WO2014009663A1 - Élément transparent a réflexion diffuse comprenant une couche sol-gel - Google Patents

Élément transparent a réflexion diffuse comprenant une couche sol-gel Download PDF

Info

Publication number
WO2014009663A1
WO2014009663A1 PCT/FR2013/051657 FR2013051657W WO2014009663A1 WO 2014009663 A1 WO2014009663 A1 WO 2014009663A1 FR 2013051657 W FR2013051657 W FR 2013051657W WO 2014009663 A1 WO2014009663 A1 WO 2014009663A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sol
layers
layered element
gel
Prior art date
Application number
PCT/FR2013/051657
Other languages
English (en)
Inventor
Marie-Virginie Ehrensperger
François GUILLEMOT
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to KR1020157003520A priority Critical patent/KR102053773B1/ko
Priority to US14/414,335 priority patent/US9846265B2/en
Priority to EA201590213A priority patent/EA026270B1/ru
Priority to IN887DEN2015 priority patent/IN2015DN00887A/en
Priority to EP13744728.0A priority patent/EP2872328B1/fr
Priority to ES13744728.0T priority patent/ES2585258T3/es
Priority to CN201380047496.1A priority patent/CN104619493B/zh
Priority to JP2015521048A priority patent/JP6082107B2/ja
Publication of WO2014009663A1 publication Critical patent/WO2014009663A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10559Shape of the cross-section
    • B32B17/10577Surface roughness
    • B32B17/10587Surface roughness created by embossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0257Diffusing elements; Afocal elements characterised by the diffusing properties creating an anisotropic diffusion characteristic, i.e. distributing output differently in two perpendicular axes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0289Diffusing elements; Afocal elements characterized by the use used as a transflector
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B2027/0192Supplementary details
    • G02B2027/0194Supplementary details with combiner of laminated type, for optical or mechanical aspects

