WO2014010104A1 - Power generation device - Google Patents

Power generation device Download PDF

Info

Publication number
WO2014010104A1
WO2014010104A1 PCT/JP2012/071820 JP2012071820W WO2014010104A1 WO 2014010104 A1 WO2014010104 A1 WO 2014010104A1 JP 2012071820 W JP2012071820 W JP 2012071820W WO 2014010104 A1 WO2014010104 A1 WO 2014010104A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating body
permanent magnet
electromagnet
power generation
generation device
Prior art date
Application number
PCT/JP2012/071820
Other languages
French (fr)
Japanese (ja)
Inventor
清司 合津
弘元 渡部
久幸 佐藤
Original Assignee
Aizu Kiyoshi
Watanabe Hiroyuki
Sato Hisayuki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aizu Kiyoshi, Watanabe Hiroyuki, Sato Hisayuki filed Critical Aizu Kiyoshi
Publication of WO2014010104A1 publication Critical patent/WO2014010104A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/12Transversal flux machines

Definitions

  • the present invention relates to a power generation device, and more particularly to a power generation device capable of efficiently generating energy.
  • an electric motor as a power generation device supplies direct current or alternating current power to generate an electromagnetic force in an electromagnet, and causes this electromagnetic force to follow a rotating body in which a permanent magnet is embedded to generate a magnetic attractive force.
  • a power generation device there are the following prior art documents.
  • a plurality of permanent magnets are arranged in the circumferential direction at the peripheral portion of the rotating body connected to the rotating shaft in the housing, and are opposed to the permanent magnet around the rotating body.
  • a plurality of electromagnets are arranged.
  • an object of the present invention is to provide a power generation device that efficiently generates energy.
  • a rotating body having a permanent magnet embedded therein in which a rotating body having a permanent magnet embedded therein is provided and an electromagnet is disposed with respect to the permanent magnet
  • a rotor having a plurality of permanent magnets embedded in a direction is provided, and a C-shaped iron core having a magnet passage gap through which the permanent magnet passes when the rotating body rotates, and the iron core
  • a stator provided with a coil wound by being polymerized a plurality of times is provided.
  • the rotor since the permanent magnet embedded in the rotor's rotor passes through the magnet passage gap of the stator's iron core, the rotor can be smoothly rotated to generate energy efficiently.
  • FIG. 1 is an exploded view of the power generator.
  • Example 1 FIG. 2 is a plan view of the power generator.
  • Example 1 FIG. 3 is a sectional view of the power generator.
  • Example 1 FIG. 4 is a plan view of the upper plate.
  • Example 1 FIG. 5 is a side view of the upper plate of FIG.
  • Example 1 FIG. 6 is a plan view of the rotating body.
  • Example 1 FIG. 7 is a side view of the rotating body of FIG.
  • Example 1 FIG. 8 is a plan view of another rotating body.
  • Example 1 FIG. 9 is a side view of another rotating body of FIG.
  • Example 1 FIG. 10 is a front view of the iron core.
  • Example 1 FIG. 11 is a side view of the iron core of FIG.
  • Example 1 FIG. 12 is a front view of the bracket.
  • FIG. 13 is a bottom view of the bracket of FIG.
  • Example 1 FIG. 15 is a schematic configuration diagram when the power generation device is used as an electric motor.
  • Example 1 FIG. 16 is a schematic configuration diagram of a power generation device using solar energy.
  • FIG. 17 is a schematic configuration diagram when a power generation device using solar energy is used as a generator.
  • FIG. 18 is a configuration diagram of the power generation device.
  • FIG. 19 is an exploded view of the power generator. (Example 4)
  • the present invention realizes the purpose of generating energy efficiently by forming a magnet passage gap in the stator through which a permanent magnet embedded in the rotor of the rotor passes.
  • FIGS. 4 and 5 show Embodiment 1 of the present invention.
  • reference numeral 1 denotes a power generator.
  • the power generation device 1 is used as an electric motor, for example, and includes a rotor 3 and a stator 4 in a frame body 2.
  • the frame 2 has an upper plate 5 as one side plate and a lower plate 6 as the other side plate arranged at a predetermined distance in the vertical direction, and corresponding four corner portions of the upper plate 5 and the lower plate 6 respectively.
  • the frame support members 7 are connected by four frame support members 7 (only one is shown in FIG. 1).
  • the upper plate 5 has a predetermined thickness and is formed in, for example, a square shape. Since the lower plate 6 is configured in the same manner as the upper plate 5, the detailed description thereof is omitted here.
  • the upper end portion of the frame support member 7 includes a threaded portion 8, and the threaded portion 8 is inserted into the upper corner mounting hole 9 formed in the upper plate 5 from below, and the mounting nut 10 is threaded from above the upper plate 5. By being tightened to 8, it is attached to the upper plate 5.
  • the lower end portion of the frame support member 7 includes a screw hole 11 inside from the lower end surface, and is disposed in contact with the upper surface of the lower plate 6.
  • the lower end portion of the frame support member 7 is inserted from below into the lower corner mounting hole 14 formed on the lower plate 6 at the upper end of the screw rod 13 having the vibration isolating pad 12 at the lower end and screwed into the screw hole 11. Thus, it is attached to the lower plate 6.
  • the rotor 3 includes a rotating body 16 having a rotating shaft 15 coupled to a central portion, and a plurality of permanent members embedded in the rotating body 16 in the circumferential direction. It consists of a magnet 17.
  • the rotating body 16 is made of a nonmagnetic material, and has a shaft mounting hole 18 formed in the central portion.
  • the rotating shaft 15 is inserted into a shaft insertion hole 20 formed in a shaft support member 19 fitted in the shaft mounting hole 18 of the rotating body 16.
  • four bolt insertion holes 21 are formed in the shaft support member 19 at equal intervals in the circumferential direction.
  • the shaft support member 19 can rotate the rotating shaft 15 by fixing the fixing bolt 22 inserted into the bolt insertion hole 21 from above into the screw hole 23 of the rotating body 16. I support it.
  • the rotating body 16 is formed in a disk shape with a predetermined thickness, and the shaft mounting hole 18 is formed in the central portion, and as the permanent magnets 17, for example, four permanent magnets 17, 17, 17, and 17 are embedded in circular magnet embedding holes 24, 24, 24, and 24 that are formed by penetrating the peripheral portion at equal intervals in the circumferential direction.
  • the permanent magnet 17 has, for example, the same thickness as the rotating body 16 and is formed in a circular shape with a predetermined diameter, and is embedded in the magnet embedding hole 24 of the rotating body 16. As shown in FIGS.
  • the embedded structure of the permanent magnet 17 in the rotating body 16 is the first magnet embedded with the same diameter D1 as the permanent magnet 17 at a depth T from the upper surface of the rotating body 16 in the upper part.
  • the magnet mounting portion 25B can be formed internally with an inner diameter D2 smaller than the inner diameter D1 at the lower portion, and the permanent magnet 17 can be stably attached to the magnet mounting portion 25B from above.
  • an upper end portion as one end portion of the rotation shaft 15 is rotatably attached to the upper plate 5 by an upper attachment portion 26.
  • the upper mounting portion 26 includes an upper bearing holder 27 and an upper bearing fixing collar 28, and rotatably supports the rotating shaft 15.
  • the upper bearing holder 27 is formed with a shaft insertion hole 29 through which the rotary shaft 15 is inserted at the center portion, and is attached to the lower surface of the upper plate 5 and at the center portion of the upper plate 5. It is inserted into the hole 30.
  • the upper bearing holder 27 forms four screw holes 31 at equal intervals in the circumferential direction.
  • the upper bearing holder 27 has four holder mounting bolts 33 inserted from above into four holder mounting holes 32 formed at equal intervals in the circumferential direction around the upper mounting hole 30 of the upper plate 5. It is attached to the upper plate 5 by screwing into the upper plate 5 respectively.
  • the upper bearing fixing collar 28 has a shaft insertion hole 34 through which the rotary shaft 15 is inserted at a central portion, and is attached in contact with the upper surface of the upper bearing holder 27.
  • the lower end portion as the other end side of the rotation shaft 15 is rotatably attached to the lower plate 6 by the lower attachment portion 35.
  • the lower mounting portion 35 is configured in the same manner as the upper mounting portion 26 described above.
  • the lower mounting portion 35 includes a lower bearing holder 36 and a lower bearing fixing collar 37, and rotatably supports the rotating shaft 15.
  • the lower bearing holder 36 is formed with a shaft insertion hole 38 through which the rotary shaft 15 is inserted in a central portion, and is inserted into a lower mounting hole 39 that is in contact with the upper surface of the lower plate 6 and formed in the central portion of the lower plate 6. Is done.
  • the lower bearing holder 36 is formed with four bolt insertion holes 40 at equal intervals in the circumferential direction. As shown in FIG.
  • the lower bearing holder 36 is a holder mounting screw in which holder mounting bolts 41 inserted into the bolt insertion holes 40 are formed at equal intervals in the circumferential direction around the lower mounting holes 39 of the lower plate 6. It is attached to the lower plate 6 by being screwed into the hole 42.
  • the lower bearing fixing collar 37 is attached in contact with the upper surface of the lower bearing holder 36 while forming a shaft insertion hole 43 through which the rotary shaft 15 is inserted at a central portion.
  • the stator 4 includes a plurality of electromagnets 44 arranged at locations corresponding to the permanent magnets 17 of the rotating body 16.
  • the electromagnets 44 are arranged to face the four permanent magnets 17 of the rotating body 16.
  • the four electromagnets 44 are arranged at equal intervals in the circumferential direction around the rotating body 16 and are fixed to the frame body 2.
  • the electromagnet 44 is configured by winding a coil 46 around an iron core 45, and generates electromagnetic force when DC or AC power is supplied.
  • the iron core 45 is made of a magnetic material, is formed in a C-shaped cross section, and forms a magnet passage gap 47 through which the permanent magnet 17 embedded in the rotating body 16 passes. ing.
  • the magnet passage gap 47 is formed at a predetermined distance S in the vertical direction so as to pass the permanent magnet 17 of the rotating body 16 rotating in the horizontal direction.
  • the iron core 45 is composed of a plurality of (for example, 64) iron plates (plate thickness of about 0.5 mm) 48 as a magnetic material and is integrally formed by a plurality of caulking pins 49, and is opposite to the magnet passage gap 47.
