WO2014007348A1 - Modified fluorine-containing copolymer, fluorine resin molded article, and method for manufacturing fluorine resin molded article - Google Patents

Modified fluorine-containing copolymer, fluorine resin molded article, and method for manufacturing fluorine resin molded article Download PDF

Info

Publication number
WO2014007348A1
WO2014007348A1 PCT/JP2013/068420 JP2013068420W WO2014007348A1 WO 2014007348 A1 WO2014007348 A1 WO 2014007348A1 JP 2013068420 W JP2013068420 W JP 2013068420W WO 2014007348 A1 WO2014007348 A1 WO 2014007348A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
unit
molded article
perfluoro
vinyl ether
Prior art date
Application number
PCT/JP2013/068420
Other languages
French (fr)
Japanese (ja)
Inventor
恭平 澤木
英樹 河野
今村 均
青山 高久
助川 勝通
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2014007348A1 publication Critical patent/WO2014007348A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/126Halogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms

Definitions

  • the present invention relates to a modified fluorine-containing copolymer, a fluororesin molded article, and a method for producing a fluororesin molded article.
  • Fluorine-containing copolymers are excellent in heat resistance, chemical resistance, weather resistance, contamination resistance, and the like, and are used in various fields such as semiconductors, automobiles, architecture, electrical / electronics, chemical plants, and pharmaceuticals.
  • Various methods for further improving various properties such as heat resistance, mechanical properties and radiation resistance of such a fluorinated copolymer have been studied.
  • Patent Documents 1 and 2 As one method for modifying a fluorinated copolymer, it is known to irradiate with radiation.
  • a modification method generally, a method in which a fluorine-containing copolymer is heated to a melting point or higher and irradiated with radiation is known (Patent Documents 1 and 2).
  • Patent Documents 1 and 2 After molding the fluorinated copolymer, if the resulting molded product is heated to a temperature higher than the melting point of the fluorinated copolymer and irradiated with radiation, the shape of the molded product may change. It was. In addition, there has been a problem that the deterioration of the fluororesin due to the irradiation of radiation becomes large and the desired mechanical properties cannot be obtained sufficiently.
  • Patent Literature 3 ionizing radiation with a high dose rate of 100 kGy / sec or more is irradiated from a particle accelerator in a range of irradiation doses of 200 kGy to 100 MGy without irradiation in advance.
  • a method for producing a modified fluororesin by crosslinking the resin and improving heat resistance and chemical resistance in a simple and short time is disclosed.
  • Patent Document 4 discloses that a fluororesin heated to 0 to 150 ° C. or from 0 ° C. to a crystal dispersion temperature is irradiated with ionizing radiation at an irradiation amount of 5 Gy to 500 kGy, and the irradiated fluororesin is irradiated at a predetermined temperature. It is disclosed that the heat resistance deterioration characteristic and the compression strain resistance are improved by holding for a predetermined time.
  • Patent Document 5 tetrafluoroethylene / hexafluoropropylene copolymer fine powder is irradiated with ionizing radiation of 1 kGy to 1 MGy in an atmosphere having an oxygen concentration of 10 torr or less in a temperature range of 80 ° C. to 280 ° C.
  • ionizing radiation 1 kGy to 1 MGy
  • an atmosphere having an oxygen concentration of 10 torr or less in a temperature range of 80 ° C. to 280 ° C a crosslinked FEP fine powder that realizes a molded article having wear resistance is disclosed.
  • Patent Document 6 radiation is irradiated to tetrafluoroethylene-hexafluoropropylene copolymer resin (FEP) heated to 80 to 280 ° C. below the melting point under the conditions of an oxygen concentration of 13 kPa or less and an absorbed dose of 1 kGy to 10 MGy.
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer resin
  • a coating material is disclosed in which a coating film excellent in wear resistance and smoothness can be obtained by mixing the modified fluororesin obtained in this manner with a coating resin.
  • Patent Document 7 a fluororesin is coated on a metal substrate that is difficult to adhere to a fluororesin, and cross-linked by irradiation with ionizing radiation at 200 ° C. to 400 ° C., and the fluororesin is peeled off from the substrate.
  • a method for obtaining a modified fluororesin molded product by separation or the like is disclosed.
  • Patent Document 8 after forming a fluororesin layer on a substrate, the fluororesin layer is heated to a temperature in a range up to 150 ° C. higher than the melting point of the fluororesin, fired, and fired uncrosslinked
  • the temperature of the fluororesin layer is set to a temperature in a range from a temperature 60 ° C. lower than the melting point (Tm) of the fluororesin to a temperature lower than the melting point by 1 ° C.
  • Tm melting point
  • a method for producing a composite material having a cross-linked fluororesin layer having excellent adhesion to a substrate is disclosed.
  • Patent Document 9 discloses a modified fluororesin coating material in which a base material having thermal stability at a temperature equal to or higher than the melting point of a fluororesin is coated with a cross-linked fluororesin film, and the crosslinkage of the fluororesin is 250 to It is disclosed to be performed with ionizing radiation at a temperature in the range of 400 ° C.
  • a material having excellent moldability and good fluidity is required.
  • a fluorine-containing copolymer having excellent fluidity has a relatively low molecular weight, and therefore has poor crack resistance.
  • a material having a high molecular weight is used, and compression molding is performed without performing extrusion molding or injection molding, followed by secondary processing to obtain a desired molded body. It was common.
  • Such a conventional method has a problem in that the productivity is low and the cost of the final product is high.
  • An object of this invention is to provide the manufacturing method of the modified fluorine-containing copolymer excellent in crack resistance, a fluororesin molded product, and a fluororesin molded product in view of the said present condition.
  • the present inventors As a result of studying such a requirement, the present inventors, as a result of irradiating a specific fluorine-containing copolymer with radiation at a specific range of irradiation temperature, a modified fluorine-containing copolymer excellent in crack resistance and As a result, the present invention was completed.
  • the present invention provides a copolymer containing a tetrafluoroethylene unit, a hexafluoropropylene unit, and a perfluoro (alkyl vinyl ether) unit at an irradiation temperature not higher than the melting point of the copolymer and not lower than the glass transition temperature.
  • a modified fluorine-containing copolymer obtained by irradiating with radiation.
  • the present invention is also a fluororesin molded product comprising the modified fluorine-containing copolymer.
  • the present invention also includes a step of molding a copolymer comprising a tetrafluoroethylene unit, a hexafluoropropylene unit, and a perfluoro (alkyl vinyl ether) unit, and the molded copolymer is converted into the copolymer. It is also a fluororesin molded product obtained by a method for producing a molded product having a step of irradiating radiation at an irradiation temperature not higher than the melting point and not lower than the glass transition temperature.
  • the copolymer containing the tetrafluoroethylene unit, the hexafluoropropylene unit, and the perfluoro (alkyl vinyl ether) unit preferably has a hexafluoropropylene unit of 25% by mass or less based on the total monomer units.
  • the perfluoro (alkyl vinyl ether) unit is preferably 25% by mass or less of the total monomer units.
  • the copolymer containing the tetrafluoroethylene unit, hexafluoropropylene unit, and perfluoro (alkyl vinyl ether) unit preferably has a melting point of 200 to 300 ° C.
  • the perfluoro (alkyl vinyl ether) is preferably perfluoro (propyl vinyl ether).
  • the present invention further includes a step of molding a copolymer containing a tetrafluoroethylene unit, a hexafluoropropylene unit, and a perfluoro (alkyl vinyl ether) unit, and the molded copolymer is converted into the copolymer. It is also a method for producing a fluororesin molded product, comprising a step of irradiating radiation at an irradiation temperature not higher than the melting point and not lower than the glass transition temperature.
  • the radiation dose is preferably 50 kGy to 300 kGy.
  • the present invention relates to a copolymer containing a tetrafluoroethylene unit, a hexafluoropropylene unit, and a perfluoro (alkyl vinyl ether) unit at a radiation temperature not higher than the melting point of the copolymer and not lower than the glass transition temperature. It is a modified fluorine-containing copolymer obtained by irradiating. For this reason, the modified fluorine-containing copolymer of the present invention is excellent in crack resistance.
  • the modified fluorine-containing copolymer of the present invention comprises a copolymer (hereinafter referred to as “a fluoropolymer”) containing the tetrafluoroethylene (TFE) unit, hexafluoropropylene (HFP) unit, and perfluoro (alkyl vinyl ether) (PAVE) unit. It is also referred to as “TFE / HFP / PAVE copolymer”) and irradiated with radiation at a specific range of irradiation temperature.
  • a fluoropolymer containing the tetrafluoroethylene (TFE) unit, hexafluoropropylene (HFP) unit, and perfluoro (alkyl vinyl ether) (PAVE) unit.
  • TFE tetrafluoroethylene
  • HFP hexafluoropropylene
  • PAVE perfluoro (alkyl vinyl ether)
  • CF 2 CFO (CF 2 CFY 1 O) p — (CF 2 CF 2 CF 2 O) q —R f (1)
  • Y 1 represents F or CF 3
  • R f represents a perfluoroalkyl group having 1 to 5 carbon atoms
  • p represents an integer of 0 to 5
  • q represents an integer of 0 to 5).
  • CFX CXOCF 2 OR 1 (2)
  • X is the same or different and represents H, F or CF 3
  • R 1 represents at least one atom selected from the group consisting of H, Cl, Br and I, which is linear or branched.
  • a fluoroalkyl group having 1 to 6 carbon atoms which may contain 1 to 2 carbon atoms, or 1 to 2 atoms selected from the group consisting of H, Cl, Br and I Represents a cyclic fluoroalkyl group having 5 or 6 carbon atoms.
  • the at least 1 sort (s) selected from the group which consists of can be mentioned.
  • the TFE / HFP / PAVE copolymer has a mass ratio of TFE units, HFP units and PAVE units (TFE / HFP / PAVE) of 70 to 98 / 0.1 to 25 / 0.1 to 25 (mass%). It is preferable that Within the above range, the heat resistance and chemical resistance are excellent.
  • the mass ratio (TFE / HFP / PAVE) is more preferably 75 to 98 / 0.1 to 20 / 0.1 to 20 (mass%).
  • the HFP unit is preferably 25% by mass or less based on the total monomer units.
  • the content of the HFP unit is more preferably 20% by mass or less, and further preferably 18% by mass or less. Especially preferably, it is 15 mass% or less.
  • 0.1 mass% or more is preferable and, as for content of a HFP unit, 1 mass% or more is more preferable. Especially preferably, it is 2 mass% or more.
  • the content of HFP units is measured by 19 F-NMR method.
  • the PAVE unit is preferably 25% by mass or less based on the total monomer units.
  • the content of the PAVE unit is more preferably 20% by mass or less, and further preferably 10% by mass or less. Especially preferably, it is 3 mass% or less. Moreover, 0.1 mass% or more is preferable and, as for content of a PAVE unit, 1 mass% or more is more preferable.
  • the content of PAVE units is measured by 19 F-NMR method.
  • the TFE / HFP / PAVE copolymer may further contain other ethylenic monomer ( ⁇ ) units.
  • the other ethylenic monomer ( ⁇ ) unit is not particularly limited as long as it is a monomer unit copolymerizable with a TFE unit, an HFP unit or a PAVE unit.
  • vinyl fluoride (VF) fluorine Fluorinated ethylenic monomer units such as vinylidene fluoride (VdF), chlorotrifluoroethylene (CTFE), and ethylene (ETFE)
  • non-fluorinated ethylenic monomer units such as ethylene, propylene, and alkyl vinyl ether It is done.
  • the mass ratio (TFE / HFP / PAVE / other ethylenic monomer ( ⁇ )) Is preferably 70 to 98 / 0.1 to 25 / 0.1 to 25 / 0.1 to 25 (mass%).
