature, the function of the sodium pump declines, so that sodium cannot be pumped out of the cell, and the intracellular sodium concentration increases. As the sodium concentration rises, the intracellular osmotic pressure rises, and the inflow of water molecules causes the cells to swell and eventually lead to cell rupture (cytotoxicity).
 医療現場での臓器移植に際し、移植用臓器を低温保存した場合の細胞傷害は、上記のメカニズムが主要な原因の一つと考えられ、電解質の基本組成を細胞内型の低ナトリウム、高カリウムとした臓器保存液が開発された。その代表例がユーロコリンズ(EC)液やUW (University of Wisconsin)液である。これらは、それまでのリンゲル液を中心とした細胞外型(高ナトリウム、低カリウム)の保存液と比べ、大幅な臓器保存期間の延長を可能とし、国内外において主要な臓器保存液として臨床応用されている。しかしながら、これら細胞内型保存液は保存温度が上昇した場合には一転して細胞傷害性を起こす危険性を持っている。また、これらが全ての組織及び臓器に適用できるわけではなく、更なる保存期間の延長も含め、より一層の性能向上が待望されている。 The above mechanism is considered to be one of the main causes of cell damage when organs for transplantation are cryopreserved at the time of organ transplantation in the medical field, and the basic composition of the electrolyte is intracellular low sodium and high potassium Organ preservation solutions have been developed. Typical examples are Euro Collins (EC) solution and UW (University Wisconsin) solution. Compared to conventional extracellular (high sodium, low potassium) preservation solutions centering on Ringer's solution, these can greatly extend the organ preservation period and are clinically applied as major organ preservation solutions in Japan and overseas. ing. However, these intracellular storage solutions have a risk of reversing and causing cytotoxicity when the storage temperature rises. Further, these are not applicable to all tissues and organs, and further improvement in performance is expected, including further extension of the storage period.
 近年、再生医療の発展は著しく、胚性幹細胞(ES細胞)並びに人工多能性幹細胞(iPS細胞)の医療応用が期待されているが、これらの幹細胞の最も効果的な維持培養法は、マウス胚性線維芽(MEF)細胞フィーダー細胞層での共培養とされている。このMEF細胞の長期保存は-80℃ディープフリーザーあるいは液体窒素内での凍結保存が一般的であるが、短期保存では細胞を凍結することは必ずしも好ましいことではなく、凍結せず低温で保存することができれば、その応用範囲が広がることが期待される。 In recent years, the development of regenerative medicine has been remarkable, and embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells) are expected to be used for medical applications. Co-culture in embryonic fibroblast (MEF) cell feeder cell layer. The long-term storage of these MEF cells is generally carried out in a -80 ° C deep freezer or in liquid nitrogen, but in short-term storage, it is not always preferable to freeze the cells. If possible, it is expected that its application range will be expanded.
 一方、ウシ体外受精技術は、屠畜場由来の卵巣から良質な体外受精胚の作製を可能とした。しかし、食肉処理場でのBSE検査開始に伴って、検査結果が陰性と判明するまで採取した卵巣を持ち出すことが困難となっている。そのため、屠畜から体外受精卵を作製するまでの間、生存性への影響を最小限にした形で卵巣を保存することが必要とされている。また、ウシ体外受精用の卵子はウシ生体からも採取されているが、ウシ生体より採取した後、直ぐに適切な条件で培養を行わなければ生存性を保持できないという問題がある。 On the other hand, bovine in vitro fertilization technology made it possible to produce high quality in vitro fertilized embryos from ovaries derived from slaughterhouses. However, with the start of the BSE test at the slaughterhouse, it is difficult to take out the collected ovaries until the test result is found to be negative. Therefore, it is necessary to preserve the ovaries in a form that minimizes the effect on survival from the time of slaughtering to the production of in vitro fertilized eggs. In addition, although eggs for bovine in vitro fertilization are collected from bovine living bodies, there is a problem that viability cannot be maintained unless they are cultured immediately under appropriate conditions after being collected from bovine living bodies.
 家畜育種の分野でも卵巣(卵子細胞)、受精卵、精子などの低温保存に関しては現在も尚、様々な課題が残されており、成功率が高く且つ簡便な保存及び輸送方法の開発は、家畜育種産業の発展に大きく寄与することが可能となる。 Even in the field of livestock breeding, various problems still remain regarding low-temperature preservation of ovaries (egg cells), fertilized eggs, sperm, etc. It will be possible to greatly contribute to the development of the breeding industry.
 このような問題に対応するための方法として、特許文献1には、シクロヘキシミドに代表されるタンパク質合成阻害剤を含有する培地を用いることにより採取した未成熟卵子を室温条件下且つ大気中で保存する方法が開示されている。また、特許文献2には、ウシ卵巣を保存液に浸漬し、10~20℃で冷却保存することによりウシ卵巣を保存する方法が開示されている。 As a method for coping with such a problem, Patent Document 1 discloses that immature eggs collected by using a medium containing a protein synthesis inhibitor typified by cycloheximide is stored at room temperature and in the air. A method is disclosed. Patent Document 2 discloses a method for preserving bovine ovary by immersing bovine ovary in a preservation solution and preserving it at 10 to 20 ° C.
 さらに、上記のような細胞や臓器を保存する技術としては、例えば、次の特許文献3~6に開示がある。 Further, techniques for preserving cells and organs as described above are disclosed in, for example, the following Patent Documents 3 to 6.
 特許文献3には、一以上のポリフェノールを含む保存溶液を生物学的材料に添加し、冷却することによる生物学的材料の保存方法が開示され、実施例においてはポリフェノールとしてはカテキン類が開示されているのみである。 Patent Document 3 discloses a method for preserving a biological material by adding a preservation solution containing one or more polyphenols to the biological material and cooling. In Examples, catechins are disclosed as polyphenols. Only.
 特許文献4には、細胞培養液中にエンケファリン誘導体を添加することによる、水が結晶化しない温度、例えば4℃前後の温度で細胞を冷蔵保存する方法が開示されている。 Patent Document 4 discloses a method of refrigerated storage of cells at a temperature at which water does not crystallize, for example, a temperature around 4 ° C., by adding an enkephalin derivative to the cell culture medium.
 特許文献5には、ポリフェノールと0.0001~0.05重量%のアスコルビン酸又はアスコルビン酸金属塩とを含有する、細胞保存剤、組織保存剤等として使用するための医用ポリフェノール溶液、当該医用ポリフェノール溶液によりポリフェノールの分解が抑制され、過酸化水素の発生が抑制されることが開示されている。そして、実施例においてはポリフェノールとしてはエピガロカテキンガレート(EGCg)が開示されているのみである。 Patent Document 5 discloses a medical polyphenol solution containing polyphenol and 0.0001 to 0.05% by weight of ascorbic acid or a metal salt of ascorbic acid for use as a cell preservative, tissue preservative, or the like. It is disclosed that decomposition is suppressed and generation of hydrogen peroxide is suppressed. In Examples, only epigallocatechin gallate (EGCg) is disclosed as a polyphenol.
 特許文献6には、有効成分としてエピガロカテキンガレートを90質量%以上含有する保存剤用組成物が開示され、エピガロカテキンガレートを高純度に精製して用いることで細胞の保存効果をより一定にできることが記載されている。 Patent Document 6 discloses a composition for a preservative containing 90% by mass or more of epigallocatechin gallate as an active ingredient, and the effect of preserving cells is more constant by using purified epigallocatechin gallate with high purity. It is described that it can be.
 また、特許文献7では、水溶液の過冷却能力を促進する能力があるフラボノイド配糖体について開示され、この過冷却促進物質を用いることにより水が約-15℃程度で利用できる不凍性液体となるので当該不凍性液体中で生物材料等を保存できることが記載されている。特許文献7で開示されている過冷却促進物質のフラボノイド配糖体の使用方法としては、次の特許文献8~10にも報告がある。 Patent Document 7 discloses a flavonoid glycoside having an ability to promote the supercooling ability of an aqueous solution. By using this supercooling promoting substance, an antifreeze liquid that can be used at about -15 ° C with water. Therefore, it is described that biological materials and the like can be stored in the antifreeze liquid. The following patent documents 8 to 10 also report on the method of using the supercooling promoting substance flavonoid glycoside disclosed in Patent Document 7.
 特許文献8には、上記フラボノイド配糖体を含んだ過冷却状態を維持できる飲料が開示されている。また、特許文献9には、ガラス化溶液に上記フラボノイド配糖体を含んだ凍結保存液が開示され、従来のガラス化溶液よりも毒性が低く、保存による細胞等の生存性を上昇させることができることが記載されている。 Patent Document 8 discloses a beverage that can maintain a supercooled state containing the flavonoid glycoside. Patent Document 9 discloses a cryopreservation solution in which the above flavonoid glycoside is contained in a vitrification solution, which is less toxic than conventional vitrification solutions and increases the viability of cells and the like by storage. It describes what you can do.
 さらには、特許文献10には、上記フラボノイド配糖体を含む臓器保存液を用いることにより、凍結が起こらない状態で0℃以下の温度で動物の臓器を保存することが可能となることが開示されている。 Furthermore, Patent Document 10 discloses that by using an organ preservation solution containing the flavonoid glycoside, it is possible to preserve an animal organ at a temperature of 0 ° C. or lower without freezing. Has been.
特開2001-89302号公報Japanese Patent Laid-Open No. 2001-89302 特開平5-112401号公報Japanese Patent Laid-Open No. 5-112401 特表2007-519712号公報Special Table 2007-519712 特開2002-335954号公報JP 2002-335954 A 特開2006-188436号公報JP 2006-188436 A 特開2003-267801号公報JP 2003-267801 A 国際公開第2008/007684号International Publication No. 2008/007684 特開2009-219394号公報JP 2009-219394 特開2009-219395号公報JP 2009-219395 A 特開2009-221128号公報JP 2009-221128 JP
 しかしながら、特許文献1~6には、細胞や臓器を保存する溶液に後記式(I)に記載の特定の化学構造を有する化合物を使用することは実質的には開示されていない。 However, Patent Documents 1 to 6 do not substantially disclose the use of a compound having a specific chemical structure described in the following formula (I) in a solution for preserving cells and organs.
 特許文献7、10には、フラボノイド配糖体を用いることにより、凍結することなく、氷点下の温度にまで過冷却できるため、凍結による傷害を伴うことなく0℃以下で細胞などを保存できることが開示されているが、通常の低温条件での低温傷害の軽減については開示されていない。 Patent Documents 7 and 10 disclose that by using a flavonoid glycoside, cells can be stored at 0 ° C. or less without freezing injury because they can be supercooled to a temperature below freezing point without freezing. However, there is no disclosure of reduction of cold injury under normal cold conditions.
 細胞や臓器、生体組織などを低温下で簡便に保存することは、一般に実施されている方法である。しかしながら、対象物の凍結を伴わない場合でも、その低温条件に起因する傷害が発生することも知られている。 Storing cells, organs, biological tissues and the like easily at low temperatures is a commonly practiced method. However, it is also known that damage caused by the low temperature condition occurs even when the object is not frozen.
 本発明では、これらの低温傷害を軽減すべく、生物材料の低温保存用の保存剤、該保存剤を含む生物材料の低温保存用の保存液、及び低温での生物材料の保存方法を提供することを目的とする。 The present invention provides a preservative for cryopreserving biological materials, a preservation solution for cryopreserving biological materials containing the preservative, and a method for preserving biological materials at low temperatures in order to reduce these low temperature injuries. For the purpose.
 本発明者らは、後記式(I)に記載の特定の化学構造を有する化合物を使用して凍結を伴わない氷点下前後の低温から通常の冷蔵温度までの低温で細胞を保存することにより、細胞の生存率が高められ低温傷害保護効果が得られるという知見を得た。本発明は、これら知見に基づき完成されたものであり、次の保存剤、保存液、及び保存方法を提供するものである。 The present inventors use a compound having a specific chemical structure described in the following formula (I) to store cells at a low temperature from around the freezing point without freezing to a normal refrigeration temperature without freezing. It was found that the survival rate was improved and a cold injury protection effect was obtained. The present invention has been completed based on these findings, and provides the following preservatives, preservatives, and storage methods.
 (A) 保存剤
(A-1) 式(I):
(A) Preservative
(A-1) Formula (I):
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
〔式中、R1~R6は同一又は異なって、水素原子、水酸基、-CO2R7、置換されてもよいアルキル基、置換されてもよいアルケニル基、置換されてもよいアルコキシ基、置換されてもよいアルキルチオ基、置換されてもよいアルキルスルフィニル基又は置換されてもよいアルキルスルホニル基であって、少なくとも1つは水酸基であり、R1~R6のうち任意の2つが合同して環を形成してもよく、R7は水素原子又は置換されてもよいアルキル基である〕で表される化合物を含む生物材料の低温保存用の保存剤。
(A-2) R1~R5が同一又は異なって、水素原子、水酸基又はアルコキシ基であって、少なくとも1つは水酸基であり、R6が水酸基及び/若しくはアルコキシ基で置換されてもよいフェニルアルケニル基又は-(R7)n-COR8であり、R7がアルキレン基又はアルケニレン基であり、R8が水酸基、アルコキシ基又はアラルキルオキシ基であり、nが0~2の整数である、(A-1)に記載の保存剤。
(A-3) 前記式(I)で表される化合物が、カフェー酸メチルエステル、カフェー酸エチルエステル、カフェー酸フェネチルエステル、フェルラ酸エチルエステル、メチル3-(3,4-ジヒドロキシフェニル)プロパノエート、メチル2-(3,4-ジヒドロキシフェニル)アセテート、没食子酸メチルエステル、没食子酸エチルエステル、没食子酸プロピルエステル、3,4-ジヒドロキシ安息香酸メチルエステル、3,4-ジヒドロキシ安息香酸エチルエステル、2,5-ジヒドロキシ安息香酸メチルエステル、2,3-ジヒドロキシ安息香酸メチルエステル、レスベラトロール、イソラポンチゲニン、プテロスチルベン、ピノスチルベン、ラポンチゲニン、オキシレスベラトロール及びグネトールからなる群から選ばれる少なくとも1種である、(A-1)又は(A-2)に記載の保存剤。
(A-4) 式(II):
[Wherein, R 1 to R 6 are the same or different and each represents a hydrogen atom, a hydroxyl group, —CO 2 R 7 , an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkoxy group, An optionally substituted alkylthio group, an optionally substituted alkylsulfinyl group or an optionally substituted alkylsulfonyl group, at least one of which is a hydroxyl group, and any two of R 1 to R 6 are congruent; And R 7 is a hydrogen atom or an optionally substituted alkyl group.] A preservative for cryopreserving a biological material comprising a compound represented by:
(A-2) R 1 to R 5 are the same or different and are a hydrogen atom, a hydroxyl group or an alkoxy group, at least one is a hydroxyl group, and R 6 may be substituted with a hydroxyl group and / or an alkoxy group A phenylalkenyl group or — (R 7 ) n —COR 8 , R 7 is an alkylene group or an alkenylene group, R 8 is a hydroxyl group, an alkoxy group or an aralkyloxy group, and n is an integer of 0 to 2. A preservative according to (A-1).
(A-3) The compound represented by the formula (I) is caffeic acid methyl ester, caffeic acid ethyl ester, caffeic acid phenethyl ester, ferulic acid ethyl ester, methyl 3- (3,4-dihydroxyphenyl) propanoate, Methyl 2- (3,4-dihydroxyphenyl) acetate, gallic acid methyl ester, gallic acid ethyl ester, gallic acid propyl ester, 3,4-dihydroxybenzoic acid methyl ester, 3,4-dihydroxybenzoic acid ethyl ester, 2, It is at least one selected from the group consisting of 5-dihydroxybenzoic acid methyl ester, 2,3-dihydroxybenzoic acid methyl ester, resveratrol, isolapontigenin, pterostilbene, pinostilbene, lapontigenin, oxyresveratrol and gnetole A preservative according to (A-1) or (A-2).