  • a central portion 50 oriented in the vertical direction, an upper portion 51 as one side continuous with one side of the central portion 50, and a lower side portion as another side continuous with the other side of the central portion 50 52.
  • the electromagnet 44 is configured with a predetermined permeability and a predetermined cross-sectional area so as to generate a required electromagnetic force.
  • the iron core 45 is formed with an upper flange 53 and an upper side surface portion 54 that is connected to the upper flange 53 and is not wound with the coil 46 in the upward direction of the magnet passage gap 47. Further, the iron core 45 is formed with a lower flange 55 and a lower side surface portion 56 that is connected to the lower flange 55 and is not wound with the coil 46 in the downward direction of the magnet passage gap 47. Yes.
  • the iron core 45 of the stator 4 has a fixed distance L (2 mm) with respect to the upper surface 17A that is one surface of the permanent magnet 17.
  • the one side gap forming surface 47A which is the surface of the upper side surface 54 facing each other and the lower surface 17B which is the other surface of the permanent magnet 17.
  • the other-side gap forming surface 47B which is the surface.
  • the one-side gap forming surface 47A and the other-side gap forming surface 47B are formed in the same predetermined surface area. The area of the one-side gap forming surface 47A and the other-side gap forming surface 47B can be variously changed as required.
  • the fixed distances L and L are such that the upper surface 17A of the permanent magnet 17 faces the one side gap forming surface 47A of the upper side surface portion 54, and the lower surface 17B of the permanent magnet 17 is the other side gap forming surface 47B of the upper side surface portion 54.
  • the distance that reduces the magnetic resistance increases the magnetic flux density (surface density per unit of magnetic flux: magnetic field) and increases the magnetic attraction force, and the required electromagnetic force (magnetic field and current Force generated by the interaction) is ensured, and the rotational torque is increased to smoothly rotate the rotating body 16, that is, mechanical energy is efficiently generated with less electric energy.
  • the coil 46 is wound by superposing a plurality of times at the central portion 50, the upper portion 51, and the lower portion 52 between the upper flange 53 and the lower flange 55 of the iron core 45.
  • the conventional coil 46 has a length of 200 m.
  • the length is 600 m.
  • the electromagnet 44 is attached to the upper plate 5 and the lower plate 6 by an electromagnet mounting mechanism 58 using a plurality of brackets 57.
  • the bracket 57 has an L-shaped cross section with a long portion 59 and a short portion 60 bent at a right angle from the long portion 59, and on the coil side on the distal end side of the long portion 59.
  • a mounting hole 61 is formed, and a pair of fixing screw holes 62 and 62 are formed in the short portion 60.
  • the upper mounting hole 63 is formed in the horizontal direction in the upper side surface portion 54
  • the lower mounting hole 64 is horizontal in the lower side surface portion 56. Is formed in the direction.
  • an upper interposed pipe 65 is inserted and provided in the upper mounting hole 63.
  • An upper mounting rod 66 is inserted through the upper intervening pipe material 65.
  • the upper mounting rod 66 is formed with threaded portions 67 at both ends.
  • the threaded portions 67 are respectively inserted into the coil-side mounting holes 61 of the brackets 57 arranged on both sides of the electromagnet 44, and to the threaded portion 67.
  • the mounting nut 68 is screwed into the bracket 57.
  • Each of the brackets 57 arranged on both sides of the electromagnet 44 has a short portion 60 in contact with the lower surface of the upper plate 5 and a pair of fixing bolts 70 inserted from above into a pair of bolt insertion holes 69 formed in the upper plate 5. Then, it is fixed to the upper plate 5 by being screwed into the pair of fixing screw holes 62. Further, the lower interposition tube 71 is provided in the lower mounting hole 64. The lower intervening pipe 71 is configured in the same manner as the upper intervening pipe 65 described above. A lower mounting rod 72 is inserted through the lower interposed pipe 71. The lower mounting rod 72 is configured in the same manner as the upper mounting rod 66 described above, and has threaded portions 73 formed at both ends.
  • the threaded portions 73 are arranged on the coil side of the bracket 57 disposed on both sides of the electromagnet 44. Each is inserted into the mounting hole 61 and is then attached to the bracket 57 by screwing a mounting nut 74 into the threaded portion 73.
  • the both side brackets 57 of the electromagnet 44 have the short part 60 in contact with the upper surface of the lower plate 6 and a pair of fixing bolts 76 from below to a pair of bolt insertion holes 75 formed in the lower plate 6 as shown in FIG. And is fixed to the lower plate 6 by being screwed into the pair of fixing screw holes 62.
  • the power supply control device 78 includes a power source 78A and a power supply adjustment unit 78B, and controls the supply of power (direct current or alternating current) to the electromagnet 44.
  • the magnetic field of the permanent magnet 17 is distorted in the rotating direction of the rotating body 16 by the magnetic field of the electromagnet 44, and a repulsive force is generated between the electromagnet 44 and the permanent magnet 17.
  • the repulsive force is such that the upper surface 17A of the permanent magnet 17 faces the one-side gap forming surface 47A of the upper side surface portion 54 at a certain distance L, and the lower surface 17B of the permanent magnet 17 is the other side of the lower side surface portion 56.
  • the side gap forming surface 47B is opposed to the side gap forming surface 47B at a certain distance L, it is larger than the conventional case where the one end surface of the permanent magnet and the one end surface of the electromagnet are opposed to each other, and a large rotational torque is obtained.
  • the magnetic field of the permanent magnet 17 that enters next is distorted by the magnetic field of the electromagnet 44, and the distortion becomes larger toward the opposite pole of the permanent magnet 17 that has previously entered. Therefore, the repulsive force between the permanent magnet 17 and the electromagnet 44 that has entered first is greater than the repulsive force between the permanent magnet 17 and the electromagnet 44 that has entered next.
  • FIG. 16 shows Embodiment 2 of the present invention.
  • the solar panel 79 constituting the solar system is connected to the electromagnet 44 of the stator 4 in parallel with the power supply control device 78.
  • the solar panel 79 is connected to one end of an electric wire 81 provided with a solar energy storage unit 80 for storing electric power obtained by solar energy on the way.
  • the electric wire 77 of the power supply control device 78 and the other end of the electric wire 81 of the solar panel 79 are connected to the power switching device 82.
  • the power switching device 82 is connected to the electromagnet 44 by the electric wire 83 and normally supplies the electric power (current) from the solar energy storage unit 80 preferentially to the electromagnet 44. When (current) is lost, power (current) from the power supply control device 78 is supplied to the electromagnet 44.
  • the power switching device 82 supplies the power from the solar energy storage unit 80 to the electromagnet so as to supplement the power from the power supply control device 78 when power is supplied to the electromagnet 44 by the power supply control device 78. 44 can also be supplied. According to the structure of the second embodiment, the same effects as those of the first embodiment described above are obtained, and power (current) obtained from the solar panel 79 is preferentially supplied to the electromagnet 44 to control external power supply.
  • the device 78 Since the device 78 is assisted by the power obtained by the solar panel 79, the amount of power used by the power supply control device 78 can be reduced, and saving can be achieved. Further, when the rotational torque of the rotating body 16 tends to decrease due to aging of the permanent magnet 17 or the like, the rotation of the rotating body 16 is assisted by the power of the solar panel 79, and the power supply control device 78 Even when the electric power of is constant, the rotating body 16 can be smoothly rotated.
  • FIG. 17 shows Embodiment 3 of the present invention.
  • the features of the third embodiment are as follows. That is, in order to use the power generation device 1 as a generator, a rotating mechanism 84 is provided on the rotating shaft 15, an actuator 85 that drives the rotating mechanism 84 is provided, and the sunlight obtained from the solar panel 86 is obtained by the actuator 85.
  • the structure is driven by electric power from the solar energy storage unit 87 that stores energy.
  • the electromagnet 44 is connected to a storage battery 88 and a machine tool 89 by electric wires 90 and 90.
  • the rotating body 16 is rotated using solar energy, and the rotation of the rotating body 16 causes the electromagnet 44 to efficiently generate an electric force. It can be generated efficiently. And this electrical energy can be stored in the storage battery 88, or the mechanical instrument 89 can be driven.
  • the rotor 3 includes an annular body 92 as a rotating body in which a plurality of (for example, four) permanent magnets 17 are embedded at equal intervals in the circumferential direction within the case 91, and the annular body.
  • a disk-shaped support body 93 that supports 92 and is provided with a rotating shaft 15.
  • the annular body 92 is formed in a ring shape with a predetermined thickness, and is arranged so that the direction of the axis C is in the horizontal direction.
  • the support body 93 is formed by fixing the side surface 92A of the annular body 92 to the side surface 93A with a predetermined fixing means so that the annular body 92 can pass through the magnet passage gap 47 of the electromagnet 44. Support. Further, the support 93 is provided so as to penetrate the rotation shaft 15 so as to extend in the horizontal direction at the central portion. A plurality of (for example, four) electromagnets 44 are arranged along the torus 92 and are attached to the case 91 by an electromagnet attachment mechanism 58.
  • the outer surface 17 ⁇ / b> C which is one surface of the permanent magnet 17 becomes the one-side gap formation surface 47 ⁇ / b> A of the electromagnet 44.
  • the inner surface 17 ⁇ / b> D which is the other surface of the permanent magnet 17, faces the other gap forming surface 47 ⁇ / b> B of the electromagnet 44 at a certain distance L.
  • the frame body may have other shapes such as a box shape. It is also possible to connect and use two or more power generation devices. Furthermore, the shape of the permanent magnet can be not only a circular shape but also other shapes such as a square shape.
  • the power from the power generation device according to the present invention can be used to drive various devices.