  • the TFE / HFP / PAVE copolymer preferably has a melting point of 200 to 300 ° C. If the melting point is less than 200 ° C., the amount of radicals involved in the crosslinking reaction is insufficient, and the crosslinking effect may not be sufficiently exhibited. If the temperature exceeds 300 ° C., the molecular weight may be reduced due to main chain cleavage, and the mechanical strength may be greatly reduced.
  • the melting point is more preferably 220 ° C. or higher, and more preferably 280 ° C. or lower.
  • the melting point is a temperature corresponding to the maximum value in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter [DSC].
  • the TFE / HFP / PAVE copolymer preferably has a glass transition temperature (Tg) of 60 to 110 ° C.
  • the glass transition temperature is more preferably 65 ° C. or higher, and more preferably 100 ° C. or lower.
  • the glass transition temperature is a value obtained by measurement by dynamic viscoelasticity measurement.
  • TFE / HFP / PAVE copolymer is a conventionally known one such as emulsion polymerization, solution polymerization or suspension polymerization by appropriately mixing monomers as constituent units and additives such as a polymerization initiator. It can be manufactured by a method.
  • the TFE / HFP / PAVE copolymer preferably has a melt flow rate (MFR) at 372 ° C. of 1.0 to 40 g / 10 min.
  • MFR melt flow rate
  • the MFR is more preferably 10 g / 10 min or more, and more preferably 30 g / 10 min or less.
  • ASTM D1238 the MFR uses a melt indexer (manufactured by Yasuda Seiki Seisakusho Co., Ltd.), and the mass of the polymer flowing out per 10 minutes from a nozzle having an inner diameter of 2 mm and a length of 8 mm under a load of 372 ° C. and 5 kg ( g / 10 minutes).
  • the TFE / HFP / PAVE copolymer is irradiated with radiation at an irradiation temperature not higher than the melting point of the copolymer and not lower than the glass transition temperature. Accordingly, even after the TFE / HFP / PAVE copolymer is molded into a desired shape, radiation can be irradiated without impairing the shape of the molded product.
  • the crack resistance is improved because the TFE / HFP / PAVE copolymer is an alkoxy. Presumably because it has many large side chains called groups, and these side chains move greatly even at low temperatures, so that the effects of irradiation can be obtained sufficiently even at low temperatures. Is done.
  • the irradiation temperature is not higher than the melting point of the TFE / HFP / PAVE copolymer and not lower than the glass transition temperature.
  • the irradiation temperature is preferably 120 to 300 ° C. When the temperature is within the above range, the copolymer has better crack resistance.
  • the irradiation temperature is more preferably 180 ° C. or higher, further preferably 190 ° C. or higher, particularly preferably 200 ° C. or higher, more preferably 275 ° C. or lower, and 250 ° C. or lower. More preferably it is.
  • the irradiation temperature is preferably 20 ° C. lower than the melting point of the TFE / HFP / PAVE copolymer, more preferably 25 ° C. or more.
  • the adjustment of the irradiation temperature is not particularly limited, and can be performed by a known method. Specifically, for example, a method of holding the TFE / HFP / PAVE copolymer in a heating furnace maintained at a predetermined temperature, or whether the heater mounted on the hot plate is energized. And a method of heating the hot plate by an external heating means.
  • Examples of the radiation include electron beams, ultraviolet rays, gamma rays, X-rays, neutron rays, high energy ions, and the like. Among these, an electron beam is preferable because it has excellent transmission power, a high dose rate, and is suitable for industrial production.
  • the method of irradiating with radiation is not particularly limited, and examples thereof include a method performed using a conventionally known radiation irradiating apparatus.
  • the radiation dose is preferably 50 kGy to 300 kGy. If it is less than 50 kGy, the amount of radicals involved in the crosslinking reaction is insufficient, and the crosslinking effect may not be sufficiently exhibited. When it exceeds 300 kGy, the molecular weight is lowered by main chain cleavage, and the mechanical strength may be greatly reduced.
  • the irradiation dose of radiation is more preferably 100 kGy or more, further preferably 120 kGy or more, more preferably 280 kGy or less, and further preferably 250 kGy or less.
  • the irradiation environment is not particularly limited, but the oxygen concentration is preferably 1000 ppm or less, more preferably in the absence of oxygen, and in an inert gas atmosphere such as nitrogen, helium or argon More preferably, it is in the middle.
  • the modified fluorine-containing copolymer having excellent crack resistance can be obtained by irradiating the TFE / HFP / PAVE copolymer with radiation at a specific range of irradiation temperature.
  • a fluororesin molded article comprising the modified fluorine-containing copolymer of the present invention is also one aspect of the present invention.
  • the fluororesin molded product of the present invention includes a step of molding a copolymer (TFE / HFP / PAVE copolymer) containing TFE units, HFP units, and PAVE units, and the molded copolymer.
  • a copolymer TFE / HFP / PAVE copolymer
  • it is preferably obtained by a method for producing a molded article having a step of irradiating radiation at an irradiation temperature not higher than the melting point of the copolymer and not lower than a glass transition temperature.
  • a fluororesin molded product obtained by such a specific manufacturing method is also one aspect of the present invention.
  • the molded article which has the outstanding crack resistance can be obtained by irradiating with the irradiation temperature mentioned above.
  • the TFE / HFP / PAVE copolymer include the same ones as described above.
  • the method for molding the TFE / HFP / PAVE copolymer is not particularly limited, and known methods such as injection molding, extrusion molding, transfer molding, compression molding, inflation method, T-die method, wire coating extrusion molding, and the like. Can be mentioned. What is necessary is just to select these shaping
  • the fluororesin molded product of the present invention is produced by irradiation with radiation after the step of molding the above-mentioned copolymer.
  • a method of irradiating the TFE / HFP / PAVE copolymer formed into a desired shape with radiation at an irradiation temperature not higher than the melting point of the TFE / HFP / PAVE copolymer and not lower than the glass transition temperature The method similar to the method mentioned above is mentioned.
  • the fluororesin molded product of the present invention may also contain other components as necessary.
  • Other components include additives such as crosslinking agents, antistatic agents, heat stabilizers, foaming agents, foaming nucleating agents, antioxidants, surfactants, photopolymerization initiators, antiwear agents, surface modifiers, etc. Can be mentioned.
  • the shape of the fluororesin molded product of the present invention is not particularly limited, and examples thereof include films, sheets, plates, rods, blocks, cylinders, containers, electric wires, tubes, and the like. Especially, a sheet
  • the thickness of the sheet is preferably 0.01 to 10 mm.
  • the fluororesin molded product of this invention is not specifically limited, For example, it can apply to the following uses. Diaphragm diaphragm parts, bellows molded products, wire coating products, semiconductor parts, packing and seals, thin tubes for copy rolls, monofilaments, gaskets, optical lens parts, oil excavation tubes, satellite cables, nuclear power cables, Solar panel film. Especially, it is preferable to use for the member of the location where the crack resistance by a repetitive motion is calculated
  • the present invention also provides a step of molding a TFE / HFP / PAVE copolymer, and the molded copolymer is irradiated with radiation at an irradiation temperature not higher than the melting point of the copolymer and not lower than the glass transition temperature. It is also a method for producing a fluororesin molded product characterized by having an irradiation step.
  • the step of molding the TFE / HFP / PAVE copolymer may be performed in the same manner as the method of molding the TFE / HFP / PAVE copolymer described above.
  • the step of irradiating the radiation may be performed in the same manner as the method of irradiating the TFE / HFP / PAVE copolymer described above.
  • a modified fluorine-containing copolymer having improved crack resistance and a fluororesin molded product can be obtained.
  • the monomer unit content, melt flow rate (MFR), melting point, and glass transition temperature were measured by the following methods.
  • MFR melt indexer (manufactured by Yasuda Seiki Seisakusho Co., Ltd.), the mass of the polymer flowing out per 10 minutes from a nozzle having an inner diameter of 2 mm and a length of 8 mm under a load of 372 ° C. and 5 kg (g / 10 minutes) )
  • Glass-transition temperature The dynamic viscoelasticity measurement using DVA-220 (made by IT Measurement Control Co., Ltd.) was performed and determined. The temperature was measured at a rate of temperature increase of 2 ° C./min and a frequency of 10 Hz, and the temperature at the peak of the tan ⁇ value was defined as the glass transition temperature.
  • the melting point is a temperature corresponding to the maximum value in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter [DSC].
  • TFE Tetrafluoroethylene
  • HFP hexafluoropropylene
  • PAVE perfluoro (propyl vinyl ether) copolymer
  • a melting point of 257 ° C. and a glass transition temperature of 85 ° C. was processed into a sheet having a thickness of 0.215 mm using a heat press molding machine, and then cut into strips having a width of 12.5 mm and a length of 130 mm to obtain test pieces.
  • the obtained test piece was accommodated in an electron beam irradiation container of an electron beam irradiation apparatus (manufactured by NHV Corporation), and then nitrogen gas was added to bring the container into a nitrogen atmosphere. After raising the temperature in the container to 245 ° C. and stabilizing the temperature, the specimen was irradiated with an electron beam under the conditions of an electron beam acceleration voltage of 3000 kV and an irradiation dose intensity of 20 kGy / 5 min. The test piece after the irradiation was subjected to the following MIT repeated bending test. The results are shown in Table 1.
  • MIT repeated bending test Performed according to ASTM D2176. Specifically, the test piece after irradiation with an electron beam having a width of 12.7 and a length of 130 mm obtained above was mounted on an MIT measuring instrument (model number 12176, manufactured by Yasuda Seiki Seisakusho), and the load The test piece was bent under the conditions of 1.25 kg, left and right bending angles of 135 degrees and the number of bending times of 175 times / minute, and the number of times until the test piece was cut (the number of MIT repetitions) was measured.
  • Example 2 A test piece was obtained in the same manner as in Example 1 except that the electron beam irradiation was performed at the irradiation temperature and irradiation dose shown in Table 1, and the MIT repeated bending test was performed. The results are shown in Table 1.
  • Example 1 A test piece was obtained in the same manner as in Example 1 except that the electron beam irradiation was not performed, and the MIT repeated bending test was performed. The results are shown in Table 1.
  • Example 10 Tetrafluoroethylene (TFE) / hexafluoropropylene (HFP) / perfluoro (propyl vinyl ether) (PAVE) copolymer
  • TFE / HFP / PAVE 86/13/1 (mass%), MFR 10 g / 10 min, melting point 220
  • a test piece was obtained in the same manner as in Example 1 except that [° C., glass transition temperature 80 ° C.] was used as a raw material, and an MIT repeated bending test was performed. The results are shown in Table 2.
  • TFE Tetrafluoroethylene
  • HFP hexafluoropropylene
  • PAVE perfluoro (propyl vinyl ether) copolymer
  • the molded product made of the modified fluorine-containing copolymer of the present invention can be applied to various uses such as diaphragm parts of diaphragm pumps or bellows molded products, wire coating materials, thin-walled tubes and the like that require crack resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