Definitions

  • the present invention relates to a transparent layer element with diffuse reflection property.
  • the layered element can be rigid or flexible. It may be in particular a glazing, consisting for example of glass or polymer material. It may also be a flexible film based on polymeric material, in particular adapted to be attached to a surface in order to confer diffuse reflection properties while preserving its transmission properties.
  • Known glazings include standard transparent glazings, which give rise to specular transmission and reflection of radiation incident on the glazing, and translucent glazings, which give rise to diffuse transmission and reflection of incident radiation on the glazing. glazing.
  • the reflection by a glazing is said diffuse when radiation incident on the glazing with a given angle of incidence is reflected by the glazing in a plurality of directions.
  • the reflection by a glazing is said specular when radiation incident on the glazing with a given angle of incidence is reflected by the glazing with a reflection angle equal to the angle of incidence.
  • the transmission through a glazing is said specular when radiation incident on the glazing with a given angle of incidence is transmitted by the glazing with a transmission angle equal to the angle of incidence.
  • a disadvantage of standard transparent glazing is that they reflect clear reflections, like mirrors, which is undesirable in some applications.
  • glazing when glazing is used for a building window or a display screen, it is preferable to limit the presence of reflections, which reduce the visibility through the glazing.
  • Clear reflections on glazing can also create glare hazards, with safety implications, for example when vehicle headlights are reflected on glazed facades of buildings. This problem is particularly relevant for glass facades of airports. It is indeed essential to eliminate any risk of dazzling pilots when approaching terminals.
  • the translucent glazing if they have the advantage of not generating net reflections, however do not allow to have a clear vision through the glazing.
  • the invention more particularly intends to remedy by proposing a layered element that makes it possible at the same time to have excellent clear vision through the element, to limit the reflections of the "mirror” type on the element, and to promote diffuse reflections on the element.
  • the layered element comprises a central layer made of dielectric or metal materials, preferably a thin layer or a stack of thin layers, framed by two outer layers, an outer upper layer and a lower outer layer made of dielectric materials having substantially the same refractive index.
  • each contact surface (So, Si, S k ) between two adjacent layers of the layered element which are one dielectric and the other metallic, or which are two dielectric layers of different refraction, is textured and parallel to the other textured contact surfaces between two adjacent layers which are one dielectric the other metallic or which are two dielectric layers of different refractive indices.
  • the advantageous properties of the layered element of the invention are due in particular to the index agreement between the outer layers, ie to the fact that these two layers have substantially the same same refractive index.
  • the index agreement or index difference corresponds to the absolute value of the difference in refractive index at 589 nm between the constituent dielectric materials of the two outer layers of the layered element. The lower the index difference, the clearer the vision will be through the glazing.
  • the lower outer layer made of dielectric materials is chosen from:
  • transparent substrates one of the main surfaces of which is textured and the other of which is smooth, preferably substrates made of inorganic or organic glass, chosen from polymers, glasses and ceramics,
  • the layers of dielectric material for example deposited by magnetron, chosen from oxides, nitrides or halides of one or more transition metals, non-metals or alkaline-earth metals,
  • the layers based on curable materials initially in a viscous, liquid or pasty state suitable for forming operations comprising:
  • thermoformable or pressure sensitive plastic sheets or interleaves which may preferably be based on polymers chosen from polyvinyl butyrrolidines (PVB), polyvinylchlorides (PVC), polyurethanes (PU) and polyethylene terephthalates ( PET) or copolymers of ethylene-vinyl acetate (EVA).
  • PVB polyvinyl butyrrolidines
  • PVC polyvinylchlorides
  • PU polyurethanes
  • PET polyethylene terephthalates
  • EVA ethylene-vinyl acetate
  • the variation in refractive index between the lower outer layer consisting of a rough substrate and the material constituting the upper outer layer of the layered element is preferably less than 0.050, and more preferably less than 0.015.
  • the index glass of the same type may vary from one factory to another between 1, 517 and 1, 523. This variation of the order of 0.006 is not negligible compared to the preferential index difference acceptance range for a glazing unit comprising the diffuse reflection transparent element.
  • the Applicant has surprisingly discovered that the specific use of a particular sol-gel layer as the upper outer layer of the layered element makes it easy to prepare diffuse reflective transparent layer elements with index chords which can be especially less than 0.015.
  • the sol-gel layer of the invention has, according to the proportions of the various precursor compounds constituting it, an adaptable refractive index which may especially vary in a range from 1.459 to 1. 700, preferably 1.502 to 1 538.
  • the flexible formulation in terms of index of the sol-gel layer of the invention makes it possible to obtain elements in transparent layers having a constant quality in terms of optical performance, regardless of the origin of the substrate or the nature of the substrate.
  • plastic substrates having a significantly higher index can also be used as the lower outer layer.
  • sol-gel layer as the upper outer layer of the layered element makes it possible to:
  • the subject of the invention is a transparent layered element (1) having two smooth outer main surfaces (2A, 4A), characterized in that the layered element comprises:
  • this central layer (3) being formed either by a single layer which is a dielectric layer of refractive index (n3) different from that of the outer layers or a metal layer, either by a stack of layers (3i, 3 2 , 3 k ) which comprises at least one dielectric layer of refractive index different from that of the outer layers or a metal layer, where each contact surface (So, Si, S k ) between two adjacent layers of the layered element which are one dielectric and the other metallic, or which are two dielectric layers of different refractive indices, is textured and parallel to the other textured contact surfaces between two adjacent layers which are one dielectric the other metal or which are two dielectric layers of different refractive indices, and
  • the upper outer layer (4) is a sol-gel layer comprising an organic / inorganic hybrid matrix based on silica.
  • the particular layered element used according to the invention makes it possible to obtain a specular transmission of an incident radiation on the layered element and a diffuse reflection of a radiation whatever the direction of the source.
  • metal layers on the one hand, for which the value of the refractive index is indifferent
  • dielectric layers on the other hand, for which the difference in refractive index with respect to that of the outer layers is to be considered.
  • the transparent layer element according to the invention is considered to be laid horizontally, with its first downward facing face defining a lower outer main surface and its second facing opposite to the first upward facing face defining a upper outer surface; the meaning of the expressions “above” and “below” are thus to be considered in relation to this orientation.
  • the terms “above” and “below” do not necessarily mean that the two layers are arranged in contact with each other.
  • the terms “lower” and “higher” are used herein with reference to this positioning.
  • the layered element optionally comprises at least one additional layer positioned above or below the upper and / or lower outer layers.
  • the at least one additional layer may be made of dielectric materials all having substantially the same refractive index as the dielectric materials of the outer layers of the layered element or having different refractive indices.
  • index refers to the optical refractive index, measured at the wavelength of 589 nm.
  • a thin layer is a layer with a thickness of less than 1 ⁇ .
  • Two dielectric materials or layers have substantially the same refractive index, or have their refractive indices substantially equal, when the two dielectric materials have refractive indices whose absolute value of the difference between their refractive indices at 589 nm is lower or equal to 0.150.
  • the absolute value of the difference in refractive index at 589 nm between the constituent dielectric materials of the two outer layers of the layered element is, in order of increasing preference: less than or equal to 0.050, less than or equal to at 0.030, less than or equal to
  • the absolute value of the difference in refractive index at 589 nm between, on the one hand, the outer layers and, on the other hand, at least one dielectric layer of the central layer is greater than or equal to at 0.3, preferably greater than or equal to 0.5, more preferably greater than or equal to 0.8.
  • This relatively large difference in refractive index occurs at at least one textured contact surface internal to the layered element. This makes it possible to promote the reflection of radiation on this textured contact surface, that is to say a diffuse reflection of the radiation by the layered element.
  • the contact area between two adjacent layers is the interface between the two adjacent layers.
  • a material or dielectric layer is a non-metallic material or layer.
  • the dielectric materials or layers are of organic or mineral nature.
  • the inorganic dielectric materials or layers may be chosen from oxides, nitrides or halides of one or more transition metals, non-metals or alkaline-earth metals chosen preferably from silicon, titanium, tin, zinc, aluminum, molybdenum, niobium, zirconium, magnesium.
  • the organic dielectric materials or layers are chosen from polymers.
  • a material or dielectric layer is a material or a layer of low electrical conductivity, preferably less than 100 S / m.
  • a transparent element is an element through which there is radiation transmission at least in the wavelength ranges useful for the intended application of the element.
  • the element when used as a building or vehicle glazing, it is transparent at least in the wavelength range of the visible.
  • a textured or rough surface is a surface for which the surface properties vary on a scale larger than the wavelength of radiation incident on the surface. The incident radiation is then transmitted and diffuse reflected by the surface.
  • a textured or rough surface according to the invention has a roughness parameter corresponding to the average arithmetic deviation Ra of at least 0.5 ⁇ , especially between 1 and 100 ⁇ and better between 1 and 5 ⁇ (corresponding to the arithmetic mean of all the absolute distances of the roughness profile R measured from a median line of the profile over an evaluation length).
  • a smooth surface is a surface for which the surface irregularities are such that the radiation is not deflected by these surface irregularities.
  • the incident radiation is then transmitted and reflected specularly by the surface.
  • a smooth surface is a surface for which the surface irregularities are smaller than the wavelength of the radiation incident on the surface.
  • the surfaces of external layers or additional layers which have certain surface irregularities but which are in contact with one or more additional layers made of dielectric materials having substantially the same refractive index and which have, on their face opposite to that in contact with said layer having certain irregularities, a surface for which the surface irregularities are of much smaller or much larger dimensions (large-scale corrugations) at the wavelength of the radiation incident on the surface are considered smooth.
  • a smooth surface is a surface having either a roughness parameter corresponding to the average arithmetic deviation Ra less than 0.10 ⁇ , preferably less than 0.01 ⁇ , or slopes less than 10 °.
  • a glazing corresponds to an organic or mineral transparent substrate.
  • a specular transmission and a diffuse reflection of an incident radiation on the layered element are obtained.
  • the specular transmission guarantees clear vision through the layered element.
  • Diffuse reflection avoids sharp reflections on the layered element and the risk of glare.
  • the diffuse reflection on the layered element results from the fact that each contact surface between two adjacent layers which are one dielectric and the other metallic, or which are two dielectric layers of different refractive indices, is textured.
  • incident radiation on the element in layers reaches such a contact surface, it is reflected by the metal layer or because of the difference in refractive index between the two dielectric layers and, as the contact surface is textured, the reflection is diffuse.
  • the specular transmission results from the fact that the two outer layers of the layered element have smooth outer main surfaces and are made of materials having substantially the same refractive index, and that each textured contact surface between two adjacent layers of the layered element which are one dielectric and the other metallic, or which are two dielectric layers of different refractive indices, is parallel to the other textured contact surfaces between two adjacent layers which are one dielectric and the other metal or which are two dielectric layers of different refractive indices.
  • the smooth outer surfaces of the layered element allow specular transmission of radiation at each air / outer layer interface, i.e. allow the entry of radiation from the air into an outer layer, or the output of radiation from an outer layer in the air, without changing the direction of the radiation.
  • the parallelism of the textured contact surfaces implies that the or each constituent layer of the central layer which is dielectric of refractive index different from that of the outer layers, or which is metallic, has a uniform thickness perpendicular to the contact surfaces of the layer. central with the outer layers.
  • This uniformity of the thickness can be global over the whole extent of the texture, or local on sections of the texture.
  • the thickness between two consecutive textured contact surfaces can change, by section, depending on the slope of the texture, the textured contact surfaces always remaining parallel to each other.
  • This case is particularly present for a layer deposited by sputtering, where the thickness of the layer is even lower than the slope of the texture increases.
  • the thickness of the layer remains constant, but the thickness of the layer is different between a first section texture having a first slope and a second texture section having a second slope different from the first slope.
  • the layer or each layer constituting the central layer is a layer deposited by sputtering.
  • cathodic sputtering in particular sputtering assisted by a magnetic field, ensures that the surfaces delimiting the layer are parallel to each other, which is not the case with other deposition techniques such as evaporation or chemical vapor deposition (CVD), or the sol-gel process.
  • CVD chemical vapor deposition
  • the parallelism of the textured contact surfaces within the layered element is essential to obtain specular transmission through the element.
  • Incident radiation on a first outer layer of the layered element passes through this first outer layer without modification of its direction. Due to the difference in nature, dielectric or metallic, or the difference in refractive index between the first outer layer and at least one layer of the core layer, the radiation is then refracted in the core layer.
  • the textured contact surfaces between two adjacent layers of the layered element which are one dielectric and the other metallic, or which are two dielectric layers of different refractive indices, are all parallel between them and, on the other hand, the second outer layer has substantially the same refractive index as the first outer layer, the refraction angle of the radiation in the second outer layer from the central layer is equal to the angle of incidence of the radiation on the central layer from the first outer layer, in accordance with the Snell-Descartes law for refraction.
  • the radiation thus emerges from the second outer layer of the layered element in a direction that is the same as its direction of incidence on the first outer layer of the element.
  • the transmission of radiation by the layered element is thus specular.
  • a clear vision is obtained through the layered element, that is to say without the layered element being translucent, thanks to the specular transmission properties of the layered element.
  • the diffuse reflection properties of the layered element are exploited to reflect a large portion of the radiation, in a plurality of directions, from the radiation incident side. This strong diffuse reflection is obtained while having a clear vision through the layered element, that is to say without the layered element being translucent, thanks to the specular transmission properties of the layered element.
  • Such a transparent layer element with a high diffuse reflection finds application, for example, for display or projection screens.
  • the upper outer layer is a sol-gel layer comprising an organic / inorganic hybrid matrix based on silica obtained by a sol-gel process.
  • the sol-gel process consists, initially, in preparing a so-called "sol-gel solution” containing precursors which give rise in the presence of water to polymerization reactions.
  • sol-gel solution containing precursors which give rise in the presence of water to polymerization reactions.
  • the precursors hydrolyze and condense to form a network trapping the solvent.
  • These polymerization reactions lead to the formation of increasingly condensed species, which lead to colloidal particles forming soils and then gels.
  • the drying and densification of these gels at a temperature of the order of a few hundred degrees, leads, in the presence of silica-based precursor, to a sol-gel layer corresponding to a glass whose characteristics are similar to those of a classic glass.
  • the sol-gel solutions in the form of a colloidal solution or a gel, can be deposited easily on the main textured surface of the central layer opposite to the first outer layer, conforming to the texture of this surface.
  • the sol-gel layer will "fill" the roughness of the central layer. Indeed, this layer comprises a surface conforming to the surface roughness of the central layer which is thus textured and an outer main surface opposite to this surface which is flat.
  • the layers deposited by a sol-gel process thus ensure a planarization of the surface of the layered element.
  • the sol-gel layer comprises an organic / inorganic hybrid matrix based on silica. This matrix is obtained from mixed precursors which are organosilanes R n SiX ( 4-n ). These molecules simultaneously comprise hydrolysable functions which give rise to a silica network or matrix comprising organic functions which remain attached to the silica backbone.
  • the sol-gel layer further comprises particles of at least one metal oxide or at least one chalcogenide.
  • the organic / inorganic hybrid matrix based on silica further comprises at least one metal oxide.
  • a silica-based matrix comprising organic functions and at least one metal oxide can be obtained from the joint use of organosilane and at least one precursor of a metal oxide. These precursors then form with the organosilane a hybrid matrix of silica and metal oxide.
  • the sol-gel layer comprises an organic / inorganic hybrid matrix based on silica and at least one metal oxide in which particles of at least one metal oxide or at least one chalcogenide such as an organic / inorganic hybrid matrix of silica and zirconium oxide in which titanium dioxide particles are dispersed.
  • the main compounds of the sol-gel layer of the invention consist of matrix-forming compounds and particles dispersed in said matrix.
  • the main compounds of the sol-gel layer can therefore be:
  • silica comprising organic functions of the matrix
  • the particles of metal oxides and / or chalcogenides dispersed in the matrix.
  • the proportions of metal oxides originating from the matrix or dispersed in the form of particles are modified.
  • metal oxides have a higher refractive index than silica.
  • the refractive index of the layer is increased sol-gel.
  • the refractive index of the sol-gel layer increases linearly as a function of the volume fraction of a type of metal oxide for volume proportions of said metal oxide below a threshold value. For example, when des2 particles are added, a linear variation of the refractive index of the sol-gel layer is observed for volume proportions of TiO 2 relative to the total volume of the main compounds of the soil layer. -gels less than 20%.
  • the solution of the invention is therefore particularly advantageous. For example, upon receiving glass substrates for use as a lower outer layer, their refractive index is measured. Then, a sol-gel solution is formulated which will give, after curing, a sol-gel layer having a refractive index agreement with said substrate of less than 0.015.
  • the sol-gel layers may have a refractive index varying over a wide range of indexes in particular 1.459 to 1. 700, preferably 1.502 to 1.538 and better still 1.517 and 1.523.
  • the main compounds of the sol-gel layer represent in mass with respect to the total mass of the sol-gel layer, in order of preference increasing at least 80%, at least 90%, at least 95%, at least 99%, 100%.
  • the sol-gel layer preferably comprises in mass relative to the total mass of the main compounds constituting the sol-gel layer:
  • metal oxide particles and / or chalcogenides dispersed in the matrix.
  • the volume proportions of the metal oxide particles on the total volume of the main compounds of the sol-gel layer is in order of increasing preference between 0 and 25%, between 1 and 15%, between 2 and 8%.
  • the sol-gel layer is obtained by curing a sol-gel solution and comprises the product resulting from the hydrolysis and condensation of at least one organosilane of general formula R n SiX ( 4-n ) in which:
  • n is equal to 1, 2, 3, preferably n is 1 or 2 and more preferably n is equal to 1,
  • the groups X which may be identical or different, represent hydrolysable groups chosen from alkoxy, acyloxy or halide groups, preferably alkoxy groups, and
  • the groups R identical or different, represent non-hydrolyzable organic groups (or organic groups) bonded to silicon by a carbon atom.
  • the sol-gel layer is obtained by curing a sol-gel solution and comprises the product resulting from the hydrolysis and the condensation of:
  • the metal oxide particles and / or precursors of the metal oxides of the organic / inorganic hybrid matrix comprise a metal selected from titanium, zirconium, zinc, niobium, aluminum and molybdenum.
  • the organosilane (s) comprise 2 or 3, in particular 3, hydrolyzable groups X, and one or two, in particular one, non-hydrolyzable group R.
  • Groups X are preferably selected from alkoxy-O-R 'groups, in particular C 1 -C 4 alkoxy, acyloxy -OC (O) R' where R 'is an alkyl radical, preferentially C 1 -C 6, preferably methyl or ethyl, halide such as Cl, Br and I, and combinations of these groups.
  • R ' is an alkyl radical, preferentially C 1 -C 6, preferably methyl or ethyl, halide such as Cl, Br and I, and combinations of these groups.
  • the X groups are alkoxy groups, and in particular methoxy or ethoxy.
  • the group R is a nonhydrolyzable hydrocarbon group.
  • a number of groups are suitable according to the invention. The presence and nature of these groups makes it possible to obtain sol-gel layers having thicknesses that are compatible with the applications of the invention.
  • the group R corresponding to the non-hydrolyzable organic function has a mass at least 50 g / mol, preferably at least 100 g / mol. This group R is therefore a non-eliminable group, even following the drying step and may be chosen from:
  • alkyl groups preferably the linear or branched C 1 to C 10, and more preferably C 3 to C 10, alkyl groups, such as, for example, the methyl, ethyl, propyl, n-butyl, i-butyl, sec-butyl and tert-butyl;
  • alkenyl groups preferably C 2 -C 10 alkenyl groups, such as, for example, vinyl, 1-propenyl, 2-propenyl and butenyl groups; alkinyl groups such as, for example, acetylenyl and propargyl groups;
  • aryl groups preferably C 6 -C 10 aryl groups, such as phenyl and naphthyl groups;
  • the groups defined above may also comprise at least one group chosen from the primary, secondary or tertiary amine groups (the non-hydrolyzable radical is then, for example, an aminoaryl group or aminoalkyl), amide, alkylcarbonyl, substituted or unsubstituted anilino, aldehyde, ketone, carboxyl, anhydride, hydroxyl, alkoxy, alkoxycarbonyl, mercapto, cyano, hydroxyphenyl, alkyl carboxylate, sulfonic acid, phosphoric acid, meth (acryloxyloxy), the groups comprising an epoxide ring such as glycidyl and glycidyloxy, allyl, vinyl.
  • the non-hydrolyzable radical is then, for example, an aminoaryl group or aminoalkyl
  • amide alkylcarbonyl, substituted or unsubstituted anilino, aldehyde, ketone, carboxyl, an
  • Particularly preferred organosilanes include groups X which are identical to or different from each other, preferably identical, and represent a hydrolyzable group, preferably a C1-C4 alkoxy group, more preferably an ethoxy or methoxy group; and R is a non-hydrolyzable group, preferably a glycidyl or glycidyloxy-C1-C20, preferably C1-C6, alkylene glycidyloxy group, for example a glycidyloxypropyl group, a glycidyloxyethyl group, a glycidyloxybutyl group, a glycidyloxypentyl group, a glycidyloxyhexyl group and a 2- (3,4-epoxycyclohexyl) ethyl group.
  • groups X which are identical to or different from each other, preferably identical, and represent a hydrolyzable group, preferably
  • the organosilane compound is chosen from the following compounds allyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- [N '- (2'-aminoethyl) -2-aminoethyl] -3-aminopropyltrimethoxysilane, 3 aminopropyltrimethoxysilane, 3- glycidoxypropyltrimethoxysilane (GLYMO), 3-mercaptopropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, N-phenylaminopropyltrimethoxysilane, vinyltrimethoxysilane, 3-aminopropyltriethoxysilane, p-aminophénylsilane, 3-aminopropyltriethoxysilane,
  • the preferred compound is GLYMO.
  • the metal oxide and / or chalcogenide particles dispersed in the silica-based organic / inorganic hybrid matrix are preferably selected from the following group: ⁇ 2, ZrO2, ZnO, NbO, SnO2, Al2O3, MoO3, ZnS, ZnTe, CdS, CdSe, RSO 2, WO 3, Fe 2 O 3, FeTiO 3, BaTi 4 O 9, SrTiO 3, ZrTiO 4, Co 3 O 4, ternary oxide based on bismuth, M0S2, RuO 2, Sb2O 4 Sb2O 5 , BaTi 4 Og, MgO, CaTiO 3 , V 2 O 5 , Mn 2 O 3 , CeO 2 , RuS 2 , Y 2 O 3 , La 2 O 3 .
  • the particles are metal oxide particles comprising a metal selected from titanium, zirconium, zinc, niobium, aluminum and molybdenum.
  • the metal oxide is a titanium oxide ( ⁇ 2) in rutile or anatase form or a zirconium oxide (ZrO 2).
  • the particles of at least one metal oxide or at least one chalcogenide have, in order of increasing preference, an average diameter less than or equal to 1 ⁇ , less than or equal to 60 nm, less than or equal to 50 nm, less than or equal to at 20 nm.
  • the particles generally have a diameter greater than 1 nm and even greater than 5 nm.
  • the refractive index of the metal oxides of the chalcogenides is, in order of increasing preference, greater than 1.49, greater than 1.50, greater than 1.60, greater than 1.70, greater than 1.80, greater than 1, 90, greater than 2.00, greater than 2.10, greater than 2.20.
  • the precursors of the metal oxides may be chosen from metallo-organic compounds such as metal alkoxides and metal salts, which comprise the metal elements.
  • the precursors of the metal oxides may comprise a metal selected from titanium, zirconium, zinc, niobium, aluminum and molybdenum.
  • the sol-gel solution comprises at least one precursor of zirconium oxide, aluminum, or titanium, preferably a metal alkoxide or a metal halide. Examples of precursor compounds are:
  • TiCl 4 Ti (OC 2 H 5 ), Ti (OC 3 H 7 ) 4 , Ti (OC 4 H 9 ), Ti (2-ethylhexoxy) 4 ,
  • the sol-gel solution according to the invention comprises a single compound chosen from zirconium alkoxides, such as zirconium tetrapropoxide (TPOZ).
  • zirconium alkoxides such as zirconium tetrapropoxide (TPOZ).
  • Organosilanes (i), precursors of metal oxides (ii) and metal oxides and chalcogenides (iii) are the main compounds of the sol-gel solution.
  • the sol-gel solution includes additives and solvents.
  • the additives preferably represent less than 10%, preferably less than 5% by weight relative to the total mass of the sol-gel solution.
  • the proportions of organosilanes, in mass relative to the total mass of the main components of the sol-gel solution are included, in order of increasing preference, between 50 and 99%, between 60% and 98%, between 70 and 95% between 80 and 90%.
  • the proportions of the precursors of metal oxides, in mass relative to the total mass of the main components of the sol-gel solution, are in order of increasing preference, between 0 and 10%, between 1 and 10%, between 2 and 8%, between 4 and 7%.
  • the proportions of the metal oxides and chalcogenides, in mass with respect to the total mass of the main components of the sol-gel solution are included, in order of increasing preference, between 0 and 40%, between 1 and 20%, between 2 and 10%, between 4 and 9%.
  • the sol-gel solution may comprise in addition to the main compounds, at least one solvent and optionally at least one additive.
  • the solvents are chosen from water and organic solvents.
  • the sol-gel solution preferably comprises water to allow the hydrolysis and condensation reactions.
  • the sol-gel solution may further comprise at least one organic solvent whose boiling point, at atmospheric pressure, is preferably between 70 and 140 ° C.
  • organic solvent usable according to the invention there may be mentioned alcohols, esters, ketones, tetrahydropyran, and mixtures thereof.
  • the alcohols are preferably chosen from C1-C6 alcohols, such as methanol.
  • the esters are preferably chosen from acetates and, in particular, ethyl acetate.
  • the ketones methyl ethyl ketone is preferably used.
  • Suitable solvents include water, methanol, ethanol, propanol (n-propanol and isopropanol), butanol, 1-methoxy-2-propanol, 4-methyl-2-pentanone, 2-methyl-2-butanol, butoxyethanol and water / organic solvent mixtures.
  • the proportions of solvent can vary over a wide range. They will depend in particular on the thicknesses to obtain. Indeed, the more sol-gel solution has a high solid content, the more it is possible to deposit significant thicknesses and thus to obtain sol-gel layers of high thickness.
  • the proportions by weight of solvent relative to the total mass of the sol-gel solution can represent for example at least 10% and at most 80%.
  • the mass proportions of the main compounds relative to the total mass of the sol-gel solution represent, for example at least 20% and at most 90%.
  • the proportions by weight of water relative to the total mass of the sol-gel solution represent, for example, between 10 and 40%, between 10 and 30% or between 15 and 25%.
  • the proportions by weight of organic solvent relative to the total mass of the sol-gel solution represent, for example, between 10 and 40%, between 10 and 30% or between 15 to 25%.
  • the composition may further comprise various additives such as surfactants, UV absorbers, pigments or dyes, hydrolysis and / or condensation catalysts, curing catalysts.
  • additives such as surfactants, UV absorbers, pigments or dyes, hydrolysis and / or condensation catalysts, curing catalysts.
  • the total proportions of the additives preferably represent less than 5% by weight relative to the total mass of the sol-gel solution.
  • the surfactants improve the wetting properties and promote a better spread of the composition on the surface to be coated.
  • these surfactants mention may be made of nonionic surfactants such as ethoxylated or neutral fatty alcohols, for example fluorinated surfactants.
  • fluorinated surfactant of the product marketed by 3M under the reference FC-4430.
  • the proportions of surfactants in mass relative to the total mass of the sol-gel solution represent, in order of increasing preference, 0.01 to 5%, 0.05 to 3%, 0.10 to 2.00 %.
  • the hydrolysis and / or condensation catalysts are preferably selected from acids or bases.
  • the acidic catalysts may be chosen from organic acids, mineral acids, and mixtures thereof.
  • the organic acids may in particular be chosen from carboxylic acids such as aliphatic monocarboxylic acids such as acetic acid, polycarboxylic acids such as dicarboxylic acids and acids.
  • tricarboxylic for example citric acid, and mixtures thereof.
  • mineral acids it is possible to use nitric acid, or hydrochloric acid and mixtures thereof.
  • Acetic acid has the additional advantage, when the composition comprises a metal oxide precursor, of providing the stabilizer function. Indeed, acetic acid chelates these precursors and thus prevents too rapid hydrolysis of this type of product.
  • the basic catalysts may be selected from aminated bases such as ethanolamine, triethylamine and mixtures thereof.
  • a base is used in particular in the case where the acids would be prohibited because of the nature of the substrate or silane implemented.
  • the solution may further comprise pigments, dyes or nacres.
  • the sol-gel layers may have a colored appearance.
  • Another alternative to obtain this colored aspect consists in choosing to introduce in the matrix of colloidal particles colored metal oxides such as cobalt oxide, vanadium, chromium, manganese, iron, nickel, magnesium oxide particles. copper and all other transition metals and non-metals capable of conferring said colored appearance.
  • the deposit can be done according to one of the following techniques:
  • dip-coating (known as “dip-coating”);
  • spin-coating spin-coating
  • laminar coating (known by the English terminology “laminar-flow-coating or meniscus coating”);
  • roll coating (known under the terminology “roll-process”);
  • screen-printing - screen printing
  • the deposition is preferably carried out by pneumatic spraying.
  • the sol-gel layer fills the roughness of the central layer thus ensuring a planarization of the surface of the layered element.
  • the texture of the outer major surface of the core layer is formed by a plurality of recessed or protruding patterns with respect to a general plane of the contact surface.
  • the thickness defined between the lowest and the highest peak or peak corresponds to the value called peak to valley.
  • the thickness of the sol-gel layer must be sufficient to planarize the surface of the central layer and therefore be at least equal to the valley peak value of the texture of the central layer.
  • the thickness of the sol-gel layer is preferably greater than the valley peak value of the central layer.
  • the thickness of the sol-gel layer is defined from the lowest hollow of the central layer.
  • the thickness of the sol-gel layer may be between 5 nm and 100 ⁇ , preferably between 50 nm and 50 ⁇ . This thickness can be obtained in a single layer, by a single or several application operation (or pass), by techniques such as soaking, spraying or spraying.
  • the drying temperature of the sol-gel film may vary from 0 to 200 ° C, preferably from 100 ° C to 150 ° C, more preferably from 120 to 170 ° C.
  • the device of the invention makes it possible to obtain:
  • the lower outer layer of the layered element made of dielectric materials is chosen from:
  • transparent substrates one of the main surfaces of which is textured and the other of which is smooth, preferably chosen from polymers, glasses and ceramics,
  • a layer of dielectric material chosen from oxides, nitrides or halides of one or more transition metals, non-metals or alkaline-earth metals, a layer based on curable materials initially in a viscous, liquid or pasty state suitable for shaping operations comprising:
  • thermoformable or pressure sensitive plastic sheets or interleaves which may preferably be based on polymers chosen from polyvinyl butyrrolidines (PVB), polyvinylchlorides (PVC), polyurethanes (PU) and polyethylene terephthalates ( PET) or copolymers of ethylene-vinyl acetate (EVA).
  • PVB polyvinyl butyrrolidines
  • PVC polyvinylchlorides
  • PU polyurethanes
  • PET polyethylene terephthalates
  • EVA ethylene-vinyl acetate
  • the texturing of one of the main surfaces of the transparent substrates may be obtained by any known method of texturing, for example by embossing the surface of the previously heated substrate to a temperature at which it is possible to deform it, in particular by rolling with means of a roller having on its surface a texturing complementary to the texturing to be formed on the substrate; by abrasion by means of abrasive particles or surfaces, in particular by sanding; by chemical treatment, especially acid treatment in the case of a glass substrate; by molding, especially injection molding in the case of a thermoplastic polymer substrate; by engraving.
  • the transparent substrate is made of polymer, it can be rigid or flexible.
  • suitable polymers according to the invention include, in particular:
  • polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN);
  • polyacrylates such as polymethyl methacrylate (PMMA);
  • fluoroester polymers such as ethylene tetrafluoroethylene (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), ethylene chlorotrifluoroethylene (ECTFE), fluorinated ethylene-propylene copolymers (FEP); photocured and / or photopolymerized resins, such as thiolene, polyurethane, urethane-acrylate, polyester-acrylate and
  • ETFE ethylene tetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PCTFE polychlorotrifluoroethylene
  • ECTFE ethylene chlorotrifluoroethylene
  • FEP fluorinated ethylene-propylene copolymers
  • These polymers generally have a range of refractive index ranging from 1.30 to 1.70. However, it is interesting to note that some of these polymers, and in particular the polymers comprising sulfur, such as polythiourethanes, may have high refractive indices of up to 1.74.
  • glass substrates directly usable as the outer layer of the layered element include:
  • the glass substrates sold by Saint-Gobain Glass in the ALBARINO® S, P or G range or in the MASTERGLASS® range which have, on one of their main surfaces, a texture obtained by rolling,
  • Layers of dielectric material selected from oxides, nitrides or halides of one or more transition metals, nonmetals or alkaline earth metals may be magnetron deposited and subsequently textured by abrasion using abrasive particles or surfaces. especially by sandblasting; by chemical treatment or etching.
  • the lower outer layer of the layered element may also be based on curable materials initially in a viscous, liquid or pasty state suitable for forming operations.
  • the initially deposited layer in a viscous, liquid or pasty state may be a layer of photocrosslinkable and / or photopolymerizable material.
  • this photocurable and / or photopolymerizable material is in liquid form at room temperature and gives, when it has been irradiated and photocrosslinked and / or photopolymerized, a transparent solid without bubbles or any other irregularity.
  • It may be in particular a resin such as those usually used as adhesives, adhesives or surface coatings. These resins are generally based on monomers / comonomers / pre-polymers of the epoxy type, epoxysilane, acrylate, methacrylate, acrylic acid, methacrylic acid.
  • a resin instead of a resin, it may be a photocurable aqueous gel, such as a polyacrylamide gel.
  • photocurable and / or photopolymerizable resins usable in the present invention include UV curable resins of KZ6661 type sold by JSR Corporation.
  • the outer layer initially deposited in a viscous, liquid or pasty state may be a layer deposited by a sol-gel process.
  • the texturing of the lower outer layer based on curable materials initially in a viscous, liquid or pasty state can be performed using a roller having on its surface a texturing complementary to that to be formed on the outer main surface of said layer.
  • the lower outer layer may comprise a layer based on a spacer or sheet of thermoformable plastic material or pressure sensitive textured by compression and / or heating.