(A-4) Formula (II):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
〔式中、R9及びR10は、水素原子、水酸基又はグルコース残基であって、少なくとも一方はグルコース残基であり、R11~R17は、同一又は異なって、水素原子、水酸基又はアルコキシ基である〕で表されるフラボノイド配糖体化合物を更に含む、(A-1)~(A-3)のいずれか一項に記載の保存剤。
(A-5) 前記式(II)で表されるフラボノイド配糖体化合物が、クエルセチン-3-グルコシド、ケンペロール-7-グルコシド及びアピゲニン-7-グルコシドからなる群から選ばれる少なくとも1種である、(A-4)に記載の保存剤。
(A-6) 前記生物材料が、動物若しくは植物細胞、組織、器官、臓器又は培養細胞シートである、(A-1)~(A-5)のいずれか一項に記載の保存剤。
(A-7) 前記生物材料が、卵子細胞、受精卵細胞、精子細胞、胚性幹細胞、iPS細胞、成体幹細胞、線維芽細胞、フィーダー細胞、血管内皮細胞、骨髄細胞、免疫細胞、肝細胞、腎臓細胞、神経細胞、膵臓細胞、平滑筋細胞、心筋細胞、筋芽細胞、角膜細胞、網膜細胞、軟骨細胞、軟骨前駆細胞、滑膜由来細胞、滑膜幹細胞、骨芽細胞、歯芽細胞、歯根膜細胞、口腔粘膜細胞、間葉系幹細胞、脂肪細胞、脂肪幹細胞、卵巣、精液、血液、血球、血小板又は心臓である、(A-1)~(A-6)のいずれか一項に記載の保存剤。
(A-8) 前記生物材料が、食品としての牛肉、豚肉、鶏肉、魚肉、貝類、穀類、野菜若しくは果実、又は花卉である、(A-1)~(A-5)のいずれか一項に記載の保存剤。
(A-9) 前記低温は前記生物材料が完全な凍結をしない温度、すなわち、-5℃~20℃の温度である、(A-1)~(A-8)のいずれか一項に記載の保存剤。
(A-10) 式(I)で表される化合物を含む低温傷害保護剤。
[Wherein R 9 and R 10 are a hydrogen atom, a hydroxyl group or a glucose residue, at least one of which is a glucose residue, and R 11 to R 17 are the same or different and represent a hydrogen atom, a hydroxyl group or an alkoxy group] The preservative according to any one of (A-1) to (A-3), further comprising a flavonoid glycoside compound represented by the formula:
(A-5) The flavonoid glycoside compound represented by the formula (II) is at least one selected from the group consisting of quercetin-3-glucoside, kaempferol-7-glucoside, and apigenin-7-glucoside. The preservative according to (A-4).
(A-6) The preservative according to any one of (A-1) to (A-5), wherein the biological material is an animal or plant cell, tissue, organ, organ, or cultured cell sheet.
(A-7) The biological material is egg cell, fertilized egg cell, sperm cell, embryonic stem cell, iPS cell, adult stem cell, fibroblast, feeder cell, vascular endothelial cell, bone marrow cell, immune cell, hepatocyte, kidney Cells, neurons, pancreatic cells, smooth muscle cells, cardiomyocytes, myoblasts, corneal cells, retinal cells, chondrocytes, cartilage progenitor cells, synovial cells, synovial stem cells, osteoblasts, odontoblasts, roots Any one of (A-1) to (A-6), which is a membrane cell, oral mucosal cell, mesenchymal stem cell, adipocyte, adipose stem cell, ovary, semen, blood, blood cell, platelet or heart Preservatives.
(A-8) Any one of (A-1) to (A-5), wherein the biological material is beef, pork, chicken, fish, shellfish, cereals, vegetables or fruits, or flowers as food. The preservative described in 1.
(A-9) The low temperature is a temperature at which the biological material does not completely freeze, that is, a temperature of -5 ° C to 20 ° C, according to any one of (A-1) to (A-8) Preservatives.
(A-10) A low-temperature injury protective agent comprising a compound represented by the formula (I).
 (B) 保存液
(B-1) (A-1)~(A-10)のいずれか一項に記載の保存剤を含む生物材料の低温保存用の保存液。
(B) Stock solution
(B-1) A preservation solution for low-temperature preservation of a biological material containing the preservative according to any one of (A-1) to (A-10).
 (C)保存方法
(C-1) 式(I):
(C) How to save
(C-1) Formula (I):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
〔式中、R1~R6は同一又は異なって、水素原子、水酸基、-CO2R7、置換されてもよいアルキル基、置換されてもよいアルケニル基、置換されてもよいアルコキシ基、置換されてもよいアルキルチオ基、置換されてもよいアルキルスルフィニル基又は置換されてもよいアルキルスルホニル基であって、少なくとも1つは水酸基であり、R1~R6のうち任意の2つが合同して環を形成してもよく、R7は水素原子又は置換されてもよいアルキル基である〕で表される化合物を含む溶液に生物材料を浸漬し、該溶液を低温に保持することを特徴とする生物材料の保存方法。
(C-2) R1~R5が同一又は異なって、水素原子、水酸基又はアルコキシ基であって、少なくとも1つは水酸基であり、R6が水酸基及び/若しくはアルコキシ基で置換されてもよいフェニルアルケニル基又は-(R7)n-COR8であり、R7がアルキレン基又はアルケニレン基であり、R8が水酸基、アルコキシ基又はアラルキルオキシ基であり、nが0~2の整数である、(C-1)に記載の方法。
(C-3) 前記式(I)で表される化合物が、カフェー酸メチルエステル、カフェー酸エチルエステル、カフェー酸フェネチルエステル、フェルラ酸エチルエステル、メチル3-(3,4-ジヒドロキシフェニル)プロパノエート、メチル2-(3,4-ジヒドロキシフェニル)アセテート、没食子酸メチルエステル、没食子酸エチルエステル、没食子酸プロピルエステル、3,4-ジヒドロキシ安息香酸メチルエステル、3,4-ジヒドロキシ安息香酸エチルエステル、2,5-ジヒドロキシ安息香酸メチルエステル、2,3-ジヒドロキシ安息香酸メチルエステル、レスベラトロール、イソラポンチゲニン、プテロスチルベン、ピノスチルベン、ラポンチゲニン、オキシレスベラトロール及びグネトールからなる群から選ばれる少なくとも1種である、(C-1)又は(C-2)に記載の方法。
(C-4) 前記溶液が、(A-4)に記載のフラボノイド配糖体化合物を更に含む、(C-1)~(C-3)のいずれか一項に記載の方法。
(C-5) 前記フラボノイド配糖体化合物が、クエルセチン-3-グルコシド、ケンペロール-7-グルコシド及びアピゲニン-7-グルコシドからなる群から選ばれる少なくとも1種である、(C-4)に記載の方法。
(C-6) 前記生物材料が、動物若しくは植物細胞、組織、器官、臓器又は細胞シートである、(C-1)~(C-5)のいずれか一項に記載の方法。
(C-7) 前記生物材料が、卵子細胞、受精卵細胞、精子細胞、胚性幹細胞、iPS細胞、成体幹細胞、線維芽細胞、フィーダー細胞、血管内皮細胞、骨髄細胞、免疫細胞、肝細胞、腎臓細胞、神経細胞、膵臓細胞、平滑筋細胞、心筋細胞、筋芽細胞、角膜細胞、網膜細胞、軟骨細胞、軟骨前駆細胞、滑膜由来細胞、滑膜幹細胞、骨芽細胞、歯芽細胞、歯根膜細胞、口腔粘膜細胞、間葉系幹細胞、脂肪細胞、脂肪幹細胞、卵巣、精液、血液、血球、血小板又は心臓である、(C-1)~(C-6)のいずれか一項に記載の方法。
(C-8) 前記生物材料が、食品としての牛肉、豚肉、鶏肉、魚肉、貝類、穀類、野菜若しくは果実、又は花卉である、(C-1)~(C-5)のいずれか一項に記載の方法。
(C-9) 前記低温は前記生物材料が完全な凍結をしない温度、すなわち、-5℃~20℃の温度である、(C-1)~(C-8)のいずれか一項に記載の方法。
[Wherein, R 1 to R 6 are the same or different and each represents a hydrogen atom, a hydroxyl group, —CO 2 R 7 , an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkoxy group, An optionally substituted alkylthio group, an optionally substituted alkylsulfinyl group or an optionally substituted alkylsulfonyl group, at least one of which is a hydroxyl group, and any two of R 1 to R 6 are congruent; The biological material may be immersed in a solution containing a compound represented by the following formula: R 7 is a hydrogen atom or an optionally substituted alkyl group, and the solution is kept at a low temperature. A method for preserving biological materials.
(C-2) R 1 to R 5 are the same or different and are a hydrogen atom, a hydroxyl group or an alkoxy group, at least one is a hydroxyl group, and R 6 may be substituted with a hydroxyl group and / or an alkoxy group A phenylalkenyl group or — (R 7 ) n—COR 8 , R 7 is an alkylene group or an alkenylene group, R 8 is a hydroxyl group, an alkoxy group or an aralkyloxy group, and n is an integer of 0 to 2. (C-1).
(C-3) The compound represented by the formula (I) is caffeic acid methyl ester, caffeic acid ethyl ester, caffeic acid phenethyl ester, ferulic acid ethyl ester, methyl 3- (3,4-dihydroxyphenyl) propanoate, Methyl 2- (3,4-dihydroxyphenyl) acetate, gallic acid methyl ester, gallic acid ethyl ester, gallic acid propyl ester, 3,4-dihydroxybenzoic acid methyl ester, 3,4-dihydroxybenzoic acid ethyl ester, 2, It is at least one selected from the group consisting of 5-dihydroxybenzoic acid methyl ester, 2,3-dihydroxybenzoic acid methyl ester, resveratrol, isolapontigenin, pterostilbene, pinostilbene, lapontigenin, oxyresveratrol and gnetole The method according to (C-1) or (C-2).
(C-4) The method according to any one of (C-1) to (C-3), wherein the solution further comprises the flavonoid glycoside compound according to (A-4).
(C-5) The flavonoid glycoside compound is at least one selected from the group consisting of quercetin-3-glucoside, kaempferol-7-glucoside, and apigenin-7-glucoside, according to (C-4). Method.
(C-6) The method according to any one of (C-1) to (C-5), wherein the biological material is an animal or plant cell, tissue, organ, organ, or cell sheet.
(C-7) The biological material is egg cell, fertilized egg cell, sperm cell, embryonic stem cell, iPS cell, adult stem cell, fibroblast, feeder cell, vascular endothelial cell, bone marrow cell, immune cell, hepatocyte, kidney Cells, neurons, pancreatic cells, smooth muscle cells, cardiomyocytes, myoblasts, corneal cells, retinal cells, chondrocytes, cartilage progenitor cells, synovial cells, synovial stem cells, osteoblasts, odontoblasts, roots Any one of (C-1) to (C-6), which is a membrane cell, oral mucosa cell, mesenchymal stem cell, adipocyte, adipose stem cell, ovary, semen, blood, blood cell, platelet or heart the method of.
(C-8) Any one of (C-1) to (C-5), wherein the biological material is beef, pork, chicken, fish, shellfish, cereals, vegetables or fruits, or flowers as food. The method described in 1.
(C-9) The low temperature is a temperature at which the biological material does not completely freeze, that is, a temperature of -5 ° C to 20 ° C, according to any one of (C-1) to (C-8) the method of.
 本発明の保存剤及び方法により、完全に凍結をしない-5℃から20℃の通常の冷蔵保管の低温で生物材料を保存することで、細胞等の生物材料の生存率を高めることができ低温傷害保護効果が得られる。したがって、生物材料の保存に適した低温下で且つそれに起因する低温傷害を抑制することができる条件で、生物材料を保存することが可能となるので、細胞や臓器等の生物材料の更なる生存率の向上が期待できる。このことは、後記試験例からも明らかなように、本発明の保存剤及び方法によって、生物材料が低温保存条件下で誘導されるアポトーシスが主体となる細胞傷害を阻害し、生物材料の生存率を高めることができる。そのため、本発明は、臓器移植、輸血医療、再生医療、家畜育種、生鮮食品などの分野における応用が期待できる。 By preserving the biological material at a low temperature of normal refrigerated storage of -5 ° C to 20 ° C that does not completely freeze, the preservative and method of the present invention can increase the survival rate of biological materials such as cells. Damage protection effect is obtained. Therefore, since it becomes possible to preserve | save biological material under the conditions which can suppress the low temperature injury resulting from it at the low temperature suitable for preservation | save of biological material, further survival of biological materials, such as a cell and an organ, is attained. The rate can be expected to improve. As is clear from the test examples described later, the preservative and the method of the present invention inhibit the biological material, which is mainly induced by apoptosis induced under low-temperature storage conditions, and inhibit the survival rate of the biological material. Can be increased. Therefore, the present invention can be expected to be applied in fields such as organ transplantation, blood transfusion medicine, regenerative medicine, livestock breeding, and fresh food.
試験例12におけるウサギ血小板の形態変化を表す写真である。(1)低温保存前/無処理、(2)4℃、24時間保存後/無処理、(3)4℃、24時間保存後/化合物(2)10μg/ml処理10 is a photograph showing the morphological change of rabbit platelets in Test Example 12. (1) Before low-temperature storage / no treatment, (2) After storage at 4 ° C for 24 hours / No treatment, (3) After storage at 4 ° C for 24 hours / Compound (2) 10μg / ml treatment 試験例13における生理食塩水中でのHL-60細胞の低温(4℃)保存に対する化合物(I)と化合物(II)との併用効果を示すグラフである。(A)カフェー酸エチルエステルとA7Gの併用、(B)カフェー酸エチルエステルとQ3Gの併用、 図中のプロットはそれぞれ(1)化合物(II)単独の生存細胞数、(2)化合物(I)と化合物(II)を併用した場合の生存細胞数、(3)化合物(I)単独の生存細胞数と化合物(II)単独の生存細胞数の合計値の平均値及び標準偏差値(n=3)を表す。14 is a graph showing the combined effect of Compound (I) and Compound (II) on low temperature (4 ° C.) storage of HL-60 cells in physiological saline in Test Example 13. (A) Combined use of caffeic acid ethyl ester and A7G, (B) Combined use of caffeic acid ethyl ester and Q3G, and the plots in the plot are (1) the number of living cells of compound (II) alone, (2) Compound (I) And the compound (II) in combination, (3) the average value and standard deviation value (n = 3) of the total value of the number of living cells of compound (I) alone and the number of living cells of compound (II) alone ). 試験例14における低温保存により誘導される細胞のアポトーシスに対する効果を表す図である。(A)37℃の通常の細胞培養条件、(B)4℃の低温条件で24時間保存(薬剤無処理)、(C)4℃の低温条件で24時間保存(化合物(2)を10μg/ml添加)、(D)37℃の通常の細胞培養条件に0.2%TritonX-100を添加(ネクローシスによる細胞死)におけるフローサイトメトリー解析結果を表す。It is a figure showing the effect with respect to the apoptosis of the cell induced | guided | derived by the cryopreservation in Test Example 14. (A) Normal cell culture conditions at 37 ° C, (B) Stored at low temperature of 4 ° C for 24 hours (no drug treatment), (C) Stored at low temperature of 4 ° C for 24 hours (compound (2) at 10 μg / (D) ml), (D) Flow cytometry analysis results when 0.2% TritonX-100 was added to normal cell culture conditions at 37 ° C. (cell death by necrosis).
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明の生物材料の低温保存用の保存剤は、式(I): The preservative for cryopreservation of the biological material of the present invention has the formula (I)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
〔式中、R1~R6は同一又は異なって、水素原子、水酸基、-CO2R7、置換されてもよいアルキル基、置換されてもよいアルケニル基、置換されてもよいアルコキシ基、置換されてもよいアルキルチオ基、置換されてもよいアルキルスルフィニル基又は置換されてもよいアルキルスルホニル基であって、少なくとも1つは水酸基であり、R1~R6のうち任意の2つが合同して環を形成してもよく、R7は水素原子又は置換されてもよいアルキル基である〕で表される化合物を含むことを特徴とする。 [Wherein, R 1 to R 6 are the same or different and each represents a hydrogen atom, a hydroxyl group, —CO 2 R 7 , an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkoxy group, An optionally substituted alkylthio group, an optionally substituted alkylsulfinyl group or an optionally substituted alkylsulfonyl group, at least one of which is a hydroxyl group, and any two of R 1 to R 6 are congruent; And R 7 may be a hydrogen atom or an optionally substituted alkyl group].
 式(I)で表される化合物として好ましいものは、R1~R5が同一又は異なって、水素原子、水酸基又はアルコキシ基であって、少なくとも1つは水酸基であり、R6が水酸基及び/若しくはアルコキシ基で置換されてもよいフェニルアルケニル基又は-(R7)n-COR8であり、R7がアルキレン基又はアルケニレン基であり、R8が水酸基、アルコキシ基又はアラルキルオキシ基であり、nが0~2の整数である化合物である。 Preferred compounds represented by the formula (I) are those in which R 1 to R 5 are the same or different and are a hydrogen atom, a hydroxyl group or an alkoxy group, at least one is a hydroxyl group, R 6 is a hydroxyl group and / Or a phenylalkenyl group which may be substituted with an alkoxy group, or-(R 7 ) n -COR 8 , R 7 is an alkylene group or an alkenylene group, R 8 is a hydroxyl group, an alkoxy group or an aralkyloxy group, A compound in which n is an integer of 0-2.
 また、本発明の生物材料の保存方法は、上記化合物を含む溶液に生物材料を浸漬し、該溶液を低温に保持することを特徴とする。 In addition, the method for preserving a biological material of the present invention is characterized in that the biological material is immersed in a solution containing the above compound and the solution is kept at a low temperature.