The purpose of the present invention is to provide: a modified fluorine-containing copolymer having excellent resistance to cracking; a fluorine resin molded article; and a method for manufacturing the fluorine resin molded article. The present invention involves a modified fluorine-containing copolymer characterized by being obtained by irradiating a copolymer comprising a tetrafluoroethylene unit, a hexafluoropropylene unit, and a perfluoro(alkyl vinyl ether) unit at an irradiation temperature below the melting point of the copolymer but not less than the glass transition temperature.

Description

改質含フッ素共重合体、フッ素樹脂成形品、及び、フッ素樹脂成形品の製造方法Modified fluorine-containing copolymer, fluororesin molded product, and method for producing fluororesin molded product
本発明は、改質含フッ素共重合体、フッ素樹脂成形品、及び、フッ素樹脂成形品の製造方法に関する。 The present invention relates to a modified fluorine-containing copolymer, a fluororesin molded article, and a method for producing a fluororesin molded article.
含フッ素共重合体は、耐熱性、耐薬品性、耐候性、耐汚染性などに優れ、半導体、自動車、建築、電気・電子、化学プラント、医薬関連等の様々な分野で用いられている。
このような含フッ素共重合体の、耐熱性や機械的特性、耐放射線性等といった諸特性を更に改善する方法が種々検討されている。
Fluorine-containing copolymers are excellent in heat resistance, chemical resistance, weather resistance, contamination resistance, and the like, and are used in various fields such as semiconductors, automobiles, architecture, electrical / electronics, chemical plants, and pharmaceuticals.
Various methods for further improving various properties such as heat resistance, mechanical properties and radiation resistance of such a fluorinated copolymer have been studied.
含フッ素共重合体の改質方法の一つとして、放射線を照射することが知られている。このような改質方法としては、一般に、含フッ素共重合体を融点以上に加熱して、放射線を照射する方法が知られている(特許文献1及び2)。
しかしながら、含フッ素共重合体を成形した後、得られた成形品に該含フッ素共重合体の融点温度以上に加熱して放射線を照射すると、成形品の形状が変化してしまうといった問題があった。また、放射線の照射によるフッ素樹脂の劣化が大きくなり、所望の機械的特性が充分得られないといった問題があった。
As one method for modifying a fluorinated copolymer, it is known to irradiate with radiation. As such a modification method, generally, a method in which a fluorine-containing copolymer is heated to a melting point or higher and irradiated with radiation is known (Patent Documents 1 and 2).
However, after molding the fluorinated copolymer, if the resulting molded product is heated to a temperature higher than the melting point of the fluorinated copolymer and irradiated with radiation, the shape of the molded product may change. It was. In addition, there has been a problem that the deterioration of the fluororesin due to the irradiation of radiation becomes large and the desired mechanical properties cannot be obtained sufficiently.
特許文献3には、予め加熱することなく、粒子加速器から100kGy/sec以上の高線量率の電離性放射線を照射線量200kGy~100MGyの範囲で照射所定の照射線量の電離性放射線を照射することによって該樹脂を架橋し、簡便かつ短時間に、耐熱性、耐薬品性を改善させた改質フッ素樹脂の製造方法が開示されている。 In Patent Literature 3, ionizing radiation with a high dose rate of 100 kGy / sec or more is irradiated from a particle accelerator in a range of irradiation doses of 200 kGy to 100 MGy without irradiation in advance. A method for producing a modified fluororesin by crosslinking the resin and improving heat resistance and chemical resistance in a simple and short time is disclosed.
特許文献4には、0~150℃、または、0℃から結晶分散温度まで加熱されたフッ素樹脂に、照射量が5Gy~500kGyで電離性放射線を照射し、照射されたフッ素樹脂を所定の温度で所定時間保持することにより、耐熱劣化特性及び耐圧縮歪み特性を改善したことが開示されている。 Patent Document 4 discloses that a fluororesin heated to 0 to 150 ° C. or from 0 ° C. to a crystal dispersion temperature is irradiated with ionizing radiation at an irradiation amount of 5 Gy to 500 kGy, and the irradiated fluororesin is irradiated at a predetermined temperature. It is disclosed that the heat resistance deterioration characteristic and the compression strain resistance are improved by holding for a predetermined time.
特許文献5には、テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体微粉末に、80℃~280℃の温度範囲で、酸素濃度10torr以下の雰囲気中で、1kGy~1MGyの電離性放射線を照射することにより耐摩耗性を有する成形体を実現した架橋FEP微粉末が開示されている。 In Patent Document 5, tetrafluoroethylene / hexafluoropropylene copolymer fine powder is irradiated with ionizing radiation of 1 kGy to 1 MGy in an atmosphere having an oxygen concentration of 10 torr or less in a temperature range of 80 ° C. to 280 ° C. Thus, a crosslinked FEP fine powder that realizes a molded article having wear resistance is disclosed.
特許文献6には、酸素濃度13kPa以下、吸収線量1kGy~10MGyの条件で、融点以下の80~280℃に加熱されたテトラフルオロエチレン-ヘキサフルオロプロピレン共重合体樹脂(FEP)に放射線を照射して得た改質フッ素樹脂と、塗装用樹脂とを混合することにより、耐摩耗性と平滑性に優れた塗膜が得られる塗装材料が開示されている。 In Patent Document 6, radiation is irradiated to tetrafluoroethylene-hexafluoropropylene copolymer resin (FEP) heated to 80 to 280 ° C. below the melting point under the conditions of an oxygen concentration of 13 kPa or less and an absorbed dose of 1 kGy to 10 MGy. A coating material is disclosed in which a coating film excellent in wear resistance and smoothness can be obtained by mixing the modified fluororesin obtained in this manner with a coating resin.
特許文献7には、フッ素樹脂と接着し難い金属基材上に、フッ素樹脂を塗布等して、200℃~400℃で電離放射線を照射して架橋させ、該基材から該フッ素樹脂を剥離または分離等をすることにより、改質フッ素樹脂成形体を得る方法が開示されている。 In Patent Document 7, a fluororesin is coated on a metal substrate that is difficult to adhere to a fluororesin, and cross-linked by irradiation with ionizing radiation at 200 ° C. to 400 ° C., and the fluororesin is peeled off from the substrate. Alternatively, a method for obtaining a modified fluororesin molded product by separation or the like is disclosed.
特許文献8には、基材上にフッ素樹脂層を形成した後、該フッ素樹脂層を、フッ素樹脂の融点より150℃高い温度までの範囲内の温度に加熱して焼成し、焼成した未架橋フッ素樹脂層の温度を、フッ素樹脂の融点(Tm)より60℃低い温度から該融点より1℃低い温度までの範囲内の温度にして、放射線を照射して架橋することにより、耐摩耗性や基材との密着性に優れた架橋フッ素樹脂層を有する複合材料の製造方法が開示されている。 In Patent Document 8, after forming a fluororesin layer on a substrate, the fluororesin layer is heated to a temperature in a range up to 150 ° C. higher than the melting point of the fluororesin, fired, and fired uncrosslinked By setting the temperature of the fluororesin layer to a temperature in a range from a temperature 60 ° C. lower than the melting point (Tm) of the fluororesin to a temperature lower than the melting point by 1 ° C., crosslinking is performed by irradiation with radiation. A method for producing a composite material having a cross-linked fluororesin layer having excellent adhesion to a substrate is disclosed.
特許文献9には、フッ素樹脂の融点以上の温度において熱的安定性を有する基材が、架橋したフッ素樹脂膜により被覆された改質フッ素樹脂被覆材であって、フッ素樹脂の架橋が250~400℃の範囲の温度で電離性放射線により行われることが開示されている。 Patent Document 9 discloses a modified fluororesin coating material in which a base material having thermal stability at a temperature equal to or higher than the melting point of a fluororesin is coated with a cross-linked fluororesin film, and the crosslinkage of the fluororesin is 250 to It is disclosed to be performed with ionizing radiation at a temperature in the range of 400 ° C.
特開平11-49867号公報JP 11-49867 A 特開2000-186162号公報JP 2000-186162 A 特開平11-349711号公報Japanese Patent Laid-Open No. 11-349711 特開2002-327068号公報JP 2002-327068 A 特開2003-183412号公報JP 2003-183212 A 特開2004-10717号公報JP 2004-10717 A 特開2002-30166号公報JP 2002-30166 A 特開2010-155443号公報JP 2010-155443 A 特開2011-105012号公報JP 2011-105012 A
しかしながら、これらの従来の改質方法で得られる含フッ素共重合体は、耐クラック性が未だ不充分であった。 However, the fluorine-containing copolymers obtained by these conventional modification methods still have insufficient crack resistance.
含フッ素共重合体にて、小さい成形体、複雑形状の成形体を得る場合には、成形性に優れた流動性の良い材料が必要となる。しかしながら、流動性の優れた含フッ素共重合体は、比較的分子量が低いため、耐クラック性に乏しい。このため、上記のような成形体を得る場合には、分子量の高い材料を用いて、押出成形や射出成形等を行わずに、圧縮成形し、その後2次加工して所望の成形体を得ることが一般的であった。このような従来の方法では、生産性効率が悪く最終製品のコストが高くなる課題があった。 In order to obtain a small molded product or a complex molded product with a fluorine-containing copolymer, a material having excellent moldability and good fluidity is required. However, a fluorine-containing copolymer having excellent fluidity has a relatively low molecular weight, and therefore has poor crack resistance. For this reason, when obtaining a molded body as described above, a material having a high molecular weight is used, and compression molding is performed without performing extrusion molding or injection molding, followed by secondary processing to obtain a desired molded body. It was common. Such a conventional method has a problem in that the productivity is low and the cost of the final product is high.
本発明は、上記現状に鑑みて、耐クラック性に優れた改質含フッ素共重合体、フッ素樹脂成形品、及び、フッ素樹脂成形品の製造方法を提供することを目的とする。 An object of this invention is to provide the manufacturing method of the modified fluorine-containing copolymer excellent in crack resistance, a fluororesin molded product, and a fluororesin molded product in view of the said present condition.
本発明者らは、かかる要求を検討した結果、特定の含フッ素共重合体に、特定範囲の照射温度で、放射線を照射することにより、耐クラック性に優れた改質含フッ素共重合体とすることができることを見出し、本発明を完成した。 As a result of studying such a requirement, the present inventors, as a result of irradiating a specific fluorine-containing copolymer with radiation at a specific range of irradiation temperature, a modified fluorine-containing copolymer excellent in crack resistance and As a result, the present invention was completed.
すなわち、本発明は、テトラフルオロエチレン単位、ヘキサフルオロプロピレン単位、及び、パーフルオロ(アルキルビニルエーテル)単位を含む共重合体に、上記共重合体の融点以下、かつ、ガラス転移温度以上の照射温度で、放射線を照射することにより得られたことを特徴とする改質含フッ素共重合体である。 That is, the present invention provides a copolymer containing a tetrafluoroethylene unit, a hexafluoropropylene unit, and a perfluoro (alkyl vinyl ether) unit at an irradiation temperature not higher than the melting point of the copolymer and not lower than the glass transition temperature. A modified fluorine-containing copolymer obtained by irradiating with radiation.
本発明はまた、上記改質含フッ素共重合体からなることを特徴とするフッ素樹脂成形品でもある。 The present invention is also a fluororesin molded product comprising the modified fluorine-containing copolymer.