Abstract

[Problem] To configure a power generation device so that the power generation device efficiently generates energy, the power generation device being provided with a rotating body to which permanent magnets are provided and also with electromagnets facing the permanent magnets. [Solution] A power generation device comprises: a rotor (3) provided with a rotating body (16), to the center portion of which a rotating shaft (15) is connected, and also with permanent magnets (17) which are embedded in the rotating body (16) along the circumferential direction; and a stator (4) comprising iron cores (45) having a C-shaped cross-section, the iron cores (45) each having formed therein a magnet passage gap (47) through which the permanent magnets (17) embedded in the rotating body (16) pass, the stator (4) also comprising coils (46) each wound multiple times around each of the iron cores (45) in a superposed manner.

Description

動力発生装置Power generator
 この発明は、動力発生装置に係り、特にエネルギを効率良く発生させることができる動力発生装置に関する。  The present invention relates to a power generation device, and more particularly to a power generation device capable of efficiently generating energy.
 従来、動力発生装置としての電動機には、例えば、直流又は交流の電力を供給して電磁石に電磁力を発生させ、この電磁力に永久磁石が埋設された回転体を追従させて、磁気吸引力によって回転体を回転させるものがある。
 このような動力発生装置としては、以下のような先行技術文献がある。 
2. Description of the Related Art Conventionally, an electric motor as a power generation device, for example, supplies direct current or alternating current power to generate an electromagnetic force in an electromagnet, and causes this electromagnetic force to follow a rotating body in which a permanent magnet is embedded to generate a magnetic attractive force. There are those that rotate the rotating body.
As such a power generation device, there are the following prior art documents.
特開2007-306700号公報JP 2007-306700 A
 特許文献1に記載の磁力発電装置は、ハウジング内において、回転軸が連結された回転体の周縁部位で永久磁石を円周方向に複数個配置し、また、回転体の周辺で永久磁石に対向するように複数の電磁石を配設したものである。 In the magnetic power generation device described in Patent Document 1, a plurality of permanent magnets are arranged in the circumferential direction at the peripheral portion of the rotating body connected to the rotating shaft in the housing, and are opposed to the permanent magnet around the rotating body. Thus, a plurality of electromagnets are arranged.
 ところが、従来、動力発生装置においては、永久磁石が埋設された回転体の周辺に電磁石を配設している場合に、永久磁石の一端面に対して電磁石の一端面のみが対峙するだけなので、電磁力が比較的小さく、よって、回転体をスムーズに回転させることが難しく、エネルギを効率良く発生させることができなかった。 However, conventionally, in the power generation device, when the electromagnet is disposed around the rotating body in which the permanent magnet is embedded, only one end surface of the electromagnet is opposed to the one end surface of the permanent magnet. The electromagnetic force is relatively small. Therefore, it is difficult to smoothly rotate the rotating body, and energy cannot be generated efficiently.
 そこで、この発明の目的は、エネルギを効率良く発生させることが動力発生装置を提供することにある。  Therefore, an object of the present invention is to provide a power generation device that efficiently generates energy.
 この発明は、永久磁石が埋設された回転体を設けるとともに、前記永久磁石に対して電磁石を配設する動力発生装置において、中心部位に回転軸が連結された回転体とこの回転体に円周方向で埋設された複数の永久磁石とを備えたロータを設け、前記回転体が回転した際に前記永久磁石が通過する磁石通過用ギャップを形成した断面C字形状の鉄芯とこの鉄芯に複数回重合して巻き付けられたコイルとを備えたステータを設けたことを特徴とする。 According to the present invention, in a power generation device in which a rotating body having a permanent magnet embedded therein is provided and an electromagnet is disposed with respect to the permanent magnet, a rotating body having a rotating shaft connected to a central portion, and a circumference around the rotating body A rotor having a plurality of permanent magnets embedded in a direction is provided, and a C-shaped iron core having a magnet passage gap through which the permanent magnet passes when the rotating body rotates, and the iron core A stator provided with a coil wound by being polymerized a plurality of times is provided.
 この発明は、ロータの回転体に埋設された永久磁石をステータの鉄芯の磁石通過用ギャップに通過させることから、回転体をスムーズに回転させて、エネルギを効率良く発生させることができる。 In the present invention, since the permanent magnet embedded in the rotor's rotor passes through the magnet passage gap of the stator's iron core, the rotor can be smoothly rotated to generate energy efficiently.
図1は動力発生装置の分解図である。(実施例1)FIG. 1 is an exploded view of the power generator. Example 1 図2は動力発生装置の平面図である。(実施例1)FIG. 2 is a plan view of the power generator. Example 1 図3は動力発生装置の断面図である。(実施例1)FIG. 3 is a sectional view of the power generator. Example 1 図4は上板の平面図である。(実施例1)FIG. 4 is a plan view of the upper plate. Example 1 図5は図4の上板の側面図である。(実施例1)FIG. 5 is a side view of the upper plate of FIG. Example 1 図6は回転体の平面図である。(実施例1)FIG. 6 is a plan view of the rotating body. Example 1 図7は図6の回転体の側面図である。(実施例1)FIG. 7 is a side view of the rotating body of FIG. Example 1 図8は他の回転体の平面図である。(実施例1)FIG. 8 is a plan view of another rotating body. Example 1 図9は図8の他の回転体の側面図である。(実施例1)FIG. 9 is a side view of another rotating body of FIG. Example 1 図10は鉄芯の正面図である。(実施例1)FIG. 10 is a front view of the iron core. Example 1 図11は図10の鉄芯の側面図である。(実施例1)FIG. 11 is a side view of the iron core of FIG. Example 1 図12はブラケットの正面図である。(実施例1)FIG. 12 is a front view of the bracket. Example 1 図13は図12のブラケットの底面図である。(実施例1)FIG. 13 is a bottom view of the bracket of FIG. Example 1 図14は図12のブラケットの側面図である。(実施例1)FIG. 14 is a side view of the bracket of FIG. Example 1 図15は動力発生装置を電動機として利用する場合の概略構成図である。(実施例1)FIG. 15 is a schematic configuration diagram when the power generation device is used as an electric motor. Example 1 図16は太陽光エネルギを利用する動力発生装置の概略構成図である。(実施例2)FIG. 16 is a schematic configuration diagram of a power generation device using solar energy. (Example 2) 図17は太陽光エネルギを利用した動力発生装置を発電機として利用する場合の概略構成図である。(実施例3)FIG. 17 is a schematic configuration diagram when a power generation device using solar energy is used as a generator. (Example 3) 図18は動力発生装置の構成図である。(実施例4)FIG. 18 is a configuration diagram of the power generation device. (Example 4) 図19は動力発生装置の分解図である。(実施例4)FIG. 19 is an exploded view of the power generator. (Example 4)
 この発明は、エネルギを効率良く発生させる目的を、ロータの回転体に埋設された永久磁石が通過する磁石通過用ギャップをステータに形成して実現するものである。 The present invention realizes the purpose of generating energy efficiently by forming a magnet passage gap in the stator through which a permanent magnet embedded in the rotor of the rotor passes.
 図1~図15は、この発明の実施例1を示すものである。 
 図1~図3において、1は動力発生装置である。 
 この動力発生装置1は、例えば、電動機として利用されるものであって、枠体2内で、ロータ3とステータ4とを備える。 
 枠体2は、一側板としての上板5と他側板としての下板6とを上下方向で所定に離間して配置するとともに、上板5と下板6との対応するそれぞれ4つの隅部位を4本の枠支持部材7(図1では1本のみ記載する)でそれぞれ連結して構成される。
 上板5は、図4、図5に示すように、所定厚さであって、例えば、四角形状に形成されている。なお、下板6は、上板5と同様に構成されているので、ここでは、その詳細な説明を省略する。
1 to 15 show Embodiment 1 of the present invention.
1 to 3, reference numeral 1 denotes a power generator.
The power generation device 1 is used as an electric motor, for example, and includes a rotor 3 and a stator 4 in a frame body 2.
The frame 2 has an upper plate 5 as one side plate and a lower plate 6 as the other side plate arranged at a predetermined distance in the vertical direction, and corresponding four corner portions of the upper plate 5 and the lower plate 6 respectively. Are connected by four frame support members 7 (only one is shown in FIG. 1).
As shown in FIGS. 4 and 5, the upper plate 5 has a predetermined thickness and is formed in, for example, a square shape. Since the lower plate 6 is configured in the same manner as the upper plate 5, the detailed description thereof is omitted here.
 枠支持部材7の上端部位は、ねじ部8を備え、このねじ部8が上板5に形成した上側隅取付孔9へ下方から挿入されて且つ上板5の上方から取付ナット10がねじ部8へ締め付けられることで、上板5に取り付けられる。
