WO2014007328A1 - Portable measuring apparatus - Google Patents

Portable measuring apparatus Download PDF

Info

Publication number
WO2014007328A1
WO2014007328A1 PCT/JP2013/068365 JP2013068365W WO2014007328A1 WO 2014007328 A1 WO2014007328 A1 WO 2014007328A1 JP 2013068365 W JP2013068365 W JP 2013068365W WO 2014007328 A1 WO2014007328 A1 WO 2014007328A1
Authority
WO
WIPO (PCT)
Prior art keywords
dose rate
measurement
time
radiation
interrupt
Prior art date
Application number
PCT/JP2013/068365
Other languages
French (fr)
Japanese (ja)
Inventor
忠郎 安藤
直起 江角
笹沼 秀規
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014007328A1 publication Critical patent/WO2014007328A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/026Semiconductor dose-rate meters

Definitions

  • the present invention relates to a portable measuring apparatus that can execute a program and has a screen display function, and more particularly, to a portable terminal apparatus that has a function of detecting radiation and displaying the detection result on a screen. More specifically, the present invention relates to a portable communication terminal having a function of performing radiation dose rate measurement and display capable of performing radiation measurement and measurement result display with low power consumption.
  • radiation levels for example, radiation dose
  • radiation levels are continuously measured to take into account the health of each worker. To be done.
  • the radiation level is monitored and the safety of the facility is confirmed according to the measurement results.
  • a hand-held type or portable radiation measuring instrument there are a simple home radiation measuring instrument using a photodiode as a radiation sensor and a relatively sensitive radiation measuring instrument using a Geiger Mueller counter as a radiation sensor. . These radiation measuring instruments are dedicated devices for radiation measurement, and the measurement results are displayed on the display screen.
  • a liquid crystal screen that requires light irradiation with a backlight is used as the display screen.
  • the backlight is always turned on at the time of radiation measurement, the current consumption for the screen display due to the turning on of the backlight becomes large.
  • the application CPU central processing unit
  • This “sleep” state is a mode in which used data is stored in a memory and power supply to a non-operating device such as a CPU is stopped. Therefore, when the “sleep” state is not entered, power is supplied to the application CPU and other hard disk drives (HDDs), and the current consumption increases greatly.
  • HDDs hard disk drives
  • the portable communication terminal is powered by a battery, and it is desirable to reduce the current consumption as much as possible in order to extend the battery usage time in one charge. Therefore, in such a portable communication terminal device, it is difficult to always display the measured dose rate by turning on the backlight at all times and measuring the radiation dose. It is common to turn off the lights.
  • the measured dose is represented by a predetermined dose rate (radiation dose per unit time, for example, spatial radiation intensity (radiation dose): ⁇ Sv / h).
  • a function of generating sound or light and notifying the user when detecting a high dose rate is provided.
  • the current consumption increases.
  • a pedometer function as a function for continuous measurement.
  • the pedometer function in the portable communication terminal even if the backlight is turned off, the number of steps is always measured and the count-up operation is performed inside the sensor. For example, the CPU is periodically activated once an hour, and the count value of this counter is stored.
  • the pedometer function it is not necessary to display the radiation dose for a certain time on the screen like the dose rate, and it is only necessary to know the accumulated count number. Therefore, in the pedometer function, for example, it is sufficient to acquire the sensor output in a long cycle such as once per hour, and the current consumption in the backlight extinction state is not a problem.
  • the target pedometer can be set in the pedometer function.
  • the target value since there is no urgent need for the user to know that the target value has been reached immediately after achieving the target number of steps, there is a particular problem with obtaining count values in a long measurement period such as once per hour. Does not occur.
  • Japanese Patent Application Laid-Open Publication No. 2009-058390 discloses a configuration for informing when the measured dose rate reaches a predetermined level.
  • a mail address for information transmission is registered and set in advance in the radiation dose measuring apparatus.
  • the radiation dose value at a specific location is constantly monitored, and when this monitoring result exceeds a predetermined dose rate, it is sent to these pre-registered email addresses via the Internet in the form of an email .
  • no consideration is given to the problem of current consumption in a system that constantly monitors the radiation dose value at a specific location.
  • a mobile communication terminal such as a smart phone (multifunctional mobile terminal) or mobile phone
  • a radiation measurement function the general public can use radiation in a desired area such as a residential area without using a dedicated radiation measurement device. The amount can be easily measured.
  • the display screen of such a portable communication terminal has a large size and a multicolor display with a large number of colors, a large amount of current is consumed when the backlight is lit. Therefore, in a portable communication terminal having such a radiation measurement function, it is necessary to measure the dose rate while reducing the current consumption as much as possible when the backlight is turned off.
  • the current dose rate spatial radiation intensity
  • the user wants to know the current dose rate in order to immediately display the screen, it is necessary to continue radiation measurement regardless of whether the backlight is on or off.
  • the function in order to realize the function to save the cumulative dose rate and to generate an alert (alarm) when a dose rate exceeding the set threshold is detected, in the radiation measurement mode, It is necessary to measure the dose rate.
  • the dose rate at the time of the alert (alarm) and the dose rate on the display screen do not match due to delays in the display process when switching from the unlit state to the lit state.
  • Such a problem is not limited to a portable communication terminal, but also occurs in a radiation measuring instrument having a multicolor display function.
  • an object of the present invention is to provide a portable measuring apparatus capable of measuring a radiation dose (dose rate) with low current consumption and generating an alarm accurately according to an actual environmental dose rate. is there.
  • a portable measuring device includes a display device having a lighting mode and a light-off mode, a radiation detection unit that generates a pulse signal for each radiation input, and counts output pulses of the detection unit.
  • a counter that captures the count value of the counter in a first time during the lighting mode and a time that is longer than the first time during the extinguishing mode, and a dose according to the stored value of the memory circuit according to the mode instruction
  • a control execution unit that calculates a rate and switches a calculation algorithm used for calculating a dose rate between at least the extinguishing mode and the lighting mode.
  • control execution unit further switches the calculation algorithm used for calculating the dose rate to the transient calculation algorithm when switching from the extinguishing mode to the lighting mode.
  • the transient calculation algorithm changes with time so that the weight of the dose rate measured in the lighting mode becomes larger than the dose rate calculated in the lighting mode as time elapses from the extinguishing mode to the lighting mode.
  • the transient calculation algorithm includes a first part including the latest dose rate in the extinguishing mode and a second part for calculating the dose rate using the count value captured at the first time according to the output signal of the timer circuit.
  • the weight of the second part is increased with time.
  • control execution unit stores the calculated latest dose rate in the memory circuit in the extinguishing mode.
  • a timer circuit for generating a first timing signal that defines the first time and a second timing signal that defines a second time longer than the first time.
  • the control execution unit takes in the count value of the counter from the timer circuit to the memory circuit according to the first timing signal and the second timing signal in the lighting mode and the extinguishing mode.
  • an interrupt register that stores an interrupt count value that defines the count period of the counter, a count register that stores the count value of the counter that is the starting point of the interrupt as the starting value, and a measurement control that at least controls the register storing operation A unit is further provided.
  • the memory circuit includes a threshold storage area for storing a threshold dose value and a calculated value storage area for storing a calculated value indicating a measurement start time.
  • the measurement control unit selectively generates an interrupt according to the count value of the counter, the difference value of the count value of the count register, and the interrupt count value of the interrupt register, and gives it to the control execution unit.
  • the control execution unit calculates a dose rate from the time difference between the starting value of the memory circuit and the time of application of the interrupt and the interrupt count value of the interrupt register, and the calculated dose rate is equal to or greater than the threshold dose value.
  • An alarm is generated when
  • the interrupt count value is the number of pulses given by the count rate corresponding to the threshold dose rate.
  • the dose rate calculation algorithm is switched according to the lighting condition of the backlight, and the dose rate can be measured even when the backlight is turned off with low current consumption.
  • the dose rate can be displayed on the screen immediately after the backlight is turned on with low current consumption, and an alert function with low current consumption can be realized according to the actual measurement value.
  • FIG. 2 is a diagram schematically showing a configuration of an application CPU shown in FIG. 1.
  • FIG. 2 is a diagram schematically showing a configuration of a memory shown in FIG. 1.
  • FIG. 2 is a diagram schematically showing a configuration of a timer circuit shown in FIG. 1.
  • FIG. 1 schematically shows an example of the overall configuration of a portable communication terminal according to the first embodiment of the present invention.
  • a portable communication terminal 1 used as a portable measuring apparatus displays a radiation sensor 2 that measures radiation, an application CPU 4 that executes processing of various applications, various information, and operation contents by panel operation. Is included.
  • the display device 6 includes a display unit 6A that displays various icons, calculation results, radiation measurement results, and the like of the application, a backlight 6B that irradiates a display screen included in the display unit 6A according to the mode, and a display unit 6A.
  • a touch panel 6C for instructing various operations.
  • the apparatus having the function of measuring radiation is not limited to a portable communication terminal having a communication function. However, in the following description, an embodiment of the portable measurement apparatus will be described simply as a communication terminal.
  • the display unit 6A uses a liquid crystal display screen as a display screen, and when the backlight 6B is turned on, the display screen is in a display state in which various information can be visually recognized by light from the backlight 6B.
  • the display device 6 has a lighting mode and a light-off mode in which the display unit 6A is set to a display state and a non-display state by turning on and off the backlight, respectively.
  • the radiation sensor 2 is a semiconductor type radiation measuring instrument such as a photodiode as an example.
  • the radiation sensor 2 converts a signal generated when radiation enters the sensor 2 into a pulse signal, and counts the pulse signal. Measure.
  • the application CPU 4 corresponds to the control execution unit, and processes and executes an application for measuring radiation by the radiation sensor 2 and displaying a measurement result, and various other applications (application programs) according to a designated mode.
  • the communication terminal 1 further includes a timer circuit 10 that generates a timing that defines the measurement timing in the radiation measurement mode, a memory 8 that stores measurement results during radiation measurement, and a storage medium 12 that stores various application programs. , A storage medium reading unit 14 for reading an application program stored in the storage medium 12, a transmission / reception unit 16 for transmitting / receiving data / voice and the like to / from other communication terminals via the antenna 20, and a speaker 17 for outputting sound. A main CPU 18 that controls the operation of the communication terminal, and a power supply unit 19 that supplies power to the communication terminal 1.
  • the internal components of the communication terminal 1 are interconnected via the bus 21.
  • the storage medium 12 is composed of, for example, a hard disk, and stores various applications that are downloaded or preinstalled in a nonvolatile manner, and stores (saves) stored information in the memory 8 in a low power consumption mode such as in a sleep mode. .
  • the communication terminal 1 shown in FIG. 1 is a portable communication terminal device called a smart phone (multifunctional portable communication terminal device) or a tablet type terminal device, for example, and is displayed via a touch panel 6C arranged on the surface of the display unit 6A. A desired operation can be commanded by operating an icon or the like displayed on the part 6A.
  • the communication terminal 1 may be a normal mobile phone that is not provided with the touch panel 6C.
  • FIG. 2 is a diagram schematically showing the configuration of the radiation sensor 2 shown in FIG.
  • the radiation sensor 2 includes a radiation detection unit 22 that detects radiation, and a counter 24 that counts output pulse signals of the detection unit 22.
  • the radiation detection unit 22 includes, as an example, a photodiode, an amplifier that amplifies the output signal of the photodiode, and a comparator that generates a pulse signal when the output signal of the amplifier exceeds a predetermined reference value.
  • a photodiode when radiation such as gamma rays ( ⁇ rays) enters, an electron / hole pair is generated inside, and the electrons and holes are separated by an internal electric field or an electric field generated by a bias voltage to generate a current. Flows. This current is amplified by an amplifier, compared with a reference value in a comparator, and a pulse is generated when the current value exceeds the reference value. Thereby, a pulse is generated when radiation is detected in the radiation detection unit 22.
  • Radiation includes alpha rays ( ⁇ rays), beta rays ( ⁇ rays), gamma rays ( ⁇ rays), and the like.
  • the semiconductor radiation sensor can be positioned close to the position where the depletion layer and the minority carrier diffusion layer, which are radiation sensitive regions, are formed, and the maximum absorption region of the radiation. Thereby, the selectivity with respect to the radiation of measurement object can be made high, for example, the gamma ray (gamma ray) from cesium which is especially a problem in the recent general radiation measurement can be detected efficiently and correctly.
  • the radiation detection unit 22 may be configured to detect both ⁇ rays and ⁇ rays.
  • FIG. 3 is a diagram schematically showing the configuration of the application CPU 4 shown in FIG.
  • the application CPU 4 is coupled to the bus 21 and stores an application execution control unit 26 that performs execution processing of the specified application, and an application program (software) specified under the control of the application execution control unit 26.
  • Application storage unit 27 is provided.
  • the application execution control unit 26 stores an application program for dose rate measurement in the application storage unit 27 when the dose rate measurement mode is designated.
  • two types of algorithms AL1 and AL2, are prepared for the radiation measurement application program according to the lighting state of the backlight, and are used at the time of transition from the off mode to the lighting mode.
  • Algorithm AL3 is prepared.
  • the dose rate calculation algorithm AL1 used in this backlight lighting state (lighting mode) is expressed by the following equation.
  • T1 indicates a period for measuring the radiation dose rate
  • n is a predetermined constant
  • n count values are stored in the memory 8.
  • C [m] is the mth count value of the counter.
  • Sm is the dose rate.
  • K is a conversion factor from a measurement rate of 1 CPM to a dose rate of 1 ⁇ Sv / h, and is usually given as a reciprocal of the sensitivity of the radiation sensor 2.
  • the measurement rate CPM is an average count number of pulses per unit time (1 minute).
  • the calculation algorithm AL2 for calculating the dose rate Rm used in the backlight off state (off mode) is expressed by the following equation.
  • Rm (B [m + 1] ⁇ B [m]) ⁇ K / T3, T3> T1,
  • B [m] is the count value of the counter 24.
  • T3 represents the measurement period of the count value of the counter. In the erased state, the current consumption is reduced by making the measurement cycle longer than the lighting state.
  • the previous count value of the counter 24 included in the radiation sensor 2 is stored, and the dose rate Rm is calculated using the newly calculated count value.
  • the count value B [m] of the previous counter and the previous dose rate Rm ⁇ 1 are overwritten with the new count value B [m + 1] and the new dose rate Rm.
  • a dose rate calculation algorithm AL3 represented by the following equation is used.
  • R is the latest dose rate calculated in the backlight extinction state
  • X is a constant that defines the period during which the dose rate calculation algorithm AL3 is used during the transition of the lighting state.
  • X n may be set.
  • the dose rate is calculated using the difference value of the count value of the counter 24 of the radiation sensor 2. This reduces the influence of background noise such as environmental radiation.
  • FIG. 4 is a diagram schematically showing the configuration of the memory 8 shown in FIG.
  • the memory 8 includes a lighting mode data storage area 28 that stores measurement data in the lighting mode, and a light-off mode data storage area 29 that stores measurement data in the light-off mode.
  • These data storage areas 28 and 29 are coupled to the bus 21 and store count values given in a FIFO (first-in / first-out) manner. The count values C are always stored.
  • FIFO first-in / first-out
  • n count values C are stored, and the dose rate is calculated using the count values of the measurement data separated by n periods (n ⁇ T1).
  • the latest count value B given from the radiation sensor 2 is stored in the extinguishing mode data storage area 29, and this latest count value is constantly updated with a new count value. Further, the latest calculated dose rate R is stored in the extinguishing mode data storage area 29.
  • FIG. 5 is a diagram schematically showing a configuration of the timer circuit 10 shown in FIG.
  • the timer 10 includes a first timer 30 that defines the measurement cycle in the lighting mode and a second timer 31 that defines the radiation measurement period in the extinguishing mode.
  • the first timer 30 and the second timer 31 are coupled to the radiation sensor 2 via the bus 21, generate an activation signal (count-up signal) for each set period, and perform an application via the bus 21. This is transmitted to the execution control unit 26.
  • timers are provided separately for each of the cycles T1 and T3.
  • the timer circuit 10 is composed of one timer, and a signal (a count-up signal) for starting the measurement operation is generated according to the measurement mode (the measurement mode in the unlit state and the measurement mode in the lit state) ( The activated periods T1 and T3 may be switched.
  • the period T2 is a constant and is fixedly set. (For example, when the cycle T1 is defined by the number N of clock signals (not shown), the cycle T2 is set to the number n ⁇ N of clock signals).
  • FIG. 6 schematically shows a sequence of radiation sensor measurement and dose rate calculation in the communication terminal according to the first embodiment of the present invention.
  • FIG. 6 shows the weights of the dose rates S and R in the algorithm AL3 together with the sampling period (measurement period) of the sensor output.
  • the vertical axis indicates dose rates S and R
  • the horizontal axis indicates time.
  • the weight of the dose rate S increases as it goes upward
  • the weight of the dose rate R increases as it goes down.
  • the count value of the counter 24 of the radiation sensor 2 is taken in and the dose rate is calculated with the backlight off. That is, the count value from the radiation sensor 2 is taken (sampled) at the period T3.
  • the dose rate Rm is calculated using two adjacent count values B [(m + 1)] and B [m].
  • the weight of the dose rate S is 0, and the weight of the dose rate R is 100%.
  • the latest dose rate and count value are stored in the storage area 29 of the memory 8.
  • the backlight lighting mode is entered.
  • the calculation algorithm AL3 at the time of transition is used at the time of transition from the backlight off state to the backlight on state.
  • the count value of the counter of the radiation sensor is taken in and the dose rate is calculated and displayed in a cycle T1.
  • the latest dose rate R calculated in the extinguishing state is multiplied by the weight (X ⁇ s) / X.
  • (C [s] ⁇ C [1]) / T1 ⁇ s is first obtained as an additional transient dose rate S using the count value C from the radiation sensor measured at the period T1, and this transient dose rate is calculated as The weight s / X is multiplied.
  • the parameter s increases and the dose rate R weight decreases, while the transient dose rate S weight increases. Therefore, the dose rate can be displayed on the display device immediately after the backlight is turned on, and the specific gravity of the latest radiation measurement result increases with time.
  • the weight of the transient dose rate S is 100%, while the weight of the dose rate R in the erased state is zero.
  • the calculation algorithm AL3 at the time of transition can be transferred to the calculation algorithm AL1 as it is. That is, after calculating the dose rate by C [n] -C [1] according to the calculation algorithm AL3, it is then possible to calculate the dose rate based on C [n + 1] -C [2] according to the calculation algorithm AL1. The continuity of dose rate is uninterrupted.
  • FIG. 7 is a flowchart schematically showing a dose rate measurement sequence of the communication terminal according to the first embodiment of the present invention.
  • the dose rate calculation and display operation of the communication terminal shown in FIGS. 1 to 5 will be described with reference to FIG.
  • the main CPU 18 waits for an input of a command for specifying a dose rate measurement process via the touch panel 6C included in the display device 6 (step SP1).
  • the main CPU 18 activates the application CPU 4 and loads a corresponding radiation dose rate measurement application program from the activation storage medium 12 via the storage medium reading unit 14. Read and give to application CPU4.
  • the application CPU 4 When receiving a dose rate measurement command from the main CPU 18, the application CPU 4 first activates the radiation sensor 2 (step SP2). As a result, the radiation detection unit 22 shown in FIG. 2 is activated and enters a state of measuring radiation.
  • the application CPU 4 determines whether the dose rate measurement is to be executed in the lighting state or in the extinguishing state (SP3). This processing content is specified by an icon operation using the touch panel 6C. In this state, the backlight is still on.
  • the application CPU 4 reads the calculation algorithm AL2 stored in the application storage unit 27 (see FIG. 3), enters the execution state of the calculation algorithm, and is shown in FIG.
  • the second timer 31 is started (step FF1).
  • the main CPU 18 may be configured to enter the sleeve state when the application CPU 4 enters the processing execution state (the power supply from the power supply unit 19 is cut off). )
  • the application CPU 4 sets the backlight 6B (see FIG. 1) to the off state and activates the counter 24 of the radiation sensor 2 to start the counting operation, and monitors the count value.
  • the counter 24 included in the radiation sensor 2 receives the count-up signal of the period T3 output from the second timer 31 via the bus 21.
  • the count value (see FIG. 2) is taken in.
  • the dose rate R is calculated according to the calculation algorithm AL2 from the previous count value stored in the extinction mode data storage area 29 included in the memory 8 and the count value acquired this time, and the extinction mode data is stored at the calculated latest dose rate.
  • the previous dose rate stored in the area 29 is updated (overwritten).
  • the application execution control unit 26 overwrites the previous count value stored in the turn-off mode data storage area 29 (see FIG. 4) with the acquired count value. Accordingly, the erase mode data storage area 29 holds the latest count value B and dose rate R at that time.
  • step FF2 the process of taking the count value of the counter 24 in accordance with the count-up signal of the period T3 from the second timer 31 and measuring the dose rate R is repeatedly executed.
  • step FF3 it is determined whether an instruction to end the dose rate calculation sequence in the unlit state has been given (step FF3).
  • the process proceeds to step FF4, and the necessary end process is executed.
  • the necessary end processing in step FF4 the backlight is set in a lighting state, and a message such as “Current dose rate measurement is in progress but will be ended” is displayed on the display unit 6A shown in FIG. Is done.
  • the application CPU 4 deactivates the radiation sensor 2, stops the dose and count measurement processing, and stops the timing operation of the second timer 31 of the timer circuit 10. .
  • the latest measured values (dose rate and count value) stored in the memory 8 in the unlit state may be saved in the storage medium 12.
  • the memory 8 is a non-volatile memory such as a flash memory, the stored contents may be retained without being erased. Further, the latest dose rate may be temporarily displayed at the end of processing.
  • step FF5 it is then determined whether the transition from the dose rate measurement in the unlit state to the measurement in the lit state is designated (step FF5).
  • an icon is displayed on the display unit 6A by, for example, a touch operation on the touch panel 6C shown in FIG. 1 (in this case, the backlight 6B is turned on), and the displayed icon is used.
  • the dose rate measurement in the lighting state is input by operating the touch panel 6C.
  • step FF5 If the measurement in the lighting state is not designated in step FF5, the processing from step FF2 is repeatedly executed.
  • step FF5 when the dose rate measurement process in the lighting state is designated in step FF5, the application CPU 4 turns on the backlight 6B shown in FIG. 1 and puts the second timer 31 shown in FIG. 5 into the inactive state.
  • the first timer 30 is activated.
  • the first timer 30 can start counting immediately if the power is always turned on and in an operation standby state (counting a clock signal from a clock generator (not shown)). The count-up signal is generated every period T1).
  • the application CPU 4 also reads AL3 from the storage area 29 instead of AL2 as a calculation algorithm, takes in the count value of the counter 24 by the count-up signal from the first timer 30 of the timer circuit 10 every cycle T1, and sequentially stores the memory. 8 is stored.
  • the application CPU 4 measures and calculates the dose rate using the transient calculation algorithm AL3 read from the application storage unit 27.
  • the count values from the radiation sensor 2 captured at the cycle T1 are sequentially stored in the lighting mode data storage area 28, and the dose rate Q in the transient state is calculated according to the algorithm AL3 and displayed on the display unit 6A.
  • the application execution control unit 26 of the application CPU calculates the dose rate Q using the calculation algorithm AL3 in the transient state, and calculates the dose rate Q on the display unit 6A at the cycle T1 of the count-up signal given from the first timer 30. Displays the dose rate. Accordingly, during the transition, the screen of the display unit 6A is updated at the cycle T1 (step FF6).
  • the application CPU 4 determines whether or not the count-up signal from the first timer 30 has been given X times during the transitional state when shifting from the unlit state to the lit state (step FF7). This is executed by counting up the time-up signal from the first timer 30 using a counter (not shown) in the application execution control unit 26 of the application CPU 4.
  • the count value from the counter 24 of the radiation sensor 2 is sequentially stored in the lighting mode data storage area 28.
  • X count values CP; Counted Pulses
  • step FF7 when the dose rate measurement / measurement process in the transient state is executed X times (step FF7), the application execution control unit 26 of the application CPU 4 accesses the application storage unit 27 to change the calculation algorithm to the transient state.
  • the calculation algorithm AL3 at the time is switched to the calculation algorithm AL1 at the lighting state (step FF8), and the dose rate measurement and calculation processing are executed according to the calculation algorithm AL1 at the lighting state (the process proceeds to step NN2 described later).
  • the dose rate measurement sequence is performed in the light-off state and in the transition state from the light-off state to the light-on state.
  • step NN1 when the dose rate measurement in the lighting state is designated in step SP3 at the time of inputting the dose rate measurement command, the application CPU 4 uses the calculation algorithm AL1 in the lighting state included in the application storage unit 27 and 1 Timer 30 is started (step NN1). The backlight is kept on.
  • the application execution control unit 26 included in the application CPU 4 takes the count value from the counter 24 of the radiation sensor 2 in accordance with the count up signal given from the first timer 30 every cycle T1, and the dose rate S according to the taken count value. And the calculated dose rate is displayed on the screen of the display unit 6A. As a result, the screen is updated every cycle T1 (step NN2).
  • n count values are always stored in the FIFO mode in the lighting mode data storage area 28 shown in FIG. 4 under the control of the application execution control unit 26.
  • step NN3 it is determined whether an end command for the radiation dose rate measurement process has been given.
  • the end of the dose rate measurement is instructed, for example, by operating the touch panel 6C shown in FIG. 1, the application CPU 4 executes necessary end processing (step NN4).
  • the dose rate displayed on the display unit 6A may be simply deleted, and a process for shifting to the initial screen may be performed, or the backlight 6B may be turned off.
  • step NN5 it is next determined whether or not a command from the lighting state to the extinguishing state is given. While the dose rate measurement in the lighting state is given, the application execution control unit 26 of the application CPU 4 repeatedly executes the processing from step NN2.
  • step NN5 when the dose rate measurement sequence in the unlit state is commanded (by the operation of the touch panel 6C), the application execution control unit 26 of the application CPU 4 switches the calculation algorithm from AL1 to AL2 and sends it to the timer circuit 10.
  • the first timer 30 included is deactivated and the second timer 31 is started. Thereafter, the measurement sequence in the off state from Step FF2 is executed.
  • the dose rate measurement is performed by switching the dose rate calculation algorithm in each of the backlight off state, the transition from the off state to the on state, and the backlight on state.
  • count that the application CPU at the time of a light extinction state measures a dose rate can be reduced, and current consumption can be reduced.
  • the latest dose rate is held together with the count value when the light is off.
  • the calculation algorithm for the transient state is used, the dose rate is calculated using the latest dose rate in the unlit state and the measured count value in the lit state. The weight is given to increase the specific gravity of the radiation measurement result.
  • the dose rate can be immediately displayed on the screen at the time of transition from the unlit state to the lit state, and the uncomfortable feeling that the dose rate changes rapidly does not occur.
  • the application CPU 4 is always in an operating state when the light is off and when the light is on.
  • the processing of the application execution control unit 26 in the application CPU 4 is only when a count-up instruction is given from the timer, and is normally in a standby state where no processing operation is performed (power is supplied). , Current consumption is suppressed.
  • FIG. 8 schematically shows a configuration of radiation sensor 2 of the communication terminal according to the second embodiment of the present invention.
  • the overall configuration of the communication terminal used in the second embodiment is the same as the configuration shown in FIG.
  • the radiation sensor 2 includes a radiation detection unit 22, a counter 24, a register circuit 42 for storing an interrupt count value and a count period value, and a measurement control unit 40.
  • the radiation detection unit 22 and the counter 24 generate a pulse signal and count the pulse signal at the time of radiation detection, respectively, as in the first embodiment.
  • a count value (CP) from the counter 24 is sent to the measurement control unit 40.
  • the register circuit 42 includes an interrupt generation register 44 that stores a count number for generating an interrupt to the application CPU 4 and a count register 46 that stores a count value that is a starting point for generating an interrupt of the counter 24.
  • the interrupt generation register 44 stores a threshold value that is a reference for comparing the count value of the counter 24, and this threshold value can be set and changed by the measurement control unit 40.
  • the count register 46 stores the count value of the counter 46 when the interrupt count number is set for the interrupt generation register 44.
  • the measurement control unit 40 selectively interrupts the application CPU (4) based on the magnitude relationship between the count value of the counter 24 and the interrupt count value stored in the interrupt generation register 44 and Operation control and setting of each data of the register circuit 42 are performed.
  • the measurement control unit 40 sends the count value of the counter 24 to the application CPU (4) at the time of transition from the unlit state to the lit state and when measuring the radiation dose rate in the lit state.
  • the measurement control unit 40 causes the radiation sensor 2 to perform radiation measurement by leaving the control of the application CPU 4 when measuring the radiation dose in the extinguished state.
  • the application CPU 4 can be set to a low power consumption mode such as a sleep state or a low-speed operation clock supply state during the count value measurement, and the application CPU 4 can be maintained in a low current consumption state.
  • FIG. 9 is a diagram schematically showing an overall configuration of the application CPU 4 used in the second embodiment of the present invention.
  • the application CPU 4 in the radiation measurement mode, includes an application execution control unit 50 that executes application software for radiation measurement, a radiation application storage unit 52 that stores an application program for radiation measurement, an alert ringing, and the like. It includes a threshold value calculation unit 54 that generates a threshold value of a dose value at the time of alarm generation and an interrupt threshold value stored in the interrupt generation register 44, and a timer 55 that measures an interrupt generation interval.
  • Application execution control unit 50 and radiation application storage unit 52 correspond to application execution control unit 26 and application storage unit 27 used in the first embodiment, respectively. However, the application execution control unit 50 is set to a low power consumption state such as a sleep mode as described above during the radiation measurement operation in the extinguished state.
  • the timer 55 is used to obtain a time difference when calculating the count per unit time of the count number CP from the radiation sensor 2, that is, a count rate (CPM).
  • the time difference is the time required from the occurrence of an interrupt request given by the radiation sensor 2 or from the next interrupt to the next interrupt.
  • a value obtained by converting the threshold dose rate Zth (unit ⁇ Sv / h) at the time of alarm occurrence such as alert ringing into an average count number per minute (threshold count rate CPMth) is an alert. Calculated as a threshold value.
  • a threshold count value corresponding to the alert threshold value is stored in the interrupt register 44 shown in FIG.
  • a calculation algorithm AL1 in a lighting state and a calculation algorithm AL3 used in a transition from a non-lighting state to a lighting state are prepared.
  • FIG. 10 is a diagram schematically showing the configuration of the memory 8 used in the second embodiment of the present invention.
  • a threshold value storage area 56 and a starting point storage area 58 are provided.
  • the lighting mode data storage area 28 and the extinguishing mode data storage area 29 are respectively the same as the storage areas shown in FIG. 4, and store the latest n count values and the latest count values and doses during measurement in the extinguished state, respectively. Stores the rate.
  • the threshold storage area 56 stores a threshold dose rate Zth at the time of alarm occurrence or a threshold measurement rate CPMth corresponding to this threshold dose rate.
  • the starting point storage area 58 stores a count value (time information) of the timer 55 that is a pulse counting start point in the extinguishing mode.
  • the other configuration of the communication terminal used in the second embodiment is the same as that of the communication terminal shown in FIG. 1, and detailed description thereof is omitted.
  • FIG. 11 shows a radiation measurement sequence when the communication terminal according to the second embodiment of the present invention is turned off.
  • a radiation measurement processing sequence when the communication terminal according to the second embodiment of the present invention is turned off will be described.
  • the application CPU 4 is activated under the control of the main CPU, reads the radiation application program stored in the storage medium 12 (see FIG. 1) via the storage medium reading unit 14, and stores it in the radiation application storage unit 52 shown in FIG. Store. Next, in this operation, when radiation measurement in an extinguished state is designated, the application execution control unit 50 of the application CPU 4 causes the threshold value calculation unit 54 to generate an alert threshold value (threshold measurement rate CPMth or threshold value). Dose rate Zth) is calculated. At least one of the calculated alert threshold CPMth and alert threshold dose rate Zth is stored in a threshold storage area 56 included in the memory 8 (P1).
  • the application execution control unit 50 stores the threshold count rate CPMth generated using the threshold calculation unit 54 as an interrupt generation count value in the interrupt generation register 44 of the radiation sensor 2 via the measurement control unit 40. (P2).
  • the application CPU 4 completes necessary initial processing, sets the backlight 6B to the off state, and stops the display of the display unit 6A.
  • the application execution control unit 50 instructs the measurement processing in the unlit state via the measurement control unit 40.
  • the count value at that time of the counter 24 is stored in the count register 46 under the control of the measurement control unit 40 (P4).
  • the timer 55 in the application CPU 4 is activated and performs a time measuring operation. In this state, the application CPU 4 is set to the low power consumption mode except for the timer 55.
  • the time information (count value) of the timer 55 is stored in the counting point storage area 58 as interrupt starting point information (P3).
  • the measurement control unit 40 determines whether the measurement time has reached the count number stored in the interrupt generation register 44 from the count value of the counter 24 and the count number stored in the count register 46. Due to the influence of natural radiation existing in the natural world, the count value of the counter 24 increases with time.
  • the measurement control unit 40 determines that the difference value between the count value of the counter 24 and the count value stored in the count register 46 has reached the interrupt count number stored in the interrupt generation register 44, the measurement control unit 40 determines that the interrupt is applied to the application CPU 4 Notify In the application CPU 4, the application execution control unit 50 returns from the low power consumption mode to the normal operation state, and the difference value between the measurement time of the timer 55 and the interrupt count number set time stored in the starting point storage area 58 of the memory 8 is calculated.
  • the dose rate is calculated from the number of interrupt counts and the time until the occurrence of the interrupt obtained by the time counting operation of the timer 55 (P6).
  • the measured dose rate is determined as the alert threshold dose rate Zth. Can be identified. At this time, it may be determined whether the measured environmental dose rate exceeds the threshold dose rate based on the magnitude of CPMth / Twr and CPMth.
  • the latest calculated dose rate R is stored in the extinguishing mode data storage area 29. If the measured dose rate at the time of occurrence of the interrupt does not reach the threshold value, the application CPU 4 notifies the measurement control unit 40 to that effect. At this time, the application CPU 4 also stores the time of the timer 55 shown in FIG. 9 in the starting point storage area 58 (see FIG. 10), and stores the count value of the counter 24 in the count register 46 via the measurement control unit 40. Is stored and the count value is updated. After this process, the application CPU 4 enters the low power consumption state again except for the timer 55. Within the radiation sensor 2, under the control of the measurement control unit 40, the count value of the counter 24 is monitored and the necessity / non-necessity of interrupt generation is determined.
  • the application CPU 4 measures the dose rate and determines that the measured dose rate exceeds the alert threshold dose rate Zth, the application CPU 4 The speaker 17 is sounded and an alert is generated (P9). Moreover, the measured dose rate at the time of actual alert ringing at this time is preserve
  • the user instructs the application CPU 4 to execute necessary processes such as lighting of the backlight 6B and display of the measurement threshold value on the display unit 6A.
  • the count value of the count register 46 is cleared when the alert is sounded. This is because it is possible to see the environmental dose rate by measuring the dose rate while the backlight is on, and it is not particularly necessary to sound an alert. However, the count value of the count register 46 does not have to be cleared when the alert is sounded. Thereby, the alert ringing processing sequence in the off state is completed.
  • FIG. 12 is a diagram showing a dose rate screen display sequence in the backlight lighting state of the communication terminal in the second embodiment of the present invention.
  • FIG. 12 the dose rate measurement process when the communication terminal in the backlight lighting state according to the second embodiment of the present invention is described.
  • the application CPU 4 When the radiation dose rate measurement command in the lighting state is given, the application CPU 4 turns on the backlight 6B or maintains the lighting state, and sets information necessary for the display unit 6A to be visible.
  • the timer circuit 10 as in the first embodiment, the first timer is activated, and generates a count-up signal that defines the measurement timing in the cycle T1 (P1).
  • the application CPU 4 notifies the measurement control unit 40 of the radiation measurement process in the lighting state. Accordingly, the measurement control unit 40 maintains the register circuit 42 in the non-operating state when the backlight is lit, and sequentially sends the count value of the counter 24 to the application CPU 4 at the cycle T1.
  • the application CPU 4 fetches the count value of the counter 24 in accordance with the count-up signal from the timer circuit 10 in the cycle T1 (P2) and sequentially stores it in the storage area 28 of the memory 8 (P3).
  • the dose rate Sm is calculated using the count values C [m] and C [m + n] stored in the storage area 28, and the calculated dose rate Sm is displayed on the display unit 6A. To do.
  • the latest measurement dose rate in the backlight unlit state is stored in the unlit mode data storage area 29.
  • the measured radiation dose rate R can be used to measure the radiation dose rate during the transition.
  • the dose rate is displayed on the display unit 6A in the lighting state.
  • an alert with light information such as ringing the speaker 17 or changing the display color of the display unit 6A as in the off state. Notification may be performed.
  • alarm generation processing is performed separately from the dose rate calculation algorithm for screen display during radiation measurement in the backlight off state.
  • alarm generation such as alerting is realized separately from the screen display, and radiation measurement is performed with low current consumption, and alarm generation can be performed without delay according to the environmental dose rate during measurement in the erased state. it can.
  • the latest dose rate calculated when the backlight is off is stored in the storage area 29, and when an alarm is generated such as when an alert is sounding, the dose rate is calculated during transition with a small error. It is possible to reduce the discrepancy between the screen display content and the alarm occurrence.
  • a communication terminal having a liquid crystal display screen using a backlight is described.
  • the present invention can also be applied to a communication terminal that uses an organic EL (electroluminescence) that does not use a backlight as a display screen.
  • the backlight off and lighting state may be associated with the display screen off and lighting state, respectively.
  • the present invention can be applied even to an apparatus having only a function such as radiation measurement that does not have a communication function.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Telephone Function (AREA)