本発明はまた、テトラフルオロエチレン単位、ヘキサフルオロプロピレン単位、及び、パーフルオロ(アルキルビニルエーテル)単位を含む共重合体を成形する工程、並びに、成形された上記共重合体に、上記共重合体の融点以下、かつ、ガラス転移温度以上の照射温度で、放射線を照射する工程を有する成形品の製造方法により得られたことを特徴とするフッ素樹脂成形品でもある。 The present invention also includes a step of molding a copolymer comprising a tetrafluoroethylene unit, a hexafluoropropylene unit, and a perfluoro (alkyl vinyl ether) unit, and the molded copolymer is converted into the copolymer. It is also a fluororesin molded product obtained by a method for producing a molded product having a step of irradiating radiation at an irradiation temperature not higher than the melting point and not lower than the glass transition temperature.
上記テトラフルオロエチレン単位、ヘキサフルオロプロピレン単位、及び、パーフルオロ(アルキルビニルエーテル)単位を含む共重合体は、ヘキサフルオロプロピレン単位が全単量体単位の25質量%以下であることが好ましい。 The copolymer containing the tetrafluoroethylene unit, the hexafluoropropylene unit, and the perfluoro (alkyl vinyl ether) unit preferably has a hexafluoropropylene unit of 25% by mass or less based on the total monomer units.
上記テトラフルオロエチレン単位、ヘキサフルオロプロピレン単位、及び、パーフルオロ(アルキルビニルエーテル)単位を含む共重合体は、パーフルオロ(アルキルビニルエーテル)単位が全単量体単位の25質量%以下であることが好ましい。 In the copolymer containing the tetrafluoroethylene unit, hexafluoropropylene unit, and perfluoro (alkyl vinyl ether) unit, the perfluoro (alkyl vinyl ether) unit is preferably 25% by mass or less of the total monomer units. .
上記テトラフルオロエチレン単位、ヘキサフルオロプロピレン単位、及び、パーフルオロ(アルキルビニルエーテル)単位を含む共重合体は、融点が200~300℃であることが好ましい。 The copolymer containing the tetrafluoroethylene unit, hexafluoropropylene unit, and perfluoro (alkyl vinyl ether) unit preferably has a melting point of 200 to 300 ° C.
上記パーフルオロ(アルキルビニルエーテル)は、パーフルオロ(プロピルビニルエーテル)であることが好ましい。 The perfluoro (alkyl vinyl ether) is preferably perfluoro (propyl vinyl ether).
本発明は更に、テトラフルオロエチレン単位、ヘキサフルオロプロピレン単位、及び、パーフルオロ(アルキルビニルエーテル)単位を含む共重合体を成形する工程、並びに、成形された上記共重合体に、上記共重合体の融点以下、かつ、ガラス転移温度以上の照射温度で、放射線を照射する工程を有することを特徴とするフッ素樹脂成形品の製造方法でもある。 The present invention further includes a step of molding a copolymer containing a tetrafluoroethylene unit, a hexafluoropropylene unit, and a perfluoro (alkyl vinyl ether) unit, and the molded copolymer is converted into the copolymer. It is also a method for producing a fluororesin molded product, comprising a step of irradiating radiation at an irradiation temperature not higher than the melting point and not lower than the glass transition temperature.
本発明の製造方法は、放射線の照射線量が50kGy~300kGyであることが好ましい。 In the production method of the present invention, the radiation dose is preferably 50 kGy to 300 kGy.
本発明によれば、耐クラック性に優れた改質含フッ素共重合体及びフッ素樹脂成形品を得ることができる。 According to the present invention, it is possible to obtain a modified fluorine-containing copolymer and a fluororesin molded product having excellent crack resistance.
以下に本発明を詳細に説明する。 The present invention is described in detail below.
本発明は、テトラフルオロエチレン単位、ヘキサフルオロプロピレン単位、及び、パーフルオロ(アルキルビニルエーテル)単位を含む共重合体に、上記共重合体の融点以下、かつ、ガラス転移温度以上の照射温度で、放射線を照射することにより得られたことを特徴とする改質含フッ素共重合体である。このため、本発明の改質含フッ素共重合体は、耐クラック性に優れる。 The present invention relates to a copolymer containing a tetrafluoroethylene unit, a hexafluoropropylene unit, and a perfluoro (alkyl vinyl ether) unit at a radiation temperature not higher than the melting point of the copolymer and not lower than the glass transition temperature. It is a modified fluorine-containing copolymer obtained by irradiating. For this reason, the modified fluorine-containing copolymer of the present invention is excellent in crack resistance.
本発明の改質含フッ素共重合体は、上記テトラフルオロエチレン(TFE)単位、ヘキサフルオロプロピレン(HFP)単位、及び、パーフルオロ(アルキルビニルエーテル)(PAVE)単位を含む共重合体(以下、「TFE/HFP/PAVE共重合体」ともいう。)に、特定範囲の照射温度で放射線を照射して得られたものである。 The modified fluorine-containing copolymer of the present invention comprises a copolymer (hereinafter referred to as “a fluoropolymer”) containing the tetrafluoroethylene (TFE) unit, hexafluoropropylene (HFP) unit, and perfluoro (alkyl vinyl ether) (PAVE) unit. It is also referred to as “TFE / HFP / PAVE copolymer”) and irradiated with radiation at a specific range of irradiation temperature.
上記TFE/HFP/PAVE共重合体を構成するPAVEとしては、一般式(1):
CF=CFO(CFCFYO)-(CFCFCFO)-R  (1)
(式中、YはF又はCFを表し、Rは炭素数1~5のパーフルオロアルキル基を表す。pは0~5の整数を表し、qは0~5の整数を表す。)、及び、一般式(2):
CFX=CXOCFOR   (2)
(式中、Xは、同一又は異なり、H、F又はCFを表し、Rは、直鎖又は分岐した、H、Cl、Br及びIからなる群より選択される少なくとも1種の原子を1~2個含んでいてもよい炭素数が1~6のフルオロアルキル基、若しくは、H、Cl、Br及びIからなる群より選択される少なくとも1種の原子を1~2個含んでいてもよい炭素数が5又は6の環状フルオロアルキル基を表す。)
からなる群より選択される少なくとも1種を挙げることができる。
As PAVE constituting the TFE / HFP / PAVE copolymer, the general formula (1):
CF 2 = CFO (CF 2 CFY 1 O) p — (CF 2 CF 2 CF 2 O) q —R f (1)
(Wherein Y 1 represents F or CF 3 , R f represents a perfluoroalkyl group having 1 to 5 carbon atoms, p represents an integer of 0 to 5 and q represents an integer of 0 to 5). ) And general formula (2):
CFX = CXOCF 2 OR 1 (2)
Wherein X is the same or different and represents H, F or CF 3 , and R 1 represents at least one atom selected from the group consisting of H, Cl, Br and I, which is linear or branched. A fluoroalkyl group having 1 to 6 carbon atoms which may contain 1 to 2 carbon atoms, or 1 to 2 atoms selected from the group consisting of H, Cl, Br and I Represents a cyclic fluoroalkyl group having 5 or 6 carbon atoms.)
The at least 1 sort (s) selected from the group which consists of can be mentioned.
なかでも、上記PAVEとしては、バルキーな側鎖を有するものが好ましく、具体的には、パーフルオロ(プロピルビニルエーテル)が好ましい。 Especially, as said PAVE, what has a bulky side chain is preferable, and perfluoro (propyl vinyl ether) is specifically preferable.
上記TFE/HFP/PAVE共重合体は、TFE単位とHFP単位とPAVE単位との質量比(TFE/HFP/PAVE)が70~98/0.1~25/0.1~25(質量%)であることが好ましい。上記範囲内であると、耐熱性、耐薬品性に優れている。
上記質量比(TFE/HFP/PAVE)は、75~98/0.1~20/0.1~20(質量%)であることがより好ましい。
The TFE / HFP / PAVE copolymer has a mass ratio of TFE units, HFP units and PAVE units (TFE / HFP / PAVE) of 70 to 98 / 0.1 to 25 / 0.1 to 25 (mass%). It is preferable that Within the above range, the heat resistance and chemical resistance are excellent.
The mass ratio (TFE / HFP / PAVE) is more preferably 75 to 98 / 0.1 to 20 / 0.1 to 20 (mass%).
上記TFE/HFP/PAVE共重合体は、HFP単位が全単量体単位の25質量%以下であることが好ましい。
HFP単位の含有量が上述の範囲内であると、誘電特性、耐熱性に優れたフッ素樹脂成形品を得ることができる。
HFP単位の含有量は、20質量%以下がより好ましく、18質量%以下が更に好ましい。特に好ましくは15質量%以下である。また、HFP単位の含有量は、0.1質量%以上が好ましく、1質量%以上がより好ましい。特に好ましくは、2質量%以上である。
なお、HFP単位の含有量は、19F-NMR法により測定する。
In the TFE / HFP / PAVE copolymer, the HFP unit is preferably 25% by mass or less based on the total monomer units.
When the content of the HFP unit is within the above range, a fluororesin molded product having excellent dielectric characteristics and heat resistance can be obtained.
The content of the HFP unit is more preferably 20% by mass or less, and further preferably 18% by mass or less. Especially preferably, it is 15 mass% or less. Moreover, 0.1 mass% or more is preferable and, as for content of a HFP unit, 1 mass% or more is more preferable. Especially preferably, it is 2 mass% or more.
The content of HFP units is measured by 19 F-NMR method.
上記TFE/HFP/PAVE共重合体は、PAVE単位が全単量体単位の25質量%以下であることが好ましい。
PAVE単位の含有量が上述の範囲内であると、誘電特性、耐熱性に優れたフッ素樹脂成形品を得ることができる。
PAVE単位の含有量は、20質量%以下がより好ましく、10質量%以下が更に好ましい。特に好ましくは3質量%以下である。また、PAVE単位の含有量は、0.1質量%以上が好ましく、1質量%以上がより好ましい。
なお、PAVE単位の含有量は、19F-NMR法により測定する。
In the TFE / HFP / PAVE copolymer, the PAVE unit is preferably 25% by mass or less based on the total monomer units.
When the content of the PAVE unit is within the above range, a fluororesin molded product having excellent dielectric properties and heat resistance can be obtained.
The content of the PAVE unit is more preferably 20% by mass or less, and further preferably 10% by mass or less. Especially preferably, it is 3 mass% or less. Moreover, 0.1 mass% or more is preferable and, as for content of a PAVE unit, 1 mass% or more is more preferable.
The content of PAVE units is measured by 19 F-NMR method.
上記TFE/HFP/PAVE共重合体は、更に、他のエチレン性単量体(α)単位を含んでいてもよい。上記他のエチレン性単量体(α)単位としては、TFE単位、HFP単位又はPAVE単位と共重合可能な単量体単位であれば特に限定されず、例えば、フッ化ビニル(VF)、フッ化ビニリデン(VdF)、クロロトリフルオロエチレン(CTFE)、エチレン(ETFE)等の含フッ素エチレン性単量体単位や、エチレン、プロピレン、アルキルビニルエーテル等の非フッ素化エチレン性単量体単位等が挙げられる。 The TFE / HFP / PAVE copolymer may further contain other ethylenic monomer (α) units. The other ethylenic monomer (α) unit is not particularly limited as long as it is a monomer unit copolymerizable with a TFE unit, an HFP unit or a PAVE unit. For example, vinyl fluoride (VF), fluorine Fluorinated ethylenic monomer units such as vinylidene fluoride (VdF), chlorotrifluoroethylene (CTFE), and ethylene (ETFE), and non-fluorinated ethylenic monomer units such as ethylene, propylene, and alkyl vinyl ether It is done.
含フッ素共重合体(B)がTFE/HFP/PAVE/他のエチレン性単量体(α)共重合体である場合、質量比(TFE/HFP/PAVE/他のエチレン性単量体(α))は、70~98/0.1~25/0.1~25/0.1~25(質量%)であることが好ましい。 When the fluorine-containing copolymer (B) is a TFE / HFP / PAVE / other ethylenic monomer (α) copolymer, the mass ratio (TFE / HFP / PAVE / other ethylenic monomer (α )) Is preferably 70 to 98 / 0.1 to 25 / 0.1 to 25 / 0.1 to 25 (mass%).
上記TFE/HFP/PAVE共重合体は、融点が200~300℃であることが好ましい。融点が200℃未満であると、架橋反応に関与するラジカルの発生量が不十分となり、架橋効果が十分に現れないおそれがある。300℃を超えると、主鎖切断による低分子化が起こり、機械強度が大きく低下するおそれがある。上記融点は、220℃以上であることがより好ましく、280℃以下であることがより好ましい。
上記融点は、示差走査熱量計〔DSC〕を用いて10℃/分の速度で昇温したときの融解熱曲線における極大値に対応する温度である。
The TFE / HFP / PAVE copolymer preferably has a melting point of 200 to 300 ° C. If the melting point is less than 200 ° C., the amount of radicals involved in the crosslinking reaction is insufficient, and the crosslinking effect may not be sufficiently exhibited. If the temperature exceeds 300 ° C., the molecular weight may be reduced due to main chain cleavage, and the mechanical strength may be greatly reduced. The melting point is more preferably 220 ° C. or higher, and more preferably 280 ° C. or lower.