 枠支持部材7の下端部位は、下端面から内部にねじ穴11を備え、下板6の上面に接して配置される。そして、枠支持部材7の下端部位は、下端に防振パット12を備えたねじ棒13の上端が下板6に形成した下側隅取付孔14へ下方から挿入され且つねじ穴11へねじ込まれることで、下板6に取り付けられる。
The upper end portion of the frame support member 7 includes a threaded portion 8, and the threaded portion 8 is inserted into the upper corner mounting hole 9 formed in the upper plate 5 from below, and the mounting nut 10 is threaded from above the upper plate 5. By being tightened to 8, it is attached to the upper plate 5.
The lower end portion of the frame support member 7 includes a screw hole 11 inside from the lower end surface, and is disposed in contact with the upper surface of the lower plate 6. The lower end portion of the frame support member 7 is inserted from below into the lower corner mounting hole 14 formed on the lower plate 6 at the upper end of the screw rod 13 having the vibration isolating pad 12 at the lower end and screwed into the screw hole 11. Thus, it is attached to the lower plate 6.
 図1、図3、図6、図7に示すように、ロータ3は、中心部位に回転軸15が連結される回転体16と、この回転体16に円周方向で埋設された複数の永久磁石17とからなる。
 回転体16は、非磁性材料からなり、中心部位に軸取付孔18を形成している。 
 回転軸15は、回転体16の軸取付孔18に嵌装した軸支持部材19に形成された軸挿通孔20へ挿通されている。 
 軸支持部材19には、図3に示すように、円周方向等間隔に4つのボルト挿通孔21が形成されている。軸支持部材19は、図1に示すように、上方からボルト挿通孔21へ挿入された固定ボルト22が回転体16のねじ穴23へねじ込まれて固定されることで、回転軸15を回転可能に支持している。
As shown in FIGS. 1, 3, 6, and 7, the rotor 3 includes a rotating body 16 having a rotating shaft 15 coupled to a central portion, and a plurality of permanent members embedded in the rotating body 16 in the circumferential direction. It consists of a magnet 17.
The rotating body 16 is made of a nonmagnetic material, and has a shaft mounting hole 18 formed in the central portion.
The rotating shaft 15 is inserted into a shaft insertion hole 20 formed in a shaft support member 19 fitted in the shaft mounting hole 18 of the rotating body 16.
As shown in FIG. 3, four bolt insertion holes 21 are formed in the shaft support member 19 at equal intervals in the circumferential direction. As shown in FIG. 1, the shaft support member 19 can rotate the rotating shaft 15 by fixing the fixing bolt 22 inserted into the bolt insertion hole 21 from above into the screw hole 23 of the rotating body 16. I support it.
 回転体16は、図6、図7に示すように、所定厚さで円板形状に形成され、中心部位に前記軸取付孔18を形成するとともに、永久磁石17として、例えば、4つの永久磁石17、17、17、17を、周縁部位で円周方向等間隔に貫通して形成された円形状の磁石埋設孔24、24、24、24に埋設している。永久磁石17は、例えば、回転体16のと同一厚さであって、所定直径の円形状に形成され、回転体16の磁石埋設孔24に埋設される。
 なお、図8、図9に示すように、永久磁石17の回転体16への埋設構造としては、上部で回転体16の上面から深さTで永久磁石17と同径D1の第1磁石埋設孔25Aを形成するとともに、下部では内径D1よりも小さな内径D2として内部で磁石載置部25Bを形成し、上方から永久磁石17を磁石載置部25Bに安定して取り付けることも可能である。
As shown in FIGS. 6 and 7, the rotating body 16 is formed in a disk shape with a predetermined thickness, and the shaft mounting hole 18 is formed in the central portion, and as the permanent magnets 17, for example, four permanent magnets 17, 17, 17, and 17 are embedded in circular magnet embedding holes 24, 24, 24, and 24 that are formed by penetrating the peripheral portion at equal intervals in the circumferential direction. The permanent magnet 17 has, for example, the same thickness as the rotating body 16 and is formed in a circular shape with a predetermined diameter, and is embedded in the magnet embedding hole 24 of the rotating body 16.
As shown in FIGS. 8 and 9, the embedded structure of the permanent magnet 17 in the rotating body 16 is the first magnet embedded with the same diameter D1 as the permanent magnet 17 at a depth T from the upper surface of the rotating body 16 in the upper part. In addition to forming the hole 25A, the magnet mounting portion 25B can be formed internally with an inner diameter D2 smaller than the inner diameter D1 at the lower portion, and the permanent magnet 17 can be stably attached to the magnet mounting portion 25B from above.
 回転軸15の一端部としての上端部は、上板5に上側取付部26によって回転自在に取り付けられる。 
 上側取付部26は、図1、図3に示すように、上側ベアリングホルダ27と上側ベアリング固定カラー28とを備え、回転軸15を回転自在に支持する。
 上側ベアリングホルダ27は、図3に示すように、中心部位に回転軸15が挿通する軸挿通孔29を形成するとともに、上板5の下面に接し且つ上板5の中心部位に形成した上側取付孔30に挿着される。
 上側ベアリングホルダ27は、円周方向等間隔で4つのねじ穴31を形成している。この上側ベアリングホルダ27は、上板5の上側取付孔30の周辺で円周方向等間隔に形成した4つのホルダ取付用孔32へ上方から挿通された4本のホルダ取付ボルト33をねじ穴31へそれぞれねじ込むことで、上板5に取り付けられる。
 上側ベアリング固定用カラー28は、中心部位に回転軸15が挿通する軸挿通孔34を形成するとともに、上側ベアリングホルダ27の上面に接して取り付けられる。
An upper end portion as one end portion of the rotation shaft 15 is rotatably attached to the upper plate 5 by an upper attachment portion 26.
As shown in FIGS. 1 and 3, the upper mounting portion 26 includes an upper bearing holder 27 and an upper bearing fixing collar 28, and rotatably supports the rotating shaft 15.
As shown in FIG. 3, the upper bearing holder 27 is formed with a shaft insertion hole 29 through which the rotary shaft 15 is inserted at the center portion, and is attached to the lower surface of the upper plate 5 and at the center portion of the upper plate 5. It is inserted into the hole 30.
The upper bearing holder 27 forms four screw holes 31 at equal intervals in the circumferential direction. The upper bearing holder 27 has four holder mounting bolts 33 inserted from above into four holder mounting holes 32 formed at equal intervals in the circumferential direction around the upper mounting hole 30 of the upper plate 5. It is attached to the upper plate 5 by screwing into the upper plate 5 respectively.
The upper bearing fixing collar 28 has a shaft insertion hole 34 through which the rotary shaft 15 is inserted at a central portion, and is attached in contact with the upper surface of the upper bearing holder 27.
 回転軸15の他端側としての下端部は、下側取付部35によって下板6に回転自在に取り付けられる。この下側取付部35は、上記の上側取付部26と同様に構成されている。
 下側取付部35は、図3に示すように、下側ベアリングホルダ36と下側ベアリング固定カラー37とを備え、回転軸15を回転自在に支持する。
 下側ベアリングホルダ36は、中心部位に回転軸15が挿通する軸挿通孔38を形成するとともに、下板6の上面に接し且つ下板6の中心部位に形成した下側取付孔39に挿着される。
 下側ベアリングホルダ36には、円周方向等間隔で4つのボルト挿通孔40が形成されている。下側ベアリングホルダ36は、図3に示すように、ボルト挿通孔40へ挿通されたホルダ取付ボルト41を下板6の下側取付孔39の周辺で円周方向等間隔に形成したホルダ取付ねじ孔42へねじ込むことで、下板6に取り付けられる。
 下側ベアリング固定用カラー37は、中心部位に回転軸15が挿通する軸挿通孔43を形成するとともに、下側ベアリングホルダ36の上面に接して取り付けられる。
The lower end portion as the other end side of the rotation shaft 15 is rotatably attached to the lower plate 6 by the lower attachment portion 35. The lower mounting portion 35 is configured in the same manner as the upper mounting portion 26 described above.
As shown in FIG. 3, the lower mounting portion 35 includes a lower bearing holder 36 and a lower bearing fixing collar 37, and rotatably supports the rotating shaft 15.
The lower bearing holder 36 is formed with a shaft insertion hole 38 through which the rotary shaft 15 is inserted in a central portion, and is inserted into a lower mounting hole 39 that is in contact with the upper surface of the lower plate 6 and formed in the central portion of the lower plate 6. Is done.
The lower bearing holder 36 is formed with four bolt insertion holes 40 at equal intervals in the circumferential direction. As shown in FIG. 3, the lower bearing holder 36 is a holder mounting screw in which holder mounting bolts 41 inserted into the bolt insertion holes 40 are formed at equal intervals in the circumferential direction around the lower mounting holes 39 of the lower plate 6. It is attached to the lower plate 6 by being screwed into the hole 42.
The lower bearing fixing collar 37 is attached in contact with the upper surface of the lower bearing holder 36 while forming a shaft insertion hole 43 through which the rotary shaft 15 is inserted at a central portion.
 ステータ4は、回転体16の各永久磁石17に対応した箇所に配置された複数の電磁石44からなる。 