  • This layer based on a polymeric material may be, in particular, a layer based on polybutyral vinyl (PVB), ethylene-vinyl acetate (EVA), polyurethane (PU), polyethylene terephthalate (PET), polyvinyl chloride (PVC).
  • PVB polybutyral vinyl
  • EVA ethylene-vinyl acetate
  • PU polyurethane
  • PET polyethylene terephthalate
  • PVC polyvinyl chloride
  • the index of the standard lamination interleaves (PVB, EVA, PU, SentryGlas®) is at most about 1.491 to 589 nm.
  • the thickness of the lower outer layer is preferably between 1 ⁇ and 6 mm and varies according to the choice of dielectric material.
  • the flat or textured glass substrates preferably have a thickness of between 0.4 and 6 mm, preferably 0.7 and 2 mm.
  • the flat or textured polymer substrates preferably have a thickness of between 0.020 and 2 mm, preferably 0.025 and 0.25 mm.
  • the outer layers consisting of a layer of dielectric materials preferably have a thickness of between 0.2 and 20 ⁇ , preferably 0.5 and 2 ⁇ .
  • the layers based on curable materials initially in a viscous, liquid or pasty state suitable for shaping operations preferably have a thickness of between 0.5 and 100 ⁇ m, preferably between 0.5 and 40 ⁇ m, and better between 0.5 and 15 ⁇ .
  • the layers based on photocurable and / or photopolymerizable materials preferably have a thickness of between 0.5 and 20 ⁇ , preferably 0.7 and 10 ⁇ .
  • the layers deposited by a sol-gel process preferably have a thickness of between 0.5 and 50 ⁇ , preferably between 10 and 15 ⁇ .
  • the layers based on a spacer or plastic sheet preferably have a thickness of between 10 m and 1 mm, preferably between 0.3 and 1 mm.
  • the materials or dielectric layer may have:
  • a refractive index of between 1.51 and 1.53 for example in the case of the use of a standard glass
  • the layer or stack of layers of the central layer of the layered element may comprise:
  • At least one thin layer made of a dielectric material chosen from oxides, nitrides or halides of one or more transition metals, non-metals or alkaline-earth metals,
  • At least one thin metallic layer in particular a thin layer of silver, gold, copper, titanium, niobium, silicon, aluminum, nickel-chromium alloy (NiCr), stainless steel , or their alloys.
  • the thin layer made of a dielectric material can be chosen from: at least one thin layer made of a dielectric material with a high refractive index, different from the refractive index of the outer layers, such as Si 3 N 4 , AlN, NbN, SnO 2 , ZnO, SnZnO, Al 2 O 3; , MoO 3 , NbO, TiO 2 , ZrO 2 ,
  • the choice of the thickness of the central layer depends on a number of parameters. In general, it is considered that the total thickness of the central layer is between 5 and 200 nm and the thickness of a layer of the central layer is between 1 and 200 nm.
  • the thickness of a layer is preferably between 5 to 40 nm, better still between 6 and 30 nm and more preferably 6 to 20 nm.
  • the central layer is a dielectric layer, for example TiO 2 , it preferably has a thickness of between 20 and 100 nm and better still of 55 and 65 nm and / or a refractive index of between 2.2 and 2.4. .
  • the composition of the central layer of the layered element can be adjusted to confer additional properties to the layered element, for example thermal properties, solar control type.
  • the central layer of the layered element is a transparent stack of thin layers comprising an alternation of "n" metal functional layers, especially functional layers based on silver or metal alloy containing silver, and "(n + 1)" antireflection coatings, with n ⁇ 1, where each metal functional layer is disposed between two antireflection coatings.
  • such a metal functional layer stack has reflection properties in the field of solar radiation and / or in the field of long-wave infrared radiation.
  • the metal functional layers essentially determine the thermal performance, while the antireflection coatings that surround them act on the optical appearance interferentially. Indeed, if the metallic functional layers make it possible to obtain desired thermal performance even at a low geometric thickness, of the order of 10 nm for each metal functional layer, they strongly oppose the passage of radiation in the wavelength range of the visible. Therefore, antireflection coatings on both sides of each metal functional layer are necessary to ensure good light transmission in the visible range.
  • the layered element obtained then combines optical properties, namely specular transmission properties and diffuse reflection of incident radiation on the layered element, and thermal properties, namely solar control properties.
  • optical properties namely specular transmission properties and diffuse reflection of incident radiation on the layered element
  • thermal properties namely solar control properties.
  • Such a layered element can be used for sun protection glazing and / or thermal insulation of buildings or vehicles.
  • the texture of each contact surface between two adjacent layers of the layered element which are one dielectric and the other metallic, or which are two dielectric layers of different refractive indices is formed by a plurality of recessed or protruding patterns with respect to a general plane of the contact surface.
  • the average height of the patterns of each contact surface between two adjacent layers of the layered element which are one dielectric and the other metallic, or which are two dielectric layers of different refractive indices is included between 1 micrometer and 100 ⁇ .
  • the average height of the patterns of the contact surface is defined as the arithmetical mean of the distances y in absolute value taken between the vertex and the general plane of the contact surface for each pattern of the
  • the patterns of the texture of each contact surface between two adjacent layers of the layered element which are one dielectric and the other metallic, or which are two dielectric layers of different refractive indices can be distributed random on the contact surface.
  • the patterns of the texture of each contact surface between two adjacent layers of the layered element which are one dielectric and the other metallic, or which are two dielectric layers of different refractive indices may be distributed periodically on the surface of contact. These patterns may be, in particular, cones, pyramids, grooves, ribs, wavelets.
  • the thickness of this layer is small relative to the average height of the patterns of each of its contact surfaces with the adjacent layers. Such a small thickness makes it possible to increase the probability that the input interface of a radiation in this layer and the output interface of the radiation out of this layer are parallel, and therefore to increase the percentage of specular transmission of the radiation through the layered element.
  • the thickness of each layer of the central layer which is interposed between two layers of nature, dielectric or metallic, different from his own or refractive indices different from his, where this thickness is taken perpendicularly to its surfaces of contact with the adjacent layers, is less than 1/4 of the average height of the patterns of each of its contact surfaces with the adjacent layers.
  • the layered element comprises, on at least one of its smooth outer main surfaces, an antireflection coating at the interface between the air and the constituent material of the outer layer forming this outer main surface. Thanks to the presence of this antireflection coating, radiation incident on the layered element on the side of this outer main surface is reflected preferentially to each textured contact surface rather than to the smooth outer surface of the layered element, which corresponds to a mode of diffuse reflection rather than to a mode of specular reflection. Diffuse reflection of the radiation by the layered element is thus favored with respect to specular reflection.
  • the antireflection coating provided on at least one of the external main surfaces of the layered element may be of any type which makes it possible to reduce the radiation reflection at the interface between the air and the corresponding outer layer of the element. layers. It may be, in particular, a refractive index layer between the refractive index of the air and the refractive index of the outer layer, such as a layer deposited on the surface of the outer layer by a vacuum technique or a sol-gel type porous layer, or else, in the case where the outer layer is made of glass, a hollowed surface portion of the outer glass layer obtained by a treatment with etching type acid.
  • the antireflection coating may be formed by a stack of thin layers having alternately lower and stronger refractive indices acting as an interference filter at the interface between the air and the outer layer, or by a stack of thin layers having a gradient, continuous or staggered refractive indices between the refractive index of air and that of the outer layer.
  • the core layer is formed either by a single layer conformably deposited on the textured main surface of the first outer layer, or by a stack of layers successively deposited conformably on the textured main surface of the first outer layer.
  • the central layer is conformably deposited on the main textured surface of the first outer layer, if following deposition, the upper surface of the central layer is textured and parallel to the textured contact surface of the first outer layer.
  • Deposition of the central layer conformably, or layers of the central layer successively in accordance with the textured main surface of the first outer layer is preferably carried out by cathodic sputtering, in particular assisted by a magnetic field.
  • the additional layers are preferably chosen from:
  • transparent substrates chosen from polymers, glasses or ceramics as defined above but comprising two smooth main surfaces,
  • curable materials initially in a viscous, liquid or pasty state suitable for shaping operations as described above, inserts or sheets of thermoformable or pressure sensitive plastic material as described above.
  • the outer major surface of the sol-gel layer may have some large-scale surface irregularities. To restore the smoothness of the outer layer of the layered element, it is therefore possible to come into contact with this surface having certain irregularities, an additional layer having substantially the same refractive index as said outer layer, such as a plastic sheet described above.
  • the smooth outer surfaces of the layered element and / or the smooth outer surfaces of the glazing are planar or curved, preferably these smooth outer main surfaces are parallel to each other. This helps to limit the light scatter for radiation passing through the layered element, and thus to improve the clarity of vision through the layered element.
  • the layered element may be rigid glazing or a flexible film.
  • a flexible film is advantageously provided, on one of its external main surfaces, with an adhesive layer covered with a protective strip intended to be removed for bonding the film.
  • the layered element in the form of a flexible film is then capable of being attached by bonding to an existing surface, for example a surface of a glazing unit, in order to give this surface diffuse reflection properties, while maintaining the properties of specular transmission.
  • the lower outer layer is a transparent substrate.
  • the core layer is formed either by a single layer conformably deposited on the textured main surface of the first outer layer, or by a stack of layers successively deposited conformably on the textured main surface of the first outer layer.
  • the central layer is deposited by cathodic sputtering, in particular assisted by a magnetic field.
  • the second outer layer or upper outer layer comprises the sol-gel layer, deposited on the textured main surface of the central layer opposite to the first outer layer.
  • an additional top layer may be used as a counter-substrate.
  • the sol-gel layer then ensures a connection between the lower outer layer provided with the central layer and the counter-substrate.
  • the lower outer layer or an additional layer comprises a layer based on a spacer or sheet of thermoformable or pressure-sensitive plastic material
  • a additional layer for example, a transparent substrate of refractive index substantially equal to those of the outer layers may be used.
  • the layer based on an interlayer or plastic sheet then corresponds to a lamination interlayer ensuring the connection between the lower outer layer of the layer element coated with the core layer and the additional layer.
  • the transparent layered element of the invention preferably comprises the following stack:
  • At least one lower additional layer chosen from transparent substrates whose two main surfaces are smooth, such as polymers and glasses and inserts made of thermoformable or pressure-sensitive plastics material,
  • a lower outer layer chosen from transparent substrates such as polymers and glasses and curable materials initially in a viscous, liquid or pasty state suitable for forming operations
  • a central layer comprising a thin layer made of a dielectric material or a thin metallic layer
  • thermoformable plastic material or pressure sensitive optionally at least one additional upper layer selected from transparent substrates whose two main surfaces are smooth selected from polymers and glasses and inserts of thermoformable plastic material or pressure sensitive.
  • the layered element comprises:
  • a lower outer layer chosen from transparent substrates made of rough glass
  • an upper additional layer chosen from transparent substrates made of flat glass.
  • the layered element of the invention comprises the following stack:
  • thermoformable or pressure-sensitive interleaves of material on which is preferably superimposed another additional upper layer chosen from transparent glass substrates.
  • Another object of the invention is a method of manufacturing a layered element as described above, comprising the following steps:
  • a central layer is deposited on the textured main surface of the lower outer layer, ie, when the central layer is formed by a single layer, which is a dielectric layer of refractive index different from that of the lower outer layer, or metal layer, by depositing the central layer conformably on said textured main surface, that is, when the central layer is formed by a stack of layers comprising at least one dielectric layer of refractive index different from that of the lower outer layer or a metal layer, by depositing the layers of the central layer successively in accordance with said textured main surface;
  • the upper sol-gel outer layer is formed on the main textured surface of the central layer opposite to the lower outer layer, wherein the upper and lower outer layers consist of dielectric materials having substantially the same refractive index, by deposition by sol-gel process,
  • At least one upper and / or lower additional layer is formed on the smooth outer main surface (s) of the layered element.
  • the invention also relates to a building facade, including an airport terminal facade, comprising at least one layered element as described above.
  • Another object of the invention is a display or projection screen comprising a layered element as described above.
  • an object of the invention is a Head Up Display system glazing comprising a layered element as described above.
  • the subject of the invention is the use of a layered element as previously described as all or part of a glazing for a vehicle, building, street furniture, interior furnishings, a display or projection screen, Head system. Up Display.
  • the layered element according to the invention may, for example, be integrated in a showcase thus allowing image projection on said layered element.
  • FIG. 1 is a schematic cross section of a layered element according to the invention.
  • FIG. 2 is a view on a larger scale of the detail I of FIG. 1 for a first variant of the layered element
  • FIG. 3 is an enlarged view of detail I of FIG. 1 for a second variant of the layered element.
  • FIGS. 4 and 5 show diagrams showing the steps of a method of manufacturing the layered element according to the invention
  • FIG. 6 represents the evolution of the refractive index as a function of the volume proportions of ⁇ 2 in a sol-gel layer
  • FIG. 7 represents scanning electron micrographs of Satinovo® transparent rough glass satin substrates on which a sol-gel layer has been deposited by sol-gel process
  • FIGS. 8 and 9 are graphs showing the evolution of the blur (y-axis on the right) and the brightness (y-axis on the left) as a function of the refractive index of the sol-gel layer and the refractive index variation between a Satinovo® substrate used as the lower outer layer and the sol-gel layer.
  • the relative thicknesses of the different layers in the figures have not been rigorously respected.
  • the possible variation in thickness of the or each constituent layer of the central layer as a function of the slope of the texture has not been represented in the figures, it being understood that this possible variation in thickness does not impact the parallelism of the textured contact surfaces. Indeed, for each given slope of the texture, the textured contact surfaces are parallel to each other.
  • the layered element 1 illustrated in FIG. 1 comprises two outer layers 2 and 4, which consist of transparent dielectric materials having substantially the same refractive index n2, n4.
  • Each outer layer 2 or 4 has a smooth main surface, respectively 2A or 4A, directed outwardly of the layered element, and a textured main surface, respectively 2B or 4B, directed towards the inside of the element. layers.
  • the smooth outer surfaces 2A and 4A of the layered element 1 allow specular radiation transmission to each surface 2A and 4A, i.e. the entry of radiation into an outer layer or the exit of radiation from an outer layer without changing the direction of the radiation.
  • the textures of the internal surfaces 2B and 4B are complementary to each other. As clearly visible in FIG. 1, the textured surfaces 2B and 4B are positioned facing one another, in a configuration in which their textures are strictly parallel to each other.
  • the layered element 1 also comprises a central layer 3 interposed in contact between the textured surfaces 2B and 4B.
  • the central layer 3 is monolayer and consists of a transparent material which is either metallic or dielectric with a refractive index n3 different from that of the outer layers 2 and 4.
  • the central layer 3 is formed by a transparent stack of several layers 3i, 32,..., 3k , where at least one of the layers 3i to 3k is either a metal layer or a dielectric layer of refractive index different from that of the outer layers 2 and 4.
  • at least each of the two layers 3i and 3k located at the ends of the stack is a metal layer or a dielectric layer of refractive index n3i or n3 k different from that of the outer layers 2 and 4.
  • So is the contact area between the outer layer 2 and the central layer 3
  • Si the contact surface between the central layer 3 and the outer layer 4.
  • FIG. S 2 to S k are successively noted as the internal contact surfaces of the central layer 3, starting from the closest contact surface of the surface So.
  • the contact surface S0 between the outer layer 2 and the central layer 3 is textured and parallel to the contact surface Si between the central layer 3 and the outer layer 4.
  • the central layer 3 is a textured layer having over all its extent a uniform thickness e3, taken perpendicularly to the contact surfaces So and Si.
  • each contact surface S 2 , ..., S k between two adjacent layers of the constituent stack of the core layer 3 is textured and strictly parallel to the contact surfaces S 0 and Si between the outer layers 2, 4 and the core layer 3.
  • all the contact surfaces So, Si, ..., S k between adjacent layers of the element 1 which are of different natures, dielectric or metallic, or dielectric different refractive indices, are textured and parallel to each other.
  • each layer , 3 2 , ..., 3 k of the constituent stack of the central layer 3 has a thickness e3i, e3 2 , ..., e3 k uniform, taken perpendicular to the contact surfaces So, Si, ... S k .
  • each contact surface So, Si or So, Si, ..., S k of the layered element 1 is formed by a plurality of recessed or protruding patterns with respect to a general plane ⁇ of the contact surface.
  • the average height of the patterns of each textured contact surface S 0 , Si or S 0 , Si, ..., S k is between 1 micrometer and 100 ⁇ .
  • the average height of the patterns of each textured contact surface is
  • the thickness e3 or e3i, e3 2 ,..., E3 k of the or each constituent layer of the central layer 3 is less than the height average of the patterns of each textured contact surface So, Si or So, Si, ..., S k of the layered element 1.
  • This condition is important for increasing the probability that the input interface of a radiation in a layer of the core layer 3 and the output interface of the radiation out of this layer are parallel, and thus increase the percentage of specular transmission. radiation through the layered element 1. For the sake of visibility of the different layers, this condition has not been strictly observed in the figures.
  • the thickness e3 or e3i, e32,..., E3k of the or each constituent layer of the central layer 3 is less than 1/4 of the average height of the patterns of each textured contact surface of the element. in layers.
  • the thickness e3 or e3i, e32, ..., e3k of each layer of the central layer 3 is of the order of, or less than at 1/10 the average height of the patterns of each textured contact surface of the layered element.
  • FIG. 1 illustrates the path of radiation, which is incident on the layered element 1 on the side of the outer layer 2.
  • the incident rays R arrive on the outer layer 2 with a given angle of incidence ⁇ .
  • the incident rays R when they reach the contact surface S0 between the outer layer 2 and the central layer 3, are reflected either by the metal surface or because of the difference in index refraction at this contact surface respectively between the outer layer 2 and the central layer 3 in the variant of Figure 2 and between the outer layer 2 and the layer 3i in the variant of Figure 3.
  • the reflection takes place in a plurality of directions R r . The reflection of the radiation by the layered element 1 is therefore diffuse.
  • the radii R t transmitted by the layered element are transmitted with a transmission angle ⁇ equal to their angle of incidence ⁇ on the layered element.
  • the transmission of radiation by the layered element 1 is therefore specular.
  • the layered element 1 comprises an antireflection coating 6 on at least one of its smooth outer surfaces 2A and 4A.
  • an antireflection coating 6 is provided on each outer major surface of the layered member which is to receive radiation.
  • only the surface 2A of the outer layer 2 is provided with an antireflection coating 6, since it is the surface of the layered element which is directed on the impact side of the radiation.
  • the antireflection coating 6, provided on the smooth surface 2A and / or 4A of the outer layer 2 or 4 may be of any type to reduce the radiation reflection at the interface between the air and the outer layer. It can be in particular a refractive index layer between the refractive index of the air and the refractive index of the outer layer, a stack of thin layers acting as a interferential filter, or a stack of thin layers having a refractive index gradient.
  • the central layer 3 is conformably deposited on a textured surface 2B of a transparent, rigid or flexible, forming the outer layer 2 of the layered element 1.
  • the main surface 2A of this substrate opposite the textured surface 2B is smooth.
  • This substrate 2 may be, in particular, a textured glass substrate of SATINOVO®, ALBARINO® or MASTERGLASS® type.
  • the substrate 2 may be a substrate based on polymeric material, rigid or flexible, for example of polymethyl methacrylate or polycarbonate type.
  • the conformal deposition of the central layer 3, whether monolayer or formed by a stack of several layers, is preferably carried out, preferably under vacuum, by magnetic field assisted sputtering (so-called “cathodic magnetron sputtering").
  • This technique makes it possible to deposit, on the textured surface 2B of the substrate 2, either the single layer conformably, or the different layers of the stack successively in a compliant manner.
  • thin dielectric layers in particular layers of Si 3 N, SnO 2 , ZnO, ZrO 2 , SnZnO 2 , AlN, NbO, NbN, TiO 2 , SiO 2 , Al 2 O 3 , MgF 2 , AlF 3 , or thin metal layers, especially layers of silver, gold, titanium, niobium, silicon, aluminum, nickel-chromium alloy (NiCr), or alloys of these metals.
  • NiCr nickel-chromium alloy
  • the second outer layer 4 of the layered element 1 can be formed by covering the central layer 3 with a transparent sol-gel layer having a refractive index substantially equal to that of the substrate 2.
  • layer comes, in the viscous state, liquid or pasty, conform to the texture of the surface 3B of the central layer 3 opposite the substrate 2.
  • the outer layer 4 of the layered element 1 of FIG. 4 is a sol-gel layer deposited by a sol-gel process on the textured surface of the central layer 3.
  • the additional layer or layers are preferably a flat glass substrate, a plastic interlayer or an overlap of a spacer and a flat glass substrate.
  • an additional layer 12 by positioning a laminating interlayer PVB or EVA, against the Smooth main outer surface of the layered element.
  • the additional layer 12 has in this case preferably substantially the same refractive index as the outer layer of the layered element obtained from a sol-gel process.
  • the additional layer may also be a transparent substrate, for example a flat glass.
  • the additional layer is used as a counter-substrate.
  • the sol-gel layer then ensures a connection between the lower outer layer provided with the central layer and the counter-substrate.
  • a transparent substrate as an upper additional layer is particularly useful when the additional layer directly below said upper additional layer is formed by a polymeric lamination interlayer.
  • a first additional layer 12 formed by a PVB or EVA lamination interlayer may be positioned against the outer top surface of the layered member and a second additional layer 12 of a flat glass substrate may overlie the liner.
  • the additional layers are associated with the layered element by a conventional lamination process.
  • the polymeric lamination interlayer and the substrate are successively positioned from the upper external main surface of the layered element and then the compression and / or heating is applied to the laminated structure thus formed. at least at the glass transition temperature of the polymeric lamination interlayer, for example in a press or an oven.
  • the interlayer forms the additional top layer directly above the layered element whose upper layer is a sol-gel layer, it conforms to both the upper surface of the the sol-gel layer and the lower surface of the flat glass substrate.
  • the layered element 1 is a flexible film with a total thickness of the order of 200-300 ⁇ .
  • the layered element is formed by the superposition:
  • sol-gel layer having a thickness of 50 nm to 50 ⁇ so as to form the second outer layer 4 of the layered element 1.
  • the flexible film forming the lower additional layer may be a film of polyethylene terephthalate (PET) having a thickness of 100 ⁇ m
  • the outer layer 2 may be a layer of UV curable resin of the type KZ6661 sold by the company JSR Corporation having a thickness of about 10 ⁇ .
  • the flexible film and the layer 2 both have substantially the same refractive index, on the order of 1.65 to 589 nm. In the cured state, the resin layer has good adhesion with the PET.
  • the resin layer 2 is applied to the flexible film with a viscosity allowing the introduction of a texturing on its surface 2B opposite to the film 12.
  • the texturing of the surface 2B can be carried out at the same time. using a roller 13 having on its surface a texturing complementary to that to be formed on the layer 2.
  • the flexible film and the layer of resin 2 superimposed are irradiated with UV radiation, as shown by the arrow in Figure 5, which allows the solidification of the resin layer 2 with its texturing and the assembly between the flexible film and the resin layer 2.
  • the central layer 3 of refractive index different from that of the outer layer 2 is then conformably deposited on the textured surface 2B by magnetron sputtering.
  • This central layer may be monolayer or formed by a stack of layers, as described above. It can be for example:
  • a layer of T1O2 having a thickness of between 55 and 65 nm, ie of the order of 60 nm and a refractive index of 2.45 at 550 nm,
  • the sol-gel layer is then deposited on the central layer 3 so as to form the second outer layer 4 of the layered element 1.
  • This second outer layer 4 conforms to the textured surface 3B of the central layer 3 opposite to the outer layer 2.
  • the layered element 1 is thus in the form of a flexible film ready to be attached by bonding to a surface, such as a surface of a glazing unit, in order to give this surface diffuse reflection properties.
  • the adhesive layer 14 and the protective strip 15 are attached to the outer surface 4A of the layer 4.
  • the outer surface 2A of the layer 2, which is intended to receive incident radiation is provided with an antireflection coating.
  • the various steps of the method can be carried out continuously on the same production line.
  • the placing of the anti-reflective coating (s) of the layered element 1 has not been shown in FIGS. 4 to 5. It should be noted that, in each of the processes illustrated in these figures, the anti-reflective coating (s) may be placed on the smooth surfaces 2A and / or 4A of the outer layers before or after assembly of the layered element, indifferently.
  • the thickness of each outer layer formed based on a polymer film may be greater than 10 ⁇ , in particular of the order of 10 m to 1 mm.
  • the texturing of the first outer layer 2 in the example of FIG. 5 can be obtained without resorting to a layer of curable resin deposited on the polymer film, but directly by hot embossing a polymer film, in particular by rolling with a textured roll or pressing with a punch.
  • the glazing according to the invention is capable of being used for all known glazing applications, such as for vehicles, buildings, street furniture, interior furnishing, lighting, display screens, etc. It may also be a flexible film based on polymeric material, in particular adapted to be attached to a surface in order to confer diffuse reflection properties while preserving its transmission properties.
  • the layer element with high diffuse reflection of the invention can be used in a so-called Head Up Display (HUD) display system.
  • HUD Head Up Display
  • the HUD systems which are useful in particular in aircraft cockpits, trains, but also today in passenger cars (cars, trucks, etc.), allow to display information projected on a glazing, in general the windshield of the vehicle, which are reflected towards the driver or the observer.
  • These systems make it possible to inform the driver of the vehicle without the latter keeping his eyes away from the field of vision in front of the vehicle, which greatly increases safety.
  • the driver perceives a virtual image that is some distance behind the glazing.
  • the layered element is integrated in a HUD system as glazing, on which the information is projected.
  • the layered element is a flexible film attached to a main surface of a glazing unit of a HUD system, in particular a windshield, the information being projected onto the glazing on the side of the film. flexible. In both cases, there is a strong diffuse reflection on the first textured contact surface encountered by the radiation in the layered element, which allows a good visualization of the virtual image, while the specular transmission through the glazing is preserved, which guarantees a clear vision through the glazing.
  • the virtual image is obtained by projecting the information on a glazing unit (in particular a windshield) having a laminated structure formed of two sheets of glass and one plastic interlayer.
  • a disadvantage of these existing systems is that the driver then observes a double image, a first image reflected by the surface of the glazing directed towards the interior of the habitable and a second image by reflection of the outer surface of the glazing, these two images being slightly offset with respect to each other. This gap can disrupt the vision of information.
  • the invention overcomes this problem. Indeed, when the layered element is integrated in a HUD system, as glazing or as a flexible film attached to the main surface of the glazing unit which receives the radiation from the projection source, the diffuse reflection on the first surface Textured contact encountered by the radiation in the layered element may be significantly higher than the reflection on the external surfaces in contact with the air. Thus, the double reflection is limited by promoting reflection on the first textured contact surface of the layered element.
  • sol-gel layers prepared in the examples comprise an organic / inorganic hybrid matrix of silica and zirconium oxide in which titanium dioxide particles are dispersed.
  • the main compounds used in sol-gel solutions are:
  • zirconium propoxide in the form of 70% by weight solution in propanol
  • a first precursor composition of the matrix is prepared by mixing the organosilane, the solution of zirconium propoxide, acetic acid and optionally water. The constituents are mixed dropwise with vigorous stirring. The other compounds are then added in this first composition, that is to say the aqueous dispersion of titanium dioxide in the form of particles, the surfactant and optionally other diluting solvents such as ethanol. The sol-gel solution is thus obtained. Depending on the proportions of dispersion of titanium dioxide added to the sol-gel solution, the matrix of the sol-gel layer once crosslinked will be more or less loaded particle ⁇ 2.
  • the refractive index of the sol-gel layer depends on the volume fraction of titanium dioxide. It is thus possible to vary the refractive index of the resulting sol-gel layer between 1.490 and
  • the solid content of the sol-gel layer influences the maximum thickness that can be deposited in one pass.
  • sol-gel solutions have been prepared. These solutions were then sprayed onto a support and crosslinked for a period of 20 minutes to a few hours at a temperature of 150 ° C or 200 ° C to form sol-gel layers having refractive indices varying between 1, 493-1.670.
  • the proportions given correspond to the proportions in mass relative to the total mass of the sol-gel solution.
  • 3M-FC 4430 0.0 0, 1 0.2 0.3 0.2 0.2 0.3 0.3 0.4
  • the volume proportions of ⁇ 2 are defined with respect to the total volume of the main components comprising the hybrid matrix of silica and zirconium oxide and the particles of ⁇ 2 .
  • the proportions of the main components correspond to the mass proportions of the main compounds of the sol-gel layer relative to the total mass of main compounds.
  • a silica-based matrix comprising a non-hydrolysable organic group hereinafter referred to as "a non-hydrolyzable organic group, is obtained in the sol-gel layer" Gly-SiO2 "and zirconium oxide in which the particles of TiO 2 are dispersed.
  • a non-hydrolyzable organic group hereinafter referred to as "a non-hydrolyzable organic group
  • the volume fraction of titanium dioxide has a linear influence on the refractive index of the sol-gel layer for proportions2 volume proportions of less than 20%. For higher proportions, the refractive index continues to increase but a decrease in the slope of the curve is observed. However, once this curve is determined, the skilled person is able to estimate, by approximation, the refractive index of a sol-gel layer comprising a TiO 2 volume fraction greater than 20%.
  • FIG. 6 represents the evolution of the refractive index as a function of the volume proportions of ⁇ 2 in the sol-gel layer.
  • the linear evolution of the refractive index as a function of the proportions of ⁇ 2 is linear for proportions less than 20%.
  • the refractive index accuracy is 7 ⁇ 10 -4 for an error of 0.1% by volume over the amount of ⁇ 2.
  • the images in FIG. 7 represent Satinovo® transparent rough glass satin substrates from Saint-Gobain on which a sol-gel layer has been deposited by sol-gel process. These 4 mm thick substrates comprise a textured main surface obtained by acid etching. These substrates are therefore used as the lower outer layer of the layered element.
  • the average height of the patterns of the texturing of this lower outer layer, which corresponds to the roughness Ra of the textured surface of the Satinovo® glass, is between 1 and 5 ⁇ . Its refractive index is 1, 518 and its PV is between 12 and 17 m.
  • Satinovo® covered with the sol-gel layer it is clearly seen that the texture is formed by a plurality of recessed or protruding patterns with respect to the general plane of the contact surface.
  • the thickness of the sol-gel layer is 14.3 ⁇ .
  • the image on the right represents a view taken from above of the same substrate.
  • the sol-gel layer was not applied to the entire surface of the Satinovo® substrate.
  • the sol-gel layer makes it possible to planarize the roughness of the substrate.
  • sol-gel solutions were prepared and deposited on Satinovo® transparent rough glass satin substrates defined above.
  • the thicknesses of the sol-gel layers deposited after drying are approximately 15 ⁇ .
  • This test aims to show the influence of the index agreement between the upper and lower outer layer on the optical properties of the glazing such as: the light transmission values T L in the visible in%, measured according to the ISO 9050: 2003 standard (illuminant D65, 2 ° Observer),
  • the quality of "vision" through the coated substrate has been visually assessed by 5 blind observers, ie without the observers knowing the characteristics such as the refractive index or the agreement of index of the sol-gel layers with the substrate.
  • the observers attributed for each substrate coated with a sol-gel layer an assessment indicator chosen from: "-" not correct, "+” correct, "++” good, "+++” excellent.
  • Figure 8 is a graph showing the evolution of the blur (y-axis on the right) and the clarity (y-axis on the left) as a function of the refractive index of the sol-gel layer.
  • the vertical black line illustrates the index of the Satinovo® glass substrate.
  • FIG. 9 is a graph showing the evolution of the blur (y-axis on the right) and the brightness (y-axis on the left) as a function of the variation in refractive index between the Satinovo® substrate and the layer. sol-gel.
  • the sol-gel layer has an index between 1, 500 and 1.530, blur values are obtained through the substrate thus coated less than 0.5%. However, blur values alone are not enough to characterize the excellence of vision. This is why clarity has also been determined. It can be seen that, unlike the blur values, which are almost constant in the index range indicated, the brightness values reflect within this range a centered peak for refractive index values of the sol-gel layer around the value of the substrate index is 1, 518. More particularly, good results are obtained for an index difference of less than 0.020 and excellent results for an index difference of less than 0.015, or even less than 0.005.
  • the absolute value of the difference in index between the lower outer layer of index n1 and the upper outer layer sol-gel of index n2 is preferably less than 0.020, better less than 0.015 and even more preferably less than 0.013. .
  • Laminating has the advantage of "planarizing” or erasing the imperfections of the main surface of the sol-gel layer. This results in a completely flat outer surface, without the appearance of a wavelet and protected from dust.
  • central layer stack of layers comprising at least one layer based on silver deposited by magnetron deposition
  • PVB spacer PVB spacer
  • the presence of the magnetron-deposited core layer gives the layered element an intrinsic blurring effect from reflections on the core layer. Even in the case of a perfect chord of index, we then have some blur. The value of the blur depends on the properties of the central layer.
  • the sol-gel layer is applied. Finally, the assembly is laminated by placing a 0.38 mm thick PVB interlayer in contact with the gel sol layer and a Planilux® flat glass. Satin and flat glasses have a thickness of 4 mm for the first two examples with SKN layers and 6 mm for the last two.
  • the stack of layers of the central layer is for example described in patent applications WO 02/48065 and EP 0 847 965.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Glass (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

