WO2014008751A1 - 一种发送信号的方法、装置和系统 - Google Patents

一种发送信号的方法、装置和系统 Download PDF

Info

Publication number
WO2014008751A1
WO2014008751A1 PCT/CN2013/000194 CN2013000194W WO2014008751A1 WO 2014008751 A1 WO2014008751 A1 WO 2014008751A1 CN 2013000194 W CN2013000194 W CN 2013000194W WO 2014008751 A1 WO2014008751 A1 WO 2014008751A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
physical uplink
uplink shared
channel
shared channel
Prior art date
Application number
PCT/CN2013/000194
Other languages
English (en)
French (fr)
Inventor
李波杰
张锦芳
戎璐
程宏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2014008751A1 publication Critical patent/WO2014008751A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, apparatus, and system for transmitting signals. Background technique
  • the C-RAN Cloud Radio Acces s Network
  • the C-RAN aggregates the BBUs (Bas-Band Uni-Tubs, Baseband Processing Units) of multiple base stations through optical fibers or optical transmission networks, and pulls out the RRU (Radio Remote Uni-T radio unit) for signal coverage.
  • BBUs Base-Band Uni-Tubs, Baseband Processing Units
  • RRU Radio Remote Uni-T radio unit
  • the RRU and the BBU are far apart, it can usually reach several kilometers or even tens of kilometers, which proposes the transmission bandwidth of the CPRI (Common Public Radio Interface) interface deployed between the BBU and the RRU.
  • CPRI Common Public Radio Interface
  • LTE systems Long Term Evolution
  • fourth-generation mobile communication technologies and multi-antenna technologies
  • the amount of data transmitted between BBUs and RRUs is increasing.
  • the subcarrier spacing is 15 kHz
  • the sampling rate of the baseband signal is 30.72 Msps.
  • the compression/decompression module 1 compresses the CPRI signal output by the RRU, and transmits it to the compression/decompression module 2 for decompression, decompresses and restores the CPRI signal and transmits it to the BBU.
  • the compression method used by the compression module to compress the CPRI signal is similar to the general file compression method. The basic principle is to find the repeated information of the data signal and use the code to represent the same and repeated information to achieve the purpose of compressing the data. This method can compress the CPRI signal transmitted between the RRU and the BBU to a certain extent, thereby reducing the amount of data and bandwidth occupation, and reducing the overhead of the system.
  • the inventors have found that at least the following problems exist in the prior art:
  • the CPRI signal is directly compressed in the time domain, and the compression ratio is compared due to the limitation of the compression method itself. low. This is because, in the communication system, the signal data is inevitably changed due to various factors during the transmission process.
  • the prior art when the uplink signal data is compressed, the conversion rules inside the signal are not considered. Logical association, so the compression ratio of the signal data is lower when using the traditional compression method.
  • the prior art compression method is suitable for single antenna data streams and is not suitable for multi-antenna data streams. Summary of the invention
  • Embodiments of the present invention provide a method, apparatus, and system for transmitting a signal, which can compress a multi-antenna data stream, improve data compression rate, and reduce data transmission cost.
  • a method for transmitting a signal is disclosed, the method being applied to a system having a radio remote unit RRU and a baseband processing unit BBU, the method comprising: receiving a radio remote unit RRU General public wireless interface CPRI signal;
  • the processed physical uplink shared channel signal is transmitted to the baseband processing unit BBU.
  • the present invention also has a first possibility that the channel signal after the separation process further includes a demodulation reference signal, the method further comprising:
  • channel estimation and measurement on the demodulation reference signal to obtain channel estimation information, where the channel estimation information includes at least one of a channel coefficient, a noise power, a signal to noise ratio, and received power information;
  • the multi-antenna equalization processing on the physical uplink shared channel signal is: And performing signal detection and channel equalization processing on the physical uplink shared channel signal according to the channel estimation information, to obtain a detection signal and an equalization coefficient.
  • the invention also has a second possibility that the method further comprises:
  • the single uplink compression processing is performed on the physical uplink shared channel signal after the multi-antenna equalization processing to obtain the compressed data stream, and the compressed data stream is sent to the baseband processing unit BBU.
  • the present invention also has a third possibility that the single stream compression processing of the physical uplink shared channel signal after multi-antenna equalization processing includes:
  • a method for transmitting a signal is disclosed, the method being applied to a system having a radio remote unit RRU and a baseband processing unit BBU, the method comprising: receiving a radio remote unit RRU General public wireless interface CPRI signal;
  • channel separation processing on the CPRI signal to obtain a separated channel signal, where the channel signal includes at least a physical uplink shared channel signal;
  • the present invention further has a fourth possibility that performing signal restoration processing on the physical uplink shared channel signal to obtain a restored data signal, and according to the correlation of the obtained plurality of the restored data signals,
  • the compressing the data signal for compression comprises:
  • the present invention further has a fifth possibility, that is, the sending the compressed physical uplink shared channel signal to the baseband processing unit BBU for processing includes:
  • the reference data stream and the simplified representation of the respective difference data streams are sent to the baseband processing unit BBU for processing.
  • the present invention also has a sixth possibility that the separated channel signal further includes a demodulation reference signal, and the obtained signal reduction coefficient includes: Adjusting the reference signal for channel estimation and measurement to obtain channel estimation information, where the channel estimation information includes at least a channel coefficient and a noise power;
  • the signal reduction coefficient is obtained by using the channel coefficient and the noise power.
  • the invention also has a seventh possibility that the acquisition signal reduction factor is:
  • the baseband processing unit And receiving, by the baseband processing unit, historical or predicted channel estimation information, where the channel estimation information includes at least a channel coefficient, a noise power, and acquiring the signal reduction coefficient by using the channel coefficient and the noise power;
  • the signal reduction coefficient transmitted by the baseband processing unit is received.
  • a signal transmitting apparatus which is applied to a system having a radio remote unit RRU and a baseband processing unit BBU, the apparatus being located on the RRU side of the radio remote unit , the device includes:
  • a first receiving unit configured to receive a general public radio interface CPRI signal sent by the radio remote unit RRU;
  • a first channel separating unit configured to perform channel separation processing on the CPRI signal, to obtain a separated channel signal, where the separated channel signal includes at least a physical uplink shared channel signal;
  • a first equalization processing unit configured to perform multi-antenna equalization on the physical uplink shared channel signal Reason
  • a first sending unit configured to send the processed physical uplink shared channel signal to the baseband processing unit BBU.
  • the present invention has an eighth possibility that the apparatus further includes: a first channel estimation unit, configured to receive a demodulation reference signal sent by the channel separation unit, and to demodulate the reference signal Performing channel estimation and measurement to obtain channel estimation information, and transmitting the channel estimation information to the equalization processing unit; wherein the channel estimation information includes at least a channel coefficient, a noise power, a signal to noise ratio, and a received power information.
  • a first channel estimation unit configured to receive a demodulation reference signal sent by the channel separation unit, and to demodulate the reference signal Performing channel estimation and measurement to obtain channel estimation information, and transmitting the channel estimation information to the equalization processing unit; wherein the channel estimation information includes at least a channel coefficient, a noise power, a signal to noise ratio, and a received power information.
  • the present invention has a ninth possibility that the apparatus further includes: a first single-stream compression unit, configured to receive a signal of the equalization processing unit, and perform physical uplink sharing after multi-antenna equalization processing The channel signal performs a single stream compression process to obtain a compressed data stream, and the compressed data stream is sent to the baseband processing unit BBU.
  • a first single-stream compression unit configured to receive a signal of the equalization processing unit, and perform physical uplink sharing after multi-antenna equalization processing
  • the channel signal performs a single stream compression process to obtain a compressed data stream, and the compressed data stream is sent to the baseband processing unit BBU.
  • a signal transmitting apparatus which is applied to a system having a radio remote unit RRU and a baseband processing unit BBU, wherein the signal transmitting apparatus is located in the radio remote unit On the RRU side, the device includes:
  • a second receiving unit configured to receive a general public radio interface CPRI signal sent by the radio remote unit RRU;
  • a second channel separating unit configured to perform channel separation processing on the CPRI signal, to obtain a separated channel signal, where the channel signal includes at least a physical uplink shared channel signal;
  • a compression unit configured to perform signal restoration processing on the physical uplink shared channel signal to obtain a restored data signal, and compress the restored data signal according to the correlation of the obtained plurality of the restored data signals
  • a second sending unit configured to send the compressed physical uplink shared channel signal to the baseband processing unit BBU for processing, so that the baseband processing unit BBU decodes the physical uplink shared channel signal to obtain a decoded signal.
  • the present invention also has a tenth possibility that the compression unit includes: a reduction coefficient acquisition unit, configured to acquire a signal reduction coefficient;
  • a reduction data acquisition unit configured to acquire a plurality of restored data signals according to the signal reduction coefficient
  • a difference data stream acquisition unit configured to use one or more of the plurality of restored data signals Referring to the data stream, respective difference data streams of the other signals and the reference data stream are respectively obtained, and the reduced expressions of the respective difference data streams are used to represent the restored data signals other than the reference data stream.
  • a signal transmission system includes a radio remote unit RRU, a baseband processing unit BBU, and a signal transmitting apparatus.
  • the signal sending apparatus is located in the radio remote unit RRU. Side, connected to the radio remote unit RRU, wherein
  • the signal sending device is configured to receive a general public radio interface CPRI signal sent by the radio remote unit RRU, perform channel separation processing on the CPRI signal, and acquire a separated channel signal, where the separated channel signal includes at least a physical uplink shared channel signal; performing multi-antenna equalization processing on the physical uplink shared channel signal; and transmitting the processed physical uplink shared channel signal to the baseband processing unit BBU;
  • the baseband processing unit BBU is configured to receive a signal sent by the signal transmitting device and process the signal.
  • a signal transmission system includes a radio remote unit RRU, a baseband processing unit BBU, and a signal transmitting apparatus.
  • the signal transmitting apparatus is located in the radio remote unit RRU. Side, connected to the radio remote unit RRU, wherein
  • the signal sending device is configured to receive a general public radio interface CPRI signal sent by the radio remote unit RRU, perform channel separation processing on the CPRI signal, and acquire a separated channel signal, where the channel signal includes at least a physical uplink shared channel. a signal; performing a signal restoration process on the physical uplink shared channel signal to obtain a restored data signal, and compressing the restored data signal according to the correlation of the obtained plurality of restored data signals; and compressing the processed physical uplink shared channel signal Sending to the baseband processing unit BBU for processing;
  • the baseband processing unit BBU is configured to receive a signal sent by the signal sending apparatus, and decode the physical uplink shared channel signal to obtain a decoded signal.
  • a signal transmitting device is added, and on the uplink data transmission link, the RRU sends a general public radio interface CPRI signal to the a signal transmitting device, wherein the signal transmitting device performs channel separation processing on the CPRI signal, acquires a separated channel signal, and performs multi-antenna equalization processing on the separated physical uplink shared channel signal; and finally processes the processed physical
  • the uplink shared channel signal is sent to the baseband processing unit BBU for processing.
  • the CPRI signal is used Before being transmitted from the RRU side to the BBU, the channel separation processing and the multi-antenna equalization processing are forwarded to the signal transmitting apparatus for processing, since the amount of data after multi-antenna equalization is only related to the number of data streams, and the number of data streams is far. It is much smaller than the number of receiving antennas, so that the amount of data after equalization processing is compressed, so that the amount of multi-antenna data transmitted between the RRU and the BBU is greatly reduced.
  • the method provided by the embodiment of the present invention utilizes the conversion rule of the communication data signal for compression, which not only improves the compression ratio of the data, but also applies to data transmission of multiple antennas, thereby reducing system overhead.
  • a signal transmitting apparatus in a system having a radio remote unit RRU and a baseband processing unit BBU, a signal transmitting apparatus is added, and on the uplink data transmission link, the RRU transmits the general public radio interface CPRI signal.