 この電磁石44は、回転体16の4つの永久磁石17に対向してそれぞれ配置されている。つまり、この実施例1では、例えば、4つの電磁石44は、回転体16の周辺で円周方向等間隔に配置され、枠体2に固定される。
 電磁石44は、鉄芯45にコイル46を巻き付けて構成され、直流又は交流の電力が供給されると電磁力を発生するものである。 
 鉄芯45は、図10、図11に示すように、磁性材料からなって、断面C字形状に形成され、回転体16に埋設された永久磁石17が通過する磁石通過用ギャップ47を形成している。この磁石通過用ギャップ47は、水平方向で回転する回転体16の永久磁石17を通過させるように、上下方向で所定の距離Sに形成されている。
 鉄芯45は、磁性材料としての鉄板(板厚が0.5mm程度)48が複数枚(例えば64枚)重合して複数のカシメピン49によって一体に構成され、磁石通過用ギャップ47とは反対側で上下方向に指向する中央部50と、この中央部50の一側に連設する一側部としての上側部51と、中央部50の他側に連設する他側部としての下側部52とを備える。また、電磁石44は、所要の電磁力を発生するように、所定の透磁率及び所定の断面積に構成されている。
The stator 4 includes a plurality of electromagnets 44 arranged at locations corresponding to the permanent magnets 17 of the rotating body 16.
The electromagnets 44 are arranged to face the four permanent magnets 17 of the rotating body 16. In other words, in the first embodiment, for example, the four electromagnets 44 are arranged at equal intervals in the circumferential direction around the rotating body 16 and are fixed to the frame body 2.
The electromagnet 44 is configured by winding a coil 46 around an iron core 45, and generates electromagnetic force when DC or AC power is supplied.
As shown in FIGS. 10 and 11, the iron core 45 is made of a magnetic material, is formed in a C-shaped cross section, and forms a magnet passage gap 47 through which the permanent magnet 17 embedded in the rotating body 16 passes. ing. The magnet passage gap 47 is formed at a predetermined distance S in the vertical direction so as to pass the permanent magnet 17 of the rotating body 16 rotating in the horizontal direction.
The iron core 45 is composed of a plurality of (for example, 64) iron plates (plate thickness of about 0.5 mm) 48 as a magnetic material and is integrally formed by a plurality of caulking pins 49, and is opposite to the magnet passage gap 47. A central portion 50 oriented in the vertical direction, an upper portion 51 as one side continuous with one side of the central portion 50, and a lower side portion as another side continuous with the other side of the central portion 50 52. Further, the electromagnet 44 is configured with a predetermined permeability and a predetermined cross-sectional area so as to generate a required electromagnetic force.
 また、鉄芯45には、磁石通過用ギャップ47の上方向で、上側フランジ53と、この上側フランジ53に連設してコイル46が巻き付けられていない上側面部54とが形成されている。また、鉄芯45には、磁石通過用ギャップ47の下方向で、下側フランジ55と、この下側フランジ55に連設してコイル46が巻き付けられていない下側面部56とが形成されている。
 ステータ4の鉄芯45は、回転体16が回転して永久磁石17が磁石通過用ギャップ47内を通過する際に、永久磁石17の一方の面である上面17Aに対して一定距離L(2mm程度)で対峙する上側面部54の表面である一側ギャップ形成面47Aと、永久磁石17の他方の面である下面17Bに対して一定距離L(2mm程度)で対峙する下側面部56の表面である他側ギャップ形成面47Bとを備える。
 上記の一側ギャップ形成面47Aと他側ギャップ形成面47Bとは、同一の所定面域に形成されている。なお、この一側ギャップ形成面47Aと他側ギャップ形成面47Bとの面域は、所要により、種々変更可能である。
 上記の一定距離L、Lは、永久磁石17の上面17Aが上側面部54の一側ギャップ形成面47Aに対峙し、且つ永久磁石17の下面17Bが上側面部54の他側ギャップ形成面47Bに対向した際に、磁気抵抗を少なくする距離であって、磁束密度(磁束の単位当たりの面密度:磁場)を大きくして磁気吸引力を増加し、所要の電磁力(磁界と電流との相互作用で発生する力)を確保させ、回転トルクを上昇させて回転体16をスムーズに回転、つまり、少ない電気エネルギで機械エネルギを効率良く発生させるものである。
 コイル46は、鉄芯45の上側フランジ53と下側フランジ55間の中央部50と上側部51と下側部52とで複数回重合して巻き付けられ、例えば、従来が200mの長さであったのに対して、この実施例では、600mの長さである。このように、コイル46を鉄芯45に重合して多く巻き付けることにより、電磁石44が発生する電磁力を、従来よりも大きくすることが可能となる。
 なお、鉄芯45へのコイル46の巻き付けにあっては、鉄芯45の中央部50のみにコイル46を巻き付けたり、あるいは、上側部51・下側部52のみにコイル46を巻き付けることも可能である。
The iron core 45 is formed with an upper flange 53 and an upper side surface portion 54 that is connected to the upper flange 53 and is not wound with the coil 46 in the upward direction of the magnet passage gap 47. Further, the iron core 45 is formed with a lower flange 55 and a lower side surface portion 56 that is connected to the lower flange 55 and is not wound with the coil 46 in the downward direction of the magnet passage gap 47. Yes.
When the rotating body 16 rotates and the permanent magnet 17 passes through the magnet passage gap 47, the iron core 45 of the stator 4 has a fixed distance L (2 mm) with respect to the upper surface 17A that is one surface of the permanent magnet 17. Of the lower side surface 56 facing each other at a fixed distance L (about 2 mm) with respect to the one side gap forming surface 47A which is the surface of the upper side surface 54 facing each other and the lower surface 17B which is the other surface of the permanent magnet 17. And the other-side gap forming surface 47B which is the surface.
The one-side gap forming surface 47A and the other-side gap forming surface 47B are formed in the same predetermined surface area. The area of the one-side gap forming surface 47A and the other-side gap forming surface 47B can be variously changed as required.
The fixed distances L and L are such that the upper surface 17A of the permanent magnet 17 faces the one side gap forming surface 47A of the upper side surface portion 54, and the lower surface 17B of the permanent magnet 17 is the other side gap forming surface 47B of the upper side surface portion 54. Is the distance that reduces the magnetic resistance, increases the magnetic flux density (surface density per unit of magnetic flux: magnetic field) and increases the magnetic attraction force, and the required electromagnetic force (magnetic field and current Force generated by the interaction) is ensured, and the rotational torque is increased to smoothly rotate the rotating body 16, that is, mechanical energy is efficiently generated with less electric energy.
The coil 46 is wound by superposing a plurality of times at the central portion 50, the upper portion 51, and the lower portion 52 between the upper flange 53 and the lower flange 55 of the iron core 45. For example, the conventional coil 46 has a length of 200 m. In contrast, in this embodiment, the length is 600 m. Thus, by superposing the coil 46 around the iron core 45 and winding it a lot, the electromagnetic force generated by the electromagnet 44 can be made larger than before.
When winding the coil 46 around the iron core 45, the coil 46 can be wound only around the central portion 50 of the iron core 45, or the coil 46 can be wound only around the upper portion 51 and the lower portion 52. It is.
 電磁石44は、図1に示すように、複数個のブラケット57を用いた電磁石取付機構58によって上板5及び下板6に取り付けられる。
 ブラケット57は、図12~図14に示すように、長手部59とこの長手部59から直角に曲がった短手部60との断面L字形状であって、長手部59の先端側にコイル側取付孔61を形成するとともに、短手部60には一対の固定用ねじ孔62・62を形成している。
 電磁石44において、鉄芯45には、図10に示すように、上側面部54で上側取付用孔63が水平方向に形成されているとともに、下側面部56では下側取付用孔64が水平方向で形成されている。
As shown in FIG. 1, the electromagnet 44 is attached to the upper plate 5 and the lower plate 6 by an electromagnet mounting mechanism 58 using a plurality of brackets 57.
As shown in FIGS. 12 to 14, the bracket 57 has an L-shaped cross section with a long portion 59 and a short portion 60 bent at a right angle from the long portion 59, and on the coil side on the distal end side of the long portion 59. A mounting hole 61 is formed, and a pair of fixing screw holes 62 and 62 are formed in the short portion 60.
As shown in FIG. 10, in the electromagnet 44, as shown in FIG. 10, the upper mounting hole 63 is formed in the horizontal direction in the upper side surface portion 54, and the lower mounting hole 64 is horizontal in the lower side surface portion 56. Is formed in the direction.
 図1、図3に示すように、上側取付用孔63には、上側介在管材65が挿入して設けられる。この上側介在管材65には、上側取付用棒66が挿通して設けられる。上側取付用棒66は、両端にねじ部67が形成されており、このねじ部67が電磁石44の両側に配置されたブラケット57のコイル側取付孔61へそれぞれ挿通され、そして、ねじ部67へ取付ナット68をねじ込むことで、ブラケット57に取り付けられる。
 そして、電磁石44の両側に配置されたそれぞれブラケット57は、短手部60が上板5の下面に接し、上板5に形成した一対のボルト挿通孔69へ上方から一対の固定ボルト70を挿通して一対の固定用ねじ孔62に螺着することで、上板5に固定される。
 また、下側取付用孔64には、下側介在管材71が挿入して設けられる。この下側介在管材71は、上記の上側介在管材65と同様に構成されている。この下側介在管材71には、下側取付用棒72が挿通して設けられる。下側取付用棒72は、上記の上側取付用棒66と同様に構成され、両端にねじ部73が形成されており、このねじ部73が電磁石44の両側に配置されたブラケット57のコイル側取付孔61へそれぞれ挿通され、そして、ねじ部73に取付ナット74をねじ込むことで、ブラケット57に取り付けられる。