L'élément en couches transparent de l'invention à propriétés de réflexion diffuse comprend deux couches externes constituées en des matériaux diélectriques ayant sensiblement le même indice de réfraction et une couche centrale intercalée entre les deux couches externes formée soit par une couche unique qui est une couche diélectrique d'indice de réfraction différent de celui des couches externes ou une couche métallique, soit par un empilement de couches qui comprend au moins une couche diélectrique d'indice de réfraction différent de celui des couches externes ou une couche métallique. La couche externe supérieure est une couche sol-gel comprenant une matrice hybride organique/inorganique à base de silice.

Description

ELEMENT TRANSPARENT A REFLEXION DIFFUSE COMPRENANT UNE
COUCHE SOL-GEL
La présente invention concerne un élément en couches transparent à propriété de réflexion diffuse.
L'élément en couches peut être rigide ou flexible. Il peut s'agir en particulier d'un vitrage, constitué par exemple à base de verre ou de matériau polymère. Il peut s'agir également d'un film flexible à base de matériau polymère, notamment apte à être rapporté sur une surface afin de lui conférer des propriétés de réflexion diffuse tout en préservant ses propriétés de transmission.
Les vitrages connus comprennent les vitrages transparents standards, qui donnent lieu à une transmission et une réflexion spéculaires d'un rayonnement incident sur le vitrage, et les vitrages translucides, qui donnent lieu à une transmission et une réflexion diffuses d'un rayonnement incident sur le vitrage.
De manière usuelle, la réflexion par un vitrage est dite diffuse lorsqu'un rayonnement incident sur le vitrage avec un angle d'incidence donné est réfléchi par le vitrage dans une pluralité de directions. La réflexion par un vitrage est dite spéculaire lorsqu'un rayonnement incident sur le vitrage avec un angle d'incidence donné est réfléchi par le vitrage avec un angle de réflexion égal à l'angle d'incidence. De manière analogue, la transmission à travers un vitrage est dite spéculaire lorsqu'un rayonnement incident sur le vitrage avec un angle d'incidence donné est transmis par le vitrage avec un angle de transmission égal à l'angle d'incidence.
Un inconvénient des vitrages transparents standards est qu'ils renvoient des reflets nets, à la manière de miroirs, ce qui n'est pas souhaitable dans certaines applications. Ainsi, lorsqu'un vitrage est utilisé pour une fenêtre de bâtiment ou un écran d'affichage, il est préférable de limiter la présence de reflets, qui réduisent la visibilité à travers le vitrage. Des reflets nets sur un vitrage peuvent également générer des risques d'éblouissement, avec des conséquences en termes de sécurité, par exemple lorsque des phares de véhicules se reflètent sur des façades vitrées de bâtiments. Ce problème se pose tout particulièrement pour les façades vitrées d'aéroports. Il est en effet essentiel de supprimer tout risque d'éblouissement des pilotes à l'approche des terminaux.
Par ailleurs, les vitrages translucides, s'ils ont l'avantage de ne pas générer de reflets nets, ne permettent toutefois pas d'avoir une vision claire à travers le vitrage.
C'est à ces inconvénients qu'entend plus particulièrement remédier l'invention en proposant un élément en couches permettant à la fois d'avoir une excellente vision nette à travers l'élément, de limiter les réflexions de type "miroir" sur l'élément, et de favoriser les réflexions diffuses sur l'élément.
Le demandeur a découvert que l'utilisation d'un élément en couches transparent à réflexion diffuse particulier utilisé dans un vitrage permet d'obtenir un vitrage transparent en transmission et présentant une réflexion diffuse. Ces propriétés sont notamment obtenues grâce à un empilement particulier de couches présentant des indices de réfraction et une géométrie définis. En résumé, l'élément en couches comprend une couche centrale constituée en des matériaux diélectriques ou métalliques, de préférence une couche mince ou un empilement de couches minces, encadrée(s) par deux couches externes, une couche externe supérieure et une couche externe inférieure constituées en des matériaux diélectriques présentant sensiblement le même indice de réfraction. Dans cet élément en couches, chaque surface de contact (So, Si , Sk) entre deux couches adjacentes de l'élément en couches qui sont l'une diélectrique et l'autre métallique, ou qui sont deux couches diélectriques d'indices de réfraction différents, est texturée et parallèle aux autres surfaces de contact texturées entre deux couches adjacentes qui sont l'une diélectrique l'autre métallique ou qui sont deux couches diélectriques d'indices de réfraction différents.
Le demandeur a découvert que les propriétés avantageuses de l'élément en couches de l'invention sont dues en particulier à l'accord d'indice entre les couches externes, c'est-à-dire au fait que ces deux couches ont sensiblement le même indice de réfraction. Selon l'invention, l'accord d'indice ou écart d'indice correspond à la valeur absolue de la différence d'indice de réfraction à 589 nm entre les matériaux diélectriques constitutifs des deux couches externes de l'élément en couches. Plus l'écart d'indice est faible, plus la vision sera nette au travers du vitrage. Le demandeur a découvert que l'on obtient une excellente vision avec un accord d'indice inférieur à 0,050, de préférence inférieur à 0,030 et mieux inférieur à 0,015.
Plusieurs configurations et procédés de préparation pour l'élément en couches sont envisageables variant notamment par le choix des matériaux constituant la couche externe inférieure et la couche centrale. La couche externe inférieure constituée de matériaux diélectriques est choisie parmi :
- les substrats transparents dont l'une des surfaces principales est texturée et l'autre lisse, de préférence les substrats en verre minéral ou organique, choisis parmi les polymères, les verres, les céramiques,
- les couches de matériau diélectrique, par exemple déposé par magnétron, choisies parmi les oxydes, nitrures ou halogénures d'un ou plusieurs métaux de transition, non-métaux ou métaux alcalino-terreux,
- les couches à base de matériaux durcissables initialement dans un état visqueux, liquides ou pâteux adaptés à des opérations de mise en forme comprenant :
- les matériaux photoréticulables et/ou photopolymérisables,
- les couches déposées par un procédé sol-gel,
- les intercalaires ou feuillets de matière plastique thermoformable ou sensible à la pression pouvant être de préférence à base de polymères choisis parmi les polybutyrales de vinyle (PVB), les polychlorures de vinyle (PVC), les polyuréthanes (PU), les polyéthylènes téréphtalates (PET) ou les copolymères d'éthylène-acétate de vinyle (EVA).
Parmi ces matériaux, certains sont particulièrement intéressants au regard de leur disponibilité et/ou de leur prix, par exemple, les substrats rugueux ou texturés en verre de type Satinovo® commercialisé par Saint- Gobain.
Comme expliqué ci-dessus, pour obtenir une vision particulièrement nette au travers du vitrage, la variation d'indice de réfraction entre la couche externe inférieure constituée d'un substrat rugueux et le matériau constituant la couche externe supérieure de l'élément en couches est de préférence inférieure à 0,050, et mieux inférieure à 0,015.
Cependant, parmi les matériaux proposés pour constituer les couches externes supérieures, il n'est pas toujours possible d'obtenir une variation d'indice aussi faible que 0,015. Par exemple, pour les verres standards, l'indice d'un verre de même type peut varier d'une usine à l'autre entre 1 ,517 et 1 ,523. Cette variation de l'ordre de 0,006 est non négligeable devant la gamme d'acceptation d'écart d'indice préférentielle pour un vitrage comprenant l'élément transparent à réflexion diffuse.
Par conséquent, lorsqu'un substrat de verre texturé est choisi comme couche externe inférieure, il n'est pas possible, si on recherche une excellente netteté, de choisir pour couche externe supérieure tous types de matériaux de la liste donnée ci-dessus pour les couches externes inférieures.
Le demandeur a découvert de façon surprenante que l'utilisation spécifique d'une couche sol-gel particulière comme couche externe supérieure de l'élément en couches permet de préparer facilement des éléments en couches transparents à réflexion diffuse avec des accords d'indice pouvant être notamment inférieurs à 0,015. La couche sol-gel de l'invention présente, en fonction des proportions des différents composés précurseurs la constituant, un indice de réfraction adaptable pouvant notamment varier dans une gamme allant de 1 ,459 à 1 ,700, de préférence 1 ,502 à 1 ,538.
Grâce à la solution de l'invention, il est donc possible d'adapter avec précision l'indice de réfraction de façon à s'assurer que l'écart d'indice entre la couche externe inférieure et la couche externe supérieure soit inférieur à une valeur définie.
La formulation flexible en terme d'indice de la couche sol-gel de l'invention permet d'obtenir des éléments en couches transparents présentant une qualité constante en terme de performance optique, peu importe la provenance du substrat ou la nature du substrat. De plus, il est également possible d'utiliser comme couche externe inférieure des substrats en plastique ayant un indice significativement plus élevé.
Le choix spécifique d'une couche sol-gel comme couche externe supérieure de l'élément en couches permet de :
- s'accorder précisément sur l'indice de la couche externe inférieure alors que cela n'est pas possible avec d'autres types de couche externe,
- de s'adapter à l'indice précis du verre en fonction de sa provenance,
- d'obtenir une composition ajustable en fonction de la nature de la couche externe inférieure qu'elle soit minérale ou organique,
- de rajouter une composante donnant un aspect coloré à la couche sol-gel, - d'appliquer la couche externe sur des surfaces complexes de tailles diverses et sans nécessiter d'équipement lourd ;
- d'obtenir des dépôts homogènes en surface, en composition et en épaisseur.
A cet effet, l'invention a pour objet un élément en couches (1 ) transparent ayant deux surfaces principales externes (2A, 4A) lisses, caractérisé en ce que l'élément en couche comprend :
- deux couches externes, une couche externe inférieure (2) et une couche externe supérieure (4), qui forment chacune une des deux surfaces principales externes (2A, 4A) de l'élément en couches et qui sont constituées en des matériaux diélectriques ayant sensiblement le même indice de réfraction (n2, n4), et
- une couche centrale (3) intercalée entre les couches externes, cette couche centrale (3) étant formée soit par une couche unique qui est une couche diélectrique d'indice de réfraction (n3) différent de celui des couches externes ou une couche métallique, soit par un empilement de couches (3i , 32, 3k) qui comprend au moins une couche diélectrique d'indice de réfraction différent de celui des couches externes ou une couche métallique, où chaque surface de contact (So, Si, Sk) entre deux couches adjacentes de l'élément en couches qui sont l'une diélectrique et l'autre métallique, ou qui sont deux couches diélectriques d'indices de réfraction différents, est texturée et parallèle aux autres surfaces de contact texturées entre deux couches adjacentes qui sont l'une diélectrique l'autre métallique ou qui sont deux couches diélectriques d'indices de réfraction différents, et
où la couche externe supérieure (4) est une couche sol-gel comprenant une matrice hybride organique/inorganique à base de silice.
L'élément en couches particulier utilisé selon l'invention permet d'obtenir une transmission spéculaire d'un rayonnement incident sur l'élément en couches et une réflexion diffuse d'un rayonnement quelle que soit la direction de la source.
L'extrême netteté de la vision est due à l'accord d'indice le plus ajusté possible.
Dans le cadre de l'invention, on distingue les couches métalliques, d'une part, pour lesquelles la valeur de l'indice de réfraction est indifférente, et les couches diélectriques, d'autre part, pour lesquelles la différence d'indice de réfraction par rapport à celui des couches externes est à considérer.
Dans toute la description l'élément en couches transparent selon l'invention est considéré posé horizontalement, avec sa première face orientée vers le bas définissant une surface principale externe inférieure et sa seconde face, opposée à la première face, orientée vers le haut définissant une surface principale externe supérieure ; les sens des expressions " au-dessus " et " en- dessous " sont ainsi à considérer par rapport à cette orientation. A défaut de stipulation spécifique, les expressions " au-dessus " et " en-dessous " ne signifient pas nécessairement que les deux couches sont disposées au contact l'un de l'autre. Les termes " inférieur " et " supérieur " sont utilisés ici en référence à ce positionnement.
L'élément en couches comprend éventuellement au moins une couche additionnelle positionnée au-dessus ou en-dessous des couches externes supérieure et/ou inférieure. La ou lesdites couches additionnelles peuvent être constituées en des matériaux diélectriques ayant tous sensiblement le même indice de réfraction que les matériaux diélectriques des couches externes de l'élément en couches ou ayant des indices de réfraction différents.
Au sens de l'invention, le terme « indice » fait référence à l'indice optique de réfraction, mesuré à la longueur d'onde de 589 nm.
Selon l'invention, une couche mince est une couche d'épaisseur inférieure à 1 μιτι.
Deux matériaux ou couches diélectriques ont sensiblement le même indice de réfraction, ou ont leurs indices de réfraction sensiblement égaux, lorsque les deux matériaux diélectriques ont des indices de réfraction dont la valeur absolue de la différence entre leurs indices de réfraction à 589 nm est inférieure ou égale à 0,150.
Selon l'invention, la valeur absolue de la différence d'indice de réfraction à 589 nm entre les matériaux diélectriques constitutifs des deux couches externes de l'élément en couches est par ordre de préférence croissant : inférieure ou égale à 0,050, inférieur ou égale à 0,030, inférieur ou égale à
0,020, inférieure ou égale à 0,018, inférieure ou égale à 0,015, inférieure ou égale à 0,010, inférieure ou égale à 0,005. Deux matériaux ou couches diélectriques ont des indices de réfraction différents lorsque la valeur absolue de la différence entre leurs indices de réfraction à 589 nm est strictement supérieure à 0,15. Selon une caractéristique avantageuse, la valeur absolue de la différence d'indice de réfraction à 589 nm entre, d'une part, les couches externes et, d'autre part, au moins une couche diélectrique de la couche centrale, est supérieure ou égale à 0,3, de préférence supérieure ou égale à 0,5, encore de préférence supérieure ou égale à 0,8. Cette différence d'indice de réfraction relativement importante intervient au niveau d'au moins une surface de contact texturée interne à l'élément en couches. Cela permet de favoriser la réflexion de rayonnement sur cette surface de contact texturée, c'est-à-dire une réflexion diffuse du rayonnement par l'élément en couches.
La surface de contact entre deux couches adjacentes est l'interface entre les deux couches adjacentes.
Un matériau ou couche diélectrique est un matériau ou une couche non métallique. De préférence, les matériaux ou couches diélectriques sont de nature organique ou minérale. Les matériaux ou couches diélectriques minérales peuvent être choisis parmi les oxydes, nitrures ou halogénures d'un ou plusieurs métaux de transition, non-métaux ou métaux alcalino-terreux choisis de préférence parmi le silicium, le titane, l'étain, le zinc, l'aluminium, le molybdène, le niobium, le zirconium, le magnésium. Les matériaux ou couches diélectriques organiques sont choisis parmi les polymères.
On considère qu'un matériau ou couche diélectrique est un matériau ou une couche de conductivité électrique faible, de préférence inférieure à 100 S/m.
Un élément transparent est un élément à travers lequel il y a une transmission de rayonnement au moins dans les domaines de longueurs d'onde utiles pour l'application visée de l'élément. A titre d'exemple, lorsque l'élément est utilisé en tant que vitrage de bâtiment ou de véhicule, il est transparent au moins dans le domaine de longueurs d'onde du visible.
Une surface texturée ou rugueuse est une surface pour laquelle les propriétés de surface varient à une échelle plus grande que la longueur d'onde du rayonnement incident sur la surface. Le rayonnement incident est alors transmis et réfléchi de manière diffuse par la surface. De préférence, une surface texturée ou rugueuse selon l'invention présente un paramètre de rugosité correspondant à l'écart moyen arithmétique Ra d'au moins 0,5 μιτι, notamment compris entre 1 et 100 μιτι et mieux entre 1 et 5 μιτι (correspondant à la moyenne arithmétique de toutes les distances absolues du profil de rugosité R mesurée à partir d'une ligne médiane du profil sur une longueur d'évaluation).
Une surface lisse est une surface pour laquelle les irrégularités de surface sont telles que le rayonnement n'est pas dévié par ces irrégularités de surface. Le rayonnement incident est alors transmis et réfléchi de manière spéculaire par la surface. De préférence, une surface lisse est une surface pour laquelle les irrégularités de surface sont de dimensions inférieures à la longueur d'onde du rayonnement incident sur la surface. Toutefois, selon l'invention, les surfaces de couches externes ou de couches additionnelles qui présentent certaines irrégularités de surface mais qui sont au contact d'une ou plusieurs couches additionnelles constituées en des matériaux diélectriques ayant sensiblement le même indice de réfraction et qui présentent, sur leur face opposée à celle en contact avec ladite couche présentant certaines irrégularités, une surface pour laquelle les irrégularités de surface sont de dimensions très inférieures ou très supérieures (ondulations à grande échelle) à la longueur d'onde du rayonnement incident sur la surface sont considérées comme lisses. De préférence, une surface lisse est une surface présentant soit un paramètre de rugosité correspondant à l'écart moyen arithmétique Ra inférieur à 0,10 μιτι, de préférence inférieure à 0,01 μιτι, soit des pentes inférieures à 10°.
Un vitrage correspond à un substrat transparent organique ou minéral.
Grâce à l'invention, on obtient une transmission spéculaire et une réflexion diffuse d'un rayonnement incident sur l'élément en couches. La transmission spéculaire garantit une vision nette à travers l'élément en couches. La réflexion diffuse permet d'éviter les reflets nets sur l'élément en couches et les risques d'éblouissement.
La réflexion diffuse sur l'élément en couches provient de ce que chaque surface de contact entre deux couches adjacentes qui sont l'une diélectrique et l'autre métallique, ou qui sont deux couches diélectriques d'indices de réfraction différents, est texturée. Ainsi, lorsqu'un rayonnement incident sur l'élément en couches atteint une telle surface de contact, il est réfléchi par la couche métallique ou du fait de la différence d'indice de réfraction entre les deux couches diélectriques et, comme la surface de contact est texturée, la réflexion est diffuse.
La transmission spéculaire provient de ce que les deux couches externes de l'élément en couches ont des surfaces principales externes lisses et sont constituées en des matériaux ayant sensiblement le même indice de réfraction, et de ce que chaque surface de contact texturée entre deux couches adjacentes de l'élément en couches qui sont l'une diélectrique et l'autre métallique, ou qui sont deux couches diélectriques d'indices de réfraction différents, est parallèle aux autres surfaces de contact texturées entre deux couches adjacentes qui sont l'une diélectrique et l'autre métallique ou qui sont deux couches diélectriques d'indices de réfraction différents.
Les surfaces externes lisses de l'élément en couches permettent une transmission spéculaire de rayonnement à chaque interface air/couche externe, c'est-à-dire permettent l'entrée d'un rayonnement depuis l'air dans une couche externe, ou la sortie d'un rayonnement depuis une couche externe dans l'air, sans modification de la direction du rayonnement.
Le parallélisme des surfaces de contact texturées implique que la ou chaque couche constitutive de la couche centrale qui est diélectrique d'indice de réfraction différent de celui des couches externes, ou qui est métallique, présente une épaisseur uniforme perpendiculairement aux surfaces de contact de la couche centrale avec les couches externes.
Cette uniformité de l'épaisseur peut être globale sur toute l'étendue de la texture, ou locale sur des tronçons de la texture. En particulier, lorsque la texture présente des variations de pente, l'épaisseur entre deux surfaces de contact texturées consécutives peut changer, par tronçon, en fonction de la pente de la texture, les surfaces de contact texturées restant toutefois toujours parallèles entre elles. Ce cas se présente notamment pour une couche déposée par pulvérisation cathodique, où l'épaisseur de la couche est d'autant plus faible que la pente de la texture augmente. Ainsi, localement, sur chaque tronçon de texture ayant une pente donnée, l'épaisseur de la couche reste constante, mais l'épaisseur de la couche est différente entre un premier tronçon de texture ayant une première pente et un deuxième tronçon de texture ayant une deuxième pente différente de la première pente.
De manière avantageuse, afin d'obtenir le parallélisme des surfaces de contact texturées à l'intérieur de l'élément en couches, la couche ou chaque couche constitutive de la couche centrale est une couche déposée par pulvérisation cathodique. En effet, la pulvérisation cathodique, en particulier la pulvérisation cathodique assistée par un champ magnétique, garantit que les surfaces délimitant la couche soient parallèles entre elles, ce qui n'est pas le cas d'autres techniques de dépôt telles que l'évaporation ou le dépôt chimique en phase vapeur (CVD), ou encore le procédé sol-gel. Or, le parallélisme des surfaces de contact texturées à l'intérieur de l'élément en couches est essentiel pour obtenir une transmission spéculaire à travers l'élément.
Un rayonnement incident sur une première couche externe de l'élément en couches traverse cette première couche externe sans modification de sa direction. Du fait de la différence de nature, diélectrique ou métallique, ou de la différence d'indice de réfraction entre la première couche externe et au moins une couche de la couche centrale, le rayonnement est ensuite réfracté dans la couche centrale. Comme, d'une part, les surfaces de contact texturées entre deux couches adjacentes de l'élément en couches qui sont l'une diélectrique et l'autre métallique, ou qui sont deux couches diélectriques d'indices de réfraction différents, sont toutes parallèles entre elles et, d'autre part, la deuxième couche externe a sensiblement le même indice de réfraction que la première couche externe, l'angle de réfraction du rayonnement dans la deuxième couche externe à partir de la couche centrale est égal à l'angle d'incidence du rayonnement sur la couche centrale à partir de la première couche externe, conformément à la loi de Snell-Descartes pour la réfraction.
Le rayonnement ressort donc de la deuxième couche externe de l'élément en couches selon une direction qui est la même que sa direction d'incidence sur la première couche externe de l'élément. La transmission du rayonnement par l'élément en couches est ainsi spéculaire. On obtient donc ainsi une vision claire à travers l'élément en couches, c'est-à-dire sans que l'élément en couches soit translucide, grâce aux propriétés de transmission spéculaire de l'élément en couches. Selon un aspect de l'invention, on tire parti des propriétés de réflexion diffuse de l'élément en couches pour réfléchir une grande partie du rayonnement, dans une pluralité de directions, du côté d'incidence du rayonnement. Cette forte réflexion diffuse est obtenue tout en ayant une vision claire à travers l'élément en couches, c'est-à-dire sans que l'élément en couches soit translucide, grâce aux propriétés de transmission spéculaire de l'élément en couches. Un tel élément en couches transparent à forte réflexion diffuse trouve application, par exemple, pour des écrans d'affichage ou de projection.
La couche externe supérieure est une couche sol-gel comprenant une matrice hybride organique/inorganique à base de silice obtenue selon un procédé sol-gel.
Le procédé sol-gel consiste, dans un premier temps, à préparer une solution dite « solution sol-gel » contenant des précurseurs qui donnent lieu en présence d'eau à des réactions de polymérisation. Lorsque cette solution sol- gel est déposée sur une surface, de par la présence d'eau dans la solution sol- gel ou au contact de l'humidité ambiante, les précurseurs s'hydrolysent et se condensent pour former un réseau emprisonnant le solvant. Ces réactions de polymérisation entraînent la formation d'espèces de plus en plus condensées, qui conduisent à des particules colloïdales formant des sols puis des gels. Le séchage et la densification de ces gels, à une température de l'ordre de quelques centaines de degrés, conduit, en présence de précurseur à base de silice, à une couche sol-gel correspondant à un verre dont les caractéristiques sont semblables à celles d'un verre classique.
Du fait de leur viscosité, les solutions sol-gel, sous forme d'une solution colloïdale ou d'un gel, peuvent être déposées de manière aisée sur la surface principale texturée de la couche centrale opposée à la première couche externe, en se conformant à la texture de cette surface. La couche sol-gel va venir « combler » la rugosité de la couche centrale. En effet, cette couche comprend une surface épousant la rugosité de surface de la couche centrale qui est ainsi texturée et une surface principale externe opposée à cette surface qui est plane. Les couches déposées par un procédé sol-gel assurent donc une planarisation de la surface de l'élément en couches. Selon l'invention, la couche sol-gel comprend une matrice hybride organique/inorganique à base de silice. Cette matrice est obtenue à partir de précurseurs mixtes qui sont des organosilanes RnSiX(4-n). Ces molécules comportent simultanément des fonctions hydrolysables qui donnent naissance à un réseau ou matrice de silice comprenant des fonctions organiques qui restent fixées sur le squelette de silice.
Selon une variante de l'invention, la couche sol-gel comprend en outre des particules d'au moins un oxyde métallique ou d'au moins un chalcogénure.
Selon une autre variante de l'invention, la matrice hybride organique/inorganique à base de silice comprend en outre au moins un oxyde métallique. Une telle matrice à base de silice comprenant des fonctions organiques et au moins un oxyde métallique peut être obtenue à partir de l'utilisation conjointe d'organosilane et d'au moins un précurseur d'un oxyde métallique. Ces précurseurs forment alors avec l'organosilane une matrice hybride de silice et d'oxyde métallique.
Selon le mode de réalisation préféré de l'invention, la couche sol-gel comprend une matrice hybride organique/inorganique à base de silice et d'au moins un oxyde métallique dans laquelle sont dispersées des particules d'au moins un oxyde métallique ou d'au moins un chalcogénure telle qu'une matrice hybride organique/inorganique de silice et d'oxyde de zirconium dans laquelle sont dispersées des particules de dioxyde de titane.