 上記アルキル基は、直鎖状又は分枝鎖状のいずれでもよく、好ましくは炭素数1~30のアルキル基、より好ましくは炭素数1~6のアルキル基である。アルキル基の具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、tert-ブチル、n-ペンチル、イソペンチル、ヘキシル、オクチル、デシル及びドデシルなどが挙げられる。 The alkyl group may be linear or branched, and is preferably an alkyl group having 1 to 30 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms. Specific examples of the alkyl group include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, hexyl, octyl, decyl and dodecyl.
 アルコキシ基、アルキルチオ基、アルキルスルフィニル基、及びアルキルスルホニル基におけるアルキル部分についても、上記アルキル基の定義を当てはめることができる。 The definition of the above alkyl group can be applied to the alkyl moiety in the alkoxy group, alkylthio group, alkylsulfinyl group, and alkylsulfonyl group.
 上記アルケニル基は、直鎖状又は分枝鎖状のいずれでもよく、二重結合を少なくとも1個有するものであって、好ましくは炭素数2~30のアルケニル基、より好ましくは炭素数2~6のアルケニル基である。アルケニル基の具体例としては、例えばビニル、アリル、1-プロペニル、イソプロペニル、1-ブテニル、2-ブテニルなどが挙げられる。 The alkenyl group may be linear or branched, and has at least one double bond, preferably an alkenyl group having 2 to 30 carbon atoms, more preferably 2 to 6 carbon atoms. Of the alkenyl group. Specific examples of the alkenyl group include vinyl, allyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl and the like.
 フェニルアルケニル基におけるアルケニル部分についても、上記アルケニル基の定義を当てはめることができる。 The definition of the alkenyl group can also be applied to the alkenyl part in the phenylalkenyl group.
 上記アルキレン基は、直鎖状又は分枝鎖状のいずれでもよく、好ましくは炭素数1~6のアルキレン基である。アルキレン基の具体例としては、メチレン、エチレン、トリメチレン、プロパン‐2,2-ジイル、テトラメチレン、1,1-ジメチルエチレンなどが挙げられる。 The alkylene group may be linear or branched, and is preferably an alkylene group having 1 to 6 carbon atoms. Specific examples of the alkylene group include methylene, ethylene, trimethylene, propane-2,2-diyl, tetramethylene, 1,1-dimethylethylene and the like.
 上記アルケニレン基は、直鎖状又は分枝鎖状のいずれでもよく、好ましくは炭素数2~6のアルケニレン基である。アルケニレン基の具体例としては、ビニレン、アリレン、プロペニレン、2-メチル-2-プロペニレンなどが挙げられる。 The alkenylene group may be linear or branched, and is preferably an alkenylene group having 2 to 6 carbon atoms. Specific examples of the alkenylene group include vinylene, arylene, propenylene, 2-methyl-2-propenylene and the like.
 上記アラルキルオキシ(アリールアルキルオキシ)基は、好ましくは炭素数7~12のアラルキルオキシ基である。当該アラルキルオキシ基のアルキル部分は、直鎖状又は分枝鎖状のいずれであってもよい。アラルキルオキシ基の具体例としては、ベンジルオキシ、フェネチルオキシ、3-フェニルプロピルオキシなどが挙げられる。 The aralkyloxy (arylalkyloxy) group is preferably an aralkyloxy group having 7 to 12 carbon atoms. The alkyl part of the aralkyloxy group may be linear or branched. Specific examples of the aralkyloxy group include benzyloxy, phenethyloxy, 3-phenylpropyloxy and the like.
 上記アリールとは、5又は6員の芳香族炭化水素環からなる単環又は多環系の基を意味し、具体例としては、フェニル及びナフチルが挙げられる。 The above aryl means a monocyclic or polycyclic group composed of a 5- or 6-membered aromatic hydrocarbon ring, and specific examples thereof include phenyl and naphthyl.
 本発明化合物において「置換されてもよい」とは、アルコキシカルボニル、アラルキルオキシカルボニル、-COOH、アルキルチオカルボニル、アルキルジチオカルボニル、アルコキシチオカルボニル、ジアルキルアミノカルボニル、アリールオキシカルボニル、アルケニルオキシカルボニル、アルキニルオキシカルボニル、アルキルカルボニル、アルケニルカルボニル、アルキニルカルボニル、アリールカルボニル、アラルキルカルボニル、シアノ、ニトロなどで置換されてもよいことを示す。ここでの各基のアルキル部分、アラルキルオキシ部分、アルケニル部分及びアリール部分については、上記アルキル基、アラルキルオキシ基、アルケニル基及びアリール基の定義を当てはめることができる。 In the compound of the present invention, “optionally substituted” means alkoxycarbonyl, aralkyloxycarbonyl, —COOH, alkylthiocarbonyl, alkyldithiocarbonyl, alkoxythiocarbonyl, dialkylaminocarbonyl, aryloxycarbonyl, alkenyloxycarbonyl, alkynyloxycarbonyl. , Alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, arylcarbonyl, aralkylcarbonyl, cyano, nitro and the like. The definitions of the alkyl group, aralkyloxy group, alkenyl group and aryl group can be applied to the alkyl part, aralkyloxy part, alkenyl part and aryl part of each group here.
 上記アルキニルオキシカルボニル及びアルキニルカルボニルのアルキニル部分は、直鎖状又は分枝鎖状のいずれでもよく、好ましくは炭素数2~30のアルキニル、より好ましくは炭素数2~6のアルキニルである。上記アラルキルカルボニルのアラルキル部分は、好ましくは炭素数7~12のアラルキル基である。当該アラルキル部分のアルキル部分は、直鎖状又は分枝鎖状のいずれであってもよい。 The alkynyloxycarbonyl and the alkynyl part of alkynylcarbonyl may be either linear or branched, preferably alkynyl having 2 to 30 carbon atoms, more preferably alkynyl having 2 to 6 carbon atoms. The aralkyl moiety of the aralkylcarbonyl is preferably an aralkyl group having 7 to 12 carbon atoms. The alkyl part of the aralkyl moiety may be linear or branched.
 式(I)で表される化合物としては、例えば、カフェー酸メチルエステル(Caffeic acid methylester)、カフェー酸エチルエステル(Caffeic acid ethylester)、カフェー酸フェネチルエステル(Caffeic acid phenethylester)、フェルラ酸エチルエステル(Ferulic acid etylester)、メチル3-(3,4-ジヒドロキシフェニル)プロパノエート(methyl 3-(3,4-dihydroxyphenyl)propanoate)、メチル2-(3,4-ジヒドロキシフェニル)アセテート(methyl 2-(3,4-dihydroxyphenyl)acetate)、没食子酸メチルエステル(Gallic acid methylester)、没食子酸エチルエステル(Gallic acid ethylester)、没食子酸プロピルエステル(Gallic acid propylester)、3,4-ジヒドロキシ安息香酸メチルエステル(3,4-Dihydroxybenzoic acid metylester)、3,4-ジヒドロキシ安息香酸エチルエステル(3,4-Dihydroxybenzoic acid etylester)、2,5-ジヒドロキシ安息香酸メチルエステル(2,5-Dihydroxybenzoic acid methylester)、2,3-ジヒドロキシ安息香酸メチルエステル(Methyl 2,3-dihydroxybenzoate)、トコフェロール、トコトリエノール、セサモール、3,5‐ジ‐t-ブチル‐4-ヒドロキシトルエン(BHT)、2‐t‐ブチル‐4‐ヒドロキシアニソール(BHA)、レスベラトロール(3,4',5-Trihydroxy-trans-stilbene)、イソラポンチゲニン(3,4',5-Trihydroxy-3'-methoxy-trans-stilbene)、プテロスチルベン(trans-1-(3,5-Dimethoxyphenyl)-2-(4-hydroxyphenyl)ethylene)、ピノスチルベン(3,4'-Dihydroxy-5-methoxy-trans-stilbene)、ラポンチゲニン(3,3',5-Trimethoxy-4'-methoxy-trans-stilbene)、オキシレスベラトロール(2,3',4,5'-Tetrahydroxy-trans-stilbene)、グネトール(2,3',5',6-Tetrahydroxy-trans-stilbene)などが挙げられる。 Examples of the compound represented by the formula (I) include caffeic acid methyl ester, caffeic acid ethyl ester, caffeic acid phenethyl ester, and ferulic acid ethyl ester. acid etylester), methyl 3- (3,4-dihydroxyphenyl) propanoate, methyl 2- (3,4-dihydroxyphenyl) acetate (methyl 2- (3,4 -dihydroxyphenyl) acetate), gallic acid methyl ester, gallic acid ethyl ester, gallic acid propyl ester, 3,4-dihydroxybenzoic acid methyl ester (3,4- Dihydroxybenzoic acid metylester), 3,4-Dihydroxybenzoic acid ethyl ester (3,4-Dihydroxybenzoic acid etylester), 2,5-dihydroxybenzoic acid methyl ester (2,5-Dihydroxybenzoic acid methylester), 2,3-dihydroxybenzoic acid methyl ester (Methyl 2,3-dihydroxybenzoate), tocopherol, tocotrienol, sesamol, 3,5-di-t-butyl-4-hydroxytoluene (BHT) ), 2-t-butyl-4-hydroxyanisole (BHA), resveratrol (3,4 ', 5-Trihydroxy-trans-stilbene), isolapontigenin (3,4', 5-Trihydroxy-3'- methoxy-trans-stilbene), pterostilbene (trans-1- (3,5-Dimethoxyphenyl) -2- (4-hydroxyphenyl) ethylene), pinostilbene (3,4'-Dihydroxy-5-methoxy-trans-stilbene) , Lapontigenin (3,3 ', 5-Trimethoxy-4'-methoxy-trans-stilbene), Oxyresveratrol (2,3', 4,5'-Tetrahydroxy-trans-stilbene), Gnitol (2,3 ' , 5 ', 6-Tetrahydroxy-trans-stilbene).
 また、本発明の生物材料の低温保存用の保存剤は、式(I)の化合物に加えて、式(II): In addition to the compound of formula (I), the preservative for cryopreservation of the biological material of the present invention includes formula (II):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
〔式中、R9及びR10は、水素原子、水酸基又はグルコース残基であって、少なくとも一方はグルコース残基であり、R11~R17は、同一又は異なって、水素原子、水酸基又はアルコキシ基である〕で表されるフラボノイド配糖体化合物が更に含まれていてもよい。 [Wherein R 9 and R 10 are a hydrogen atom, a hydroxyl group or a glucose residue, at least one of which is a glucose residue, and R 11 to R 17 are the same or different and represent a hydrogen atom, a hydroxyl group or an alkoxy group] A flavonoid glycoside compound represented by the formula:
 前記式(II)で表されるフラボノイド配糖体化合物としては、例えば、クエルセチン-3-グルコシド(Quercetin-3-Glucoside)(Q3G)、ケンペロール-7-グルコシド(Kaempferol-7-Glucoside)(K7G)、アピゲニン-7-グルコシド(Apigenin-7-Glucoside)(A7G)などが挙げられる。 Examples of the flavonoid glycoside compound represented by the formula (II) include quercetin-3-Glucoside (Q3G), kaempferol-7-Glucoside (K7G) And Apigenin-7-Glucoside (A7G).
 上記の化合物は、公知の方法により化学的に合成することができるし、植物等の生物に含まれているものは、これらから公知の方法により抽出することで入手することもできる。また、市販品により入手することも可能である。 The above compounds can be chemically synthesized by known methods, and those contained in organisms such as plants can be obtained by extracting them from these by known methods. Moreover, it is also possible to obtain with a commercial item.
 本発明において低温とは、前記生物材料が完全な凍結をしない温度、すなわち、-5℃以上、好ましくは-3℃以上、より好ましくは0℃より高く且つ20℃以下、好ましくは15℃以下、より好ましくは10℃以下の温度である。 In the present invention, the low temperature means a temperature at which the biological material does not completely freeze, that is, −5 ° C. or higher, preferably −3 ° C. or higher, more preferably higher than 0 ° C. and 20 ° C. or lower, preferably 15 ° C. or lower. More preferably, the temperature is 10 ° C or lower.
 本明細書で使用する低温傷害とは低温により引き起こされる細胞傷害を意味し、低温傷害保護効果とは該低温傷害から細胞を保護する効果を意味する。したがって、この意味を勘案すると、本発明の保存剤は低温傷害保護剤と称することもできる。 As used herein, low temperature injury means cell injury caused by low temperature, and low temperature injury protection effect means an effect of protecting cells from the low temperature injury. Therefore, taking this meaning into consideration, the preservative of the present invention can also be referred to as a low-temperature injury protective agent.
 本発明で使用する生物材料としては、本発明の効果が得られる限り、どのような生物由来のものであっても制限されないが、例えば、動物又は植物細胞、組織、器官、臓器、個体などが挙げられる。当該組織、器官及び個体は動物及び植物の何れに由来するものであってもよい。本発明が対象とする動物としては、哺乳類(ヒト、サル、ウシ、ブタ、ウマ、イヌ、ネコ、ウサギ、マウス、ラットなど)が望ましい。 The biological material used in the present invention is not limited as long as the effects of the present invention can be obtained, but any biological material can be used. Examples thereof include animals or plant cells, tissues, organs, organs, and individuals. Can be mentioned. The tissue, organ and individual may be derived from any animal or plant. Mammals (humans, monkeys, cows, pigs, horses, dogs, cats, rabbits, mice, rats, etc.) are desirable as animals targeted by the present invention.
 動物細胞としては、卵子細胞、受精卵細胞、精子細胞、ES(胚性幹)細胞、iPS(induced pluripotent stem)細胞、成体幹細胞、造血幹細胞、組織幹細胞、間葉系幹細胞、線維芽細胞、フィーダー細胞、骨髄細胞、免疫細胞、肝細胞、血液細胞(血球)(赤血球、白血球及び血小板)、筋細胞、心筋細胞、平滑筋細胞、筋芽細胞、骨芽細胞、神経細胞、神経芽細胞、血管内皮細胞、平滑筋細胞、骨細胞、軟骨細胞、軟骨前駆細胞、滑膜由来細胞、滑膜幹細胞、歯芽細胞、歯根膜細胞、口腔粘膜細胞、角膜細胞、網膜細胞、脂肪細胞、脂肪幹細胞、腎臓細胞、脾臓細胞、膵臓細胞、膵実質細胞、膵管細胞、上皮細胞、内皮細胞、表皮細胞、色素細胞などが挙げられる。免疫細胞とは、免疫反応に関与する細胞のことを意味し、そのような細胞としては、胸腺細胞、T細胞、B細胞、NK細胞、NKT細胞、単球、樹状細胞、マクロファージ、好酸球、好中球、好塩基球などが挙げられる。細胞は保存液中で、遊離状態であってもよく、培養皿上に接着状態であってもよく、或いは細胞シート化された状態であってもよい。 Animal cells include egg cells, fertilized egg cells, sperm cells, ES (embryonic stem) cells, iPS (induced pluripotent stem) cells, adult stem cells, hematopoietic stem cells, tissue stem cells, mesenchymal stem cells, fibroblasts, feeder cells , Bone marrow cells, immune cells, hepatocytes, blood cells (blood cells) (red blood cells, white blood cells and platelets), myocytes, cardiomyocytes, smooth muscle cells, myoblasts, osteoblasts, neurons, neuroblasts, vascular endothelium Cells, smooth muscle cells, bone cells, chondrocytes, cartilage progenitor cells, synovial cells, synovial stem cells, odontocytes, periodontal ligament cells, oral mucosal cells, corneal cells, retinal cells, adipocytes, adipose stem cells, kidneys Examples include cells, spleen cells, pancreatic cells, pancreatic parenchymal cells, pancreatic duct cells, epithelial cells, endothelial cells, epidermal cells, pigment cells and the like. An immune cell means a cell involved in an immune reaction, such as thymocyte, T cell, B cell, NK cell, NKT cell, monocyte, dendritic cell, macrophage, eosinophil Examples include spheres, neutrophils, and basophils. The cells may be in a free state in the preservation solution, in an adherent state on a culture dish, or in a cell sheet state.
 動物の組織としては、上皮組織、結合組織、筋肉組織、神経組織などが挙げられる。 Examples of animal tissues include epithelial tissues, connective tissues, muscle tissues, and nerve tissues.