Abstract

Algorithm for computing dose rate is switched between a backlight unlit state, transition from the backlight unlit state to a lighted state, and the backlight lighted state. According to the algorithm for the unlit state, the dose rate calculation period is increased compared with the lighted state. During the dose rate measurement in the unlit state, the latest dose rate is retained at all times.

Description

携帯型測定装置Portable measuring device
 この発明は、プログラムが実行可能でありかつ画面表示機能を備える携帯型測定装置に関し、特に、放射線を検出し、該検出結果を画面に表示する機能を備える携帯型端末装置に関する。より特定的には、この発明は、放射線計測および計測結果表示を低消費電力で行なうことのできる放射線量率計測および表示を行う機能を有する携帯型通信端末に関する。 The present invention relates to a portable measuring apparatus that can execute a program and has a screen display function, and more particularly, to a portable terminal apparatus that has a function of detecting radiation and displaying the detection result on a screen. More specifically, the present invention relates to a portable communication terminal having a function of performing radiation dose rate measurement and display capable of performing radiation measurement and measurement result display with low power consumption.
 従来、原子力発電所、核燃料処理施設および放射線医療施設などの放射線取扱施設においては、各作業従事者の健康等を考慮するために、所定箇所の放射線レベル(たとえば放射線量)を常時継続的に計測することが行なわれている。 Conventionally, in radiation handling facilities such as nuclear power plants, nuclear fuel processing facilities, and radiation medical facilities, radiation levels (for example, radiation dose) at predetermined locations are continuously measured to take into account the health of each worker. To be done.
 これらの放射線取扱施設においては、計測結果に従って放射線レベルの監視、および施設の安全性の確認などが行なわれている。 In these radiation handling facilities, the radiation level is monitored and the safety of the facility is confirmed according to the measurement results.
 一方において、東日本大震災時における福島原子力発電所に代表される原子力発電施設の事故が発生し、放射線の影響に対する関心が一般の人の間でも高まっている。このため、公的機関だけではなく、一般の人でも、放射線取扱施設の周辺区域の安全性を確認したいという要望が高くなってきている。安全性を確認するために、原子力発電施設等の放射線取扱施設近辺の放射線量を定期的に計測するシステムが設置されている。このシステムからの情報が一般の人にも公開されている。 On the other hand, accidents at nuclear power generation facilities represented by the Fukushima nuclear power plant at the time of the Great East Japan Earthquake occurred, and interest in the effects of radiation has increased among ordinary people. For this reason, not only public institutions but also ordinary people are increasingly demanding to confirm the safety of the surrounding areas of radiation handling facilities. In order to confirm safety, a system that regularly measures the radiation dose in the vicinity of radiation handling facilities such as nuclear power generation facilities is installed. Information from this system is also open to the public.
 また、このような放射線監視システム設置者本人だけでなく、近辺に住む一般の人々の間でも、居住区域およびその近辺の放射線量情報を入手したいという要望が高まっている。このような要求に応えるために、一般の人でも手軽に放射線測定を行なえることを目的として簡易な構成のハンドヘルドタイプの放射線測定器が実用化され市販されており、このような機器を購入する人が増加している。 In addition, not only the person who installs such a radiation monitoring system, but also general people who live in the vicinity, there is an increasing demand for obtaining radiation dose information in the residential area and the vicinity. In order to meet these requirements, handheld radiation measuring instruments with a simple configuration have been put into practical use and are commercially available for the purpose of enabling easy radiation measurement even by ordinary people. The number of people is increasing.
 このようなハンドヘルドタイプすなわち携帯型の放射線測定器としては、フォトダイオードを放射線センサとして用いる簡易型家庭用放射線測定器およびガイガーミューラー計数管を放射線センサとして利用する比較的感度の高い放射線測定器がある。これらの放射線測定器は、放射線測定専用機器であり、測定結果が表示画面上に表示される。 As such a hand-held type or portable radiation measuring instrument, there are a simple home radiation measuring instrument using a photodiode as a radiation sensor and a relatively sensitive radiation measuring instrument using a Geiger Mueller counter as a radiation sensor. . These radiation measuring instruments are dedicated devices for radiation measurement, and the measurement results are displayed on the display screen.
 一方、表示画面を有する携帯機器として、スマートフォンと呼ばれる多機能携帯端末、表示画面の大きなタブレット型端末および携帯電話器などの携帯型通信端末がある。このような携帯型通信端末においては、ブラウザ等の利便性向上のために、放射線測定器に比べ表示画面サイズが非常に大きく、または多色表示の色数も多い。したがって、このような携帯型通信端末に放射線測定センサを搭載した場合、以下の問題が生じることが考えられる。 On the other hand, as portable devices having a display screen, there are multi-function mobile terminals called smartphones, tablet-type terminals with large display screens, and mobile communication terminals such as mobile phones. In such a portable communication terminal, in order to improve the convenience of a browser or the like, the display screen size is very large or the number of colors for multicolor display is large compared to a radiation measuring instrument. Therefore, when a radiation measurement sensor is mounted on such a portable communication terminal, the following problems may occur.
 すなわち、表示画面はバックライトによる光照射が必要となる液晶画面が利用される。放射線測定時、常時、バックライトを点灯した場合、このバックライトの点灯等による画面表示のための消費電流が大きくなる。また、バックライト点灯中は、当該端末が使用されている状態と見なされ、アプリケーションCPU(中央演算処理装置)が「スリープ」状態に入らないように設定されている場合が多い。この「スリープ」状態は、使用されるデータをメモリに保存し、CPU等の不動作装置に対する電源供給を停止させるモードである。したがって、「スリープ」状態に入らない場合、アプリケーションCPUおよび他のハードディスクドライブ(HDD)等に対しても、電源が供給されるため、消費電流が非常に増大する。携帯型通信端末は電源が電池であり、1回の充電での電池の使用時間を長くするためには消費電流はできるだけ小さくするのが望ましい。したがって、このような携帯型通信端末機器においては、常時バックライトを点灯させて放射線量を測定して測定線量率を常時表示することは困難であり、ユーザが使用していない間は、バックライトを消灯しておくのが一般的である。 That is, a liquid crystal screen that requires light irradiation with a backlight is used as the display screen. When the backlight is always turned on at the time of radiation measurement, the current consumption for the screen display due to the turning on of the backlight becomes large. When the backlight is lit, it is considered that the terminal is being used, and the application CPU (central processing unit) is often set not to enter the “sleep” state. This “sleep” state is a mode in which used data is stored in a memory and power supply to a non-operating device such as a CPU is stopped. Therefore, when the “sleep” state is not entered, power is supplied to the application CPU and other hard disk drives (HDDs), and the current consumption increases greatly. The portable communication terminal is powered by a battery, and it is desirable to reduce the current consumption as much as possible in order to extend the battery usage time in one charge. Therefore, in such a portable communication terminal device, it is difficult to always display the measured dose rate by turning on the backlight at all times and measuring the radiation dose. It is common to turn off the lights.
 上述の市販されている放射線測定器においては、測定線量が、所定の線量率(単位時間当たりの放射線量であり、たとえば空間放射線強度(放射線量):μSv/h)で表わされる。これらの測定器の場合、高線量率の検出時、音または光を発生してユーザに通知する機能が設けられている。放射線測定時、所定の線量率を超えたことを早くユーザに報知するためには、バックライト点灯状態に拘らず、線量率を常にモニタリングする必要がある。しかしながら、短い周期でモニタリングを行なった場合、消費電流が増大する。したがって、この場合、測定周期を長くする、または、放射線センサの出力パルスのカウント値が一定のカウント値に達したときに、CPUに対して割込通知を行なって、線量率の算出および表示を行なうことが考えられる。この間、CPUは、スリープ状態に設定し、電源を遮断する状態に設定する。 In the above-mentioned commercially available radiation measuring instrument, the measured dose is represented by a predetermined dose rate (radiation dose per unit time, for example, spatial radiation intensity (radiation dose): μSv / h). In the case of these measuring instruments, a function of generating sound or light and notifying the user when detecting a high dose rate is provided. In order to quickly notify the user that a predetermined dose rate has been exceeded during radiation measurement, it is necessary to constantly monitor the dose rate regardless of the backlight lighting state. However, when monitoring is performed in a short period, the current consumption increases. Therefore, in this case, when the measurement cycle is lengthened or when the count value of the output pulse of the radiation sensor reaches a certain count value, an interrupt notification is sent to the CPU to calculate and display the dose rate. It is possible to do it. During this time, the CPU sets the sleep state and sets the power supply to be shut off.
 このような放射線測定機能と同様に常時測定する機能として、歩数計機能がある。携帯型通信端末における歩数計機能では、バックライト消灯状態であっても、センサ内部で常時歩数を計測してカウントアップ動作を行なう。例えば1時間に1回定期的にCPUを起動して、このカウンタのカウント値を保存する。この歩数計機能においては、線量率のように一定時間の放射線量を画面に表示する必要はなく、累積カウント数がわかればよい。したがって、歩数計機能においては、たとえば1時間に1回の様な長周期でのセンサ出力の取得で十分であり、バックライト消灯状態の消費電流は問題とはならない。 As with such a radiation measurement function, there is a pedometer function as a function for continuous measurement. In the pedometer function in the portable communication terminal, even if the backlight is turned off, the number of steps is always measured and the count-up operation is performed inside the sensor. For example, the CPU is periodically activated once an hour, and the count value of this counter is stored. In this pedometer function, it is not necessary to display the radiation dose for a certain time on the screen like the dose rate, and it is only necessary to know the accumulated count number. Therefore, in the pedometer function, for example, it is sufficient to acquire the sensor output in a long cycle such as once per hour, and the current consumption in the backlight extinction state is not a problem.
 また、危険線量率を報知するための放射線アラートしきい値を設定する機能と同様の機能として、歩数計機能においては、目標歩数を設定することが可能である。しかしながら、ユーザが目標値到達をその目標歩数達成直後に知る必要があるような緊急性はないため、たとえば1時間に1回のような長い計測期間での周期でのカウント値取得で特に問題は生じない。 Also, as a function similar to the function of setting the radiation alert threshold value for notifying the dangerous dose rate, the target pedometer can be set in the pedometer function. However, since there is no urgent need for the user to know that the target value has been reached immediately after achieving the target number of steps, there is a particular problem with obtaining count values in a long measurement period such as once per hour. Does not occur.
 また、計測した線量率が、所定のレベルに到達したときに報知する構成が、たとえば特許文献特開2009-058390号公報に示されている。この特許文献に示される構成においては、予め放射線量計測装置において、情報送信対象のメールアドレスが登録設定される。特定箇所の放射線量値を常時モニタリングし、このモニタリング結果が、所定の線量率を超えたときに、これらの予め登録設定されたメールアドレスに対してインターネットを介して電子メールの形態で送信される。しかしながら、この特許文献に示される構成においては、特定箇所の放射線量値を常時モニタリングするシステムにおける消費電流の問題は何ら考慮されていない。 Further, for example, Japanese Patent Application Laid-Open Publication No. 2009-058390 discloses a configuration for informing when the measured dose rate reaches a predetermined level. In the configuration shown in this patent document, a mail address for information transmission is registered and set in advance in the radiation dose measuring apparatus. The radiation dose value at a specific location is constantly monitored, and when this monitoring result exceeds a predetermined dose rate, it is sent to these pre-registered email addresses via the Internet in the form of an email . However, in the configuration shown in this patent document, no consideration is given to the problem of current consumption in a system that constantly monitors the radiation dose value at a specific location.
特開2009-058390号公報JP 2009-058390 A
 スマートフォン(多機能携帯端末)および携帯電話機等の携帯型通信端末に放射線測定機能を設けた場合、専用の放射線測定器を利用することなく、一般の人が、居住地区等の所望の地域の放射線量を容易に測定することができる。 When a mobile communication terminal such as a smart phone (multifunctional mobile terminal) or mobile phone is equipped with a radiation measurement function, the general public can use radiation in a desired area such as a residential area without using a dedicated radiation measurement device. The amount can be easily measured.
 しかしながら、このような携帯型通信端末の表示画面が、サイズが大きく、また色数の多い多色表示であるため、バックライト点灯時の消費電流が大きい。したがって、このような放射線測定機能を有する携帯型通信端末において、バックライト消灯状態で消費電流をできるだけ低減して線量率を測定する必要がある。しかしながら、ユーザが、現在の線量率(空間放射線強度)を知りたいときに、即座に画面表示するためには、バックライトの点灯/消灯状態に拘らず、放射線測定を継続する必要がある。また、累積線量率を保存したり、設定されたしきい値を超える線量率が検出された場合にアラート(警報)を発生させる機能を実現するためには、放射線測定モードにおいては、常時放射線および線量率を測定する必要がある。 However, since the display screen of such a portable communication terminal has a large size and a multicolor display with a large number of colors, a large amount of current is consumed when the backlight is lit. Therefore, in a portable communication terminal having such a radiation measurement function, it is necessary to measure the dose rate while reducing the current consumption as much as possible when the backlight is turned off. However, when the user wants to know the current dose rate (spatial radiation intensity), in order to immediately display the screen, it is necessary to continue radiation measurement regardless of whether the backlight is on or off. In addition, in order to realize the function to save the cumulative dose rate and to generate an alert (alarm) when a dose rate exceeding the set threshold is detected, in the radiation measurement mode, It is necessary to measure the dose rate.
 しかしながら、この携帯型通信端末を携帯型測定装置として用いてバックライトの点灯状態に拘らず、放射線測定を行なう場合、以下の課題が生じる。 However, when this portable communication terminal is used as a portable measurement device and radiation measurement is performed regardless of the lighting state of the backlight, the following problems occur.
 すなわち、バックライト消灯状態においても、常時測定を行なった場合、消費電流をできるだけ抑制する必要がある。 In other words, even when the backlight is turned off, it is necessary to suppress current consumption as much as possible when measurement is always performed.
 また、放射線センサからのカウント値取得の周期を延ばすことで、現実の環境値において一定のしきい値を超えている場合において、アラート(警報)の発生に遅延が生じることが考えられる。 Also, by extending the count value acquisition cycle from the radiation sensor, it may be possible to delay the generation of an alert (alarm) when the actual environmental value exceeds a certain threshold.
 また、消灯状態から点灯状態への移行時の表示処理の遅延等により、アラート(警報)発生時の線量率と表示画面上の線量率とが不一致となる場合が考えられる。 Also, there may be a case where the dose rate at the time of the alert (alarm) and the dose rate on the display screen do not match due to delays in the display process when switching from the unlit state to the lit state.
 このような問題は、携帯型通信端末に限定されず、多色表示の機能を有する放射線測定機器においても同様に生じる。 Such a problem is not limited to a portable communication terminal, but also occurs in a radiation measuring instrument having a multicolor display function.
 それゆえ、この発明の目的は、低消費電流で放射線量(線量率)を測定するとともに、実際の環境線量率に応じて正確に警報を発生することのできる携帯型測定装置を提供することである。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a portable measuring apparatus capable of measuring a radiation dose (dose rate) with low current consumption and generating an alarm accurately according to an actual environmental dose rate. is there.
 この発明に係る携帯型測定装置は、一実施の形態において、点灯モードおよび消灯モードを有する表示装置と、放射線の入力毎にパルス信号を発生する放射線検出ユニットと、この検出ユニットの出力パルスをカウントするカウンタと、該カウンタのカウント値を点灯モード時には第1の時間で取り込み、かつ消灯モード時には前記第1の時間よりも長い時間で取り込むメモリ回路と、モード指示に従って、メモリ回路の格納値に従って線量率を算出するとともに線量率算出に用いられる算出アルゴリズムを少なくとも消灯モードおよび前記点灯モードの間で切換える制御実行部を備える。 In one embodiment, a portable measuring device according to the present invention includes a display device having a lighting mode and a light-off mode, a radiation detection unit that generates a pulse signal for each radiation input, and counts output pulses of the detection unit. A counter that captures the count value of the counter in a first time during the lighting mode and a time that is longer than the first time during the extinguishing mode, and a dose according to the stored value of the memory circuit according to the mode instruction And a control execution unit that calculates a rate and switches a calculation algorithm used for calculating a dose rate between at least the extinguishing mode and the lighting mode.
 好ましくは、制御実行部はさらに、消灯モードから点灯モードへの切換時、線量率算出に用いられる算出アルゴリズムを過渡時算出アルゴリズムに切換える。過渡時算出アルゴリズムは、消灯モードから点灯モード移行の時間経過とともに、点灯モードで算出された線量率よりも点灯モードで測定される線量率の重みが大きくなるように時間的に変化する。 Preferably, the control execution unit further switches the calculation algorithm used for calculating the dose rate to the transient calculation algorithm when switching from the extinguishing mode to the lighting mode. The transient calculation algorithm changes with time so that the weight of the dose rate measured in the lighting mode becomes larger than the dose rate calculated in the lighting mode as time elapses from the extinguishing mode to the lighting mode.
 好ましくは、過渡時算出アルゴリズムは、消灯モードでの最新の線量率を含む第1の部分とタイマ回路の出力信号に従って第1の時間で取り込まれたカウント値で線量率を算出する第2の部分とを備える。当該第2の部分の重みが時間経過とともに大きくされる。 Preferably, the transient calculation algorithm includes a first part including the latest dose rate in the extinguishing mode and a second part for calculating the dose rate using the count value captured at the first time according to the output signal of the timer circuit. With. The weight of the second part is increased with time.
 好ましくは、制御実行部は、消灯モード時に、算出された最新の線量率を前記メモリ回路に格納する。 Preferably, the control execution unit stores the calculated latest dose rate in the memory circuit in the extinguishing mode.
 好ましくは、第1の時間を規定する第1のタイミング信号および第1の時間よりも長い第2の時間を規定する第2のタイミング信号を生成するタイマ回路がさらに設けられる。 Preferably, there is further provided a timer circuit for generating a first timing signal that defines the first time and a second timing signal that defines a second time longer than the first time.