Les composés principaux de la couche sol-gel de l'invention sont constitués des composés formant la matrice et des particules dispersées dans ladite matrice. Les composés principaux de la couche sol-gel peuvent donc être :
- la silice comprenant des fonctions organiques de la matrice,
- le ou les oxydes métalliques de la matrice,
- les particules d'oxydes métalliques et/ou de chalcogénures dispersées dans la matrice.
Pour adapter avec précision l'indice de réfraction de la couche sol-gel, on modifie les proportions d'oxydes métalliques provenant de la matrice ou dispersées sous forme de particules. En règle générale, les oxydes métalliques ont un indice de réfraction plus élevé que celui de la silice. En augmentant les proportions d'oxyde métallique, on augmente l'indice de réfraction de la couche sol-gel. L'indice de réfraction de la couche sol-gel augmente de manière linéaire en fonction de la fraction volumique d'un type d'oxyde métallique pour des proportions en volume dudit oxyde métallique inférieures à une valeur seuil. Par exemple, lorsque l'on ajoute des particules de ΤΊΟ2, on observe une variation linéaire de l'indice de réfraction de la couche sol-gel pour des proportions en volume de TiO2 par rapport au volume total des composés principaux de la couche sol-gel inférieures à 20%.
Il est donc possible de déterminer théoriquement l'indice de réfraction d'une couche sol-gel en fonction des composés principaux la constituant et ainsi de déterminer théoriquement la formulation d'une solution sol-gel qui permettra d'obtenir après durcissement à une couche sol-gel présentant l'indice de réfraction requis.
La solution de l'invention est donc particulièrement avantageuse. Par exemple, à réception de substrats de verre destinés à être utilisés comme couche externe inférieure, on mesure leur indice de réfraction. Puis, on formule une solution sol-gel qui donnera après durcissement une couche sol-gel présentant un accord d'indice de réfraction avec ledit substrat inférieur à 0,015.
Les couches sol-gel peuvent avoir un indice de réfraction variant dans une large gamme d'indice notamment 1 ,459 à 1 ,700, de préférence 1 ,502 à 1 ,538 et mieux de 1 ,517 et 1 ,523.
Les composés principaux de la couche sol-gel représentent en masse par rapport à la masse totale de la couche sol-gel, par ordre de préférence croissant au moins 80%, au moins 90%, au moins 95%, au moins 99%, 100%.
La couche sol-gel comprend de préférence en masse par rapport à la masse totale des composés principaux constituant la couche sol-gel :
- 50 à 100%, de préférence 70 à 95% et mieux 85 à 90% de silice comprenant des fonctions organiques de la matrice, et/ou
- 0 à 10%, de préférence 1 à 5% et mieux 2 à 4% d'oxyde métallique de la matrice, et/ou
- 0 à 40%, de préférence 1 à 20%, et mieux 5 à 15% de particules d'oxydes métalliques et/ou de chalcogénures dispersées dans la matrice.
Les proportions volumiques des particules d'oxydes métalliques sur le volume total des composés principaux de la couche sol-gel est par ordre de préférence croissant compris entre 0 et 25%, entre 1 et 15%, entre 2 et 8%. La couche sol-gel est obtenue par durcissement d'une solution sol-gel et comprend le produit résultant de l'hydrolyse et de la condensation d'au moins un organosilane de formule générale RnSiX(4-n) dans laquelle :
- n égal à 1 , 2, 3, de préférence n égal 1 ou 2 et mieux n égal 1 ,
- les groupes X, identiques ou différents, représentent des groupes hydrolysables choisis parmi les groupe alcoxy, acyloxy ou halogénure, de préférence alcoxy, et
- les groupes R, identiques ou différents, représentent des groupes organiques (ou fonctions organiques) non hydrolysables liés au silicium par un atome de carbone.
De préférence, la couche sol-gel est obtenue par durcissement d'une solution sol-gel et comprend le produit résultant de l'hydrolyse et de la condensation de :
i) au moins un organosilane et
ii) au moins un précurseur d'un oxyde métallique et/ ou
iii) des particules d'au moins un oxyde métallique ou d'au moins un chalcogénure.
Les particules d'oxyde métallique et/ou les précurseurs des oxydes métalliques de la matrice hybride organique/inorganique comprennent un métal choisi parmi le titane, zirconium, le zinc, le niobium, l'aluminium et le molybdène.
Le ou les organosilanes comprennent 2 ou 3, en particulier 3, groupes hydrolysables X, et un ou deux, en particulier un, groupe non hydrolysable R.
Les groupes X sont préférentiel lement choisis parmi les groupes alcoxy - O-R', en particulier alcoxy en C1 -C4, acyloxy -O-C(O)R' où R' est un radical alkyle, préférentiellement en C1 -C6, de préférence méthyle ou éthyle, halogénure tels que Cl, Br et I, et les combinaisons de ces groupes. De préférence, les groupes X sont des groupes alcoxy, et en particulier méthoxy ou éthoxy.
Le groupe R est un groupe hydrocarboné non hydrolysable. Un certain nombre de groupes conviennent selon l'invention. La présence et la nature de ces groupes permet d'obtenir des couches sol-gel présentant des épaisseurs compatibles avec les applications de l'invention. De préférence, le groupe R correspondant à la fonction organique non hydrolysable présente une masse molaire d'au moins 50 g/mol, de préférence d'au moins 100 g/mol. Ce groupe R est donc un groupe non éliminable, même suite à l'étape de séchage et peut être choisi parmi :
- les groupes alkyle, de préférence les groupes alkyle linéaires ou ramifiés en C1 à C10, de préférence encore en C3 à C10, tels que par exemple les groupes méthyle, éthyle, propyle, n- butyle, i-butyle, sec-butyle et tertiobutyle ;
- les groupes alcényle, de préférence les groupes alcényle en C2 à C10, tels que par exemple les groupes vinyle, 1 - propényle, 2-propényle et butényle ; - les groupes alcinyles tels que par exemple les groupes acétylényle et propargyle ;
- les groupes aryle, de préférence les groupes aryle en C6 à C10, tels que les groupes phényle et naphtyle ;
- les groupes alkyl-aryle ;
- les groupes aryl-alkyle ;
- les groupes (méth)acryle et (méth)acryloxy-propyle ;
- les groupes glycidyle et glycidyloxy.
Les groupes définis ci-dessus tels que les groupes alkyle, alcényle, alcynyle, alkylaryle, arylalkyle, peuvent comprendre en outre au moins un groupe choisi parmi les groupes amine primaire, secondaire ou tertiaire (le radical non hydrolysable est alors par exemple un groupe aminoaryle ou aminoalkyle), amide, alkylcarbonyle, anilino substitué ou non substitué, aldéhyde, cétone, carboxyle, anhydride, hydroxyle, alcoxy, alcoxycarbonyle, mercapto, cyano, hydroxyphényle, alkyl carboxylate, acide sulfonique, acide phosphorique, meth(acryloxyloxy), les groupes comprenant un cycle époxyde tels que glycidyle et glycidiloxy, allyle, vinyle.
Les organosilanes particulièrement préférés comprennent des groupes X identiques ou différents les uns des autres, de préférence identiques, et représentent un groupe hydrolysable, de préférence un groupe alcoxy en C1 à C4, de préférence encore un groupe éthoxy ou méthoxy ; et R est un groupe non hydrolysable, de préférence un groupe glycidyle ou glycidyloxy-alkylène en C1 à C20, de préférence en C1 à C6, par exemple un groupe glycidyloxypropyle, un groupe glycidyloxyéthyle, un groupe glycidyloxybutyle, un groupe glycidyloxypentyle, un groupe glycidyloxyhexyle et un groupe 2-(3,4- epoxycyclohexyl)éthyle.
Avantageusement, le composé organosilane est choisi parmi les composés suivants allyltriméthoxysilane, N-(2-aminoéthyl)-3- aminopropyltriméthoxysilane, N-[N'-(2'-aminoéthyl)-2-aminoéthyl]-3- aminopropyl-triméthoxysilane, 3-aminopropyltriméthoxysilane, 3- glycidoxypropyltriméthoxysilane (GLYMO), 3-mercaptopropyltriméthoxysilane, 3-méthacryloxypropylméthyldiméthoxysilane, 3- méthacryloxypropyltriméthoxysilane, N-phénylaminopropyltriméthoxysilane, vinyltriméthoxysilane, 3-aminopropyltriéthoxysilane, p-aminophénylsilane, 3- aminopropyltriéthoxysilane, 3-glycidoxypropyldiisopropyléthoxysilane, 3- glycidoxypropyltriéthoxysilane, (3-glycidoxypropyl) méthyldiéthoxysilane, 3- mercaptopropyltriéthoxysilane, 3-méthacryloxypropylméthyldiéthoxysilane, vinylméthyldiéthoxysilane, vinyltriéthoxysilane, N-[(3-(triéthoxysilyl)-propyl]-4,5- dihydroximidazole.
Parmi les composés énumérés ci-dessus, le composé préféré est le GLYMO.
Les particules d'oxyde métallique et/ou de chalcogénure dispersées dans la matrice hybride organique/inorganique à base de silice sont de préférence choisis dans le groupe suivant : ΤΊΟ2, ZrÛ2, ZnO, NbO, SnO2, AI2O3, M0O3, ZnS, ZnTe, CdS, CdSe, lrO2, WO3, Fe2O3, FeTiO3, BaTi4O9, SrTiO3, ZrTiO4, Co3O4, oxyde ternaire à base de bismuth, M0S2, RUO2, Sb2O4, Sb2O5, BaTi4Og, MgO, CaTiO3, V2O5, Mn2O3, CeO2,RuS2, Y2O3, La2O3.
De préférence, les particules sont des particules d'oxyde métallique comprenant un métal choisi parmi le titane, le zirconium, le zinc, le niobium, l'aluminium et le molybdène.
Selon un mode de réalisation particulièrement avantageux, l'oxyde métallique est un oxyde de titane (ΤΊΟ2), sous forme rutile ou anatase ou un oxyde de zirconium (ZrÛ2).
Les particules d'au moins un oxyde métallique ou d'au moins un chalcogénure ont, par ordre de préférence croissant, un diamètre moyen inférieur ou égal à 1 μιτι, inférieur ou égal à 60 nm, inférieur ou égal à 50nm, inférieur ou égal à 20 nm. Les particules ont en général un diamètre supérieur à 1 nm et même supérieur à 5 nm. L'indice de réfraction des oxydes métalliques des chalcogénure est par ordre de préférence croissant, supérieur à 1 ,49, supérieur à 1 ,50, supérieur à 1 ,60, supérieur à 1 ,70, supérieur à 1 ,80, supérieur 1 ,90, supérieur à 2,00, supérieur à 2,10, supérieur à 2,20.
A titre de produit commercial utilisable, on peut citer le produit commercialisé sous la dénomination Optolake 1 120Z® (1 1 RU7-A-8) par la société Catalyst & Chemical (CCIC) correspondant à un colloïde de ΤΊΟ2. On peut citer également le produit commercialisé par la société Cristal Global sous la référence S5-300A correspondant à une dispersion aqueuse stable de particules de TiO2 à 23% en masse par rapport à la masse totale de la dispersion, présentant une surface spécifique BET d'environ 330 m2/g et un diamètre moyen de l'ordre de 50 nm.
Les précurseurs des oxydes métalliques peuvent être choisis parmi les composés métallo-organique tels que les alcoxydes métalliques, les sels métalliques, lesquels comprennent les éléments métalliques.
Les précurseurs des oxydes métalliques peuvent comprendre un métal choisi parmi le titane, le zirconium, le zinc, le niobium, l'aluminium et le molybdène. De préférence, la solution sol-gel comprend au moins un précurseur d'oxyde de zirconium, d'aluminium, ou de titane, de préférence un alcoxyde métallique ou un halogénure métallique. Des exemples de composés précurseurs sont les suivants :
- AI(OCH3)3, AI(OC2H5)3, AI(OC3H7)3, AI(OC4H9)3, AI(OC2H4OC4H9)3, AICI3, AICI(OH)2,
- TiCI4, Ti(OC2H5) , Ti(OC3H7)4, Ti(OC4H9) , Ti(2-éthylhexoxy)4,
- ZrCI4, Zr(OC2H5)4, Zr(OC3H7)4, ZrOCI2, Zr(2-éthylhexoxy)4.
De manière préférée, la solution sol-gel selon l'invention comprend un seul composé choisi parmi les alcoxydes de zirconium, tels que le tétrapropoxide de zirconium (TPOZ).
Les organosilanes (i), les précurseurs d'oxydes métalliques (ii) et les oxydes métalliques et chalcogénure (iii) sont les composés principaux de la solution sol-gel. La solution sol-gel comprend outre ces produits dits principaux, des additifs et des solvants. Les additifs représentent de préférence moins de 10%, de préférence moins de 5% en masse par rapport à la masse totale de la solution sol-gel. Les proportions d'organosilanes, en masse par rapport à la masse totale des composants principaux de la solution sol-gel sont comprises, par ordre de préférence croissant, entre 50 et 99%, entre 60% et 98%, entre 70 et 95%, entre 80 et 90%.
Les proportions des précurseurs d'oxydes métalliques, en masse par rapport à la masse totale des composants principaux de la solution sol-gel sont comprises, par ordre de préférence croissant, entre 0 et 10%, entre 1 et 10%, entre 2 et 8%, entre 4 et 7%.
Les proportions des oxydes métalliques et de chalcogénures, en masse par rapport à la masse totale des composants principaux de la solution sol-gel sont comprises, par ordre de préférence croissant, entre 0 et 40%, entre 1 et 20%, entre 2 et 10%, entre 4 et 9%.
La solution sol-gel peut comprendre en plus des composés principaux, au moins un solvant et éventuellement au moins un additif.
Les solvants sont choisis parmi l'eau et les solvants organiques. La solution sol-gel comporte de préférence de l'eau pour permettre les réactions d'hydrolyse et de condensation. La solution sol-gel peut comprendre, en outre, au moins un solvant organique dont le point d'ébullition, à pression atmosphérique, est de préférence compris entre 70 et 140°C. Comme solvant organique utilisable selon l'invention, on peut citer les alcools, les esters, les cétones, le tétrahydropyrane, et leurs mélanges. Les alcools sont de préférence choisis parmi les alcools en C1 -C6, tels que le méthanol. Les esters sont de préférence choisis parmi les acétates, et on peut citer en particulier l'acétate d'éthyle. Parmi les cétones, on utilisera de préférence la méthyléthylcétone.
Parmi les solvants appropriés, on peut donc citer l'eau, le méthanol, l'éthanol, le propanol (le n-propanol et l'isopropanol), le butanol, le 1 -méthoxy-2- propanol, le 4-hydroxy-4-méthyl-2-pentanone, le 2-méthyl-2-butanol, le butoxyéthanol et les mélange eau/solvants organiques.
Les proportions de solvant peuvent varier dans une large gamme. Elles dépendront notamment des épaisseurs à obtenir. En effet, plus la solution sol- gel présente un contenu solide élevé, plus il est possible de déposer des épaisseurs importantes et donc d'obtenir des couches sol-gel d'épaisseurs élevées. Les proportions en masse de solvant par rapport à la masse totale de la solution sol-gel peuvent représenter par exemple au moins 10% et au plus 80%.
De même, les proportions en masse des composés principaux par rapport à la masse totale de la solution sol-gel représentent, par exemple au moins 20% et au plus 90%.
Les proportions en masse d'eau par rapport à la masse totale de la solution sol-gel représentent, par exemple, entre 10 et 40%, entre 10 et 30% ou entre 15 à 25%.
Lorsque la solution sol-gel comprend en outre un ou plusieurs solvants organiques, les proportions en masse de solvant organique par rapport à la masse totale de la solution sol-gel représentent, par exemple, entre 10 et 40%, entre 10 et 30% ou entre 15 à 25%.
La composition peut comprendre en outre divers additifs tels que des agents tensioactifs, des absorbeurs UV, des pigments ou colorants, des catalyseurs d'hydrolyse et/ou de condensation, des catalyseurs de durcissement. Les proportions totales des additifs représentent de préférence moins de 5% en masse par rapport à la masse totale de la solution sol-gel.
Les agents tensioactifs améliorent les propriétés de mouillage et favorisent un meilleur étalement de la composition sur la surface à revêtir. Parmi ces tensioactifs, on peut citer les tensioactifs non-ioniques tels que les alcools gras éthoxylés ou neutres par exemple les tensioactifs fluorés. On peut notamment citer à titre de tensioactif fluoré, le produit commercialisé par 3M sous la référence FC-4430.
Les proportions d'agents tensioactifs en masse par rapport à la masse totale de la solution sol-gel représentent, par ordre de préférence croissant, 0,01 à 5%, 0,05 à 3%, à 0,10 à 2,00%.
Les catalyseurs d'hydrolyse et/ou de condensation sont de préférences choisis parmi les acides ou les bases.
Les catalyseurs acides peuvent être choisis parmi les acides organiques, les acides minéraux, et leurs mélanges. Les acides organiques peuvent notamment être choisis parmi les acides carboxyliques tels que les acides monocarboxyliques aliphatiques comme l'acide acétique, les acides polycarboxyliques comme les acides dicarboxyliques et les acides tricarboxyliques par exemple l'acide citrique, et leurs mélanges. Parmi les acides minéraux, on peut utiliser l'acide nitrique, ou l'acide chlorhydrique et leurs mélanges.
L'acide acétique présente pour avantage supplémentaire, lorsque la composition comprend un précurseur d'oxyde métallique, d'assurer la fonction de stabilisant. En effet, l'acide acétique vient chélater ces précurseurs et prévient ainsi une hydrolyse trop rapide de ce type de produit.
Les catalyseurs basiques peuvent être choisis parmi les bases aminées telles que l'éthanolamine, la triéthylamine et leurs mélanges. On utilise une base en particulier dans le cas où les acides seraient à proscrire du fait de la nature du substrat ou du silane mis en œuvre.
La solution peut comprendre en outre des pigments, colorants ou nacres. Selon ce mode de réalisation, les couches sol-gel peuvent présenter un aspect coloré. Une autre alternative pour obtenir cet aspect coloré consiste à choisir d'introduire dans la matrice de particules colloïdales des oxydes métalliques colorés tels que des particules d'oxyde de cobalt, de vanadium, de chrome, de manganèse, de fer, de nickel, de cuivre et de tous autres métaux de transition et de non métaux susceptibles de conférer ledit aspect coloré.
Le dépôt peut se faire selon l'une des techniques suivantes :
- le trempage-retrait (connu sous la terminologie anglaise « dip-coating ») ;
- l'enduction centrifuge (connue sous la terminologie anglaise « spin-coating ») ;
- l'enduction laminaire (connue sous la terminologie anglaise « laminar-flow- coating ou meniscus coating ») ;
- la pulvérisation (connue sous la terminologie anglaise « spray-coating ») ;
- l'épandage (connu sous la terminologie anglaise « soak-coating ») ;
- l'enduction au rouleau (connue sous la terminologie « roll-process ») ;
- l'enduction au pinceau (connue sous la terminologie anglaise « paint-coating ») ;
- la sérigraphie (connue sous la terminologie anglaise « screen-printing »).
Le dépôt est de préférence effectué par pulvérisation avec atomisation pneumatique.
La couche sol-gel vient combler la rugosité de la couche centrale assurant ainsi une planarisation de la surface de l'élément en couches. La texture de la surface principale externe de la couche centrale est formée par une pluralité de motifs en creux ou en saillie par rapport à un plan général de la surface de contact. L'épaisseur définie entre le creux le plus bas et la saillie ou crête la plus haute correspond à la valeur appelée pic à vallée (« Pic to valley »). L'épaisseur de la couche sol-gel doit être suffisante pour venir planariser la surface de la couche centrale et donc être au moins égale à la valeur pic à vallée de la texture de la couche centrale. L'épaisseur de la couche sol-gel est, de préférence, supérieure à la valeur pic à vallée de la couche centrale.
Selon l'invention, l'épaisseur de la couche sol-gel est définie à partir du creux le plus bas de la couche centrale. L'épaisseur de la couche sol-gel peut être comprise entre 5 nm et 100 μιτι, de préférence entre 50 nm et 50 μιτι. Cette épaisseur peut être obtenue en une seule couche, par une seule ou plusieurs opération d'application (ou passe), par des techniques telles que le trempage, l'aspersion ou la pulvérisation.
La température de séchage du film sol-gel, peut varier de 0 à 200°C, de préférence de 100°C à 150°C, de préférence encore de 120 à 170°C.
De manière avantageuse, le dispositif de l'invention permet d'obtenir :
- une transmission lumineuse variable en fonction du choix de la couche centrale et de l'épaisseur de la couche externe inférieure,
- un flou en transmission mesuré selon la norme ASTM D 1003 inférieur à 5%, de préférence inférieur à 2,5 et mieux inférieur à 1 %,
- une clarté mesurée au Haze-Gard plus de BYK supérieure à 93%, de préférence supérieur à 95% et mieux supérieure à 97%.
Selon un aspect de l'invention, la couche externe inférieure de l'élément en couches constituée de matériaux diélectriques est choisie parmi :
- les substrats transparents dont l'une des surfaces principales est texturée et l'autre lisse, de préférence choisis parmi les polymères, les verres, les céramiques,
- une couche de matériau diélectrique choisie parmi les oxydes, nitrures ou halogénures d'un ou plusieurs métaux de transition, non-métaux ou métaux alcalino-terreux, - une couche à base de matériaux durcissables initialement dans un état visqueux, liquide ou pâteux adaptés à des opérations de mise en forme comprenant :
- les matériaux photoréticulables et/ou photopolymérisables, - les couches déposées par un procédé sol-gel,
- les intercalaires ou feuillets de matière plastique thermoformable ou sensible à la pression pouvant être de préférence à base de polymères choisis parmi les polybutyrales de vinyle (PVB), les polychlorures de vinyle (PVC), les polyuréthanes (PU), les polyéthylènes téréphtalates (PET) ou les copolymères d'éthylène-acétate de vinyle (EVA).
La texturation de l'une des surfaces principales des substrats transparents peut être obtenue par tout procédé connu de texturation, par exemple par embossage de la surface du substrat préalablement chauffée à une température à laquelle il est possible de la déformer, en particulier par laminage au moyen d'un rouleau ayant à sa surface une texturation complémentaire de la texturation à former sur le substrat ; par abrasion au moyen de particules ou de surfaces abrasives, en particulier par sablage ; par traitement chimique, notamment traitement à l'acide dans le cas d'un substrat en verre ; par moulage, notamment moulage par injection dans le cas d'un substrat en polymère thermoplastique ; par gravure.
Lorsque le substrat transparent est en polymère, il peut être rigide ou flexible. Des exemples de polymères convenant selon l'invention comprennent, notamment :
- les polyesters tels que le polyéthylène téréphtalate (PET), le polybutylène téréphtalate (PBT), le polyéthylène naphtalate (PEN) ;
- les polyacrylates tels que le polyméthacrylate de méthyle (PMMA) ;
- les polycarbonates ;
- les polyuréthanes ;
- les polyamides ;
- les polyimides ;
- les polymères fluoroesters tels que l'éthylène tétrafluoroéthylène (ETFE), le polyfluorure de vinylidène(PVDF), le polychlorotrifluoréthylène (PCTFE), l'éthylène de chlorotrifluoréthylène (ECTFE), les copolymères éthylène- propylène fluorés (FEP) ; - les résines photoréticulées et/ou photopolymérisées, telles que les résines thiolène, polyuréthane, uréthane-acrylate, polyester-acrylate et
- les polythiouréthanes.
Ces polymères présentent en général une gamme d'indice de réfraction variant de 1 ,30 à 1 ,70. Toutefois, il est intéressant de noter que certains de ces polymères et notamment les polymères comprenant du soufre tels que les polythiouréthanes peuvent présenter des indices de réfraction élevés pouvant aller jusqu'à 1 ,74.
Des exemples de substrats en verre directement utilisables en tant que couche externe de l'élément en couches, comprennent :
- les substrats en verre commercialisés par la société Saint-Gobain Glass dans la gamme SATINOVO®, qui sont déjà texturés et présentent sur l'une de leurs surfaces principales une texture obtenue par sablage ou attaque acide ;
- les substrats en verre commercialisés par la société Saint-Gobain Glass dans la gamme ALBARINO® S, P ou G ou dans la gamme MASTERGLASS®, qui présentent sur l'une de leurs surfaces principales une texture obtenue par laminage,
- les substrats en verre à haut indice texturés par sablage tel que du verre flint par exemple commercialisés par la société Schott sous les références SF6
(11=1 ,81 ), 7SF57 (n=1 ,85), N-SF66 (n=1 ,92), P-SF68 (n=2,00).
Les couches de matériau diélectrique choisies parmi les oxydes, nitrures ou halogénures d'un ou plusieurs métaux de transition, non-métaux ou métaux alcalino-terreux, peuvent être déposées par magnétron et ensuite texturées par abrasion au moyen de particules ou de surfaces abrasives, en particulier par sablage ; par traitement chimique ou par gravure.
La couche externe inférieure de l'élément en couche peut également être à base de matériaux durcissables initialement dans un état visqueux, liquide ou pâteux adapté à des opérations de mise en forme.
La couche déposée initialement dans un état visqueux, liquide ou pâteux peut être une couche de matériau photoréticulable et/ou photopolymérisable. De préférence, ce matériau photoréticulable et/ou photopolymérisable se présente sous forme liquide à température ambiante et donne, lorsqu'il a été irradié et photoréticulé et/ou photopolymérisé, un solide transparent dépourvu de bulles ou de toute autre irrégularité. Il peut s'agir en particulier d'une résine telle que celles habituellement utilisées comme adhésifs, colles ou revêtements de surface. Ces résines sont généralement à base de monomères/ comonomères/ pré-polymères de type époxy, époxysilane, acrylate, méthacrylate, acide acrylique, acide méthacrylique. On peut citer par exemple les résines thiolène, polyuréthane, uréthane-acrylate, polyester-acrylate. Au lieu d'une résine, il peut s'agir d'un gel aqueux photoréticulable, tel qu'un gel de polyacrylamide. Des exemples de résines photoréticulables et/ou photopolymérisables utilisables dans la présente invention comprennent les résines durcissables aux UV de type KZ6661 commercialisées par la société JSR Corporation.
En variante, la couche externe déposée initialement dans un état visqueux, liquide ou pâteux peut être une couche déposée par un procédé sol- gel.
La texturation de la couche externe inférieure à base de matériaux durcissables initialement dans un état visqueux, liquide ou pâteux peut être réalisée à l'aide d'un rouleau ayant à sa surface une texturation complémentaire de celle à former sur de la surface principale externe de ladite couche.
La couche externe inférieure peut comprendre une couche à base d'un intercalaire ou feuille en matière plastique thermoformable ou sensible à la pression texturée par compression et/ou chauffage. Cette couche à base de matériau polymère peut être, en particulier, une couche à base de polybutyral de vinyle (PVB), d'éthylène-acétate de vinyle (EVA), de polyuréthane (PU), de polyéthylène téréphtalate (PET), de polychlorure de vinyle (PVC). L'indice des intercalaires standards de feuilletage (PVB, EVA, PU, SentryGlas®) est au maximum d'environ 1 ,491 à 589 nm.
L'épaisseur de la couche externe inférieure est de préférence comprise entre 1 μιτι et 6 mm et varie selon le choix du matériau diélectrique.
Les substrats en verre plats ou texturés ont de préférence une épaisseur comprise entre 0,4 et 6 mm, de préférence 0,7 et 2 mm.
Les substrats en polymère plats ou texturés ont de préférence une épaisseur comprise entre 0,020 et 2 mm, de préférence 0,025 et 0,25 mm. Les couches externes constituées d'une couche de matériaux diélectrique ont de préférence une épaisseur comprise entre 0,2 et 20 μιτι, de préférence 0,5 et 2 μιτι.
Les couches à base de matériaux durcissables initialement dans un état visqueux, liquide ou pâteux adaptés à des opérations de mise en forme ont de préférence une épaisseur comprise entre 0,5 et 100 μιτι, de préférence entre 0,5 et 40 μιτι et mieux entre 0,5 et 15 μιτι. Les couches à base de matériaux photoréticulables et/ou photopolymérisables ont de préférence une épaisseur comprise entre 0,5 et 20 μιτι, de préférence 0,7 et 10 μιτι. Les couches déposées par un procédé sol-gel ont de préférence une épaisseur comprise entre 0,5 et 50 μιτι, de préférence entre 10 et 15 μιτι.