  • the signal transmitting apparatus performs channel separation processing on the CPRI signal, acquires a channel signal after separation processing, and performs signal restoration processing on the separated physical uplink shared channel signal, according to the obtained multiple Restoring the correlation of the data signal, compressing the restored data by using a differential method; transmitting the differential uplink compressed channel signal to the baseband processing unit BBU for processing, so that the baseband processing unit BBU
  • the physical uplink shared channel signal is subjected to decompression, multi-antenna equalization, demodulation, and decoding processing to obtain a decoded signal.
  • the correlation of the multi-antenna data is utilized, and the data signal transmitted to the BBU is subjected to differential compression processing, and the difference data stream is used to express the difference with respect to the reference data stream, which may be used less.
  • the number of bits expresses the signal data, so that the amount of data transmitted between the RRU and the BBU is compressed, and this method solves the problem of large data transmission amount of the multi-antenna and reduces the system overhead.
  • FIG. 1 is a schematic diagram of a prior art baseband signal compression method
  • FIG. 1 is a flowchart of a first embodiment of a method for transmitting a signal according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a second embodiment of a method for transmitting a signal according to an embodiment of the present invention
  • 4 is a flowchart of a third embodiment of a method for transmitting a signal according to an embodiment of the present invention
  • FIG. 5 is a flowchart of a fourth embodiment of a method for transmitting a signal according to an embodiment of the present invention
  • the method of the signal is the flowchart of the fifth embodiment
  • FIG. 7 is a schematic diagram of the first embodiment of the signal sending apparatus according to the embodiment of the present invention
  • FIG. 8 is a schematic diagram of a second embodiment of a signal sending apparatus according to an embodiment of the present invention. detailed description
  • Embodiments of the present invention provide a method, apparatus, and system for transmitting a signal, which can compress a multi-antenna data stream, improve data compression rate, and reduce data transmission cost.
  • the signals sent by the BBU to the RRU are from the same source, but the transmission paths through the multiple antennas during transmission are not the same, so the loss of the signals will be different.
  • the baseband signal transmitted to the RRU will inevitably undergo different changes.
  • the RRU converts each downlink baseband signal into a radio frequency signal and performs power amplification to transmit it through the antenna.
  • the signals from the same source that are sent by the RRU to the BBU appear as different signals. If the signal is compressed and sent to the BBU using the prior art compression method, the compression ratio is very limited.
  • the transformation rule of the signal in the transmission process is utilized, the influence of the channel on the signal is removed as much as possible, and the signal is restored as much as possible.
  • the signals are similar, and the amount of data transmitted by combining the data stream or the difference transmission is greatly reduced, the bandwidth occupation is reduced, and the system overhead is greatly reduced.
  • the method provided by the embodiment of the present invention can be applied to a system having a radio remote unit RRU and a baseband processing unit BBU.
  • the present invention can be applied to, but not limited to, an LTE system, an LTE-A system.
  • a signal transmitting device C-box is further included, and the signal transmitting device is located on the RRA side of the radio remote unit.
  • the signal transmitting device can be a separate hardware device, and The RRUs are connected through a CPRI interface, and the two can transmit data through the CPRI interface.
  • the signal transmitting device can also be integrated with the RRU.
  • FIG. 2 it is a flowchart of a method for transmitting a signal according to a first embodiment of the present invention, where the method includes:
  • a de-CP Cyclic Prefix
  • an FFT Fast Fourier transform
  • a channel separation a channel separation
  • a DMRS Demodulation Reference Signal
  • a measurement a measurement, and the like in a conventional uplink processed by a BBU are performed.
  • Functions such as PUSCH (Physical Uplink Shared Channel) multi-antenna equalization are forwarded to the signal transmitting apparatus C-box processing.
  • the signal transmitting device is connected to the RRU and receives the CPRI signal sent by the RRU.
  • the signal transmitting device C-box receives the CPRI signal sent by the RRU, the cyclic prefix CP removal operation is performed on the non-PRACH (Physica 1 Access Channe 1) part, and the frequency is converted to the frequency by the fast Fourier transform operation. area. Then, the CPRI signal converted to the frequency domain is subjected to channel separation processing, and the separated channel signals include a physical uplink shared channel PUSCH signal, a DMRS signal, an SRS (Sounding Reference Signal) signal, and a PUCCH (Physical Uplink Control Signal). , physical uplink control signal) and so on.
  • the separation of channel signals such as PRACH, SRS, and PUCCH requires the BBU to inform the signal transmitting apparatus C-box of the time-frequency position of the air interface frame in advance.
  • the signal transmitting apparatus C-box After separating the PUSCH and DMRS signals, the signal transmitting apparatus C-box first performs DMRS channel estimation and measurement before performing multi-antenna equalization processing on the PUSCH signal.
  • Channel estimation and measurement can use the same module or different modules.
  • Channel estimation information is obtained by performing channel estimation and measurement on the demodulation reference signal, where the channel estimation information includes channel coefficients, interference and noise power, signal to noise ratio, and received power, and the information may be a PUSCH multi-antenna. Used by the equalization unit, it can also be sent to the BBU for other processing.
  • the main function of multi-antenna equalization processing is to supplement channel fading.
  • the PUSCH multi-antenna equalization unit performs detection of the PUSCH signal and channel equalization processing according to the received PUSCH signal and the output of the DMRS channel estimation and measurement unit, using certain criteria (such as solid SE, minimum mean square error estimation), and outputs Detected signal and channel-equalized system The outputs are sent to the BBU for subsequent demodulation and decoding.
  • certain criteria such as solid SE, minimum mean square error estimation
  • Both the linear equalization algorithm and the non-linear equalization algorithm can be applied to the embodiments of the present invention.
  • the present invention does not limit the specific equalization algorithm. Other embodiments obtained by those skilled in the art without any inventive effort are within the scope of the present invention.
  • S204 Send the processed physical uplink shared channel signal to the baseband processing unit BBU.
  • the channel sounding reference signal SRS separated by the channel, the physical uplink control signal PUCCH can be directly sent to the BBU for processing.
  • Physical uplink shared channel signal PUSCH is multi-antenna equalized and then sent to the BBU for processing.
  • the BBU mainly performs demodulation and decoding processing on the PUSCH signal, and processes the SRS signal and the PUCCH signal.
  • the CPRI signal in the uplink, is subjected to multi-antenna equalization processing, and then transmitted to the BBU for processing.
  • the data amount of the PUSCH signal received on the multiple antennas is only related to the number of streams, and the number of streams is generally less than or equal to the number of receiving antennas, so the PUSCH signals received by the multiple antennas are The amount of data can be compressed. Therefore, the method of the first embodiment of the present invention not only improves the compression ratio of data, but also applies to data transmission of multiple antennas, thereby reducing system overhead.
  • the demodulation function processed by the BBU in the uplink is further advanced to the signal transmitting apparatus C-box processing. That is, in the second embodiment, the method further includes the step of performing demodulation processing on the multi-antenna equalization processed physical uplink shared channel signal, to obtain the demodulated physical uplink shared channel signal, and after demodulating The signal is sent to the BBU for processing.
  • FIG. 3 it is a flowchart of a second embodiment of a method for transmitting a signal provided by the present invention.
  • the separated channel signals may include a DMRS signal, a PUSCH signal, an SRS signal, and a PUCCH signal.
  • the BBU mainly decodes the demodulated PUSCH signal and processes the SRS signal PUCCH signal.
  • the PUSCH signal is further demodulated, and then the demodulated signal is sent to the BBU for processing. Since the amount of signal data after demodulation is further reduced, the compression ratio of the data is improved, and the system overhead is further reduced.
  • the method further includes the step of performing compression processing on the single stream data.
  • the third embodiment of the present invention is mainly applicable to the case where the number of streams of MIMO (Mul t iple-Input Mul t iple-Out-put) is 1.
  • FIG. 4 it is a flowchart of a third embodiment of a method for transmitting a signal provided by the present invention.
  • the separated channel signals may include a DMRS signal, a PUSCH signal, an SRS signal, and a PUCCH signal.
  • S406. Perform multi-antenna equalization processing on the physical uplink shared channel signal by using channel estimation information.
  • step S407 can be implemented by the following steps: S407A, according to the signal vector of the physical uplink shared channel signal to be compressed, and the modulation mode and the channel estimation information corresponding to the physical uplink shared channel signal that are sent by the baseband processing unit BBU to the signal transmitting apparatus in advance. Obtaining a constellation point vector closest to the signal vector, the closest constellation point vector being a constellation point vector having a minimum difference vector mode with the signal vector and corresponding to the modulation mode.
  • the closest constellation point is searched, and the constellation point is expressed by the corresponding bit number.
  • QPSK is expressed in 2b i t
  • 16QAM is expressed in 4b i t
  • 64QAM is expressed in 6b i t.
  • S407B Obtain a difference vector between the signal vector and the constellation point vector, and use the simplified expression of the constellation point vector and difference vector to represent the physical uplink shared channel signal to be compressed.
  • the difference vector between the signal vector to be compressed and the closest constellation point vector is calculated, and the signal of each time-frequency position of the PUSCH is subjected to the above calculation to obtain a difference data stream. Since the magnitude of the difference vector is generally smaller than the signal vector to be compressed, it can be expressed with less b i t to achieve the compression effect.
  • the simplified expression of the difference data stream means that the difference data stream can be expressed by using the following expression manner: dividing the difference data stream into several groups, each group using a fixed length bit width indicating field plus The difference in the data in the upper group is expressed by the aforementioned bit width indication.
  • the number of data contained in each group may be fixed or dynamic. In the case where the number of data contained in the group is dynamic, each group also needs to have a fixed length indication field to express how much is included in the group. Data.
  • S408 Send channel estimation information, a single-stream compressed PUSCH signal, an SRS signal, and a PUCCH signal to the BBU for processing.
  • the BBU needs to decompress the compressed single stream data first. Specifically, the obtained difference vector is added to the constellation point vector of the corresponding time-frequency position obtained in step S407A, and the signal before the single-stream compression is restored. After obtaining the restored data, the BBU demodulates, decodes, and the like the restored data.
  • the data of the multi-antenna equalization is further processed by the single stream compression, which reduces the amount of data and reduces the system overhead.
  • the difference in the first embodiment of the present invention is that, in the fourth embodiment of the present invention, multi-antenna equalization is still processed by the BBU, and signal restoration processing is performed on the physical uplink shared channel signal PUSCH in the signal transmitting device C-Box. And perform the step of differential compression to eliminate the influence of the channel and achieve the compression number According to the purpose.
  • FIG. 5 it is a flowchart of a fourth embodiment of a method for transmitting a signal provided by the present invention.
  • a de-CP Cyc 1 ic Presix
  • FFT Fast Fourier transform
  • DMRS Demodulation Reference S ignal
  • the signal) channel estimation and measurement are all forwarded to the signal transmitting device C-box processing. And in the signal transmitting device C-box, the steps of performing restoration and differential compression processing on the signal are added.
  • S502 Perform channel separation processing on the CPRI signal to obtain a channel signal after the separation process.
  • step S503 can be implemented by the following steps:
  • the DMRS channel estimation process is forwarded to the signal transmitting apparatus C-Box processing.
  • the channel demodulation reference signal DMRS obtained by the channel separation process is subjected to channel estimation and measurement to obtain channel estimation information, where the channel estimation information includes at least a channel coefficient and a noise power.
  • the signal reduction coefficient w of each time-frequency position of each antenna is calculated.
  • the signal reduction coefficients wl and w2 of the two receiving antennas can be calculated in such a way that:
  • h and 2 are the channel coefficients and noise power of antennas 1 and 2 at a certain time-frequency position, respectively, which are output by the DMRS channel estimation/measurement unit, and ⁇ represents the conjugate of h.
  • the calculation method of the signal reduction coefficient differs according to the algorithm and the MIM0 mode.
  • the MN RS channel estimation unit is still placed in the BBU, and the signal transmitting device directly transmits the MN RS signal obtained after the channel separation to the BBU for channel estimation and measurement processing.
  • the BBU transmits the historical or predicted user channel estimation/measurement result (ie, channel estimation information) to the signal transmitting device before the signal transmitting device C-waveform processes the uplink subframe, and the signal transmitting device The calculation of the reduction coefficient is performed based on the channel coefficient and the noise power information in the channel estimation information.
  • Another possible implementation manner is that the BBU directly sends the signal reduction coefficient to the signal transmitting device, so that the signal transmitting device acquires the restored data signal.