 制御実行部は、点灯モード時および消灯モード時には、タイマ回路から第1のタイミング信号および第2のタイミング信号に従ってメモリ回路にカウンタのカウント値を取り込む。 The control execution unit takes in the count value of the counter from the timer circuit to the memory circuit according to the first timing signal and the second timing signal in the lighting mode and the extinguishing mode.
 好ましくは、カウンタのカウント期間を規定する割込みカウント値を格納する割込みレジスタと、割り込みの起算点となるカウンタのカウント値を起算値として格納するカウントレジスタと、レジスタの格納動作を少なくとも制御する計測制御ユニットがさらに設けられる。 Preferably, an interrupt register that stores an interrupt count value that defines the count period of the counter, a count register that stores the count value of the counter that is the starting point of the interrupt as the starting value, and a measurement control that at least controls the register storing operation A unit is further provided.
 メモリ回路は、しきい値線量値を格納するしきい値格納領域と、計測開始時点を示す起算値を格納する起算値格納領域とを備える。計測制御ユニットは、消灯モード時、カウンタのカウント値と前記カウントレジスタのカウント値の差分値と割込みレジスタの割込みカウント値とに従って選択的に割込みを発生して制御実行部に与える。 The memory circuit includes a threshold storage area for storing a threshold dose value and a calculated value storage area for storing a calculated value indicating a measurement start time. In the extinguishing mode, the measurement control unit selectively generates an interrupt according to the count value of the counter, the difference value of the count value of the count register, and the interrupt count value of the interrupt register, and gives it to the control execution unit.
 制御実行部は、割込みの与えられた時、メモリ回路の起算値と割込み印加時との時間差と割込みレジスタの割込みカウント値とから線量率を算出し、該算出線量率がしきい値線量値以上のときに警報を発生させる。 When an interrupt is given, the control execution unit calculates a dose rate from the time difference between the starting value of the memory circuit and the time of application of the interrupt and the interrupt count value of the interrupt register, and the calculated dose rate is equal to or greater than the threshold dose value. An alarm is generated when
 好ましくは、割込みカウント値は、しきい値線量率に対応する計数率で与えられるパルス数である。 Preferably, the interrupt count value is the number of pulses given by the count rate corresponding to the threshold dose rate.
 この発明に従えば、バックライトの点灯状況に応じて線量率算出アルゴリズムを切換えており、低消費電流でバックライト消灯状態時においても線量率を測定することができる。また、低消費電流でバックライト点灯直後に線量率を画面表示することができるとともに、実測値に応じて低消費電流でのアラート機能をも実現することができる。 According to the present invention, the dose rate calculation algorithm is switched according to the lighting condition of the backlight, and the dose rate can be measured even when the backlight is turned off with low current consumption. In addition, the dose rate can be displayed on the screen immediately after the backlight is turned on with low current consumption, and an alert function with low current consumption can be realized according to the actual measurement value.
この発明に従う携帯型測定装置としての通信端末の全体の構成を概略的に示す図である。It is a figure which shows roughly the structure of the whole communication terminal as a portable measuring device according to this invention. 図1に示す放射線センサ2の構成を概略的に示す図である。It is a figure which shows schematically the structure of the radiation sensor 2 shown in FIG. 図1に示すアプリケーションCPUの構成を概略的に示す図である。FIG. 2 is a diagram schematically showing a configuration of an application CPU shown in FIG. 1. 図1に示すメモリの構成を概略的に示す図である。FIG. 2 is a diagram schematically showing a configuration of a memory shown in FIG. 1. 図1に示すタイマ回路の構成を概略的に示す図である。FIG. 2 is a diagram schematically showing a configuration of a timer circuit shown in FIG. 1. この発明の実施の形態1に従う通信端末の線量率および計測間隔を模式的に示す図である。It is a figure which shows typically the dose rate and measurement interval of a communication terminal according to Embodiment 1 of this invention. この発明の実施の形態1に従う通信端末の放射線計測動作を示すフロー図である。It is a flowchart which shows the radiation measurement operation | movement of the communication terminal according to Embodiment 1 of this invention. この発明の実施の形態2に従う放射線センサの構成を概略的に示す図である。It is a figure which shows schematically the structure of the radiation sensor according to Embodiment 2 of this invention. この発明の実施の形態2に従うアプリケーションCPUの構成を概略的に示す図である。It is a figure which shows schematically the structure of application CPU according to Embodiment 2 of this invention. この発明の実施の形態2に従うメモリの構成を概略的に示す図である。It is a figure which shows schematically the structure of the memory according to Embodiment 2 of this invention. この発明の実施の形態2におけるバックライト消灯状態時でのアラート鳴動シーケンスを示す図である。It is a figure which shows the alert ringing sequence at the time of the backlight unlit state in Embodiment 2 of this invention. この発明の実施の形態2に従う携帯型測定装置としての通信端末のバックライト点灯状態時の線量率画面表示シーケンスを示す図である。It is a figure which shows the dose rate screen display sequence at the time of the backlight lighting state of the communication terminal as a portable measuring device according to Embodiment 2 of this invention.
 [実施の形態1]
 図1は、この発明の実施の形態1に従う携帯型通信端末の全体の構成の一例を概略的に示す図である。図1において、携帯型測定装置として用いられる携帯型通信端末1は、放射線を計測する放射線センサ2と、各種アプリケーションの処理を実行するアプリケーションCPU4と、各種情報を表示するとともに、パネル操作による操作内容を入力する表示装置6を含む。表示装置6は、アプリケーションの各種アイコン、演算結果、および放射線計測結果等を表示する表示部6Aと、表示部6Aに含まれる表示画面をモードに応じて照射するバックライト6Bと、表示部6Aを介して各種操作を指示するタッチパネル6Cを含む。この発明においては放射線を測定する機能を有する装置としては通信機能を有する携帯型通信端末に限定されないが、以下においては、携帯型測定装置の1実施の形態として単に通信端末として説明する。
[Embodiment 1]
FIG. 1 schematically shows an example of the overall configuration of a portable communication terminal according to the first embodiment of the present invention. In FIG. 1, a portable communication terminal 1 used as a portable measuring apparatus displays a radiation sensor 2 that measures radiation, an application CPU 4 that executes processing of various applications, various information, and operation contents by panel operation. Is included. The display device 6 includes a display unit 6A that displays various icons, calculation results, radiation measurement results, and the like of the application, a backlight 6B that irradiates a display screen included in the display unit 6A according to the mode, and a display unit 6A. A touch panel 6C for instructing various operations. In the present invention, the apparatus having the function of measuring radiation is not limited to a portable communication terminal having a communication function. However, in the following description, an embodiment of the portable measurement apparatus will be described simply as a communication terminal.
 表示部6Aは、表示画面として、液晶表示画面を利用しており、バックライト6Bの点灯時、バックライト6Bからの光により、表示画面が各種情報の視認可能な表示状態とされる。この表示装置6は、バックライトの点灯および消灯により表示部6Aがそれぞれ表示状態および非表示状態に設定される点灯モードおよび消灯モードを有する。 The display unit 6A uses a liquid crystal display screen as a display screen, and when the backlight 6B is turned on, the display screen is in a display state in which various information can be visually recognized by light from the backlight 6B. The display device 6 has a lighting mode and a light-off mode in which the display unit 6A is set to a display state and a non-display state by turning on and off the backlight, respectively.
 放射線センサ2は、一例としてフォトダイオード等の半導体型放射線測定器であり、放射線がセンサ2へ突入した際に発生される信号をパルス信号へ変換し、そのパルス信号をカウントすることにより、放射線の測定を行なう。 The radiation sensor 2 is a semiconductor type radiation measuring instrument such as a photodiode as an example. The radiation sensor 2 converts a signal generated when radiation enters the sensor 2 into a pulse signal, and counts the pulse signal. Measure.
 アプリケーションCPU4は、制御実行部に対応し、放射線センサ2による放射線測定および測定結果の表示を行なうアプリケーションおよび他の各種アプリケーション(アプリケーションプログラム)等を指定されたモードに応じて処理し実行する。 The application CPU 4 corresponds to the control execution unit, and processes and executes an application for measuring radiation by the radiation sensor 2 and displaying a measurement result, and various other applications (application programs) according to a designated mode.
 通信端末1は、さらに、放射線測定モード時の測定タイミングを規定するタイミングを生成するタイマ回路10と、放射線測定時の測定結果等を格納するメモリ8と、各種アプリケーションプログラムを記憶する記憶媒体12と、記憶媒体12の格納するアプリケーションプログラム等を読出す記憶媒体読取部14と、他の通信端末等とアンテナ20を介してデータ/音声等の送受信を行なう送受信部16と、音声を出力するスピーカ17と、通信端末の動作を制御するメインCPU18と、通信端末1に対する電源を供給する電源ユニット19を含む。通信端末1の内部の構成要素は、バス21を介して相互接続される。 The communication terminal 1 further includes a timer circuit 10 that generates a timing that defines the measurement timing in the radiation measurement mode, a memory 8 that stores measurement results during radiation measurement, and a storage medium 12 that stores various application programs. , A storage medium reading unit 14 for reading an application program stored in the storage medium 12, a transmission / reception unit 16 for transmitting / receiving data / voice and the like to / from other communication terminals via the antenna 20, and a speaker 17 for outputting sound. A main CPU 18 that controls the operation of the communication terminal, and a power supply unit 19 that supplies power to the communication terminal 1. The internal components of the communication terminal 1 are interconnected via the bus 21.
 記憶媒体12は、たとえばハードディスクで構成され、不揮発的にダウンロードまたはプリインストールされた各種アプリケーション等の格納およびスリープモード時等の低消費電力モード時におけるメモリ8の記憶情報の格納(退避)などを行なう。 The storage medium 12 is composed of, for example, a hard disk, and stores various applications that are downloaded or preinstalled in a nonvolatile manner, and stores (saves) stored information in the memory 8 in a low power consumption mode such as in a sleep mode. .
 図1に示す通信端末1は、たとえばスマートフォン(多機能携帯型通信端末装置)またはタブレット型端末装置と呼ばれる携帯型通信端末装置であり、表示部6Aの表面に配置されるタッチパネル6Cを介して表示部6Aに表示されるアイコン等を操作して所望の動作を指令することができる。この通信端末1は、タッチパネル6Cが設けられていない通常の携帯電話機であってもよい。 The communication terminal 1 shown in FIG. 1 is a portable communication terminal device called a smart phone (multifunctional portable communication terminal device) or a tablet type terminal device, for example, and is displayed via a touch panel 6C arranged on the surface of the display unit 6A. A desired operation can be commanded by operating an icon or the like displayed on the part 6A. The communication terminal 1 may be a normal mobile phone that is not provided with the touch panel 6C.
 図2は、図1に示す放射線センサ2の構成を概略的に示す図である。図2において、放射線センサ2は、放射線を検出する放射線検出ユニット22と、検出ユニット22の出力パルス信号をカウントするカウンタ24とを含む。 FIG. 2 is a diagram schematically showing the configuration of the radiation sensor 2 shown in FIG. In FIG. 2, the radiation sensor 2 includes a radiation detection unit 22 that detects radiation, and a counter 24 that counts output pulse signals of the detection unit 22.
 放射線検出ユニット22は、一例として、フォトダイオードと、このフォトダイオードの出力信号を増幅する増幅器と、この増幅器の出力信号が所定の基準値を超えるとパルス信号を生成する比較器とを含む。フォトダイオードにおいては、ガンマ線(γ線)などの放射線が突入すると、内部で電子/正孔対が生成され、この電子および正孔が内部の電界またはバイアス電圧により生成される電界により分離されて電流が流れる。この電流を増幅器で増幅し、比較器において基準値と比較し、電流値が基準値を超えるときにパルスが発生される。これにより、放射線検出ユニット22において放射線が検出されるとパルスが生成される。 The radiation detection unit 22 includes, as an example, a photodiode, an amplifier that amplifies the output signal of the photodiode, and a comparator that generates a pulse signal when the output signal of the amplifier exceeds a predetermined reference value. In a photodiode, when radiation such as gamma rays (γ rays) enters, an electron / hole pair is generated inside, and the electrons and holes are separated by an internal electric field or an electric field generated by a bias voltage to generate a current. Flows. This current is amplified by an amplifier, compared with a reference value in a comparator, and a pulse is generated when the current value exceeds the reference value. Thereby, a pulse is generated when radiation is detected in the radiation detection unit 22.
 放射線にはアルファ線(α線)、ベーター線(β線)およびガンマ線(γ線)等が存在する。半導体型放射線センサは、放射線の有感領域である空乏層および少数キャリアの拡散層が形成される半導体内部の位置と、放射線の最大吸収領域と近接させることが可能である。これにより、計測対象の放射線に対する選択性を高くして、たとえば最近の一般の放射線計測において特に問題とされるセシウムからのガンマ線(γ線)を効率的にかつ正確に検出することができる。放射線検出ユニット22は、β線およびγ線両者を検出する構成とされてもよい。 Radiation includes alpha rays (α rays), beta rays (β rays), gamma rays (γ rays), and the like. The semiconductor radiation sensor can be positioned close to the position where the depletion layer and the minority carrier diffusion layer, which are radiation sensitive regions, are formed, and the maximum absorption region of the radiation. Thereby, the selectivity with respect to the radiation of measurement object can be made high, for example, the gamma ray (gamma ray) from cesium which is especially a problem in the recent general radiation measurement can be detected efficiently and correctly. The radiation detection unit 22 may be configured to detect both β rays and γ rays.
 図3は、図1に示すアプリケーションCPU4の構成を概略的に示す図である。図3において、アプリケーションCPU4は、バス21に結合され、指定されたアプリケーションの実行処理を行なうアプリ実行制御ユニット26と、アプリ実行制御ユニット26の制御の下に指定されたアプリケーションプログラム(ソフトウェア)を格納するアプリケーション格納ユニット27とを含む。 FIG. 3 is a diagram schematically showing the configuration of the application CPU 4 shown in FIG. In FIG. 3, the application CPU 4 is coupled to the bus 21 and stores an application execution control unit 26 that performs execution processing of the specified application, and an application program (software) specified under the control of the application execution control unit 26. Application storage unit 27.
 アプリ実行制御ユニット26は、線量率測定モードが指定されたときには、アプリケーション格納ユニット27に、線量率測定用のアプリケーションプログラムを格納する。後に詳細に説明するように、放射線測定アプリケーションプログラムは、バックライトの点灯状態に応じて使用されるアルゴリズムとして、AL1、AL2と2種類準備され、また消灯モードから点灯モードへの移行時に使用されるアルゴリズムAL3が準備される。 The application execution control unit 26 stores an application program for dose rate measurement in the application storage unit 27 when the dose rate measurement mode is designated. As will be described in detail later, two types of algorithms, AL1 and AL2, are prepared for the radiation measurement application program according to the lighting state of the backlight, and are used at the time of transition from the off mode to the lighting mode. Algorithm AL3 is prepared.
 このバックライト点灯状態(点灯モード)で用いられる線量率算出アルゴリズムAL1は、次式で表わされる。 The dose rate calculation algorithm AL1 used in this backlight lighting state (lighting mode) is expressed by the following equation.
 Sm=(C[m+n]-C[m])・K/T2、
 T2=T1・n
 ここで、T1は、放射線の線量率を測定する周期を示し、nは、予め定められた定数であり、n個のカウント値がメモリ8に格納される。C[m]は、カウンタの第m番目のカウント値である。Smは線量率である。Kは、計量率1CPMから線量率1μSv/hへの換算係数であり、通常、放射線センサ2の感度の逆数で与えられる。計量率CPMは、単位時間(1分)当たりのパルスの平均カウント数である。
Sm = (C [m + n] −C [m]) · K / T2,
T2 = T1 · n
Here, T1 indicates a period for measuring the radiation dose rate, n is a predetermined constant, and n count values are stored in the memory 8. C [m] is the mth count value of the counter. Sm is the dose rate. K is a conversion factor from a measurement rate of 1 CPM to a dose rate of 1 μSv / h, and is usually given as a reciprocal of the sensitivity of the radiation sensor 2. The measurement rate CPM is an average count number of pulses per unit time (1 minute).
 バックライト消灯状態(消灯モード)で利用される線量率Rmを算出するための算出アルゴリズムAL2は、次式で表わされる。 The calculation algorithm AL2 for calculating the dose rate Rm used in the backlight off state (off mode) is expressed by the following equation.
 Rm=(B[m+1]-B[m])・K/T3、
 T3>T1、
 ここで、B[m]はカウンタ24のカウント値である。T3がカウンタのカウント値の測定周期を示す。消去状態においては測定周期を点灯状態よりも長くすることにより、消費電流を低減する。
Rm = (B [m + 1] −B [m]) · K / T3,
T3> T1,
Here, B [m] is the count value of the counter 24. T3 represents the measurement period of the count value of the counter. In the erased state, the current consumption is reduced by making the measurement cycle longer than the lighting state.
 このバックライト消灯状態時においては、放射線センサ2に含まれるカウンタ24の前回のカウント値が格納され、新たに算出されたカウント値を用いて線量率Rmが算出される。このときには、線量率算出後、前回のカウンタのカウント値B[m]および前回の線量率Rm-1は新たなカウント値B[m+1]および新たな線量率Rmで上書きされる。 In the backlight off state, the previous count value of the counter 24 included in the radiation sensor 2 is stored, and the dose rate Rm is calculated using the newly calculated count value. At this time, after calculating the dose rate, the count value B [m] of the previous counter and the previous dose rate Rm−1 are overwritten with the new count value B [m + 1] and the new dose rate Rm.
 バックライト消灯状態から点灯状態に切換わった直後においては、次式で表される線量率算出アルゴリズムAL3が用いられる。 Immediately after switching from the backlight off state to the on state, a dose rate calculation algorithm AL3 represented by the following equation is used.
 Qs=R・(X-s)/X+S・s/X、
 S=(C[s]-C[1])/(T1・s)、
 0<s≦X.
 Rは、バックライト消灯状態において算出された最新の線量率であり、Xは、この点灯状態の過渡時に線量率算出アルゴリズムAL3を用いる期間を規定する定数である。X=nとされてもよい。この過渡時の算出アルゴリズムを利用することにより、後に説明するように、消灯状態から点灯状態移行直後に線量率を表示することが可能となるとともに環境放射線量に応じた線量率を表示することが可能となる。
Qs = R · (X−s) / X + S · s / X,
S = (C [s] −C [1]) / (T1 · s),
0 <s ≦ X.
R is the latest dose rate calculated in the backlight extinction state, and X is a constant that defines the period during which the dose rate calculation algorithm AL3 is used during the transition of the lighting state. X = n may be set. By using this calculation algorithm at the time of transition, as will be described later, it becomes possible to display the dose rate immediately after the transition from the unlit state to the lit state, and to display the dose rate according to the environmental radiation dose. It becomes possible.