Les couches à base d'un intercalaire ou feuille en matière plastique ont de préférence une épaisseur comprise entre 10 m et 1 mm, de préférence comprise entre 0,3 et 1 mm.
Les matériaux ou couche diélectrique peuvent avoir :
- un indice de réfraction compris entre 1 ,51 et 1 ,53, par exemple dans le cas de l'utilisation d'un verre standard,
- un indice de réfraction inférieur à 1 ,51 , de préférence inférieur à 1 ,49, dans le cas de l'utilisation d'un matériau ou couche diélectrique à bas indice de réfraction,
- un indice de réfraction supérieur à 1 ,54, de préférence supérieur à 1 ,7, dans le cas de l'utilisation d'un matériau ou couche diélectrique à haut indice de réfraction.
La couche ou l'empilement de couches de la couche centrale de l'élément en couches peut comprendre :
- au moins une couche mince constituée en un matériau diélectrique choisi parmi les oxydes, nitrures ou halogénures d'un ou plusieurs métaux de transition, non-métaux ou métaux alcalino-terreux,
- au moins une couche mince métallique, notamment une couche mince d'argent, d'or, de cuivre, de titane, de niobium, de silicium, d'aluminium, d'alliage nickel-chrome (NiCr), d'acier inoxydable, ou de leurs alliages.
La couche mince constituée en un matériau diélectrique peut être choisie parmi : - au moins une couche mince constituée en un matériau diélectrique à haut indice de réfraction, différent de l'indice de réfraction des couches externes, tel que Si3N4, AIN, NbN, SnO2, ZnO, SnZnO, AI2O3, MoO3, NbO, TiO2, ZrO2,
- au moins une couche mince constituée en un matériau diélectrique à bas indice de réfraction, différent de l'indice de réfraction des couches externes, tel que SiO2, MgF2, AIF3.
Le choix de l'épaisseur de la couche centrale dépend d'un certain nombre de paramètres. De manière générale, on considère que l'épaisseur totale de la couche centrale est comprise entre 5 et 200 nm et l'épaisseur d'une couche de la couche centrale est comprise entre 1 et 200 nm.
Lorsque la couche centrale est une couche métallique, l'épaisseur d'une couche est de préférence comprise entre 5 à 40 nm, mieux comprise entre 6 et 30 nm et encore mieux de 6 à 20 nm.
Lorsque la couche centrale est une couche diélectrique, par exemple de TiO2, elle présente de préférence une épaisseur comprise entre 20 et 100 nm et mieux de 55 et 65 nm et/ou un indice de réfraction compris entre 2,2 et 2,4.
De manière avantageuse, la composition de la couche centrale de l'élément en couches peut être ajustée pour conférer des propriétés supplémentaires à l'élément en couches, par exemple des propriétés thermiques, de type contrôle solaire. Ainsi, dans un mode de réalisation, la couche centrale de l'élément en couches est un empilement transparent de couches minces comprenant une alternance de « n » couches fonctionnelles métalliques, notamment de couches fonctionnelles à base d'argent ou d'alliage métallique contenant de l'argent, et de « (n + 1 ) » revêtements antireflet, avec n≥1 , où chaque couche fonctionnelle métallique est disposée entre deux revêtements antireflet.
De manière connue, un tel empilement à couche fonctionnelle métallique présente des propriétés de réflexion dans le domaine du rayonnement solaire et/ou dans le domaine du rayonnement infrarouge de grande longueur d'onde. Dans un tel empilement, les couches fonctionnelles métalliques déterminent essentiellement les performances thermiques, tandis que les revêtements antireflets qui les encadrent agissent sur l'aspect optique de manière interférentielle. En effet, si les couches fonctionnelles métalliques permettent d'obtenir des performances thermiques souhaitées même à une faible épaisseur géométrique, de l'ordre de 10 nm pour chaque couche fonctionnelle métallique, elles s'opposent toutefois fortement au passage de rayonnement dans le domaine de longueurs d'onde du visible. Dès lors, des revêtements antireflets de part et d'autre de chaque couche fonctionnelle métallique sont nécessaires pour assurer une bonne transmission lumineuse dans le domaine du visible.
L'élément en couches obtenu combine alors des propriétés optiques, à savoir des propriétés de transmission spéculaire et de réflexion diffuse d'un rayonnement incident sur l'élément en couches, et des propriétés thermiques, à savoir des propriétés de contrôle solaire. Un tel élément en couches peut être utilisé pour des vitrages de protection solaire et/ou d'isolation thermique de bâtiments ou véhicules.
Selon un aspect de l'invention, la texture de chaque surface de contact entre deux couches adjacentes de l'élément en couches qui sont l'une diélectrique et l'autre métallique, ou qui sont deux couches diélectriques d'indices de réfraction différents, est formée par une pluralité de motifs en creux ou en saillie par rapport à un plan général de la surface de contact. De préférence, la hauteur moyenne des motifs de chaque surface de contact entre deux couches adjacentes de l'élément en couches qui sont l'une diélectrique et l'autre métallique, ou qui sont deux couches diélectriques d'indices de réfraction différents, est comprise entre 1 micromètre et 100 μιτι. Au sens de l'invention, la hauteur moyenne des motifs de la surface de contact est définie comme la moyenne arithmétique des distances y en valeur absolue prises entre le sommet et le plan général de la surface de contact pour chaque motif de la
l | |
surface de contact, égale à— > y, .
n i=i
Les motifs de la texture de chaque surface de contact entre deux couches adjacentes de l'élément en couches qui sont l'une diélectrique et l'autre métallique, ou qui sont deux couches diélectriques d'indices de réfraction différents, peuvent être répartis de manière aléatoire sur la surface de contact. En variante, les motifs de la texture de chaque surface de contact entre deux couches adjacentes de l'élément en couches qui sont l'une diélectrique et l'autre métallique, ou qui sont deux couches diélectriques d'indices de réfraction différents, peuvent être répartis de manière périodique sur la surface de contact. Ces motifs peuvent être, notamment, des cônes, des pyramides, des rainures, des nervures, des vaguelettes.
Selon un aspect de l'invention, pour chaque couche de la couche centrale qui est encadrée par des couches de nature, diélectrique ou métallique, différente de la sienne ou d'indices de réfraction différents du sien, l'épaisseur de cette couche, prise perpendiculairement à ses surfaces de contact avec les couches adjacentes, est faible par rapport à la hauteur moyenne des motifs de chacune de ses surfaces de contact avec les couches adjacentes. Une telle épaisseur faible permet d'augmenter la probabilité que l'interface d'entrée d'un rayonnement dans cette couche et l'interface de sortie du rayonnement hors de cette couche soient parallèles, et donc d'augmenter le pourcentage de transmission spéculaire du rayonnement à travers l'élément en couches. De manière avantageuse, l'épaisseur de chaque couche de la couche centrale qui est intercalée entre deux couches de nature, diélectrique ou métallique, différente de la sienne ou d'indices de réfraction différents du sien, où cette épaisseur est prise perpendiculairement à ses surfaces de contact avec les couches adjacentes, est inférieure à 1/4 de la hauteur moyenne des motifs de chacune de ses surfaces de contact avec les couches adjacentes.
De manière avantageuse, l'élément en couches comprend, sur au moins l'une de ses surfaces principales externes lisses, un revêtement antireflet à l'interface entre l'air et le matériau constitutif de la couche externe formant cette surface principale externe. Grâce à la présence de ce revêtement antireflet, un rayonnement incident sur l'élément en couches du côté de cette surface principale externe est réfléchi de manière privilégiée à chaque surface de contact texturée plutôt que sur la surface externe lisse de l'élément en couches, ce qui correspond à un mode de réflexion diffuse plutôt qu'à un mode de réflexion spéculaire. Une réflexion diffuse du rayonnement par l'élément en couches est ainsi favorisée par rapport à une réflexion spéculaire.
Le revêtement antireflet prévu sur au moins l'une des surfaces principales externes de l'élément en couches peut être de tout type permettant de réduire la réflexion de rayonnement à l'interface entre l'air et la couche externe correspondante de l'élément en couches. Il peut s'agir, notamment, d'une couche d'indice de réfraction compris entre l'indice de réfraction de l'air et l'indice de réfraction de la couche externe, telle qu'une couche déposée sur la surface de la couche externe par une technique sous vide ou une couche poreuse de type sol-gel, ou encore, dans le cas où la couche externe est en verre, une partie superficielle creusée de la couche externe en verre obtenue par un traitement à l'acide de type "etching". En variante, le revêtement antireflet peut être formé par un empilement de couches minces ayant des indices de réfraction alternativement plus faibles et plus forts jouant le rôle d'un filtre interférentiel à l'interface entre l'air et la couche externe, ou par un empilement de couches minces présentant un gradient, continu ou échelonné, d'indices de réfraction entre l'indice de réfraction de l'air et celui de la couche externe.
La couche centrale est formée soit par une couche unique déposée de manière conforme sur la surface principale texturée de la première couche externe, soit par un empilement de couches, déposées successivement de manière conforme sur la surface principale texturée de la première couche externe.
Selon l'invention, on considère que la couche centrale est déposée de manière conforme sur la surface principale texturée de la première couche externe, si suite au dépôt, la surface supérieure de la couche centrale est texturée et parallèle à la surface de contact texturée de la première couche externe. Le dépôt de la couche centrale de manière conforme, ou des couches de la couche centrale successivement de manière conforme, sur la surface principale texturée de la première couche externe est réalisé de préférence par pulvérisation cathodique, notamment assistée par un champ magnétique.
Les couches additionnelles sont de préférence choisies parmi :
- les substrats transparents choisis parmi les polymères, les verres ou les céramiques tels que définis ci-dessus mais comprenant deux surfaces principales lisses,
- les matériaux durcissables initialement dans un état visqueux, liquide ou pâteux adapté à des opérations de mise en forme tels que décrits ci-dessus, - les intercalaires ou feuilles en matière plastique thermoformable ou sensible à la pression tels que décrits ci-dessus.
La surface principale externe de la couche sol-gel peut présenter certaines irrégularités de surface à grande échelle. Pour rétablir le caractère lisse de la couche externe de l'élément en couches, il est donc possible de venir positionner au contact de cette surface présentant certaines irrégularités, une couche additionnelle ayant sensiblement le même indice de réfraction que ladite couche externe, telle qu'une feuille en matière plastique décrite ci-dessus.
De manière avantageuse, les surfaces principales externes lisses de l'élément en couches et/ou les surfaces principales externes lisses du vitrage sont planes ou bombées, de préférence, ces surfaces principales externes lisses sont parallèles entre elles. Cela contribue à limiter la dispersion lumineuse pour un rayonnement traversant l'élément en couches, et donc à améliorer la netteté de la vision à travers l'élément en couches.
L'élément en couches peut être un vitrage rigide ou un film flexible. Un tel film flexible est avantageusement muni, sur l'une de ses surfaces principales externes, d'une couche d'adhésif recouverte d'une bande de protection destinée à être retirée pour le collage du film. L'élément en couches sous forme de film flexible est alors apte à être rapporté par collage sur une surface existante, par exemple une surface d'un vitrage, afin de conférer à cette surface des propriétés de réflexion diffuse, tout en maintenant des propriétés de transmission spéculaire.
Dans un mode de réalisation de l'invention, la couche externe inférieure est un substrat transparent. La couche centrale est formée soit par une couche unique déposée de manière conforme sur la surface principale texturée de la première couche externe, soit par un empilement de couches, déposées successivement de manière conforme sur la surface principale texturée de la première couche externe. De préférence, la couche centrale est déposée par pulvérisation cathodique, notamment assistée par un champ magnétique. La deuxième couche externe ou couche externe supérieure comprend la couche de sol-gel, déposée sur la surface principale texturée de la couche centrale opposée à la première couche externe.
Selon un autre aspect de l'invention, une couche additionnelle supérieure peut être utilisée comme contre-substrat. La couche sol-gel assure alors une solidarisation entre la couche externe inférieure munie de la couche centrale et le contre-substrat.
Selon un autre aspect de l'invention, lorsque la couche externe inférieure ou une couche additionnelle comprend une couche à base d'un intercalaire ou feuille en matière plastique thermoformable ou sensible à la pression, une couche additionnelle, par exemple, un substrat transparent d'indice de réfraction sensiblement égal à ceux des couches externes peut être utilisé. La couche à base d'un intercalaire ou feuille en matière plastique correspond alors à un intercalaire de feuilletage assurant la liaison entre la couche externe inférieure de l'élément en couche revêtu de la couche centrale et la couche additionnelle.
L'élément en couches transparent de l'invention comprend, de préférence, l'empilement suivant :
- éventuellement au moins une couche additionnelle inférieure choisie parmi les substrats transparents dont les deux surfaces principales sont lisses tels que les polymères et les verres et les intercalaires en matière plastique thermoformable ou sensible à la pression,
- une couche externe inférieure choisie parmi les substrats transparents tels que les polymères et les verres et les matériaux durcissables initialement dans un état visqueux, liquide ou pâteux adapté à des opérations de mise en forme,
- une couche centrale comprenant une couche mince constituée en un matériau diélectrique ou une couche mince métallique,
- une couche externe supérieure choisie parmi les couches sol-gel,
- éventuellement au moins une couche additionnelle supérieure choisie parmi les substrats transparents dont les deux surfaces principales sont lisses choisis parmi les polymères et les verres et les intercalaires en matière plastique thermoformable ou sensible à la pression.
Dans une variante de l'invention, l'élément en couches comprend :
- une couche externe inférieure choisie parmi les substrats transparents en verre rugueux,
- une couche centrale,
- une couche externe supérieure choisie parmi les couches sol-gel,
- une couche additionnelle supérieure choisie parmi les substrats transparents en verre plat.
Selon un autre mode de réalisation, l'élément en couches de l'invention comprend l'empilement suivant :
- une couche externe inférieure choisie parmi les substrats transparents en verre rugueux, - une couche centrale,
- une couche externe supérieure choisie parmi les couches sol-gel,
- éventuellement une couche additionnelle supérieure choisie parmi les intercalaires de matière thermoformables ou sensibles à la pression, sur laquelle se superpose préférentiellement une autre couche additionnelle supérieure choisie parmi les substrats transparents en verre.
Un autre objet de l'invention est un procédé de fabrication d'un élément en couches tel que décrit précédemment, comprenant les étapes suivantes :
- on fournit, en tant que première couche externe ou couche externe inférieure, un substrat transparent dont l'une des surfaces principales est texturée et l'autre surface principale est lisse ;
- on dépose une couche centrale sur la surface principale texturée de la couche externe inférieure, soit, lorsque la couche centrale est formée par une couche unique, qui est une couche diélectrique d'indice de réfraction différent de celui de la couche externe inférieure ou une couche métallique, en déposant la couche centrale de manière conforme sur ladite surface principale texturée, soit, lorsque la couche centrale est formée par un empilement de couches comprenant au moins une couche diélectrique d'indice de réfraction différent de celui de la couche externe inférieure ou une couche métallique, en déposant les couches de la couche centrale successivement de manière conforme sur ladite surface principale texturée ;
- on forme la couche externe supérieure sol-gel sur la surface principale texturée de la couche centrale opposée à la couche externe inférieure, où les couches externes inférieure et supérieure sont constituées en des matériaux diélectriques ayant sensiblement le même indice de réfraction, par dépôt par procédé sol-gel,
- éventuellement on forme au moins une couche additionnelle supérieure et/ou inférieure sur la ou les surfaces principales externes lisses de l'élément en couches.
L'invention a également pour objet une façade de bâtiment, notamment une façade de terminal d'aéroport, comprenant au moins un élément en couches tel que décrit précédemment.
Un autre objet de l'invention est un écran d'affichage ou de projection comprenant un élément en couches tel que décrit précédemment. En particulier, un objet de l'invention est un vitrage de système Head Up Display comprenant un élément en couches tel que décrit précédemment.
Enfin, l'invention a pour objet l'utilisation d'un élément en couches tel que décrit précédemment comme tout ou partie d'un vitrage pour véhicule, bâtiment, mobilier urbain, ameublement intérieur, écran d'affichage ou de projection, système Head Up Display. L'élément en couches selon l'invention peut, par exemple, être intégré dans une vitrine permettant ainsi la projection d'image sur ledit élément en couches.
Les caractéristiques et avantages de l'invention apparaîtront dans la description qui va suivre de plusieurs modes de réalisation d'un élément en couches, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés dans lesquels :
- la figure 1 est une coupe transversale schématique d'un élément en couches selon l'invention ;
- la figure 2 est une vue à plus grande échelle du détail I de la figure 1 pour une première variante de l'élément en couches ;
- la figure 3 est une vue à plus grande échelle du détail I de la figure 1 pour une deuxième variante de l'élément en couches ; et
- les figures 4 et 5 représentent des schémas montrant les étapes d'un procédé de fabrication de l'élément en couches selon l'invention,
- la figure 6 représente l'évolution de l'indice de réfraction en fonction des proportions en volume de ΤΊΟ2 dans une couche sol-gel,
- la figure 7 représente des clichés pris au microscope électronique à balayage de substrats satinés de verre rugueux transparent Satinovo® sur lequel une couche sol-gel a été déposée par procédé sol gel,
- les figures 8 et 9 sont des graphiques montrant l'évolution du flou (axe des ordonnées situé à droite) et de la clarté (axe des ordonnées situé à gauche) en fonction de l'indice de réfraction de la couche sol-gel et de la variation d'indice de réfraction entre un substrat Satinovo® utilisé comme couche externe inférieure et la couche sol-gel.
Pour la clarté du dessin, les épaisseurs relatives des différentes couches sur les figures n'ont pas été rigoureusement respectées. De plus, la possible variation d'épaisseur de la ou chaque couche constitutive de la couche centrale en fonction de la pente de la texture n'a pas été représentée sur les figures, étant entendu que cette possible variation d'épaisseur n'impacte pas le parallélisme des surfaces de contact texturées. En effet, pour chaque pente donnée de la texture, les surfaces de contact texturées sont parallèles entre elles.
L'élément en couches 1 illustré sur la figure 1 comprend deux couches externes 2 et 4, qui sont constituées en des matériaux diélectriques transparents ayant sensiblement le même indice de réfraction n2, n4. Chaque couche externe 2 ou 4 présente une surface principale lisse, respectivement 2A ou 4A, dirigée vers l'extérieur de l'élément en couches, et une surface principale texturée, respectivement 2B ou 4B, dirigée vers l'intérieur de l'élément en couches.
Les surfaces externes lisses 2A et 4A de l'élément en couches 1 permettent une transmission spéculaire de rayonnement à chaque surface 2A et 4A, c'est-à-dire l'entrée d'un rayonnement dans une couche externe ou la sortie d'un rayonnement depuis une couche externe sans modification de la direction du rayonnement.
Les textures des surfaces internes 2B et 4B sont complémentaires l'une de l'autre. Comme bien visible sur la figure 1 , les surfaces texturées 2B et 4B sont positionnées en regard l'une de l'autre, dans une configuration où leurs textures sont strictement parallèles entre elles. L'élément en couches 1 comprend également une couche centrale 3, intercalée en contact entre les surfaces texturées 2B et 4B.
Dans la variante montrée sur la figure 2, la couche centrale 3 est monocouche et constituée en un matériau transparent qui est soit métallique, soit diélectrique d'indice de réfraction n3 différent de celui des couches externes 2 et 4.
Dans la variante montrée sur la figure 3, la couche centrale 3 est formée par un empilement transparent de plusieurs couches 3i,32,...,3k, où au moins l'une des couches 3i à 3k est soit une couche métallique, soit une couche diélectrique d'indice de réfraction différent de celui des couches externes 2 et 4. De préférence, au moins chacune des deux couches 3i et 3k situées aux extrémités de l'empilement est une couche métallique ou une couche diélectrique d'indice de réfraction n3i ou n3k différents de celui des couches externes 2 et 4. Sur les figures 2 et 3, on note So la surface de contact entre la couche externe 2 et la couche centrale 3, et Si la surface de contact entre la couche centrale 3 et la couche externe 4. De plus, sur la figure 3, on note successivement S2 à Sk les surfaces de contact internes de la couche centrale 3, en partant de la surface de contact la plus proche de la surface So.
Dans la variante de la figure 2, du fait de l'agencement de la couche centrale 3 en contact entre les surfaces texturées 2B et 4B qui sont parallèles entre elles, la surface de contact So entre la couche externe 2 et la couche centrale 3 est texturée et parallèle à la surface de contact Si entre la couche centrale 3 et la couche externe 4. En d'autres termes, la couche centrale 3 est une couche texturée présentant sur toute son étendue une épaisseur e3 uniforme, prise perpendiculairement aux surfaces de contact So et Si .
Dans la variante de la figure 3, chaque surface de contact S2,...,Sk entre deux couches adjacentes de l'empilement constitutif de la couche centrale 3 est texturée et strictement parallèle aux surfaces de contact S0 et Si entre les couches externes 2, 4 et la couche centrale 3. Ainsi, toutes les surfaces de contact So, Si ,..., Sk entre des couches adjacentes de l'élément 1 qui sont soit de natures différentes, diélectrique ou métallique, soit diélectriques d'indices de réfraction différents, sont texturées et parallèles entre elles. En particulier, chaque couche
Figure imgf000036_0001
, 32,... , 3k de l'empilement constitutif de la couche centrale 3 présente une épaisseur e3i, e32,..., e3k uniforme, prise perpendiculairement aux surfaces de contact So, Si,... Sk.
Comme montré sur la figure 1 , la texture de chaque surface de contact So, Si ou So, Si ,..., Sk de l'élément en couches 1 est formée par une pluralité de motifs en creux ou en saillie par rapport à un plan général π de la surface de contact. De préférence, la hauteur moyenne des motifs de chaque surface de contact texturée S0, Si ou S0, Si ,..., Sk est comprise entre 1 micromètre et 100 μιτι. La hauteur moyenne des motifs de chaque surface de contact texturée est
1 "
définie comme la moyenne arithmétique — ΤΊγ,Ι , avec y, la distance prise entre n i=i
le sommet et le plan π pour chaque motif de la surface, comme montré schématiquement sur la figure 1 .
Selon un aspect de l'invention, l'épaisseur e3 ou e3i, e32,..., e3k de la ou chaque couche constitutive de la couche centrale 3 est inférieure à la hauteur moyenne des motifs de chaque surface de contact texturée So, Si ou So, Si,..., Sk de l'élément en couches 1 . Cette condition est importante pour augmenter la probabilité que l'interface d'entrée d'un rayonnement dans une couche de la couche centrale 3 et l'interface de sortie du rayonnement hors de cette couche soient parallèles, et ainsi augmenter le pourcentage de transmission spéculaire du rayonnement à travers l'élément en couches 1 . Dans un souci de visibilité des différentes couches, cette condition n'a pas été strictement respectée sur les figures.
De préférence, l'épaisseur e3 ou e3i, e32,..., e3k de la ou chaque couche constitutive de la couche centrale 3 est inférieure à 1/4 de la hauteur moyenne des motifs de chaque surface de contact texturée de l'élément en couches. En pratique, lorsque la couche centrale 3 est une couche mince ou un empilement de couches minces, l'épaisseur e3 ou e3i, e32,..., e3k de chaque couche de la couche centrale 3 est de l'ordre de, ou inférieure à, 1/10 de la hauteur moyenne des motifs de chaque surface de contact texturée de l'élément en couches.
La figure 1 illustre le parcours d'un rayonnement, qui est incident sur l'élément en couches 1 du côté de la couche externe 2. Les rayons incidents R, arrivent sur la couche externe 2 avec un angle d'incidence Θ donné. Comme montré sur la figure 1 , les rayons incidents R,, lorsqu'ils atteignent la surface de contact So entre la couche externe 2 et la couche centrale 3, sont réfléchis soit par la surface métallique, soit du fait de la différence d'indice de réfraction à cette surface de contact respectivement entre la couche externe 2 et la couche centrale 3 dans la variante de la figure 2 et entre la couche externe 2 et la couche 3i dans la variante de la figure 3. Comme la surface de contact So est texturée, la réflexion s'opère dans une pluralité de directions Rr. La réflexion du rayonnement par l'élément en couches 1 est donc diffuse.
Une partie du rayonnement incident est également réfractée dans la couche centrale 3. Dans la variante de la figure 2, les surfaces de contact So et Si sont parallèles entre elles, ce qui implique d'après la loi de Snell-Descartes que n2.sin(0) = n4.sin(0'), où Θ est l'angle d'incidence du rayonnement sur la couche centrale 3 à partir de la couche externe 2 et θ' est l'angle de réfraction du rayonnement dans la couche externe 4 à partir de la couche centrale 3. Dans la variante de la figure 3, comme les surfaces de contact So, Si,..., Sk sont toutes parallèles entre elles, la relation n2.sin(0) = n4.sin(0') issue de la loi de Snell-Descartes reste vérifiée. Dès lors, dans les deux variantes, comme les indices de réfraction n2 et n4 des deux couches externes sont sensiblement égaux l'un à l'autre, les rayons Rt transmis par l'élément en couches sont transmis avec un angle de transmission θ' égal à leur angle d'incidence Θ sur l'élément en couches. La transmission du rayonnement par l'élément en couches 1 est donc spéculaire.
De manière analogue, dans les deux variantes, un rayonnement incident sur l'élément couches 1 du côté de la couche externe 4 est réfléchi de manière diffuse et transmis de manière spéculaire par l'élément en couches, pour les mêmes raisons que précédemment.