  • the BBU also uses the same signal reduction coefficient for decompression processing in subsequent decompression processing.
  • S503B Acquire a plurality of restored data signals according to the signal reduction coefficient.
  • the PUSCH frequency domain received data r of each antenna after channel separation is multiplied by the signal reduction coefficient w at each corresponding time-frequency position, and the signal restoration data of each antenna at each time-frequency position is obtained, and multiple PUSCH signals are obtained.
  • the restored data at the time-frequency location forms a data stream.
  • the restored data streams of the plurality of antennas are compressed by a correlation method using a correlation between them, that is, transmitting one or more reference signal streams, and a difference flow of the respective antennas with respect to the reference streams, Finally, the compressed data stream of each antenna is transmitted to the BBU.
  • the data stream of the antenna 1 can be used as a reference, and the antenna 2 signal restores the data stream to transmit the difference with respect to the reference data stream of the antenna 1.
  • the value data stream (which can be expressed by the I channel and the Q channel respectively), since the magnitude of the difference is generally smaller than the amplitude of the signal restored by the antenna 1 signal, the difference can be expressed by a smaller number of bits, so that the compression effect can be achieved.
  • the simplified expression of the difference data stream means that the difference data stream can be expressed by using the following expression manner: dividing the difference data stream into several groups, each group using a fixed length bit width indicating field plus The difference in the data in the upper group is expressed by the aforementioned bit width indication.
  • the number of data contained in each group may be fixed or dynamic. In the case where the number of data contained in the group is dynamic, each group also needs to have a fixed length indication field to express how much is included in the group. Data.
  • the differential uplink compressed channel signal is sent to the baseband processing unit BBU for processing.
  • the reference data stream and the simplified expression of the difference data streams are sent to the baseband processing unit BBU for processing.
  • it is a complete waveform of the transmitted reference data stream and a difference data stream of other signals relative to the reference data stream.
  • the BBU After the BBU receives the data stream, It performs decompression processing, restores each antenna to receive data streams in the frequency domain after channel separation, and then performs subsequent multi-antenna equalization. Demodulation and decoding operations.
  • the BBU is based on the reference data stream sent by the signal sending device and the difference data stream of each antenna relative to the reference data stream, and obtains the restored data stream of each antenna, and then divides each antenna by each time-frequency position of the PUSCH.
  • the signal reduction coefficient W obtains the frequency domain received data r of each video position of the PUSCH after channel separation.
  • the calculation of the signal reduction coefficient w by the BBU can be processed according to the result of the channel estimation/measurement and the same method as the signal transmission device calculates w.
  • the influence of the channel on the signal is eliminated, the signal is restored, and the correlation of the multi-antenna data is utilized, and the data signal transmitted to the BBU is subjected to differential compression processing, and the difference is used.
  • the data stream expresses its difference with respect to the reference data stream, and can express the signal data with a smaller number of bits, thus compressing the amount of data transmitted between the RRU and the BBU, and this method well solves the multi-antenna
  • the problem of large data transfer volume reduces system overhead.
  • the method further includes the step of performing compression processing on the single stream data. Specifically, the reference data stream is further compressed to reduce the data stream and reduce bandwidth usage.
  • FIG. 6 is a flowchart of a fifth embodiment of a method for transmitting a signal according to an embodiment of the present invention.
  • Pref ix cyclic prefix
  • FFT Fast Fourier transform
  • channel separation channel separation
  • DMRS Demodulation Reference Signal channel estimation
  • step S603 can be implemented by the following steps:
  • S603B Acquire a plurality of restored data signals according to the signal reduction coefficient.
  • the PUSCH frequency domain received data r of each antenna after channel separation is multiplied by the signal reduction coefficient w at each corresponding time-frequency position, and the signal restoration data of each antenna at each time-frequency position is obtained.
  • the restored data of the plurality of time-frequency positions of the PUSCH forms a data stream.
  • step S604 can be implemented by the following steps:
  • S604A Obtain a constellation point vector having a minimum difference vector mode and a modulation mode corresponding to the signal vector according to a signal vector of the reference data stream to be compressed and a modulation mode and channel estimation information corresponding to the signal vector.
  • the modulation mode and channel estimation information are sent to the signal transmitting apparatus in advance by the baseband processing unit BBU.
  • S604B Obtain a difference vector between the signal vector and the constellation point vector, and use the simplified representation of the constellation point vector and difference vector to represent the reference data stream.
  • the manner of acquiring the difference vector is the same as that of the third embodiment.
  • the differential uplink compressed channel signal is sent to the baseband processing unit BBU for processing.
  • the physical uplink shared channel signal after the differential compression processing specifically refers to a single stream compressed reference data stream and a simplified expression of the difference data streams, and sent to the baseband processing unit BBU for processing.
  • the BBU first performs single-stream decompression processing to obtain the decompressed reference data stream.
  • the restored data stream of each antenna is obtained, and then divided by the signal reduction coefficient W of each antenna at each time-frequency position of the PUSCH, respectively, to obtain each
  • the antenna receives data r in the frequency domain of each video position of the PUSCH after channel separation.
  • the calculation of the signal reduction coefficient w by the BBU can be processed according to the channel estimation/measurement result and the same method as the signal transmitting device calculates w.
  • the reference data stream is further compressed, and the reference data stream is represented by a difference vector, and the signal data can be expressed by a small number of bits, thereby causing the amount of data transmitted between the RRU and the BBU.
  • the compression is further obtained, and the method well solves the problem that the data transmission amount of the multi-antenna is large, and the system overhead is reduced.
  • the transmitting device includes a multi-antenna equalization unit, a single-stream compression unit, and a differential compression unit. Specifically, after the channel separation process, the multi-antenna equalization process and the single-stream compression process may be selected, and the processed data is sent to the BBU, so that the BBU can perform single-stream decompression processing, demodulation, and translation on the received data. Code processing.
  • the multi-antenna differential compression process and the single-stream compression process may be performed after the channel separation process, and the processed data is sent to the BBU, so that the BBU can perform single-stream decompression processing and multi-antenna equalization on the received data. , demodulation, decoding processing.
  • FIG. 7 a schematic diagram of a first embodiment of a signal transmitting apparatus according to the present invention is shown.
  • a signal transmitting apparatus is applied to a system having a radio remote unit RRU and a baseband processing unit BBU, the apparatus is located on the RRU side of the radio remote unit, and the apparatus includes: a first receiving unit 701, General public wireless interface for receiving radio frequency remote unit RRU transmission
  • the first channel separating unit 702 is configured to perform channel separation processing on the CPRI signal to obtain a separated channel signal, where the separated channel signal includes at least a physical uplink shared channel signal;
  • a first equalization processing unit 703, configured to perform multi-antenna equalization processing on the physical uplink shared channel signal
  • the first sending unit 704 is configured to send the processed physical uplink shared channel signal to the baseband processing unit BBU.
  • the device further includes:
  • a first channel estimation unit configured to receive a demodulation reference signal sent by the channel separation unit, perform channel estimation and measurement on the demodulation reference signal, acquire channel estimation information, and send the channel estimation information to the equalization Processing unit; wherein, the channel estimation information includes at least one of a channel coefficient, a noise power, a signal to noise ratio, and received power information.
  • the device further includes:
  • a first demodulation unit configured to receive a signal of the equalization processing unit, perform demodulation processing on the physical uplink shared channel signal after multi-antenna equalization processing, acquire a physical uplink shared channel signal after demodulation processing, and perform the demodulation processing
  • the subsequent physical uplink shared channel signal is sent to the baseband processing unit.
  • the device further includes:
  • a first single-stream compression unit configured to receive a signal of the equalization processing unit, after multi-antenna equalization processing
  • the physical uplink shared channel signal is subjected to single stream compression processing to obtain a compressed data stream.
  • FIG. 8 a schematic diagram of a second embodiment of a signal transmitting apparatus according to the present invention is shown.
  • the device is applied to a system having a radio remote unit RRU and a baseband processing unit BBU.
  • the signal transmitting device is located on the RRU side of the radio remote unit, and the device includes:
  • a second receiving unit 801 configured to receive a universal public wireless interface sent by the radio remote unit RRU
  • the second channel separating unit 802 is configured to perform channel separation processing on the CPRI signal to obtain a separated channel signal, where the channel signal includes at least a physical uplink shared channel signal.
  • the compressing unit 803 is configured to perform signal restoration processing on the physical uplink shared channel signal to obtain a restored data signal, and compress the restored data according to the correlation of the obtained multiple restored data signals.
  • the second sending unit 804 is configured to send the differential uplink compressed channel signal to the baseband processing unit BBU for processing, so that the baseband processing unit BBU decodes the physical uplink shared channel signal to obtain decoding. signal of.
  • the compression unit comprises:
  • a reduction coefficient acquisition unit configured to acquire a signal reduction coefficient
  • a reduction data acquisition unit configured to acquire a plurality of restored data signals according to the signal reduction coefficient
  • a difference data stream acquisition unit configured to acquire one or more signals of the plurality of restored data signals as reference data streams, respectively
  • the difference data streams of the other signals and the reference data stream, with the simplified representation of the respective difference data streams, represent the restored data signals other than the reference data stream.
  • the device further includes:
  • a second single stream compression unit configured to receive a reference data stream of the differential compression unit, and perform single stream compression processing on the reference data stream.
  • the embodiment of the invention also discloses a signal transmission system.
  • the system includes a radio remote unit RRU, a baseband processing unit BBU, and a signal sending device, where the signal sending device is located on the RRU side of the radio remote unit, and the radio remote unit RRU Connecting, wherein the signal sending device is configured to receive a general public radio interface CPRI signal sent by the radio remote unit RRU1; performing channel separation processing on the CPRI signal to obtain a separated channel signal, and the separated processed channel
  • the signal includes at least a physical uplink shared channel signal; for the physical uplink sharing The channel signal performs multi-antenna equalization processing; the processed physical uplink shared channel signal is transmitted to the baseband processing unit BBU.
  • the baseband processing unit BBU is configured to receive a signal sent by the signal transmitting device, and process the signal.
  • the embodiment of the invention also discloses a signal transmission system.
  • the system includes a radio remote unit RRU, a baseband processing unit BBU, and a signal sending device, where the signal sending device is located on the RRU side of the radio remote unit, and is connected to the radio remote unit.
  • the signal sending device is configured to receive a common public radio interface CPRI signal sent by the radio remote unit RRU1001, perform channel separation processing on the CPRI signal, and obtain a separated channel signal, where the channel signal includes at least a physical uplink shared channel signal; Performing signal restoration processing on the physical uplink shared channel signal, compressing the restored data by using a difference method according to the correlation of the obtained plurality of restored data signals; and transmitting the differential uplink compressed channel signal to the physical uplink shared channel signal Baseband processing unit
  • the BBU performs processing; the baseband processing unit BBU is configured to receive a signal sent by the signal sending apparatus, and decode the physical uplink shared channel signal to obtain a decoded signal.
  • the invention may be described in the general context of computer-executable instructions executed by a computer, such as a program module.
  • program modules include routines, programs, objects, components, data structures, and the like that perform particular tasks or implement particular abstract data types.
  • the invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are connected through a communication network.
  • program modules can be located in both local and remote computer storage media including storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种发送信号的方法、装置和系统,所述方法应用于具有射频拉远单元RRU和基带处理单元BBU的系统,所述方法包括:接收射频拉远单元RRU发送的通用公共无线接口CPRI信号;对所述CPRI信号进行信道分离处理,获取分离处理后的信道信号,所述分离处理后的信道信号至少包括物理上行共享信道信号;对所述物理上行共享信道信号进行多天线均衡处理;将处理后的物理上行共享信道信号发送至所述基带处理单元BBU。本发明提供的方法可以对多天线数据流进行压缩,提高了数据压缩率,降低了数据传输成本。