 そして、電磁石44の両側ブラケット57は、短手部60が下板6の上面に接し、図1に示すように、下板6に形成した一対のボルト挿通孔75へ下方から一対の固定ボルト76を挿通して一対の固定用ねじ孔62にねじ込むことで、下板6に固定される。
As shown in FIGS. 1 and 3, an upper interposed pipe 65 is inserted and provided in the upper mounting hole 63. An upper mounting rod 66 is inserted through the upper intervening pipe material 65. The upper mounting rod 66 is formed with threaded portions 67 at both ends. The threaded portions 67 are respectively inserted into the coil-side mounting holes 61 of the brackets 57 arranged on both sides of the electromagnet 44, and to the threaded portion 67. The mounting nut 68 is screwed into the bracket 57.
Each of the brackets 57 arranged on both sides of the electromagnet 44 has a short portion 60 in contact with the lower surface of the upper plate 5 and a pair of fixing bolts 70 inserted from above into a pair of bolt insertion holes 69 formed in the upper plate 5. Then, it is fixed to the upper plate 5 by being screwed into the pair of fixing screw holes 62.
Further, the lower interposition tube 71 is provided in the lower mounting hole 64. The lower intervening pipe 71 is configured in the same manner as the upper intervening pipe 65 described above. A lower mounting rod 72 is inserted through the lower interposed pipe 71. The lower mounting rod 72 is configured in the same manner as the upper mounting rod 66 described above, and has threaded portions 73 formed at both ends. The threaded portions 73 are arranged on the coil side of the bracket 57 disposed on both sides of the electromagnet 44. Each is inserted into the mounting hole 61 and is then attached to the bracket 57 by screwing a mounting nut 74 into the threaded portion 73.
The both side brackets 57 of the electromagnet 44 have the short part 60 in contact with the upper surface of the lower plate 6 and a pair of fixing bolts 76 from below to a pair of bolt insertion holes 75 formed in the lower plate 6 as shown in FIG. And is fixed to the lower plate 6 by being screwed into the pair of fixing screw holes 62.
 図15に示すように、電磁石44には、電線77・77の一端が接続している。この電線77・77の他端は、外部の電力供給制御装置78に接続している。この電力供給制御装置78は、電力源78Aと電力供給調整部78Bとを備え、電磁石44への電力(直流又は交流)の供給を制御する。 As shown in FIG. 15, one end of electric wires 77 and 77 is connected to the electromagnet 44. The other ends of the electric wires 77 and 77 are connected to an external power supply control device 78. The power supply control device 78 includes a power source 78A and a power supply adjustment unit 78B, and controls the supply of power (direct current or alternating current) to the electromagnet 44.
 次に、この実施例1の作用を説明する。 
 電力供給制御装置78からステータ4の電磁石44に電力としての電流(1つの電磁石に対して0.5A:4つで2A、110V)を供給すると、電磁石44付近に在る永久磁石17の磁界が電磁石44に収束され、そして、永久磁石17が電磁石44に吸引されることで、回転体16が回転する。
 この回転体16の回転により、図10に示すように、断面C字形状に形成された電磁石44の磁石通過用ギャップ47内を永久磁石17が通過する際に、永久磁石17の上面17Aが上側面部54の一側ギャップ形成面47Aに一定距離Lで対峙し、且つ永久磁石17の下面17Bが下側面部56の他側ギャップ形成面47Bに一定距離Lで対峙する。これにより、磁束密度(磁束の単位当たりの面密度)は、大きくなる。
 そして、永久磁石17の磁界が電磁石44の磁界によって回転体16の回転方向に歪み、電磁石44と永久磁石17との間で互いに反発力が生じる。この反発力は、上記のように、永久磁石17の上面17Aが上側面部54の一側ギャップ形成面47Aに一定距離Lで対峙し、且つ永久磁石17の下面17Bが下側面部56の他側ギャップ形成面47Bに一定距離Lで対峙してあったことから、従来のように、単に永久磁石の一端面と電磁石の一端面とが対向している場合と比べて大きくなり、大きな回転トルクを生じさせる。
 その後、次に侵入する永久磁石17の磁界は、電磁石44の磁界によって歪み、先に侵入した永久磁石17の反対極に向かって、その歪みがより大きくなる。従って、先に侵入した永久磁石17と電磁石44との間の反発力は、次に侵入する永久磁石17と電磁石44との間の反発力よりも大きくなる。
 上記のような状況は、回転体16が回転している際に、各電磁石44の配置部位(例えば、4箇所)で同時に存在する。 
 これにより、先に侵入した永久磁石17には磁石通過用ギャップ47内から押し出されるような力が働き、そして、回転体16には大きな回転力が作用する。そして、この回転力が与えられた回転体16は、慣性力で回転をし続け、このとき、上記の大きな回転トルクにより、スムーズな回転になる。
 このように、永久磁石17が磁石通過用ギャップ47内を通過するときには、磁束密度を大きくして、所要の電磁力を確保させる等で、回転トルクを従来よりも大きくして、回転体16をスムーズに回転させ、これにより、少ない電気エネルギで機械エネルギを効率良く発生させることができる。
 また、ステータ4の鉄芯45に磁石通過用ギャップ47を形成するだけなので、構造が簡単で、取り扱いも良く、しかも、廉価とすることができる。
Next, the operation of the first embodiment will be described.
When electric current (0.5 A for one electromagnet: 2 A, 110 V) is supplied from the power supply control device 78 to the electromagnet 44 of the stator 4, the magnetic field of the permanent magnet 17 in the vicinity of the electromagnet 44 is changed. The rotating body 16 rotates by being converged on the electromagnet 44 and attracting the permanent magnet 17 to the electromagnet 44.
The rotation of the rotating body 16 causes the upper surface 17A of the permanent magnet 17 to rise when the permanent magnet 17 passes through the magnet passage gap 47 of the electromagnet 44 having a C-shaped cross section as shown in FIG. The lower surface 17B of the permanent magnet 17 faces the other side gap forming surface 47B of the lower side surface portion 56 at a constant distance L. Thereby, magnetic flux density (surface density per unit of magnetic flux) becomes large.
The magnetic field of the permanent magnet 17 is distorted in the rotating direction of the rotating body 16 by the magnetic field of the electromagnet 44, and a repulsive force is generated between the electromagnet 44 and the permanent magnet 17. As described above, the repulsive force is such that the upper surface 17A of the permanent magnet 17 faces the one-side gap forming surface 47A of the upper side surface portion 54 at a certain distance L, and the lower surface 17B of the permanent magnet 17 is the other side of the lower side surface portion 56. Since the side gap forming surface 47B is opposed to the side gap forming surface 47B at a certain distance L, it is larger than the conventional case where the one end surface of the permanent magnet and the one end surface of the electromagnet are opposed to each other, and a large rotational torque is obtained. Give rise to
Thereafter, the magnetic field of the permanent magnet 17 that enters next is distorted by the magnetic field of the electromagnet 44, and the distortion becomes larger toward the opposite pole of the permanent magnet 17 that has previously entered. Therefore, the repulsive force between the permanent magnet 17 and the electromagnet 44 that has entered first is greater than the repulsive force between the permanent magnet 17 and the electromagnet 44 that has entered next.
The situation as described above is simultaneously present at the locations where the electromagnets 44 are disposed (for example, four locations) when the rotating body 16 is rotating.
As a result, a force that is pushed out from the inside of the magnet passage gap 47 acts on the permanent magnet 17 that has previously entered, and a large rotational force acts on the rotating body 16. The rotating body 16 to which the rotational force is applied continues to rotate with the inertial force, and at this time, smooth rotation is achieved by the large rotational torque.
Thus, when the permanent magnet 17 passes through the magnet passage gap 47, the rotational torque is made larger than before by increasing the magnetic flux density and ensuring the required electromagnetic force. By rotating smoothly, mechanical energy can be efficiently generated with less electric energy.
Further, since only the magnet passage gap 47 is formed in the iron core 45 of the stator 4, the structure is simple, the handling is good, and the cost can be reduced.
 図16は、この発明の実施例2を示すものである。 
 以下の実施例においては、上述の実施例1と同一機能を果たす箇所には、同一符号を付して説明する。 
 この実施例2の特徴とするところは、以下の点にある。即ち、ステータ4の電磁石44には、電力供給制御装置78と並列に、太陽光システムを構成する太陽光パネル79を連絡する。この太陽光パネル79には、途中に太陽光エネルギで得た電力を蓄積する太陽光エネルギ蓄積部80が備えられた電線81の一端が接続している。また、電力供給制御装置78の電線77と太陽光パネル79の電線81の他端とは、電力切換装置82に接続している。この電力切換装置82は、電磁石44に電線83で接続し、通常、太陽光エネルギ蓄積部80からの電力(電流)を優先的に電磁石44に供給するが、太陽光エネルギ蓄積部80からの電力(電流)が無くなった場合に、電力供給制御装置78からの電力(電流)を電磁石44に供給するものである。なお、電力切換装置82は、電力供給制御装置78によって電力を電磁石44に供給している際に、電力供給制御装置78からの電力を補うように、太陽光エネルギ蓄積部80からの電力を電磁石44に供給することも可能である。