 これらのアルゴリズムAL1、AL2およびAL3においては放射線センサ2のカウンタ24のカウント値の差分値を用いて線量率を算出している。これにより環境放射線等のバックグラウンドノイズの影響を低減する。 In these algorithms AL1, AL2, and AL3, the dose rate is calculated using the difference value of the count value of the counter 24 of the radiation sensor 2. This reduces the influence of background noise such as environmental radiation.
 図4は、図1に示すメモリ8の構成を概略的に示す図である。図4において、メモリ8は、点灯モード時の計測データを格納する点灯モードデータ格納領域28と、消灯モード時の計測データを格納する消灯モードデータ格納領域29とを含む。これらのデータ格納領域28および29は、バス21に結合され、FIFO(ファーストイン・ファーストアウト)態様で与えられたカウント値を格納し、常時、nこのカウント値Cが格納される。 FIG. 4 is a diagram schematically showing the configuration of the memory 8 shown in FIG. In FIG. 4, the memory 8 includes a lighting mode data storage area 28 that stores measurement data in the lighting mode, and a light-off mode data storage area 29 that stores measurement data in the light-off mode. These data storage areas 28 and 29 are coupled to the bus 21 and store count values given in a FIFO (first-in / first-out) manner. The count values C are always stored.
 点灯モードデータ格納領域28には、n個のカウント値Cが格納され、n周期(n・T1)離れた計測データのカウント値を用いて線量率の算出が行なわれる。 In the lighting mode data storage area 28, n count values C are stored, and the dose rate is calculated using the count values of the measurement data separated by n periods (n · T1).
 消灯モードデータ格納領域29には、放射線センサ2から与えられる最新のカウント値Bが格納され、常時、この最新のカウント値が新たなカウント値で更新される。また、算出された最新の線量率Rがこの消灯モードデータ格納領域29に格納される。 The latest count value B given from the radiation sensor 2 is stored in the extinguishing mode data storage area 29, and this latest count value is constantly updated with a new count value. Further, the latest calculated dose rate R is stored in the extinguishing mode data storage area 29.
 図5は、図1に示すタイマ回路10の構成を概略的に示す図である。図5において、タイマ10は、点灯モード時の測定周期を規定する第1タイマ30と、消灯モード時の放射線の計測期間を規定する第2タイマ31を含む。これらの第1タイマ30および第2タイマ31は、バス21を介して放射線センサ2に結合され、それぞれ設定された周期毎に、起動信号(カウントアップ信号)を生成してバス21を介してアプリ実行制御ユニット26へ伝達する。 FIG. 5 is a diagram schematically showing a configuration of the timer circuit 10 shown in FIG. In FIG. 5, the timer 10 includes a first timer 30 that defines the measurement cycle in the lighting mode and a second timer 31 that defines the radiation measurement period in the extinguishing mode. The first timer 30 and the second timer 31 are coupled to the radiation sensor 2 via the bus 21, generate an activation signal (count-up signal) for each set period, and perform an application via the bus 21. This is transmitted to the execution control unit 26.
 なお、図5に示すタイマ回路10の構成において、周期T1およびT3それぞれ別々にタイマが設けられている。しかしながら、タイマ回路10が1つのタイマで構成され、測定モード(消灯状態での測定モードおよび点灯状態での測定モード)に応じて、計測動作を起動する信号(カウントアップ信号)が発生される(活性化される)周期T1およびT3が切換えられてもよい。 In the configuration of the timer circuit 10 shown in FIG. 5, timers are provided separately for each of the cycles T1 and T3. However, the timer circuit 10 is composed of one timer, and a signal (a count-up signal) for starting the measurement operation is generated according to the measurement mode (the measurement mode in the unlit state and the measurement mode in the lit state) ( The activated periods T1 and T3 may be switched.
 バックライト点灯状態(点灯モード)下で線量率を算出するために用いられる周期T2については、周期T1およびカウント数nがともに定数であるため、周期T2は定数であり、固定的に設定されればよい(たとえば、周期T1が図示しないクロック信号の数Nにより規定される場合、周期T2は、クロック信号の数n・Nに設定する)。 Regarding the period T2 used for calculating the dose rate under the backlight lighting state (lighting mode), since the period T1 and the count number n are both constants, the period T2 is a constant and is fixedly set. (For example, when the cycle T1 is defined by the number N of clock signals (not shown), the cycle T2 is set to the number n · N of clock signals).
 図6は、この発明の実施の形態1に従う通信端末における放射線センサの測定および線量率算出のシーケンスを概略的に示す図である。図6においては、センサの出力のサンプリング周期(測定周期)とともにアルゴリズムAL3における線量率SおよびRの重みを示す。この線量率の重みにおいて、縦軸に線量率SおよびRを示し、横軸に時間を示す。この線量率の分布において、上にいくほど、線量率Sの重みが大きく、下にいくほど線量率Rの重みが大きくなる。以下、図6を参照して、この発明の実施の形態1に従う通信端末の放射線量(線量率)測定/算出シーケンスについて簡単に説明する。 FIG. 6 schematically shows a sequence of radiation sensor measurement and dose rate calculation in the communication terminal according to the first embodiment of the present invention. FIG. 6 shows the weights of the dose rates S and R in the algorithm AL3 together with the sampling period (measurement period) of the sensor output. In this dose rate weight, the vertical axis indicates dose rates S and R, and the horizontal axis indicates time. In this dose rate distribution, the weight of the dose rate S increases as it goes upward, and the weight of the dose rate R increases as it goes down. Hereinafter, a radiation dose (dose rate) measurement / calculation sequence of the communication terminal according to the first embodiment of the present invention will be briefly described with reference to FIG.
 時刻t5以前においては、バックライト消灯状態で放射線センサ2のカウンタ24のカウント値の取り込みおよび線量率の算出が行なわれる。すなわち、周期T3で、放射線センサ2からのカウント値が取り込まれる(サンプリングされる)。この場合、隣接する2つのカウント値B[(m+1)]およびB[m]を用いて、線量率Rmが算出される。線量率Sの重みは0であり、線量率Rの重みが100%である。最新の線量率およびカウント値がメモリ8の格納領域29に格納される。 Before time t5, the count value of the counter 24 of the radiation sensor 2 is taken in and the dose rate is calculated with the backlight off. That is, the count value from the radiation sensor 2 is taken (sampled) at the period T3. In this case, the dose rate Rm is calculated using two adjacent count values B [(m + 1)] and B [m]. The weight of the dose rate S is 0, and the weight of the dose rate R is 100%. The latest dose rate and count value are stored in the storage area 29 of the memory 8.
 時刻t5において、バックライト点灯モードに入る。バックライトは点灯されるものの、バックライト消灯状態からバックライト点灯状態への移行時、過渡時の算出アルゴリズムAL3が用いられる。この算出アルゴリズムAL3においては、周期T1で放射線センサのカウンタのカウント値の取り込みおよび線量率の算出および表示が行われる。 At time t5, the backlight lighting mode is entered. Although the backlight is turned on, the calculation algorithm AL3 at the time of transition is used at the time of transition from the backlight off state to the backlight on state. In this calculation algorithm AL3, the count value of the counter of the radiation sensor is taken in and the dose rate is calculated and displayed in a cycle T1.
 この過渡状態時の点灯状態移行時においては、消灯状態で算出された最新の線量率Rに対し重み(X-s)/Xが乗算される。一方、周期T1で測定される放射線センサからのカウント値Cを用いて追加の過渡線量率Sとしてまず(C[s]-C[1])/T1・sが求められ、この過渡線量率に対して重みs/Xが乗算される。 At the time of transition to the lighting state in the transient state, the latest dose rate R calculated in the extinguishing state is multiplied by the weight (X−s) / X. On the other hand, (C [s] −C [1]) / T1 · s is first obtained as an additional transient dose rate S using the count value C from the radiation sensor measured at the period T1, and this transient dose rate is calculated as The weight s / X is multiplied.
 したがって、時刻t5から時間経過とともに、パラメータsが増大し、線量率Rの重みが小さくなり、一方、過渡線量率Sの重みが大きくなる。したがって、バックライト点灯直後から線量率の表示装置への表示が可能となり、かつ時間経過とともに、最新の放射線測定結果の比重が高くなる。算出アルゴリズムAL3においては、s=Xとなると、過渡線量率Sの重みが100%となり、一方、消去状態時の線量率Rの重みが0となる。 Therefore, as time elapses from time t5, the parameter s increases and the dose rate R weight decreases, while the transient dose rate S weight increases. Therefore, the dose rate can be displayed on the display device immediately after the backlight is turned on, and the specific gravity of the latest radiation measurement result increases with time. In the calculation algorithm AL3, when s = X, the weight of the transient dose rate S is 100%, while the weight of the dose rate R in the erased state is zero.
 従って、点灯状態移行直後から、n個の測定データが揃うまで待つことなく、実際の測定データを用いて線量率を算出することが可能となり、不定データに起因して表示線量率が突然上下するといった違和感を生じることなく、バックライト点灯状態時の算出アルゴリズムAL1へ移行することができる。 Therefore, it is possible to calculate the dose rate using actual measurement data without waiting for n measurement data to be obtained immediately after the lighting state transition, and the displayed dose rate suddenly rises and falls due to indefinite data. Thus, it is possible to shift to the calculation algorithm AL1 when the backlight is lit without causing a sense of incongruity.
 特に、X=nに設定することにより、所定期間X(=n)経過後、この過渡時の算出アルゴリズムAL3は、そのまま算出アルゴリズムAL1へ移行することができる。すなわち、算出アルゴリズムAL3に従ってC[n]-C[1]による線量率の算出後、次に、算出アルゴリズムAL1に従ってC[n+1]-C[2]に基づいて線量率を算出することが可能となり、線量率の連続性は途切れない。 In particular, by setting X = n, after a predetermined period X (= n) has elapsed, the calculation algorithm AL3 at the time of transition can be transferred to the calculation algorithm AL1 as it is. That is, after calculating the dose rate by C [n] -C [1] according to the calculation algorithm AL3, it is then possible to calculate the dose rate based on C [n + 1] -C [2] according to the calculation algorithm AL1. The continuity of dose rate is uninterrupted.
 図7は、この発明の実施の形態1に従う通信端末の線量率測定シーケンスを概略的に示すフロー図である。以下、図7を参照して、図1から図5に示す通信端末の線量率算出および表示動作について説明する。 FIG. 7 is a flowchart schematically showing a dose rate measurement sequence of the communication terminal according to the first embodiment of the present invention. Hereinafter, the dose rate calculation and display operation of the communication terminal shown in FIGS. 1 to 5 will be described with reference to FIG.
 メインCPU18は、表示装置6に含まれるタッチパネル6Cを介して線量率測定処理を指定するコマンドの入力を待つ(ステップSP1)。 The main CPU 18 waits for an input of a command for specifying a dose rate measurement process via the touch panel 6C included in the display device 6 (step SP1).
 タッチパネル6Cを介して線量率測定処理が指定されると、メインCPU18は、アプリケーションCPU4を起動するとともに、起動記憶媒体12から記憶媒体読取部14を介して対応の放射線量率測定用のアプリケーションプログラムを読出してアプリケーションCPU4に与える。アプリケーションCPU4は、メインCPU18から線量率測定指令が与えられると、まず、放射線センサ2を起動する(ステップSP2)。これにより、図2に示す放射線検出ユニット22が起動され、放射線を測定する状態に入る。 When the dose rate measurement process is designated via the touch panel 6C, the main CPU 18 activates the application CPU 4 and loads a corresponding radiation dose rate measurement application program from the activation storage medium 12 via the storage medium reading unit 14. Read and give to application CPU4. When receiving a dose rate measurement command from the main CPU 18, the application CPU 4 first activates the radiation sensor 2 (step SP2). As a result, the radiation detection unit 22 shown in FIG. 2 is activated and enters a state of measuring radiation.
 次いで、アプリケーションCPU4は、線量率測定が点灯状態で実行するのか消灯状態で実行するのかの判断を行なう(SP3)。この処理内容の指定は、タッチパネル6Cを用いたアイコンの操作により指定される。この状態ではまだバックライトは点灯状態である。 Next, the application CPU 4 determines whether the dose rate measurement is to be executed in the lighting state or in the extinguishing state (SP3). This processing content is specified by an icon operation using the touch panel 6C. In this state, the backlight is still on.
 消灯状態での線量率測定が指定されると、アプリケーションCPU4は、アプリケーション格納ユニット27(図3参照)に格納された算出アルゴリズムAL2を読出し、該算出アルゴリズムの実行状態に入るとともに、図5に示す第2のタイマ31を起動する(ステップFF1)。 When the dose rate measurement in the off state is designated, the application CPU 4 reads the calculation algorithm AL2 stored in the application storage unit 27 (see FIG. 3), enters the execution state of the calculation algorithm, and is shown in FIG. The second timer 31 is started (step FF1).
 消灯状態(消灯モード)時の処理実行時においては、アプリケーションCPU4において処理実行の状態に入ると、メインCPU18は、スリーブ状態に入る構成とされてもよい(電源ユニット19からの電源供給が遮断される)。 At the time of processing execution in the light-off state (light-off mode), the main CPU 18 may be configured to enter the sleeve state when the application CPU 4 enters the processing execution state (the power supply from the power supply unit 19 is cut off). )
 アプリケーションCPU4は、バックライト6B(図1参照)を消灯状態に設定するとともに放射線センサ2のカウンタ24を起動してカウント動作を開始させ、そのカウント値をモニタする。図3に示すアプリ実行制御ユニット26の制御の下に、第2タイマ31から出力される周期T3のカウントアップ信号をバス21を介して受け、周期T3毎に、放射線センサ2に含まれるカウンタ24(図2参照)のカウント値を取込む。メモリ8に含まれる消灯モードデータ格納領域29に格納された前回のカウント値と今回取り込んだカウント値とから算出アルゴリズムAL2に従って線量率Rを算出し、この算出した最新の線量率で消灯モードデータ格納領域29に格納された前回の線量率を更新する(上書きする)。 The application CPU 4 sets the backlight 6B (see FIG. 1) to the off state and activates the counter 24 of the radiation sensor 2 to start the counting operation, and monitors the count value. Under the control of the application execution control unit 26 shown in FIG. 3, the counter 24 included in the radiation sensor 2 receives the count-up signal of the period T3 output from the second timer 31 via the bus 21. The count value (see FIG. 2) is taken in. The dose rate R is calculated according to the calculation algorithm AL2 from the previous count value stored in the extinction mode data storage area 29 included in the memory 8 and the count value acquired this time, and the extinction mode data is stored at the calculated latest dose rate. The previous dose rate stored in the area 29 is updated (overwritten).
 また、アプリ実行制御ユニット26は、取込んだカウント値で消灯モードデータ格納領域29(図4参照)に格納された前回のカウント値を上書きする。従って、消去モードデータ格納領域29には、その時点での最新のカウント値Bおよび線量率Rが保持される。 Further, the application execution control unit 26 overwrites the previous count value stored in the turn-off mode data storage area 29 (see FIG. 4) with the acquired count value. Accordingly, the erase mode data storage area 29 holds the latest count value B and dose rate R at that time.
 以降、第2タイマ31からの周期T3のカウントアップ信号に従ってカウンタ24のカウント値を取込み、線量率Rの測定を行なう処理が繰返し実行される(ステップFF2)。 Thereafter, the process of taking the count value of the counter 24 in accordance with the count-up signal of the period T3 from the second timer 31 and measuring the dose rate R is repeatedly executed (step FF2).
 次いで、この消灯状態での線量率算出シーケンスの終了指示が与えられたかの判断が行なわれる(ステップFF3)。この終了処理が指定されると、ステップFF4へ移行し、必要な終了処理が実行される。ステップFF4における必要な終了処理としては、バックライトを点灯状態に設定し、図1に示す表示部6Aにおいて、たとえば「現在線量率測定を行なっておりますが終了しますか」などのメッセージが表示される。タッチパネル6Cを介して終了指示が指定されると、アプリケーションCPU4は、放射線センサ2を非活性状態とし、線量およびカウント測定処理を停止させるとともに、タイマ回路10の第2タイマ31の計時動作を停止させる。この処理において、メモリ8に格納された消灯状態での最新の測定値(線量率およびカウント値)が、記憶媒体12へ退避されてもよい。また、これに代えて、メモリ8が、たとえばフラッシュメモリなどのような不揮発性メモリの場合、記憶内容は消去されずそのまま保持されてもよい。また、最新の線量率が、処理終了時に一時的に表示されてもよい。 Next, it is determined whether an instruction to end the dose rate calculation sequence in the unlit state has been given (step FF3). When this end process is designated, the process proceeds to step FF4, and the necessary end process is executed. As the necessary end processing in step FF4, the backlight is set in a lighting state, and a message such as “Current dose rate measurement is in progress but will be ended” is displayed on the display unit 6A shown in FIG. Is done. When an end instruction is specified via the touch panel 6C, the application CPU 4 deactivates the radiation sensor 2, stops the dose and count measurement processing, and stops the timing operation of the second timer 31 of the timer circuit 10. . In this process, the latest measured values (dose rate and count value) stored in the memory 8 in the unlit state may be saved in the storage medium 12. Alternatively, if the memory 8 is a non-volatile memory such as a flash memory, the stored contents may be retained without being erased. Further, the latest dose rate may be temporarily displayed at the end of processing.
 一方、ステップFF3において、まだ終了が指示されない場合、次いで消灯状態での線量率測定から点灯状態への測定への移行が指定されたかの判断を行なう(ステップFF5)。この処理においては、一例として、図1に示すタッチパネル6Cにおけるたとえばタッチ操作などにより、表示部6Aにアイコンを表示し(この場合バックライト6Bは点灯状態とされる)、表示されたアイコンを用いて点灯状態での線量率測定をタッチパネル6Cの操作により入力する。 On the other hand, if the end is not instructed yet in step FF3, it is then determined whether the transition from the dose rate measurement in the unlit state to the measurement in the lit state is designated (step FF5). In this process, as an example, an icon is displayed on the display unit 6A by, for example, a touch operation on the touch panel 6C shown in FIG. 1 (in this case, the backlight 6B is turned on), and the displayed icon is used. The dose rate measurement in the lighting state is input by operating the touch panel 6C.
 ステップFF5において点灯状態での測定が指定されない場合には、ステップFF2からの処理が繰返し実行される。 If the measurement in the lighting state is not designated in step FF5, the processing from step FF2 is repeatedly executed.
 一方、ステップFF5において点灯状態での線量率測定処理が指定されると、アプリケーションCPU4は、図1に示すバックライト6Bを点灯状態にするとともに、図5に示す第2タイマ31を非活性状態とするとともに、第1タイマ30を活性化させる。このタイマ切換時において、たとえば第1タイマ30は、常時電源が投入されて動作待機状態にあれば、即座にカウント動作を開始することができる(図示しないクロック発生器からのクロック信号をカウントして、周期T1毎に、カウントアップ信号を生成する)。 On the other hand, when the dose rate measurement process in the lighting state is designated in step FF5, the application CPU 4 turns on the backlight 6B shown in FIG. 1 and puts the second timer 31 shown in FIG. 5 into the inactive state. At the same time, the first timer 30 is activated. At the time of this timer switching, for example, the first timer 30 can start counting immediately if the power is always turned on and in an operation standby state (counting a clock signal from a clock generator (not shown)). The count-up signal is generated every period T1).