Description

一种发送信号的方法、 装置和系统
本发明要求于 2012 年 7 月 11 日提交中国专利局、 申请号为 201210239064. 8 ,发明名称为"一种发送信号的方法、 装置和系统"的中国专利 申请的优先权, 其全部内容通过引用结合在本发明中。 技术领域
本发明涉及通信技术领域,特别是涉及一种发送信号的方法、装置和系统。 背景技术
在移动通信系统中, C-RAN ( Cloud Rad io Acces s Network, 接入网云化 部署)系统已经成为各个厂商和运营商普遍关注的技术, 它是一种应用云计算 技术的更大规模的无线接入系统。 C-RAN将多个基站的 BBU ( Ba se-band Uni t, 基带处理单元)通过光纤或光传输网络集中起来,而将 RRU( Radio Remote Uni t. 射频拉远单元)拉远进行信号覆盖。 这种部署方式相比于传统的部署方式, 具 有减少建站成本、 节省能源、 方便维护、 提高联合传输的频谱效率等优点。 但 由于 RRU和 BBU距离较远,通常可以达到数千米甚至数十千米, 这就给部署在 BBU和 RRU之间的 CPRI ( Common Publ i c Radio Interface , 通用公共无线接 口)接口的传输带宽提出了很高的要求。 特别是随着 LTE 系统 (Long Term Evolut ion,长期演进)、第四代移动通讯技术以及多天线技术的出现,导致 BBU 和 RRU之间的信号传输数据量越来越大。以 LTE系统为例,对于 20MHz的带宽, 釆用 2048点 FFT (Fas t Four ier Transforma t ion, 快速傅里叶变换), 子载波 间隔为 15KHz ,基带信号的釆样率为 30. 72Msps ,对于 4发 4收天线配置的 RRU、 釆用 16位 ADC/DAC (模数转换 /数模转换),BBU与 RRU之间传输线路釆用 8B/10B 编码,则 CPRI信号的比特率高达 5Gbps。因此,如何压缩 CPRI信号以减少 CRAN 的部署成本, 成为了一个重要的研究课题。
现有技术中, 存在一种基带信号的压缩方法, 这种方法是在 BBU3和 RRU4 之间添加压缩模块和解压缩模块,将 CPRI信号在时域进行压缩。如图 1所示, 在上行方向,压缩 /解压缩模块 1将 RRU输出的 CPRI信号进行压缩, 并传输给 压缩 /解压缩模块 2进行解压, 解压还原出 CPRI信号再传输给 BBU。 具体的, 压缩模块对 CPRI信号进行压缩时所釆用的压缩方法与一般的文件压缩方法类 似, 其基本原理是查找数据信号重复的信息, 并用代码表示相同的、 重复的信 息, 以达到压缩数据的目的。这种方法从一定程度上可以对 RRU和 BBU之间传 输的 CPRI信号进行压缩, 从而达到减少数据量及带宽占用的目的, 降低了系 统的开销。
在实现本发明的过程中,发明人发现现有技术中至少存在如下问题: 现有 技术提供的方法中, 是对 CPRI信号直接在时域进行压缩, 由于压缩方法本身 的限制, 导致压缩率比较低。 这是因为, 在通信系统中信号数据在传输过程中 由于多种因素的影响, 不可避免会发生变化,现有技术在对上行链路信号数据 进行压缩时, 并没有考虑信号内部的变换规则和逻辑关联, 因此使用传统的压 缩方法对信号数据进行压缩时其压缩率较低。 另一方面,现有技术的压缩方法 适用于单天线数据流, 对于多天线数据流并不适用。 发明内容
本发明实施例提供了一种发送信号的方法、装置和系统, 可以对多天线数 据流进行压缩, 提高了数据压缩率, 降低了数据传输成本。
根据本发明实施例的第一方面,公开了一种发送信号的方法, 所述方法应 用于具有射频拉远单元 RRU和基带处理单元 BBU的系统, 所述方法包括: 接收射频拉远单元 RRU发送的通用公共无线接口 CPRI信号;
对所述 CPRI信号进行信道分离处理, 获取分离处理后的信道信号, 所述 分离处理后的信道信号至少包括物理上行共享信道信号;
对所述物理上行共享信道信号进行多天线均衡处理;
将处理后的物理上行共享信道信号发送至所述基带处理单元 BBU。
结合本发明的第一方面, 本发明还具有第一种可能, 即所述分离处理后的 信道信号还包括解调参考信号, 所述方法还包括:
对所述解调参考信号进行信道估计与测量, 以获取信道估计信息, 所述信 道估计信息至少包括信道系数、 噪声功率、 信噪比、接收功率信息中的一种或 多种;
则所述对所述物理上行共享信道信号进行多天线均衡处理为: 根据所述信道估计信息,对所述物理上行共享信道信号进行信号检测以及 信道均衡处理, 以获取检测信号以及均衡系数。
结合本发明的第一方面, 以及本发明的第一方面的第一种可能, 本发明还 具有第二种可能, 即所述方法还包括:
对多天线均衡处理后的物理上行共享信道信号进行单流压缩处理,以获取 压缩后的数据流, 将所述压缩后的数据流发送至所述基带处理单元 BBU。
结合本发明的第一方面的第二种可能, 本发明还具有第三种可能, 即所述 对多天线均衡处理后的物理上行共享信道信号进行单流压缩处理包括:
根据待压缩的所述物理上行共享信道信号的信号向量以及与所述物理上 行共享信道信号对应的调制方式以及信道估计信息,获取与所述信号向量具有 最小差向量模、 与所述调制方式对应的星座点向量; 其中, 所述调制方式的信 息由所述基带处理单元 BBU发送的;
获取所述信号向量和所述星座点向量的差向量,用所述星座点向量和所述 差向量的简化表达表示所述待压缩的所述物理上行共享信道信号。
根据本发明实施例的第二方面,公开了一种发送信号的方法, 所述方法应 用于具有射频拉远单元 RRU和基带处理单元 BBU的系统, 所述方法包括: 接收射频拉远单元 RRU发送的通用公共无线接口 CPRI信号;
对所述 CPRI信号进行信道分离处理, 获取分离处理后的信道信号, 所述 信道信号至少包括物理上行共享信道信号;
对所述物理上行共享信道信号进行信号还原处理获得还原数据信号,根据 获取的多个所述还原数据信号的相关性, 对所述还原数据信号进行压缩; 将压缩处理后的物理上行共享信道信号发送至所述基带处理单元 BBU 进 行处理,以使得所述基带处理单元 BBU从所述物理上行共享信道信号进行解码 获得解码后的信号。
结合本发明的第二方面, 本发明还具有第四种可能, 即对所述物理上行共 享信道信号进行信号还原处理获得还原数据信号,根据获取的多个所述还原数 据信号的相关性, 对所述还原数据信号进行压缩包括:
获取信号还原系数;
根据所述信号还原系数, 获取多个还原数据信号; 将多个还原数据信号中的一个或多个信号作为参考数据流,分别获取其他 信号相对于所述参考数据流的各差值数据流,用所述各差值数据流的简化表达 表示除参考数据流之外的各还原数据信号。
结合本发明的第二方面的第四种可能, 本发明还具有第五种可能, 即所述 将压缩处理后的物理上行共享信道信号发送至所述基带处理单元 BBU 进行处 理包括:
将所述参考数据流以及所述各差值数据流的简化表达发送至所述基带处 理单元 BBU进行处理。
结合本发明的第二方面的第四种可能, 本发明还具有第六种可能, 即所述 分离处理后的信道信号还包括解调参考信号, 所述获取信号还原系数包括: 对所述解调参考信号进行信道估计与测量, 以获取信道估计信息, 所述信 道估计信息至少包括信道系数、 噪声功率;
利用所述信道系数、 噪声功率获取所述信号还原系数。
结合本发明的第二方面的第四种可能, 本发明还具有第七种可能, 即所述 获取信号还原系数为:
接收基带处理单元发送的历史或预测的信道估计信息,所述信道估计信息 至少包括信道系数、 噪声功率, 利用所述信道系数、 噪声功率获取所述信号还 原系数;
接收基带处理单元发送的信号还原系数。
根据本发明实施例的第三方面,公开了一种信号发送装置, 所述装置应用 于具有射频拉远单元 RRU和基带处理单元 BBU的系统中 ,所述装置位于所述射 频拉远单元 RRU侧, 所述装置包括:
第一接收单元,用于接收射频拉远单元 RRU发送的通用公共无线接口 CPRI 信号;
第一信道分离单元, 用于对所述 CPRI信号进行信道分离处理, 获取分离 处理后的信道信号,所述分离处理后的信道信号至少包括物理上行共享信道信 号;
第一均衡处理单元,用于对所述物理上行共享信道信号进行多天线均衡处 理;
第一发送单元,用于将处理后的物理上行共享信道信号发送至所述基带处 理单元 BBU。
结合本发明的第三方面, 本发明还具有第八种可能, 即所述装置还包括: 第一信道估计单元, 用于接收信道分离单元发送的解调参考信号,对所述 解调参考信号进行信道估计与测量, 以获取信道估计信息, 并将所述信道估计 信息发送至所述均衡处理单元; 其中, 所述信道估计信息至少包括信道系数、 噪声功率、 信噪比、 接收功率信息中的一种或多种。
结合本发明的第三方面, 本发明还具有第九种可能, 即所述装置还包括: 第一单流压缩单元, 用于接收均衡处理单元的信号,对多天线均衡处理后 的物理上行共享信道信号进行单流压缩处理, 以获取压缩后的数据流,将所述 压缩后的数据流发送至所述基带处理单元 BBU。
根据本发明实施例的第四方面,公开了一种信号发送装置, 所述装置应用 于具有射频拉远单元 RRU和基带处理单元 BBU的系统中,所述信号发送装置位 于所述射频拉远单元 RRU侧, 所述装置包括:
第二接收单元,用于接收射频拉远单元 RRU发送的通用公共无线接口 CPRI 信号;
第二信道分离单元, 用于对所述 CPRI信号进行信道分离处理, 获取分离 处理后的信道信号, 所述信道信号至少包括物理上行共享信道信号;
压缩单元,用于对所述物理上行共享信道信号进行信号还原处理获得还原 数据信号,根据获取的多个所述还原数据信号的相关性,对所述还原数据信号 进行压缩;
第二发送单元,用于将压缩处理后的物理上行共享信道信号发送至所述基 带处理单元 BBU进行处理,以使得所述基带处理单元 BBU从所述物理上行共享 信道信号进行解码获得解码后的信号。
结合本发明的第四方面,本发明还具有第十种可能,即所述压缩单元包括: 还原系数获取单元, 用于获取信号还原系数;
还原数据获取单元,用于根据所述信号还原系数,获取多个还原数据信号; 差值数据流获取单元,用于将多个还原数据信号中的一个或多个信号作为 参考数据流, 分别获取其他信号与所述参考数据流的各差值数据流, 用所述各 差值数据流的简化表达表示除参考数据流之外的各还原数据信号。