 動物の器官及び臓器としては、卵巣、精液、血液、リンパ節、胸腺、皮膚、血管、隔膜、角膜、腎臓、心臓、脳、肝臓、膵臓、眼球、脾臓、肺、腸、神経、胎盤、臍帯、網膜などが挙げられる。また、本発明で使用する生物材料としては、食品として使用される食肉類、動物及び植物であってもよく、例えば、牛肉、豚肉、鶏肉、魚肉、貝類、穀類、野菜、果実などが挙げられる。その他の生物材料としては、観賞用の植物である花卉が挙げられる。 Animal organs and organs include ovary, semen, blood, lymph nodes, thymus, skin, blood vessels, diaphragm, cornea, kidney, heart, brain, liver, pancreas, eyeball, spleen, lung, intestine, nerve, placenta, umbilical cord And retina. In addition, the biological material used in the present invention may be meat, animals and plants used as food, and examples include beef, pork, chicken, fish, shellfish, cereals, vegetables, fruits and the like. . Other biological materials include flower buds, which are ornamental plants.
 本発明の保存剤は、化合物(I)以外にも、公知の添加剤が適宜配合されていてもよい。 The preservative of the present invention may contain a known additive as appropriate in addition to the compound (I).
 本発明の生物材料の低温保存用の保存液は、上記保存剤を含むことを特徴とする。本発明において生物材料を低温保存する際には、化合物(I)は、通常、溶液として使用する。化合物(I)を溶解する溶媒としては、特に限定されないが、例えば、生理食塩水、輸液類(電解質輸液、栄養輸液、糖質輸液、アミノ酸輸液、ブドウ糖液、リンゲル液、酢酸リンゲル液、乳酸リンゲル液等)、緩衝液(PBS、トリス緩衝液、Hepes緩衝液、MOPS緩衝液、PIPES緩衝液等)、輸血用クエン酸ナトリウム製剤、アルセバー氏液、細胞培養液(Medium199、RPMI1640、DMEM等)、臓器保存液(EC液、UW液)、モデナ液などが挙げられる。 The preservation solution for low temperature preservation of the biological material of the present invention is characterized by containing the above preservative. In the present invention, when the biological material is stored at a low temperature, the compound (I) is usually used as a solution. The solvent that dissolves the compound (I) is not particularly limited. For example, physiological saline, infusions (electrolyte infusion, nutrient infusion, sugar infusion, amino acid infusion, glucose solution, Ringer's solution, acetate Ringer's solution, lactated Ringer's solution, etc.) Buffer solution (PBS, Tris buffer solution, Hepes buffer solution, MOPS buffer solution, PIPES buffer solution, etc.), sodium citrate preparation for blood transfusion, Alsever solution, cell culture solution (Medium199, RPMI1640, DMEM, etc.), organ preservation solution (EC liquid, UW liquid), modena liquid and the like.
 本発明の保存液における化合物(I)の濃度としては、通常、0.001~1000μg/ml、好ましくは0.01~100μg/mlである。本発明の保存液におけるフラボノイド配糖体化合物(II)の濃度としては、通常、0.001~1000μg/ml、好ましくは0.01~100μg/mlである。なお、本発明の保存液には従来の他の成分、例えば、緩衝剤、抗生物質、抗菌剤、抗酸化剤、血清、牛胎仔血清、糖類、脂質、ビタミン、タンパク質、ペプチド、アミノ酸、pH指示薬、キレート剤、浸透圧調節剤などを含むこともできる。 The concentration of compound (I) in the preservation solution of the present invention is usually 0.001 to 1000 μg / ml, preferably 0.01 to 100 μg / ml. The concentration of the flavonoid glycoside compound (II) in the preservation solution of the present invention is usually 0.001 to 1000 μg / ml, preferably 0.01 to 100 μg / ml. In the preservation solution of the present invention, other conventional components such as buffers, antibiotics, antibacterial agents, antioxidants, serum, fetal bovine serum, saccharides, lipids, vitamins, proteins, peptides, amino acids, pH indicators , Chelating agents, osmotic pressure regulators and the like.
 本発明において、生物材料の保存は、化合物(I)を含む溶液に生物材料を浸漬することにより行うことができる。その際、該溶液は生物材料を浸漬する前に低温に冷却されてもよいし、また生物材料を浸漬した後に低温に冷却されてもよい。生物材料を含む溶液が一旦低温まで冷却された後は、低温に保持されるが、常に一定の温度に維持される必要はなく、短時間なら低温の範囲外の温度になってもよい。 In the present invention, the biological material can be stored by immersing the biological material in a solution containing the compound (I). In this case, the solution may be cooled to a low temperature before immersing the biological material, or may be cooled to a low temperature after immersing the biological material. Once the solution containing the biological material is cooled to a low temperature, it is kept at a low temperature. However, it is not always necessary to maintain a constant temperature, and the temperature may be outside the low temperature range for a short time.
 本発明の化合物(I)を含む溶液を使用することにより、低温で細胞を保存することで、生物材料の生存率を有意に高めることができ低温傷害保護効果が得られる。本発明は、生物材料の保存に適した低温下において、それに起因する低温傷害を抑制できるので、細胞や臓器等の生物材料を適切な状態で保存することが可能となる。 By using the solution containing the compound (I) of the present invention, the viability of the biological material can be significantly increased by storing the cells at a low temperature, and a low-temperature injury protection effect can be obtained. Since the present invention can suppress low temperature injury caused by low temperature suitable for storage of biological materials, it can store biological materials such as cells and organs in an appropriate state.
 上記のような特徴を有する本発明の保存液は、臓器移植の分野における摘出臓器の保存液、輸血医療分野における血球成分の保存液、再生医療分野におけるES細胞、iPS細胞及びフィーダー細胞の保存液、家畜育種の分野における卵巣、卵子細胞、受精卵及び精子細胞の保存液、生鮮食品の分野における青果(野菜及び果物)、鮮魚及び精肉の保存液、観賞用植物の分野における花卉の保存液などとしての応用が期待される。 The preservation solution of the present invention having the characteristics as described above is a preservation solution for an isolated organ in the field of organ transplantation, a preservation solution for blood cell components in the field of transfusion medicine, a preservation solution for ES cells, iPS cells, and feeder cells in the field of regenerative medicine. Ovary, egg cells, fertilized eggs and sperm cell preservation solution in the field of livestock breeding, fruit and vegetables (vegetables and fruits) in the field of fresh food, preservation solution of fresh fish and meat, preservation solution of florets in the field of ornamental plants, etc. Application as is expected.
 以下、本発明を更に詳しく説明するため実施例を挙げる。しかし、本発明はこれら実施例等になんら限定されるものではない。 Hereinafter, examples will be given to explain the present invention in more detail. However, the present invention is not limited to these examples.
 試験例1
 本発明化合物について細胞の低温傷害に対する保護作用を以下の方法により評価した。
Test example 1
For the compounds of the present invention, the protective effect against cold injury of cells was evaluated by the following method.
 5%炭酸ガス、37℃のインキュベーター(三洋電機社製、MCO-17AIC)内において10%ウシ胎仔血清(Thermo Fisher Scientific社、No.SH3D396.03)を含有したRPMI-1640(SIGMA社、No.R8758)(10%FBS-RPMI)培養液中で培養したヒト前骨髄性白血病細胞株HL-60(ATCC、No.CCL-240)(HL-60細胞)を回収し、4℃、1,000rpm、5分間遠心(TOMY社製、EIX-135)後、上清を除去し2×106個/mlとなるよう生理食塩水にて再懸濁した。この細胞懸濁液0.25 mlと供試化合物0.25 mlを2 ml滅菌済マイクロチューブ内にて混合した。なお、供試化合物は試験前にジメチルスルフォキサイド(ナカライテスク社、No.13407-45)(DMSO)にて100 mg/mlに溶解後、生理食塩水(大塚製薬、大塚生食注)にて100 mg/mlに溶解し、さらに10倍公比にて10、1及び0.1mg/ml希釈液(DMSO)を調製後、生理食塩水(大塚製薬、大塚生食注)にて500倍希釈し、それぞれ20、2及び0.2μg/ml生理食塩水溶液として調製したものを使用した。 RPMI-1640 (SIGMA, No.1) containing 10% fetal calf serum (Thermo Fisher Scientific, No.SH3D396.03) in an incubator (Sanyo Electric Co., Ltd., MCO-17AIC) at 5% carbon dioxide, 37 ° C. R8758) (10% FBS-RPMI) Human promyelocytic leukemia cell line HL-60 (ATCC, No.CCL-240) (HL-60 cells) cultured in a culture solution was collected, 4 ° C., 1,000 rpm, After centrifugation for 5 minutes (TOMY, EIX-135), the supernatant was removed and resuspended in physiological saline to 2 × 10 6 cells / ml. 0.25 ml of this cell suspension and 0.25 ml of the test compound were mixed in a 2 ml sterilized microtube. The test compound was dissolved in 100 mg / ml with dimethyl sulfoxide (Nacalai Tesque, No. 13407-45) (DMSO) before the test, and then in physiological saline (Otsuka Pharmaceutical Co., Ltd. After preparing 10, 1 and 0.1 mg / ml dilutions (DMSO) at a 10-fold common ratio, it is diluted 500-fold with physiological saline (Otsuka Pharmaceutical, Otsuka raw food injection). These were prepared as 20, 2 and 0.2 μg / ml physiological saline solutions, respectively.
 この細胞懸濁液と供試化合物との混合液を4℃に設定した冷却容器(TWINBIRD社製、No.SC-DF25)内にて約24時間静置した。その後10%FBS-RPMI培養液2.5 mlを添加して4℃、1,000rpm、5分間遠心した。上清除去後、2.5 mlの10%FBS-RPMI培養液にて懸濁し、96穴マイクロプレート(IWAKI社、No.3860-096)に0.1 ml/ウェル添加し、5%炭酸ガス、37℃のインキュベーター内で約24時間培養した。続いてWST-8液(ナカライテスク社、Cell Count Reagent SF、No.07553-44)10μl/ウェルを添加し、更にインキュベーター内にて3時間培養した後、450 nmの波長にて吸光度を測定した(WAKO社、SPECTRA MAX250)。この吸光度の値から、前もって作成した細胞数と吸光度との標準線(生存細胞数=56375×吸光度、R2=0.9995)から生存細胞数を算定した。 The mixture of the cell suspension and the test compound was allowed to stand for about 24 hours in a cooling vessel (No. SC-DF25, manufactured by TWINBIRD) set at 4 ° C. Thereafter, 2.5 ml of 10% FBS-RPMI culture solution was added and centrifuged at 4 ° C. and 1,000 rpm for 5 minutes. After removing the supernatant, it is suspended in 2.5 ml of 10% FBS-RPMI culture solution, added to a 96-well microplate (IWAKI, No. 3860-096) at 0.1 ml / well, 5% carbon dioxide, 37 ° C. The cells were cultured for about 24 hours in an incubator. Subsequently, 10 μl / well of WST-8 solution (Nacalai Tesque, Cell Count Reagent SF, No. 07553-44) was added, and after further culturing in an incubator for 3 hours, the absorbance was measured at a wavelength of 450 nm. (WAKO, SPECTRA MAX250). From this absorbance value, the number of viable cells was calculated from the standard line (viable cell number = 56375 × absorbance, R 2 = 0.9995) between the cell number and the absorbance prepared in advance.
 その結果、表1~表2に示すように無添加の場合には、細胞を4℃にて24時間静置したこと(低温傷害)によって、生存細胞数は初期細胞数20,000個/ウェルから500個/ウェルまで減少した。一方、低温保存時に化合物(1)~(21)をそれぞれ10、1、0.1μg/mlの濃度で細胞に添加処理することによって低温傷害保護効果が認められた。この時の生存細胞数は、生理食塩水のみの化合物無添加と比べ、各化合物で最大16.2~127.4倍高い値であった。 As a result, as shown in Tables 1 and 2, in the case of no addition, the cells were allowed to stand at 4 ° C. for 24 hours (cold injury). Reduced to pcs / well. On the other hand, a low temperature injury protective effect was observed by adding the compounds (1) to (21) to cells at concentrations of 10, 1, and 0.1 μg / ml during low temperature storage. At this time, the number of viable cells was 16.2 to 127.4 times higher for each compound than the compound without saline alone.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 試験例2
 低温保存時の温度を4℃から-5℃、0℃又は10℃に変更した以外は、試験例1と同様の試験方法に従い実施した。その結果、表3に示されているように、実施した全ての保存温度において低温傷害保護効果が確認された。
Test example 2
The test was performed according to the same test method as in Test Example 1 except that the temperature during low-temperature storage was changed from 4 ° C to -5 ° C, 0 ° C or 10 ° C. As a result, as shown in Table 3, the low temperature injury protection effect was confirmed at all storage temperatures.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 試験例3
 低温保存時に検討化合物を添加する溶媒を生理食塩水から、リン酸緩衝生理食塩水(PBS、SIGMA社No.D 8537)、EC液(組成K2HPO4; 7.4 g/L、KH2PO4; 2.05 g/L、KCl; 1.12 g/L、NaHCO3; 0.84 g/L、グルコース; 35 g/L)、UW液(ビアスパン;アステラス製薬製)、RPMI1640培養液(RPMI)、又は10%FBS-RPMI培養液に変更して試験例1と同様の試験を行った。その結果、表4に示されているように、使用した全ての溶媒において低温傷害保護効果が確認された。即ち、本発明化合物の溶媒としては生理食塩水だけに限定されず、生理緩衝液、臓器保存液、細胞培養液などの広く一般的に使用される溶媒中でも低温傷害保護効果を発揮することが確認された。
Test example 3
Solvents to which the compounds to be added during low-temperature storage are added from physiological saline, phosphate buffered saline (PBS, SIGMA No. D 8537), EC solution (composition K 2 HPO 4 ; 7.4 g / L, KH 2 PO 4 2.05 g / L, KCl; 1.12 g / L, NaHCO 3 ; 0.84 g / L, glucose; 35 g / L), UW solution (Biaspan; manufactured by Astellas Pharma Inc.), RPMI1640 culture solution (RPMI), or 10% FBS -The same test as in Test Example 1 was performed by changing to the RPMI culture solution. As a result, as shown in Table 4, the low temperature injury protection effect was confirmed in all the solvents used. That is, the solvent of the compound of the present invention is not limited to physiological saline, and it has been confirmed that it exhibits a low-temperature injury protection effect even in widely used solvents such as physiological buffers, organ preservation solutions, and cell culture solutions. It was done.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 試験例4(MEF細胞の低温保存)
 マウス胎仔繊維芽(MEF)細胞(DSファーマバイオメディカル社、Primary Mouse Embryo Fibroblast, No.R-PMEF-HL)の低温傷害に対する本発明化合物の保護効果を以下の方法により評価した。
Test Example 4 (Cold storage of MEF cells)
The protective effect of the compound of the present invention against cold injury of mouse fetal fibroblast (MEF) cells (DS Pharma Biomedical, Primary Mouse Embryo Fibroblast, No. R-PMEF-HL) was evaluated by the following method.
 MEF細胞用培養液に細胞を懸濁し、5×103個/0.1 ml/ウェルとなるように96穴マイクロプレートに播種し、5%炭酸ガス、37℃のインキュベーター内で3時間培養した。その後、上清を除去し、生理食塩水で濃度調整した供試化合物(最終濃度10μg/ml、1μg/ml、0.1μg/ml、又は0.01μg/ml)を細胞に0.1 ml/ウェル添加した。この96穴マイクロプレートを4℃に設定した冷却容器内にて3日間(72時間)保存した。続いて上清を除去しMEF細胞用培養液に置き換え、インキュベーター内で約24時間培養した後、WST-8液10μl/ウェルを添加し、更に2時間培養した。450 nmの波長にて吸光度を測定し、前もって作成した細胞数と吸光度との標準線(生存細胞数=15506×吸光度、R2=0.996)から生存細胞数を算定した。 The cells were suspended in a culture medium for MEF cells, seeded in a 96-well microplate at 5 × 10 3 cells / 0.1 ml / well, and cultured in an incubator at 37 ° C. with 5% carbon dioxide. Thereafter, the supernatant was removed, and a test compound (final concentration 10 μg / ml, 1 μg / ml, 0.1 μg / ml, or 0.01 μg / ml) whose concentration was adjusted with physiological saline was added to the cells at 0.1 ml / well. The 96-well microplate was stored in a cooling container set at 4 ° C. for 3 days (72 hours). Subsequently, the supernatant was removed and replaced with a culture solution for MEF cells. After culturing in an incubator for about 24 hours, 10 μl / well of WST-8 solution was added and further cultured for 2 hours. Absorbance was measured at a wavelength of 450 nm, and the number of viable cells was calculated from the previously prepared standard line of cell number and absorbance (viable cell number = 15506 × absorbance, R 2 = 0.996).