The melting point is a temperature corresponding to the maximum value in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter [DSC].
上記TFE/HFP/PAVE共重合体は、ガラス転移温度(Tg)が60~110℃であることが好ましい。上記ガラス転移温度は、65℃以上であることがより好ましく、100℃以下であることがより好ましい。
上記ガラス転移温度は、動的粘弾性測定により測定して得られる値である。
The TFE / HFP / PAVE copolymer preferably has a glass transition temperature (Tg) of 60 to 110 ° C. The glass transition temperature is more preferably 65 ° C. or higher, and more preferably 100 ° C. or lower.
The glass transition temperature is a value obtained by measurement by dynamic viscoelasticity measurement.
上記TFE/HFP/PAVE共重合体は、例えば、その構成単位となるモノマーや、重合開始剤等の添加剤を適宜混合して、乳化重合、溶液重合や懸濁重合を行う等の従来公知の方法により製造することができる。 The above-mentioned TFE / HFP / PAVE copolymer is a conventionally known one such as emulsion polymerization, solution polymerization or suspension polymerization by appropriately mixing monomers as constituent units and additives such as a polymerization initiator. It can be manufactured by a method.
上記TFE/HFP/PAVE共重合体は、372℃におけるメルトフローレート(MFR)が1.0~40g/10分であることが好ましい。MFRが上述の範囲であると、架橋効果が顕著である。
上記MFRは、10g/10分以上がより好ましく、30g/10分以下がより好ましい。上記MFRは、ASTM D1238に従って、メルトインデクサー((株)安田精機製作所製)を用いて、372℃、5kg荷重下で内径2mm、長さ8mmのノズルから10分間あたりに流出するポリマーの質量(g/10分)として得られる値である。
The TFE / HFP / PAVE copolymer preferably has a melt flow rate (MFR) at 372 ° C. of 1.0 to 40 g / 10 min. When the MFR is in the above range, the crosslinking effect is remarkable.
The MFR is more preferably 10 g / 10 min or more, and more preferably 30 g / 10 min or less. According to ASTM D1238, the MFR uses a melt indexer (manufactured by Yasuda Seiki Seisakusho Co., Ltd.), and the mass of the polymer flowing out per 10 minutes from a nozzle having an inner diameter of 2 mm and a length of 8 mm under a load of 372 ° C. and 5 kg ( g / 10 minutes).
本発明において、上記TFE/HFP/PAVE共重合体は、該共重合体の融点以下、かつ、ガラス転移温度以上の照射温度で、放射線照射される。従って、TFE/HFP/PAVE共重合体を所望の形状に成形した後でも、成形品の形状を損なうことなく放射線を照射することができる。
このように上記TFE/HFP/PAVE共重合体が、上述した特定範囲の温度に加熱されて放射線照射されることにより、耐クラック性が向上するのは、TFE/HFP/PAVE共重合体がアルコキシ基という多数の大きな側鎖を有し、これらの側鎖が低温であっても大きく分子運動することから、放射線を照射することによる効果が低温であっても充分に得られるためであると推測される。
In the present invention, the TFE / HFP / PAVE copolymer is irradiated with radiation at an irradiation temperature not higher than the melting point of the copolymer and not lower than the glass transition temperature. Accordingly, even after the TFE / HFP / PAVE copolymer is molded into a desired shape, radiation can be irradiated without impairing the shape of the molded product.
Thus, when the TFE / HFP / PAVE copolymer is heated to the above-mentioned specific temperature and irradiated with radiation, the crack resistance is improved because the TFE / HFP / PAVE copolymer is an alkoxy. Presumably because it has many large side chains called groups, and these side chains move greatly even at low temperatures, so that the effects of irradiation can be obtained sufficiently even at low temperatures. Is done.
上記照射温度は、上記TFE/HFP/PAVE共重合体の融点以下、かつ、ガラス転移温度以上である。また、上記照射温度としては、120~300℃であることが好ましい。上述の温度範囲であると、上記共重合体の耐クラック性がより良好となる。
上記照射温度としては、180℃以上であることがより好ましく、190℃以上であることが更に好ましく、200℃以上であることが特に好ましく、275℃以下であることがより好ましく、250℃以下であることが更に好ましい。
上記照射温度は、TFE/HFP/PAVE共重合体の融点よりも20℃超低い温度であることが好ましく、25℃以上低い温度であることがより好ましい。
The irradiation temperature is not higher than the melting point of the TFE / HFP / PAVE copolymer and not lower than the glass transition temperature. The irradiation temperature is preferably 120 to 300 ° C. When the temperature is within the above range, the copolymer has better crack resistance.
The irradiation temperature is more preferably 180 ° C. or higher, further preferably 190 ° C. or higher, particularly preferably 200 ° C. or higher, more preferably 275 ° C. or lower, and 250 ° C. or lower. More preferably it is.
The irradiation temperature is preferably 20 ° C. lower than the melting point of the TFE / HFP / PAVE copolymer, more preferably 25 ° C. or more.
上記照射温度の調整は、特に限定されず、公知の方法で行うことができる。具体的には、例えば、上記TFE/HFP/PAVE共重合体を所定の温度に維持した加熱炉内で保持する方法や、ホットプレート上に載せて、ホットプレートに内蔵した加熱ヒータに通電するか、外部の加熱手段によってホットプレートを加熱する等の方法が挙げられる。 The adjustment of the irradiation temperature is not particularly limited, and can be performed by a known method. Specifically, for example, a method of holding the TFE / HFP / PAVE copolymer in a heating furnace maintained at a predetermined temperature, or whether the heater mounted on the hot plate is energized. And a method of heating the hot plate by an external heating means.
放射線としては、電子線、紫外線、ガンマ線、X線、中性子線、あるいは高エネルギーイオン等が挙げられる。なかでも、透過力が優れており、線量率が高く、工業的生産に好適である点で電子線が好ましい。
放射線を照射する方法としては、特に限定されず、従来公知の放射線照射装置を用いて行う方法等が挙げられる。
Examples of the radiation include electron beams, ultraviolet rays, gamma rays, X-rays, neutron rays, high energy ions, and the like. Among these, an electron beam is preferable because it has excellent transmission power, a high dose rate, and is suitable for industrial production.
The method of irradiating with radiation is not particularly limited, and examples thereof include a method performed using a conventionally known radiation irradiating apparatus.
放射線の照射線量は、50kGy~300kGyが好ましい。50kGy未満であると、架橋反応に関与するラジカルの発生量が不十分となり、架橋効果が十分に発現しないおそれがある。300kGyを超えると、主鎖切断による低分子化が起こり、機械強度が大きく低下するおそれがある。
放射線の照射線量は、100kGy以上がより好ましく、120kGy以上が更に好ましく、280kGy以下がより好ましく、250kGy以下が更に好ましい。
The radiation dose is preferably 50 kGy to 300 kGy. If it is less than 50 kGy, the amount of radicals involved in the crosslinking reaction is insufficient, and the crosslinking effect may not be sufficiently exhibited. When it exceeds 300 kGy, the molecular weight is lowered by main chain cleavage, and the mechanical strength may be greatly reduced.
The irradiation dose of radiation is more preferably 100 kGy or more, further preferably 120 kGy or more, more preferably 280 kGy or less, and further preferably 250 kGy or less.
放射線の照射環境としては、特に制限されないが、酸素濃度が1000ppm以下であることが好ましく、酸素不存在下であることがより好ましく、真空中、又は、窒素、ヘリウム若しくはアルゴン等の不活性ガス雰囲気中であることが更に好ましい。 The irradiation environment is not particularly limited, but the oxygen concentration is preferably 1000 ppm or less, more preferably in the absence of oxygen, and in an inert gas atmosphere such as nitrogen, helium or argon More preferably, it is in the middle.
このようにTFE/HFP/PAVE共重合体に、特定範囲の照射温度で放射線を照射することにより、優れた耐クラック性を有する改質含フッ素共重合体を得ることができる。
本発明の改質含フッ素共重合体からなるフッ素樹脂成形品もまた、本発明の一つである。
Thus, the modified fluorine-containing copolymer having excellent crack resistance can be obtained by irradiating the TFE / HFP / PAVE copolymer with radiation at a specific range of irradiation temperature.
A fluororesin molded article comprising the modified fluorine-containing copolymer of the present invention is also one aspect of the present invention.
また、本発明のフッ素樹脂成形品は、TFE単位、HFP単位、及び、PAVE単位を含む共重合体(TFE/HFP/PAVE共重合体)を成形する工程、並びに、成形された上記共重合体に、上記共重合体の融点以下、かつ、ガラス転移温度以上の照射温度で、放射線を照射する工程を有する成形品の製造方法により得られたことを特徴とするものであることが好ましい。
そのような特定の製造方法により得られたフッ素樹脂成形品もまた、本発明の一つである。
Moreover, the fluororesin molded product of the present invention includes a step of molding a copolymer (TFE / HFP / PAVE copolymer) containing TFE units, HFP units, and PAVE units, and the molded copolymer. In addition, it is preferably obtained by a method for producing a molded article having a step of irradiating radiation at an irradiation temperature not higher than the melting point of the copolymer and not lower than a glass transition temperature.
A fluororesin molded product obtained by such a specific manufacturing method is also one aspect of the present invention.
本発明では、TFE/HFP/PAVE共重合体を所望の形状に成形した後に、上述した照射温度で放射線照射することで、優れた耐クラック性を有する成形品を得ることができる。
上記TFE/HFP/PAVE共重合体は、上述したものと同様のものが挙げられる。
In this invention, after shape | molding a TFE / HFP / PAVE copolymer in a desired shape, the molded article which has the outstanding crack resistance can be obtained by irradiating with the irradiation temperature mentioned above.
Examples of the TFE / HFP / PAVE copolymer include the same ones as described above.
上記TFE/HFP/PAVE共重合体を成形する方法としては、特に限定されず、射出成形、押出成形、トランスファ成形、圧縮成形、インフレーション法、Tダイ法、電線被覆押出成形等の公知の方法が挙げられる。これらの成形方法は、得られる成形品の形状に応じて適宜選択すればよい。
なかでも、圧縮成形、射出成形または押出成形が好ましく、微小又は複雑な形状の成形が容易となる点で、射出成形または押出成形がより好ましい。押出成形には電線被覆押出成形、チューブ押出成形、異形押出成形、フィルム押出成形、繊維押出成形等が特に最適である。
The method for molding the TFE / HFP / PAVE copolymer is not particularly limited, and known methods such as injection molding, extrusion molding, transfer molding, compression molding, inflation method, T-die method, wire coating extrusion molding, and the like. Can be mentioned. What is necessary is just to select these shaping | molding methods suitably according to the shape of the molded article obtained.
Among these, compression molding, injection molding, or extrusion molding is preferable, and injection molding or extrusion molding is more preferable in terms of facilitating molding of a minute or complicated shape. For the extrusion molding, wire coating extrusion molding, tube extrusion molding, profile extrusion molding, film extrusion molding, fiber extrusion molding and the like are particularly optimal.
本発明のフッ素樹脂成形品は、上述の共重合体を成形する工程の後、放射線照射されて製造される。
所望の形状に成形された上記TFE/HFP/PAVE共重合体に、上記TFE/HFP/PAVE共重合体の融点以下、かつ、ガラス転移温度以上の照射温度で、放射線を照射する方法としては、上述した方法と同様の方法が挙げられる。
The fluororesin molded product of the present invention is produced by irradiation with radiation after the step of molding the above-mentioned copolymer.