根据本发明实施例的第五方面,公开了一种信号发送系统, 所述系统包括 射频拉远单元 RRU、 基带处理单元 BBU和信号发送装置, 所述信号发送装置位 于所述射频拉远单元 RRU侧, 与所述射频拉远单元 RRU连接, 其中
所述信号发送装置用于接收射频拉远单元 RRU发送的通用公共无线接口 CPRI信号;对所述 CPRI信号进行信道分离处理,获取分离处理后的信道信号, 所述分离处理后的信道信号至少包括物理上行共享信道信号;对所述物理上行 共享信道信号进行多天线均衡处理;将处理后的物理上行共享信道信号发送至 所述基带处理单元 BBU;
所述基带处理单元 BBU用于接收所述信号发送装置发送的信号,对所述信 号进行处理。
根据本发明实施例的第六方面,公开了一种信号发送系统, 所述系统包括 射频拉远单元 RRU、 基带处理单元 BBU和信号发送装置, 所述信号发送装置位 于所述射频拉远单元 RRU侧, 与所述射频拉远单元 RRU连接, 其中
所述信号发送装置用于接收射频拉远单元 RRU发送的通用公共无线接口 CPRI信号;对所述 CPRI信号进行信道分离处理,获取分离处理后的信道信号, 所述信道信号至少包括物理上行共享信道信号;对所述物理上行共享信道信号 进行信号还原处理获得还原数据信号, 根据获取的多个还原数据信号的相关 性,对所述还原数据信号进行压缩; 将压缩处理后的物理上行共享信道信号发 送至所述基带处理单元 BBU进行处理;
所述基带处理单元 BBU用于接收所述信号发送装置发送的信号,从所述物 理上行共享信道信号进行解码获得解码后的信号。
在本发明实施例中 ,在具有射频拉远单元 RRU和基带处理单元 BBU的系统 中, 增加了一个信号发送装置, 在上行数据传输链路上, RRU将通用公共无线 接口 CPRI 信号发送至所述信号发送装置, 由所述信号发送装置对所述 CPRI 信号进行信道分离处理, 获取分离处理后的信道信号, 并对分离得到的物理上 行共享信道信号进行多天线均衡处理;最后将处理后的物理上行共享信道信号 发送至所述基带处理单元 BBU进行处理。 在本发明实施例中, 在将 CPRI信号 从 RRU侧发送至 BBU之前,将信道分离处理、 多天线均衡处理前移至所述信号 发送装置进行处理, 由于多天线均衡后的数据量只与数据流的数量有关,且数 据流的数量远远小于接收天线的数量,因此使得进行均衡处理后的数据量得到 了压缩,使得 RRU与 BBU之间传输的多天线数据量大大减少。 由于本发明实施 例提供的方法利用了通信数据信号的变换规则进行压缩,不仅提高了数据的压 缩率, 还适用于多天线的数据传输, 降低了系统开销。
在本发明另一实施例中, 是在具有射频拉远单元 RRU和基带处理单元 BBU 的系统中, 增加了一个信号发送装置, 在上行数据传输链路上, RRU将通用公 共无线接口 CPRI信号发送至所述信号发送装置, 由所述信号发送装置对所述 CPRI 信号进行信道分离处理, 获取分离处理后的信道信号, 对分离得到的物 理上行共享信道信号进行信号还原处理,根据获取的多个还原数据信号的相关 性, 利用差分方法对所述还原数据进行压缩; 将差分压缩处理后的物理上行共 享信道信号发送至所述基带处理单元 BBU进行处理,以使得所述基带处理单元 BBU将所述物理上行共享信道信号进行解压缩、 多天线均衡、 解调以及解码处 理, 以获取解码后的信号。 在本发明实施例中, 利用了多天线数据的相关性, 对传送至 BBU的数据信号进行了差分压缩处理,用差值数据流表达其相对于参 考数据流的差值, 可以用较少的比特数表达信号数据, 因此使得 RRU 与 BBU 之间传输的数据量得到了压缩,并且这种方法很好地解决了多天线的数据传输 数据量大的问题, 降低了系统开销。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明中记载的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术基带信号压缩方法示意图;
图 1为本发明实施例提供的发送信号的方法第一实施例流程图; 图 3为本发明实施例提供的发送信号的方法第二实施例流程图; 图 4为本发明实施例提供的发送信号的方法第三实施例流程图; 图 5为本发明实施例提供的发送信号的方法第四实施例流程图; 图 6为本发明实施例提供的发送信号的方法第五实施例流程图; 图 7为本发明实施例提供的信号发送装置第一实施例示意图;
图 8为本发明实施例提供的信号发送装置第二实施例示意图。 具体实施方式
本发明实施例提供了一种发送信号的方法、装置和系统, 可以对多天线数 据流进行压缩, 提高了数据压缩率, 降低了数据传输成本。
在现有技术中, 由 BBU发送给 RRU的信号来自同一个信号源,但在传输过 程中经过多根天线的传输, 其传输路径并不相同, 因此信号的损耗方式也会不 同。 另外, 由于经过不同的信道, 其噪声分布也不相同, 最后传输到 RRU的基 带信号不可避免会发生不同的变化。 这时, RRU将各下行基带信号转换为射频 信号并进行功率放大后通过天线发射出去。这时, 由 RRU发送给 BBU的来自同 一信号源的信号表现为不同的信号。如果使用现有技术的压缩方法对信号进行 压缩再发送给 BBU , 其压缩率就非常有限。 在本发明实施例中, 利用了信号在 传输过程中的变换规则,尽可能地去除信道对信号造成的影响,尽可能对信号 进行还原。 经过还原处理后的信号较为相似, 这时通过合并数据流或差值传输 的方式传输的数据量就大大减少, 减少了带宽占用, 大大降低了系统的开销。
以上为本发明实施例的基本构想,为了使本技术领域的人员更好地理解本 发明中的技术方案, 下面将结合本发明实施例中的附图,对本发明实施例中的 技术方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分 实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员 在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保 护的范围。
本发明实施例提供的方法可以应用于具有射频拉远单元 RRU 和基带处理 单元 BBU的系统中。 具体地, 本发明可以应用于但不限于 LTE系统、 LTE-A系 统中。 在所述系统中, 还包括一个信号发送装置 C-box , 所述信号发送装置位 于所述射频拉远单元 RRU侧。 所述信号发送装置可以为单独的硬件设备, 与 RRU通过 CPRI接口相连, 二者可以通过 CPRI接口传输数据。 所述信号发送装 置也可以与 RRU集成在一起。
参见图 2, 为本发明提供的发送信号的方法第一实施例流程图, 所述方法 包括:
S201, 接收射频拉远单元 RRU发送的通用公共无线接口 CPRI信号。
在本发明第一实施例中,将由 BBU处理的传统上行链路中的去 CP( Cyclic Prefix,循环前缀)、 FFT、信道分离、 DMRS (Demodulation Reference Signal, 解调参考信号)信道估计、测量以及 PUSCH( Physical Uplink Shared Channel, 物理上行共享信道)多天线均衡等功能均前移至信号发送装置 C-box处理。具 体的, 信号发送装置与 RRU相连, 接收 RRU发送的 CPRI信号。
S202,对所述 CPRI信号进行信道分离处理, 获取分离处理后的信道信号。 在信号发送装置 C-box 接收到 RRU 发送的 CPRI 信号后, 对非 PRACH ( Physica 1 Access Channe 1 , 物理随机接入信道 )部分进行循环前缀 CP去除 操作, 通过快速傅里叶变换操作转换到频域。 然后, 将转换到频域的 CPRI信 号进行信道分离处理, 分离出的信道信号包括物理上行共享信道 PUSCH信号、 DMRS 信号、 SRS ( Sounding Reference Signal, 信道探测参考信号)信号、 PUCCH (Physical Uplink Control Signal, 物理上行控制信号)等。 其中, PRACH、 SRS、 PUCCH等信道信号的分离需要 BBU提前将这些信道在空口帧的时 频位置告知给信号发送装置 C-box。
S203, 对所述物理上行共享信道信号进行多天线均衡处理。
在分离出 PUSCH和 DMRS信号后, 信号发送装置 C-box在对 PUSCH信号进 行多天线均衡处理前, 首先进行 DMRS信道估计和测量。 信道估计和测量可以 用相同的模块,也可以是不同的模块。通过对所述解调参考信号进行信道估计 与测量, 以获取信道估计信息, 所述信道估计信息包括信道系数、 干扰和噪声 功率、信噪比、接收功率等信息,这些信息可以为 PUSCH多天线均衡单元所用 , 也可以发送给 BBU进行其他处理。进行多天线均衡处理的主要作用是补充信道 衰落。 具体地, PUSCH多天线均衡单元根据接收到的 PUSCH信号和 DMRS信道 估计和测量单元的输出, 利用一定的准则(如 固 SE, 最小均方差估计),完成 PUSCH 信号的检测以及信道均衡处理, 输出检测后的信号和信道均衡后的系 数, 这些输出发送给 BBU进行后续的解调和译码处理。 线性均衡算法以及非线 性均衡算法都可以适用于本发明实施例中, 本发明不限定具体的均衡算法, 本 领域技术人员在不付出创造性劳动下获取的其他实施方式均属于本发明的保 护范围。
S204 , 将处理后的物理上行共享信道信号发送至所述基带处理单元 BBU。 信道分离出的信道探测参考信号 SRS , 物理上行控制信号 PUCCH可以直接 发送给 BBU进行处理。物理上行共享信道信号 PUSCH经过多天线均衡后再发送 给 BBU进行处理。 这时, BBU主要对 PUSCH信号进行解调、 译码处理、 对 SRS 信号、 PUCCH信号进行处理。
在本发明第一实施例中, 在上行链路中, 对 CPRI信号进行了多天线均衡 处理后, 再发送至 BBU进行处理。 另一方面, 在经过多天线均衡处理后, 多根 天线上接收的 PUSCH信号的数据量只与流的数量有关,而流的数量一般小于等 于接收天线的数量,因此多天线接收的 PUSCH信号的数据量能得到压缩。因此, 釆用本发明第一实施例的方法, 不仅提高了数据的压缩率,还适用于多天线的 数据传输, 降低了系统开销。