 その結果、表5に示すように細胞を4℃にて3日間保存したこと(低温傷害)によって、生存細胞数は生理食塩水中にて無添加の場合には初期細胞数5,000個/ウェルから349個/ウェルまで、またMEF細胞用培養液中では1026個/ウェルまで減少した。一方、低温保存時に化合物(2)を0.01~10μg/mlの濃度で細胞に添加処理することによって生存細胞数は、生理食塩水にて化合物無添加の場合と比べ、最大16.9倍高く維持され、本発明化合物の低温傷害保護効果が確認された。 As a result, as shown in Table 5, when the cells were stored at 4 ° C. for 3 days (cold injury), the number of viable cells was 5,000 to 349 from the initial number of cells / well when not added in physiological saline. It decreased to 1026 cells / well in the culture medium for MEF cells. On the other hand, by adding the compound (2) to the cells at a concentration of 0.01 to 10 μg / ml during low-temperature storage, the number of viable cells is maintained up to 16.9 times higher than when no compound is added in physiological saline, The low temperature injury protection effect of the compound of the present invention was confirmed.
 なお、本試験例に用いたMEF細胞用培養液の組成は、以下のとおりである。
MEF細胞用培養液(100 ml)の組成
 Iscove's Modified Dulbecco's Medium (IMDM)(invtrogen, No.12440) 88 ml
 MEM Non-Essential Amino Acids Solution 10 mM (100X), liquid (MEAA)(invtrogen, No.11140) 1 ml
 Penicillin-Streptomycin-Glutamine (100X), liquid (invtrogen, No.10378) 1 ml
 Fetal Bovine Serum (FBS) 10 ml
The composition of the culture solution for MEF cells used in this test example is as follows.
Composition of MEF cell culture medium (100 ml) Iscove's Modified Dulbecco's Medium (IMDM) (invtrogen, No. 12440) 88 ml
MEM Non-Essential Amino Acids Solution 10 mM (100X), liquid (MEAA) (invtrogen, No.11140) 1 ml
Penicillin-Streptomycin-Glutamine (100X), liquid (invtrogen, No.10378) 1 ml
Fetal Bovine Serum (FBS) 10 ml
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 試験例5(Hs68細胞の低温保存)
 Hs68ヒト正常二倍体線維芽細胞(human foreskin fibroblast、ATCC、No.CRL-1635)の低温傷害に対する本発明化合物の保護効果を以下の方法により評価した。
Test Example 5 (Hs68 cell cryopreservation)
The protective effect of the compounds of the present invention against cold injury of Hs68 human normal diploid fibroblasts (human foreskin fibroblast, ATCC, No. CRL-1635) was evaluated by the following method.
 Hs68細胞用培養液に細胞を懸濁し、1×104個/0.1 ml/ウェルとなるように96穴マイクロプレートに播種し、5%炭酸ガス、37℃のインキュベーター内で2時間培養した。その後、上清を除去し、生理食塩水で濃度調整した化合物(2)(最終濃度10μg/ml、1μg/ml、0.1μg/ml、又は0.01μg/ml)を細胞に0.1 ml/ウェル添加した。この96穴マイクロプレートを4℃に設定した冷却容器内にて3日間(72時間)保存した。続いて上清を除去しHs68細胞用培養液に置き換え、インキュベーター内で約24時間培養した後、WST-8液10μl/ウェルを添加し、更に2時間培養した。450 nmの波長にて吸光度を測定し、前もって作成した細胞数と吸光度との標準線(生存細胞数=13709×吸光度、R2=0.999)から生存細胞数を算定した。 The cells were suspended in a culture medium for Hs68 cells, seeded in a 96-well microplate so as to be 1 × 10 4 cells / 0.1 ml / well, and cultured for 2 hours in an incubator at 5% carbon dioxide and 37 ° C. Thereafter, the supernatant was removed, and compound (2) (final concentration 10 μg / ml, 1 μg / ml, 0.1 μg / ml, or 0.01 μg / ml) adjusted in concentration with physiological saline was added to the cells at 0.1 ml / well. . The 96-well microplate was stored in a cooling container set at 4 ° C. for 3 days (72 hours). Subsequently, the supernatant was removed and replaced with a culture medium for Hs68 cells. After culturing in an incubator for about 24 hours, 10 μl / well of WST-8 solution was added and further cultured for 2 hours. Absorbance was measured at a wavelength of 450 nm, and the number of viable cells was calculated from the previously prepared standard number of cells and absorbance (viable cell count = 13709 × absorbance, R 2 = 0.999).
 その結果、表6に示すように細胞を4℃にて3日間保存したこと(低温傷害)によって、生存細胞数は生理食塩水中にて無添加の場合には初期細胞数10,000個/ウェルから203個/ウェルまで、またHs68細胞用培養液中では75個/ウェルまで減少した。一方、低温保存時に化合物(2)を0.01~10μg/mlの濃度で細胞に添加処理することによって生存細胞数は、生理食塩水にて化合物無添加の場合と比べ、最大37.3倍高く維持され、本発明化合物の低温傷害保護効果が確認された。 As a result, as shown in Table 6, when the cells were stored at 4 ° C. for 3 days (cold injury), the number of viable cells increased from an initial number of 10,000 cells / well to 203 when no addition was made in physiological saline. It decreased to 75 cells / well in the culture medium for Hs68 cells. On the other hand, by adding compound (2) to cells at a concentration of 0.01 to 10 μg / ml during low-temperature storage, the number of viable cells is maintained up to 37.3 times higher than when no compound is added in physiological saline, The low temperature injury protection effect of the compound of the present invention was confirmed.
 なお、本試験例に用いたHs68細胞用培養液の組成は、以下のとおりである。
Hs68細胞用培養液(100 ml)の組成
 Dulbecco's Modified Eagles Medium (DMEM)(SIGMA, No.D5791) 90 ml
 Fetal Bovine Serum (FBS) 10 ml
The composition of the culture solution for Hs68 cells used in this test example is as follows.
Composition of culture medium for Hs68 cells (100 ml) Dulbecco's Modified Eagles Medium (DMEM) (SIGMA, No.D5791) 90 ml
Fetal Bovine Serum (FBS) 10 ml
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 試験例6(HUVECの低温保存)
 正常ヒト臍帯静脈内皮細胞(HUVEC)(東洋紡株式会社、No.GCA200K05N)の低温傷害に対する本発明化合物の保護効果を以下の方法により評価した。
Test Example 6 (HUVEC low-temperature storage)
The protective effect of the compound of the present invention against cold injury of normal human umbilical vein endothelial cells (HUVEC) (Toyobo Co., Ltd., No.GCA200K05N) was evaluated by the following method.
 HUVEC用培養液(TOYOBO、No.CA211K500)に細胞を懸濁し、5×103個/0.1 ml/ウェルとなるように96穴マイクロプレートに播種し、5%炭酸ガス、37℃のインキュベーター内で3時間培養した。その後、上清を除去し、生理食塩水で濃度調整した化合物(2)(最終濃度10μg/ml、1μg/ml、0.1μg/ml、又は0.01μg/ml)を細胞に0.1 ml/ウェル添加した。この96穴マイクロプレートを4℃に設定した冷却容器内にて3日間(72時間)保存した。続いて上清を除去しHUVEC用培養液に置き換え、インキュベーター内で約24時間培養した後、WST-8液10μl/ウェルを添加し、更に2時間培養した。450 nmの波長にて吸光度を測定し、前もって作成した細胞数と吸光度との標準線(生存細胞数=13545×吸光度+165、R2=0.999)から生存細胞数を算定した。 Suspend cells in culture medium for HUVEC (TOYOBO, No.CA211K500), seed in 96-well microplate to 5 × 10 3 cells / 0.1 ml / well, and in 5% carbon dioxide in a 37 ° C incubator. Cultured for 3 hours. Thereafter, the supernatant was removed, and compound (2) (final concentration 10 μg / ml, 1 μg / ml, 0.1 μg / ml, or 0.01 μg / ml) adjusted in concentration with physiological saline was added to the cells at 0.1 ml / well. . The 96-well microplate was stored in a cooling container set at 4 ° C. for 3 days (72 hours). Subsequently, the supernatant was removed and replaced with a culture solution for HUVEC. After culturing for about 24 hours in an incubator, 10 μl / well of WST-8 solution was added and further cultured for 2 hours. Absorbance was measured at a wavelength of 450 nm, and the number of viable cells was calculated from the previously prepared standard line of cell number and absorbance (viable cell number = 13545 × absorbance + 165, R 2 = 0.999).
 その結果、表7に示すように細胞を4℃にて3日間保存したこと(低温傷害)によって、生存細胞数は生理食塩水中にて無添加の場合には初期細胞数5,000個/ウェルから740個/ウェルまで、またHUVEC用培養液中では244個/ウェルまで減少した。一方、低温保存時に化合物(2)を0.01~10μg/mlの濃度で細胞に添加処理することによって生存細胞数は、生理食塩水にて化合物無添加の場合と比べ、最大5.2倍高く維持され、本発明化合物の低温傷害保護効果が確認された。 As a result, as shown in Table 7, when the cells were stored at 4 ° C. for 3 days (cold injury), the number of viable cells increased from 5,000 initial cells / well to 740 when not added in physiological saline. It decreased to 244 cells / well in the culture medium for HUVEC. On the other hand, by adding compound (2) to cells at a concentration of 0.01 to 10 μg / ml during low-temperature storage, the number of viable cells is maintained up to 5.2 times higher than when no compound is added in physiological saline, The low temperature injury protection effect of the compound of the present invention was confirmed.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
  試験例7(HAECの低温保存)
 正常ヒト大動脈内皮細胞(HAEC)(Lonza、No.CC-2535)の低温傷害に対する本発明化合物の保護効果の測定を以下の方法により評価した。
Test Example 7 (HAEC low temperature storage)
Measurement of the protective effect of the compound of the present invention against cold injury of normal human aortic endothelial cells (HAEC) (Lonza, No. CC-2535) was evaluated by the following method.
 EGM-2培地(Lonza、No.CC-3162)に細胞を懸濁し、1×104個/0.1 ml/ウェルとなるように96穴マイクロプレートに播種し、5%炭酸ガス、37℃のインキュベーター内で2時間培養した。その後、上清を削除し、生理食塩水で濃度調整した化合物(2)(最終濃度10μg/ml、1μg/ml、0.1μg/ml、又は0.01μg/ml)を細胞に0.1 ml/ウェル添加した。この96穴マイクロプレートを4℃に設定した冷却容器内にて7日間保存した。続いて上清を除去しEGM-2培地に置き換え、5%炭酸ガス、37℃のインキュベーター内で約24時間培養した後、WST-8液10μl/ウェルを添加し、更に3時間培養した。450 nmの波長にて吸光度を測定し、前もって作成した細胞数と吸光度との標準線(生存細胞数=5170×吸光度、R2=0.999)から生存細胞数を算定した。 Suspend cells in EGM-2 medium (Lonza, No.CC-3162), inoculate into a 96-well microplate at 1 × 10 4 cells / 0.1 ml / well, and incubate at 5% carbon dioxide at 37 ° C. Incubated for 2 hours. Thereafter, the supernatant was removed, and compound (2) (final concentration 10 μg / ml, 1 μg / ml, 0.1 μg / ml, or 0.01 μg / ml) whose concentration was adjusted with physiological saline was added to the cells at 0.1 ml / well. . This 96-well microplate was stored in a cooling container set at 4 ° C. for 7 days. Subsequently, the supernatant was removed and replaced with EGM-2 medium. After culturing in an incubator at 5% carbon dioxide and 37 ° C. for about 24 hours, 10 μl / well of WST-8 solution was added and further cultured for 3 hours. Absorbance was measured at a wavelength of 450 nm, and the number of viable cells was calculated from the previously prepared standard line of cell number and absorbance (viable cell number = 5170 × absorbance, R 2 = 0.999).
 その結果、表8に示すように細胞を4℃にて7日間保存したこと(低温傷害)によって、生存細胞数は、生理食塩水中にて無添加の場合には初期細胞数10,000個/ウェルから1867個/ウェルまで、またHAEC用培養液中では40個/ウェルまで減少した。一方、低温保存時に化合物(2)を0.01~10μg/mlの濃度で細胞に添加処理することによって生存細胞数は、生理食塩水にて化合物無添加の場合と比べ、最大2.3倍高く維持され、本発明化合物の低温傷害保護効果が確認された。 As a result, as shown in Table 8, the cells were stored at 4 ° C. for 7 days (cold injury), so that the number of viable cells started from 10,000 initial cells / well when no addition was made in physiological saline. The number decreased to 1867 / well and 40 / well in the culture medium for HAEC. On the other hand, by adding compound (2) to cells at a concentration of 0.01 to 10 μg / ml during low-temperature storage, the number of viable cells is maintained up to 2.3 times higher than when no compound is added in physiological saline, The low temperature injury protection effect of the compound of the present invention was confirmed.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
  試験例8(mES細胞の低温保存)
 マウス胚性幹(mES)細胞(RIKEN、No.AESO125)の低温傷害に対する本発明化合物の保護効果を以下の方法により評価した。
Test Example 8 (Cold storage of mES cells)
The protective effect of the compound of the present invention against cold injury of mouse embryonic stem (mES) cells (RIKEN, No. AESO125) was evaluated by the following method.
 ES細胞用0.1%ゼラチン液(DSファーマバイオメディカル、No.R-ES-006B)にて前処理した96穴マイクロプレートにES細胞用培地に懸濁したmES細胞を1.5×104個/0.1 ml/ウェルとなるように播種し、5%炭酸ガス、37℃のインキュベーター内で24時間培養した。その後、上清を削除し、生理食塩水で濃度調整した化合物(2)(最終濃度10μg/ml、1μg/ml、0.1μg/ml、又は0.01μg/ml)を細胞に0.1 ml/ウェル添加した。この96穴マイクロプレートを4℃に設定した冷却容器内にて3日間保存した。続いて上清を除去しES細胞用培地に置き換え、5%炭酸ガス、37℃のインキュベーター内で約24時間培養した後、WST-8液10μl/ウェルを添加し、更に3時間培養した。450 nmの波長にて吸光度を測定し、前もって作成した細胞数と吸光度との標準線(生存細胞数=16275×吸光度、R2=0.993)から生存細胞数を算定した。 1.5 × 10 4 cells / 0.1 ml of mES cells suspended in medium for ES cells in 96-well microplate pretreated with 0.1% gelatin solution for ES cells (DS Pharma Biomedical, No.R-ES-006B) Seeded to form a well, and cultured in an incubator at 5% carbon dioxide and 37 ° C. for 24 hours. Thereafter, the supernatant was removed, and compound (2) (final concentration 10 μg / ml, 1 μg / ml, 0.1 μg / ml, or 0.01 μg / ml) whose concentration was adjusted with physiological saline was added to the cells at 0.1 ml / well. . The 96-well microplate was stored in a cooling container set at 4 ° C. for 3 days. Subsequently, the supernatant was removed and replaced with a medium for ES cells. After culturing in an incubator at 5% carbon dioxide and 37 ° C. for about 24 hours, 10 μl / well of WST-8 solution was added and further cultured for 3 hours. Absorbance was measured at a wavelength of 450 nm, and the number of viable cells was calculated from a standard line (viable cell number = 16275 × absorbance, R 2 = 0.993) of cell number and absorbance prepared in advance.
 その結果、表9に示すように細胞を4℃にて3日間保存したこと(低温傷害)によって、生存細胞数は、生理食塩水中にて無添加の場合には初期細胞数15,000個/ウェルから583個/ウェルまで、またES細胞用培地中では556個/ウェルまで減少した。一方、低温保存時に化合物(2)を0.01~10μg/mlの濃度で細胞に添加処理することによって生存細胞数は、生理食塩水にて化合物無添加の場合と比べ、最大7.8倍高く維持され、本発明化合物の低温傷害保護効果が確認された。 As a result, as shown in Table 9, the cells were stored at 4 ° C. for 3 days (cold injury), so that the number of viable cells started from 15,000 cells / well in the case of no addition in physiological saline. The number decreased to 583 cells / well, and to 556 cells / well in the medium for ES cells. On the other hand, by adding compound (2) to cells at a concentration of 0.01 to 10 μg / ml during low-temperature storage, the number of viable cells is maintained at a maximum of 7.8 times higher than when no compound is added in physiological saline, The low temperature injury protection effect of the compound of the present invention was confirmed.
 なお、本試験例に用いたES細胞用培地の組成は、以下のとおりである。
mES細胞用培地(100 ml)の組成
 Stem Medium (DSファーマバイオメディカル、No.DSRK100) 99 ml
 ES細胞用β-2メルカプトエタノール、No,R-ES-007E (MEAA)(invtrogen, No.11140) 1 ml
 LIF (Leukemia Inhibitory Factor from mouse、SIGMA、No.L5158、10μg/ml) 0.1 ml
The composition of the ES cell medium used in this test example is as follows.