 アプリケーションCPU4は、また、算出アルゴリズムとしてAL2に代えてAL3を格納領域29から読み出して、タイマ回路10の第1タイマ30からの周期T1毎のカウントアップ信号でカウンタ24のカウント値を取込み、順次メモリ8に格納する。アプリケーションCPU4は、アプリケーション格納ユニット27から読み出した過渡状態時の算出アルゴリズムAL3を使用して、線量率の測定および算出を行なう。周期T1で取込まれた放射センサ2からのカウント値は、順次点灯モードデータ格納領域28に格納され、アルゴリズムAL3に従って、過渡状態時における線量率Qが算出され、表示部6Aに表示される。これにより、アプリケーションCPUのアプリ実行制御ユニット26は、過渡状態時の算出アルゴリズムAL3を用いて線量率Qを算出し、第1タイマ30から与えられるカウントアップ信号の周期T1で表示部6Aに算出した線量率を表示する。従って、過渡時においては、周期T1で表示部6Aの画面の更新が実行される(ステップFF6)。 The application CPU 4 also reads AL3 from the storage area 29 instead of AL2 as a calculation algorithm, takes in the count value of the counter 24 by the count-up signal from the first timer 30 of the timer circuit 10 every cycle T1, and sequentially stores the memory. 8 is stored. The application CPU 4 measures and calculates the dose rate using the transient calculation algorithm AL3 read from the application storage unit 27. The count values from the radiation sensor 2 captured at the cycle T1 are sequentially stored in the lighting mode data storage area 28, and the dose rate Q in the transient state is calculated according to the algorithm AL3 and displayed on the display unit 6A. Accordingly, the application execution control unit 26 of the application CPU calculates the dose rate Q using the calculation algorithm AL3 in the transient state, and calculates the dose rate Q on the display unit 6A at the cycle T1 of the count-up signal given from the first timer 30. Displays the dose rate. Accordingly, during the transition, the screen of the display unit 6A is updated at the cycle T1 (step FF6).
 次いで、アプリケーションCPU4は、消灯状態から点灯状態への移行時の過渡状態時において、第1タイマ30からのカウントアップ信号がX回与えられたかの判断を行なう(ステップFF7)。これは、アプリケーションCPU4のアプリ実行制御ユニット26内において、図示しないカウンタを用いて第1タイマ30からのタイムアップ信号をカウントアップすることにより実行される。また、過渡状態時において、放射線センサ2のカウンタ24からのカウント値が点灯モードデータ格納領域28に順次格納される。この場合、点灯モードデータ格納領域28(図4参照)においては、過渡状態時においてはX個のカウント値(CP;Counted Pulses)が順次格納される。 Next, the application CPU 4 determines whether or not the count-up signal from the first timer 30 has been given X times during the transitional state when shifting from the unlit state to the lit state (step FF7). This is executed by counting up the time-up signal from the first timer 30 using a counter (not shown) in the application execution control unit 26 of the application CPU 4. In the transient state, the count value from the counter 24 of the radiation sensor 2 is sequentially stored in the lighting mode data storage area 28. In this case, in the lighting mode data storage area 28 (see FIG. 4), X count values (CP; Counted Pulses) are sequentially stored in the transient state.
 一方、この過渡状態時での線量率計測/測定処理がX回実行されると(ステップFF7)、アプリケーションCPU4のアプリ実行制御ユニット26は、アプリケーション格納ユニット27をアクセスし、算出アルゴリズムを、過渡状態時の算出アルゴリズムAL3から点灯状態時の算出アルゴリズムAL1に切換え(ステップFF8)、点灯状態時での算出アルゴリズムAL1に従って線量率計測および算出処理を実行する(後に説明するステップNN2へ移行する)。 On the other hand, when the dose rate measurement / measurement process in the transient state is executed X times (step FF7), the application execution control unit 26 of the application CPU 4 accesses the application storage unit 27 to change the calculation algorithm to the transient state. The calculation algorithm AL3 at the time is switched to the calculation algorithm AL1 at the lighting state (step FF8), and the dose rate measurement and calculation processing are executed according to the calculation algorithm AL1 at the lighting state (the process proceeds to step NN2 described later).
 以上のようにして、消灯状態時および消灯状態から点灯状態への移行の過渡状態時での線量率測定シーケンスが行なわれる。 As described above, the dose rate measurement sequence is performed in the light-off state and in the transition state from the light-off state to the light-on state.
 一方、線量率測定指令入力時のステップSP3において、点灯状態での線量率測定が指定されると、アプリケーションCPU4は、そのアプリケーション格納ユニット27に含まれる点灯状態時の算出アルゴリズムAL1を用いるとともに、第1タイマ30を起動する(ステップNN1)。バックライトは点灯状態に維持される。アプリケーションCPU4に含まれるアプリ実行制御ユニット26は、第1タイマ30から周期T1毎に与えられるカウントアップ信号に従って、放射線センサ2のカウンタ24からのカウント値を取込み、取込んだカウント値に従って線量率Sを算出するとともに、算出した線量率を表示部6Aの画面に表示する。これにより、周期T1毎に画面の更新が実行される(ステップNN2)。この処理実行時においては、図4に示す点灯モードデータ格納領域28には、アプリ実行制御ユニット26の制御の下に、n個のカウント値がFIFO態様で常時格納される。 On the other hand, when the dose rate measurement in the lighting state is designated in step SP3 at the time of inputting the dose rate measurement command, the application CPU 4 uses the calculation algorithm AL1 in the lighting state included in the application storage unit 27 and 1 Timer 30 is started (step NN1). The backlight is kept on. The application execution control unit 26 included in the application CPU 4 takes the count value from the counter 24 of the radiation sensor 2 in accordance with the count up signal given from the first timer 30 every cycle T1, and the dose rate S according to the taken count value. And the calculated dose rate is displayed on the screen of the display unit 6A. As a result, the screen is updated every cycle T1 (step NN2). When this process is executed, n count values are always stored in the FIFO mode in the lighting mode data storage area 28 shown in FIG. 4 under the control of the application execution control unit 26.
 次いで、放射線の線量率測定処理の終了コマンドが与えられたかの判断が行なわれる(ステップNN3)。線量率測定終了が、たとえば図1に示すタッチパネル6Cの操作により指令されると、アプリケーションCPU4は、必要な終了処理を実行する(ステップNN4)。この終了処理においては、単に、表示部6Aの表示されている線量率を消去し、初期画面に移行する処理が行なわれてもよく、また、バックライト6Bの消灯処理が行なわれてもよい。 Next, it is determined whether an end command for the radiation dose rate measurement process has been given (step NN3). When the end of the dose rate measurement is instructed, for example, by operating the touch panel 6C shown in FIG. 1, the application CPU 4 executes necessary end processing (step NN4). In this termination process, the dose rate displayed on the display unit 6A may be simply deleted, and a process for shifting to the initial screen may be performed, or the backlight 6B may be turned off.
 一方、ステップNN3において終了指令が与えられない場合、次に、点灯状態から消灯状態への指令が与えられるかの判断を行なう(ステップNN5)。点灯状態での線量率測定が与えられている間、このアプリケーションCPU4のアプリ実行制御ユニット26は、ステップNN2からの処理を繰返し実行する。 On the other hand, if the end command is not given in step NN3, it is next determined whether or not a command from the lighting state to the extinguishing state is given (step NN5). While the dose rate measurement in the lighting state is given, the application execution control unit 26 of the application CPU 4 repeatedly executes the processing from step NN2.
 ステップNN5において、消灯状態での線量率測定シーケンスが指令されると(タッチパネル6Cの操作による)、アプリケーションCPU4のアプリ実行制御ユニット26は、算出アルゴリズムを、AL1からAL2へ切換えるとともに、タイマ回路10に含まれる第1タイマ30を非活性状態とするとともに、第2タイマ31を起動する。以降、ステップFF2からの消灯状態時での計測シーケンスが実行される。 In step NN5, when the dose rate measurement sequence in the unlit state is commanded (by the operation of the touch panel 6C), the application execution control unit 26 of the application CPU 4 switches the calculation algorithm from AL1 to AL2 and sends it to the timer circuit 10. The first timer 30 included is deactivated and the second timer 31 is started. Thereafter, the measurement sequence in the off state from Step FF2 is executed.
 以上のように、バックライト消灯状態時、消灯状態から点灯状態への過渡状態時およびバックライト点灯状態時それぞれにおける線量率算出アルゴリズムを切換えて線量率測定を実行している。これにより、消灯状態時でのアプリケーションCPUが線量率を測定する回数を低減することができ、消費電流を低減することができる。また、消灯状態時において最新の線量率をカウント値とともに保持している。消灯状態から点灯状態への移行時には、過渡状態時の算出アルゴリズムを利用し、消灯状態の最新の線量率および点灯状態での計測カウント値を利用して線量率を算出し、時間経過とともに、最新の放射線測定結果の比重を高くするように重みを付けている。これにより、消灯状態から点灯状態への移行時、即座に、線量率を画面に表示することができるとともに、線量率が急激に変化するという違和感が生じることがない。また、スムーズに点灯状態時の算出アルゴリズムAL1へ移行することができる。 As described above, the dose rate measurement is performed by switching the dose rate calculation algorithm in each of the backlight off state, the transition from the off state to the on state, and the backlight on state. Thereby, the frequency | count that the application CPU at the time of a light extinction state measures a dose rate can be reduced, and current consumption can be reduced. In addition, the latest dose rate is held together with the count value when the light is off. When transitioning from the unlit state to the lit state, the calculation algorithm for the transient state is used, the dose rate is calculated using the latest dose rate in the unlit state and the measured count value in the lit state. The weight is given to increase the specific gravity of the radiation measurement result. As a result, the dose rate can be immediately displayed on the screen at the time of transition from the unlit state to the lit state, and the uncomfortable feeling that the dose rate changes rapidly does not occur. In addition, it is possible to smoothly shift to the calculation algorithm AL1 in the lighting state.
 なお、上述の説明においては、消灯状態時および点灯状態時においてアプリケーションCPU4が、常時動作状態にされている。しかしながら、このアプリケーションCPU4においてアプリ実行制御ユニット26の処理は、タイマからのカウントアップ指示が与えられたときだけであり、通常は、処理動作を実行しない待機状態(電源は供給されている)であり、電流消費は抑制される。 In the above description, the application CPU 4 is always in an operating state when the light is off and when the light is on. However, the processing of the application execution control unit 26 in the application CPU 4 is only when a count-up instruction is given from the timer, and is normally in a standby state where no processing operation is performed (power is supplied). , Current consumption is suppressed.
 [実施の形態2]
 図8は、この発明の実施の形態2に従う通信端末の放射線センサ2の構成を概略的に示す図である。実施の形態2において用いられる通信端末の全体の構成は、図1に示す構成と同じである。
[Embodiment 2]
FIG. 8 schematically shows a configuration of radiation sensor 2 of the communication terminal according to the second embodiment of the present invention. The overall configuration of the communication terminal used in the second embodiment is the same as the configuration shown in FIG.
 図8において、放射線センサ2は、放射線検出ユニット22と、カウンタ24と、割込カウント値およびカウント期間値を格納するレジスタ回路42と、計測制御ユニット40とを含む。 8, the radiation sensor 2 includes a radiation detection unit 22, a counter 24, a register circuit 42 for storing an interrupt count value and a count period value, and a measurement control unit 40.
 放射線検出ユニット22およびカウンタ24は、先の実施の形態1と同様、それぞれ、放射線検出時にパルス信号の発生およびパルス信号のカウントを行なう。カウンタ24からのカウント値(CP)が計測制御ユニット40に送出される。 The radiation detection unit 22 and the counter 24 generate a pulse signal and count the pulse signal at the time of radiation detection, respectively, as in the first embodiment. A count value (CP) from the counter 24 is sent to the measurement control unit 40.
 レジスタ回路42は、アプリケーションCPU4に対する割込み発生のためのカウント数を格納する割込み生成レジスタ44と、カウンタ24の割込み発生のための起点となるカウント値を格納するカウントレジスタ46とを含む。 The register circuit 42 includes an interrupt generation register 44 that stores a count number for generating an interrupt to the application CPU 4 and a count register 46 that stores a count value that is a starting point for generating an interrupt of the counter 24.
 割込生成レジスタ44は、カウンタ24のカウント値の比較基準となるしきい値を格納し、このしきい値は、計測制御ユニット40により設定および変更が可能である。カウントレジスタ46には、割込み生成レジスタ44に対して割込みカウント数が設定された時点でのカウンタ46のカウント値が格納される。 The interrupt generation register 44 stores a threshold value that is a reference for comparing the count value of the counter 24, and this threshold value can be set and changed by the measurement control unit 40. The count register 46 stores the count value of the counter 46 when the interrupt count number is set for the interrupt generation register 44.
 計測制御ユニット40は、カウンタ24のカウント値と割込生成レジスタ44に格納される割込カウント値との大小関係に基づいてアプリケーションCPU(4)に選択的に割込をかけるとともに放射線センサ2の動作制御およびレジスタ回路42の各データの設定を行なう。 The measurement control unit 40 selectively interrupts the application CPU (4) based on the magnitude relationship between the count value of the counter 24 and the interrupt count value stored in the interrupt generation register 44 and Operation control and setting of each data of the register circuit 42 are performed.
 この計測制御ユニット40は、消灯状態から点灯状態への過渡状態時および点灯状態時での放射線量率計測時には、カウンタ24のカウント値をアプリケーションCPU(4)へ送出する。 The measurement control unit 40 sends the count value of the counter 24 to the application CPU (4) at the time of transition from the unlit state to the lit state and when measuring the radiation dose rate in the lit state.
 計測制御ユニット40により、放射線センサ2は、消灯状態での放射線量計測時、アプリケーションCPU4の制御を離れて放射線計測を行なう。これにより、アプリケーションCPU4をカウント値計測の間スリープ状態または低速動作クロック供給状態などの低消費電力モードに設定して、アプリケーションCPU4を低消費電流状態に維持することができる。 The measurement control unit 40 causes the radiation sensor 2 to perform radiation measurement by leaving the control of the application CPU 4 when measuring the radiation dose in the extinguished state. Thereby, the application CPU 4 can be set to a low power consumption mode such as a sleep state or a low-speed operation clock supply state during the count value measurement, and the application CPU 4 can be maintained in a low current consumption state.
 図9は、この発明の実施の形態2において利用されるアプリケーションCPU4の全体の構成を概略的に示す図である。この図9において、アプリケーションCPU4は、放射線計測モード時、放射線計測用のアプリケーションソフトウェアを実行するアプリ実行制御ユニット50と、放射線計測用のアプリケーションプログラムを格納する放射線アプリケーション格納ユニット52と、アラート鳴動などの警報発生時の線量値のしきい値および割込生成レジスタ44に格納する割込しきい値を生成するしきい値算出部54と、割込発生間隔を計時するタイマ55を含む。 FIG. 9 is a diagram schematically showing an overall configuration of the application CPU 4 used in the second embodiment of the present invention. In FIG. 9, in the radiation measurement mode, the application CPU 4 includes an application execution control unit 50 that executes application software for radiation measurement, a radiation application storage unit 52 that stores an application program for radiation measurement, an alert ringing, and the like. It includes a threshold value calculation unit 54 that generates a threshold value of a dose value at the time of alarm generation and an interrupt threshold value stored in the interrupt generation register 44, and a timer 55 that measures an interrupt generation interval.
 アプリ実行制御ユニット50および放射線アプリケーション格納ユニット52は、実施の形態1において利用されるアプリ実行制御ユニット26およびアプリケーション格納ユニット27にそれぞれ対応する。しかしながら、アプリ実行制御ユニット50は、消灯状態での放射線計測動作時、前述のようにスリープモードなどの低消費電力状態に設定される。 Application execution control unit 50 and radiation application storage unit 52 correspond to application execution control unit 26 and application storage unit 27 used in the first embodiment, respectively. However, the application execution control unit 50 is set to a low power consumption state such as a sleep mode as described above during the radiation measurement operation in the extinguished state.
 タイマ55は、放射線センサ2からのカウント数CPの単位時間当たりの数、すなわち計数率(CPM;Count Per Minute)を算出する際の時間差分を求めるために用いられる。時間差分は、放射線センサ2から与えられる割込要求発生までまたは割込みから次の割込み発生までに要する時間である。 The timer 55 is used to obtain a time difference when calculating the count per unit time of the count number CP from the radiation sensor 2, that is, a count rate (CPM). The time difference is the time required from the occurrence of an interrupt request given by the radiation sensor 2 or from the next interrupt to the next interrupt.
 しきい値算出部54においては、アラート鳴動などの警報発生時のしきい値線量率Zth(単位μSv/h)を、1分当たりの平均カウント数(閾値計数率CPMth)に変換した値がアラートしきい値として算出される。このアラートしきい値に対応するしきい値カウント値が図8に示す割込みレジスタ44に格納される。 In the threshold calculation unit 54, a value obtained by converting the threshold dose rate Zth (unit μSv / h) at the time of alarm occurrence such as alert ringing into an average count number per minute (threshold count rate CPMth) is an alert. Calculated as a threshold value. A threshold count value corresponding to the alert threshold value is stored in the interrupt register 44 shown in FIG.
 なお、放射線アプリケーション格納ユニット52に格納される放射線計測用アプリケーションプログラムにおいては、算出アルゴリズムとして、点灯状態時の算出アルゴリズムAL1および消灯状態から点灯状態への過渡時に利用される算出アルゴリズムAL3が準備される。 In the radiation measurement application program stored in the radiation application storage unit 52, as a calculation algorithm, a calculation algorithm AL1 in a lighting state and a calculation algorithm AL3 used in a transition from a non-lighting state to a lighting state are prepared. .
 図10は、この発明の実施の形態2において利用されるメモリ8の構成を概略的に示す図である。図10に示すメモリ8においては、点灯モードデータ格納領域28および消灯モードデータ格納領域29に加えて、しきい値格納領域56および起算点格納領域58が設けられる。 FIG. 10 is a diagram schematically showing the configuration of the memory 8 used in the second embodiment of the present invention. In the memory 8 shown in FIG. 10, in addition to the lighting mode data storage area 28 and the extinguishing mode data storage area 29, a threshold value storage area 56 and a starting point storage area 58 are provided.
 点灯モードデータ格納領域28および消灯モードデータ格納領域29は、それぞれ、図4に示す格納領域と同じであり、それぞれn個のカウント値を格納および消灯状態での計測時の最新のカウント値および線量率を格納する。 The lighting mode data storage area 28 and the extinguishing mode data storage area 29 are respectively the same as the storage areas shown in FIG. 4, and store the latest n count values and the latest count values and doses during measurement in the extinguished state, respectively. Stores the rate.
 しきい値格納領域56には、警報発生時のしきい値線量率Zthまたはこの閾値線量率に対応するしきい値計量率CPMthが格納される。起算点格納領域58には、消灯モード時におけるパルスのカウント起算点となるタイマ55のカウント値(時刻情報)を格納する。 The threshold storage area 56 stores a threshold dose rate Zth at the time of alarm occurrence or a threshold measurement rate CPMth corresponding to this threshold dose rate. The starting point storage area 58 stores a count value (time information) of the timer 55 that is a pulse counting start point in the extinguishing mode.
 この実施の形態2において用いられる通信端末の他の構成は、図1に示す通信端末の構成と同じであり、その詳細説明は省略する。 The other configuration of the communication terminal used in the second embodiment is the same as that of the communication terminal shown in FIG. 1, and detailed description thereof is omitted.