与第一实施例不同的是, 本发明第二实施例中, 进一步将上行链路中由 BBU处理的解调功能前移至信号发送装置 C-box处理。 也就是说, 在第二实施 例中,进一步包括对多天线均衡处理后的物理上行共享信道信号进行解调处理 的步骤, 以获取解调处理后的物理上行共享信道信号, 并将解调后的信号发送 至 BBU处理。
参见图 3 , 为本发明提供的发送信号的方法第二实施例流程图。
5301 , 接收射频拉远单元 RRU发送的通用公共无线接口 CPRI信号。
5302 , 对 CPRI信号进行 CP去除处理。
5303 , 进行快速傅里叶变换。
S 304 ,对所述 CPRI信号进行信道分离处理, 获取分离处理后的信道信号。 分离出的信道信号可以包括 DMRS信号、 PUSCH信号、 SRS信号、 PUCCH信 号。
S 305 , 对分离出的 DMRS信号进行信道估计与测量处理, 获取信道估计信 息。 5306 , 利用信道估计信息,对所述物理上行共享信道信号进行多天线均衡 处理。
5307 , 对多天线均衡处理后的物理上行共享信道信号进行解调处理。
通过对 PUSCH信号进行解调处理, 使得数据量进一步减少。
S308 , 将信道估计信息、 PUSCH解调软比特、 SRS信号、 PUCCH信号发送 至 BBU处理。
这时, BBU主要对解调后的 PUSCH信号进行译码处理、 对 SRS信号 PUCCH 信号进行处理。
在本发明第二实施例中, 在上行链路中, 对 CPRI信号进行了多天线均衡 处理后, 进一步对 PUSCH信号进行解调处理, 然后将解调后的信号发送至 BBU 进行处理。 由于解调后的信号数据量进一步减少, 因此提高了数据的压缩率, 进一步降低了系统开销。
在本发明第三实施例中, 与第一实施例不同的是, 进一步包括对单流数据 进行压缩处理的步骤。 本发明第三实施例主要适用于 MIMO ( Mul t iple-Input Mul t iple-Out-put , 多输入多输出) 流数为 1的情况。
参见图 4 , 为本发明提供的发送信号的方法第三实施例流程图。
5401 , 接收射频拉远单元 RRU发送的通用公共无线接口 CPRI信号。
5402 , 对 CPRI信号进行 CP去除处理。
5403 , 进行快速傅里叶变换。
S404 ,对所述 CPRI信号进行信道分离处理, 获取分离处理后的信道信号。 分离出的信道信号可以包括 DMRS信号、 PUSCH信号、 SRS信号、 PUCCH信 号。
S405 , 对分离出的 DMRS信号进行信道估计与测量处理, 获取信道估计信 息。
S406 , 利用信道估计信息,对所述物理上行共享信道信号进行多天线均衡 处理。
S407 , 对多天线均衡处理后的物理上行共享信道信号进行单流压缩处理, 以获取压缩后的数据流。
具体的, 步骤 S407可以通过以下步骤实现: S407A , 根据待压缩的所述物理上行共享信道信号的信号向量以及基带处 理单元 BBU提前下发给所述信号发送装置的与所述物理上行共享信道信号对 应的调制方式、所述信道估计信息,获取与所述信号向量最接近的星座点向量, 所述最接近的星座点向量为与所述信号向量具有最小差向量模、与所述调制方 式对应的星座点向量。
具体的, 是根据待压缩的信号向量(I路 Q路 2个维度)和该信号向量对应 时频区块的调制方式星座图,搜索最接近的星座点, 用相应的 b i t数表达这个 星座点。 一般的, QPSK用 2b i t表达, 16QAM用 4b i t表达, 64QAM用 6b i t表 达。
S407B , 获取所述信号向量和所述星座点向量的差向量, 用所述星座点向 量和差向量的简化表达表示所述待压缩的所述物理上行共享信道信号。
具体的, 计算待压缩信号向量和上述最接近星座点向量的差向量, PUSCH 各个时频位置的信号经过上述计算后可以得到一个差值数据流。由于差向量的 幅度一般小于待压缩信号向量,因此能用更少的 b i t来表达,达到压缩的效果。
具体的,所述差值数据流的简化表达是指可以釆用如下的表达方式表达差 值数据流: 把差值数据流分成若干个组,每个组用一个定长的位宽指示字段加 上组中各个数据用前述的位宽指示来表达的差值。其中每个组包含的数据个数 可以是固定的也可以是动态的, 在组包含的数据个数动态的情况下, 则每个组 还需要有一个定长的指示字段表达这个组中包含多少个数据。
S408 , 将信道估计信息、 单流压缩后的 PUSCH信号、 SRS信号、 PUCCH信 号发送至 BBU处理。
这时, BBU需要先对压缩后的单流数据进行解压缩处理。 具体的, 是将获 取的差向量和步骤 S407A得到的对应时频位置的星座点向量相加,还原单流压 缩前的信号。在获取还原的数据后, BBU再对还原数据进行解调、译码处理等。
在本发明第三实施例中,对多天线均衡的数据,进一步通过单流压缩处理, 减少了数据量, 降低了系统开销。
在本发明第一实施例不同的是, 在本发明第四实施例中, 多天线均衡仍由 BBU进行处理,在信号发送装置 C-Box中增加了对物理上行共享信道信号 PUSCH 进行信号还原处理, 并进行差分压缩的步骤, 以消除信道的影响, 达到压缩数 据的目的。
参见图 5 , 为本发明提供的发送信号的方法第四实施例流程图。
5501 , 接收射频拉远单元 RRU发送的通用公共无线接口 CPRI信号。
在本发明第四实施例中,将由 BBU处理的传统上行链路中的去 CP ( Cyc 1 ic Pref ix,循环前缀)、 FFT、信道分离、 DMRS ( Demodula t ion Reference S igna l , 解调参考信号)信道估计、 测量均前移至信号发送装置 C-box处理。 并在信号 发送装置 C-box增加了对信号进行还原、 差分压缩处理的步骤。
5502 ,对所述 CPRI信号进行信道分离处理, 获取分离处理后的信道信号。
5503 , 对所述物理上行共享信道信号进行信号还原处理获得还原数据信 号, 根据获取的多个还原数据信号的相关性, 对所述还原数据进行压缩。
具体的, 步骤 S503可以通过以下步骤实现:
S503A, 获取信号还原系数。
具体的, 在本发明一个实施例中, 是将 DMRS信道估计处理前移至信号发 送装置 C-Box处理。 具体的, 是将信道分离处理得到的解调参考信号 DMRS进 行信道估计与测量, 以获取信道估计信息, 所述信道估计信息至少包括信道系 数、 噪声功率。 然后, 根据 DMRS信道估计 /测量单元的输出, 计算得到每个天 线每个时频位置的信号还原系数 w。
例如对于上行 1T2R的情况, 两个接收天线的信号还原系数 wl和 w2可以 通过这样的方式计算:
' h h. + σ
(i=l, 2) 其中, h和 2分别为 DMRS信道估计 /测量单元输出的天线 1和 2的在某一 时频位置的信道系数和噪声功率, ^代表 h的共轭。 具体的, 信号还原系数的 计算方式根据算法的不同以及 MIM0模式的不同而不同。
在本发明另一实施例中,丽 RS信道估计单元仍放在 BBU,信号发送装置直 接将信道分离后获取的丽 RS信号发送至 BBU进行信道估计与测量处理。而 BBU 在信号发送装置 C-波形在处理上行子帧之前, 将历史记录的或者预测的用户 信道估计 /测量结果(即信道估计信息)发送给信号发送装置, 信号发送装置 根据信道估计信息中的信道系数、噪声功率信息进行还原系数的计算。 另外一 种可能的实现方式是, BBU直接将信号还原系数发送给信号发送装置, 以使得 信号发送装置获取还原数据信号。 而 BBU在后续进行解压缩处理时, 也是利用 相同的信号还原系数进行解压缩处理。
S503B, 根据所述信号还原系数, 获取多个还原数据信号。
将每个天线在信道分离后的 PUSCH频域接收数据 r分别乘上各自的对应时 频位置上的信号还原系数 w, 得到每个天线在每个时频位置的信号还原数据, PUSCH的多个时频位置的还原数据形成数据流。
S503C,将多个还原数据信号中的一个或多个信号作为参考数据流,分别获 取其他信号相对于所述参考数据流的各差值数据流,用所述各差值数据流的简 化表达表示除参考数据流之外的各还原数据信号。
具体的,是将这多个天线的还原数据流利用它们之间的相关性釆用差分方 法进行压缩, 即传输一个或多个参考信号流, 以及各个天线相对于这些参考流 的差值流, 最后将压缩后的各个天线的数据流传输给 BBU。 举例进行说明, 对于上行 1T2R (—只发射天线、 两只接收天线), 可以以其中天线 1的信 号还原数据流为参考,天线 2信号还原数据流则传输其相对于天线 1参考数据 流的差值数据流(可以 I路 Q路分别表达),由于差值的幅度一般比天线 1信号 还原数据的幅度来得小, 可以用较少的比特数来表达差值, 因此可以达到压缩 的效果。
具体的,所述差值数据流的简化表达是指可以釆用如下的表达方式表达差 值数据流: 把差值数据流分成若干个组,每个组用一个定长的位宽指示字段加 上组中各个数据用前述的位宽指示来表达的差值。其中每个组包含的数据个数 可以是固定的也可以是动态的, 在组包含的数据个数动态的情况下, 则每个组 还需要有一个定长的指示字段表达这个组中包含多少个数据。
S504 ,将差分压缩处理后的物理上行共享信道信号发送至所述基带处理单 元 BBU进行处理。
具体的 ,是将所述参考数据流以及所述各差值数据流的简化表达发送至所 述基带处理单元 BBU进行处理。 具体的,是传输参考数据流的一个完整波形以 及其他信号相对于参考数据流的差值数据流。 当 BBU接收到所述数据流后,对 其进行解压缩处理,还原每个天线在信道分离后的频域接收数据流, 然后进行 后续的多天线均衡。 解调和解码操作。 具体的, BBU是根据信号发送装置发送 的参考数据流和各个天线相对于参考数据流的差值数据流,得到每个天线的还 原数据流,然后再分别除以各个天线在 PUSCH各个时频位置的信号还原系数 W, 得到每个天线在信道分离后的 PUSCH各个视频位置的频域接收数据 r。其中 BBU 对信号还原系数 w的计算可以根据信道估计 /测量的结果以及与信号发送装置 计算 w同样的方法进行处理。