Composition of mES cell culture medium (100 ml) Stem Medium (DS Pharma Biomedical, No.DSRK100) 99 ml
Β-2 mercaptoethanol for ES cells, No, R-ES-007E (MEAA) (invtrogen, No. 11140) 1 ml
LIF (Leukemia Inhibitory Factor from mouse, SIGMA, No.L5158, 10μg / ml) 0.1 ml
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 試験例9(rMS細胞の低温保存)
 ラット間葉系幹(rMS)細胞(RIKEN、No.AESO125)の低温傷害に対する本発明化合物の保護効果を以下の方法により評価した。
Test Example 9 (Cryopreservation of rMS cells)
The protective effect of the compounds of the present invention against cold injury of rat mesenchymal stem (rMS) cells (RIKEN, No. AESO125) was evaluated by the following method.
 rMS細胞用培養液に細胞を懸濁し、5×103個/0.1 ml/ウェルとなるように96穴マイクロプレートに播種し、5%炭酸ガス、37℃のインキュベーター内で5時間培養した。その後、上清を除去し、生理食塩水で濃度調整した化合物(2)(最終濃度10μg/ml、1μg/ml、0.1μg/ml、又は0.01μg/ml)を細胞に0.1 ml/ウェル添加した。この96穴マイクロプレートを4℃に設定した冷却容器内にて3日間(72時間)保存した。続いて上清を除去しrMS細胞用培養液に置き換え、インキュベーター内で約24時間培養した後、WST-8液10μl/ウェルを添加し、更に3時間培養した。450 nmの波長にて吸光度を測定し、前もって作成した細胞数と吸光度との標準線(生存細胞数=4375×吸光度+310、R2=0.993)から生存細胞数を算定した。 The cells were suspended in a culture solution for rMS cells, seeded in a 96-well microplate at 5 × 10 3 cells / 0.1 ml / well, and cultured for 5 hours in an incubator at 37 ° C. with 5% carbon dioxide. Thereafter, the supernatant was removed, and compound (2) (final concentration 10 μg / ml, 1 μg / ml, 0.1 μg / ml, or 0.01 μg / ml) adjusted in concentration with physiological saline was added to the cells at 0.1 ml / well. . The 96-well microplate was stored in a cooling container set at 4 ° C. for 3 days (72 hours). Subsequently, the supernatant was removed and replaced with a culture solution for rMS cells. After culturing in an incubator for about 24 hours, 10 μl / well of WST-8 solution was added and further cultured for 3 hours. Absorbance was measured at a wavelength of 450 nm, and the number of viable cells was calculated from the previously prepared standard line of cell number and absorbance (viable cell number = 4375 × absorbance + 310, R 2 = 0.993).
 その結果、表10に示すように細胞を4℃にて3日間保存したこと(低温傷害)によって、生存細胞数は、生理食塩水中にて無添加の場合には初期細胞数5,000個/ウェルから347個/ウェルまで、またrMS細胞用培養液中では337個/ウェルまで減少した。一方、低温保存時に化合物(2)を0.01~10μg/mlの濃度で細胞に添加処理することによって生存細胞数は、生理食塩水にて化合物無添加の場合と比べ、最大8.6倍高く維持され、本発明化合物の低温傷害保護効果が確認された。 As a result, as shown in Table 10, when the cells were stored at 4 ° C. for 3 days (cold injury), the number of viable cells started from 5,000 initial cells / well in the absence of addition in physiological saline. It decreased to 347 cells / well, and to 337 cells / well in the culture medium for rMS cells. On the other hand, by adding compound (2) to cells at a concentration of 0.01 to 10 μg / ml during low-temperature storage, the number of viable cells is maintained up to 8.6 times higher than when no compound is added in physiological saline, The low temperature injury protection effect of the compound of the present invention was confirmed.
 なお、本試験例に用いたrMS細胞用培養液の組成は、以下のとおりである。
rMS細胞用培養液(100 ml)の組成
 Eagle's Minimum Essential Medium wih Earle's salts (E-MEM)(和光純薬工業, No.051-07615) 85 ml
 Fetal Bovine Serum (FBS) 15 ml
The composition of the culture solution for rMS cells used in this test example is as follows.
Composition of rMS cell culture solution (100 ml) Eagle's Minimum Essential Medium wih Earle's salts (E-MEM) (Wako Pure Chemical Industries, No.051-07615) 85 ml
Fetal Bovine Serum (FBS) 15 ml
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 試験例10(マウス胸腺細胞の低温保存)
 マウス胸腺細胞の低温傷害に対する本発明化合物の保護効果を以下の方法により評価した。
Test Example 10 (Cold preservation of mouse thymocytes)
The protective effect of the compound of the present invention against cold injury of mouse thymocytes was evaluated by the following method.
 BALB/cAnNCrlCrlj(メス、日本チャールス・リバー株式会社より購入)を麻酔下にて脱血致死させた後、胸腺を摘出し、ステンレスメッシュとゴム棒を用いて生理食塩水に細胞を懸濁し、1×104個/0.05 ml/ウェルとなるように96穴マイクロプレートに播種した。その後、生理食塩水で濃度調整した化合物(2)(最終濃度10μg/ml、1μg/ml、0.1μg/ml、又は0.01μg/ml)を細胞に0.05 ml/ウェル添加した。なお、0.2%Tween20含有生理食塩水で細胞を処理した試験区をポジティブコントロール(細胞傷害率100%)とした。この96穴マイクロプレートを4℃に設定した冷却容器内にて3日間保存した。続いて96穴マイクロプレートを4℃、1,000rpm、3分間遠心した後、上清0.05 mlを別の96穴マイクロプレートのウェルに添加し、上清中のLactate dehydrogenase(LDH)活性をLDH-Cytotoxic Test wako [Wako 299-50601]を用いて測定した。即ち、遠心上清0.05 mlに発色液0.05 mlを添加して反応を開始し、室温で45分間放置後に反応停止液(0.5N塩酸溶液)0.1 mlを混合し発色反応を停止した。なお、ネガティブコントロールとして遠心上清の代わりに生理食塩水を用い、同様のLDH測定操作を行った。反応停止後90分以内にマイクロプレートリーダーにて560 nmの吸光度を測定した。次の計算式Iにより細胞傷害率(%)を算定した。
細胞傷害率(%)=(S-N)/(P-N)×100  (計算式I)
 なお、計算式Iにおいて、Sは検体での吸光度、Nはネガティブコントロールでの吸光度、Pはポジティブコントロールでの吸光度である。
BALB / cAnNCrlCrlj (female, purchased from Nihon Charles River Co., Ltd.) was exsanguinated under anesthesia, then the thymus was removed, and the cells were suspended in physiological saline using a stainless steel mesh and rubber stick. It seed | inoculated to 96 wells microplate so that it might become * 10 4 piece / 0.05 ml / well. Thereafter, compound (2) (final concentration 10 μg / ml, 1 μg / ml, 0.1 μg / ml, or 0.01 μg / ml) adjusted in concentration with physiological saline was added to the cells at 0.05 ml / well. The test group in which cells were treated with 0.2% Tween20-containing physiological saline was used as a positive control (cytotoxicity rate 100%). The 96-well microplate was stored in a cooling container set at 4 ° C. for 3 days. Next, after centrifuging the 96-well microplate for 3 minutes at 4 ° C and 1,000 rpm, 0.05 ml of the supernatant was added to the wells of another 96-well microplate, and the lactate dehydrogenase (LDH) activity in the supernatant was changed to LDH-Cytotoxic Measurement was performed using Test wako [Wako 299-50601]. That is, 0.05 ml of the coloring solution was added to 0.05 ml of the centrifugal supernatant to start the reaction, and after standing at room temperature for 45 minutes, 0.1 ml of a reaction stopping solution (0.5N hydrochloric acid solution) was mixed to stop the coloring reaction. In addition, the same LDH measurement operation was performed using physiological saline instead of the centrifugal supernatant as a negative control. Within 90 minutes after stopping the reaction, the absorbance at 560 nm was measured with a microplate reader. The cytotoxic rate (%) was calculated by the following calculation formula I.
Cytotoxicity (%) = (S−N) / (P−N) × 100 (Formula I)
In Formula I, S is the absorbance in the specimen, N is the absorbance in the negative control, and P is the absorbance in the positive control.
 その結果、表11に示すように細胞を4℃にて3日間保存したこと(低温傷害)によって、生理食塩水中にて無添加の場合に誘導される細胞傷害率は95.9%であった。一方、低温保存時に化合物(2)を0.01~10μg/mlの最終濃度で細胞に添加処理することによって細胞傷害率は用量に依存して軽減され、本発明化合物の胸腺細胞に対する低温傷害保護効果が確認された。 As a result, as shown in Table 11, when the cells were stored at 4 ° C. for 3 days (low temperature injury), the cytotoxic rate induced in the absence of addition in physiological saline was 95.9%. On the other hand, when the compound (2) is added to the cells at a final concentration of 0.01 to 10 μg / ml during low-temperature storage, the cytotoxic rate is reduced depending on the dose, and the protective effect of the compound of the present invention on the thymocytes is reduced. confirmed.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 試験例11(マウス皮膚組織切片の低温保存)
 マウス皮膚組織切片の低温傷害に対する本発明化合物の保護効果を以下の方法により評価した。
Test Example 11 (Cryogenic preservation of mouse skin tissue section)
The protective effect of the compound of the present invention against cold injury of mouse skin tissue sections was evaluated by the following method.
 BALB/cAnNCrlCrlj(メス、日本チャールス・リバー株式会社より購入)を麻酔下にて脱血致死させた後、尾部を摘出し、その皮膚組織全層を剥離した。これを外科用メスを用いて4~4.5 mm角の皮膚組織切片とした。各切片を事前に4℃に冷却した0.5 ml/ウェル(24穴培養プレート)の生理食塩水又は化合物(2)を含有する生理食塩水中に浸水した。なお、皮膚組織切片を0.2%Tween20含有生理食塩水0.5 ml/ウェル(24穴培養プレート)中に浸水した試験区をポジティブコントロール(組織傷害率100%)とした。この24穴培養プレートを4℃に設定した冷却容器内にて7日間保存した後、各ウェルよりその上清の一部をサンプリングし生理食塩水にて10倍希釈した。その希釈液0.05 mlを別の96穴マイクロプレートのウェルに添加し、試験例10と同様の方法によりLDH活性を測定した。ネガティブコントロールとして10倍希釈液の代わりに生理食塩水0.05 mlを用いて同様のLDH測定操作を行った。次の計算式IIにより組織傷害率(%)を算定した。
組織障傷害率(%)=(S-N)/(P-N)×100  (計算式II)
 なお、計算式IIにおいて、Sは検体での吸光度、Nはネガティブコントロールでの吸光度、Pはポジティブコントロールでの吸光度である。
BALB / cAnNCrlCrlj (female, purchased from Nihon Charles River Co., Ltd.) was exsanguinated under anesthesia, and then the tail was removed and the entire skin tissue was peeled off. This was cut into 4 to 4.5 mm square skin tissue sections using a scalpel. Each section was immersed in 0.5 ml / well (24-well culture plate) of physiological saline or physiological saline containing compound (2) that had been cooled to 4 ° C. in advance. The test group in which the skin tissue section was immersed in 0.5 ml / well (24-well culture plate) of 0.2% Tween20-containing physiological saline was used as a positive control (tissue injury rate 100%). The 24-well culture plate was stored in a cooling container set at 4 ° C. for 7 days, and then a part of the supernatant was sampled from each well and diluted 10-fold with physiological saline. 0.05 ml of the diluted solution was added to the wells of another 96-well microplate, and LDH activity was measured by the same method as in Test Example 10. As a negative control, the same LDH measurement procedure was performed using 0.05 ml of physiological saline instead of the 10-fold diluted solution. The tissue injury rate (%) was calculated by the following calculation formula II.
Tissue injury rate (%) = (S−N) / (P−N) × 100 (Formula II)
In Formula II, S is the absorbance in the specimen, N is the absorbance in the negative control, and P is the absorbance in the positive control.
 その結果、表12に示すようにマウス皮膚組織切片を4℃にて7日間保存したこと(低温傷害)によって、生理食塩水中にて無添加の場合に誘導される組織傷害率は32.4%であった。一方、低温保存時に化合物(2)を0.1~10μg/mlの最終濃度でマウス皮膚組織切片に添加処理することによって組織傷害率は用量に依存して軽減され、本発明化合物のマウス皮膚組織切片に対する低温傷害保護効果が確認された。 As a result, as shown in Table 12, when the mouse skin tissue section was stored at 4 ° C. for 7 days (cold injury), the tissue injury rate induced in the absence of addition in physiological saline was 32.4%. It was. On the other hand, when the compound (2) is added to a mouse skin tissue section at a final concentration of 0.1 to 10 μg / ml during low-temperature storage, the tissue injury rate is reduced depending on the dose. Low temperature injury protection effect was confirmed.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 試験例12(ウサギ血小板の低温保存)
 ウサギ血小板の低温傷害に対する本発明化合物の保護効果を以下の方法により評価した。
Test Example 12 (rabbit platelet cryopreservation)
The protective effect of the compound of the present invention against low temperature injury of rabbit platelets was evaluated by the following method.
 ウサギより採血後、直ちにアルセバー氏液と1:1の容量となるよう混合し、100G、10分間、20℃で遠心処理し、上清を別の遠心管に移し、赤血球の沈澱がなくなるまで同条件にて遠心操作を繰り返した。得られた血小板懸濁液を2 mlずつチューブに分注した。これにDMSOにて調製した化合物(2)(最終濃度10μg/ml)を2μlだけ添加し、4℃で24時間保存した。1%グルタルアルデヒド含有リン酸緩衝生理食塩水1 mlに血小板懸濁液8μlを添加し固定処理した。その後、ガラススライド上に試料を滴下、塗布し、洗浄、乾燥した後、金蒸着を行い、走査型顕微鏡(S-3200N)にて観察した。得られた観察像を図1に示す。 Immediately after collecting blood from a rabbit, mix with Alsever solution to a volume of 1: 1, centrifuge at 100G for 10 minutes at 20 ° C, transfer the supernatant to another centrifuge tube, and keep the same until there is no red blood cell precipitation. Centrifugation was repeated under the conditions. The obtained platelet suspension was dispensed into tubes in 2 ml portions. To this was added 2 μl of the compound (2) prepared in DMSO (final concentration 10 μg / ml) and stored at 4 ° C. for 24 hours. 8 μl of platelet suspension was added to 1 ml of phosphate buffered saline containing 1% glutaraldehyde and fixed. Thereafter, the sample was dropped on the glass slide, applied, washed, dried, gold deposited, and observed with a scanning microscope (S-3200N). The obtained observation image is shown in FIG.
 その結果、4℃で24時間低温保存することにより、化合物無添加の血小板では顕著な形態変化が誘発された。一方、化合物(2)を添加処理することにより、低温保存前の血小板の正常に近い形態を維持され、本発明化合物のウサギ血小板に対する低温傷害保護効果が確認された。 As a result, a remarkable morphological change was induced in the platelets without the addition of the compound by low-temperature storage at 4 ° C. for 24 hours. On the other hand, by adding the compound (2), the shape of platelets before normal storage at a low temperature was maintained, and the low temperature injury protection effect of the compound of the present invention on rabbit platelets was confirmed.
 試験例13(化合物(I)と化合物(II)との併用効果)
 化合物(I)と化合物(II)を併用した時のHL-60細胞の低温傷害に対する保護作用を評価した。なお、化合物(I)及び化合物(II)は試験前にDMSOにて100 mg/mlに溶解し、さらに化合物(I)は100倍公比にて1、0.01 mg/ml希釈液(DMSO)を、化合物(II)は10倍公比にて10、1、0.1 mg/ml希釈液(DMSO)を調製した。それぞれの化合物は生理食塩水に500倍希釈となるよう単独又は混合添加し、供試化合物調製液とした。その他の試験条件は試験例1と同様の方法により行った。
Test Example 13 (Combination effect of Compound (I) and Compound (II))
The protective effect against cold injury of HL-60 cells when compound (I) and compound (II) were used in combination was evaluated. Compound (I) and Compound (II) were dissolved in DMSO at 100 mg / ml prior to the test, and Compound (I) was further diluted with a 1: 0.01 mg / ml dilution (DMSO) at a 100-fold common ratio. Compound (II) was prepared in a diluted solution (DMSO) of 10, 1, 0.1 mg / ml at a 10-fold common ratio. Each compound was added alone or in a mixture so as to be diluted 500-fold in physiological saline to prepare a test compound preparation solution. Other test conditions were the same as in Test Example 1.
 図2の(A)に化合物(2)(1μg/ml)とアピゲニン-7-グルコシド(A7G)(0.1~100μg/ml)、(B)に化合物(2)(0.01μg/ml)とクエルセチン-3-グルコシド(Q3G)(0.1~100μg/ml)を併用した結果を示す。 Fig. 2 (A) shows compound (2) (1 µg / ml) and apigenin-7-glucoside (A7G) (0.1-100 µg / ml), and (B) shows compound (2) (0.01 µg / ml) and quercetin- The results of the combined use of 3-glucoside (Q3G) (0.1 to 100 μg / ml) are shown.