 図11は、この発明の実施の形態2に従う通信端末の消灯状態での放射線計測シーケンスを示す図である。以下、図11を参照して、この発明の実施の形態2に従う通信端末の消灯状態時の放射線計測処理シーケンスについて説明する。 FIG. 11 shows a radiation measurement sequence when the communication terminal according to the second embodiment of the present invention is turned off. Hereinafter, with reference to FIG. 11, a radiation measurement processing sequence when the communication terminal according to the second embodiment of the present invention is turned off will be described.
 実施の形態1と同様、電源ユニット19(図1参照)が起動され、通信端末1が動作状態とされると、表示部6Aには、各種操作を示すアイコンが表示される。この表示部6Aに含まれる各種アイコンからタッチパネル6(図1に示す)、放射線検出アプリケーションが起動される。このとき、まだバックライト6Bは、点灯状態にある。 As in the first embodiment, when the power supply unit 19 (see FIG. 1) is activated and the communication terminal 1 is in an operating state, icons indicating various operations are displayed on the display unit 6A. The touch panel 6 (shown in FIG. 1) and the radiation detection application are activated from various icons included in the display unit 6A. At this time, the backlight 6B is still in a lighting state.
 アプリケーションCPU4が、メインCPUの制御の下に起動され、記憶媒体12(図1参照)に格納された放射線アプリケーションプログラムを記憶媒体読取部14を介して読出し、図9に示す放射線アプリケーション格納ユニット52に格納する。次いで、この操作において、消灯状態での放射線測定が指定されると、アプリケーションCPU4のアプリ実行制御ユニット50は、しきい値算出部54においてアラートしきい値(しきい値計量率CPMthまたはしきい値線量率Zth)を算出する。この算出されたアラートしきい値CPMthおよびアラート閾値線量率Zthの少なくとも一方が、メモリ8に含まれるしきい値格納領域56に格納される(P1)。 The application CPU 4 is activated under the control of the main CPU, reads the radiation application program stored in the storage medium 12 (see FIG. 1) via the storage medium reading unit 14, and stores it in the radiation application storage unit 52 shown in FIG. Store. Next, in this operation, when radiation measurement in an extinguished state is designated, the application execution control unit 50 of the application CPU 4 causes the threshold value calculation unit 54 to generate an alert threshold value (threshold measurement rate CPMth or threshold value). Dose rate Zth) is calculated. At least one of the calculated alert threshold CPMth and alert threshold dose rate Zth is stored in a threshold storage area 56 included in the memory 8 (P1).
 次いで、アプリ実行制御ユニット50は、しきい値算出部54を用いて生成された閾値計数率CPMthを割込み発生カウント値として、放射線センサ2の割込生成レジスタ44に計測制御ユニット40を介して格納する(P2)。この初期処理が完了すると、アプリケーションCPU4は必要な初期処理を完了し、バックライト6Bを消灯状態に設定し、表示部6Aの表示を停止する。 Next, the application execution control unit 50 stores the threshold count rate CPMth generated using the threshold calculation unit 54 as an interrupt generation count value in the interrupt generation register 44 of the radiation sensor 2 via the measurement control unit 40. (P2). When this initial processing is completed, the application CPU 4 completes necessary initial processing, sets the backlight 6B to the off state, and stops the display of the display unit 6A.
 このアプリ実行制御ユニット50は、必要な初期処理を完了すると、計測制御ユニット40を介して消灯状態での計測処理を指令する。この指令に応じて、カウントレジスタ46に、計測制御ユニット40の制御の下に、カウンタ24のその時点でのカウント値が格納される(P4)。また、アプリケーションCPU4におけるタイマ55が起動され、計時動作を実行する。この状態において、アプリケーションCPU4はタイマ55を除いて低消費電力モードに設定される。タイマ55の時刻情報(カウント値)が割込み発生起点情報として起算点格納領域58に格納される(P3)。 When this application execution control unit 50 completes the necessary initial processing, the application execution control unit 50 instructs the measurement processing in the unlit state via the measurement control unit 40. In response to this command, the count value at that time of the counter 24 is stored in the count register 46 under the control of the measurement control unit 40 (P4). In addition, the timer 55 in the application CPU 4 is activated and performs a time measuring operation. In this state, the application CPU 4 is set to the low power consumption mode except for the timer 55. The time information (count value) of the timer 55 is stored in the counting point storage area 58 as interrupt starting point information (P3).
 放射線センサ2においては、計測制御ユニット40がカウンタ24のカウント値とカウントレジスタ46に格納されたカウント数から、計測時間が割込生成レジスタ44に格納されるカウント数に到達したかを判断する。自然界に存在する自然放射線の影響により、カウンタ24のカウント値は時間とともに増加する。 In the radiation sensor 2, the measurement control unit 40 determines whether the measurement time has reached the count number stored in the interrupt generation register 44 from the count value of the counter 24 and the count number stored in the count register 46. Due to the influence of natural radiation existing in the natural world, the count value of the counter 24 increases with time.
 計測制御ユニット40は、カウンタ24のカウント値とカウントレジスタ46に格納されるカウント値の差分値が割込生成レジスタ44に格納される割込カウント数に到達したと判断すると、割込をアプリケーションCPU4に通知する。アプリケーションCPU4においてアプリ実行制御ユニット50が低消費電力モードから通常動作状態に復帰し、タイマ55の計測時刻とメモリ8の起算点格納領域58に格納される割込カウント数セット時刻との差分値を求め(放射線アプリケーション格納ユニット52に格納されるアプリケーションプログラムを実行して)、割込カウント数とタイマ55の計時動作により得られた割込発生までの時間とから線量率を算出する(P6)。計量率CPMthと割込みまでに要した時間Twrとの比CPMth/Twrに基づいて算出された線量率Rとしきい値線量率Zthとの大小比較により、計測線量率が、アラートしきい値線量率Zthを超えているかを識別することができる。この時、単に、CPMth/TwrとCPMthとの大小により、計測された環境線量率がしきい値線量率を超えているかの判別が行われてもよい。 When the measurement control unit 40 determines that the difference value between the count value of the counter 24 and the count value stored in the count register 46 has reached the interrupt count number stored in the interrupt generation register 44, the measurement control unit 40 determines that the interrupt is applied to the application CPU 4 Notify In the application CPU 4, the application execution control unit 50 returns from the low power consumption mode to the normal operation state, and the difference value between the measurement time of the timer 55 and the interrupt count number set time stored in the starting point storage area 58 of the memory 8 is calculated. The dose rate is calculated from the number of interrupt counts and the time until the occurrence of the interrupt obtained by the time counting operation of the timer 55 (P6). By comparing the dose rate R calculated based on the ratio CPMth / Twr between the measurement rate CPMth and the time Twr required until interruption, and the threshold dose rate Zth, the measured dose rate is determined as the alert threshold dose rate Zth. Can be identified. At this time, it may be determined whether the measured environmental dose rate exceeds the threshold dose rate based on the magnitude of CPMth / Twr and CPMth.
 算出された線量率が、アラートしきい値線量率Zthよりも低い場合には、最新の算出した線量率Rを消灯モードデータ格納領域29に格納する。アプリケーションCPU4は、この割込発生時の計測線量率がしきい値に到達していない場合には、その旨、計測制御ユニット40に報知する。このとき、またアプリケーションCPU4は、図9に示すタイマ55の時刻を起算点格納領域58(図10参照)に格納するとともに、計測制御ユニット40を介して、カウントレジスタ46に、カウンタ24のカウント値を格納し、そのカウント値を更新する。この処理の後、アプリケーションCPU4は、タイマ55を除いて、再び低消費電力状態に入る。放射線センサ2内において、計測制御ユニット40の制御の下に、カウンタ24のカウント値のモニタおよび割込発生の要/不要の判別が実行される。 When the calculated dose rate is lower than the alert threshold dose rate Zth, the latest calculated dose rate R is stored in the extinguishing mode data storage area 29. If the measured dose rate at the time of occurrence of the interrupt does not reach the threshold value, the application CPU 4 notifies the measurement control unit 40 to that effect. At this time, the application CPU 4 also stores the time of the timer 55 shown in FIG. 9 in the starting point storage area 58 (see FIG. 10), and stores the count value of the counter 24 in the count register 46 via the measurement control unit 40. Is stored and the count value is updated. After this process, the application CPU 4 enters the low power consumption state again except for the timer 55. Within the radiation sensor 2, under the control of the measurement control unit 40, the count value of the counter 24 is monitored and the necessity / non-necessity of interrupt generation is determined.
 一方、放射線センサ2からの割込指示発生時において、アプリケーションCPU4が、線量率を計測し、その計測した線量率がアラートしきい値線量率Zthを超えていると判定した場合、アプリケーションCPU4は、スピーカ17を鳴動し、アラートを発生する(P9)。また、このときの実際のアラート鳴動時の計測線量率を保存する(P7)。図11においては、格納領域56にアラート鳴動時の計測線量率を保存するように示しているが、これは消灯モードデータ格納領域29に格納されてもよい。 On the other hand, when the interrupt instruction from the radiation sensor 2 is generated, the application CPU 4 measures the dose rate and determines that the measured dose rate exceeds the alert threshold dose rate Zth, the application CPU 4 The speaker 17 is sounded and an alert is generated (P9). Moreover, the measured dose rate at the time of actual alert ringing at this time is preserve | saved (P7). In FIG. 11, it is shown that the measured dose rate at the time of alert ringing is stored in the storage area 56, but this may be stored in the extinguishing mode data storage area 29.
 スピーカ17の鳴動により、ユーザは、バックライト6Bの点灯および表示部6Aにおける計測しきい値の表示等の必要な処理をアプリケーションCPU4に指令して実行させる。 By the sounding of the speaker 17, the user instructs the application CPU 4 to execute necessary processes such as lighting of the backlight 6B and display of the measurement threshold value on the display unit 6A.
 なお、アラート鳴動においては、カウントレジスタ46のカウント値がクリアされる。これは、バックライト点灯状態で線量率測定を行うことにより、環境線量率を目することができ、特に、アラート鳴動を行なう必要がないためである。しかしながら、アラート鳴動時に、このカウントレジスタ46のカウント値のクリアが行なわれなくてもよい。これにより、消灯状態時におけるアラート鳴動処理シーケンスが完了する。 Note that the count value of the count register 46 is cleared when the alert is sounded. This is because it is possible to see the environmental dose rate by measuring the dose rate while the backlight is on, and it is not particularly necessary to sound an alert. However, the count value of the count register 46 does not have to be cleared when the alert is sounded. Thereby, the alert ringing processing sequence in the off state is completed.
 これらの一連の処理により、周期T3での計測が長い場合、実際の環境線量率がしきい値線量率に到達している場合に、その検出が遅れるのを防止することができ、消去状態での計測時、アラート鳴動などの警報発生の遅延を低減することができる。またアラート鳴動などの警報発生時と実際の環境線量率の誤差を低減することができる。 Through these series of processing, when the measurement in the period T3 is long, it is possible to prevent the detection from being delayed when the actual environmental dose rate reaches the threshold dose rate. During measurement, it is possible to reduce the delay of alarm generation such as alert sounding. In addition, it is possible to reduce the error of the actual environmental dose rate when an alarm such as an alert is generated.
 図12は、この発明の実施の形態2における通信端末のバックライト点灯状態の線量率画面表示シーケンスを示す図である。以下、図12を参照して、この発明の実施の形態2における通信端末のバックライト点灯状態時の線量率計測処理について説明する。 FIG. 12 is a diagram showing a dose rate screen display sequence in the backlight lighting state of the communication terminal in the second embodiment of the present invention. Hereinafter, with reference to FIG. 12, the dose rate measurement process when the communication terminal in the backlight lighting state according to the second embodiment of the present invention is described.
 アプリケーションCPU4は、点灯状態での放射線量率計測指令が与えられると、バックライト6Bを点灯しまたはその点灯状態を維持し、表示部6Aに必要な情報を視認可能な状態に設定する。タイマ回路10においては、実施の形態1と同様、第1のタイマが起動され、周期T1で計測タイミングを規定するカウントアップ信号を生成する(P1)。一方、放射線センサ2においては、アプリケーションCPU4は、点灯状態での放射線計測処理を計測制御ユニット40に報知する。計測制御ユニット40は、応じて、バックライト点灯状態時において、レジスタ回路42を非動作状態に維持し、カウンタ24のカウント値をアプリケーションCPU4へ順次周期T1で送出する。すなわち、タイマ回路10からの周期T1でのカウントアップ信号に従ってアプリケーションCPU4がカウンタ24のカウント値を取込み(P2)、メモリ8の格納領域28に順次格納する(P3)。実施の形態1と同様にして、格納領域28に格納されるカウント値C[m]およびC[m+n]を用いて線量率Smを算出し、該算出した線量率Smを表示部6A上に表示する。 When the radiation dose rate measurement command in the lighting state is given, the application CPU 4 turns on the backlight 6B or maintains the lighting state, and sets information necessary for the display unit 6A to be visible. In the timer circuit 10, as in the first embodiment, the first timer is activated, and generates a count-up signal that defines the measurement timing in the cycle T1 (P1). On the other hand, in the radiation sensor 2, the application CPU 4 notifies the measurement control unit 40 of the radiation measurement process in the lighting state. Accordingly, the measurement control unit 40 maintains the register circuit 42 in the non-operating state when the backlight is lit, and sequentially sends the count value of the counter 24 to the application CPU 4 at the cycle T1. That is, the application CPU 4 fetches the count value of the counter 24 in accordance with the count-up signal from the timer circuit 10 in the cycle T1 (P2) and sequentially stores it in the storage area 28 of the memory 8 (P3). As in the first embodiment, the dose rate Sm is calculated using the count values C [m] and C [m + n] stored in the storage area 28, and the calculated dose rate Sm is displayed on the display unit 6A. To do.
 この実施の形態2においても、消灯状態から点灯状態への放射線計測モード移行時において、消灯モードデータ格納領域29には、バックライト消灯状態での最新の計測線量率が格納されており、この最新の計測線量率Rを用いて、過渡時の放射線量率計測を実行することができる。 Also in the second embodiment, when the radiation measurement mode is switched from the unlit state to the lit state, the latest measurement dose rate in the backlight unlit state is stored in the unlit mode data storage area 29. The measured radiation dose rate R can be used to measure the radiation dose rate during the transition.
 なお、この実施の形態2において点灯状態時においては、表示部6Aに線量率が表示されている。しかしながら、この算出された線量率がしきい値線量率を超えている場合には、消灯状態時と同様スピーカ17を鳴動する、または表示部6Aの表示色を変化させるなどの光情報でのアラートの報知が行なわれてもよい。 In the second embodiment, the dose rate is displayed on the display unit 6A in the lighting state. However, when the calculated dose rate exceeds the threshold dose rate, an alert with light information such as ringing the speaker 17 or changing the display color of the display unit 6A as in the off state. Notification may be performed.
 消灯状態時において周期T3の長い周期で線量率Rを算出した場合、この算出線量率が警報しきい値線量率Zthを超えて十分時間が経過した後にアラート鳴動が発生する可能性があり、警報発生が遅れる可能性がある。しかしながら、この発明の実施の形態2に従えば、バックライト消灯状態での放射線計測時、警報発生処理を、画面表示のための線量率算出アルゴリズムと別々に行なっている。すなわち、画面表示と別に、アラート鳴動などの警報発生を実現しており、低消費電流で放射線計測を行なうとともに、消去状態時の計測時に環境線量率に応じて、遅延なく警報発生を行なうことができる。 When the dose rate R is calculated in a long cycle of the cycle T3 when the light is off, an alert ringing may occur after the calculated dose rate exceeds the alarm threshold dose rate Zth and a sufficient time has elapsed. Occurrence may be delayed. However, according to the second embodiment of the present invention, alarm generation processing is performed separately from the dose rate calculation algorithm for screen display during radiation measurement in the backlight off state. In other words, alarm generation such as alerting is realized separately from the screen display, and radiation measurement is performed with low current consumption, and alarm generation can be performed without delay according to the environmental dose rate during measurement in the erased state. it can.
 また、バックライト消灯状態時において算出された線量率の最新の線量率を、格納領域29に格納しており、またアラート鳴動時等の警報発生時において、少ない誤差で過渡時に線量率を算出することができ、画面表示内容と警報発生との不一致を低減することができる。 In addition, the latest dose rate calculated when the backlight is off is stored in the storage area 29, and when an alarm is generated such as when an alert is sounding, the dose rate is calculated during transition with a small error. It is possible to reduce the discrepancy between the screen display content and the alarm occurrence.
 なお、上述の説明においては、バックライトを利用する液晶表示画面を備える通信端末について説明している。しかしながら、バックライトを利用しない有機EL(エレクトロルミネッセンス)を表示画面として利用する通信端末においても本発明は適用可能である。バックライトの消灯および点灯状態を、それぞれ表示画面の消灯および点灯状態に対応付ければよい。 In the above description, a communication terminal having a liquid crystal display screen using a backlight is described. However, the present invention can also be applied to a communication terminal that uses an organic EL (electroluminescence) that does not use a backlight as a display screen. The backlight off and lighting state may be associated with the display screen off and lighting state, respectively.
 また、通信機能を有する携帯型通信端末を用いているものの、通信機能を有しない放射線測定などのみの機能を有する装置であっても本発明は適用可能である。 In addition, although a portable communication terminal having a communication function is used, the present invention can be applied even to an apparatus having only a function such as radiation measurement that does not have a communication function.
 1 通信端末、2 放射線センサ、4 アプリケーションCPU、6 表示装置、6A 表示部、6B バックライト、6C タッチパネル、8 メモリ、10 タイマ回路、12 記憶媒体、14 記憶媒体読取部、16 送受信部、17 スピーカ、18 メインCPU、19 電源ユニット、22 放射線検出ユニット、24 カウンタ、26 アプリ実行制御ユニット、27 アプリケーション格納ユニット、29 消灯モードデータ格納領域、28 点灯モード格納データ格納領域、30 第1タイマ、31 第2タイマ、40 計測制御ユニット、42 レジスタ回路、44 割込生成レジスタ、46 カウントレジスタ、50 アプリ実行制御ユニット、52 放射線アプリケーション格納ユニット、54 しきい値算出部、55 タイマ、56 しきい値格納領域、58 起算点格納領域。 1 communication terminal, 2 radiation sensor, 4 application CPU, 6 display device, 6A display unit, 6B backlight, 6C touch panel, 8 memory, 10 timer circuit, 12 storage medium, 14 storage medium reading unit, 16 transmission / reception unit, 17 speaker , 18 main CPU, 19 power supply unit, 22 radiation detection unit, 24 counter, 26 application execution control unit, 27 application storage unit, 29 extinguishing mode data storage area, 28 lighting mode storage data storage area, 30 first timer, 31st timer 2 timer, 40 measurement control unit, 42 register circuit, 44 interrupt generation register, 46 count register, 50 application execution control unit, 52 radiation application storage unit, 54 threshold calculation unit 55 timer, 56 threshold storage area, 58 starting point storage region.