As a method of irradiating the TFE / HFP / PAVE copolymer formed into a desired shape with radiation at an irradiation temperature not higher than the melting point of the TFE / HFP / PAVE copolymer and not lower than the glass transition temperature, The method similar to the method mentioned above is mentioned.
本発明のフッ素樹脂成形品はまた、必要に応じて他の成分を含んでいてもよい。他の成分としては、架橋剤、帯電防止剤、耐熱安定剤、発泡剤、発泡核剤、酸化防止剤、界面活性剤、光重合開始剤、摩耗防止剤、表面改質剤等の添加剤等を挙げることができる。 The fluororesin molded product of the present invention may also contain other components as necessary. Other components include additives such as crosslinking agents, antistatic agents, heat stabilizers, foaming agents, foaming nucleating agents, antioxidants, surfactants, photopolymerization initiators, antiwear agents, surface modifiers, etc. Can be mentioned.
本発明のフッ素樹脂成形品の形状は、特に限定されず、例えば、フィルム、シート、板、ロッド、ブロック、円筒、容器、電線、チューブ、等が挙げられる。なかでも、耐クラック性の要求が厳しい点で、シートや電線が好ましい。
上記シートの厚みは、0.01~10mmが好ましい。
The shape of the fluororesin molded product of the present invention is not particularly limited, and examples thereof include films, sheets, plates, rods, blocks, cylinders, containers, electric wires, tubes, and the like. Especially, a sheet | seat and an electric wire are preferable at the point with a severe request | requirement of crack resistance.
The thickness of the sheet is preferably 0.01 to 10 mm.
本発明のフッ素樹脂成形品は、特に限定されないが、例えば、以下の用途に適用することができる。
ダイヤフラムポンプの隔膜部、ベローズ成形品、電線被覆品、半導体用部品、パッキン・シール、コピーロール用薄肉チューブ、モノフィラメント、ガスケット、光学レンズ部品、石油発掘用チューブ、サテライト用電線、原子力発電用電線、太陽電池パネルフィルム。なかでも、ダイヤフラムポンプの隔膜部やベローズ成形品、電線被覆材等、繰り返し運動による耐クラック性が求められる箇所の部材に用いられることが好ましい。
Although the fluororesin molded product of this invention is not specifically limited, For example, it can apply to the following uses.
Diaphragm diaphragm parts, bellows molded products, wire coating products, semiconductor parts, packing and seals, thin tubes for copy rolls, monofilaments, gaskets, optical lens parts, oil excavation tubes, satellite cables, nuclear power cables, Solar panel film. Especially, it is preferable to use for the member of the location where the crack resistance by a repetitive motion is calculated | required, such as the diaphragm part of a diaphragm pump, a bellows molded product, and an electric wire coating material.
本発明はまた、TFE/HFP/PAVE共重合体を成形する工程、並びに、成形された上記共重合体に、上記共重合体の融点以下、かつ、ガラス転移温度以上の照射温度で、放射線を照射する工程を有することを特徴とするフッ素樹脂成形品の製造方法でもある。
上記TFE/HFP/PAVE共重合体を成形する工程は、上述したTFE/HFP/PAVE共重合体を成形する方法と同様に行うとよい。
上記放射線を照射する工程は、上述したTFE/HFP/PAVE共重合体に放射線を照射する方法と同様にして行うとよい。
The present invention also provides a step of molding a TFE / HFP / PAVE copolymer, and the molded copolymer is irradiated with radiation at an irradiation temperature not higher than the melting point of the copolymer and not lower than the glass transition temperature. It is also a method for producing a fluororesin molded product characterized by having an irradiation step.
The step of molding the TFE / HFP / PAVE copolymer may be performed in the same manner as the method of molding the TFE / HFP / PAVE copolymer described above.
The step of irradiating the radiation may be performed in the same manner as the method of irradiating the TFE / HFP / PAVE copolymer described above.
以上のように、本発明によれば、耐クラック性が向上した改質含フッ素共重合体、及び、フッ素樹脂成形品を得ることができる。 As described above, according to the present invention, a modified fluorine-containing copolymer having improved crack resistance and a fluororesin molded product can be obtained.
次に実施例を挙げて本発明を更に詳しく説明するが、本発明はこれらの実施例のみに限定されるものではない。 EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not limited only to these Examples.
単量体単位の含有量、メルトフローレート(MFR)、融点、ガラス転移温度は下記方法にて測定した。 The monomer unit content, melt flow rate (MFR), melting point, and glass transition temperature were measured by the following methods.
(単量体単位の含有量)
各単量体単位の含有量は、19F-NMR法により測定した。
(Monomer unit content)
The content of each monomer unit was measured by 19 F-NMR method.
(MFR)
ASTM D1238に従って、メルトインデクサー((株)安田精機製作所製)を用いて、372℃、5kg荷重下で内径2mm、長さ8mmのノズルから10分間あたりに流出するポリマーの質量(g/10分)を求めた。
(MFR)
According to ASTM D1238, using a melt indexer (manufactured by Yasuda Seiki Seisakusho Co., Ltd.), the mass of the polymer flowing out per 10 minutes from a nozzle having an inner diameter of 2 mm and a length of 8 mm under a load of 372 ° C. and 5 kg (g / 10 minutes) )
(ガラス転移温度)
DVA-220(アイティー計測制御株式会社製)を用いた動的粘弾性測定を行い求めた。昇温速度2℃/分、周波数10Hzで測定し、tanδ値のピークにおける温度をガラス転移温度とした。
(Glass-transition temperature)
The dynamic viscoelasticity measurement using DVA-220 (made by IT Measurement Control Co., Ltd.) was performed and determined. The temperature was measured at a rate of temperature increase of 2 ° C./min and a frequency of 10 Hz, and the temperature at the peak of the tan δ value was defined as the glass transition temperature.
(融点)
上記融点は、示差走査熱量計〔DSC〕を用いて10℃/分の速度で昇温したときの融解熱曲線における極大値に対応する温度である。
(Melting point)
The melting point is a temperature corresponding to the maximum value in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter [DSC].
(実施例1)
テトラフルオロエチレン(TFE)/ヘキサフルオロプロピレン(HFP)/パーフルオロ(プロピルビニルエーテル)(PAVE)共重合体[TFE/HFP/PAVE=88/11/1.0(質量%)、MFR24g/10分、融点257℃、ガラス転移温度85℃]をヒートプレス成型器で0.215mm厚のシート状に加工した後、幅12.5mm、長さ130mmの短冊状に切り取り、試験片を得た。
得られた試験片を、電子線照射装置(NHVコーポレーション社製)の電子線照射容器に収容し、その後窒素ガスを加えて容器内を窒素雰囲気下にした。容器内の温度を245℃まで昇温し温度が安定した後に、電子線加速電圧が3000kV、照射線量の強度が20kGy/5minの条件で、試験片に電子線を照射した。
照射後の試験片について、下記のMIT繰り返し折り曲げ試験を行った。結果を表1に示す。
(Example 1)
Tetrafluoroethylene (TFE) / hexafluoropropylene (HFP) / perfluoro (propyl vinyl ether) (PAVE) copolymer [TFE / HFP / PAVE = 88/11 / 1.0 (mass%), MFR 24 g / 10 min. A melting point of 257 ° C. and a glass transition temperature of 85 ° C. was processed into a sheet having a thickness of 0.215 mm using a heat press molding machine, and then cut into strips having a width of 12.5 mm and a length of 130 mm to obtain test pieces.
The obtained test piece was accommodated in an electron beam irradiation container of an electron beam irradiation apparatus (manufactured by NHV Corporation), and then nitrogen gas was added to bring the container into a nitrogen atmosphere. After raising the temperature in the container to 245 ° C. and stabilizing the temperature, the specimen was irradiated with an electron beam under the conditions of an electron beam acceleration voltage of 3000 kV and an irradiation dose intensity of 20 kGy / 5 min.
The test piece after the irradiation was subjected to the following MIT repeated bending test. The results are shown in Table 1.
(MIT繰り返し折り曲げ試験)
ASTM D2176に準じて行った。具体的には、上記で得られた、幅12.7、長さ130mmの、電子線照射後の試験片を、MIT測定器(型番12176、(株)安田精機製作所製)に装着し、荷重1.25kg、左右の折り曲げ角度各135度、折り曲げ回数175回/分の条件下で試験片を屈曲させ、試験片が切断するまでの回数(MIT繰り返し回数)を測定した。
(MIT repeated bending test)
Performed according to ASTM D2176. Specifically, the test piece after irradiation with an electron beam having a width of 12.7 and a length of 130 mm obtained above was mounted on an MIT measuring instrument (model number 12176, manufactured by Yasuda Seiki Seisakusho), and the load The test piece was bent under the conditions of 1.25 kg, left and right bending angles of 135 degrees and the number of bending times of 175 times / minute, and the number of times until the test piece was cut (the number of MIT repetitions) was measured.
(実施例2~9、及び、比較例2)
表1に記載の照射温度と照射線量で電子線照射を行った点以外は、実施例1と同様にして、試験片を得て、MIT繰り返し折り曲げ試験を行った。結果を表1に示す。
(Examples 2 to 9 and Comparative Example 2)
A test piece was obtained in the same manner as in Example 1 except that the electron beam irradiation was performed at the irradiation temperature and irradiation dose shown in Table 1, and the MIT repeated bending test was performed. The results are shown in Table 1.
(比較例1)
電子線照射を行わなかった点以外は、実施例1と同様にして、試験片を得て、MIT繰り返し折り曲げ試験を行った。結果を表1に示す。
(Comparative Example 1)
A test piece was obtained in the same manner as in Example 1 except that the electron beam irradiation was not performed, and the MIT repeated bending test was performed. The results are shown in Table 1.
(実施例10~15、比較例3、4)
テトラフルオロエチレン(TFE)/ヘキサフルオロプロピレン(HFP)/パーフルオロ(プロピルビニルエーテル)(PAVE)共重合体[TFE/HFP/PAVE=86/13/1(質量%)、MFR10g/10分、融点220℃、ガラス転移温度80℃]を原料に用いた以外は、実施例1と同様にして、試験片を得て、MIT繰り返し折り曲げ試験を行った。結果を表2に示す。
(Examples 10 to 15, Comparative Examples 3 and 4)
Tetrafluoroethylene (TFE) / hexafluoropropylene (HFP) / perfluoro (propyl vinyl ether) (PAVE) copolymer [TFE / HFP / PAVE = 86/13/1 (mass%), MFR 10 g / 10 min, melting point 220 A test piece was obtained in the same manner as in Example 1 except that [° C., glass transition temperature 80 ° C.] was used as a raw material, and an MIT repeated bending test was performed. The results are shown in Table 2.
(実施例16~21、比較例5、6)
テトラフルオロエチレン(TFE)/ヘキサフルオロプロピレン(HFP)/パーフルオロ(プロピルビニルエーテル)(PAVE)共重合体[TFE/HFP/PAVE=75/0.1/24.9(質量%)、MFR40g/10分、融点240℃、ガラス転移温度80℃]を原料に用いた以外は、実施例1と同様にして、試験片を得て、MIT繰り返し折り曲げ試験を行った。結果を表3に示す。
(Examples 16 to 21, Comparative Examples 5 and 6)
Tetrafluoroethylene (TFE) / hexafluoropropylene (HFP) / perfluoro (propyl vinyl ether) (PAVE) copolymer [TFE / HFP / PAVE = 75 / 0.1 / 24.9 (mass%), MFR 40 g / 10 A test piece was obtained in the same manner as in Example 1 except that the starting material was a material having a melting point of 240 ° C and a glass transition temperature of 80 ° C. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
本発明の改質含フッ素共重合体からなる成形品は、ダイヤフラムポンプの隔膜部又はベローズ成形品、電線被覆材、薄肉チューブ等の耐クラック性が求められる各種の用途に適用することができる。 The molded product made of the modified fluorine-containing copolymer of the present invention can be applied to various uses such as diaphragm parts of diaphragm pumps or bellows molded products, wire coating materials, thin-walled tubes and the like that require crack resistance.