在本发明第四实施例中, 消除了信道对信号的影响,对信号进行了还原操 作, 并利用了多天线数据的相关性,对传送至 BBU的数据信号进行了差分压缩 处理, 用差值数据流表达其相对于参考数据流的差值, 可以用较少的比特数表 达信号数据, 因此使得 RRU与 BBU之间传输的数据量得到了压缩, 并且这种方 法很好地解决了多天线的数据传输数据量大的问题, 降低了系统开销。
在本发明第五实施例中, 与第四实施例不同的是, 进一步包括对单流数据 进行压缩处理的步骤。 具体的, 是对参考数据流进行进一步压缩处理, 以降低 数据流, 降低带宽占用。
参见图 6 , 为本发明实施例提供的发送信号的方法第五实施例流程图。
5601 , 接收射频拉远单元 RRU发送的通用公共无线接口 CPRI信号。
在本发明第五实施例中,将由 BBU处理的传统上行链路中的去 CP ( Cyc l ic
Pref ix,循环前缀)、 FFT、信道分离、 DMRS ( Demodula t ion Reference S igna l , 解调参考信号)信道估计、 测量均前移至信号发送装置 C-box处理。 并在信号 发送装置 C-box增加了对信号进行还原、 差分压缩处理的步骤。
5602 ,对所述 CPRI信号进行信道分离处理, 获取分离处理后的信道信号。
5603 ,对所述物理上行共享信道信号进行信号还原处理,根据获取的多个 还原数据信号的相关性, 利用差分方法对所述还原数据进行压缩。
具体的, 步骤 S603可以通过以下步骤实现:
S603A, 获取信号还原系数。
S603B, 根据所述信号还原系数, 获取多个还原数据信号。
将每个天线在信道分离后的 PUSCH频域接收数据 r分别乘上各自的对应时 频位置上的信号还原系数 w, 得到每个天线在每个时频位置的信号还原数据, PUSCH的多个时频位置的还原数据形成数据流。
S603C,将多个还原数据信号中的一个或多个信号作为参考数据流,分别获 取其他信号相对于所述参考数据流的各差值数据流,用所述各差值数据流表示 除参考数据流之外的各还原数据信号。
S604 ,对差分压缩获取的参考数据流进行单流压缩处理, 以获取压缩后的 参考数据流
具体的, 步骤 S604可以通过以下步骤实现:
S604A , 根据待压缩的参考数据流的信号向量以及所述信号向量对应的调 制方式以及信道估计信息, 获取与所述信号向量具有最小差向量模、与所述调 制方式对应的的星座点向量。其中, 所述调制方式以及信道估计信息是由所述 基带处理单元 BBU提前发送给所述信号发送装置的。
S604B , 获取所述信号向量和所述星座点向量的差向量, 用所述星座点向 量和差向量的简化表达表示所述参考数据流。
具体的, 获取差向量的方式与第三实施例相同。
S605 ,将差分压缩处理后的物理上行共享信道信号发送至所述基带处理单 元 BBU进行处理。
具体的,所述差分压缩处理后的物理上行共享信道信号具体是指单流压缩 后的参考数据流以及所述各差值数据流的简化表达,将其发送至所述基带处理 单元 BBU进行处理。 这时, BBU首先要进行单流解压缩处理, 获取解压缩后的 参考数据流。 然后根据参考数据流和各个天线相对于参考数据流的差值数据 流,得到每个天线的还原数据流, 然后再分别除以各个天线在 PUSCH各个时频 位置的信号还原系数 W, 得到每个天线在信道分离后的 PUSCH各个视频位置的 频域接收数据 r。 其中 BBU对信号还原系数 w的计算可以根据信道估计 /测量 的结果以及与信号发送装置计算 w同样的方法进行处理。
在本发明第五实施例中, 进一步对参考数据流进行了压缩, 用差向量的方 式表示参考数据流, 可以用较少的比特数表达信号数据, 因此使得 RRU与 BBU 之间传输的数据量进一步得到了压缩,并且这种方法很好地解决了多天线的数 据传输数据量大的问题, 降低了系统开销。
在本发明另一实施例中, 结合了第三实施例与第五实施例的方式,在信号 发送装置中既包括多天线均衡单元、单流压缩单元也包括差分压缩单元。具体 的, 在信道分离处理后可以选择进行多天线均衡处理、 单流压缩处理后, 将处 理后的数据发送至 BBU, 以使得 BBU可以对接收的数据进行单流解压缩处理以 及解调、 译码处理。 类似的, 也可以选择在信道分离处理后进行多天线差分压 缩处理、 单流压缩处理, 将处理后的数据发送至 BBU , 以使得 BBU可以对接收 的数据进行单流解压缩处理以及多天线均衡、 解调、 译码处理。
参见图 7 , 为本发明一种信号发送装置第一实施例示意图。
一种信号发送装置,所述装置应用于具有射频拉远单元 RRU和基带处理单 元 BBU的系统中, 所述装置位于所述射频拉远单元 RRU侧, 所述装置包括: 第一接收单元 701 , 用于接收射频拉远单元 RRU发送的通用公共无线接口
CPRI信号。
第一信道分离单元 702 , 用于对所述 CPRI信号进行信道分离处理, 获取 分离处理后的信道信号,所述分离处理后的信道信号至少包括物理上行共享信 道信号;
第一均衡处理单元 703 , 用于对所述物理上行共享信道信号进行多天线均 衡处理;
第一发送单元 704 , 用于将处理后的物理上行共享信道信号发送至所述基 带处理单元 BBU。
优选地, 所述装置还包括:
第一信道估计单元, 用于接收信道分离单元发送的解调参考信号,对所述 解调参考信号进行信道估计与测量, 以获取信道估计信息, 并将所述信道估计 信息发送至所述均衡处理单元; 其中, 所述信道估计信息至少包括信道系数、 噪声功率、 信噪比、 接收功率信息中的一种或多种。
优选地, 所述装置还包括:
第一解调单元, 用于接收均衡处理单元的信号,对多天线均衡处理后的物 理上行共享信道信号进行解调处理, 获取解调处理后的物理上行共享信道信 号, 将所述解调处理后的物理上行共享信道信号发送至所述基带处理单元。
优选地, 所述装置还包括:
第一单流压缩单元, 用于接收均衡处理单元的信号,对多天线均衡处理后 的物理上行共享信道信号进行单流压缩处理, 以获取压缩后的数据流。
参见图 8 , 为本发明一种信号发送装置第二实施例示意图。
所述装置应用于具有射频拉远单元 RRU和基带处理单元 BBU的系统中 ,所 述信号发送装置位于所述射频拉远单元 RRU侧, 所述装置包括:
第二接收单元 801 , 用于接收射频拉远单元 RRU发送的通用公共无线接口
CPRI信号。
第二信道分离单元 802 , 用于对所述 CPRI信号进行信道分离处理, 获取 分离处理后的信道信号, 所述信道信号至少包括物理上行共享信道信号。
压缩单元 803 , 用于对所述物理上行共享信道信号进行信号还原处理获得 还原数据信号,根据获取的多个还原数据信号的相关性,对所述还原数据进行 压缩。
第二发送单元 804 , 用于将差分压缩处理后的物理上行共享信道信号发送 至所述基带处理单元 BBU进行处理,以使得所述基带处理单元 BBU从所述物理 上行共享信道信号解码获得解码后的信号。
优选地, 所述压缩单元包括:
还原系数获取单元, 用于获取信号还原系数;
还原数据获取单元,用于根据所述信号还原系数,获取多个还原数据信号; 差值数据流获取单元,用于将多个还原数据信号中的一个或多个信号作为 参考数据流, 分别获取其他信号与所述参考数据流的各差值数据流, 用所述各 差值数据流的简化表达表示除参考数据流之外的各还原数据信号。
优选地, 所述装置还包括:
第二单流压缩单元, 用于接收差分压缩单元的参考数据流,对所述参考数 据流进行单流压缩处理。
本发明实施例还公开了一种信号发送系统。具体请参见图 7所示, 所述系 统包括射频拉远单元 RRU、 基带处理单元 BBU和信号发送装置, 所述信号发送 装置位于所述射频拉远单元 RRU侧, 与所述射频拉远单元 RRU连接, 其中所述 信号发送装置用于接收射频拉远单元 RRU1发送的通用公共无线接口 CPRI信 号; 对所述 CPRI信号进行信道分离处理, 获取分离处理后的信道信号, 所述 分离处理后的信道信号至少包括物理上行共享信道信号;对所述物理上行共享 信道信号进行多天线均衡处理;将处理后的物理上行共享信道信号发送至所述 基带处理单元 BBU。 所述基带处理单元 BBU用于接收所述信号发送装置发送的 信号, 对所述信号进行处理。
本发明实施例还公开了一种信号发送系统。 参见图 8 , 所述系统包括射频 拉远单元 RRU、 基带处理单元 BBU和信号发送装置, 所述信号发送装置位于所 述射频拉远单元 RRU侧, 与所述射频拉远单元连接, 其中所述信号发送装置用 于接收射频拉远单元 RRU1001 发送的通用公共无线接口 CPRI 信号; 对所述 CPRI 信号进行信道分离处理, 获取分离处理后的信道信号, 所述信道信号至 少包括物理上行共享信道信号;对所述物理上行共享信道信号进行信号还原处 理,根据获取的多个还原数据信号的相关性, 利用差分方法对所述还原数据进 行压缩;将差分压缩处理后的物理上行共享信道信号发送至所述基带处理单元
BBU进行处理;所述基带处理单元 BBU用于接收所述信号发送装置发送的信号, 从所述物理上行共享信道信号进行解码获得解码后的信号。
需要说明的是,在本文中, 诸如第一和第二等之类的关系术语仅仅用来将 一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些 实体或操作之间存在任何这种实际的关系或者顺序。 而且, 术语"包括"、 "包 含,,或者其任何其他变体意在涵盖非排他性的包含, 从而使得包括一系列要素 的过程、 方法、 物品或者设备不仅包括那些要素, 而且还包括没有明确列出的 其他要素, 或者是还包括为这种过程、 方法、 物品或者设备所固有的要素。 在 没有更多限制的情况下, 由语句 "包括一个 ... ... "限定的要素, 并不排除在包括 所述要素的过程、 方法、 物品或者设备中还存在另外的相同要素。
本发明可以在由计算机执行的计算机可执行指令的一般上下文中描述,例 如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的 例程、 程序、 对象、 组件、 数据结构等等。 也可以在分布式计算环境中实践本 发明,在这些分布式计算环境中, 由通过通信网络而被连接的远程处理设备来 执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地 和远程计算机存储介质中。