Claims (7)

  1.  点灯モードおよび消灯モードを有する表示装置、
     放射線の入力毎にパルス信号を発生する放射線検出ユニット、
     前記検出ユニットの出力パルスをカウントするカウンタ、
     前記カウンタのカウント値を前記点灯モード時には第1の時間で取り込み、かつ前記消灯モード時には前記第1の時間よりも長い時間で取り込むメモリ回路、
     モード指示に従って、前記メモリ回路の格納値に従って線量率を算出するとともに線量率算出に用いられる算出アルゴリズムを少なくとも前記消灯モードおよび前記点灯モードの間で切換える制御実行部を備える、携帯型測定装置。
    A display device having a lighting mode and a light-off mode,
    A radiation detection unit that generates a pulse signal for each radiation input;
    A counter for counting output pulses of the detection unit;
    A memory circuit that captures the count value of the counter in a first time during the lighting mode and that takes a longer time than the first time in the extinguishing mode;
    A portable measurement apparatus comprising a control execution unit that calculates a dose rate according to a stored value of the memory circuit according to a mode instruction and switches a calculation algorithm used for calculating the dose rate between at least the extinguishing mode and the lighting mode.
  2.  前記制御実行部はさらに、前記消灯モードから前記点灯モードへの切換時、前記線量率算出に用いられる算出アルゴリズムを過渡時算出アルゴリズムに切換え、前記過渡時算出アルゴリズムは、前記消灯モードから前記点灯モード移行の時間経過とともに、前記点灯モードで算出された線量率よりも点灯モードで測定される線量率の重みが大きくなるように時間的に変化する、請求項1記載の携帯型測定装置。 The control execution unit further switches a calculation algorithm used for calculating the dose rate to a transient calculation algorithm when switching from the extinguishing mode to the lighting mode, and the transient calculation algorithm is changed from the extinguishing mode to the lighting mode. The portable measuring device according to claim 1, wherein the time-dependent change of the dose rate measured in the lighting mode is greater than the dose rate calculated in the lighting mode with the passage of time.
  3.  前記過渡時算出アルゴリズムは、前記消灯モードでの最新の線量率を含む第1の部分と前記タイマ回路の出力信号に従って第1の時間で取り込まれたカウント値で線量率を算出する第2の部分とを備え、前記第2の部分の重みが時間経過とともに大きくされる、請求項2記載の携帯型測定装置。 The transient calculation algorithm includes a first part including the latest dose rate in the extinguishing mode and a second part for calculating a dose rate with a count value acquired at a first time according to an output signal of the timer circuit. The portable measuring device according to claim 2, wherein the weight of the second portion is increased with time.
  4.  前記制御実行部は、前記消灯モード時に、算出された最新の線量率を前記メモリ回路に格納する、請求項1から3のいずれかに記載の携帯型測定装置。 The portable measurement device according to any one of claims 1 to 3, wherein the control execution unit stores the calculated latest dose rate in the memory circuit in the extinguishing mode.
  5.  前記第1の時間を規定する第1のタイミング信号および前記第1の時間よりも長い第2の時間を規定する第2のタイミング信号を生成するタイマ回路をさらに備え、
     前記制御実行部は、前記点灯モード時および前記消灯モード時には、前記タイマ回路から前記第1のタイミング信号および前記第2のタイミング信号に従って前記メモリ回路に前記カウンタのカウント値を取り込む、請求項1記載の携帯型測定装置。
    A timer circuit for generating a first timing signal defining the first time and a second timing signal defining a second time longer than the first time;
    2. The control execution unit fetches the count value of the counter from the timer circuit into the memory circuit according to the first timing signal and the second timing signal during the lighting mode and the extinguishing mode. Portable measuring device.
  6.  前記カウンタのカウント期間を規定する割込みカウント値を格納する割込みレジスタと、
     前記割り込みの起算点となる前記カウンタのカウント値を起算値として格納するカウントレジスタと、
     前記レジスタの格納動作を少なくとも制御する計測制御ユニットをさらに備え、
     前記メモリ回路は、しきい値線量値を格納するしきい値格納領域と、計測開始時点を示す起算値を格納する起算値格納領域とを備え、
     前記計測制御ユニットは、前記消灯モード時、前記カウンタのカウント値と前記カウントレジスタのカウント値の差分値と前記割込みレジスタの割込みカウント値とに従って選択的に割込みを発生して前記制御実行部に与え、
     前記制御実行部は、前記割込みの与えられた時、前記メモリ回路の起算値と割込み印加時との時間差と前記割込みレジスタの割込みカウント値とから線量率を算出し、該算出線量率が前記しきい値線量値以上のときに警報を発生させる、請求項1記載の携帯型測定装置。
    An interrupt register that stores an interrupt count value that defines a count period of the counter;
    A count register that stores a count value of the counter that is a starting point of the interrupt as a starting value;
    A measurement control unit for controlling at least a storing operation of the register;
    The memory circuit includes a threshold storage area for storing a threshold dose value, and a calculated value storage area for storing a calculated value indicating a measurement start time point.
    In the extinguishing mode, the measurement control unit selectively generates an interrupt according to the count value of the counter, the difference value of the count value of the count register, and the interrupt count value of the interrupt register, and supplies the interrupt to the control execution unit. ,
    When the interrupt is given, the control execution unit calculates a dose rate from a time difference between the calculated value of the memory circuit and the time of application of the interrupt and an interrupt count value of the interrupt register, and the calculated dose rate is calculated as follows. The portable measuring device according to claim 1, wherein an alarm is generated when the threshold dose value is exceeded.
  7.  前記割込みカウント値は、前記しきい値線量率に対応する計数率で与えられるパルス数である、請求項6記載の携帯型測定装置。 The portable measurement device according to claim 6, wherein the interrupt count value is a pulse number given at a count rate corresponding to the threshold dose rate.
PCT/JP2013/068365 2012-07-06 2013-07-04 Portable measuring apparatus WO2014007328A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-152919 2012-07-06
JP2012152919A JP2014016203A (en) 2012-07-06 2012-07-06 Portable measuring device