Claims (9)

  1. テトラフルオロエチレン単位、ヘキサフルオロプロピレン単位、及び、パーフルオロ(アルキルビニルエーテル)単位を含む共重合体に、前記共重合体の融点以下、かつ、ガラス転移温度以上の照射温度で、放射線を照射することにより得られた
    ことを特徴とする改質含フッ素共重合体。
    Irradiating a copolymer containing a tetrafluoroethylene unit, a hexafluoropropylene unit, and a perfluoro (alkyl vinyl ether) unit at an irradiation temperature not higher than the melting point of the copolymer and not lower than the glass transition temperature. A modified fluorine-containing copolymer obtained by
  2. 請求項1記載の改質含フッ素共重合体からなることを特徴とするフッ素樹脂成形品。 A fluororesin molded article comprising the modified fluorine-containing copolymer according to claim 1.
  3. テトラフルオロエチレン単位、ヘキサフルオロプロピレン単位、及び、パーフルオロ(アルキルビニルエーテル)単位を含む共重合体を成形する工程、並びに、
    成形された前記共重合体に、前記共重合体の融点以下、かつ、ガラス転移温度以上の照射温度で、放射線を照射する工程を有する成形品の製造方法により得られた
    ことを特徴とするフッ素樹脂成形品。
    Molding a copolymer comprising tetrafluoroethylene units, hexafluoropropylene units, and perfluoro (alkyl vinyl ether) units; and
    Fluorine obtained by a method for producing a molded article comprising a step of irradiating the molded copolymer with radiation at an irradiation temperature not higher than the melting point of the copolymer and not lower than a glass transition temperature. Resin molded product.
  4. テトラフルオロエチレン単位、ヘキサフルオロプロピレン単位、及び、パーフルオロ(アルキルビニルエーテル)単位を含む共重合体は、ヘキサフルオロプロピレン単位が全単量体単位の25質量%以下である請求項2又は3記載のフッ素樹脂成形品。 The copolymer containing a tetrafluoroethylene unit, a hexafluoropropylene unit, and a perfluoro (alkyl vinyl ether) unit has a hexafluoropropylene unit of 25% by mass or less based on the total monomer units. Fluoropolymer molded product.
  5. テトラフルオロエチレン単位、ヘキサフルオロプロピレン単位、及び、パーフルオロ(アルキルビニルエーテル)単位を含む共重合体は、パーフルオロ(アルキルビニルエーテル)単位が全単量体単位の25質量%以下である請求項2、3又は4記載のフッ素樹脂成形品。 The copolymer containing a tetrafluoroethylene unit, a hexafluoropropylene unit, and a perfluoro (alkyl vinyl ether) unit has a perfluoro (alkyl vinyl ether) unit of 25% by mass or less based on the total monomer units. 3. A fluororesin molded product according to 3 or 4.
  6. テトラフルオロエチレン単位、ヘキサフルオロプロピレン単位、及び、パーフルオロ(アルキルビニルエーテル)単位を含む共重合体は、融点が200~300℃である求項2、3、4又は5記載のフッ素樹脂成形品。 The fluororesin molded article according to claim 2, 3, 4 or 5, wherein the copolymer containing a tetrafluoroethylene unit, a hexafluoropropylene unit, and a perfluoro (alkyl vinyl ether) unit has a melting point of 200 to 300 ° C.
  7. パーフルオロ(アルキルビニルエーテル)は、パーフルオロ(プロピルビニルエーテル)である請求項2、3、4、5又は6記載のフッ素樹脂成形品。 The fluororesin molded article according to claim 2, 3, 4, 5 or 6, wherein the perfluoro (alkyl vinyl ether) is perfluoro (propyl vinyl ether).
  8. テトラフルオロエチレン単位、ヘキサフルオロプロピレン単位、及び、パーフルオロ(アルキルビニルエーテル)単位を含む共重合体を成形する工程、並びに、
    成形された前記共重合体に、前記共重合体の融点以下、かつ、ガラス転移温度以上の照射温度で、放射線を照射する工程を有する
    ことを特徴とするフッ素樹脂成形品の製造方法。
    Molding a copolymer comprising tetrafluoroethylene units, hexafluoropropylene units, and perfluoro (alkyl vinyl ether) units; and
    A method for producing a fluororesin molded article, comprising a step of irradiating the molded copolymer with radiation at an irradiation temperature not higher than the melting point of the copolymer and not lower than a glass transition temperature.
  9. 放射線の照射線量が50kGy~300kGyである請求項8記載のフッ素樹脂成形品の製造方法。 The method for producing a fluororesin molded article according to claim 8, wherein the radiation dose is 50 kGy to 300 kGy.
PCT/JP2013/068420 2012-07-05 2013-07-04 Modified fluorine-containing copolymer, fluorine resin molded article, and method for manufacturing fluorine resin molded article WO2014007348A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012151827 2012-07-05
JP2012-151827 2012-07-05