De manière avantageuse, l'élément en couches 1 comprend un revêtement antireflet 6 sur au moins l'une de ses surfaces externes lisses 2A et 4A. De préférence, un revêtement antireflet 6 est prévu sur chaque surface principale externe de l'élément en couches qui est destinée à recevoir un rayonnement. Dans l'exemple de la figure 1 , seule la surface 2A de la couche externe 2 est munie d'un revêtement antireflet 6, car il s'agit de la surface de l'élément en couches qui est dirigée du côté d'incidence du rayonnement.
Comme évoqué précédemment, le revêtement antireflet 6, prévu sur la surface lisse 2A et/ou 4A de la couche externe 2 ou 4, peut-être de tout type permettant de réduire la réflexion de rayonnement à l'interface entre l'air et la couche externe. Il peut s'agir notamment d'une couche d'indice de réfraction compris entre l'indice de réfraction de l'air et l'indice de réfraction de la couche externe, d'un empilement de couches minces jouant le rôle d'un filtre interférentiel, ou encore d'un empilement de couches minces présentant un gradient d'indices de réfraction.
Un exemple de procédé de fabrication du vitrage de l'invention est décrit ci-après en référence à la figure 4. Selon ce procédé, la couche centrale 3 est déposée de manière conforme sur une surface texturée 2B d'un substrat transparent, rigide ou flexible, formant la couche externe 2 de l'élément en couches 1 . La surface principale 2A de ce substrat opposée à la surface texturée 2B est lisse. Ce substrat 2 peut être, notamment, un substrat en verre texturé de type SATINOVO®, ALBARINO® ou MASTERGLASS®. En variante, le substrat 2 peut être un substrat à base de matériau polymère, rigide ou flexible, par exemple de type polyméthacrylate de méthyle ou polycarbonate. Le dépôt conforme de la couche centrale 3, qu'elle soit monocouche ou formée par un empilement de plusieurs couches, est notamment réalisé, de préférence, sous vide, par pulvérisation cathodique assistée par champ magnétique (pulvérisation dite "cathodique magnétron"). Cette technique permet de déposer, sur la surface texturée 2B du substrat 2, soit la couche unique de manière conforme, soit les différentes couches de l'empilement successivement de manière conforme. Il peut s'agir en particulier de couches minces diélectriques, notamment des couches de Si3N , SnO2, ZnO, ZrO2, SnZnOx, AIN, NbO, NbN, TiO2, SiO2, AI2O3, MgF2, AIF3, ou de couches minces métalliques, notamment des couches d'argent, d'or, de titane, de niobium, de silicium, d'aluminium, d'alliage nickel-chrome (NiCr), ou d'alliages de ces métaux.
Dans le procédé de la figure 4, la deuxième couche externe 4 de l'élément en couches 1 peut être formée en recouvrant la couche centrale 3 avec une couche sol-gel transparente d'indice de réfraction sensiblement égal à celui du substrat 2. Cette couche vient, à l'état visqueux, liquide ou pâteux, épouser la texture de la surface 3B de la couche centrale 3 opposée au substrat 2. Ainsi, on garantit que, à l'état durci de la couche 4, la surface de contact Si entre la couche centrale 3 et la couche externe 4 est bien texturée et parallèle à la surface de contact So entre la couche centrale 3 et la couche externe 2.
La couche externe 4 de l'élément en couches 1 de la figure 4 est une couche sol-gel, déposée par un procédé sol-gel sur la surface texturée de la couche centrale 3.
Enfin, une ou plusieurs couches additionnelles 12 peuvent être formées au-dessus de l'élément en couches. Dans ce cas, la ou les couches additionnelles sont de préférence un substrat en verre plat, un intercalaire en matière plastique ou une superposition d'un intercalaire et d'un substrat de verre plat.
Selon un mode de réalisation de l'invention, il peut être intéressant de former sur la couche sol-gel formant la couche externe de l'élément en couches, une couche additionnelle 12 en positionnant un intercalaire de feuilletage en PVB ou EVA, contre la surface externe principale lisse de l'élément en couches. La couche additionnelle 12 a dans ce cas préférentiellement sensiblement le même indice de réfraction que la couche externe de l'élément en couches obtenue à partir d'un procédé sol-gel.
La couche additionnelle peut également être un substrat transparent par exemple un verre plat. Dans ce cas, la couche additionnelle est utilisée comme un contre-substrat. La couche sol-gel assure alors une solidarisation entre la couche externe inférieure munie de la couche centrale et le contre-substrat.
L'utilisation d'un substrat transparent comme couche additionnelle supérieure est particulièrement utile lorsque la couche additionnelle directement en-dessous de ladite couche additionnelle supérieure est formée par un intercalaire de feuilletage polymère.
Une première couche additionnelle 12 formée par un intercalaire de feuilletage en PVB ou EVA peut être positionnée contre la surface supérieure externe de l'élément en couche et une seconde couche additionnelle 12 constituée d'un substrat en verre plat peuvent venir surmonter l'intercalaire.
Dans cette configuration, les couches additionnelles sont associées à l'élément en couches, par un procédé classique de feuilletage. Dans ce procédé, on positionne successivement, à partir de la surface principale externe supérieure de l'élément en couches, l'intercalaire de feuilletage polymère et le substrat, puis on applique à la structure feuilletée ainsi formée une compression et/ou un chauffage, au moins à la température de transition vitreuse de l'intercalaire de feuilletage polymère, par exemple dans une presse ou une étuve.
Au cours de ce procédé de feuilletage, lorsque l'intercalaire forme la couche supérieure additionnelle située directement au-dessus de l'élément en couche dont la couche supérieure est une couche sol-gel, il se conforme à la fois à la surface supérieure de la couche sol-gel et à la surface inférieure du substrat en verre plat.
Dans le procédé illustré sur la figure 5, l'élément en couches 1 est un film flexible d'épaisseur totale de l'ordre de 200-300 μιτι. L'élément en couches est formé par la superposition :
- d'une couche additionnelle inférieure 12 formée par un film flexible polymérique, - d'une couche externe 2 en matériau photoréticulable et/ou photopolymérisable sous l'action d'un rayonnement UV, appliquée contre l'une des surfaces principales lisses du film flexible,
- d'une couche centrale 3,
- d'une couche sol-gel ayant une épaisseur de 50 nm à 50 μιτι de manière à former la deuxième couche externe 4 de l'élément en couches 1 .
Le film flexible formant la couche additionnelle inférieure peut être un film de polyéthylène téréphtalate (PET) ayant une épaisseur de 100 μιτι, et la couche externe 2 peut être une couche de résine durcissable aux UV de type KZ6661 commercialisée par la société JSR Corporation ayant une épaisseur d'environ 10 μιτι. Le film flexible et la couche 2 ont tous les deux sensiblement le même indice de réfraction, de l'ordre de 1 ,65 à 589 nm. A l'état durci, la couche de résine présente une bonne adhésion avec le PET.
La couche de résine 2 est appliquée sur le film flexible avec une viscosité permettant la mise en place d'une texturation sur sa surface 2B opposée au film 12. Comme illustré sur la figure 5, la texturation de la surface 2B peut être réalisée à l'aide d'un rouleau 13 ayant à sa surface une texturation complémentaire de celle à former sur la couche 2. Une fois la texturation formée, le film flexible et la couche de résine 2 superposés sont irradiés avec un rayonnement UV, comme montré par la flèche de la figure 5, ce qui permet la solidification de la couche de résine 2 avec sa texturation et l'assemblage entre le film flexible et la couche de résine 2.
La couche centrale 3 d'indice de réfraction différent de celui de la couche externe 2 est ensuite déposée de manière conforme sur la surface texturée 2B, par pulvérisation cathodique magnétron. Cette couche centrale peut être monocouche ou formée par un empilement de couches, comme décrit précédemment. Il peut s'agir par exemple :
- d'une couche de T1O2 ayant une épaisseur comprise entre 55 et 65 nm, soit de l'ordre de 60 nm et un indice de réfraction de 2,45 à 550 nm,
- d'un empilement de couches comprenant au moins une couche à base d'argent tel que décrit dans les demandes de brevet WO 02/48065 et EP 0 847 965.
La couche sol-gel est ensuite déposée sur la couche centrale 3 de manière à former la deuxième couche externe 4 de l'élément en couches 1 . Cette deuxième couche externe 4 se conforme à la surface texturée 3B de la couche centrale 3 opposée à la couche externe 2.
Une couche d'adhésif 14, recouverte d'une bande de protection (liner) 15 destinée à être retirée pour le collage, peut être rapportée sur la surface externe 4A de la couche 4 de l'élément en couches 1 . L'élément en couches 1 se présente ainsi sous la forme d'un film flexible prêt à être rapporté par collage sur une surface, telle qu'une surface d'un vitrage, afin de conférer à cette surface des propriétés de réflexion diffuse. Dans l'exemple de la figure 5, la couche d'adhésif 14 et la bande de protection 15 sont rapportées sur la surface externe 4A de la couche 4. La surface externe 2A de la couche 2, qui est destinée à recevoir un rayonnement incident, est quant à elle munie d'un revêtement antireflet.
De manière particulièrement avantageuse, comme suggéré sur la figure 5, les différentes étapes du procédé peuvent être effectuées en continu sur une même ligne de fabrication.
La mise en place du ou des revêtements antireflet de l'élément en couches 1 n'a pas été représentée sur les figures 4 à 5. Il est à noter que, dans chacun des procédés illustrés sur ces figures, le ou les revêtements antireflet peuvent être mis en place sur les surfaces lisses 2A et/ou 4A des couches externes avant ou après l'assemblage de l'élément en couches, de manière indifférente.
L'invention n'est pas limitée aux exemples décrits et représentés. En particulier, lorsque l'élément en couches est un film flexible comme dans l'exemple de la figure 5, l'épaisseur de chaque couche externe formée à base d'un film polymère, par exemple à base d'un film de PET, peut être supérieure à 10 μιτι, notamment de l'ordre de 10 m à 1 mm.
De plus, la texturation de la première couche externe 2 dans l'exemple de la figure 5 peut être obtenue sans recourir à une couche de résine durcissable déposée sur le film polymère, mais directement par embossage à chaud d'un film polymère, notamment par laminage à l'aide d'un rouleau texturé ou par pressage à l'aide d'un poinçon.
Des architectures analogues peuvent également être envisagées pour des substrats plastiques à la place des substrats en verre. Le vitrage selon l'invention est, susceptible d'être utilisé pour toutes applications connues de vitrages, telles que pour véhicules, bâtiments, mobilier urbain, ameublement intérieur, éclairage, écrans d'affichage, etc. Il peut s'agir également d'un film flexible à base de matériau polymère, notamment apte à être rapporté sur une surface afin de lui conférer des propriétés de réflexion diffuse tout en préservant ses propriétés de transmission.
L'élément en couches à forte réflexion diffuse de l'invention peut être utilisé dans un système de visualisation dit tête haute, ou "Head Up Display" (HUD). De manière connue, les systèmes HUD, qui sont utiles notamment dans les cockpits d'avion, les trains, mais aussi aujourd'hui dans les véhicules automobiles des particuliers (voitures, camions, etc.), permettent d'afficher des informations projetées sur un vitrage, en général le pare-brise du véhicule, qui se réfléchissent vers le conducteur ou l'observateur. Ces systèmes permettent d'informer le conducteur du véhicule sans que celui-ci éloigne son regard du champ de vision en avant du véhicule, ce qui permet d'accroître grandement la sécurité. Le conducteur perçoit une image virtuelle qui se situe à une certaine distance derrière le vitrage.
Selon un aspect de l'invention, l'élément en couches est intégré dans un système HUD en tant que vitrage, sur lequel sont projetées les informations. Selon un autre aspect de l'invention, l'élément en couches est un film flexible rapporté sur une surface principale d'un vitrage d'un système HUD, notamment un pare-brise, les informations étant projetées sur le vitrage du côté du film flexible. Dans ces deux cas, il s'opère une forte réflexion diffuse sur la première surface de contact texturée rencontrée par le rayonnement dans l'élément en couches, ce qui permet une bonne visualisation de l'image virtuelle, tandis que la transmission spéculaire à travers le vitrage est préservée, ce qui garantit une vision nette à travers le vitrage.
On note que, dans les systèmes HUD de l'état de la technique, l'image virtuelle est obtenue en projetant les informations sur un vitrage (notamment un pare-brise) ayant une structure feuilletée formée de deux feuilles de verre et d'un intercalaire en matière plastique. Un inconvénient de ces systèmes existants est que le conducteur observe alors une image double, une première image réfléchie par la surface du vitrage orientée vers l'intérieur de l'habitable et une seconde image par réflexion de la surface extérieure du vitrage, ces deux images étant légèrement décalées l'une par rapport à l'autre. Ce décalage peut perturber la vision de l'information.
L'invention permet de remédier à ce problème. En effet, lorsque l'élément en couches est intégré dans un système HUD, en tant que vitrage ou en tant que film flexible rapporté sur la surface principale du vitrage qui reçoit le rayonnement de la source de projection, la réflexion diffuse sur la première surface de contact texturée rencontrée par le rayonnement dans l'élément en couches peut être nettement plus élevée que la réflexion sur les surfaces externes en contact avec l'air. Ainsi, on limite la double réflexion en favorisant la réflexion sur la première surface de contact texturée de l'élément en couches.
Exemples
I. Préparation de solutions sol-gel et de couches sol-gel comprenant un indice de réfraction ajustable
Les couches sol-gel préparées dans les exemples comprennent une matrice hybride organique/inorganique de silice et d'oxyde de zirconium dans laquelle sont dispersées des particules de dioxyde de titane. Les composés principaux utilisés dans les solutions sol-gel sont :
- le 3-glycidoxypropyltriméthoxysilane (GLYMO),
- le propoxyde de zirconium sous forme de solution à 70% en masse dans du propanol,
- le ΤΊΟ2, commercialisé sous le nom Cristal Activtm, sous forme de particules de diamètre inférieur à 50 nm dans une dispersion aqueuse présentant un contenu solide de 23% en masse.
Une première composition précurseur de la matrice est préparée en mélangeant l'organosilane, la solution de propoxyde de zirconium, de l'acide acétique et éventuellement de l'eau. Les constituants sont mélangés goutte à goutte sous agitation forte. Les autres composés sont ensuite ajoutés dans cette première composition, c'est-à-dire la dispersion aqueuse de dioxyde de titane sous forme de particules, le surfactant et éventuellement d'autres solvants de dilution tels que l'éthanol. On obtient ainsi la solution sol-gel. En fonction des proportions de dispersion de dioxyde de titane ajoutées à la solution sol-gel, la matrice de la couche sol-gel une fois réticulée sera plus ou moins chargée en particule de ΤΊΟ2. L'indice de réfraction de la couche sol- gel dépend de la fraction volumique de dioxyde de titane. Il est ainsi possible de faire varier l'indice de réfraction de la couche sol-gel résultante entre 1 ,490 et
I , 670 avec un ajustement de haute précision de l'ordre de 0,001 . Il est donc possible d'obtenir pour tous types de substrats en verre standards utilisés comme couche externe inférieure, un accord d'indice inférieur à 0,015.
Le contenu solide de la couche sol-gel influence l'épaisseur maximum qu'il est possible de déposer en une passe.
Afin d'illustrer ces résultats, différentes solutions sol-gel ont été préparées. Ces solutions ont ensuite été appliquées par pulvérisation sur un support et réticulées pendant une durée de 20 minutes à quelques heures à une température de 150°C ou de 200°C de façon à former des couches sol-gel présentant des indices de réfraction variant entre 1 ,493 à 1 ,670.
II. Influence des proportions volumiques de Ti02 sur l'indice de réfraction de la couche sol-gel
Les tableaux ci-dessous récapitulent les compositions des solutions sol- gel testées ainsi que les compositions des couches sol-gel résultantes.
Concernant la solution sol-gel, les proportions données correspondent aux proportions en masse par rapport à la masse totale de la solution sol-gel.
Solution sol-gel A B C D E F G H I
Composés principaux :
GLYMO 68, 1 64,2 55,6 52,5 22,5 20,3 18,3 16,6 14,8
Propoxyde de zirconium 4,8 4,5 3,9 3,7 1 ,6 1 ,4 1 ,3 1 ,2 1 ,0
Ti02 0,0 2,8 4,2 6,5 3,5 5, 1 6,6 7,8 9, 1
Additifs
Acide acétique 4,3 4,0 3,5 3,3 1 ,4 1 ,3 1 ,1 1 ,0 0,9
3M-FC 4430 0,0 0, 1 0,2 0,3 0,2 0,2 0,3 0,3 0,4
Solvants
Propanol 2,0 1 ,9 1 ,7 1 ,6 0,7 0,6 0,5 0,5 0,4
Eau 12,8 21 ,6 24,4 31 ,6 16,0 20,9 25,5 29,2 33,3
Ethanol 0,0 12,4 18,2 28,2 15,3 22,2 28,6 33,9 39,6
Total 100 100 100 100 100 100 100 100 100 Concernant la couche sol-gel, les proportions en volume de ΤΊΟ2 sont définies par rapport au volume total des composants principaux comprenant la matrice hybride de silice et d'oxyde de zirconium et les particules de ΤΊΟ2. Les proportions des composants principaux correspondent aux proportions en masse des composés principaux de la couche sol-gel par rapport à la masse totale de composés principaux.
Figure imgf000046_0001
Suite à la réticulation de l'organosilane et du propoxyde de zirconium par réaction d'hydrolyse et de condensation, on obtient dans la couche sol-gel une matrice à base d'oxyde de silicium comprenant un groupement organique non hydrolysable appelé ci-après « Gly-SiO2 » et d'oxyde de zirconium dans laquelle sont dispersées les particules de TiO2. Ces trois composés représentent les composés principaux de la couche sol-gel.
La fraction volumique de dioxyde de titane influence linéairement l'indice de réfraction de la couche sol-gel pour des proportions volumique en ΤΊΟ2 inférieure à 20%. Pour des proportions supérieures, l'indice de réfraction continue à augmenter mais on observe un fléchissement de la pente de la courbe. Toutefois, une fois cette courbe déterminée, l'homme du métier est en mesure d'estimer, par approximation, l'indice de réfraction d'une couche sol-gel comprenant une fraction volumique de TiO2 supérieure à 20%.
La figure 6 représente l'évolution de l'indice de réfraction en fonction des proportions en volume de ΤΊΟ2 dans la couche sol-gel. On observe l'évolution linéaire de l'indice de réfraction en fonction des proportions de ΤΊΟ2 est linéaire pour des proportions inférieures à 20%.
La précision sur l'indice de réfraction est de 7x10"4 pour une erreur de 0,1 % en volume sur la quantité de ΤΊΟ2. III. Observation MEB
Des observations par microscopie électronique à balayage ont été effectuées pour s'assurer que les couches sol-gel permettent de combler en épaisseur la rugosité du substrat et d'obtenir une surface supérieure plane. Les images de la figure 7 représentent des substrats satinés de verre rugueux transparent Satinovo® de la société Saint-Gobain sur lequel une couche sol-gel a été déposée par procédé sol gel. Ces substrats de 4 mm d'épaisseur comprennent une surface principale texturée obtenue par attaque acide. Ces substrats sont donc utilisés comme couche externe inférieure de l'élément en couches. La hauteur moyenne des motifs de la texturation de cette couche externe inférieure, qui correspond à la rugosité Ra de la surface texturée du verre Satinovo®, est comprise entre 1 et 5 μιτι. Son indice de réfraction est de 1 ,518 et son PV est compris entre 12 et 17 m.
Sur l'image de gauche représentant une vue en coupe du substrat
Satinovo® recouvert de la couche sol-gel, on voit clairement que la texture est formée par une pluralité de motifs en creux ou en saillie par rapport au plan général de la surface de contact. L'épaisseur de la couche sol-gel est de 14,3 μηη.
L'image de droite représente une vue prise de dessus d'un même substrat. De manière volontaire, la couche sol-gel n'a pas été appliquée sur toute la surface du substrat Satinovo®. La couche sol-gel permet de planariser la rugosité du substrat. IV. Evaluation de l'influence de l'accord d'indice
Afin de mesurer l'effet de la variation d'indice de la couche sol-gel, différentes solutions sol-gel ont été préparées et déposées sur des substrats satinés de verre rugueux transparent Satinovo® définis ci-dessus. Les épaisseurs des couches sol-gel déposées après séchage sont d'environ 15 μιτι.
Cet essai a pour objectif de montrer l'influence de l'accord d'indice entre la couche externe supérieure et inférieure sur les propriétés optiques du vitrage telles que : - les valeurs de transmission lumineuse TL dans le visible en %, mesurée selon la norme ISO 9050:2003 (illuminant D65 ; 2° Observateur),
- les valeurs de flou en transmission (Haze T) en %, mesuré avec un hazemeter selon la norme ASTM D 1003 pour un rayonnement incident sur l'élément en couches du côté de la couche externe inférieure,
- la clarté en % avec le hazemeter Haze-Gard de BYK.
De plus, la qualité « de vision » au travers du substrat ainsi revêtu a été évaluée visuellement par 5 observateurs à l'aveugle, c'est à dire sans que les observateurs ne connaissent les caractéristiques telles que l'indice de réfraction ou l'accord d'indice des couches sol-gel avec le substrat. Les observateurs ont attribué pour chaque substrat revêtu d'une couche sol-gel un indicateur d'appréciation choisi parmi : « - » non correcte, « + » correcte, « ++ » bon, « +++ » excellent.
Pour simplifier cet essai, la couche centrale a été omise. Cependant, l'absence de couche centrale ne modifie pas la tendance observée concernant les propriétés étudiées.
Les tableaux ci-dessous récapitulent les compositions des solutions sol- gel testées ainsi que les compositions des couches sol-gel résultantes.
Les résultats obtenus sont regroupés dans le tableau ci-dessus.
Couche Indice Δη TL (%) Flou Clarté Observation visuelle
sol-gel 589nm (%) (%) P1 P2 P3 P4 P5
G 1 ,623 -0, 105 - - 20,7 - - - - -
E 1 ,566 -0,048 - - 76,9 - - - - -
D 1 ,557 -0,039 - - 87,4 - + ++ ++ ++
P 1 ,532 -0,014 89,8 0,3 94 + + + ++ ++
C 1 ,529 -0,010 - - 97,5 ++ ++ ++ ++ ++
O 1 ,524 -0,006 90,0 0,5 98 +++ +++ +++ +++ +++
B 1 ,517 0,002 - - 98 +++ +++ +++ +++ +++
N 1 ,514 0,000 89,8 0,5 100 +++ +++ +++ +++ +++
M 1 ,508 0,010 90,0 0,5 98 ++ ++ ++ ++ ++
L 1 ,504 0,014 89,6 0,4 96 ++ ++ ++ ++ ++
K 1 ,500 0,018 90,0 0,5 93 - + ++ ++ ++
A 1 ,493 0,025 89,9 1 , 1 90 - - - - -
Q 1 ,484 0,030 89,5 1 ,6 78 - - - - -
R 1 ,476 0,038 89,5 3,5 68 - - - - -
S 1 ,468 0,046 89,5 2,9 60 - - - - - Δη représente la variation d'indice entre le substrat Satinovo® et la couche sol gel.
La figure 8 est un graphique montrant l'évolution du flou (axe des ordonnées situé à droite) et de la clarté (axe des ordonnées situé à gauche) en fonction de l'indice de réfraction de la couche sol-gel. Le trait noir vertical illustre l'indice du substrat de verre Satinovo®.
La figure 9 est un graphique montrant l'évolution du flou (axe des ordonnées situé à droite) et de la clarté (axe des ordonnées situé à gauche) en fonction de la variation d'indice de réfraction entre le substrat Satinovo® et la couche sol-gel.
Lorsque la couche sol-gel a un indice compris entre 1 ,500 et 1 ,530 on obtient des valeurs de flou au travers du substrat ainsi revêtu inférieures à 0,5%. Toutefois, les valeurs de flou à elles seules ne suffisent pas pour caractériser l'excellence de la vision. C'est pourquoi la clarté a également été déterminée. On constate que contrairement aux valeurs de flou qui sont quasiment constantes dans la gamme d'indice indiqué, les valeurs de clarté traduisent à l'intérieur de cette gamme un pic centré pour des valeurs d'indice de réfraction de la couche sol-gel autour de la valeur de l'indice du substrat soit 1 ,518. Plus particulièrement, de bons résultats sont obtenus pour un écart d'indice inférieur à 0,020 et d'excellents résultats pour un écart d'indice inférieur à 0,015, voire inférieur à 0,005.
En conclusion, la valeur absolue de la différence d'indice entre la couche externe inférieure d'indice n1 et la couche externe supérieure sol-gel d'indice n2 est de préférence inférieure à 0,020, mieux inférieure à 0,015 et encore mieux inférieure à 0,013.
V. Influence du feuilletage
Afin de démontrer que le feuilletage ne perturbe pas les performances optiques, des essais comparatifs ont été réalisés entre :
51 : un substrat Satinovo® revêtu d'une couche sol-gel O,
52 : un substrat Satinovo® revêtu d'une couche sol-gel O feuilleté avec un verre plat grâce à un intercalaire en PVB.
53 : un substrat Satinovo® revêtu d'un intercalaire en PVB. TL (%) Flou (%) Clarté (%)
S1 90, 1 1 ,88 92,5
S2 88,5 1 ,22 99,4
S3 - 4,5 58
Même si de meilleurs résultats sont obtenus lorsque le substrat est non- feuilleté, les performances optiques sont bonnes dans les deux cas. Le feuilletage présente l'intérêt de « planariser » ou gommer les imperfections de la surface principale de la couche sol-gel. On obtient ainsi une surface externe complètement plate, sans aspect de vaguelette et protégée de la poussière.
Il est intéressant de noter qu'un feuilletage direct sans couche sol-gel conduit à un flou de 4,5% et une clarté de 58%, valeur totalement en dehors des bornes admissibles.
VI. Influence de la présence de la couche magnétron
Cet essai a été réalisé avec un élément en couche transparent comprenant l'empilement suivant :
- couche externe inférieure : substrat de verre Satinovo® de 4 mm ou 6 mm,
- couche centrale : empilement de couches comprenant au moins une couche à base d'argent déposées par dépôt magnétron,
- couche externe supérieure : Couche sol-gel O,
- couche additionnelle supérieure : Intercalaire de PVB,
- couche additionnelle supérieure : verre plat de 4 mm.
La présence de la couche centrale déposée par magnétron confère à l'élément en couches un effet de flou intrinsèque provenant des réflexions sur la couche centrale. Même dans le cas d'un parfait accord d'indice, on a alors du flou. La valeur du flou dépend des propriétés de la couche centrale.
La couche sol-gel est appliquée. Enfin, l'ensemble est feuilleté en mettant en contact un intercalaire en PVB d'une épaisseur de 0,38 mm avec la couche sol gel et un verre plat Planilux®. Les verres satinés et plat ont une épaisseur de 4 mm pour les deux premiers exemples avec les couches SKN et de 6 mm pour les deux derniers. L'empilement de couches de la couche centrale est par exemple décrit dans les demandes de brevet WO 02/48065 et EP 0 847 965. Les couches centrales, lorsqu'elles sont déposées sur une surface plane, présentent les caractéristiques données ci-dessous.
Figure imgf000051_0001
Dans le tableau ci-dessous, les valeurs de flou et de clarté ont été mesurées pour différents éléments en couches comprenant comme couche centrale des empilements de couches à base d'argent déposés par magnétron. On constate alors que le flou est augmenté et peut atteindre des valeurs relativement élevées, de quelques pourcents. En revanche, la clarté quant à elle reste très forte avec des valeurs au-delà de 97%. Ceci permet d'avoir des vitrages avec une très bonne qualité de vision en transmission.
Eléments en couches TL (%) Flou (%) Clarté (%)
E1 : SKN165 52,7 4,5 97,8
E2 : SKN154 46,1 4,3 97,5
E3 : PB120 26,2 2,9 98,5
E4 : SS108 12,4 3,5 98, 1