 この実施例2の構造によれば、上述の実施例1と同様な作用効果を得るとともに、太陽光パネル79から得た電力(電流)を優先して電磁石44に供給し、外部の電力供給制御装置78を太陽光パネル79で得た電力によってアシストすることから、電力供給制御装置78の電力の使用量を減少させ、節減を図ることができる。
 また、永久磁石17の経年変化等により、回転体16の回転トルクが減少しようとした際に、この回転体16の回転に太陽光パネル79の電力によってアシストを実行し、電力供給制御装置78からの電力が一定の場合でも、回転体16をスムーズに回転させることができる。
FIG. 16 shows Embodiment 2 of the present invention.
In the following embodiments, portions that perform the same functions as those in the first embodiment will be described with the same reference numerals.
The features of the second embodiment are as follows. That is, the solar panel 79 constituting the solar system is connected to the electromagnet 44 of the stator 4 in parallel with the power supply control device 78. The solar panel 79 is connected to one end of an electric wire 81 provided with a solar energy storage unit 80 for storing electric power obtained by solar energy on the way. Further, the electric wire 77 of the power supply control device 78 and the other end of the electric wire 81 of the solar panel 79 are connected to the power switching device 82. The power switching device 82 is connected to the electromagnet 44 by the electric wire 83 and normally supplies the electric power (current) from the solar energy storage unit 80 preferentially to the electromagnet 44. When (current) is lost, power (current) from the power supply control device 78 is supplied to the electromagnet 44. The power switching device 82 supplies the power from the solar energy storage unit 80 to the electromagnet so as to supplement the power from the power supply control device 78 when power is supplied to the electromagnet 44 by the power supply control device 78. 44 can also be supplied.
According to the structure of the second embodiment, the same effects as those of the first embodiment described above are obtained, and power (current) obtained from the solar panel 79 is preferentially supplied to the electromagnet 44 to control external power supply. Since the device 78 is assisted by the power obtained by the solar panel 79, the amount of power used by the power supply control device 78 can be reduced, and saving can be achieved.
Further, when the rotational torque of the rotating body 16 tends to decrease due to aging of the permanent magnet 17 or the like, the rotation of the rotating body 16 is assisted by the power of the solar panel 79, and the power supply control device 78 Even when the electric power of is constant, the rotating body 16 can be smoothly rotated.
 図17は、この発明の実施例3を示すものである。 
 この実施例3の特徴とするところは、以下の点にある。即ち、動力発生装置1を発電機として利用するように、回転軸15に回転機構84を設け、この回転機構84を駆動するアクチュエータ85を設け、このアクチュエータ85を太陽光パネル86で得た太陽光エネルギを蓄積した太陽光エネルギ蓄積部87からの電力で駆動する構造とした。また、電磁石44には、蓄電池88や、機械器具89を、電線90・90で接続している。
 この実施例3の構造によれば、太陽エネルギを利用して回転体16を回転させ、この回転体16の回転によって電磁石44では効率良く電気力を生じさせて、よって、機械エネルギから電気エネルギを効率良く発生させることができる。そして、この電気エネルギを、蓄電池88へ蓄電したり、機械器具89を駆動することができる。
FIG. 17 shows Embodiment 3 of the present invention.
The features of the third embodiment are as follows. That is, in order to use the power generation device 1 as a generator, a rotating mechanism 84 is provided on the rotating shaft 15, an actuator 85 that drives the rotating mechanism 84 is provided, and the sunlight obtained from the solar panel 86 is obtained by the actuator 85. The structure is driven by electric power from the solar energy storage unit 87 that stores energy. The electromagnet 44 is connected to a storage battery 88 and a machine tool 89 by electric wires 90 and 90.
According to the structure of the third embodiment, the rotating body 16 is rotated using solar energy, and the rotation of the rotating body 16 causes the electromagnet 44 to efficiently generate an electric force. It can be generated efficiently. And this electrical energy can be stored in the storage battery 88, or the mechanical instrument 89 can be driven.
 図18、図19は、この発明の実施例4を示すものである。 
 この実施例4の特徴とするところは、以下の点にある。即ち、動力発生装置1において、ロータ3は、ケース91内で、複数(例えば4つ)の永久磁石17を円周方向等間隔に埋設した回転体としての円環体92と、この円環体92を支持して回転軸15が備えられた円板状の支持体93とから構成される。
 円環体92は、所定厚さで輪状に形成され、軸心Cの方向が水平方向になるように配置されている。支持体93は、側面93Aに円環体92の側面92Aを所定の固定手段で固設することにより、円環体92が電磁石44の磁石通過用ギャップ47を通過できるように、円環体92を支持している。また、支持体93には、中心部位で回転軸15が水平方向に延びるように貫通して備えられている。電磁石44は、円環体92に沿って複数個(例えば4個)配置され、ケース91に電磁石取付機構58によって取り付けられている。
 そして、回転体16の回転により、断面C字形状に形成された電磁石44の磁石通過用ギャップ47内においては、永久磁石17の一面である外側面17Cが電磁石44の一側ギャップ形成面47Aに一定距離Lで対峙し、且つ永久磁石17の他面である内側面17Dが電磁石44の他側ギャップ形成面47Bに一定距離Lで対峙する。
 この実施例4の構成によれば、上記の実施例1と同様の作用効果を得るとともに、駆動力を水平方向にも取り出させ、よって、駆動力の取り出す方向を変更することができ、使い勝手を向上することができる。
18 and 19 show Embodiment 4 of the present invention.
The features of the fourth embodiment are as follows. That is, in the power generation device 1, the rotor 3 includes an annular body 92 as a rotating body in which a plurality of (for example, four) permanent magnets 17 are embedded at equal intervals in the circumferential direction within the case 91, and the annular body. A disk-shaped support body 93 that supports 92 and is provided with a rotating shaft 15.
The annular body 92 is formed in a ring shape with a predetermined thickness, and is arranged so that the direction of the axis C is in the horizontal direction. The support body 93 is formed by fixing the side surface 92A of the annular body 92 to the side surface 93A with a predetermined fixing means so that the annular body 92 can pass through the magnet passage gap 47 of the electromagnet 44. Support. Further, the support 93 is provided so as to penetrate the rotation shaft 15 so as to extend in the horizontal direction at the central portion. A plurality of (for example, four) electromagnets 44 are arranged along the torus 92 and are attached to the case 91 by an electromagnet attachment mechanism 58.
Then, in the magnet passage gap 47 of the electromagnet 44 formed in a C-shaped cross section by the rotation of the rotating body 16, the outer surface 17 </ b> C, which is one surface of the permanent magnet 17, becomes the one-side gap formation surface 47 </ b> A of the electromagnet 44. The inner surface 17 </ b> D, which is the other surface of the permanent magnet 17, faces the other gap forming surface 47 </ b> B of the electromagnet 44 at a certain distance L.
According to the configuration of the fourth embodiment, the same operational effects as the first embodiment can be obtained, and the driving force can be taken out in the horizontal direction, thereby changing the direction in which the driving force is taken out. Can be improved.
 なお、この発明においては、枠体は、箱形状等の他の形状とすることも可能である。また、動力発生装置を2つ以上連結して利用することも可能である。更に、永久磁石の形状は、円形状のみならず四角形状等の他の形状とすることも可能である。 In the present invention, the frame body may have other shapes such as a box shape. It is also possible to connect and use two or more power generation devices. Furthermore, the shape of the permanent magnet can be not only a circular shape but also other shapes such as a square shape.
 この発明に係る動力発生装置からの動力を、各種機器の駆動に利用可能である。  The power from the power generation device according to the present invention can be used to drive various devices.
 1 動力発生装置 
 2 枠体 
 3 ロータ 
 4 ステータ 
 5 上板 
 6 下板 
 15 回転軸 
 16 回転体 
 17 永久磁石 
 17A 永久磁石の上面 
 17B 永久磁石の下面 
 44 電磁石 
 45 鉄芯 
 46 コイル 
 47 磁石通過用ギャップ 
 47A 一側ギャップ形成面 
 47B 他側ギャップ形成面 
 53 上側フランジ 
 54 上側面部 
 55 下側フランジ 
 56 下側面部 
 57 ブラケット 
 58 電磁石取付機構 
 S 磁石通過用ギャップの距離 
 L 永久磁石の面と電磁石のギャップ形成面間の距離 
 