Publications (1)

Publication Number Publication Date
WO2014007348A1 true WO2014007348A1 (en) 2014-01-09

Family

ID=49882099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068420 WO2014007348A1 (en) 2012-07-05 2013-07-04 Modified fluorine-containing copolymer, fluorine resin molded article, and method for manufacturing fluorine resin molded article

Country Status (3)

Country Link
JP (1) JP5392433B1 (en)
TW (1) TW201406793A (en)
WO (1) WO2014007348A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015104975A1 (en) * 2014-01-08 2015-07-16 ダイキン工業株式会社 Modified fluorine-containing copolymer and fluorine resin molded article
US10731015B2 (en) 2012-07-05 2020-08-04 Daikin Industries, Ltd. Modified fluorine-containing copolymer, fluorine resin molded article, and method for manufacturing fluorine resin molded article
CN112976531A (en) * 2019-12-16 2021-06-18 浙江蓝天环保高科技股份有限公司 Preparation method of modified polyvinyl fluoride resin
WO2022181838A1 (en) * 2021-02-26 2022-09-01 ダイキン工業株式会社 Fluorine-containing copolymer
WO2022181839A1 (en) * 2021-02-26 2022-09-01 ダイキン工業株式会社 Fluorine-containing copolymer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015118810A1 (en) 2014-02-05 2015-08-13 キヤノン株式会社 Fixing member and method for manufacturing same, fixing device, and image formation device
US11826975B2 (en) 2016-08-16 2023-11-28 Daikin Industries, Ltd. Molded article and manufacturing method for molded article

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149867A (en) * 1997-07-31 1999-02-23 Japan Atom Energy Res Inst Modified fluororesin and its production
JP2000186162A (en) * 1998-12-22 2000-07-04 Hitachi Cable Ltd Production of modified fluororesin
JP2002124272A (en) * 2000-10-17 2002-04-26 Toyota Central Res & Dev Lab Inc Solid high-polymer electrolyte
JP2002284893A (en) * 2001-03-26 2002-10-03 Hitachi Cable Ltd Manufacturing method and apparatus for modified fluororesin
JP2003165853A (en) * 2001-11-30 2003-06-10 Sumitomo Heavy Ind Ltd Method for producing modified fluororesin and member using the same
JP2004160902A (en) * 2002-11-14 2004-06-10 Mitsuboshi Co Ltd Manufacturing process for fluororubber molded body
JP2011222458A (en) * 2010-04-14 2011-11-04 Japan Atomic Energy Agency Radiation crosslinking fluorine-based solid polymer electrolyte and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149867A (en) * 1997-07-31 1999-02-23 Japan Atom Energy Res Inst Modified fluororesin and its production
JP2000186162A (en) * 1998-12-22 2000-07-04 Hitachi Cable Ltd Production of modified fluororesin
JP2002124272A (en) * 2000-10-17 2002-04-26 Toyota Central Res & Dev Lab Inc Solid high-polymer electrolyte
JP2002284893A (en) * 2001-03-26 2002-10-03 Hitachi Cable Ltd Manufacturing method and apparatus for modified fluororesin
JP2003165853A (en) * 2001-11-30 2003-06-10 Sumitomo Heavy Ind Ltd Method for producing modified fluororesin and member using the same
JP2004160902A (en) * 2002-11-14 2004-06-10 Mitsuboshi Co Ltd Manufacturing process for fluororubber molded body
JP2011222458A (en) * 2010-04-14 2011-11-04 Japan Atomic Energy Agency Radiation crosslinking fluorine-based solid polymer electrolyte and method for manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10731015B2 (en) 2012-07-05 2020-08-04 Daikin Industries, Ltd. Modified fluorine-containing copolymer, fluorine resin molded article, and method for manufacturing fluorine resin molded article
WO2015104975A1 (en) * 2014-01-08 2015-07-16 ダイキン工業株式会社 Modified fluorine-containing copolymer and fluorine resin molded article
JP2015147924A (en) * 2014-01-08 2015-08-20 ダイキン工業株式会社 Modified fluorine-containing copolymer and fluororesin molded article
CN112976531A (en) * 2019-12-16 2021-06-18 浙江蓝天环保高科技股份有限公司 Preparation method of modified polyvinyl fluoride resin
CN112976531B (en) * 2019-12-16 2022-11-18 浙江蓝天环保高科技股份有限公司 Preparation method of modified polyvinyl fluoride resin
WO2022181838A1 (en) * 2021-02-26 2022-09-01 ダイキン工業株式会社 Fluorine-containing copolymer
WO2022181839A1 (en) * 2021-02-26 2022-09-01 ダイキン工業株式会社 Fluorine-containing copolymer
JP2022132223A (en) * 2021-02-26 2022-09-07 ダイキン工業株式会社 fluorine-containing copolymer
JP2022132222A (en) * 2021-02-26 2022-09-07 ダイキン工業株式会社 fluorine-containing copolymer
JP7277842B2 (en) 2021-02-26 2023-05-19 ダイキン工業株式会社 fluorine-containing copolymer
JP7277843B2 (en) 2021-02-26 2023-05-19 ダイキン工業株式会社 fluorine-containing copolymer

Also Published As

Publication number Publication date
JP5392433B1 (en) 2014-01-22
JP2014028952A (en) 2014-02-13
TW201406793A (en) 2014-02-16

Similar Documents

Publication Publication Date Title
JP5598579B2 (en) Modified fluororesin mixture, fluororesin molded product, and method for producing fluororesin molded product
JP5454726B2 (en) Modified fluorine-containing copolymer, fluororesin molded product, and method for producing fluororesin molded product
JP5967181B2 (en) Modified fluorine-containing copolymer and fluororesin molded product
JP5392433B1 (en) Modified fluorine-containing copolymer, fluororesin molded product, and method for producing fluororesin molded product
JP6045559B2 (en) Heat resistant wire
US11021582B2 (en) Method for producing modified molded article of fluororesin
TW201827495A (en) Manufacturing method of modified molded article, molded article, diaphragm and diaphragm valve
US11826975B2 (en) Molded article and manufacturing method for molded article
WO2022075316A1 (en) Molded article and method for producing same, diaphragm, and diaphragm valve
JP5224315B2 (en) Radiation-crosslinked fluorine-containing copolymer
JP5224314B2 (en) Radiation-crosslinked fluorine-containing copolymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13813956

Country of ref document: EP

Kind code of ref document: A1