Claims

权 利 要 求
1、 一种发送信号的方法, 其特征在于, 所述方法应用于具有射频拉远单 元 RRU和基带处理单元 BBU的系统, 所述方法包括:
接收射频拉远单元 RRU发送的通用公共无线接口 CPRI信号;
对所述 CPRI信号进行信道分离处理, 获取分离处理后的信道信号, 所述 分离处理后的信道信号至少包括物理上行共享信道信号;
对所述物理上行共享信道信号进行多天线均衡处理;
将处理后的物理上行共享信道信号发送至所述基带处理单元 BBU。
2、 根据权利要求 1所述的方法, 其特征在于, 所述分离处理后的信道信 号还包括解调参考信号, 所述方法还包括:
对所述解调参考信号进行信道估计与测量, 以获取信道估计信息, 所述信 道估计信息至少包括信道系数、 噪声功率、 信噪比、接收功率信息中的一种或 多种;
则所述对所述物理上行共享信道信号进行多天线均衡处理为:
根据所述信道估计信息,对所述物理上行共享信道信号进行信号检测以及 信道均衡处理, 以获取检测信号以及均衡系数。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述方法还包括: 对多天线均衡处理后的物理上行共享信道信号进行单流压缩处理,以获取 压缩后的数据流, 将所述压缩后的数据流发送至所述基带处理单元 BBU。
4、 根据权利要求 3所述的方法, 其特征在于, 所述对多天线均衡处理后 的物理上行共享信道信号进行单流压缩处理包括:
根据待压缩的所述物理上行共享信道信号的信号向量以及与所述物理上 行共享信道信号对应的调制方式以及信道估计信息,获取与所述信号向量具有 最小差向量模、 与所述调制方式对应的星座点向量; 其中, 所述调制方式的信 息由所述基带处理单元 BBU发送的;
获取所述信号向量和所述星座点向量的差向量,用所述星座点向量和所述 差向量的简化表达表示所述待压缩的所述物理上行共享信道信号。
5、 一种发送信号的方法, 其特征在于, 所述方法应用于具有射频拉远单 元 RRU和基带处理单元 BBU的系统所述方法包括: 接收射频拉远单元 RRU发送的通用公共无线接口 CPRI信号;
对所述 CPRI信号进行信道分离处理, 获取分离处理后的信道信号, 所述 信道信号至少包括物理上行共享信道信号;
对所述物理上行共享信道信号进行信号还原获得还原数据信号 ,根据获取 的多个所述还原数据信号的相关性, 对所述还原数据信号进行压缩;
将压缩处理后的物理上行共享信道信号发送至所述基带处理单元 BBU 进 行处理,以使得所述基带处理单元 BBU从所述物理上行共享信道信号进行解码 获得解码后的信号。
6、 根据权利要求 5所述的方法, 其特征在于, 对所述物理上行共享信道 信号进行信号还原处理获得还原数据信号,根据获取的多个所述还原数据信号 的相关性, 对所述还原数据信号进行压缩包括:
获取信号还原系数;
根据所述信号还原系数, 获取多个还原数据信号;
将多个还原数据信号中的一个或多个信号作为参考数据流,分别获取其他 信号相对于所述参考数据流的各差值数据流,用所述各差值数据流的简化表达 表示除参考数据流之外的各还原数据信号。
7、 根据权利要求 6所述的方法, 其特征在于, 所述将压缩处理后的物理 上行共享信道信号发送至所述基带处理单元 BBU进行处理包括:
将所述参考数据流以及所述各差值数据流的简化表达发送至所述基带处 理单元 BBU进行处理。
8、 根据权利要求 6所述的方法, 其特征在于, 所述分离处理后的信道信 号还包括解调参考信号, 所述获取信号还原系数包括:
对所述解调参考信号进行信道估计与测量, 以获取信道估计信息, 所述信 道估计信息至少包括信道系数、 噪声功率;
利用所述信道系数、 噪声功率获取所述信号还原系数。
9、 根据权利要求 6所述的方法, 其特征在于, 所述获取信号还原系数为: 接收基带处理单元发送的历史或预测的信道估计信息,所述信道估计信息 至少包括信道系数、 噪声功率, 利用所述信道系数、 噪声功率获取所述信号还 原系数; 或
接收基带处理单元发送的信号还原系数。
10、 一种信号发送装置, 其特征在于, 所述装置应用于具有射频拉远单元 RRU和基带处理单元 BBU的系统中, 所述装置位于所述射频拉远单元 RRU侧, 所述装置包括:
第一接收单元,用于接收射频拉远单元 RRU发送的通用公共无线接口 CPRI 信号;
第一信道分离单元, 用于对所述 CPRI信号进行信道分离处理, 获取分离 处理后的信道信号,所述分离处理后的信道信号至少包括物理上行共享信道信 号;
第一均衡处理单元,用于对所述物理上行共享信道信号进行多天线均衡处 理;
第一发送单元,用于将处理后的物理上行共享信道信号发送至所述基带处 理单元 BBU。
11、 根据权利要求 10所述的装置, 其特征在于, 所述装置还包括: 第一信道估计单元, 用于接收信道分离单元发送的解调参考信号,对所述 解调参考信号进行信道估计与测量, 以获取信道估计信息, 并将所述信道估计 信息发送至所述均衡处理单元; 其中, 所述信道估计信息至少包括信道系数、 噪声功率、 信噪比、 接收功率信息中的一种或多种。
12、 根据权利要求 10所述的装置, 其特征在于, 所述装置还包括: 第一单流压缩单元, 用于接收均衡处理单元的信号,对多天线均衡处理后 的物理上行共享信道信号进行单流压缩处理, 以获取压缩后的数据流,将所述 压缩后的数据流发送至所述基带处理单元 BBU。
1 3、 一种信号发送装置, 其特征在于, 所述装置应用于具有射频拉远单元 RRU和基带处理单元 BBU的系统中, 所述装置位于所述射频拉远单元 RRU侧, 所述装置包括:
第二接收单元,用于接收射频拉远单元 RRU发送的通用公共无线接口 CPRI 信号;
第二信道分离单元, 用于对所述 CPRI信号进行信道分离处理, 获取分离 处理后的信道信号, 所述信道信号至少包括物理上行共享信道信号; 压缩单元,用于对所述物理上行共享信道信号进行信号还原处理获得还原 数据信号,根据获取的多个所述还原数据信号的相关性,对所述还原数据信号 进行压缩;
第二发送单元,用于将压缩处理后的物理上行共享信道信号发送至所述基 带处理单元 BBU进行处理,以使得所述基带处理单元 BBU从所述物理上行共享 信道信号进行解码获得解码后的信号。
14、 根据权利要求 13所述的装置, 其特征在于, 所述压缩单元包括: 还原系数获取单元, 用于获取信号还原系数;
还原数据获取单元,用于根据所述信号还原系数,获取多个还原数据信号; 差值数据流获取单元,用于将多个还原数据信号中的一个或多个信号作为 参考数据流, 分别获取其他信号与所述参考数据流的各差值数据流, 用所述各 差值数据流的简化表达表示除参考数据流之外的各还原数据信号。
15、 一种信号发送系统, 其特征在于, 所述系统包括射频拉远单元 RRU、 基带处理单元 BBU和信号发送装置,所述信号发送装置位于所述射频拉远单元
RRU侧, 与所述射频拉远单元 RRU连接, 其中
所述信号发送装置用于接收射频拉远单元 RRU发送的通用公共无线接口 CPRI信号;对所述 CPRI信号进行信道分离处理,获取分离处理后的信道信号, 所述分离处理后的信道信号至少包括物理上行共享信道信号;对所述物理上行 共享信道信号进行多天线均衡处理;将处理后的物理上行共享信道信号发送至 所述基带处理单元 BBU;
所述基带处理单元 BBU用于接收所述信号发送装置发送的信号,对所述信 号进行处理。
16、 一种信号发送系统, 其特征在于, 所述系统包括射频拉远单元 RRU、 基带处理单元 BBU和信号发送装置,所述信号发送装置位于所述射频拉远单元
RRU侧, 与所述射频拉远单元连接, 其中
所述信号发送装置用于接收射频拉远单元 RRU发送的通用公共无线接口 CPRI信号;对所述 CPRI信号进行信道分离处理,获取分离处理后的信道信号, 所述信道信号至少包括物理上行共享信道信号;对所述物理上行共享信道信号 进行信号还原处理获得还原数据信号, 根据获取的多个还原数据信号的相关 性,对所述还原数据信号进行压缩; 将压缩处理后的物理上行共享信道信号发 送至所述基带处理单元 BBU进行处理;
所述基带处理单元 BBU用于接收所述信号发送装置发送的信号, 从所述 物理上行共享信道信号进行解码获得解码后的信号。
PCT/CN2013/000194 2012-07-11 2013-02-26 一种发送信号的方法、装置和系统 WO2014008751A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210239064.8A CN103546402B (zh) 2012-07-11 2012-07-11 一种发送信号的方法、装置和系统
CN201210239064.8 2012-07-11

Publications (1)

Publication Number Publication Date
WO2014008751A1 true WO2014008751A1 (zh) 2014-01-16

Family

ID=49915359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000194 WO2014008751A1 (zh) 2012-07-11 2013-02-26 一种发送信号的方法、装置和系统

Country Status (2)

Country Link
CN (1) CN103546402B (zh)
WO (1) WO2014008751A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106506411A (zh) * 2015-09-07 2017-03-15 普天信息技术有限公司 上行数据传输方法及基站
WO2018121876A1 (en) * 2016-12-30 2018-07-05 Telefonaktiebolaget Lm Ericsson (Publ) Fronthaul transmission

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3143830A4 (en) 2014-05-12 2018-01-03 Intel Corporation C-ran front-end preprocessing and signaling unit
EP3370351B1 (en) 2015-12-17 2020-03-25 Huawei Technologies Co., Ltd. Sounding reference symbol transmission method and radio remote unit
EP3479505B1 (en) * 2016-06-30 2020-02-05 Telefonaktiebolaget LM Ericsson (publ) Reducing bit rate requirement over an uplink fronthaul link
CN106487670A (zh) * 2016-10-14 2017-03-08 深圳三星通信技术研究有限公司 一种cpri网关设备及基站前传网络系统
CN109644164B (zh) * 2016-12-05 2020-08-14 华为技术有限公司 一种数据传输方法、装置及系统
CN107872461B (zh) * 2017-11-20 2020-08-25 上海交通大学 一种大规模天线阵列cpri压缩方法
CN110611628B (zh) * 2018-06-15 2023-03-24 上海诺基亚贝尔股份有限公司 信号处理方法、网络设备及计算机可读存储介质
CN110719238B (zh) 2018-07-13 2021-07-09 华为技术有限公司 数据传输控制方法、装置和接入网设备
CN111093293A (zh) * 2018-10-23 2020-05-01 大唐移动通信设备有限公司 一种天线信号的处理方法及装置
CN111385013B (zh) 2018-12-29 2021-12-28 华为技术有限公司 广播数据的方法和装置
CN116055278A (zh) * 2022-12-30 2023-05-02 中国科学院计算技术研究所 一种基于可配置非标准浮点数据的5g通信内接收机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101102168A (zh) * 2006-07-07 2008-01-09 上海贝尔阿尔卡特股份有限公司 通过压缩带宽来在有线传输介质上传输信号的方法及装置
CN102104568A (zh) * 2009-12-21 2011-06-22 上海贝尔股份有限公司 在mimo系统中对数据进行均衡的方法和移动台
CN102291855A (zh) * 2010-06-18 2011-12-21 普天信息技术研究院有限公司 一种降低Ir接口带宽的方法及分布式基站
CN102546504A (zh) * 2010-12-21 2012-07-04 华为技术有限公司 频域传输方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2063594A1 (en) * 2007-11-23 2009-05-27 Sequans Communications Receiver with adjustable decoding speed and corresponding method
CN102131278B (zh) * 2010-01-13 2012-04-18 普天信息技术研究院有限公司 一种上行功率压缩的方法和用户设备
CN102299735B (zh) * 2010-06-25 2014-03-12 普天信息技术研究院有限公司 一种降低Ir接口带宽的方法及分布式基站
CN102437899B (zh) * 2011-12-19 2015-03-11 电信科学技术研究院 一种确定上行cqi值的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101102168A (zh) * 2006-07-07 2008-01-09 上海贝尔阿尔卡特股份有限公司 通过压缩带宽来在有线传输介质上传输信号的方法及装置
CN102104568A (zh) * 2009-12-21 2011-06-22 上海贝尔股份有限公司 在mimo系统中对数据进行均衡的方法和移动台
CN102291855A (zh) * 2010-06-18 2011-12-21 普天信息技术研究院有限公司 一种降低Ir接口带宽的方法及分布式基站
CN102546504A (zh) * 2010-12-21 2012-07-04 华为技术有限公司 频域传输方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106506411A (zh) * 2015-09-07 2017-03-15 普天信息技术有限公司 上行数据传输方法及基站
WO2018121876A1 (en) * 2016-12-30 2018-07-05 Telefonaktiebolaget Lm Ericsson (Publ) Fronthaul transmission

Also Published As

Publication number Publication date
CN103546402A (zh) 2014-01-29
CN103546402B (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
WO2014008751A1 (zh) 一种发送信号的方法、装置和系统
EP2590375B1 (en) Uplink baseband signal compression method, decompression method, device, and system
US8989088B2 (en) OFDM signal processing in a base transceiver system
US9059778B2 (en) Frequency domain compression in a base transceiver system
KR101507676B1 (ko) 무선 프레임 송신 방법 및 장치
US20110200029A1 (en) Wireless communication clustering method and system for coordinated multi-point transmission and reception
WO2012026779A2 (en) Method and apparatus for transmitting control information in wireless local area network using multi-channel
CN102291855A (zh) 一种降低Ir接口带宽的方法及分布式基站
US11190383B2 (en) Reducing peak-to-average power ratio (PAPR) using peak suppression information messages
WO2013084058A1 (en) Method for compressing/decompressing multi -carrier modulation signal and corresponding compressor/decompressor
WO2014006499A1 (en) Method and apparatus of compressing a multi-carrier modulation signal in frequency domain
WO2018132428A1 (en) Signaling of training field length and guard interval duration
WO2015119009A1 (ja) 基地局装置、無線通信システム、および通信方法
CN103428149A (zh) 一种lte基站系统的上行接收机及其数据处理方法
WO2019190584A1 (en) Rate adaptation in wireless local area networks (wlans) using multi parameters rate tables
WO2017114053A1 (zh) 一种信号处理方法及装置
US9496998B2 (en) Method, apparatus and system for uplink data transmission
WO2014094196A1 (zh) 一种无线通信系统的数据压缩处理方法及相关装置
US20150341134A1 (en) Signal processing apparatus and method
CN108541366B (zh) 用于执行发送和接收处理的装置和方法
WO2022236566A1 (en) Cmr and imr configuration enhancement for multi-trp csi-rs reporting
WO2013051867A2 (en) Apparatus and method for channel quality feedback with a k-best detector in a wireless network
US9485688B1 (en) Method and apparatus for controlling error and identifying bursts in a data compression system
US20140334285A1 (en) Base station apparatus for decreasing amount of transmission data with cloud radio access network
Nahum et al. Functional Split and Frequency-Domain Processing for Fronthaul Traffic Reduction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817372

Country of ref document: EP

Kind code of ref document: A1