1 Power generator
2 Frame
3 Rotor
4 Stator
5 Upper plate
6 Lower plate
15 Rotating shaft
16 Rotating body
17 Permanent magnet
17A Top surface of permanent magnet
17B Underside of permanent magnet
44 Electromagnet
45 Iron core
46 coils
47 Magnet passing gap
47A One side gap forming surface
47B Other side gap forming surface
53 Upper flange
54 Upper side
55 Lower flange
56 Lower side
57 Bracket
58 Electromagnet mounting mechanism
S Distance of gap for magnet passage
L Distance between the surface of the permanent magnet and the gap forming surface of the electromagnet

Claims (2)

  1.  永久磁石が埋設された回転体を設けるとともに、前記永久磁石に対して電磁石を配設する動力発生装置において、中心部位に回転軸が連結された回転体とこの回転体に円周方向で埋設された複数の永久磁石とを備えたロータを設け、前記回転体が回転した際に前記永久磁石が通過する磁石通過用ギャップを形成した断面C字形状の鉄芯とこの鉄芯に複数回重合して巻き付けられたコイルとを備えたステータを設けたことを特徴とする動力発生装置。 In the power generation device in which a rotating body with a permanent magnet embedded therein is provided and an electromagnet is disposed with respect to the permanent magnet, a rotating body having a rotating shaft connected to a central portion and the rotating body embedded in a circumferential direction. A rotor having a plurality of permanent magnets is provided, and a C-shaped cross-section iron core having a magnet passage gap through which the permanent magnet passes when the rotating body rotates, and the iron core is polymerized a plurality of times. A power generation device characterized in that a stator including a coil wound around is provided.
  2.  前記ステータは、前記回転体が回転して前記永久磁石が前記磁石通過用ギャップ内を通過する際に、前記永久磁石の一方の面に対して一定距離で対峙する一側ギャップ形成面と、前記永久磁石の他方の面に対して一定距離で対峙する他側ギャップ形成面とを備えることを特徴とする請求項1に記載の動力発生装置。
     
    The stator has a one-side gap forming surface facing the one surface of the permanent magnet at a constant distance when the rotating body rotates and the permanent magnet passes through the magnet passage gap, The power generating device according to claim 1, further comprising: another side gap forming surface facing the other surface of the permanent magnet at a constant distance.
PCT/JP2012/071820 2012-07-11 2012-08-29 Power generation device WO2014010104A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012155798A JP2014018036A (en) 2012-07-11 2012-07-11 Force generation device
JP2012-155798 2012-07-11

Publications (1)

Publication Number Publication Date
WO2014010104A1 true WO2014010104A1 (en) 2014-01-16

Family

ID=49915596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071820 WO2014010104A1 (en) 2012-07-11 2012-08-29 Power generation device

Country Status (2)

Country Link
JP (1) JP2014018036A (en)
WO (1) WO2014010104A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2541360B (en) * 2015-06-25 2022-04-06 Intellitech Pty Ltd Electric motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397375U (en) * 1986-12-12 1988-06-23
JP2006014436A (en) * 2004-06-23 2006-01-12 Sumitomo Electric Ind Ltd Motor
JP2011101545A (en) * 2009-11-09 2011-05-19 Hitachi Ltd Rotary electrical machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397375U (en) * 1986-12-12 1988-06-23
JP2006014436A (en) * 2004-06-23 2006-01-12 Sumitomo Electric Ind Ltd Motor
JP2011101545A (en) * 2009-11-09 2011-05-19 Hitachi Ltd Rotary electrical machine

Also Published As

Publication number Publication date
JP2014018036A (en) 2014-01-30

Similar Documents

Publication Publication Date Title
JP6272293B2 (en) Brushless DC motor
KR101492172B1 (en) Radial and Axial Flux Motor using Integrated Windings
CN107534378A (en) Brushless slotless d.c. motor/actuator
JP2008220120A (en) Power generation system
JP5807143B2 (en) Motor and electronic equipment using it
CN107959367A (en) A kind of bimorph transducer composite excitation eddy current damping device
CN104285271B (en) Rotating anode arrangement and X-ray tube
JP5372115B2 (en) Rotating electric machine
JP5091425B2 (en) Magnetic power generator
WO2014010104A1 (en) Power generation device
KR101511012B1 (en) development magnetic induced
JP4397417B2 (en) Rotating mechanism
US20190312490A1 (en) Fault-tolerant motor
KR102233200B1 (en) Power Generation System with rotor which including driving module
JP4798598B2 (en) Wind power generator
US20100244604A1 (en) Power generating apparatus and motor
JP2010141991A (en) Rotating motor
JP6154452B2 (en) Wheel-in motor and electric vehicle
KR101604637B1 (en) Vaccum motor with generator
JP2014057502A (en) Power generating device suppressing cogging force
JP2015006065A (en) Motive force generation device
KR102233201B1 (en) Power Generation System which a rotating shaft of Actuator module is connected to a rotor
JP6935909B2 (en) Combined generator
KR20090104347A (en) Brushless motor
JP5792411B1 (en) Magnetic rotating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RGIGHTS PURSUANT TO RULE 112 (1) EPC. EPO FORM 1205A DATED 24.04.15

122 Ep: pct application non-entry in european phase

Ref document number: 12880736

Country of ref document: EP

Kind code of ref document: A1