 その結果、図2(A)、(B)及び(C)に示すように化合物(II)単独では低温傷害保護効果がほとんど認められないか、十分な効果が得られない濃度範囲(0.1~100μg/ml)において、化合物(II)と化合物(I)を併用することにより両者が相乗的に作用し、予想を上回る低温傷害保護効果が得られることが確認された。 As a result, as shown in FIGS. 2 (A), 2 (B) and 2 (C), the compound (II) alone has almost no low-temperature injury protection effect or a concentration range (0.1 to 100 μg at which sufficient effect cannot be obtained). / ml), it was confirmed that the combined use of compound (II) and compound (I) acted synergistically to obtain a low-temperature injury protection effect that exceeded expectations.
 試験例14(低温保存によって誘導される細胞のアポトーシスに対する効果)
 低温保存によって誘導される細胞のアポトーシスに対する本発明化合物の効果を以下の方法により評価した。5%炭酸ガス、37℃のインキュベーター内において10%FBS-RPMI培養液中で培養したHL-60細胞を回収し、室温、1,000rpm、5分間遠心後、上清を除去し2×106個/mlとなるよう生理食塩水にて再懸濁した。この細胞懸濁液0.25 mlと供試化合物0.25 mlを2 ml滅菌済マイクロチューブ内にて混合した。なお、供試化合物は試験前にDMSOにて100 mg/mlに溶解し、さらに10倍公比にて10及び1 mg/ml希釈液(DMSO)を調製後、生理食塩水にて500倍希釈し、それぞれ20及び2μg/ml生理食塩水溶液として調製したものを使用した。この細胞懸濁液と供試化合物との混合液を4℃に設定した冷却容器内にて約24時間静置した。この懸濁液から0.29 mlを別チューブに分注し、アポトーシスを検出するための30×FLICA試薬(ImmunoChemistry Technologies, LLC社製、#91FAM FLICATM Poly Caspases Assay Kit)を0.01 ml添加し、37℃で1時間反応した。10倍濃度の10×Apoptosis Wash Buffer#634を生理食塩水にて10倍希釈し、Wash Buffer (WB)とした。このWBを細胞懸濁液に1 ml添加し、遠心(400g、室温、5分間)し上清を除去した後、再度Wash Bufferを1 ml添加する洗浄操作を2回行った。最後の遠心で上清を除去した後、Wash Bufferを0.3 ml添加し懸濁液とした。これに死細胞を検出するためのキット付属のPropidium Iiodide #638 (PI, 0.25 mg/ml)を1.5μg/mlを添加し、5分間静置した後、フローサイトメーター(Becton Dickinson社製、BD FACSCalibur)にて解析を行った。結果を図3及び表13に示す。
Test Example 14 (Effects on cell apoptosis induced by cryopreservation)
The effect of the compounds of the present invention on cell apoptosis induced by cryopreservation was evaluated by the following method. HL-60 cells cultured in 10% FBS-RPMI medium in a 5% carbon dioxide, 37 ° C incubator were collected, centrifuged at room temperature at 1,000 rpm for 5 minutes, and the supernatant was removed to 2 × 10 6 cells. It was resuspended in physiological saline so as to be / ml. 0.25 ml of this cell suspension and 0.25 ml of the test compound were mixed in a 2 ml sterilized microtube. The test compound was dissolved in DMSO at 100 mg / ml before the test, and 10 and 1 mg / ml dilutions (DMSO) were prepared at a 10-fold common ratio, and then diluted 500-fold with physiological saline. Those prepared as 20 and 2 μg / ml physiological saline solutions were used. The mixture of the cell suspension and the test compound was allowed to stand for about 24 hours in a cooling container set at 4 ° C. Dispense 0.29 ml from this suspension into a separate tube, add 0.01 ml of 30 × FLICA reagent (ImmunoChemistry Technologies, LLC, # 91FAM FLICA TM Poly Caspases Assay Kit) to detect apoptosis, and add 37 ml For 1 hour. Ten times the concentration of 10 × Apoptosis Wash Buffer # 634 was diluted 10 times with physiological saline to obtain Wash Buffer (WB). 1 ml of this WB was added to the cell suspension, centrifuged (400 g, room temperature, 5 minutes), the supernatant was removed, and then a washing operation in which 1 ml of Wash Buffer was added again was performed twice. After removing the supernatant by the final centrifugation, 0.3 ml of Wash Buffer was added to form a suspension. To this, add Propidium Iiodide # 638 (PI, 0.25 mg / ml) included in the kit for detecting dead cells, add 1.5 μg / ml, let stand for 5 minutes, then flow cytometer (Becton Dickinson, BD Analysis was performed with FACSCalibur). The results are shown in FIG.
 その結果、4℃、24時間の保存条件下で誘導される細胞傷害は、ネクローシスが12.1%、アポトーシスが68.8%であり、ネクローシスよりもアポトーシスが主体となっていることが確認された(図3(B))。また、この条件下で本発明化合物(2)を10μg/ml添加すると図3(C)のようにアポトーシスを強く抑制し、これに伴う細胞傷害が阻害されていることが確認された。また、表13のとおり本発明化合物は、アポトーシスにより誘導される細胞傷害をそれぞれ用量に依存して阻害することが確認された。 As a result, the cytotoxicity induced under storage conditions at 4 ° C. for 24 hours was 12.1% for necrosis and 68.8% for apoptosis, and it was confirmed that apoptosis was mainly composed of necrosis (FIG. 3). (B)). In addition, when 10 μg / ml of the compound (2) of the present invention was added under these conditions, it was confirmed that apoptosis was strongly suppressed as shown in FIG. Further, as shown in Table 13, it was confirmed that the compound of the present invention inhibits the cell damage induced by apoptosis depending on the dose.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022

Claims (17)

  1.  式(I):
    Figure JPOXMLDOC01-appb-C000001
    〔式中、R1~R6は同一又は異なって、水素原子、水酸基、-CO2R7、置換されてもよいアルキル基、置換されてもよいアルケニル基、置換されてもよいアルコキシ基、置換されてもよいアルキルチオ基、置換されてもよいアルキルスルフィニル基又は置換されてもよいアルキルスルホニル基であって、少なくとも1つは水酸基であり、R1~R6のうち任意の2つが合同して環を形成してもよく、R7は水素原子又は置換されてもよいアルキル基である〕で表される化合物を含む生物材料の低温保存用の保存剤。
    Formula (I):
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, R 1 to R 6 are the same or different and each represents a hydrogen atom, a hydroxyl group, —CO 2 R 7 , an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkoxy group, An optionally substituted alkylthio group, an optionally substituted alkylsulfinyl group or an optionally substituted alkylsulfonyl group, at least one of which is a hydroxyl group, and any two of R 1 to R 6 are congruent; And R 7 is a hydrogen atom or an optionally substituted alkyl group.] A preservative for cryopreserving a biological material comprising a compound represented by:
  2.  R1~R5が同一又は異なって、水素原子、水酸基又はアルコキシ基であって、少なくとも1つは水酸基であり、R6が水酸基及び/若しくはアルコキシ基で置換されてもよいフェニルアルケニル基又は-(R7)n-COR8であり、R7がアルキレン基又はアルケニレン基であり、R8が水酸基、アルコキシ基又はアラルキルオキシ基であり、nが0~2の整数である、請求項1に記載の保存剤。 R 1 to R 5 are the same or different and are a hydrogen atom, a hydroxyl group or an alkoxy group, at least one is a hydroxyl group, and R 6 is a phenylalkenyl group which may be substituted with a hydroxyl group and / or an alkoxy group, or- (R 7 ) n —COR 8 , R 7 is an alkylene group or an alkenylene group, R 8 is a hydroxyl group, an alkoxy group or an aralkyloxy group, and n is an integer of 0 to 2. The preservative described.
  3.  前記式(I)で表される化合物が、カフェー酸メチルエステル、カフェー酸エチルエステル、カフェー酸フェネチルエステル、フェルラ酸エチルエステル、メチル3-(3,4-ジヒドロキシフェニル)プロパノエート、メチル2-(3,4-ジヒドロキシフェニル)アセテート、没食子酸メチルエステル、没食子酸エチルエステル、没食子酸プロピルエステル、3,4-ジヒドロキシ安息香酸メチルエステル、3,4-ジヒドロキシ安息香酸エチルエステル、2,5-ジヒドロキシ安息香酸メチルエステル、2,3-ジヒドロキシ安息香酸メチルエステル、レスベラトロール、イソラポンチゲニン、プテロスチルベン、ピノスチルベン、ラポンチゲニン、オキシレスベラトロール及びグネトールからなる群から選ばれる少なくとも1種である、請求項1又は2に記載の保存剤。 The compound represented by the above formula (I) is caffeic acid methyl ester, caffeic acid ethyl ester, caffeic acid phenethyl ester, ferulic acid ethyl ester, methyl 3- (3,4-dihydroxyphenyl) propanoate, methyl 2- (3 , 4-Dihydroxyphenyl) acetate, gallic acid methyl ester, gallic acid ethyl ester, gallic acid propyl ester, 3,4-dihydroxybenzoic acid methyl ester, 3,4-dihydroxybenzoic acid ethyl ester, 2,5-dihydroxybenzoic acid The methyl ester, 2,3-dihydroxybenzoic acid methyl ester, resveratrol, isolapontigenin, pterostilbene, pinostilbene, lapontigenin, oxyresveratrol and gnetole are at least one selected from the group consisting of Or the preservative according to 2.
  4.  式(II):
    Figure JPOXMLDOC01-appb-C000002
    〔式中、R9及びR10は、水素原子、水酸基又はグルコース残基であって、少なくとも一方はグルコース残基であり、R11~R17は、同一又は異なって、水素原子、水酸基又はアルコキシ基である〕で表されるフラボノイド配糖体化合物を更に含む、請求項1~3のいずれか一項に記載の保存剤。
    Formula (II):
    Figure JPOXMLDOC01-appb-C000002
    [Wherein R 9 and R 10 are a hydrogen atom, a hydroxyl group or a glucose residue, at least one of which is a glucose residue, and R 11 to R 17 are the same or different and represent a hydrogen atom, a hydroxyl group or an alkoxy group] The preservative according to any one of claims 1 to 3, further comprising a flavonoid glycoside compound represented by the formula:
  5.  前記式(II)で表されるフラボノイド配糖体化合物が、クエルセチン-3-グルコシド、ケンペロール-7-グルコシド及びアピゲニン-7-グルコシドからなる群から選ばれる少なくとも1種である、請求項4に記載の保存剤。 The flavonoid glycoside compound represented by the formula (II) is at least one selected from the group consisting of quercetin-3-glucoside, kaempferol-7-glucoside, and apigenin-7-glucoside. Preservatives.
  6.  前記生物材料が、動物若しくは植物細胞、組織、器官、臓器又は培養細胞シートである、請求項1~5のいずれか一項に記載の保存剤。 The preservative according to any one of claims 1 to 5, wherein the biological material is an animal or plant cell, tissue, organ, organ, or cultured cell sheet.
  7.  前記生物材料が、卵子細胞、受精卵細胞、精子細胞、胚性幹細胞、iPS細胞、成体幹細胞、線維芽細胞、フィーダー細胞、血管内皮細胞、骨髄細胞、免疫細胞、肝細胞、腎臓細胞、神経細胞、膵臓細胞、平滑筋細胞、心筋細胞、筋芽細胞、角膜細胞、網膜細胞、軟骨細胞、軟骨前駆細胞、滑膜由来細胞、滑膜幹細胞、骨芽細胞、歯芽細胞、歯根膜細胞、口腔粘膜細胞、間葉系幹細胞、脂肪細胞、脂肪幹細胞、卵巣、精液、血液、血球、血小板又は心臓である、請求項1~6のいずれか一項に記載の保存剤。 The biological material is an egg cell, a fertilized egg cell, a sperm cell, an embryonic stem cell, an iPS cell, an adult stem cell, a fibroblast, a feeder cell, a vascular endothelial cell, a bone marrow cell, an immune cell, a hepatocyte, a kidney cell, a nerve cell, Pancreatic cells, smooth muscle cells, cardiomyocytes, myoblasts, corneal cells, retinal cells, chondrocytes, cartilage progenitor cells, synovial cells, synovial stem cells, osteoblasts, odontocytes, periodontal ligament cells, oral mucosa The preservative according to any one of claims 1 to 6, which is a cell, mesenchymal stem cell, adipocyte, adipose stem cell, ovary, semen, blood, blood cell, platelet or heart.
  8.  前記生物材料が、食品としての牛肉、豚肉、鶏肉、魚肉、貝類、穀類、野菜若しくは果実、又は花卉である、請求項1~5のいずれか一項に記載の保存剤。 The preservative according to any one of claims 1 to 5, wherein the biological material is beef, pork, chicken, fish, shellfish, cereals, vegetables or fruits, or flowers as food.
  9.  請求項1~8のいずれか一項に記載の保存剤を含む生物材料の低温保存用の保存液。 A storage solution for low-temperature storage of biological materials containing the preservative according to any one of claims 1 to 8.
  10.  式(I):
    Figure JPOXMLDOC01-appb-C000003
    〔式中、R1~R6は同一又は異なって、水素原子、水酸基、-CO2R7、置換されてもよいアルキル基、置換されてもよいアルケニル基、置換されてもよいアルコキシ基、置換されてもよいアルキルチオ基、置換されてもよいアルキルスルフィニル基又は置換されてもよいアルキルスルホニル基であって、少なくとも1つは水酸基であり、R1~R6のうち任意の2つが合同して環を形成してもよく、R7は水素原子又は置換されてもよいアルキル基である〕で表される化合物を含む溶液に生物材料を浸漬し、該溶液を低温に保持することを特徴とする生物材料の保存方法。
    Formula (I):
    Figure JPOXMLDOC01-appb-C000003
    [Wherein, R 1 to R 6 are the same or different and each represents a hydrogen atom, a hydroxyl group, —CO 2 R 7 , an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkoxy group, An optionally substituted alkylthio group, an optionally substituted alkylsulfinyl group or an optionally substituted alkylsulfonyl group, at least one of which is a hydroxyl group, and any two of R 1 to R 6 are congruent; The biological material may be immersed in a solution containing a compound represented by the following formula: R 7 is a hydrogen atom or an optionally substituted alkyl group, and the solution is kept at a low temperature. A method for preserving biological materials.
  11.  R1~R5が同一又は異なって、水素原子、水酸基又はアルコキシ基であって、少なくとも1つは水酸基であり、R6が水酸基及び/若しくはアルコキシ基で置換されてもよいフェニルアルケニル基又は-(R7)n-COR8であり、R7がアルキレン基又はアルケニレン基であり、R8が水酸基、アルコキシ基又はアラルキルオキシ基であり、nが0~2の整数である、請求項10に記載の方法。 R 1 to R 5 are the same or different and are a hydrogen atom, a hydroxyl group or an alkoxy group, at least one is a hydroxyl group, and R 6 is a phenylalkenyl group which may be substituted with a hydroxyl group and / or an alkoxy group, or- (R 7 ) n —COR 8 , R 7 is an alkylene group or an alkenylene group, R 8 is a hydroxyl group, an alkoxy group, or an aralkyloxy group, and n is an integer of 0 to 2. The method described.
  12.  前記式(I)で表される化合物が、カフェー酸メチルエステル、カフェー酸エチルエステル、カフェー酸フェネチルエステル、フェルラ酸エチルエステル、メチル3-(3,4-ジヒドロキシフェニル)プロパノエート、メチル2-(3,4-ジヒドロキシフェニル)アセテート、没食子酸メチルエステル、没食子酸エチルエステル、没食子酸プロピルエステル、3,4-ジヒドロキシ安息香酸メチルエステル、3,4-ジヒドロキシ安息香酸エチルエステル、2,5-ジヒドロキシ安息香酸メチルエステル、2,3-ジヒドロキシ安息香酸メチルエステル、レスベラトロール、イソラポンチゲニン、プテロスチルベン、ピノスチルベン、ラポンチゲニン、オキシレスベラトロール及びグネトールからなる群から選ばれる少なくとも1種である、請求項10又は11に記載の方法。 The compound represented by the above formula (I) is caffeic acid methyl ester, caffeic acid ethyl ester, caffeic acid phenethyl ester, ferulic acid ethyl ester, methyl 3- (3,4-dihydroxyphenyl) propanoate, methyl 2- (3 , 4-Dihydroxyphenyl) acetate, gallic acid methyl ester, gallic acid ethyl ester, gallic acid propyl ester, 3,4-dihydroxybenzoic acid methyl ester, 3,4-dihydroxybenzoic acid ethyl ester, 2,5-dihydroxybenzoic acid The methyl ester, 2,3-dihydroxybenzoic acid methyl ester, resveratrol, isolapontigenin, pterostilbene, pinostilbene, rapontigenin, oxyresveratrol, and gnetitol are at least one selected from the group consisting of: Or the method of 11.