Claims

REVENDICATIONS
1 . Elément en couches (1 ) transparent ayant deux surfaces principales externes (2A, 4A) lisses, caractérisé en ce que l'élément en couche comprend : - deux couches externes, une couche externe inférieure (2) et une couche externe supérieure (4), qui forment chacune une des deux surfaces principales externes (2A, 4A) de l'élément en couches et qui sont constituées en des matériaux diélectriques ayant sensiblement le même indice de réfraction (n2, n4), et
- une couche centrale (3) intercalée entre les couches externes, cette couche centrale (3) étant formée soit par une couche unique qui est une couche diélectrique d'indice de réfraction (n3) différent de celui des couches externes ou une couche métallique, soit par un empilement de couches (3i , 32, 3k) qui comprend au moins une couche diélectrique d'indice de réfraction différent de celui des couches externes ou une couche métallique, où chaque surface de contact (So, Si, Sk) entre deux couches adjacentes de l'élément en couches qui sont l'une diélectrique et l'autre métallique, ou qui sont deux couches diélectriques d'indices de réfraction différents, est texturée et parallèle aux autres surfaces de contact texturées entre deux couches adjacentes qui sont l'une diélectrique l'autre métallique ou qui sont deux couches diélectriques d'indices de réfraction différents, et
où la couche externe supérieure (4) est une couche sol-gel comprenant une matrice hybride organique/inorganique à base de silice.
2. Elément en couches selon la revendication 1 caractérisé en ce que la valeur absolue de la différence d'indice de réfraction à 589 nm entre les matériaux diélectriques constitutifs des deux couches externes de l'élément en couches est inférieure ou égale à 0,020, de préférence inférieure ou égale 0,015.
3. Elément en couches selon la revendication 1 ou 2, caractérisé en ce que la valeur absolue de la différence d'indice de réfraction à 589 nm entre, d'une part, les couches externes (2, 4) et, d'autre part, au moins une couche diélectrique de la couche centrale (3) est supérieure ou égale à 0,3, de préférence supérieure ou égale à 0,5.
4. Elément en couches selon l'une quelconque des revendications précédentes caractérisé en ce que la couche sol-gel comprend en outre des particules d'au moins un oxyde métallique ou d'au moins un chalcogénure.
5. Elément en couches selon l'une quelconque des revendications précédentes caractérisé en ce que la matrice hybride organique/inorganique à base de silice comprend en outre au moins un oxyde métallique.
6. Elément en couches selon l'une quelconque des revendications 4 ou 5 caractérisé en ce que l'oxyde métallique comprend un métal choisi parmi le titane, le zirconium, le zinc, le niobium, l'aluminium et le molybdène.
7. Elément en couches selon l'une quelconque des revendications précédentes caractérisé en ce que la couche sol-gel comprend une matrice hybride organique/inorganique de silice et d'oxyde de zirconium dans laquelle sont dispersées des particules de dioxyde de titane.
8. Elément en couches selon l'une quelconque des revendications précédentes caractérisé en ce que le flou en transmission est inférieur à 5% et/ou la clarté est supérieure à 93%.
9. Elément en couches selon l'une quelconque des revendications précédentes caractérisé en ce que la couche sol-gel est obtenue par durcissement d'une solution sol-gel et comprend le produit résultant de l'hydrolyse et de la condensation d'au moins un organosilane de formule générale RnSiX(4-n) dans laquelle :
- n égal à 1 , 2, 3, de préférence n égal 1 ou 2 et mieux n égal 1 ,
- les groupes X, identiques ou différents, représentent des groupes hydrolysables choisis parmi les groupe alcoxy, acyloxy ou halogénure, de préférence alcoxy, et
- les groupes R, identiques ou différents, représentent des groupes organiques non hydrolysables liés au silicium par un atome de carbone.
10. Elément en couches selon l'une quelconque des revendications précédentes caractérisé en ce que la couche sol-gel est obtenue par durcissement d'une solution sol-gel et comprend le produit résultant de l'hydrolyse et de la condensation de :
i) au moins un organosilane et
ii) au moins un précurseur d'un oxyde métallique et/ ou iii) des particules d'au moins un oxyde métallique ou d'au moins un chalcogénure.
1 1 . Elément en couches selon l'une quelconque des revendications précédentes caractérisé en ce qu'il comprend en outre au moins une couche additionnelle positionnée au-dessus ou en-dessous des couches externes supérieure et/ou inférieure, de préférence choisie parmi :
- les substrats transparents choisis parmi les polymères, les verres ou les céramiques comprenant deux surfaces principales lisses,
- les matériaux durcissables initialement dans un état visqueux, liquide ou pâteux adapté à des opérations de mise en forme,
- les intercalaires en matière plastique thermoformable ou sensible à la pression.
12. Elément en couches selon l'une quelconque des revendications précédentes caractérisé en ce que la couche externe inférieure de l'élément en couche est choisie parmi :
- les substrats transparents dont l'une des surfaces principales est texturée et l'autre lisse, de préférence choisis parmi les polymères, les verres, les céramiques,
- une couche de matériau diélectrique choisi parmi les oxydes, nitrures ou halogénures d'un ou plusieurs métaux de transition, non-métaux ou métaux alcalino-terreux,
- une couche à base de matériaux durcissables initialement dans un état visqueux, liquide ou pâteux adaptés à des opérations de mise en forme comprenant :
- les matériaux photoréticulables et/ou photopolymérisables,
- les couches déposées par un procédé sol-gel,
- les intercalaires en matière plastique thermoformable ou sensible à la pression pouvant être de préférence à base de polymères choisis parmi les polybutyrales de vinyle (PVB), les polychlorures de vinyle (PVC), les polyuréthanes (PU), les polyéthylènes téréphtalates (PET) ou les copolymères d'éthylène-acétate de vinyle (EVA).
13. Elément en couches selon l'une quelconque des revendications précédentes caractérisé en ce que la couche ou l'empilement de couches de la couche centrale comprend : - au moins une couche mince constituée en un matériau diélectrique choisi parmi les oxydes, nitrures ou halogénures d'un ou plusieurs métaux de transition, non-métaux ou métaux alcalino-terreux,
- au moins une couche mince métallique, notamment une couche mince d'argent, d'or, de cuivre, de titane, de niobium, de silicium, d'aluminium, d'alliage nickel-chrome (NiCr), d'acier inoxydable, ou de leurs alliages.
14. Procédé de fabrication d'un élément en couches tel que défini selon l'une quelconque des revendications 1 à 13, comprenant les étapes suivantes :
- on fournit, en tant que couche externe inférieure, un substrat transparent dont l'une des surfaces principales est texturée et l'autre surface principale est lisse ;
- on dépose une couche centrale sur la surface principale texturée de la couche externe inférieure, soit, lorsque la couche centrale est formée par une couche unique, qui est une couche diélectrique d'indice de réfraction différent de celui de la couche externe inférieure ou une couche métallique, en déposant la couche centrale de manière conforme sur ladite surface principale texturée, soit, lorsque la couche centrale est formée par un empilement de couches comprenant au moins une couche diélectrique d'indice de réfraction différent de celui de la couche externe inférieure ou une couche métallique, en déposant les couches de la couche centrale successivement de manière conforme sur ladite surface principale texturée ;
- on forme la couche externe supérieure sol-gel sur la surface principale texturée de la couche centrale opposée à la couche externe inférieure, où les couches externes inférieure et supérieure sont constituées en des matériaux diélectriques ayant sensiblement le même indice de réfraction, par dépôt par procédé sol-gel,
- éventuellement on forme au moins une couche additionnelle supérieure et/ou inférieure sur la ou les surfaces principales externes lisses de l'élément en couches.
15. Utilisation d'un élément en couches (1 ) selon l'une quelconque des revendications 1 à 13 comme tout ou partie d'un vitrage pour véhicule, pour bâtiment, pour mobilier urbain, pour ameublement intérieur, pour écran d'affichage, pour système Head Up Display.
PCT/FR2013/051657 2012-07-13 2013-07-11 Élément transparent a réflexion diffuse comprenant une couche sol-gel WO2014009663A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020157003520A KR102053773B1 (ko) 2012-07-13 2013-07-11 졸-겔 층을 포함하는 확산 반사를 갖는 투명 요소
US14/414,335 US9846265B2 (en) 2012-07-13 2013-07-11 Transparent element with diffuse reflection comprising a sol-gel layer
EA201590213A EA026270B1 (ru) 2012-07-13 2013-07-11 Прозрачный элемент с диффузным отражением, содержащий золь-гелевый слой
IN887DEN2015 IN2015DN00887A (fr) 2012-07-13 2013-07-11
EP13744728.0A EP2872328B1 (fr) 2012-07-13 2013-07-11 Élément transparent a réflexion diffuse comprenant une couche sol-gel
ES13744728.0T ES2585258T3 (es) 2012-07-13 2013-07-11 Elemento transparente de reflexión difusa que comprende una capa sol-gel
CN201380047496.1A CN104619493B (zh) 2012-07-13 2013-07-11 包含溶胶-凝胶层的具有漫反射的透明元件
JP2015521048A JP6082107B2 (ja) 2012-07-13 2013-07-11 ゾル−ゲル層を備える拡散反射特性を有する透明エレメント

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1256760A FR2993200B1 (fr) 2012-07-13 2012-07-13 Element transparent a reflexion diffuse comprenant une couche sol-gel
FR1256760 2012-07-13

Publications (1)

Publication Number Publication Date
WO2014009663A1 true WO2014009663A1 (fr) 2014-01-16

Family

ID=47080679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/051657 WO2014009663A1 (fr) 2012-07-13 2013-07-11 Élément transparent a réflexion diffuse comprenant une couche sol-gel

Country Status (12)

Country Link
US (1) US9846265B2 (fr)
EP (1) EP2872328B1 (fr)
JP (1) JP6082107B2 (fr)
KR (1) KR102053773B1 (fr)
CN (1) CN104619493B (fr)
EA (1) EA026270B1 (fr)
ES (1) ES2585258T3 (fr)
FR (1) FR2993200B1 (fr)
IN (1) IN2015DN00887A (fr)
PL (1) PL2872328T3 (fr)
PT (1) PT2872328T (fr)
WO (1) WO2014009663A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088701A1 (fr) * 2014-12-02 2016-06-09 Jx日鉱日石エネルギー株式会社 Stratifié transparent, écran réfléchissant le comprenant, et dispositif de projection d'image les comprenant
US10792894B2 (en) 2015-10-15 2020-10-06 Saint-Gobain Performance Plastics Corporation Seasonal solar control composite

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2991064B1 (fr) * 2012-05-25 2014-05-16 Saint Gobain Procede de projection ou de retroprojection sur un vitrage comprenant un element en couches transparent presentant des proprietes de reflexion diffuse
FR3012363B1 (fr) * 2013-10-30 2015-10-23 Saint Gobain Element en couches transparent
CN105334554A (zh) * 2014-08-13 2016-02-17 中兴通讯股份有限公司 一种单向透光膜、光收集器和背光源模组
WO2017111111A1 (fr) * 2015-12-25 2017-06-29 旭硝子株式会社 Écran transparent réfléchissant
CN106959479B (zh) * 2016-04-01 2019-05-24 江苏集萃智能液晶科技有限公司 一种光学膜
US10466392B1 (en) * 2016-08-26 2019-11-05 Apple Inc. Systems with textured light-scattering films
FR3059938A1 (fr) * 2016-12-13 2018-06-15 Saint-Gobain Glass France Element en couches transparent comportant une zone ecran
FR3061074B1 (fr) * 2016-12-23 2021-05-28 Saint Gobain Vitrage feuillete colore
FR3062339B1 (fr) * 2017-01-31 2022-07-22 Saint Gobain Element en couches transparent a reflexion diffuse directionnelle
CN108394257B (zh) * 2017-02-11 2021-05-14 丁天皓 一种用于汽车的防车灯眩光装置及其使用方法
MA46808A1 (fr) 2017-03-07 2019-11-29 Saint Gobain Système de vitrage automobile doté d'un affichage
JP2019066832A (ja) * 2017-10-02 2019-04-25 Agc株式会社 映像投影用構造体および透明スクリーン
JP2019070795A (ja) * 2017-10-05 2019-05-09 デクセリアルズ株式会社 光学体
WO2019069953A1 (fr) 2017-10-05 2019-04-11 デクセリアルズ株式会社 Corps optique
US11186146B1 (en) 2018-06-13 2021-11-30 Apple Inc. Laminated glazing
WO2020072503A1 (fr) * 2018-10-02 2020-04-09 Arizona Board Of Regents On Behalf Of The University Of Arizona Films et revêtements polymères organiques/ inorganiques hybrides à base de chalcogénure et leur utilisation
US20220091414A1 (en) 2019-01-07 2022-03-24 Saint-Gobain Glass France Vehicle glazing and display system
US11846788B2 (en) 2019-02-01 2023-12-19 Racing Optics, Inc. Thermoform windshield stack with integrated formable mold
US11524493B2 (en) 2019-02-01 2022-12-13 Racing Optics, Inc. Thermoform windshield stack with integrated formable mold
FR3095611B1 (fr) * 2019-04-30 2023-05-19 Saint Gobain Element transparent a reflexion diffuse
WO2021075359A1 (fr) * 2019-10-17 2021-04-22 日本板硝子株式会社 Corps en verre
WO2021139995A1 (fr) 2020-01-06 2021-07-15 Saint-Gobain Glass France Fenêtre latérale de véhicule en verre et fenêtre de séparation dotées d'un écran transparent à projection active
WO2021139994A1 (fr) 2020-01-06 2021-07-15 Saint-Gobain Glass France Fenêtre latérale de véhicule en verre et fenêtre de séparation dotée d'un écran de projection transparent
WO2021139992A1 (fr) 2020-01-06 2021-07-15 Saint-Gobain Glass France Toit de véhicule en verre avec écran transparent de projection
US11261529B2 (en) * 2020-03-31 2022-03-01 Futuretech Capital, Inc. Reduced visibility conductive micro mesh touch sensor
WO2021213884A1 (fr) 2020-04-21 2021-10-28 Saint-Gobain Glass France Unité de vitrage en verre feuilleté de véhicule avec zone de projection et système de vitrage et d'affichage de véhicule
EP4153423A1 (fr) 2020-05-18 2023-03-29 Saint-Gobain Glass France Vitrage composite de véhicule avec zone de projection
JP7070613B2 (ja) * 2020-07-08 2022-05-18 大日本印刷株式会社 映像表示装置
JP7001132B2 (ja) * 2020-09-07 2022-01-19 大日本印刷株式会社 透過型スクリーン、背面投射型表示装置
FR3114045B1 (fr) * 2020-09-14 2022-12-23 Saint Gobain Isover Iberica S L Panneau pour conduits de climatisation
CN115119507A (zh) 2021-01-18 2022-09-27 法国圣戈班玻璃厂 具有操作设备的玻璃和用于制造玻璃的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030161997A1 (en) * 2002-02-28 2003-08-28 Solutia Inc. Embossed reflective laminates
US20090316262A1 (en) * 2006-08-09 2009-12-24 Nippon Sheet Glass Company, Limited Transmission type polarizing element, and composite polarizing plate using the element
WO2012104547A1 (fr) * 2011-01-31 2012-08-09 Saint-Gobain Glass France Element transparent a reflexion diffuse

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173778A (en) * 1976-07-28 1979-11-06 Optical Coating Laboratory, Inc. Lighting fixtures and glass enclosure having high angle anti-reflection coating
US5194990A (en) * 1991-10-07 1993-03-16 Ford Motor Company Low color purity, anti-reflection coatings for transparent glazings oriented at high angles of incidence
FR2757151B1 (fr) 1996-12-12 1999-01-08 Saint Gobain Vitrage Vitrage comprenant un substrat muni d'un empilement de couches minces pour la protection solaire et/ou l'isolation thermique
FR2818272B1 (fr) 2000-12-15 2003-08-29 Saint Gobain Vitrage muni d'un empilement de couches minces pour la protection solaire et/ou l'isolation thermique
FR2827854B1 (fr) * 2001-07-25 2003-09-19 Saint Gobain Rech Substrat revetu d'un film composite, procede de fabrication et applications
CN100454042C (zh) * 2001-11-30 2009-01-21 株式会社尼康 光学用树脂前体组合物、光学用树脂、光学元件及光学物品
AU2006303170B2 (en) * 2005-10-21 2012-10-11 Saint-Gobain Glass France Antifouling material and production method thereof
FR2898295B1 (fr) * 2006-03-10 2013-08-09 Saint Gobain Substrat transparent antireflet presentant une couleur neutre en reflexion
TW200835956A (en) * 2007-02-16 2008-09-01 Au Optronics Corp Display panel and method for manufacturing thereof and electric-optic device including the display panel and method for manufacturing thereof.
WO2010022191A2 (fr) * 2008-08-19 2010-02-25 Battelle Memorial Institute Complexes organiques-inorganiques contenant un nanoagrégat de métal des terres rares luminescent et un ligand antenne, articles luminescents, et procédés de préparation de compositions luminescentes
NL2002432C2 (en) * 2009-01-20 2010-07-21 Omt Solutions Beheer B V Diffusing device for diffusing light, and safety-glass panel, light source and greenhouse comprising diffusing device.
FR2944145B1 (fr) * 2009-04-02 2011-08-26 Saint Gobain Procede de fabrication d'une structure a surface texturee pour dispositif a diode electroluminescente organique et structure a surface texturee
JP5727718B2 (ja) * 2009-05-16 2015-06-03 デクセリアルズ株式会社 光学体およびその製造方法、窓材、建具、ならびに日射遮蔽装置
US8518561B2 (en) * 2009-07-03 2013-08-27 National Tsing Hua University Antireflection structures with an exceptional low refractive index and devices containing the same
CN101793979B (zh) * 2010-02-10 2012-01-04 东南大学 一维漫反射随机折射率梯度覆层及其应用
JP4888585B2 (ja) * 2010-06-16 2012-02-29 ソニー株式会社 光学体、壁材、建具、および日射遮蔽装置
WO2012005878A1 (fr) * 2010-06-29 2012-01-12 3M Innovative Properties Company Procédé d'application d'un film de fenêtre

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030161997A1 (en) * 2002-02-28 2003-08-28 Solutia Inc. Embossed reflective laminates
US20090316262A1 (en) * 2006-08-09 2009-12-24 Nippon Sheet Glass Company, Limited Transmission type polarizing element, and composite polarizing plate using the element
WO2012104547A1 (fr) * 2011-01-31 2012-08-09 Saint-Gobain Glass France Element transparent a reflexion diffuse

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088701A1 (fr) * 2014-12-02 2016-06-09 Jx日鉱日石エネルギー株式会社 Stratifié transparent, écran réfléchissant le comprenant, et dispositif de projection d'image les comprenant
JPWO2016088701A1 (ja) * 2014-12-02 2017-11-02 Jxtgエネルギー株式会社 透視可能な積層体、それを備えた反射型スクリーン、およびそれを備えた画像投影装置
US10792894B2 (en) 2015-10-15 2020-10-06 Saint-Gobain Performance Plastics Corporation Seasonal solar control composite

Also Published As

Publication number Publication date
ES2585258T3 (es) 2016-10-04
FR2993200A1 (fr) 2014-01-17
PL2872328T3 (pl) 2016-11-30
CN104619493A (zh) 2015-05-13
CN104619493B (zh) 2016-09-28
PT2872328T (pt) 2016-07-15
EP2872328A1 (fr) 2015-05-20
EP2872328B1 (fr) 2016-06-29
US20150192707A1 (en) 2015-07-09
US9846265B2 (en) 2017-12-19
FR2993200B1 (fr) 2014-07-18
IN2015DN00887A (fr) 2015-06-12
KR20150036508A (ko) 2015-04-07
EA026270B1 (ru) 2017-03-31
KR102053773B1 (ko) 2020-01-22
JP6082107B2 (ja) 2017-02-15
EA201590213A1 (ru) 2015-04-30
JP2015530959A (ja) 2015-10-29

Similar Documents

Publication Publication Date Title
EP2872328B1 (fr) Élément transparent a réflexion diffuse comprenant une couche sol-gel
EP3063002B1 (fr) Element en couches transparent
EP2670594B1 (fr) Element transparent a reflexion diffuse
EP2872457B1 (fr) Vitrage translucide comprenant au moins un motif, de preference transparent
EP2856256B1 (fr) Procede de projection ou de retroprojection sur un vitrage comprenant un element en couches transparent presentant des proprietes de reflexion diffuse
EP3554826B1 (fr) Element en couches transparent comportant une zone ecran
EP3577520B1 (fr) Élément en couches transparent a réflexion diffuse directionnelle
EP3089948B1 (fr) Vitrage lumineux avec isolateur optique et sa fabrication
FR2991101A1 (fr) Dispositif a diode electroluminescente organique comportant un support comprenant un element en couches transparent
EP3802120B1 (fr) Element transparent a reflexion diffuse
JP2005001900A (ja) 低光反射性皮膜被覆基材及びその製造方法、並びに該低光反射性皮膜用組成物
WO2023194343A1 (fr) Vitrage à réflexion diffuse
WO2023209025A1 (fr) Vitrage comprenant une zone de décor
EP3962729A1 (fr) Element transparent a reflexion diffuse
EP3972830A1 (fr) Composite laminé pour éléments transparents à réflexion diffuse
FR3118963A1 (fr) Procédé d’obtention d’un vitrage bombé feuilleté

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13744728

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013744728

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015521048

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14414335

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157003520

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201590213

Country of ref document: EA