Publications (1)

Publication Number Publication Date
WO2014007328A1 true WO2014007328A1 (en) 2014-01-09

Family

ID=49882079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068365 WO2014007328A1 (en) 2012-07-06 2013-07-04 Portable measuring apparatus

Country Status (2)

Country Link
JP (1) JP2014016203A (en)
WO (1) WO2014007328A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080576A (en) * 2014-10-20 2016-05-16 日本電子株式会社 Live-time ratio arithmetic circuit, method for operating live-time ratio, radiation detector, and sample analyzer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6310263B2 (en) 2014-01-30 2018-04-11 株式会社ニューフレアテクノロジー Inspection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183985A (en) * 1989-12-13 1991-08-09 Aloka Co Ltd Radiation measuring and analyzing device
JP2003014847A (en) * 2001-06-28 2003-01-15 Japan Atom Energy Res Inst Exposure management system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183985A (en) * 1989-12-13 1991-08-09 Aloka Co Ltd Radiation measuring and analyzing device
JP2003014847A (en) * 2001-06-28 2003-01-15 Japan Atom Energy Res Inst Exposure management system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080576A (en) * 2014-10-20 2016-05-16 日本電子株式会社 Live-time ratio arithmetic circuit, method for operating live-time ratio, radiation detector, and sample analyzer

Also Published As

Publication number Publication date
JP2014016203A (en) 2014-01-30

Similar Documents

Publication Publication Date Title
JP5343521B2 (en) Electronic clock
EP3056983A1 (en) Display frame generation method and terminal device
US20120218282A1 (en) Display Brightness Adjustment
CN113993190A (en) Method and device for reducing power consumption of electronic equipment
US10564694B2 (en) Power management method and power management apparatus for user equipment
JP3205512U (en) Smart umbrella based on APP
EP2645680A1 (en) Mobile terminal, non-transitory computer-readable medium storing control program therefor, and control method
TW201430796A (en) Timing control circuit, image driving apparatus, image display system and display driving method
JP2019007818A (en) Electronic device, program, and clock display control method
WO2014007328A1 (en) Portable measuring apparatus
JP2013156158A (en) Electronic watch
US20200081517A1 (en) Electronic display power management systems and methods
JP2013156159A (en) Electronic watch
JP2013152140A (en) Electronic clock
US20120236045A1 (en) Display control apparatus and display control method
US20180266846A1 (en) Display device, electronic timepiece, display method, and computer-readable recording medium
CN108170251A (en) The power-saving method and mobile terminal of a kind of mobile terminal
JP2011113173A (en) Real-time clock device, information processor and electronic apparatus
JP6603455B2 (en) Electronics
JP2012194791A (en) Portable terminal device and control method of portable terminal device
US20120030484A1 (en) Display apparatus with dual-screen and display method thereof
JP6394951B2 (en) POWER CONTROL DEVICE, ITS CONTROL METHOD, CONTROL PROGRAM, AND ELECTRONIC DEVICE
TW201308304A (en) Display with auto-off reminding function
KR101564125B1 (en) Status information displaying method and digital protective relay using the same
JP2011022767A (en) Power control device and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13812657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13812657

Country of ref document: EP

Kind code of ref document: A1