  13.  前記溶液が、請求項4に記載のフラボノイド配糖体化合物を更に含む、請求項10~12のいずれか一項に記載の方法。 The method according to any one of claims 10 to 12, wherein the solution further comprises the flavonoid glycoside compound according to claim 4.
  14.  前記フラボノイド配糖体化合物が、クエルセチン-3-グルコシド、ケンペロール-7-グルコシド及びアピゲニン-7-グルコシドからなる群から選ばれる少なくとも1種である、請求項13に記載の方法。 The method according to claim 13, wherein the flavonoid glycoside compound is at least one selected from the group consisting of quercetin-3-glucoside, kaempferol-7-glucoside, and apigenin-7-glucoside.
  15.  前記生物材料が、動物若しくは植物細胞、組織、器官、臓器又は培養細胞シートである、請求項10~14のいずれか一項に記載の方法。 The method according to any one of claims 10 to 14, wherein the biological material is an animal or plant cell, tissue, organ, organ, or cultured cell sheet.
  16.  前記生物材料が、卵子細胞、受精卵細胞、精子細胞、胚性幹細胞、iPS細胞、成体幹細胞、線維芽細胞、フィーダー細胞、血管内皮細胞、骨髄細胞、免疫細胞、肝細胞、腎臓細胞、神経細胞、膵臓細胞、平滑筋細胞、心筋細胞、筋芽細胞、角膜細胞、網膜細胞、軟骨細胞、軟骨前駆細胞、滑膜由来細胞、滑膜幹細胞、骨芽細胞、歯芽細胞、歯根膜細胞、口腔粘膜細胞、間葉系幹細胞、脂肪細胞、脂肪幹細胞、卵巣、精液、血液、血球、血小板又は心臓である、請求項10~15のいずれか一項に記載の方法。 The biological material is an egg cell, a fertilized egg cell, a sperm cell, an embryonic stem cell, an iPS cell, an adult stem cell, a fibroblast, a feeder cell, a vascular endothelial cell, a bone marrow cell, an immune cell, a hepatocyte, a kidney cell, a nerve cell, Pancreatic cells, smooth muscle cells, cardiomyocytes, myoblasts, corneal cells, retinal cells, chondrocytes, cartilage progenitor cells, synovial cells, synovial stem cells, osteoblasts, odontocytes, periodontal ligament cells, oral mucosa The method according to any one of claims 10 to 15, which is a cell, mesenchymal stem cell, adipocyte, adipose stem cell, ovary, semen, blood, blood cell, platelet or heart.
  17.  前記生物材料が、食品としての牛肉、豚肉、鶏肉、魚肉、貝類、穀類、野菜若しくは果実、又は花卉である、請求項10~14のいずれか一項に記載の方法。 The method according to any one of claims 10 to 14, wherein the biological material is beef, pork, chicken, fish, shellfish, cereals, vegetables or fruits, or florets as food.
PCT/JP2013/069012 2012-07-11 2013-07-11 Preservative agent for use in low-temperature preservation of biological material, and method for preserving biological material at low temperature WO2014010685A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012155494 2012-07-11
JP2012-155494 2012-07-11

Publications (1)

Publication Number Publication Date
WO2014010685A1 true WO2014010685A1 (en) 2014-01-16

Family

ID=49916126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069012 WO2014010685A1 (en) 2012-07-11 2013-07-11 Preservative agent for use in low-temperature preservation of biological material, and method for preserving biological material at low temperature

Country Status (1)

Country Link
WO (1) WO2014010685A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162910A1 (en) * 2013-04-03 2014-10-09 石原産業株式会社 Preservative for cryopreservation of biological materials and method for preserving biological materials at low temperature
FR3026607A1 (en) * 2014-10-03 2016-04-08 Centre Nat Rech Scient COMPOUNDS FOR PRESERVING CELLS, TISSUES AND ORGANS, COMPOSITIONS AND USES
CN105532648A (en) * 2016-02-16 2016-05-04 云南省畜牧兽医科学院 Small ruminant semen freezing dilution solution
CN108522633A (en) * 2018-03-27 2018-09-14 浙江工商大学 A kind of multiple preserving antistaling agent composition formula and application containing ferulic acid butyl ester
CN109258793A (en) * 2018-11-23 2019-01-25 广东省农业科学院果树研究所 A kind of bacteriostatic agent and its preparation method and application
EP3517107A4 (en) * 2016-09-26 2020-06-10 St. Marianna University School of Medicine Agent for preventing or ameliorating reduction in ovarian function
CN111849872A (en) * 2020-07-29 2020-10-30 吉林省农业科学院 Method for improving in-vitro fertilization effect of thawed pig sperms
CN112386611A (en) * 2020-11-30 2021-02-23 深圳博雅感知药业有限公司 Mesenchymal stem cell composition for treating osteoarthritis and preparation method and application thereof
CN112451482A (en) * 2020-11-30 2021-03-09 深圳博雅感知药业有限公司 Method of treating osteoarthritis
CN112602703A (en) * 2020-12-17 2021-04-06 中山大学附属第三医院 Preparation method and application of cold preservation solution for cells, tissues or organs
CN112616911A (en) * 2020-12-08 2021-04-09 陕西师范大学 Application of pterostilbene in delaying fruit senescence and preventing and treating apple and pear tiger skin diseases
CN113412857A (en) * 2021-06-28 2021-09-21 北京市农林科学院 Protocatechuic acid ester-containing fruit and vegetable sterilization and fresh-keeping agent

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221032A (en) * 1984-04-16 1985-11-05 Nippon Oil & Fats Co Ltd Freshness preserving agent for fish and shellfish
JPH04278044A (en) * 1991-03-04 1992-10-02 San Ei Chem Ind Ltd Treatment of meat
JP2000344602A (en) * 1999-06-02 2000-12-12 Mg Seiyaku Kk Preservative for animal cell or organ and its preservation
WO2002001952A1 (en) * 2000-07-05 2002-01-10 Hiromi Wada Preservation fluid for cells and tissues
WO2004019680A1 (en) * 2002-08-30 2004-03-11 Mg Pharmacy Inc. Composition for protecting organ, tissue or cell and utilization thereof
JP2005287346A (en) * 2004-03-31 2005-10-20 Dainichiseika Color & Chem Mfg Co Ltd Freshness-keeping agent for farm product/garden product preserved in refrigerator, and method for keeping freshness in refregeration
WO2006070883A1 (en) * 2004-12-28 2006-07-06 Suntory Limited Quercetin glycoside composition and method of preparing the same
JP2006188436A (en) * 2004-12-28 2006-07-20 Japan Science & Technology Agency Medical polyphenol solution
JP2007519712A (en) * 2004-02-02 2007-07-19 アイ.エム.ティー.・インターフェース・マルティグラッド・テクノロジー・リミテッド Biological materials and methods and solutions for storage of biological materials
WO2008007684A1 (en) * 2006-07-14 2008-01-17 National University Corporation Hokkaido University Supercooling promoting agent
JP2009221128A (en) * 2008-03-14 2009-10-01 Seizo Fujikawa Liquid and method for storing organ
JP2009219395A (en) * 2008-03-14 2009-10-01 Seizo Fujikawa Freeze-preservative liquid and freeze-preserving method
KR20110016175A (en) * 2009-08-11 2011-02-17 건국대학교 산학협력단 Method and composition for preserving cells
JP2011527985A (en) * 2008-03-06 2011-11-10 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for anti-inflammatory and anti-edema protection until explanted biological material is implanted into a patient
WO2013047665A1 (en) * 2011-09-29 2013-04-04 石原産業株式会社 Preservative for low-temperature preservation of biological materials, and method for preserving biological materials at low temperatures
WO2013047666A1 (en) * 2011-09-29 2013-04-04 石原産業株式会社 Preservative for low-temperature preservation of biological materials, and method for preserving biological materials at low temperature

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221032A (en) * 1984-04-16 1985-11-05 Nippon Oil & Fats Co Ltd Freshness preserving agent for fish and shellfish
JPH04278044A (en) * 1991-03-04 1992-10-02 San Ei Chem Ind Ltd Treatment of meat
JP2000344602A (en) * 1999-06-02 2000-12-12 Mg Seiyaku Kk Preservative for animal cell or organ and its preservation
WO2002001952A1 (en) * 2000-07-05 2002-01-10 Hiromi Wada Preservation fluid for cells and tissues
WO2004019680A1 (en) * 2002-08-30 2004-03-11 Mg Pharmacy Inc. Composition for protecting organ, tissue or cell and utilization thereof
JP2007519712A (en) * 2004-02-02 2007-07-19 アイ.エム.ティー.・インターフェース・マルティグラッド・テクノロジー・リミテッド Biological materials and methods and solutions for storage of biological materials
JP2005287346A (en) * 2004-03-31 2005-10-20 Dainichiseika Color & Chem Mfg Co Ltd Freshness-keeping agent for farm product/garden product preserved in refrigerator, and method for keeping freshness in refregeration
WO2006070883A1 (en) * 2004-12-28 2006-07-06 Suntory Limited Quercetin glycoside composition and method of preparing the same
JP2006188436A (en) * 2004-12-28 2006-07-20 Japan Science & Technology Agency Medical polyphenol solution
WO2008007684A1 (en) * 2006-07-14 2008-01-17 National University Corporation Hokkaido University Supercooling promoting agent
JP2011527985A (en) * 2008-03-06 2011-11-10 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for anti-inflammatory and anti-edema protection until explanted biological material is implanted into a patient
JP2009221128A (en) * 2008-03-14 2009-10-01 Seizo Fujikawa Liquid and method for storing organ
JP2009219395A (en) * 2008-03-14 2009-10-01 Seizo Fujikawa Freeze-preservative liquid and freeze-preserving method
KR20110016175A (en) * 2009-08-11 2011-02-17 건국대학교 산학협력단 Method and composition for preserving cells
WO2013047665A1 (en) * 2011-09-29 2013-04-04 石原産業株式会社 Preservative for low-temperature preservation of biological materials, and method for preserving biological materials at low temperatures
WO2013047666A1 (en) * 2011-09-29 2013-04-04 石原産業株式会社 Preservative for low-temperature preservation of biological materials, and method for preserving biological materials at low temperature

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Phenol (Seiri Bango 96-5), Kizon Kagaku Busshitsu Anzensei (Hazard) Hyoka Sheet", 29 July 2013 (2013-07-29), Retrieved from the Internet <URL:http://www.safe.nite.go.jp/japan/sougou/data/pdf/hazard/sheet/96-5.pdf> *
AHLENSTIEL T. ET AL.: "Bioflavonoids attenuate renal proximal tubular cell injury during cold preservation in Euro-Collins and University of Wisconsin solutions", KIDNEY INT., vol. 63, no. 2, 2003, pages 554 - 563 *
AHLENSTIEL T. ET AL.: "Improved cold preservation of kidney tubular cells by means of adding bioflavonoids to organ preservation solutions", TRANSPLANTATION, vol. 81, no. 2, 2006, pages 231 - 239 *
BRANCO, C.S. ET AL.: "Resveratrol and ascorbic acid prevent DNA damage induced by cryopreservation in human semen", CRYOBIOLOGY, vol. 60, 2010, pages 235 - 237 *
NAKAZAWA F. ET AL.: "Improvement of preserving hepatocyte in new method for the therapy of hepatocyte transplantation", ORGAN BIOL., vol. 16, no. 1, 2009, pages 74 *
SILVA, E.C.B. ET AL.: "Effect of antioxidants resveratrol and quercetin on in vitro evaluation of frozen ram sperm", THERIOGENOLOGY, vol. 77, May 2012 (2012-05-01), pages 1722 - 1726 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162910A1 (en) * 2013-04-03 2014-10-09 石原産業株式会社 Preservative for cryopreservation of biological materials and method for preserving biological materials at low temperature
FR3026607A1 (en) * 2014-10-03 2016-04-08 Centre Nat Rech Scient COMPOUNDS FOR PRESERVING CELLS, TISSUES AND ORGANS, COMPOSITIONS AND USES
CN105532648A (en) * 2016-02-16 2016-05-04 云南省畜牧兽医科学院 Small ruminant semen freezing dilution solution
WO2017139908A1 (en) * 2016-02-16 2017-08-24 权国波 Small ruminant semen freezing diluent
CN105532648B (en) * 2016-02-16 2018-01-12 云南省畜牧兽医科学院 A kind of small ruminant sperm freezing dilution liquid
EP3517107A4 (en) * 2016-09-26 2020-06-10 St. Marianna University School of Medicine Agent for preventing or ameliorating reduction in ovarian function
CN108522633A (en) * 2018-03-27 2018-09-14 浙江工商大学 A kind of multiple preserving antistaling agent composition formula and application containing ferulic acid butyl ester
CN109258793A (en) * 2018-11-23 2019-01-25 广东省农业科学院果树研究所 A kind of bacteriostatic agent and its preparation method and application
CN111849872A (en) * 2020-07-29 2020-10-30 吉林省农业科学院 Method for improving in-vitro fertilization effect of thawed pig sperms
CN111849872B (en) * 2020-07-29 2022-01-11 吉林省农业科学院 Method for improving in-vitro fertilization effect of thawed pig sperms for non-treatment infertility
CN112386611A (en) * 2020-11-30 2021-02-23 深圳博雅感知药业有限公司 Mesenchymal stem cell composition for treating osteoarthritis and preparation method and application thereof
CN112451482A (en) * 2020-11-30 2021-03-09 深圳博雅感知药业有限公司 Method of treating osteoarthritis
CN112616911A (en) * 2020-12-08 2021-04-09 陕西师范大学 Application of pterostilbene in delaying fruit senescence and preventing and treating apple and pear tiger skin diseases
CN112602703A (en) * 2020-12-17 2021-04-06 中山大学附属第三医院 Preparation method and application of cold preservation solution for cells, tissues or organs
CN112602703B (en) * 2020-12-17 2022-05-27 中山大学附属第三医院 Preparation method and application of cold preservation solution for cells, tissues or organs
WO2022133247A3 (en) * 2020-12-17 2022-08-18 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Composition and method of preserving viability of cell in a low temperature environment
CN113412857A (en) * 2021-06-28 2021-09-21 北京市农林科学院 Protocatechuic acid ester-containing fruit and vegetable sterilization and fresh-keeping agent

Similar Documents

Publication Publication Date Title
WO2014010685A1 (en) Preservative agent for use in low-temperature preservation of biological material, and method for preserving biological material at low temperature
WO2014162910A1 (en) Preservative for cryopreservation of biological materials and method for preserving biological materials at low temperature
JP5835853B2 (en) Aqueous solution for cell preservation
JP7157050B2 (en) Compositions and methods for maintaining cell viability
Seo et al. Cryopreservation of amniotic fluid-derived stem cells using natural cryoprotectants and low concentrations of dimethylsulfoxide
JP2000344602A (en) Preservative for animal cell or organ and its preservation
Amini et al. Effects of supplementation of Tris-egg yolk extender with royal jelly on chilled and frozen-thawed ram semen characteristics
JP6561173B2 (en) Mammalian cell administration solution
AU2017340511B2 (en) Systems and methods for natural cryoprotectants for preservation of cells
TR201816125T4 (en) Composition and method for protecting, transporting and storing living biological materials.
JP7323290B2 (en) Cryopreserved compositions and methods of use thereof
WO2013047665A1 (en) Preservative for low-temperature preservation of biological materials, and method for preserving biological materials at low temperatures
WO2013047666A1 (en) Preservative for low-temperature preservation of biological materials, and method for preserving biological materials at low temperature
Hu et al. Trehalose in biomedical cryopreservation–properties, mechanisms, delivery methods, applications, benefits, and problems
Daramola et al. Effects of coconut milk alone or supplementation with pyridoxine in tris-extenders on viability of buck spermatozoa during vitrification
ES2949014T3 (en) Use of a solution comprising PEG for the preservation of stem cells
JP5562939B2 (en) Actin cytoskeletal rearrangement and method of regulation of intercellular gap formation
Wei et al. A natural tetrahydropyrimidine protects small bowel from cold ischemia and subsequent warm in vitro reperfusion injury
JP6626225B2 (en) Cell cryopreservation composition and cryopreservation method
JP2010248160A (en) Peptide having life-lengthening effect on cells
Han et al. Non-frozen preservation of mammalian tissue using green tea polyphenolic compounds
JP6777865B2 (en) Preservatives for organs or tissues and methods for preserving organs or tissues
KR101611555B1 (en) Method of preserving animal embryo
JP2014198673A (en) Preservative for low temperature storage of animal embryo and method of storing animal embryo at low temperature
US20230056314A1 (en) Cytoprotective compositions for short-term cells storage and transportation without cryopreservation and deep freezing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP