WO2014007066A1 - Plasma processing device - Google Patents

Plasma processing device Download PDF

Info

Publication number
WO2014007066A1
WO2014007066A1 PCT/JP2013/066918 JP2013066918W WO2014007066A1 WO 2014007066 A1 WO2014007066 A1 WO 2014007066A1 JP 2013066918 W JP2013066918 W JP 2013066918W WO 2014007066 A1 WO2014007066 A1 WO 2014007066A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma processing
exhaust port
tube
processing apparatus
central axis
Prior art date
Application number
PCT/JP2013/066918
Other languages
French (fr)
Japanese (ja)
Inventor
松田 竜一
吉田 和人
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2014007066A1 publication Critical patent/WO2014007066A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting

Definitions

  • the present invention relates to a plasma processing apparatus having a support table on which a substrate is placed.
  • a plasma processing apparatus that mounts a substrate such as a wafer to be processed on a support table provided in the processing container, and uses the plasma generated in the processing container to perform film formation or etching by plasma processing on the substrate It has been known.
  • FIG. 8 an ICP (Inductively-Coupled-Plasma) type plasma processing apparatus is shown in FIG. 8, and will be described with reference to FIG.
  • reference numeral 51 is a processing container
  • reference numeral 52 is a support base
  • reference numeral 53 is a substrate
  • reference numeral 54 is an antenna
  • reference numeral 55 is an RF incident window
  • reference numeral 56 is a plasma region
  • plasma is an RF incident window 55. And is generated by electromagnetic waves incident from the antenna 54.
  • a substrate 53 is preferably disposed.
  • (B) The supply of the source gas to the plasma region 56 is axisymmetric with respect to the central axis 51a, and the flow for exhausting the gas used for the plasma processing is also preferably axially symmetric with respect to the central axis 51a.
  • the support base 52 is preferably cylindrical.
  • Piping and cables such as a refrigerant, a heater wire, a temperature sensor, a high voltage wire, and a high frequency power are connected to the support base 52 in order to control the temperature of the substrate 53, electrostatic adsorption, and self-bias application.
  • a power introduction path for guiding these to the outside of the processing container 51.
  • Such a power introduction path is formed inside the support structure (utility introduction pipe) that supports the support base 52.
  • the processing container 51 side and the support structure (utility introduction pipe) are provided.
  • a seal structure that seals between the inside and the inside is also necessary.
  • a drive mechanism for driving the support base 52 is required, and a link mechanism for that purpose needs to be connected within the cylinder of the support base 52.
  • a link mechanism for that purpose needs to be connected within the cylinder of the support base 52.
  • it is necessary to enlarge the utility introduction tube or add another utility introduction tube in view of space for example, see the utility introduction tube 62 indicated by a dotted line in FIGS. 9 and 10 described later).
  • the following arrangement examples (1) to (4) can be considered as the arrangement positions of the support structure (utility introduction pipe) and the exhaust port.
  • examples of the arrangements (1) to (4) described below are shown in FIGS. 9 to 12, and refer to FIGS. 9 to 12.
  • the configuration in each arrangement example will be described. 9 to 12, the same components as those shown in FIG. 8 are denoted by the same reference numerals, and redundant description is omitted.
  • Exhaust port a circular exhaust hole coaxial with the bottom surface of the processing container
  • support structure supported from the side surface of the processing container
  • the exhaust port 61 is coaxial with the central axis 51 a on the bottom surface of the processing container 51.
  • the utility introduction pipe 62 which is a formed circular exhaust hole and serves as a support structure, has one cantilever beam that supports the support base 52 from one side of the side surface of the processing vessel 51, or the cantilever beam structure. It has a plurality (for example, see FIG. 5a, 5b, etc. in Patent Document 1).
  • the support base 52 and the power introduction pipe 62 are attached so as to be inserted from the side surface of the processing vessel 51, and these are one large replacement part, which is expensive and heavy. Yes, replacement is not easy. Further, since the exhaust gas is biased by the utility introduction pipe 62, in the case of a viscous flow close to the molecular flow region, the influence of the gas flow appears on the performance of film formation, self-cleaning, and etching, and the plasma processing may become non-uniform.
  • Exhaust port non-coaxial circular exhaust hole on the bottom surface of the processing container
  • support structure supported from the side surface of the processing container
  • the utility introduction tube 62 has one cantilever or a plurality of cantilever structures as in the plasma processing apparatus shown in FIG. . If the exhaust port 63 is non-coaxial with the central shaft 51a, the exhaust gas is biased. However, when the pendulum type gate valve 64 is connected to the exhaust port 63, the exhaust port 63 is non-coaxial with the central shaft 51a. By decentering to a predetermined position, the gas flow can be made to approach uniformly.
  • Exhaust port one exhaust hole on the side surface of the processing container
  • support structure supported from the bottom surface of the processing container
  • the exhaust port 65 is one exhaust hole formed on the side surface of the processing container 51.
  • the utility introduction pipe 66 serving as a support structure supports the support base 52 coaxially with the central axis 51a from the bottom surface of the processing vessel 51.
  • Exhaust port a plurality of exhaust holes on the side surface of the processing container
  • support structure supported from the bottom surface of the processing container
  • the exhaust port 67 has a plurality of exhaust holes formed on the side surface of the processing container 51
  • the utility introduction tube 66 supports the support base 52 coaxially with the central axis 51 a from the bottom surface of the processing vessel 51.
  • a plurality of exhaust ports 67 are provided on the side surface of the processing container 51, so if these are arranged symmetrically with respect to the central axis 51 a.
  • the gas flow can be made to approach uniformly.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a plasma processing apparatus with good assemblability and maintainability and a uniform gas flow.
  • a plasma processing apparatus for solving the above-mentioned problems is Gas supply means for supplying a desired gas into the inside of the cylindrical processing container; A circular ring-shaped antenna for supplying electromagnetic waves to the inside of the processing container; A cylindrical support provided inside the processing container and on which the substrate is placed; A tubular support structure in which an upper part is connected to a lower part of the support table, and a lower part is connected to a connection port on the bottom surface of the processing container to support the support table and to insert a working force to be used on the support table inward.
  • a pendulum gate valve attached to the circular exhaust port on the bottom surface and having a valve body for opening and closing the exhaust port;
  • a vacuum pump attached to the lower part of the pendulum gate valve;
  • the gas supply means is arranged axisymmetrically with respect to the central axis of the processing vessel,
  • the antenna and the support base are arranged coaxially with the central axis of the processing container,
  • the exhaust port is disposed on the bottom surface such that the center of the exhaust port is decentered in the opening direction of the valve body with respect to the central axis of the processing container,
  • the connection port is disposed in a portion of the bottom surface where the exhaust port is not provided so that the center of the connection port is decentered in the closing direction of the valve body with respect to the central axis of the processing container,
  • An intermediate portion between the upper portion and the lower portion of the support structure is arranged
  • the support structure is a crank-shaped tube, and comprises a vertical upper tube, a vertical lower tube, and a horizontal middle tube connecting the upper tube and the lower tube,
  • the upper tube is connected to the lower surface of the support base and is arranged coaxially with the central axis of the processing vessel,
  • the middle tube is horizontally disposed in a direction along the straight line,
  • the lower pipe is connected to the connection port.
  • a plasma processing apparatus for solving the above-described problem is
  • the distance in the height direction from the upper surface of the bottom surface to the lower surface of the middle pipe is H
  • the horizontal distance from the end of the exhaust port in the closing direction of the valve body to the end of the middle pipe in the opening direction of the valve body is W
  • the middle tube is arranged at a position satisfying [H ⁇ W / 4].
  • a plasma processing apparatus for solving the above-mentioned problems is as follows.
  • the support structure is an oblique pipe formed obliquely, Connect the upper end of the diagonal pipe to the lower surface of the support base, The middle part of the oblique pipe is arranged along the straight line when viewed from above, A lower end portion of the oblique pipe is connected to the connection port.
  • a plasma processing apparatus for solving the above-described problems is
  • the distance in the height direction from the upper surface of the bottom surface to the oblique pipe at the end of the exhaust port in the closing direction of the valve body is H, and from the end of the exhaust port in the closing direction of the valve body,
  • the oblique pipe is arranged so as to satisfy [H ⁇ W / 4].
  • the support structure is an L-shaped tube, and comprises a horizontal upper tube and a vertical lower tube connected to the upper tube,
  • the upper tube is connected to the lower side surface of the support base, and is disposed horizontally in the direction along the straight line,
  • the lower pipe is connected to the connection port.
  • a plasma processing apparatus for solving the above-described problems is
  • the distance in the height direction from the upper surface of the bottom surface to the lower surface of the support base is H
  • the horizontal distance from the end of the exhaust port in the closing direction of the valve body to the end of the support base in the opening direction of the valve body is W
  • the support base is arranged at a position satisfying [H ⁇ W / 4].
  • the gas is supplied symmetrically to the central axis of the cylindrical processing vessel, the antenna for generating plasma is arranged coaxially with the central axis, and the cylindrical support base supported by the support structure is centered. Since it is arranged coaxially with the axis, the gas flow used with respect to the central axis is axisymmetrical in the vicinity of the substrate placed on the support base, and the gas flow can be made uniform.
  • the exhaust port and the support structure to which the pendulum type gate valve is connected below the support base are not arranged coaxially with the central axis of the processing vessel, but intersect with the central axis of the processing vessel, and the pendulum type Since it is arranged in a direction along the straight line that is the opening and closing direction of the valve body of the gate valve, the flow of gas used with respect to the vertical plane including the straight line can be made symmetrical, and the gas flow can be made uniform. . Accordingly, the gas used in the processing container can be exhausted uniformly, and as a result, the plasma processing on the substrate, the processing container, and the like can be performed uniformly, and the performance and reliability of the plasma processing can be improved. .
  • the structure is simpler than the case where the exhaust port and support structure are provided on the side surface, and the exhaust port and support structure are manufactured, assembled and maintained. Becomes easy.
  • FIG. 1 It is a schematic block diagram which shows an example (Example 1) of embodiment of the plasma processing apparatus which concerns on this invention. It is a top view which shows the positional relationship of each structural member in the exhaust port part of the plasma processing apparatus shown in FIG. It is sectional drawing of the attachment part of the power introduction pipe
  • FIG. 1 It is a top view which shows the positional relationship of each structural member in the exhaust port part of the plasma processing apparatus shown in FIG. It is a schematic block diagram explaining the structure of a general plasma processing apparatus. It is a schematic block diagram which shows an example of arrangement
  • Embodiments of a plasma processing apparatus according to the present invention will be described with reference to FIGS.
  • the plasma processing apparatus according to the present invention is applicable to a plasma CVD apparatus or a plasma etching apparatus having a support table on which a substrate is placed.
  • FIG. 1 to 3 are diagrams showing a plasma processing apparatus of the present embodiment
  • FIG. 1 is a schematic configuration diagram showing the plasma processing apparatus of the present embodiment
  • FIG. 2 is a plasma processing apparatus shown in FIG. It is a top view which shows the positional relationship of each member in the exhaust port part of an apparatus
  • FIG. 3 is sectional drawing of the attachment part of the power introduction pipe
  • the plasma processing apparatus 10 ⁇ / b> A includes a cylindrical processing container 11 in which a desired gas is supplied and the internal pressure is controlled in a vacuum region.
  • a cylindrical support base 12 on which a substrate 13 on which a desired plasma treatment is performed is placed, a ceramics disk-like ceiling board 15 that closes an upper opening of the processing container 11, and a ceiling And a plurality of circular ring antennas 14 disposed above (directly above) the plate 15.
  • a high frequency power source is connected to the antenna 14 via a matching unit.
  • high-frequency power for example, 13.56 MHz
  • RF high-frequency electromagnetic wave
  • the processing container 11 is provided with a gas supply mechanism (gas supply means) for supplying a desired gas therein.
  • a gas supply mechanism gas supply means
  • the central axis of the cylindrical processing container 11 is provided.
  • a plurality of gas nozzles are arranged symmetrically with respect to 11a and gas is supplied so that the gas flow used for plasma processing is axially symmetric with respect to the central axis 11a.
  • an exhaust port 21 is provided on the bottom surface 17 of the processing vessel 11, and a pendulum type gate valve 22 that controls the pressure inside the processing vessel 11 is attached to the lower portion of the exhaust port 21.
  • a TMP (turbo molecular pump) 23 for exhausting the atmosphere inside the processing vessel 11 is attached to the lower part of the type gate valve 22.
  • the exhaust port 21 is arranged eccentrically from the central axis 11 a of the processing container 11 in consideration of the characteristics of the pendulum type gate valve 22.
  • the pendulum type gate valve 22 and the TMP 23 are also arranged eccentrically.
  • the central axis of the cylindrical support base 12 is arranged coaxially with the central axis 11a, and the center of the substrate 13 placed on the upper surface thereof is also arranged coaxially with the central axis 11a.
  • the generated plasma 16 has a cylindrical shape coaxial with the central axis 11a
  • the centers of the circular ring antenna 14 and the disk-shaped ceiling plate 15 are also arranged coaxially with the central axis 11a.
  • the plasma generation mechanism is preferably an ICP type using a circular ring antenna.
  • the utility introduction pipe 31 from the lower part of the support table 12 to the bottom surface 17 of the processing container 11 is bent in a crank shape. More specifically, the upper tube 31a, which is a portion immediately below the support base 12, is arranged vertically coaxially with the central axis 11a, and the lower tube 31c, which is a portion connected to the bottom surface 17, is arranged in an eccentric manner.
  • the middle tube 31b, which is vertically disposed on the portion of the bottom surface 17 (the connection port 24) without 21 and connects between the upper tube 31a and the lower tube 31c, is disposed horizontally.
  • the crank-shaped power introduction pipe 31 can be easily configured by combining a commercially available elbow pipe and a straight pipe.
  • Pipes and cables such as a refrigerant, a heater wire, a temperature sensor, a high-voltage wire, and a high-frequency power are inserted into the utility introduction tube 31 for temperature control of the substrate 13, electrostatic adsorption, and self-bias application.
  • the heater is connected to the heater and electrodes inside the support base 12.
  • Such a power introduction pipe 31 may be formed in a crank shape by connecting a plurality of pipes such as a cylinder and a square cylinder.
  • a flange 31 d is provided on the outer periphery of the lower pipe 31 c of the utility introduction pipe 31, and is disposed on the upper surface of the bottom surface 17 via the O-ring 32.
  • the structure is fixed to the bottom surface 17 by a plurality of inserted bolts 33.
  • the connecting portion between the lower pipe 31c and the flange 31d is sealed by welding or the like over the entire circumference, and the bolt hole for the bolt 33 on the inner circumference of the O-ring 32 is formed without penetrating the flange 31d. .
  • the inside of the processing container 11 is sealed from the atmosphere side. Further, since the inside of the utility introduction pipe 31 is also on the atmosphere side, maintenance of this portion is facilitated.
  • the utility introduction pipe 31 is inserted into the connection port 24 of the bottom surface 17 from above and the bolt 33 is inserted into the bolt hole of the flange 31d from below the bottom surface 17, an operation of using a tool in a narrow region in the processing container 11 is performed. There is no need, and the assembly work becomes easy. Further, the rotation direction can be positioned at the position of the bolt hole of the flange 31d. Note that a positioning pin or the like may be provided on the flange 31d or the bottom plate 17 in order to prevent an assembly error and perform installation with high accuracy.
  • a straight line that intersects the central axis 11a perpendicularly and that opens and closes the valve element 22a of the pendulum gate valve 22 is called a center line 11b, and the following description will be given.
  • the movement direction of the circular valve body 22a is strictly an arc due to the structure of the pendulum type gate valve 22, but can be regarded as a substantially straight line. Therefore, here, the movement direction of the valve body 22a is a straight line. Will be described.
  • the exhaust port 21 is arranged eccentric from the central axis 11a of the processing container 11 in consideration of the characteristics of the pendulum type gate valve 22. Specifically, the valve body 22a is offset in the opening direction OD so that the area center Mc of the opening region formed by the exhaust port 21 and the valve body 22a of the pendulum gate valve 22 coincides with the center axis 11a of the processing vessel 11.
  • the exhaust port 21 is arranged in mind. Therefore, the opening center 21a of the exhaust port 21 itself is decentered in the opening direction OD on the center line 11b with respect to the central axis 11a of the processing container 11.
  • the opening area of the pendulum gate valve 22 naturally changes depending on the opening ratio, but in this embodiment, the central value of the recommended use value (10% to 50%) of the opening ratio in the pendulum gate valve 22 is 30%.
  • the area center Mc of the crescent-shaped opening area at that time is obtained on the basis of the opening area, and the exhaust port 21 is arranged eccentrically so that the area center Mc coincides with the central axis 11a.
  • the upper pipe 31a of the utility introduction pipe 31 is arranged coaxially with the central axis 11a together with the support base 12 immediately above.
  • the lower pipe 31c of the utility introduction pipe 31 is arranged at a portion of the bottom surface 17 (connecting port 24) where there is no exhaust port 21 arranged eccentrically, and its center 24a is closed on the center line 11b in the closing direction CD. It is decentered from the central axis 11a (in the direction opposite to the opening direction OD).
  • tube 31c is horizontally arrange
  • the cylindrical support base 12 and the upper pipe 31 a of the cylindrical power introduction pipe 31 are arranged coaxially with the central axis 11 a of the processing container 11.
  • a gas used for processing is supplied into the processing vessel 11 symmetrically with respect to the central axis 11a, and high-frequency electromagnetic waves are supplied from an antenna 14 arranged coaxially with the central axis 11a, so that cylindrical plasma is supplied. 16 is generated, and the gas used for the processing flows around the support base 12 and the upper pipe 31a of the power introduction pipe 31 so as to be uniform with respect to the central axis 11a. Therefore, as compared with the case where it is attached to the side surface of the processing container as shown in FIGS.
  • the middle pipe 31 b and the lower pipe 31 c of the utility introduction pipe 31 are not arranged coaxially with the central axis 11 a of the processing vessel 11, but the middle pipe 31 b is in a direction along the center line 11 b. Is arranged.
  • the exhaust port 21 is not arranged coaxially with the central axis 11a of the processing vessel 11, but the opening center 21a is arranged eccentrically with respect to the central axis 11a on the center line 11b in the opening direction OD. ing.
  • a part of the crescent-shaped opening region formed by the exhaust port 21 and the valve body 22a is hidden by the middle tube 31b.
  • the shape of the opening region that is not hidden by the middle tube 31b is axisymmetric with respect to the middle tube 31b (center line 11b). Will change. Therefore, considering the vertical plane including the center line 11b (hereinafter referred to as the central vertical plane), the gas used for the processing is uniform in the plane of the middle pipe 31b so as to be symmetrical with respect to the central vertical plane. It will flow around.
  • the above arrangement is for the following reasons. Considering the case where the valve body 22a is moved to the fully open position (the position of the one-dot chain line in FIG. 2) and the exhaust port 21 is fully open, the diameter D of the exhaust port 21 is used [H ⁇ D / 4]. However, the exhaust port 21 is not fully opened during exhaust control during actual plasma processing. Normally, it is used at an opening ratio of the recommended use value (10% to 50%) described above, so it is better to consider the size of the middle pipe 31b of the utility introduction pipe 31 that may affect the exhaust conductance. For this reason, [H ⁇ W / 4] is obtained by using the horizontal distance W between the end portion in the closing direction CD of the exhaust port 21 and the end portion in the opening direction OD of the middle tube 31b of the power introduction tube 31. The height position.
  • the gas used for processing can be exhausted without affecting the exhaust conductance.
  • the effect of the above configuration is noticeable when plasma processing is performed at a relatively high vacuum pressure.
  • plasma cleaning in a plasma CVD apparatus is performed at a relatively high vacuum pressure.
  • there is a bias in plasma cleaning and in order to perform a predetermined cleaning, excessive gas is consumed or a part of the cleaning is performed, resulting in plasma damage. May occur.
  • uniform plasma cleaning plasma processing
  • plasma processing is performed on the processing container 11 and the support base 12 by using the above-described configuration. As a result, useless gas usage and plasma damage can be reduced, reducing the frequency of maintenance and extending the life of parts.
  • the height position H of the lower surface of the middle pipe 31b of the utility introduction pipe 31 is the shortest height position that does not affect the conductance of the gas flow at the exhaust port 21, There is no need to raise the height of the support 12 or the processing container 11 more than necessary.
  • the pendulum type gate valve 22 and the TMP 23 are also arranged eccentrically together with the exhaust port 21, so that the pendulum type gate valve 22, Since there is no TMP 23, a space is created, access to this part is facilitated, and utility wiring and piping construction are facilitated.
  • the pendulum gate valve 22 has a valve body storage portion 22b for storing the valve body 22a, and an installation space for the valve body storage portion 22b is necessary.
  • the pendulum type gate valve 22 is biased to the opening direction OD. Since the valve body storage portion 22b is also moved and arranged in an eccentric direction, a space is created below the lower pipe 31c of the utility introduction pipe 31.
  • valve body storage portion 22b of the pendulum type gate valve 22 arranged eccentrically is arranged so as to protrude outward from the side surface of the apparatus. Maintenance such as replacement becomes easy.
  • the support base 12 when assembling the inside of the processing container 11, first, the support base 12 is attached to a crank-shaped power introduction pipe 31 that is integrally manufactured in advance. At this time, the working force (pipe, cable, etc.) on the support base 12 side is inserted from above into the upper tube 31a of the power introduction tube 31 and pulled out from the lower tube 31c via the middle tube 31b. The support 12 is fixed to the upper tube 31a. That is, the support base 12 and its usage force and the usage introduction pipe 31 are in an assembled state.
  • the power introduction pipe 31 is disposed via the O-ring 32 at the position of the connection port 24 on the bottom surface 17 of the processing container 11, and a plurality of bolts 33 are formed from the bottom surface side of the bottom surface 17. And the lower pipe 31c of the utility introduction pipe 31 is temporarily fixed to the bottom surface 17. At this time, the working force of the support base 12 is drawn from the connection port 24 to below the bottom surface 17.
  • the arrangement is adjusted so that the support 12 and the upper pipe 31a of the utility introduction pipe 31 are coaxial with the central axis 11a of the processing vessel 11, and the middle pipe 31b of the utility introduction pipe 31 is arranged horizontal. After these adjustments, the bolts 33 are finally fixed.
  • the utility introduction pipe 31 can be fixed to the bottom surface 17 from the outside of the processing container 11 and the operation is easy.
  • the support stage 12 and the utility introduction pipe 31 may be removed by a procedure reverse to the above-described procedure, so that the maintenance becomes easy.
  • a consumable item (replacement part) of the support base 12 there is an electrostatic chuck attached to the upper part of the support base 12, but such a lightweight part can be replaced from above the processing container 11. it can.
  • the gas flow to be used is axially symmetric with respect to the central axis 11a up to the support base 12 and the upper pipe 31a of the utility introduction pipe 31. Further, below the upper pipe 31a, the gas flow used is symmetrical with respect to the central vertical plane, the gas flow is uniform, and the gas used in the processing vessel 11 is exhausted uniformly. As a result, it is possible to uniformly perform the plasma processing on the substrate 13 and the processing container 11.
  • the exhaust port 21 and the utility introduction pipe 31 are provided not on the side surface of the processing vessel 11 but on the bottom surface 17 thereof, the structure becomes simpler than the case where the exhaust port and the utility introduction tube 31 are provided on the side surface.
  • the introduction pipe 31 can be easily manufactured, assembled and maintained.
  • Example 2 4 and 5 are diagrams showing the plasma processing apparatus of the present embodiment
  • FIG. 4 is a schematic configuration diagram showing the plasma processing apparatus of the present embodiment
  • FIG. 5 is the plasma processing shown in FIG. It is sectional drawing of the attachment part of the power introduction pipe
  • the plasma processing apparatus 10 ⁇ / b> B according to the present embodiment is different from the utility introduction pipe 31 described in the first embodiment in the configuration of the utility introduction pipe 34.
  • the configuration is the same as the plasma processing apparatus 10 ⁇ / b> A described in the first embodiment. Therefore, here, the same reference numerals are used for the equivalent components, and the description of the overlapping description is omitted.
  • the utility introduction pipe 34 is provided as a support structure of the support base 12, but the shape is different from the utility introduction pipe 31 described in the first embodiment, and treatment is performed from the lower part of the support base 12.
  • the utility introduction pipe 34 up to the bottom surface 17 of the container 11 is constituted by an inclined oblique pipe. More specifically, the upper end portion 34a of the power introduction pipe 34 connected to the lower surface of the support base 12 is centered in the same manner as the upper pipe 31a of the power introduction pipe 31 as shown in FIG. Although it arrange
  • the lower end portion 34c connected to the bottom surface 17 is disposed at a portion (connecting port 24) of the bottom surface 17 where there is no exhaust port 21 arranged eccentrically, and an intermediate portion connecting between the upper end portion 34a and the lower end portion 34c. 34b is arranged diagonally.
  • the utility (pipe, cable, etc.) is inserted into the utility introduction pipe 34 as in the first embodiment.
  • the power introduction pipe 34 is a substantially straight pipe, and the inside can be seen through. Insertion of utility becomes easier. Further, the length of the utility introduction pipe 34 and the length of the insertion force to be inserted can be shortened.
  • a flange 34 d is provided on the outer periphery of the lower end 34 c of the utility introduction pipe 34, and is disposed on the upper surface of the bottom surface 17 via the O-ring 32.
  • the structure is fixed to the bottom surface 17 by a plurality of inserted bolts 33. With such a structure, the inside of the processing container 11 is sealed from the atmosphere side. Further, since the inside of the utility introduction pipe 34 is also on the atmosphere side, maintenance of this portion is facilitated.
  • the utility introduction pipe 34 may include all of the inclined pipes including the lower end part 34c.
  • the lower end part 34c is arranged with respect to the bottom surface 17 as shown in FIG. A configuration in which the lower end portion 34c and the intermediate portion 34b are connected to each other is preferable. In that case, for example, a plurality of tubes such as cylinders and square tubes may be connected.
  • the arrangement position of the exhaust port 21 is the same as in the first embodiment.
  • the arrangement position of the utility introduction pipe 34 is substantially the same as that of the first embodiment although the shape is different from that of the utility introduction pipe 31.
  • the upper end portion 34a of the utility introduction pipe 34 is disposed coaxially with the central axis 11a together with the support base 12 immediately above the upper end portion 34a.
  • the lower end 34c is arranged at a portion of the bottom surface 17 (connecting port 24) where there is no exhaust port 21 arranged eccentrically, and its center 24a extends from the central axis 11a in the closing direction CD on the center line 11b. It is arranged eccentrically.
  • the intermediate portion 34b connecting the upper end portion 34a and the lower end portion 34c is disposed obliquely when viewed from the side, but is disposed in a direction along the center line 11b when viewed from above.
  • the cylindrical support 12 is disposed coaxially with the central axis 11 a of the processing container 11.
  • a gas used for processing is supplied into the processing vessel 11 symmetrically with respect to the central axis 11a, and high-frequency electromagnetic waves are supplied from an antenna 14 arranged coaxially with the central axis 11a, so that cylindrical plasma is supplied. 16 is generated, and the gas used for the processing flows around the support base 12 so as to be uniform with respect to the central axis 11a. Therefore, as compared with the case where it is attached to the side surface of the processing container as shown in FIGS.
  • the intermediate part 34 b and the lower end part 34 c of the utility introduction pipe 34 are not arranged coaxially with the central axis 11 a of the processing container 11, but the intermediate part 34 b is a center line as viewed from above. It is arranged along 11b.
  • the exhaust port 21 is not arranged coaxially with the central axis 11a of the processing vessel 11, the opening center 21a is located on the central line 11b with respect to the central axis 11a as described in FIG. It is arranged eccentrically in the opening direction OD. Therefore, also in the case of the present embodiment, when viewed from above the processing container 11, as described in FIG.
  • the height position of the intermediate portion 34b of the utility introduction pipe 34 disposed above the exhaust port 21 since the intermediate portion 34b is inclined, the distance in the height direction between the upper surface of the bottom surface 17 and the position of the lower surface of the intermediate portion 34b at the end portion in the closing direction CD of the exhaust port 21 is H.
  • the horizontal distance between the end of the exhaust port 21 in the closing direction CD and the end of the intermediate portion 34b in the opening direction OD is W.
  • the arrangement of this embodiment may also affect the exhaust conductance.
  • the size of the intermediate portion 34b of the utility introduction pipe 34 is taken into account, and therefore, the horizontal direction between the end portion in the closing direction CD of the exhaust port 21 and the end portion in the opening direction OD of the intermediate portion 34b of the utility introduction tube 34 is considered.
  • the distance W is used as a height position where [H ⁇ W / 4].
  • the gas used for processing can be exhausted without affecting the exhaust conductance.
  • the height position H is the same as that of the first embodiment, the distance between the exhaust port 21 and the support base 12 is shortened, so that the overall height of the processing container 11 can be reduced. it can.
  • the plasma processing is performed uniformly on the processing vessel 11 and the support base 12 as in the first embodiment.
  • useless gas usage and plasma damage can be reduced, reducing the frequency of maintenance and extending the life of parts.
  • the procedures for assembling and maintaining the inside of the processing container 11 are the same as the procedures described in the first embodiment.
  • the utility introduction pipe 34 is a straight pipe or a substantially straight pipe, in particular, the usage force on the support base 12 side ( (Piping, cables, etc.) can be easily inserted. Further, since the utility introduction pipe 34 has a simpler configuration than the utility introduction pipe 31, its assembly and maintenance are facilitated, and its assemblability and maintenance can be improved.
  • the gas flow to be used is axisymmetric with respect to the central axis 11a up to the lower end of the support base 12, and the gas flow is uniform.
  • the gas flow used is plane-symmetric with respect to the central vertical plane, the gas flow is uniform, and the gas used in the processing vessel 11 can be exhausted uniformly.
  • the plasma processing for the substrate 13 and the processing container 11 can be performed uniformly.
  • the exhaust port 21 and the utility introduction pipe 34 are provided not on the side surface of the processing vessel 11 but on the bottom surface 17 thereof, the structure becomes simpler than the case where the exhaust port and the utility introduction tube 34 are provided on the side surface. Production, assembly and maintenance of the introduction pipe 34 are facilitated.
  • Example 3 6 and 7 are diagrams showing the plasma processing apparatus of the present embodiment
  • FIG. 6 is a schematic configuration diagram showing the plasma processing apparatus of the present embodiment
  • FIG. 7 is the plasma processing shown in FIG. It is a top view which shows the positional relationship of each member in the exhaust-portion part of an apparatus.
  • the configuration of the power introduction tube 35 is different from that of the power introduction tube 31 described in the first embodiment.
  • the configuration is the same as the plasma processing apparatus 10 ⁇ / b> A described in the first embodiment.
  • FIG. 7 also has the same configuration as that of the plasma processing apparatus 10 ⁇ / b> A described in the first embodiment except for the utility introduction pipe 35. Accordingly, here, the same reference numerals are used for the same components, and the description of the overlapping description is omitted.
  • the utility introduction pipe 35 is provided as a support structure of the support base 12, but the shape is different from the utility introduction pipe 31 described in the first embodiment, and from the lower side surface of the support base 12.
  • the utility introduction tube 35 up to the bottom surface 17 of the processing container 11 is bent into an L shape. More specifically, the upper tube 35a connected to the lower side surface of the support base 12 is disposed horizontally along the center line 11b shown in FIG. 7, and the lower tube 35b which is a portion connected to the bottom surface 17 is It is arranged vertically in the portion of the bottom surface 17 (connection port 24) where there is no exhaust port 21 arranged eccentrically.
  • the position connected to the lower side surface of the support base 12 of the upper pipe 35a is preferably as close to the lower end of the support base 12 as possible.
  • the utility (pipe, cable, etc.) is inserted into the utility introduction pipe 35 as in the first embodiment.
  • it is bent in the same manner as the crank-shaped power introduction tube 31, but since there is only one bent portion of the power introduction tube 35, the amount of bending the utility force is small inside the power introduction tube 35.
  • Such a power introduction pipe 35 may be formed in an L shape by connecting a plurality of pipes such as a cylinder and a square cylinder.
  • the flange is provided in the outer periphery of the lower pipe 35b of the utility introduction pipe 35, and it arrange
  • the inside of the processing container 11 is sealed from the atmosphere side.
  • the inside of the utility introduction pipe 35 is also on the atmosphere side, maintenance of this portion is facilitated.
  • the arrangement position of the exhaust port 21 is the same as in the first embodiment.
  • the arrangement position of the utility introduction pipe 35 is such that the upper pipe 35a is connected to the lower side surface of the support 12 and is arranged horizontally, and the arrangement direction thereof is the direction along the center line 11b shown in FIG. It has become.
  • the lower pipe 35b is arranged at a portion of the bottom surface 17 (connection port 24) where there is no exhaust port 21 arranged eccentrically, and its center 24a is centered on the center line 11b in the closing direction CD in the center axis 11a. It is arranged eccentrically.
  • the upper tube 35a may be configured by an oblique pipe as in the intermediate portion 34b of the second embodiment as long as the arrangement direction is along the center line 11b when viewed from above.
  • the cylindrical support 12 is disposed coaxially with the central axis 11 a of the processing container 11.
  • a gas used for processing is supplied into the processing vessel 11 symmetrically with respect to the central axis 11a, and high-frequency electromagnetic waves are supplied from an antenna 14 arranged coaxially with the central axis 11a, so that cylindrical plasma is supplied. 16 is generated, and the gas used for the processing flows around the support base 12 so as to be uniform with respect to the central axis 11a. Therefore, in the support base 12 above the upper end portion UL of the upper pipe 35a of the utility introduction pipe 35, the gas flow in the vicinity of the substrate 13 is made smaller than when the support base 12 is attached to the side surface of the processing container as shown in FIGS. It is possible to uniformly perform the plasma processing on the substrate 13.
  • the upper pipe 35a and the lower pipe 35b of the utility introduction pipe 35 are not arranged coaxially with the central axis 11a of the processing container 11, but in this embodiment, the upper pipe 35a is Since the gas is disposed horizontally in the direction along the center line 11b, the gas used for processing flows around the upper tube 35a so as to be uniform in plane symmetry with respect to the central vertical plane.
  • the exhaust port 21 is not arranged coaxially with the central axis 11a of the processing vessel 11, the opening center 21a is located on the central line 11b with respect to the central axis 11a as described in FIG. It is arranged eccentrically in the opening direction OD.
  • the case of the present embodiment will be described with reference to FIG.
  • a part of the crescent-shaped opening region formed by the exhaust port 21 and the valve body 22a is hidden by the support base 12 and the upper tube 35a.
  • the shape of the opening region that is not hidden by the table 12 and the upper tube 35a changes symmetrically with respect to the center line 11b. Therefore, the gas used for the treatment flows around the support base 12 and the upper tube 35a so as to be uniform in plane symmetry with respect to the central vertical plane.
  • the distance in the height direction between the upper surface of the bottom surface 17 and the position of the lower surface of the support base 12 is H
  • the distance in the horizontal direction is W
  • the arrangement of this embodiment may also affect the exhaust conductance.
  • the size of the support base 12 is taken into account, and therefore the horizontal distance W between the end portion of the exhaust port 21 in the closing direction CD and the end portion of the support base 12 in the opening direction OD is used, [H ⁇ W / 4].
  • the support base 12 By arranging the support base 12 at such a height position H, the gas used for the processing can be exhausted without affecting the exhaust conductance.
  • the height position H is the same as that of the first embodiment, there is no upper tube 31b as shown in the first embodiment, so that the height of the entire processing container 11 can be reduced. it can.
  • the plasma processing is performed uniformly on the processing vessel 11 and the support base 12 as in the first embodiment.
  • useless gas usage and plasma damage can be reduced, reducing the frequency of maintenance and extending the life of parts.
  • the procedures for assembling and maintaining the inside of the processing container 11 are the same as those described in the first embodiment.
  • the utility introduction pipe 35 is L-shaped, the utility (pipe, cable, etc.) on the support base 12 side. Is easier to insert than in the first embodiment.
  • the utility introduction pipe 35 has a simpler configuration than the utility introduction pipe 31, its assembly and maintenance are facilitated, and its assembly and maintenance can be improved.
  • the gas flow to be used is made symmetrical with respect to the central axis 11a in the support base 12 above the upper end portion UL, and the gas flow is made uniform.
  • the gas flow used is symmetrical with respect to the central vertical plane, the gas flow is uniform, and the gas used in the processing vessel 11 is exhausted uniformly. As a result, it is possible to uniformly perform the plasma processing on the substrate 13 and the processing container 11.
  • the exhaust port 21 and the utility introduction pipe 35 are provided not on the side surface of the processing vessel 11 but on the bottom surface 17 thereof, the structure becomes simpler than the case where the exhaust port and the utility introduction tube are provided on the side surface. Production, assembly, and maintenance of the introduction pipe 35 are facilitated.
  • the present invention is applied to a plasma processing apparatus (plasma CVD apparatus or plasma etching apparatus) having a support table on which a substrate is placed, and is particularly suitable for an ICP type plasma processing apparatus.
  • a plasma processing apparatus plasma CVD apparatus or plasma etching apparatus
  • Plasma processing apparatus 11 Processing vessel 12 Support base 13 Substrate 14 Antenna 17 Bottom surface 21 Exhaust port 22 Pendulum type gate valve 23 Vacuum pump (TMP) 31, 34, 35 Power introduction pipe

Abstract

Provided is a plasma processing device that is easily assembled, is easily maintained, and has uniform gas flow. In this plasma processing device a gas supply means is arranged symmetrical to the center axis (11a) of a processing chamber (11), and an antenna and a support stand are arranged coaxial to the central axis (11a). In addition, an exhaust port (21) is arranged on the bottom surface (17) such that with respect to the central axis (11a), the center (21a) of the exhaust port (21) is offset in the opening direction (OD) of a valve body (22a). A connecting port (24) is arranged on a portion of the bottom surface (17) where the exhaust port (21) does not exist, such that with respect to the central axis (11a), the center (24a) of the connecting port (24) is offset in the closing direction (CD) of the valve body (22a). A middle conduit (31b) between the upper conduit (31a) and the lower conduit (31c) of a power introduction conduit (31) intersects the central axis (11a) and is arranged along the direction of a center line (11b), which is the opening/closing direction of the valve body (22a).

Description

プラズマ処理装置Plasma processing equipment
 本発明は、基板を載置する支持台を有するプラズマ処理装置に関する。 The present invention relates to a plasma processing apparatus having a support table on which a substrate is placed.
 処理容器内に設けられた支持台上に、処理対象となるウェハ等の基板を載置し、処理容器内に生成したプラズマを用いて、基板にプラズマ処理による成膜やエッチングを施すプラズマ処理装置が知られている。 A plasma processing apparatus that mounts a substrate such as a wafer to be processed on a support table provided in the processing container, and uses the plasma generated in the processing container to perform film formation or etching by plasma processing on the substrate It has been known.
米国特許第5792272号明細書US Pat. No. 5,792,272
 プラズマ処理装置において、処理容器内に設けられる支持台の構造としては、以下のような条件を満たすことが望ましい。ここで、ICP(Inductively Coupled Plasma;誘導結合プラズマ)型のプラズマ処理装置を図8に示し、図8を参照して説明を行う。なお、図8において、符号51は処理容器、符号52は支持台、符号53は基板、符号54はアンテナ、符号55はRF入射窓、符号56はプラズマ領域であり、プラズマは、RF入射窓55を透過してアンテナ54から入射された電磁波により生成される。 In the plasma processing apparatus, it is desirable that the structure of the support provided in the processing container satisfies the following conditions. Here, an ICP (Inductively-Coupled-Plasma) type plasma processing apparatus is shown in FIG. 8, and will be described with reference to FIG. In FIG. 8, reference numeral 51 is a processing container, reference numeral 52 is a support base, reference numeral 53 is a substrate, reference numeral 54 is an antenna, reference numeral 55 is an RF incident window, reference numeral 56 is a plasma region, and plasma is an RF incident window 55. And is generated by electromagnetic waves incident from the antenna 54.
(a)基板53が載置された支持台52の上部に円柱状のプラズマ領域56があり、容器内部が円柱状となる円筒状の処理容器51の中心軸51aと同軸に、支持台52及び基板53が配置されることが望ましい。
(b)プラズマ領域56への原料ガスの供給は、中心軸51aに対して軸対称であり、プラズマ処理に使用するガスを排気する流れも、中心軸51aに対して軸対称であることが望ましい。又、ガスの流れを整えるために、支持台52は円筒状とすることが望ましい。
(c)支持台52には、基板53の温調、静電吸着、自己バイアス印加のために、冷媒、ヒータ線、温度センサ、高電圧線、高周波電力などの配管やケーブルが接続されており、これらを処理容器51の外に導く用力導入路が必要である。このような用力導入路は、支持台52を支える支持構造(用力導入管)の内側に形成されるが、処理容器51は真空となるため、処理容器51側と支持構造(用力導入管)の内側との間をシールするシール構造も必要である。
(A) There is a columnar plasma region 56 on the upper side of the support base 52 on which the substrate 53 is placed, and the support base 52 and the center axis 51a of the cylindrical processing container 51 in which the inside of the container is columnar are coaxial. A substrate 53 is preferably disposed.
(B) The supply of the source gas to the plasma region 56 is axisymmetric with respect to the central axis 51a, and the flow for exhausting the gas used for the plasma processing is also preferably axially symmetric with respect to the central axis 51a. . In order to adjust the gas flow, the support base 52 is preferably cylindrical.
(C) Piping and cables such as a refrigerant, a heater wire, a temperature sensor, a high voltage wire, and a high frequency power are connected to the support base 52 in order to control the temperature of the substrate 53, electrostatic adsorption, and self-bias application. In addition, it is necessary to provide a power introduction path for guiding these to the outside of the processing container 51. Such a power introduction path is formed inside the support structure (utility introduction pipe) that supports the support base 52. However, since the processing container 51 is evacuated, the processing container 51 side and the support structure (utility introduction pipe) are provided. A seal structure that seals between the inside and the inside is also necessary.
 なお、支持台52とプラズマ領域56との距離を調節する場合には、支持台52を駆動する駆動機構が必要であり、そのためのリンク機構も支持台52の円筒内で接続する必要がある。この場合、スペースの関係から用力導入管を大きくするか、又は、用力導入管をもう1つ追加する必要がある(例えば、後述する図9、図10において点線で示す用力導入管62参照)。 In order to adjust the distance between the support base 52 and the plasma region 56, a drive mechanism for driving the support base 52 is required, and a link mechanism for that purpose needs to be connected within the cylinder of the support base 52. In this case, it is necessary to enlarge the utility introduction tube or add another utility introduction tube in view of space (for example, see the utility introduction tube 62 indicated by a dotted line in FIGS. 9 and 10 described later).
 現状において、上記条件(a)~(c)を考慮すると、支持構造(用力導入管)及び排気口の配置位置としては、以下の(1)~(4)のような配置例が考えられる。ここで、図8に示したICP型のプラズマ処理装置を基にして、以下に述べる(1)~(4)の配置例を図9~図12に図示し、図9~図12を参照して、各配置例における構成を説明する。なお、図9~図12において、図8で示した構成と同等の構成には同じ符号を付し、重複する説明は省略する。 At present, considering the above conditions (a) to (c), the following arrangement examples (1) to (4) can be considered as the arrangement positions of the support structure (utility introduction pipe) and the exhaust port. Here, on the basis of the ICP type plasma processing apparatus shown in FIG. 8, examples of the arrangements (1) to (4) described below are shown in FIGS. 9 to 12, and refer to FIGS. 9 to 12. The configuration in each arrangement example will be described. 9 to 12, the same components as those shown in FIG. 8 are denoted by the same reference numerals, and redundant description is omitted.
(1)排気口:処理容器底面に同軸の円形排気穴、支持構造:処理容器側面から支持
 図9に示すプラズマ処理装置において、排気口61は、処理容器51の底面に中心軸51aと同軸に形成された円形排気穴であり、支持構造となる用力導入管62は、処理容器51の側面の片側から支持台52を支持する1つの片持ち梁を有するもの、又は、当該片持ち梁構造を複数有するものである(例えば、特許文献1のFIG_5a、5bなど参照)。このような用力導入管62を採用する場合、支持台52及び用力導入管62は、処理容器51の側面から差し込むように取り付ける構造であり、これらは1つの大きな交換部品であり、高価で重量があり、交換は容易ではない。又、用力導入管62により、排気が偏るため、分子流領域に近い粘性流では、成膜、セルフクリーニング、エッチングの性能にガス流れの影響が現れ、プラズマ処理が不均一となるおそれがある。
(1) Exhaust port: a circular exhaust hole coaxial with the bottom surface of the processing container, support structure: supported from the side surface of the processing container In the plasma processing apparatus shown in FIG. 9, the exhaust port 61 is coaxial with the central axis 51 a on the bottom surface of the processing container 51. The utility introduction pipe 62, which is a formed circular exhaust hole and serves as a support structure, has one cantilever beam that supports the support base 52 from one side of the side surface of the processing vessel 51, or the cantilever beam structure. It has a plurality (for example, see FIG. 5a, 5b, etc. in Patent Document 1). When such a power introduction pipe 62 is adopted, the support base 52 and the power introduction pipe 62 are attached so as to be inserted from the side surface of the processing vessel 51, and these are one large replacement part, which is expensive and heavy. Yes, replacement is not easy. Further, since the exhaust gas is biased by the utility introduction pipe 62, in the case of a viscous flow close to the molecular flow region, the influence of the gas flow appears on the performance of film formation, self-cleaning, and etching, and the plasma processing may become non-uniform.
(2)排気口:処理容器底面に非同軸の円形排気穴、支持構造:処理容器側面から支持
 図10に示すプラズマ処理装置において、排気口63は、処理容器51の底面に中心軸51aと非同軸に形成された円形排気穴であり、用力導入管62は、図9に示したプラズマ処理装置と同様に、1つの片持ち梁を有するもの、又は、片持ち梁構造を複数有するものである。排気口63を中心軸51aと非同軸とすると、排気が偏るが、排気口63に振り子式ゲート弁64を接続する場合には、排気口63を中心軸51aと非同軸とし、中心軸51aから所定の位置に偏心することにより、ガスの流れを均一に近づくようにすることができる。しかしながら、用力導入管62を採用する場合には、上述したように、高価で重量があり、交換は容易ではなく、又、用力導入管62により、排気が偏るため、ガス流れが更に不均一になって、プラズマ処理が不均一となるおそれがある。
(2) Exhaust port: non-coaxial circular exhaust hole on the bottom surface of the processing container, support structure: supported from the side surface of the processing container In the plasma processing apparatus shown in FIG. It is a circular exhaust hole formed coaxially, and the utility introduction tube 62 has one cantilever or a plurality of cantilever structures as in the plasma processing apparatus shown in FIG. . If the exhaust port 63 is non-coaxial with the central shaft 51a, the exhaust gas is biased. However, when the pendulum type gate valve 64 is connected to the exhaust port 63, the exhaust port 63 is non-coaxial with the central shaft 51a. By decentering to a predetermined position, the gas flow can be made to approach uniformly. However, when the utility introduction pipe 62 is adopted, as described above, it is expensive and heavy, and replacement is not easy. Further, since the exhaust gas is biased by the utility introduction pipe 62, the gas flow becomes more uneven. As a result, the plasma processing may become non-uniform.
(3)排気口:処理容器側面に1つの排気穴、支持構造:処理容器底面から支持
 図11に示すプラズマ処理装置において、排気口65は、処理容器51の側面に形成された1つの排気穴であり、支持構造となる用力導入管66は、処理容器51の底面から支持台52を中心軸51aと同軸に支持するものである。このような用力導入管66を採用する場合、処理容器51の底面のフランジを下ろして、メンテナンスを行う必要があり、その作業対象が大きく、取り外しは容易ではない。又、処理容器51の底面に排気口を設けることが困難であり、処理容器51の側面に1つの排気口65を設けているので、排気が偏るため、分子流領域に近い粘性流では、成膜、セルフクリーニング、エッチングの性能にガス流れの影響が現れ、プラズマ処理が不均一となるおそれがある。
(3) Exhaust port: one exhaust hole on the side surface of the processing container, support structure: supported from the bottom surface of the processing container In the plasma processing apparatus shown in FIG. 11, the exhaust port 65 is one exhaust hole formed on the side surface of the processing container 51. The utility introduction pipe 66 serving as a support structure supports the support base 52 coaxially with the central axis 51a from the bottom surface of the processing vessel 51. When such a power introduction pipe 66 is employed, it is necessary to perform maintenance by lowering the flange on the bottom surface of the processing vessel 51, and the work target is large, and removal is not easy. In addition, it is difficult to provide an exhaust port on the bottom surface of the processing vessel 51, and since one exhaust port 65 is provided on the side surface of the processing vessel 51, exhaust is biased. The influence of the gas flow appears on the film, self-cleaning and etching performance, and the plasma processing may become non-uniform.
(4)排気口:処理容器側面に複数の排気穴、支持構造:処理容器底面から支持
 図12に示すプラズマ処理装置において、排気口67は、処理容器51の側面に形成された複数の排気穴であり、用力導入管66は、図11に示したプラズマ処理装置と同様に、処理容器51の底面から中心軸51aと同軸に支持台52を支持するものである。このような用力導入管66を採用する場合、上述したように、メンテナンスの対象が大きく、取り外しは容易ではない。又、処理容器51の底面に排気口を設けることは困難であるが、処理容器51の側面に複数の排気口67を設けているので、これらを中心軸51aに対して軸対称に配置すれば、ガスの流れを均一に近づくようにすることができる。しかしながら、複数の排気口67を処理容器51の側面に軸対称に配置するためには、その配管を当該位置まで延伸する必要があり、その結果、配管が長くなり、排気のコンダクタンスが悪化してしまう。
(4) Exhaust port: a plurality of exhaust holes on the side surface of the processing container, support structure: supported from the bottom surface of the processing container In the plasma processing apparatus shown in FIG. 12, the exhaust port 67 has a plurality of exhaust holes formed on the side surface of the processing container 51 In the same manner as the plasma processing apparatus shown in FIG. 11, the utility introduction tube 66 supports the support base 52 coaxially with the central axis 51 a from the bottom surface of the processing vessel 51. When such a power introduction pipe 66 is employed, as described above, the object of maintenance is large and removal is not easy. In addition, although it is difficult to provide an exhaust port on the bottom surface of the processing container 51, a plurality of exhaust ports 67 are provided on the side surface of the processing container 51, so if these are arranged symmetrically with respect to the central axis 51 a. The gas flow can be made to approach uniformly. However, in order to arrange the plurality of exhaust ports 67 symmetrically on the side surface of the processing vessel 51, it is necessary to extend the pipe to the corresponding position. As a result, the pipe becomes long and the exhaust conductance deteriorates. End up.
 このように、図9~図12で説明した各配置例の構成には、各々、メリット、デメリットがある。そのため、上記条件(a)~(c)を満たすと共に、組立性、メンテナンス性が良く、ガスの流れが均一な配置構成とすることが望まれている。 As described above, the configurations of the arrangement examples described with reference to FIGS. 9 to 12 each have advantages and disadvantages. For this reason, it is desired that the arrangements (a) to (c) are satisfied, the assembly property and the maintenance property are good, and the gas flow is uniform.
 本発明は上記課題に鑑みなされたもので、組立性、メンテナンス性が良く、ガスの流れが均一なプラズマ処理装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a plasma processing apparatus with good assemblability and maintainability and a uniform gas flow.
 上記課題を解決する第1の発明に係るプラズマ処理装置は、
 円筒状の処理容器の内部に所望のガスを供給するガス供給手段と、
 前記処理容器の内部に電磁波を供給する円形リング形状のアンテナと、
 前記処理容器の内部に設けられ、上面に基板が載置される円筒状の支持台と、
 上部が前記支持台の下部に接続され、下部が前記処理容器の底面の接続口に接続されて、前記支持台を支えると共に、前記支持台で使用する用力が内側に挿通される管状の支持構造と、
 前記底面の円形状の排気口に取り付けられ、前記排気口の開閉を行う弁体を有する振り子式ゲート弁と、
 前記振り子式ゲート弁の下部に取り付けた真空ポンプとを有し、
 前記振り子式ゲート弁及び前記真空ポンプを用いて前記処理容器内の圧力を制御し、前記アンテナからの電磁波により前記ガスのプラズマを生成し、前記基板にプラズマ処理を施すプラズマ処理装置において、
 前記ガス供給手段を、前記処理容器の中心軸に軸対称に配置し、
 前記アンテナ及び前記支持台を、前記処理容器の中心軸と同軸に配置し、
 前記処理容器の中心軸に対して、前記排気口の中心が前記弁体の開方向に偏心するように、前記排気口を前記底面に配置し、
 前記処理容器の中心軸に対して、前記接続口の中心が前記弁体の閉方向に偏心するように、前記接続口を前記底面の前記排気口がない部分に配置し、
 前記支持構造の前記上部と前記下部の間の中間部を、前記処理容器の中心軸と交差し、かつ、前記弁体の開閉方向となる直線に沿う方向に配置したことを特徴とする。
A plasma processing apparatus according to a first invention for solving the above-mentioned problems is
Gas supply means for supplying a desired gas into the inside of the cylindrical processing container;
A circular ring-shaped antenna for supplying electromagnetic waves to the inside of the processing container;
A cylindrical support provided inside the processing container and on which the substrate is placed;
A tubular support structure in which an upper part is connected to a lower part of the support table, and a lower part is connected to a connection port on the bottom surface of the processing container to support the support table and to insert a working force to be used on the support table inward. When,
A pendulum gate valve attached to the circular exhaust port on the bottom surface and having a valve body for opening and closing the exhaust port;
A vacuum pump attached to the lower part of the pendulum gate valve;
In the plasma processing apparatus for controlling the pressure in the processing container using the pendulum type gate valve and the vacuum pump, generating plasma of the gas by electromagnetic waves from the antenna, and performing plasma processing on the substrate,
The gas supply means is arranged axisymmetrically with respect to the central axis of the processing vessel,
The antenna and the support base are arranged coaxially with the central axis of the processing container,
The exhaust port is disposed on the bottom surface such that the center of the exhaust port is decentered in the opening direction of the valve body with respect to the central axis of the processing container,
The connection port is disposed in a portion of the bottom surface where the exhaust port is not provided so that the center of the connection port is decentered in the closing direction of the valve body with respect to the central axis of the processing container,
An intermediate portion between the upper portion and the lower portion of the support structure is arranged in a direction that intersects with a central axis of the processing vessel and along a straight line that is an opening / closing direction of the valve body.
 上記課題を解決する第2の発明に係るプラズマ処理装置は、
 上記第1の発明に記載のプラズマ処理装置において、
 前記支持構造をクランク形状の管とし、鉛直方向の上管と鉛直方向の下管と前記上管と前記下管とを接続する水平方向の中管とから構成し、
 前記上管を、前記支持台の下面に接続すると共に、前記処理容器の中心軸と同軸に配置し、
 前記中管を、前記直線に沿う方向に水平に配置し、
 前記下管を、前記接続口に接続したことを特徴とする。
A plasma processing apparatus according to a second invention for solving the above-mentioned problems is as follows.
In the plasma processing apparatus according to the first invention,
The support structure is a crank-shaped tube, and comprises a vertical upper tube, a vertical lower tube, and a horizontal middle tube connecting the upper tube and the lower tube,
The upper tube is connected to the lower surface of the support base and is arranged coaxially with the central axis of the processing vessel,
The middle tube is horizontally disposed in a direction along the straight line,
The lower pipe is connected to the connection port.
 上記課題を解決する第3の発明に係るプラズマ処理装置は、
 上記第2の発明に記載のプラズマ処理装置において、
 前記底面の上面から前記中管の下面までの高さ方向の距離をH、前記排気口の前記弁体の閉方向の端部から前記中管の前記弁体の開方向の端部までの水平方向の距離をWとするとき、[H≧W/4]を満たす位置に前記中管を配置したことを特徴とする。
A plasma processing apparatus according to a third invention for solving the above-described problem is
In the plasma processing apparatus according to the second invention,
The distance in the height direction from the upper surface of the bottom surface to the lower surface of the middle pipe is H, and the horizontal distance from the end of the exhaust port in the closing direction of the valve body to the end of the middle pipe in the opening direction of the valve body When the distance in the direction is W, the middle tube is arranged at a position satisfying [H ≧ W / 4].
 上記課題を解決する第4の発明に係るプラズマ処理装置は、
 上記第1の発明に記載のプラズマ処理装置において、
 前記支持構造を斜めに形成した斜め配管とし、
 前記斜め配管の上端部を、前記支持台の下面に接続し、
 前記斜め配管の中間部を、上方から見て、前記直線に沿うように配置し、
 前記斜め配管の下端部を、前記接続口に接続したことを特徴とする。
A plasma processing apparatus according to a fourth invention for solving the above-mentioned problems is as follows.
In the plasma processing apparatus according to the first invention,
The support structure is an oblique pipe formed obliquely,
Connect the upper end of the diagonal pipe to the lower surface of the support base,
The middle part of the oblique pipe is arranged along the straight line when viewed from above,
A lower end portion of the oblique pipe is connected to the connection port.
 上記課題を解決する第5の発明に係るプラズマ処理装置は、
 上記第4の発明に記載のプラズマ処理装置において、
 前記排気口の前記弁体の閉方向の端部における前記底面の上面から前記斜め配管までの高さ方向の距離をH、前記排気口の前記弁体の閉方向の端部から前記斜め配管の前記弁体の開方向の端部までの水平方向の距離をWとするとき、[H≧W/4]を満たすように前記斜め配管を配置したことを特徴とする。
A plasma processing apparatus according to a fifth invention for solving the above-described problems is
In the plasma processing apparatus according to the fourth invention,
The distance in the height direction from the upper surface of the bottom surface to the oblique pipe at the end of the exhaust port in the closing direction of the valve body is H, and from the end of the exhaust port in the closing direction of the valve body, When the distance in the horizontal direction to the end in the opening direction of the valve body is W, the oblique pipe is arranged so as to satisfy [H ≧ W / 4].
 上記課題を解決する第6の発明に係るプラズマ処理装置は、
 上記第1の発明に記載のプラズマ処理装置において、
 前記支持構造をL字形状の管とし、水平方向の上管と前記上管に接続する鉛直方向の下管とから構成し、
 前記上管を、前記支持台の下部側面に接続すると共に、前記直線に沿う方向に水平に配置し、
 前記下管を、前記接続口に接続したことを特徴とする。
A plasma processing apparatus according to a sixth invention for solving the above-described problems is
In the plasma processing apparatus according to the first invention,
The support structure is an L-shaped tube, and comprises a horizontal upper tube and a vertical lower tube connected to the upper tube,
The upper tube is connected to the lower side surface of the support base, and is disposed horizontally in the direction along the straight line,
The lower pipe is connected to the connection port.
 上記課題を解決する第7の発明に係るプラズマ処理装置は、
 上記第6の発明に記載のプラズマ処理装置において、
 前記底面の上面から前記支持台の下面までの高さ方向の距離をH、前記排気口の前記弁体の閉方向の端部から前記支持台の前記弁体の開方向の端部までの水平方向の距離をWとするとき、[H≧W/4]を満たす位置に前記支持台を配置したことを特徴とする。
A plasma processing apparatus according to a seventh invention for solving the above-described problems is
In the plasma processing apparatus according to the sixth invention,
The distance in the height direction from the upper surface of the bottom surface to the lower surface of the support base is H, and the horizontal distance from the end of the exhaust port in the closing direction of the valve body to the end of the support base in the opening direction of the valve body When the distance in the direction is W, the support base is arranged at a position satisfying [H ≧ W / 4].
 本発明によれば、円筒状の処理容器の中心軸に軸対称にガスを供給し、プラズマを生成するためのアンテナを中心軸と同軸に配置し、支持構造により支える円筒状の支持台を中心軸と同軸に配置するので、支持台上に載置される基板付近において、中心軸に対して使用するガスの流れを軸対称とし、ガスの流れを均一にすることができる。又、支持台の下方において、振り子式ゲート弁が接続された排気口や支持構造は、処理容器の中心軸と同軸に配置されていないが、処理容器の中心軸と交差し、かつ、振り子式ゲート弁の弁体の開閉方向となる直線に沿う方向に配置されているので、当該直線を含む鉛直面に対して使用するガスの流れを面対称とし、ガスの流れを均一にすることができる。従って、処理容器で使用するガスを均一に排気することができ、その結果、基板や処理容器などに対するプラズマ処理を均一に行うことができ、プラズマ処理の性能向上と信頼性向上を図ることができる。 According to the present invention, the gas is supplied symmetrically to the central axis of the cylindrical processing vessel, the antenna for generating plasma is arranged coaxially with the central axis, and the cylindrical support base supported by the support structure is centered. Since it is arranged coaxially with the axis, the gas flow used with respect to the central axis is axisymmetrical in the vicinity of the substrate placed on the support base, and the gas flow can be made uniform. In addition, the exhaust port and the support structure to which the pendulum type gate valve is connected below the support base are not arranged coaxially with the central axis of the processing vessel, but intersect with the central axis of the processing vessel, and the pendulum type Since it is arranged in a direction along the straight line that is the opening and closing direction of the valve body of the gate valve, the flow of gas used with respect to the vertical plane including the straight line can be made symmetrical, and the gas flow can be made uniform. . Accordingly, the gas used in the processing container can be exhausted uniformly, and as a result, the plasma processing on the substrate, the processing container, and the like can be performed uniformly, and the performance and reliability of the plasma processing can be improved. .
 又、処理容器の側面ではなく、その底面に排気口や支持構造を設けるので、その側面に排気口や支持構造を設ける場合より、構造がシンプルとなり、排気口や支持構造の作製、組立及びメンテナンスが容易となる。 In addition, since the exhaust port and the support structure are provided on the bottom surface of the processing vessel, not on the side surface, the structure is simpler than the case where the exhaust port and support structure are provided on the side surface, and the exhaust port and support structure are manufactured, assembled and maintained. Becomes easy.
本発明に係るプラズマ処理装置の実施形態の一例(実施例1)を示す概略構成図である。It is a schematic block diagram which shows an example (Example 1) of embodiment of the plasma processing apparatus which concerns on this invention. 図1に示したプラズマ処理装置の排気口部分における各構成部材同士の位置関係を示す上面図である。It is a top view which shows the positional relationship of each structural member in the exhaust port part of the plasma processing apparatus shown in FIG. 図1に示したプラズマ処理装置の用力導入管の取り付け部分の断面図である。It is sectional drawing of the attachment part of the power introduction pipe | tube of the plasma processing apparatus shown in FIG. 本発明に係るプラズマ処理装置の実施形態の他の一例(実施例2)を示す概略構成図である。It is a schematic block diagram which shows another example (Example 2) of embodiment of the plasma processing apparatus which concerns on this invention. 図4に示したプラズマ処理装置の用力導入管の取り付け部分の断面図である。It is sectional drawing of the attachment part of the power introduction pipe | tube of the plasma processing apparatus shown in FIG. 本発明に係るプラズマ処理装置の実施形態の他の一例(実施例3)を示す概略構成図である。It is a schematic block diagram which shows another example (Example 3) of embodiment of the plasma processing apparatus which concerns on this invention. 図6に示したプラズマ処理装置の排気口部分における各構成部材同士の位置関係を示す上面図である。It is a top view which shows the positional relationship of each structural member in the exhaust port part of the plasma processing apparatus shown in FIG. 一般的なプラズマ処理装置の構成を説明する概略構成図である。It is a schematic block diagram explaining the structure of a general plasma processing apparatus. 図8に示したプラズマ処理装置における支持構造(用力導入管)及び排気口の配置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of arrangement | positioning of the support structure (utility introduction pipe | tube) and exhaust port in the plasma processing apparatus shown in FIG. 図8に示したプラズマ処理装置における支持構造(用力導入管)及び排気口の配置の他の一例を示す概略構成図である。It is a schematic block diagram which shows another example of arrangement | positioning of the support structure (utility introduction pipe | tube) and exhaust port in the plasma processing apparatus shown in FIG. 図8に示したプラズマ処理装置における支持構造(用力導入管)及び排気口の配置の他の一例を示す概略構成図である。It is a schematic block diagram which shows another example of arrangement | positioning of the support structure (utility introduction pipe | tube) and exhaust port in the plasma processing apparatus shown in FIG. 図8に示したプラズマ処理装置における支持構造(用力導入管)及び排気口の配置の他の一例を示す概略構成図である。It is a schematic block diagram which shows another example of arrangement | positioning of the support structure (utility introduction pipe | tube) and exhaust port in the plasma processing apparatus shown in FIG.
 本発明に係るプラズマ処理装置の実施形態について、図1~図7を参照して、その説明を行う。なお、本発明に係るプラズマ処理装置は、基板を載置する支持台を有するプラズマCVD装置やプラズマエッチング装置に適用可能なものである。 Embodiments of a plasma processing apparatus according to the present invention will be described with reference to FIGS. The plasma processing apparatus according to the present invention is applicable to a plasma CVD apparatus or a plasma etching apparatus having a support table on which a substrate is placed.
(実施例1)
 図1~図3は、本実施例のプラズマ処理装置を示す図であり、図1は、本実施例のプラズマ処理装置を示す概略構成図であり、図2は、図1に示したプラズマ処理装置の排気口部分における各部材同士の位置関係を示す上面図であり、図3は、図1に示したプラズマ処理装置の用力導入管の取り付け部分の断面図である。
(Example 1)
1 to 3 are diagrams showing a plasma processing apparatus of the present embodiment, FIG. 1 is a schematic configuration diagram showing the plasma processing apparatus of the present embodiment, and FIG. 2 is a plasma processing apparatus shown in FIG. It is a top view which shows the positional relationship of each member in the exhaust port part of an apparatus, FIG. 3 is sectional drawing of the attachment part of the power introduction pipe | tube of the plasma processing apparatus shown in FIG.
 本実施例のプラズマ処理装置10Aは、図1に示すように、内部に所望のガスが供給されると共に、内部の圧力が真空領域で制御される円筒状の処理容器11と、処理容器11の内部に配置され、所望のプラズマ処理が施される基板13を載置する円筒状の支持台12と、処理容器11の上部開口部を閉塞するセラミクス製の円板状の天井板15と、天井板15の上方(直上)に配置された複数の円形リング状のアンテナ14とを有している。 As shown in FIG. 1, the plasma processing apparatus 10 </ b> A according to the present embodiment includes a cylindrical processing container 11 in which a desired gas is supplied and the internal pressure is controlled in a vacuum region. A cylindrical support base 12 on which a substrate 13 on which a desired plasma treatment is performed is placed, a ceramics disk-like ceiling board 15 that closes an upper opening of the processing container 11, and a ceiling And a plurality of circular ring antennas 14 disposed above (directly above) the plate 15.
 図示は省略しているが、アンテナ14には、整合器を介して高周波電源が接続されている。高周波電源から高周波(例えば、13.56MHzなど)の電力をアンテナ14に給電すると、入射窓となる天井板15を透過して、高周波電磁波(RF)が入射されて、処理容器11内でプラズマ16が生成される。これは、所謂、ICP型のプラズマ発生機構の構成である。 Although not shown, a high frequency power source is connected to the antenna 14 via a matching unit. When high-frequency power (for example, 13.56 MHz) is supplied from the high-frequency power source to the antenna 14, the high-frequency electromagnetic wave (RF) is transmitted through the ceiling plate 15 serving as an incident window, and the plasma 16 is generated in the processing container 11. Is generated. This is a configuration of a so-called ICP type plasma generation mechanism.
 これも図示は省略しているが、処理容器11には、その内部に所望のガスを供給するガス供給機構(ガス供給手段)が設けられており、例えば、円筒状の処理容器11の中心軸11aに対して、複数のガスノズルを軸対称に配置して、ガスを供給することにより、プラズマ処理に使用するガスの流れを、中心軸11aに対して軸対称となるようにしている。 Although not shown, the processing container 11 is provided with a gas supply mechanism (gas supply means) for supplying a desired gas therein. For example, the central axis of the cylindrical processing container 11 is provided. A plurality of gas nozzles are arranged symmetrically with respect to 11a and gas is supplied so that the gas flow used for plasma processing is axially symmetric with respect to the central axis 11a.
 又、処理容器11の底面17には、排気口21が設けられおり、この排気口21の下部に、処理容器11内部の圧力の制御を行う振り子式ゲート弁22が取り付けられており、この振り子式ゲート弁22の下部に、処理容器11内部の雰囲気を排気するTMP(ターボ分子ポンプ)23が取り付けられている。 Further, an exhaust port 21 is provided on the bottom surface 17 of the processing vessel 11, and a pendulum type gate valve 22 that controls the pressure inside the processing vessel 11 is attached to the lower portion of the exhaust port 21. A TMP (turbo molecular pump) 23 for exhausting the atmosphere inside the processing vessel 11 is attached to the lower part of the type gate valve 22.
 詳細は後述の図2において説明するが、排気口21は、振り子式ゲート弁22の特性を考慮して、処理容器11の中心軸11aから偏心して配置しており、この排気口21の位置に合わせて、振り子式ゲート弁22、TMP23も偏心して配置されることになる。一方、円筒状の支持台12の中心軸は、中心軸11aと同軸に配置されており、その上面に載置される基板13の中心も、中心軸11aと同軸に配置されることになる。又、生成されるプラズマ16を中心軸11aと同軸の円柱状とすることを考慮して、円形リング状のアンテナ14及び円板状の天井板15の中心も、中心軸11aと同軸に配置されている。つまり、プラズマ発生機構としては、円形リング状のアンテナを使用するICP型が望ましい。 Although details will be described later with reference to FIG. 2, the exhaust port 21 is arranged eccentrically from the central axis 11 a of the processing container 11 in consideration of the characteristics of the pendulum type gate valve 22. In addition, the pendulum type gate valve 22 and the TMP 23 are also arranged eccentrically. On the other hand, the central axis of the cylindrical support base 12 is arranged coaxially with the central axis 11a, and the center of the substrate 13 placed on the upper surface thereof is also arranged coaxially with the central axis 11a. Considering that the generated plasma 16 has a cylindrical shape coaxial with the central axis 11a, the centers of the circular ring antenna 14 and the disk-shaped ceiling plate 15 are also arranged coaxially with the central axis 11a. ing. That is, the plasma generation mechanism is preferably an ICP type using a circular ring antenna.
 上述した構成において、支持台12の支持構造となる用力導入管を処理容器11の側壁に設けると、前述の図9、図10で説明したように、組立性、メンテナンス性が悪く、又、ガス流れの均一性も悪くなってしまう。一方、処理容器11の底面17には排気口21が設けてあるので、前述の図11、図12で示したように、用力導入管を中心軸11aと同軸に配置することは難しい。 In the above-described configuration, if a power introduction tube serving as a support structure for the support base 12 is provided on the side wall of the processing container 11, as described with reference to FIGS. The uniformity of the flow will also deteriorate. On the other hand, since the exhaust port 21 is provided in the bottom surface 17 of the processing container 11, it is difficult to arrange the power introduction pipe coaxially with the central axis 11a as shown in FIGS.
 そこで、本実施例では、支持台12の支持構造として、支持台12の下部から処理容器11の底面17までの用力導入管31をクランク状に屈曲した形状としている。更に詳細には、支持台12の直下の部分である上管31aは、中心軸11aと同軸に鉛直に配置し、底面17へ接続する部分である下管31cは、偏心して配置された排気口21がない底面17の部分(接続口24)に鉛直に配置し、上管31aと下管31cとの間を接続する部分である中管31bは、水平に配置されている。このクランク形状の用力導入管31は、市販のエルボウ管とストレート管の組み合わせで容易に構成することができる。 Therefore, in this embodiment, as the support structure of the support table 12, the utility introduction pipe 31 from the lower part of the support table 12 to the bottom surface 17 of the processing container 11 is bent in a crank shape. More specifically, the upper tube 31a, which is a portion immediately below the support base 12, is arranged vertically coaxially with the central axis 11a, and the lower tube 31c, which is a portion connected to the bottom surface 17, is arranged in an eccentric manner. The middle tube 31b, which is vertically disposed on the portion of the bottom surface 17 (the connection port 24) without 21 and connects between the upper tube 31a and the lower tube 31c, is disposed horizontally. The crank-shaped power introduction pipe 31 can be easily configured by combining a commercially available elbow pipe and a straight pipe.
 この用力導入管31には、基板13の温調、静電吸着、自己バイアス印加のために、冷媒、ヒータ線、温度センサ、高電圧線、高周波電力などの配管やケーブル(用力)が挿通されて、支持台12内部のヒータや電極などと接続されている。このような用力導入管31は、例えば、円筒や四角筒などの管を複数接続してクランク形状に形成すればよい。 Pipes and cables (utility) such as a refrigerant, a heater wire, a temperature sensor, a high-voltage wire, and a high-frequency power are inserted into the utility introduction tube 31 for temperature control of the substrate 13, electrostatic adsorption, and self-bias application. The heater is connected to the heater and electrodes inside the support base 12. Such a power introduction pipe 31 may be formed in a crank shape by connecting a plurality of pipes such as a cylinder and a square cylinder.
 そして、用力導入管31の下管31cの外周には、図3に示すように、フランジ31dが設けられており、Oリング32を介して、底面17の上面に配置され、底面17の下面から挿通された複数のボルト33により、底面17に固定される構造である。下管31cとフランジ31dの接続部は、全周に渡り、溶接などでシールされており、Oリング32の内周にあるボルト33用のボルト穴は、フランジ31dを貫通させないで形成されている。このような構造により、処理容器11の内部を大気側からシールすることになる。又、用力導入管31の内側も大気側となるため、この部分のメンテナンスも容易となる。又、用力導入管31を底面17の接続口24に上から差し込み、底面17の下からフランジ31dのボルト穴にボルト33を差し込むため、処理容器11内の狭い領域で工具を使用する作業を行う必要が無く、その組立作業は容易となる。又、フランジ31dのボルト穴の位置で、回転方向の位置決めができる。なお、組立のミスを防ぎ、精度の高い設置を行うため、位置決めピンなどをフランジ31dや底板17に設けるようにしてもよい。 As shown in FIG. 3, a flange 31 d is provided on the outer periphery of the lower pipe 31 c of the utility introduction pipe 31, and is disposed on the upper surface of the bottom surface 17 via the O-ring 32. The structure is fixed to the bottom surface 17 by a plurality of inserted bolts 33. The connecting portion between the lower pipe 31c and the flange 31d is sealed by welding or the like over the entire circumference, and the bolt hole for the bolt 33 on the inner circumference of the O-ring 32 is formed without penetrating the flange 31d. . With such a structure, the inside of the processing container 11 is sealed from the atmosphere side. Further, since the inside of the utility introduction pipe 31 is also on the atmosphere side, maintenance of this portion is facilitated. In addition, since the utility introduction pipe 31 is inserted into the connection port 24 of the bottom surface 17 from above and the bolt 33 is inserted into the bolt hole of the flange 31d from below the bottom surface 17, an operation of using a tool in a narrow region in the processing container 11 is performed. There is no need, and the assembly work becomes easy. Further, the rotation direction can be positioned at the position of the bolt hole of the flange 31d. Note that a positioning pin or the like may be provided on the flange 31d or the bottom plate 17 in order to prevent an assembly error and perform installation with high accuracy.
 更に、排気口21の部分における各構成部材同士の位置関係について、図1と共に図2も参照して説明する。ここで、中心軸11aと垂直に交差し、かつ、振り子式ゲート弁22の弁体22aの開閉方向となる直線を中央線11bと呼び、以降の説明を行う。なお、振り子式ゲート弁22の構造上、円形状の弁体22aの移動方向は、厳密には円弧であるが、略直線とみなすことができるため、ここでは、弁体22aの移動方向を直線として説明する。 Furthermore, the positional relationship between the constituent members in the exhaust port 21 will be described with reference to FIG. 2 together with FIG. Here, a straight line that intersects the central axis 11a perpendicularly and that opens and closes the valve element 22a of the pendulum gate valve 22 is called a center line 11b, and the following description will be given. The movement direction of the circular valve body 22a is strictly an arc due to the structure of the pendulum type gate valve 22, but can be regarded as a substantially straight line. Therefore, here, the movement direction of the valve body 22a is a straight line. Will be described.
 排気口21は、振り子式ゲート弁22の特性を考慮して、処理容器11の中心軸11aから偏心して配置されている。具体的には、排気口21と振り子式ゲート弁22の弁体22aが形成する開口領域の面積中心Mcと処理容器11の中心軸11aが一致するように、弁体22aの開方向ODに偏心して排気口21が配置されている。従って、排気口21自体の開口中心21aは、処理容器11の中心軸11aに対して、中央線11b上を開方向ODに偏心することになる。 The exhaust port 21 is arranged eccentric from the central axis 11a of the processing container 11 in consideration of the characteristics of the pendulum type gate valve 22. Specifically, the valve body 22a is offset in the opening direction OD so that the area center Mc of the opening region formed by the exhaust port 21 and the valve body 22a of the pendulum gate valve 22 coincides with the center axis 11a of the processing vessel 11. The exhaust port 21 is arranged in mind. Therefore, the opening center 21a of the exhaust port 21 itself is decentered in the opening direction OD on the center line 11b with respect to the central axis 11a of the processing container 11.
 振り子式ゲート弁22の開口領域は、その開口率により当然ながら変化するが、本実施例では、振り子式ゲート弁22における開口率の使用推奨値(10%~50%)の中心値30%の開口領域を基準にして、そのときの三日月状の開口領域の面積中心Mcを求め、その面積中心Mcと中心軸11aが一致するように、排気口21を偏心して配置している。 The opening area of the pendulum gate valve 22 naturally changes depending on the opening ratio, but in this embodiment, the central value of the recommended use value (10% to 50%) of the opening ratio in the pendulum gate valve 22 is 30%. The area center Mc of the crescent-shaped opening area at that time is obtained on the basis of the opening area, and the exhaust port 21 is arranged eccentrically so that the area center Mc coincides with the central axis 11a.
 又、用力導入管31の上管31aは、その直上の支持台12と共に、中心軸11aと同軸に配置されている。又、用力導入管31の下管31cは、偏心して配置された排気口21がない底面17の部分(接続口24)に配置されており、その中心24aは、中央線11b上を閉方向CD(開方向ODとは反対方向)に中心軸11aから偏心して配置されている。そして、上管31aと下管31cとの間を接続する中管31bは、中央線11bに沿う方向に水平に配置されている。 Further, the upper pipe 31a of the utility introduction pipe 31 is arranged coaxially with the central axis 11a together with the support base 12 immediately above. Further, the lower pipe 31c of the utility introduction pipe 31 is arranged at a portion of the bottom surface 17 (connecting port 24) where there is no exhaust port 21 arranged eccentrically, and its center 24a is closed on the center line 11b in the closing direction CD. It is decentered from the central axis 11a (in the direction opposite to the opening direction OD). And the middle pipe | tube 31b which connects between the upper pipe | tube 31a and the lower pipe | tube 31c is horizontally arrange | positioned in the direction in alignment with the center line 11b.
 上述したように、処理容器11の内部においては、円筒状の支持台12及び円筒状の用力導入管31の上管31aが、処理容器11の中心軸11aと同軸に配置されている。そして、処理容器11内には、処理に使用するガスが中心軸11aに対して軸対称に供給され、中心軸11aと同軸に配置されたアンテナ14から高周波電磁波が供給されて、円柱状のプラズマ16が生成され、更に、処理に使用するガスが、中心軸11aに対して軸対称に均一となるように、支持台12及び用力導入管31の上管31aの周囲を流れる。従って、図9~図10に示すような処理容器側面に取り付ける場合と比較して、基板13付近のガス流れを均一化して、基板13に対するプラズマ処理を均一に行うことができる。 As described above, inside the processing container 11, the cylindrical support base 12 and the upper pipe 31 a of the cylindrical power introduction pipe 31 are arranged coaxially with the central axis 11 a of the processing container 11. A gas used for processing is supplied into the processing vessel 11 symmetrically with respect to the central axis 11a, and high-frequency electromagnetic waves are supplied from an antenna 14 arranged coaxially with the central axis 11a, so that cylindrical plasma is supplied. 16 is generated, and the gas used for the processing flows around the support base 12 and the upper pipe 31a of the power introduction pipe 31 so as to be uniform with respect to the central axis 11a. Therefore, as compared with the case where it is attached to the side surface of the processing container as shown in FIGS.
 一方、支持台12の下方において、用力導入管31の中管31b及び下管31cは、処理容器11の中心軸11aと同軸に配置されてはいないが、中管31bは中央線11bに沿う方向に配置されている。又、排気口21も、処理容器11の中心軸11aと同軸に配置されてはいないが、その開口中心21aは、中心軸11aに対して、中央線11b上を開方向ODに偏心して配置されている。この場合、処理容器11の上方から見ると、図2に示すように、排気口21と弁体22aが形成する三日月状の開口領域の一部は中管31bに隠れてしまうことになる。そして、弁体22aが移動して、三日月状の開口領域の大きさが変化しても、中管31bに隠れていない開口領域の形状は、中管31b(中央線11b)に対して線対称的に変化することになる。従って、中央線11bを含む鉛直な面(以降、中央鉛直面と呼ぶ。)を考慮すると、処理に使用するガスは、中央鉛直面に対して面対称に均一となるように、中管31bの周囲を流れることになる。 On the other hand, below the support 12, the middle pipe 31 b and the lower pipe 31 c of the utility introduction pipe 31 are not arranged coaxially with the central axis 11 a of the processing vessel 11, but the middle pipe 31 b is in a direction along the center line 11 b. Is arranged. Further, the exhaust port 21 is not arranged coaxially with the central axis 11a of the processing vessel 11, but the opening center 21a is arranged eccentrically with respect to the central axis 11a on the center line 11b in the opening direction OD. ing. In this case, when viewed from above the processing container 11, as shown in FIG. 2, a part of the crescent-shaped opening region formed by the exhaust port 21 and the valve body 22a is hidden by the middle tube 31b. And even if the valve element 22a moves and the size of the crescent-shaped opening region changes, the shape of the opening region that is not hidden by the middle tube 31b is axisymmetric with respect to the middle tube 31b (center line 11b). Will change. Therefore, considering the vertical plane including the center line 11b (hereinafter referred to as the central vertical plane), the gas used for the processing is uniform in the plane of the middle pipe 31b so as to be symmetrical with respect to the central vertical plane. It will flow around.
 ここで、排気コンダクタンスへの影響を考慮すると、排気口21の上方に配置される用力導入管31の中管31bの高さ位置を考慮する必要がある。底面17の上面と水平に配置された中管31bの下面の位置との高さ方向の距離をHとし、排気口21の閉方向CDの端部と用力導入管31の中管31bの開方向ODの端部との水平方向の距離をWとすると、[H≧W/4]となる高さ位置に、用力導入管31の中管31bの下面が位置するように配置することが望ましい。 Here, considering the influence on the exhaust conductance, it is necessary to consider the height position of the middle pipe 31b of the utility introduction pipe 31 arranged above the exhaust port 21. The distance in the height direction between the upper surface of the bottom surface 17 and the position of the lower surface of the middle tube 31b disposed horizontally is H, and the end of the exhaust port 21 in the closing direction CD and the opening direction of the middle tube 31b of the utility introduction tube 31 When the horizontal distance from the end of the OD is W, it is desirable that the lower surface of the middle pipe 31b of the utility introduction pipe 31 is positioned at a height position where [H ≧ W / 4].
 上記配置は以下の理由による。弁体22aが全開位置(図2中の一点鎖線の位置)に移動して、排気口21が全開であるときを考慮すると、排気口21の直径Dを用いて、[H≧D/4]とすればよいが、実際のプラズマ処理時における排気制御中に排気口21を全開とすることはない。通常は、上述した使用推奨値(10%~50%)の開口率で使用されるので、排気コンダクタンスに影響を及ぼす可能性がある用力導入管31の中管31bの大きさを考慮した方がよく、そのため、排気口21の閉方向CDの端部と用力導入管31の中管31bの開方向ODの端部との水平方向の距離Wを用いて、[H≧W/4]となる高さ位置としている。 The above arrangement is for the following reasons. Considering the case where the valve body 22a is moved to the fully open position (the position of the one-dot chain line in FIG. 2) and the exhaust port 21 is fully open, the diameter D of the exhaust port 21 is used [H ≧ D / 4]. However, the exhaust port 21 is not fully opened during exhaust control during actual plasma processing. Normally, it is used at an opening ratio of the recommended use value (10% to 50%) described above, so it is better to consider the size of the middle pipe 31b of the utility introduction pipe 31 that may affect the exhaust conductance. For this reason, [H ≧ W / 4] is obtained by using the horizontal distance W between the end portion in the closing direction CD of the exhaust port 21 and the end portion in the opening direction OD of the middle tube 31b of the power introduction tube 31. The height position.
 このような高さ位置Hに、用力導入管31の中管31bを配置することにより、排気コンダクタンスに影響を与えることなく、処理に使用するガスを排気することができる。 By disposing the middle pipe 31b of the utility introduction pipe 31 at such a height position H, the gas used for processing can be exhausted without affecting the exhaust conductance.
 上記構成による効果は、比較的高い真空領域の圧力でプラズマ処理を行う場合に顕著に表れる。例えば、プラズマCVD装置におけるプラズマクリーニングは、比較的高い真空領域の圧力で実施される。特に、図9~図11に示すような構成では、プラズマクリーニングに偏りがあり、所定のクリーニングを実施するために、余分なガスを消費したり、一部余分にクリーニングが行われて、プラズマダメージが発生したりすることがあった。これに対し、本実施例では、上述した構成を用いることにより、処理容器11、支持台12に対して、均一なプラズマクリーニング(プラズマ処理)が施される。その結果、無駄なガスの使用やプラズマによるダメージが低減され、メンテナンス頻度の低減や部品の長寿命化を図ることができる。特に、[H=W/4]とする場合は、用力導入管31の中管31bの下面の高さ位置Hが、排気口21におけるガス流れのコンダクタンスに影響しない最短の高さ位置であり、支持台12や処理容器11の高さを必要以上に高くする必要がなくなる。 The effect of the above configuration is noticeable when plasma processing is performed at a relatively high vacuum pressure. For example, plasma cleaning in a plasma CVD apparatus is performed at a relatively high vacuum pressure. In particular, in the configuration shown in FIGS. 9 to 11, there is a bias in plasma cleaning, and in order to perform a predetermined cleaning, excessive gas is consumed or a part of the cleaning is performed, resulting in plasma damage. May occur. On the other hand, in this embodiment, uniform plasma cleaning (plasma processing) is performed on the processing container 11 and the support base 12 by using the above-described configuration. As a result, useless gas usage and plasma damage can be reduced, reducing the frequency of maintenance and extending the life of parts. In particular, when [H = W / 4], the height position H of the lower surface of the middle pipe 31b of the utility introduction pipe 31 is the shortest height position that does not affect the conductance of the gas flow at the exhaust port 21, There is no need to raise the height of the support 12 or the processing container 11 more than necessary.
 又、図1に示したように、排気口21と共に、振り子式ゲート弁22、TMP23も偏心して配置しているので、用力導入管31の下管31cの下方には、振り子式ゲート弁22、TMP23がなく、スペースが生まれて、この部分へのアクセスが容易となり、用力の配線や配管の施工が容易となる。特に、振り子式ゲート弁22には、弁体22aを格納する弁体格納部22bがあり、この弁体格納部22bの設置スペースが必要であるが、振り子式ゲート弁22を開方向ODへ偏心して配置しているので、弁体格納部22bも偏心した方向へ移動して配置されることになり、用力導入管31の下管31cの下方にスペースが生まれることになる。従って、用力導入管31の組立やメンテナンスが容易となり、その組立性、メンテナンス性を向上させることができる。又、偏心して配置した振り子式ゲート弁22の弁体格納部22bが、図1からわかるように、装置側面から外側に出るような配置となるため、偏心して配置しない場合よりも弁体22aの交換などの保守が容易となる。 Further, as shown in FIG. 1, the pendulum type gate valve 22 and the TMP 23 are also arranged eccentrically together with the exhaust port 21, so that the pendulum type gate valve 22, Since there is no TMP 23, a space is created, access to this part is facilitated, and utility wiring and piping construction are facilitated. In particular, the pendulum gate valve 22 has a valve body storage portion 22b for storing the valve body 22a, and an installation space for the valve body storage portion 22b is necessary. However, the pendulum type gate valve 22 is biased to the opening direction OD. Since the valve body storage portion 22b is also moved and arranged in an eccentric direction, a space is created below the lower pipe 31c of the utility introduction pipe 31. Therefore, assembly and maintenance of the utility introduction pipe 31 are facilitated, and the assemblability and maintainability can be improved. Further, as can be seen from FIG. 1, the valve body storage portion 22b of the pendulum type gate valve 22 arranged eccentrically is arranged so as to protrude outward from the side surface of the apparatus. Maintenance such as replacement becomes easy.
 例えば、処理容器11の内部の組立を行う際には、まず、予め一体に作製しておいたクランク形状の用力導入管31に支持台12を取り付ける。このとき、支持台12側の用力(配管やケーブルなど)を、用力導入管31の上管31aの内側に上方から挿入し、中管31bを経由して、下管31cから引き出しておき、その後、上管31aに支持台12を固定する。つまり、支持台12及びその用力と用力導入管31とを組み立てた状態としておく。 For example, when assembling the inside of the processing container 11, first, the support base 12 is attached to a crank-shaped power introduction pipe 31 that is integrally manufactured in advance. At this time, the working force (pipe, cable, etc.) on the support base 12 side is inserted from above into the upper tube 31a of the power introduction tube 31 and pulled out from the lower tube 31c via the middle tube 31b. The support 12 is fixed to the upper tube 31a. That is, the support base 12 and its usage force and the usage introduction pipe 31 are in an assembled state.
 次に、図3で説明したように、処理容器11の底面17の接続口24の位置に、Oリング32を介して、用力導入管31を配置し、底面17の下面側から複数のボルト33を挿通して、底面17に用力導入管31の下管31cを仮止めしておく。このとき、支持台12の用力は、接続口24から底面17の下方まで引き出しておく。 Next, as described with reference to FIG. 3, the power introduction pipe 31 is disposed via the O-ring 32 at the position of the connection port 24 on the bottom surface 17 of the processing container 11, and a plurality of bolts 33 are formed from the bottom surface side of the bottom surface 17. And the lower pipe 31c of the utility introduction pipe 31 is temporarily fixed to the bottom surface 17. At this time, the working force of the support base 12 is drawn from the connection port 24 to below the bottom surface 17.
 次に、支持台12及び用力導入管31の上管31aが処理容器11の中心軸11aと同軸になるように配置を調整すると共に、用力導入管31の中管31bが水平になるように配置を調整し、これらの調整後、ボルト33により最終的な固定を行う。用力導入管31の底面17への固定は、処理容器11の外側から行うことができ、その作業は容易である。 Next, the arrangement is adjusted so that the support 12 and the upper pipe 31a of the utility introduction pipe 31 are coaxial with the central axis 11a of the processing vessel 11, and the middle pipe 31b of the utility introduction pipe 31 is arranged horizontal. After these adjustments, the bolts 33 are finally fixed. The utility introduction pipe 31 can be fixed to the bottom surface 17 from the outside of the processing container 11 and the operation is easy.
 最後に、支持台12側の用力と、接続口24の近傍まで延設された装置側の用力と接続する。 Finally, the power on the support base 12 side and the power on the apparatus side extended to the vicinity of the connection port 24 are connected.
 このように、支持台12や用力導入管31の組立は、図9~図10に示すような処理容器側面に取り付ける場合と比較して容易となる。 As described above, the assembly of the support base 12 and the utility introduction pipe 31 is facilitated as compared with the case where they are attached to the side surface of the processing container as shown in FIGS.
 又、メンテナンスの際、支持台12や用力導入管31を取り外す場合には、上述した手順と逆の手順で、支持台12や用力導入管31を取り外せばよいので、そのメンテナンスも容易となる。なお、支持台12の消耗品(交換部品)としては、支持台12の上部に取り付けられた静電チャックがあるが、このような軽量な部品の交換は、処理容器11の上方から行うことができる。 Further, when removing the support base 12 and the utility introduction pipe 31 during maintenance, the support stage 12 and the utility introduction pipe 31 may be removed by a procedure reverse to the above-described procedure, so that the maintenance becomes easy. In addition, as a consumable item (replacement part) of the support base 12, there is an electrostatic chuck attached to the upper part of the support base 12, but such a lightweight part can be replaced from above the processing container 11. it can.
 以上説明したように、本実施例のプラズマ処理装置10Aにおいては、支持台12及び用力導入管31の上管31aまでは、使用するガスの流れを中心軸11aに対して軸対称とし、ガス流れを均一にしており、又、上管31aより下方では、使用するガスの流れを中央鉛直面に対して面対称とし、ガス流れを均一にしており、処理容器11で使用するガスを均一に排気可能であり、その結果、基板13や処理容器11などに対するプラズマ処理を均一に行うことができる。 As described above, in the plasma processing apparatus 10A of the present embodiment, the gas flow to be used is axially symmetric with respect to the central axis 11a up to the support base 12 and the upper pipe 31a of the utility introduction pipe 31. Further, below the upper pipe 31a, the gas flow used is symmetrical with respect to the central vertical plane, the gas flow is uniform, and the gas used in the processing vessel 11 is exhausted uniformly. As a result, it is possible to uniformly perform the plasma processing on the substrate 13 and the processing container 11.
 又、処理容器11の側面ではなく、その底面17に排気口21や用力導入管31を設けるので、その側面に排気口や用力導入管を設ける場合より、構造がシンプルとなり、排気口21や用力導入管31の作製、組立及びメンテナンスが容易となる。 Further, since the exhaust port 21 and the utility introduction pipe 31 are provided not on the side surface of the processing vessel 11 but on the bottom surface 17 thereof, the structure becomes simpler than the case where the exhaust port and the utility introduction tube 31 are provided on the side surface. The introduction pipe 31 can be easily manufactured, assembled and maintained.
(実施例2)
 図4、図5は、本実施例のプラズマ処理装置を示す図であり、図4は、本実施例のプラズマ処理装置を示す概略構成図であり、図5は、図4に示したプラズマ処理装置の用力導入管の取り付け部分の断面図である。
(Example 2)
4 and 5 are diagrams showing the plasma processing apparatus of the present embodiment, FIG. 4 is a schematic configuration diagram showing the plasma processing apparatus of the present embodiment, and FIG. 5 is the plasma processing shown in FIG. It is sectional drawing of the attachment part of the power introduction pipe | tube of an apparatus.
 本実施例のプラズマ処理装置10Bは、図4に示すように、用力導入管34の構成が実施例1で説明した用力導入管31と相違するが、その他の構成については、基本的には、実施例1で説明したプラズマ処理装置10Aと同等の構成である。従って、ここでは、同等の構成には同じ符号を用い、重複する説明については、その記載を省略する。 As shown in FIG. 4, the plasma processing apparatus 10 </ b> B according to the present embodiment is different from the utility introduction pipe 31 described in the first embodiment in the configuration of the utility introduction pipe 34. The configuration is the same as the plasma processing apparatus 10 </ b> A described in the first embodiment. Therefore, here, the same reference numerals are used for the equivalent components, and the description of the overlapping description is omitted.
 本実施例でも、支持台12の支持構造として、用力導入管34を設けているが、実施例1で説明した用力導入管31とは、その形状に相違があり、支持台12の下部から処理容器11の底面17までの用力導入管34を、傾斜した斜め配管から構成している。更に詳細に説明すると、支持台12の下面に接続される用力導入管34の上端部34aは、例えば、前述の図2で示したように、用力導入管31の上管31aと同様に、中心軸11aと同軸に配置するが、この配置位置に限定する必要はない。一方、底面17へ接続する下端部34cは、偏心して配置された排気口21がない底面17の部分(接続口24)に配置し、上端部34aと下端部34cとの間を接続する中間部34bが斜めに配置されている。 Also in the present embodiment, the utility introduction pipe 34 is provided as a support structure of the support base 12, but the shape is different from the utility introduction pipe 31 described in the first embodiment, and treatment is performed from the lower part of the support base 12. The utility introduction pipe 34 up to the bottom surface 17 of the container 11 is constituted by an inclined oblique pipe. More specifically, the upper end portion 34a of the power introduction pipe 34 connected to the lower surface of the support base 12 is centered in the same manner as the upper pipe 31a of the power introduction pipe 31 as shown in FIG. Although it arrange | positions coaxially with the axis | shaft 11a, it is not necessary to limit to this arrangement position. On the other hand, the lower end portion 34c connected to the bottom surface 17 is disposed at a portion (connecting port 24) of the bottom surface 17 where there is no exhaust port 21 arranged eccentrically, and an intermediate portion connecting between the upper end portion 34a and the lower end portion 34c. 34b is arranged diagonally.
 この用力導入管34には、実施例1と同様に、用力(配管やケーブルなど)が挿通される。本実施例の場合、クランク形状の用力導入管31と異なり、用力導入管34が略直管となっており、内部が見通せるので、用力導入管34の内側において、用力を曲げる量が略無くなり、用力の挿通はより容易となる。又、用力導入管34の長さや挿通する用力の長さを短くすることもできる。 The utility (pipe, cable, etc.) is inserted into the utility introduction pipe 34 as in the first embodiment. In the case of the present embodiment, unlike the crank-shaped power introduction pipe 31, the power introduction pipe 34 is a substantially straight pipe, and the inside can be seen through. Insertion of utility becomes easier. Further, the length of the utility introduction pipe 34 and the length of the insertion force to be inserted can be shortened.
 そして、用力導入管34の下端部34cの外周には、図5に示すように、フランジ34dが設けられており、Oリング32を介して、底面17の上面に配置され、底面17の下面から挿通された複数のボルト33により、底面17に固定される構造である。このような構造により、処理容器11の内部を大気側からシールすることになる。又、用力導入管34の内側も大気側となるため、この部分のメンテナンスも容易となる。なお、用力導入管34は、その下端部34cも含めて、全て斜め配管としてもよいが、フランジ34dを形成することを考慮すると、図5に示すように、下端部34cを底面17に対して鉛直に配置した管から構成し、この下端部34cと中間部34bとを接続した形状がよい。その場合、例えば、円筒や四角筒などの管を複数接続して形成すればよい。 As shown in FIG. 5, a flange 34 d is provided on the outer periphery of the lower end 34 c of the utility introduction pipe 34, and is disposed on the upper surface of the bottom surface 17 via the O-ring 32. The structure is fixed to the bottom surface 17 by a plurality of inserted bolts 33. With such a structure, the inside of the processing container 11 is sealed from the atmosphere side. Further, since the inside of the utility introduction pipe 34 is also on the atmosphere side, maintenance of this portion is facilitated. In addition, the utility introduction pipe 34 may include all of the inclined pipes including the lower end part 34c. However, considering the formation of the flange 34d, the lower end part 34c is arranged with respect to the bottom surface 17 as shown in FIG. A configuration in which the lower end portion 34c and the intermediate portion 34b are connected to each other is preferable. In that case, for example, a plurality of tubes such as cylinders and square tubes may be connected.
 排気口21の部分における各構成部材同士の位置関係について、排気口21の配置位置は、実施例1と同様である。又、用力導入管34の配置位置は、用力導入管31とは形状が相違するが、実施例1と略同様である。具体的には、用力導入管34の上端部34aは、その直上の支持台12と共に、中心軸11aと同軸に配置されている。又、下端部34cは、偏心して配置された排気口21がない底面17の部分(接続口24)に配置されており、その中心24aは、中央線11b上を閉方向CDに中心軸11aから偏心して配置されている。そして、上端部34aと下端部34cとの間を接続する中間部34bは、側方から見ると斜めに配置されているが、上方から見ると、中央線11bに沿う方向に配置されている。 Regarding the positional relationship between the constituent members in the portion of the exhaust port 21, the arrangement position of the exhaust port 21 is the same as in the first embodiment. The arrangement position of the utility introduction pipe 34 is substantially the same as that of the first embodiment although the shape is different from that of the utility introduction pipe 31. Specifically, the upper end portion 34a of the utility introduction pipe 34 is disposed coaxially with the central axis 11a together with the support base 12 immediately above the upper end portion 34a. The lower end 34c is arranged at a portion of the bottom surface 17 (connecting port 24) where there is no exhaust port 21 arranged eccentrically, and its center 24a extends from the central axis 11a in the closing direction CD on the center line 11b. It is arranged eccentrically. The intermediate portion 34b connecting the upper end portion 34a and the lower end portion 34c is disposed obliquely when viewed from the side, but is disposed in a direction along the center line 11b when viewed from above.
 上述したように、処理容器11の内部においては、円筒状の支持台12が、処理容器11の中心軸11aと同軸に配置されている。そして、処理容器11内には、処理に使用するガスが中心軸11aに対して軸対称に供給され、中心軸11aと同軸に配置されたアンテナ14から高周波電磁波が供給されて、円柱状のプラズマ16が生成され、更に、処理に使用するガスが、中心軸11aに対して軸対称に均一となるように、支持台12の周囲を流れる。従って、図9~図10に示すような処理容器側面に取り付ける場合と比較して、基板13付近のガス流れを均一化して、基板13に対するプラズマ処理を均一に行うことができる。 As described above, inside the processing container 11, the cylindrical support 12 is disposed coaxially with the central axis 11 a of the processing container 11. A gas used for processing is supplied into the processing vessel 11 symmetrically with respect to the central axis 11a, and high-frequency electromagnetic waves are supplied from an antenna 14 arranged coaxially with the central axis 11a, so that cylindrical plasma is supplied. 16 is generated, and the gas used for the processing flows around the support base 12 so as to be uniform with respect to the central axis 11a. Therefore, as compared with the case where it is attached to the side surface of the processing container as shown in FIGS.
 一方、支持台12の下方において、用力導入管34の中間部34b及び下端部34cは、処理容器11の中心軸11aと同軸に配置されてはいないが、中間部34bは上方から見て中央線11bに沿うように配置されている。又、排気口21も、処理容器11の中心軸11aと同軸に配置されてはいないが、その開口中心21aは、図2で説明したように、中心軸11aに対して、中央線11b上を開方向ODに偏心して配置されている。そのため、本実施例の場合も、処理容器11の上方から見ると、図2で説明したように、排気口21と弁体22aが形成する三日月状の開口領域の一部は中間部34bに隠れてしまうことになり、中間部34bに隠れていない開口領域の形状は、中間部34b(中央線11b)に対して線対称的に変化することになる。従って、処理に使用するガスは、中央鉛直面に対して面対称に均一となるように、中間部34bの周囲を流れることになる。 On the other hand, below the support 12, the intermediate part 34 b and the lower end part 34 c of the utility introduction pipe 34 are not arranged coaxially with the central axis 11 a of the processing container 11, but the intermediate part 34 b is a center line as viewed from above. It is arranged along 11b. Further, although the exhaust port 21 is not arranged coaxially with the central axis 11a of the processing vessel 11, the opening center 21a is located on the central line 11b with respect to the central axis 11a as described in FIG. It is arranged eccentrically in the opening direction OD. Therefore, also in the case of the present embodiment, when viewed from above the processing container 11, as described in FIG. 2, a part of the crescent-shaped opening region formed by the exhaust port 21 and the valve body 22a is hidden by the intermediate portion 34b. Therefore, the shape of the opening region that is not hidden by the intermediate portion 34b changes axisymmetrically with respect to the intermediate portion 34b (center line 11b). Therefore, the gas used for the treatment flows around the intermediate portion 34b so as to be uniform in plane symmetry with respect to the central vertical plane.
 本実施例においても、排気コンダクタンスへの影響を考慮すると、排気口21の上方に配置される用力導入管34の中間部34bの高さ位置を考慮する必要がある。本実施例においては、中間部34bが傾斜しているので、排気口21の閉方向CDの端部における、底面17の上面と中間部34bの下面の位置との高さ方向の距離をHとし、排気口21の閉方向CDの端部と中間部34bの開方向ODの端部との水平方向の距離をWとしている。そして、排気口21の閉方向CDの端部において、[H≧W/4]となる高さ位置となるように、中間部34bの下面が位置するように配置することが望ましい。 Also in this embodiment, in consideration of the influence on the exhaust conductance, it is necessary to consider the height position of the intermediate portion 34b of the utility introduction pipe 34 disposed above the exhaust port 21. In the present embodiment, since the intermediate portion 34b is inclined, the distance in the height direction between the upper surface of the bottom surface 17 and the position of the lower surface of the intermediate portion 34b at the end portion in the closing direction CD of the exhaust port 21 is H. The horizontal distance between the end of the exhaust port 21 in the closing direction CD and the end of the intermediate portion 34b in the opening direction OD is W. And it is desirable to arrange | position so that the lower surface of the intermediate part 34b may be located in the edge part of the closing direction CD of the exhaust port 21 so that it may become a height position used as [H> = W / 4].
 実施例1で説明したように、通常は、上述した使用推奨値(10%~50%)の開口率で使用されるので、本実施例の配置でも、排気コンダクタンスに影響を及ぼす可能性がある用力導入管34の中間部34bの大きさを考慮しており、そのため、排気口21の閉方向CDの端部と用力導入管34の中間部34bの開方向ODの端部との水平方向の距離Wを用いて、[H≧W/4]となる高さ位置としている。 As described in the first embodiment, since it is normally used at the opening ratio of the recommended use value (10% to 50%) described above, the arrangement of this embodiment may also affect the exhaust conductance. The size of the intermediate portion 34b of the utility introduction pipe 34 is taken into account, and therefore, the horizontal direction between the end portion in the closing direction CD of the exhaust port 21 and the end portion in the opening direction OD of the intermediate portion 34b of the utility introduction tube 34 is considered. The distance W is used as a height position where [H ≧ W / 4].
 このような高さ位置Hに、用力導入管34を配置することにより、排気コンダクタンスに影響を与えることなく、処理に使用するガスを排気することができる。又、本実施例の場合、高さ位置Hが実施例1と同じであっても、排気口21と支持台12との距離が短くなるため、処理容器11全体の高さを低くすることができる。 By disposing the utility introduction pipe 34 at such a height position H, the gas used for processing can be exhausted without affecting the exhaust conductance. In the case of the present embodiment, even if the height position H is the same as that of the first embodiment, the distance between the exhaust port 21 and the support base 12 is shortened, so that the overall height of the processing container 11 can be reduced. it can.
 上記構成により、実施例1と同等に、処理容器11、支持台12に対して、均一なプラズマ処理が施される。その結果、無駄なガスの使用やプラズマによるダメージが低減され、メンテナンス頻度の低減や部品の長寿命化を図ることができる。 With the above configuration, the plasma processing is performed uniformly on the processing vessel 11 and the support base 12 as in the first embodiment. As a result, useless gas usage and plasma damage can be reduced, reducing the frequency of maintenance and extending the life of parts.
 処理容器11の内部の組立やメンテナンスの手順は、実施例1で説明した手順と同様であるが、用力導入管34が直管又は略直管であるので、特に、支持台12側の用力(配管やケーブルなど)の挿通が容易となる。又、用力導入管34が用力導入管31より簡単な構成であるため、その組立やメンテナンスは容易となり、その組立性、メンテナンス性を向上させることができる。 The procedures for assembling and maintaining the inside of the processing container 11 are the same as the procedures described in the first embodiment. However, since the utility introduction pipe 34 is a straight pipe or a substantially straight pipe, in particular, the usage force on the support base 12 side ( (Piping, cables, etc.) can be easily inserted. Further, since the utility introduction pipe 34 has a simpler configuration than the utility introduction pipe 31, its assembly and maintenance are facilitated, and its assemblability and maintenance can be improved.
 以上説明したように、本実施例のプラズマ処理装置10Bにおいては、支持台12の下端までは、使用するガスの流れを中心軸11aに対して軸対称とし、ガス流れを均一にしており、又、支持台12の下端より下方では、使用するガスの流れを中央鉛直面に対して面対称とし、ガス流れを均一にしており、処理容器11で使用するガスを均一に排気可能であり、その結果、基板13や処理容器11などに対するプラズマ処理を均一に行うことができる。 As described above, in the plasma processing apparatus 10B of the present embodiment, the gas flow to be used is axisymmetric with respect to the central axis 11a up to the lower end of the support base 12, and the gas flow is uniform. Below the lower end of the support base 12, the gas flow used is plane-symmetric with respect to the central vertical plane, the gas flow is uniform, and the gas used in the processing vessel 11 can be exhausted uniformly. As a result, the plasma processing for the substrate 13 and the processing container 11 can be performed uniformly.
 又、処理容器11の側面ではなく、その底面17に排気口21や用力導入管34を設けるので、その側面に排気口や用力導入管を設ける場合より、構造がシンプルとなり、排気口21や用力導入管34の作製、組立及びメンテナンスが容易となる。 Further, since the exhaust port 21 and the utility introduction pipe 34 are provided not on the side surface of the processing vessel 11 but on the bottom surface 17 thereof, the structure becomes simpler than the case where the exhaust port and the utility introduction tube 34 are provided on the side surface. Production, assembly and maintenance of the introduction pipe 34 are facilitated.
(実施例3)
 図6、図7は、本実施例のプラズマ処理装置を示す図であり、図6は、本実施例のプラズマ処理装置を示す概略構成図であり、図7は、図6に示したプラズマ処理装置の排気口部分における各部材同士の位置関係を示す上面図である。
(Example 3)
6 and 7 are diagrams showing the plasma processing apparatus of the present embodiment, FIG. 6 is a schematic configuration diagram showing the plasma processing apparatus of the present embodiment, and FIG. 7 is the plasma processing shown in FIG. It is a top view which shows the positional relationship of each member in the exhaust-portion part of an apparatus.
 本実施例のプラズマ処理装置10Cも、図6に示すように、用力導入管35の構成が実施例1で説明した用力導入管31と相違するが、その他の構成については、基本的には、実施例1で説明したプラズマ処理装置10Aと同等の構成である。又、図7も、用力導入管35を除き、基本的には、実施例1で説明したプラズマ処理装置10Aと同等の構成である。従って、ここでも、同等の構成には同じ符号を用い、重複する説明については、その記載を省略する。 As for the plasma processing apparatus 10C of the present embodiment, as shown in FIG. 6, the configuration of the power introduction tube 35 is different from that of the power introduction tube 31 described in the first embodiment. The configuration is the same as the plasma processing apparatus 10 </ b> A described in the first embodiment. FIG. 7 also has the same configuration as that of the plasma processing apparatus 10 </ b> A described in the first embodiment except for the utility introduction pipe 35. Accordingly, here, the same reference numerals are used for the same components, and the description of the overlapping description is omitted.
 本実施例でも、支持台12の支持構造として、用力導入管35を設けているが、実施例1で説明した用力導入管31とは、その形状に相違があり、支持台12の下部側面から処理容器11の底面17までの用力導入管35をL字状に屈曲した形状としている。更に詳細には、支持台12の下部側面に接続する上管35aは、図7で示した中央線11bに沿って水平に配置されており、底面17へ接続する部分である下管35bは、偏心して配置された排気口21がない底面17の部分(接続口24)に鉛直に配置されている。なお、上管35aの支持台12の下部側面に接続する位置は、できるだけ、支持台12の下端に近い位置がよい。 Also in the present embodiment, the utility introduction pipe 35 is provided as a support structure of the support base 12, but the shape is different from the utility introduction pipe 31 described in the first embodiment, and from the lower side surface of the support base 12. The utility introduction tube 35 up to the bottom surface 17 of the processing container 11 is bent into an L shape. More specifically, the upper tube 35a connected to the lower side surface of the support base 12 is disposed horizontally along the center line 11b shown in FIG. 7, and the lower tube 35b which is a portion connected to the bottom surface 17 is It is arranged vertically in the portion of the bottom surface 17 (connection port 24) where there is no exhaust port 21 arranged eccentrically. In addition, the position connected to the lower side surface of the support base 12 of the upper pipe 35a is preferably as close to the lower end of the support base 12 as possible.
 この用力導入管35には、実施例1と同様に、用力(配管やケーブルなど)が挿通される。本実施例の場合、クランク形状の用力導入管31と同様に屈曲しているが、用力導入管35の屈曲部分は1箇所であるため、用力導入管35の内側において、用力を曲げる量が少なくなり、用力の挿通はより容易となる。このような用力導入管35は、例えば、円筒や四角筒などの管を複数接続してL字形状に形成すればよい。 The utility (pipe, cable, etc.) is inserted into the utility introduction pipe 35 as in the first embodiment. In the case of the present embodiment, it is bent in the same manner as the crank-shaped power introduction tube 31, but since there is only one bent portion of the power introduction tube 35, the amount of bending the utility force is small inside the power introduction tube 35. Thus, the utility can be inserted more easily. Such a power introduction pipe 35 may be formed in an L shape by connecting a plurality of pipes such as a cylinder and a square cylinder.
 そして、図示は省略するが、用力導入管35の下管35bの外周には、図3で説明したように、フランジが設けられ、Oリング32を介して、底面17の上面に配置され、底面17の下面から挿通された複数のボルト33により、底面17に固定される構造である。このような構造により、処理容器11の内部を大気側からシールすることになる。又、用力導入管35の内側も大気側となるため、この部分のメンテナンスも容易となる。 And although illustration is abbreviate | omitted, as demonstrated in FIG. 3, the flange is provided in the outer periphery of the lower pipe 35b of the utility introduction pipe 35, and it arrange | positions through the O-ring 32 on the upper surface of the bottom face 17, This is a structure that is fixed to the bottom surface 17 by a plurality of bolts 33 inserted from the bottom surface of 17. With such a structure, the inside of the processing container 11 is sealed from the atmosphere side. Further, since the inside of the utility introduction pipe 35 is also on the atmosphere side, maintenance of this portion is facilitated.
 排気口21部分における各構成部材同士の位置関係について、排気口21の配置位置は、実施例1と同様である。一方、用力導入管35の配置位置は、上管35aが、支持台12の下部側面に接続されると共に、水平に配置されて、その配置方向は図7で示した中央線11bに沿う方向となっている。又、下管35bは、偏心して配置された排気口21がない底面17の部分(接続口24)に配置されているが、その中心24aは、中央線11b上を閉方向CDに中心軸11aから偏心して配置されている。なお、上管35aは、上方から見て、配置方向が中央線11bに沿う方向であれば、実施例2の中間部34bのように、斜め配管から構成してもよい。 Regarding the positional relationship between the constituent members in the exhaust port 21 part, the arrangement position of the exhaust port 21 is the same as in the first embodiment. On the other hand, the arrangement position of the utility introduction pipe 35 is such that the upper pipe 35a is connected to the lower side surface of the support 12 and is arranged horizontally, and the arrangement direction thereof is the direction along the center line 11b shown in FIG. It has become. The lower pipe 35b is arranged at a portion of the bottom surface 17 (connection port 24) where there is no exhaust port 21 arranged eccentrically, and its center 24a is centered on the center line 11b in the closing direction CD in the center axis 11a. It is arranged eccentrically. Note that the upper tube 35a may be configured by an oblique pipe as in the intermediate portion 34b of the second embodiment as long as the arrangement direction is along the center line 11b when viewed from above.
 上述したように、処理容器11の内部においては、円筒状の支持台12が、処理容器11の中心軸11aと同軸に配置されている。そして、処理容器11内には、処理に使用するガスが中心軸11aに対して軸対称に供給され、中心軸11aと同軸に配置されたアンテナ14から高周波電磁波が供給されて、円柱状のプラズマ16が生成され、更に、処理に使用するガスが、中心軸11aに対して軸対称に均一となるように、支持台12の周囲を流れる。従って、用力導入管35の上管35aの上端部ULより上方の支持台12においては、図9~図10に示すような処理容器側面に取り付ける場合と比較して、基板13付近のガス流れを均一化して、基板13に対するプラズマ処理を均一に行うことができる。 As described above, inside the processing container 11, the cylindrical support 12 is disposed coaxially with the central axis 11 a of the processing container 11. A gas used for processing is supplied into the processing vessel 11 symmetrically with respect to the central axis 11a, and high-frequency electromagnetic waves are supplied from an antenna 14 arranged coaxially with the central axis 11a, so that cylindrical plasma is supplied. 16 is generated, and the gas used for the processing flows around the support base 12 so as to be uniform with respect to the central axis 11a. Therefore, in the support base 12 above the upper end portion UL of the upper pipe 35a of the utility introduction pipe 35, the gas flow in the vicinity of the substrate 13 is made smaller than when the support base 12 is attached to the side surface of the processing container as shown in FIGS. It is possible to uniformly perform the plasma processing on the substrate 13.
 一方、上端部ULより下方において、用力導入管35の上管35a及び下管35bは、処理容器11の中心軸11aと同軸に配置されていないが、本実施例の場合、上管35aは、中央線11bに沿う方向に水平に配置されているので、処理に使用するガスは、中央鉛直面に対して面対称に均一となるように、上管35aの周囲を流れることになる。 On the other hand, below the upper end portion UL, the upper pipe 35a and the lower pipe 35b of the utility introduction pipe 35 are not arranged coaxially with the central axis 11a of the processing container 11, but in this embodiment, the upper pipe 35a is Since the gas is disposed horizontally in the direction along the center line 11b, the gas used for processing flows around the upper tube 35a so as to be uniform in plane symmetry with respect to the central vertical plane.
 又、排気口21も、処理容器11の中心軸11aと同軸に配置されてはいないが、その開口中心21aは、図2で説明したように、中心軸11aに対して、中央線11b上を開方向ODに偏心して配置されている。ここで、図7を参照して、本実施例の場合を説明する。本実施例の場合、処理容器11の上方から見ると、排気口21と弁体22aが形成する三日月状の開口領域の一部は支持台12及び上管35aに隠れてしまうことになり、支持台12及び上管35aに隠れていない開口領域の形状は、中央線11bに対して線対称的に変化することになる。従って、処理に使用するガスは、中央鉛直面に対して面対称に均一となるように、支持台12及び上管35aの周囲を流れることになる。 Further, although the exhaust port 21 is not arranged coaxially with the central axis 11a of the processing vessel 11, the opening center 21a is located on the central line 11b with respect to the central axis 11a as described in FIG. It is arranged eccentrically in the opening direction OD. Here, the case of the present embodiment will be described with reference to FIG. In the case of the present embodiment, when viewed from above the processing container 11, a part of the crescent-shaped opening region formed by the exhaust port 21 and the valve body 22a is hidden by the support base 12 and the upper tube 35a. The shape of the opening region that is not hidden by the table 12 and the upper tube 35a changes symmetrically with respect to the center line 11b. Therefore, the gas used for the treatment flows around the support base 12 and the upper tube 35a so as to be uniform in plane symmetry with respect to the central vertical plane.
 本実施例においても、排気コンダクタンスへの影響を考慮すると、排気口21の上方に配置される支持台12の高さ位置を考慮する必要がある。本実施例においては、底面17の上面と支持台12の下面の位置との高さ方向の距離をHとし、排気口21の閉方向CDの端部と支持台12の開方向ODの端部との水平方向の距離をWとすると、[H≧W/4]となる高さ位置に、支持台12の下面が位置するように配置することが望ましい。 Also in this embodiment, in consideration of the influence on the exhaust conductance, it is necessary to consider the height position of the support base 12 disposed above the exhaust port 21. In the present embodiment, the distance in the height direction between the upper surface of the bottom surface 17 and the position of the lower surface of the support base 12 is H, the end of the exhaust port 21 in the closing direction CD and the end of the support base 12 in the opening direction OD. When the distance in the horizontal direction is W, it is desirable that the lower surface of the support base 12 be positioned at a height position satisfying [H ≧ W / 4].
 実施例1で説明したように、通常は、上述した使用推奨値(10%~50%)の開口率で使用されるので、本実施例の配置でも、排気コンダクタンスに影響を及ぼす可能性がある支持台12の大きさを考慮しており、そのため、排気口21の閉方向CDの端部と支持台12の開方向ODの端部との水平方向の距離Wを用いて、[H≧W/4]となる高さ位置としている。 As described in the first embodiment, since it is normally used at the opening ratio of the recommended use value (10% to 50%) described above, the arrangement of this embodiment may also affect the exhaust conductance. The size of the support base 12 is taken into account, and therefore the horizontal distance W between the end portion of the exhaust port 21 in the closing direction CD and the end portion of the support base 12 in the opening direction OD is used, [H ≧ W / 4].
 このような高さ位置Hに、支持台12を配置することにより、排気コンダクタンスに影響を与えることなく、処理に使用するガスを排気することができる。又、本実施例の場合、高さ位置Hが実施例1と同じであっても、実施例1に示したような上管31bがないため、処理容器11全体の高さを低くすることができる。 By arranging the support base 12 at such a height position H, the gas used for the processing can be exhausted without affecting the exhaust conductance. In the case of the present embodiment, even if the height position H is the same as that of the first embodiment, there is no upper tube 31b as shown in the first embodiment, so that the height of the entire processing container 11 can be reduced. it can.
 上記構成により、実施例1と同等に、処理容器11、支持台12に対して、均一なプラズマ処理が施される。その結果、無駄なガスの使用やプラズマによるダメージが低減され、メンテナンス頻度の低減や部品の長寿命化を図ることができる。 With the above configuration, the plasma processing is performed uniformly on the processing vessel 11 and the support base 12 as in the first embodiment. As a result, useless gas usage and plasma damage can be reduced, reducing the frequency of maintenance and extending the life of parts.
 処理容器11の内部の組立やメンテナンスの手順は、実施例1で説明した手順と同様であるが、用力導入管35がL字状であるので、支持台12側の用力(配管やケーブルなど)の挿通は、実施例1より容易となる。又、用力導入管35が用力導入管31より簡単な構成であるため、その組立やメンテナンスは容易となり、その組立性、メンテナンス性を向上させることができる。 The procedures for assembling and maintaining the inside of the processing container 11 are the same as those described in the first embodiment. However, since the utility introduction pipe 35 is L-shaped, the utility (pipe, cable, etc.) on the support base 12 side. Is easier to insert than in the first embodiment. Further, since the utility introduction pipe 35 has a simpler configuration than the utility introduction pipe 31, its assembly and maintenance are facilitated, and its assembly and maintenance can be improved.
 以上説明したように、本実施例のプラズマ処理装置10Cにおいては、上端部ULより上方の支持台12では、使用するガスの流れを中心軸11aに対して軸対称とし、ガス流れを均一にしており、又、上端部ULより下方の支持台12では、使用するガスの流れを中央鉛直面に対して面対称とし、ガス流れを均一にしており、処理容器11で使用するガスを均一に排気可能であり、その結果、基板13や処理容器11などに対するプラズマ処理を均一に行うことができる。 As described above, in the plasma processing apparatus 10C of the present embodiment, the gas flow to be used is made symmetrical with respect to the central axis 11a in the support base 12 above the upper end portion UL, and the gas flow is made uniform. In addition, in the support base 12 below the upper end UL, the gas flow used is symmetrical with respect to the central vertical plane, the gas flow is uniform, and the gas used in the processing vessel 11 is exhausted uniformly. As a result, it is possible to uniformly perform the plasma processing on the substrate 13 and the processing container 11.
 又、処理容器11の側面ではなく、その底面17に排気口21や用力導入管35を設けるので、その側面に排気口や用力導入管を設ける場合より、構造がシンプルとなり、排気口21や用力導入管35の作製、組立及びメンテナンスが容易となる。 Further, since the exhaust port 21 and the utility introduction pipe 35 are provided not on the side surface of the processing vessel 11 but on the bottom surface 17 thereof, the structure becomes simpler than the case where the exhaust port and the utility introduction tube are provided on the side surface. Production, assembly, and maintenance of the introduction pipe 35 are facilitated.
 本発明は、基板を載置する支持台を有するプラズマ処理装置(プラズマCVD装置、プラズマエッチング装置)に適用されるものであるが、特に、ICP型のプラズマ処理装置に好適なものである。 The present invention is applied to a plasma processing apparatus (plasma CVD apparatus or plasma etching apparatus) having a support table on which a substrate is placed, and is particularly suitable for an ICP type plasma processing apparatus.
 10A、10B、10C プラズマ処理装置
 11 処理容器
 12 支持台
 13 基板
 14 アンテナ
 17 底面
 21 排気口
 22 振り子式ゲート弁
 23 真空ポンプ(TMP)
 31、34、35 用力導入管
10A, 10B, 10C Plasma processing apparatus 11 Processing vessel 12 Support base 13 Substrate 14 Antenna 17 Bottom surface 21 Exhaust port 22 Pendulum type gate valve 23 Vacuum pump (TMP)
31, 34, 35 Power introduction pipe

Claims (7)

  1.  円筒状の処理容器の内部に所望のガスを供給するガス供給手段と、
     前記処理容器の内部に電磁波を供給する円形リング形状のアンテナと、
     前記処理容器の内部に設けられ、上面に基板が載置される円筒状の支持台と、
     上部が前記支持台の下部に接続され、下部が前記処理容器の底面の接続口に接続されて、前記支持台を支えると共に、前記支持台で使用する用力が内側に挿通される管状の支持構造と、
     前記底面の円形状の排気口に取り付けられ、前記排気口の開閉を行う弁体を有する振り子式ゲート弁と、
     前記振り子式ゲート弁の下部に取り付けた真空ポンプとを有し、
     前記振り子式ゲート弁及び前記真空ポンプを用いて前記処理容器内の圧力を制御し、前記アンテナからの電磁波により前記ガスのプラズマを生成し、前記基板にプラズマ処理を施すプラズマ処理装置において、
     前記ガス供給手段を、前記処理容器の中心軸に軸対称に配置し、
     前記アンテナ及び前記支持台を、前記処理容器の中心軸と同軸に配置し、
     前記処理容器の中心軸に対して、前記排気口の中心が前記弁体の開方向に偏心するように、前記排気口を前記底面に配置し、
     前記処理容器の中心軸に対して、前記接続口の中心が前記弁体の閉方向に偏心するように、前記接続口を前記底面の前記排気口がない部分に配置し、
     前記支持構造の前記上部と前記下部の間の中間部を、前記処理容器の中心軸と交差し、かつ、前記弁体の開閉方向となる直線に沿う方向に配置したことを特徴とするプラズマ処理装置。
    Gas supply means for supplying a desired gas into the inside of the cylindrical processing container;
    A circular ring-shaped antenna for supplying electromagnetic waves to the inside of the processing container;
    A cylindrical support provided inside the processing container and on which the substrate is placed;
    A tubular support structure in which an upper part is connected to a lower part of the support table, and a lower part is connected to a connection port on the bottom surface of the processing container to support the support table and to insert a working force to be used on the support table inward. When,
    A pendulum gate valve attached to the circular exhaust port on the bottom surface and having a valve body for opening and closing the exhaust port;
    A vacuum pump attached to the lower part of the pendulum gate valve;
    In the plasma processing apparatus for controlling the pressure in the processing container using the pendulum type gate valve and the vacuum pump, generating plasma of the gas by electromagnetic waves from the antenna, and performing plasma processing on the substrate,
    The gas supply means is arranged axisymmetrically with respect to the central axis of the processing vessel,
    The antenna and the support base are arranged coaxially with the central axis of the processing container,
    The exhaust port is disposed on the bottom surface such that the center of the exhaust port is decentered in the opening direction of the valve body with respect to the central axis of the processing container,
    The connection port is disposed in a portion of the bottom surface where the exhaust port is not provided so that the center of the connection port is decentered in the closing direction of the valve body with respect to the central axis of the processing container,
    An intermediate portion between the upper portion and the lower portion of the support structure is disposed in a direction that intersects a central axis of the processing vessel and extends along a straight line that is an opening / closing direction of the valve body. apparatus.
  2.  請求項1に記載のプラズマ処理装置において、
     前記支持構造をクランク形状の管とし、鉛直方向の上管と鉛直方向の下管と前記上管と前記下管とを接続する水平方向の中管とから構成し、
     前記上管を、前記支持台の下面に接続すると共に、前記処理容器の中心軸と同軸に配置し、
     前記中管を、前記直線に沿う方向に水平に配置し、
     前記下管を、前記接続口に接続したことを特徴とするプラズマ処理装置。
    The plasma processing apparatus according to claim 1,
    The support structure is a crank-shaped tube, and comprises a vertical upper tube, a vertical lower tube, and a horizontal middle tube connecting the upper tube and the lower tube,
    The upper tube is connected to the lower surface of the support base and is arranged coaxially with the central axis of the processing vessel,
    The middle tube is horizontally disposed in a direction along the straight line,
    A plasma processing apparatus, wherein the lower tube is connected to the connection port.
  3.  請求項2に記載のプラズマ処理装置において、
     前記底面の上面から前記中管の下面までの高さ方向の距離をH、前記排気口の前記弁体の閉方向の端部から前記中管の前記弁体の開方向の端部までの水平方向の距離をWとするとき、[H≧W/4]を満たす位置に前記中管を配置したことを特徴とするプラズマ処理装置。
    The plasma processing apparatus according to claim 2, wherein
    The distance in the height direction from the upper surface of the bottom surface to the lower surface of the middle pipe is H, and the horizontal distance from the end of the exhaust port in the closing direction of the valve body to the end of the middle pipe in the opening direction of the valve body When the distance in the direction is W, the plasma processing apparatus is characterized in that the intermediate tube is disposed at a position satisfying [H ≧ W / 4].
  4.  請求項1に記載のプラズマ処理装置において、
     前記支持構造を斜めに形成した斜め配管とし、
     前記斜め配管の上端部を、前記支持台の下面に接続し、
     前記斜め配管の中間部を、上方から見て、前記直線に沿うように配置し、
     前記斜め配管の下端部を、前記接続口に接続したことを特徴とするプラズマ処理装置。
    The plasma processing apparatus according to claim 1,
    The support structure is an oblique pipe formed obliquely,
    Connect the upper end of the diagonal pipe to the lower surface of the support base,
    The middle part of the oblique pipe is arranged along the straight line when viewed from above,
    A plasma processing apparatus, wherein a lower end portion of the oblique pipe is connected to the connection port.
  5.  請求項4に記載のプラズマ処理装置において、
     前記排気口の前記弁体の閉方向の端部における前記底面の上面から前記斜め配管までの高さ方向の距離をH、前記排気口の前記弁体の閉方向の端部から前記斜め配管の前記弁体の開方向の端部までの水平方向の距離をWとするとき、[H≧W/4]を満たすように前記斜め配管を配置したことを特徴とするプラズマ処理装置。
    The plasma processing apparatus according to claim 4, wherein
    The distance in the height direction from the upper surface of the bottom surface to the oblique pipe at the end of the exhaust port in the closing direction of the valve body is H, and from the end of the exhaust port in the closing direction of the valve body, The plasma processing apparatus, wherein the diagonal pipe is arranged so as to satisfy [H ≧ W / 4], where W is a horizontal distance to an end of the valve body in the opening direction.
  6.  請求項1に記載のプラズマ処理装置において、
     前記支持構造をL字形状の管とし、水平方向の上管と前記上管に接続する鉛直方向の下管とから構成し、
     前記上管を、前記支持台の下部側面に接続すると共に、前記直線に沿う方向に水平に配置し、
     前記下管を、前記接続口に接続したことを特徴とするプラズマ処理装置。
    The plasma processing apparatus according to claim 1,
    The support structure is an L-shaped tube, and comprises a horizontal upper tube and a vertical lower tube connected to the upper tube,
    The upper tube is connected to the lower side surface of the support base, and is disposed horizontally in the direction along the straight line,
    A plasma processing apparatus, wherein the lower tube is connected to the connection port.
  7.  請求項6に記載のプラズマ処理装置において、
     前記底面の上面から前記支持台の下面までの高さ方向の距離をH、前記排気口の前記弁体の閉方向の端部から前記支持台の前記弁体の開方向の端部までの水平方向の距離をWとするとき、[H≧W/4]を満たす位置に前記支持台を配置したことを特徴とするプラズマ処理装置。
    The plasma processing apparatus according to claim 6, wherein
    The distance in the height direction from the upper surface of the bottom surface to the lower surface of the support base is H, and the horizontal distance from the end of the exhaust port in the closing direction of the valve body to the end of the support base in the opening direction of the valve body A plasma processing apparatus, wherein the support is disposed at a position satisfying [H ≧ W / 4], where W is a distance in the direction.
PCT/JP2013/066918 2012-07-05 2013-06-20 Plasma processing device WO2014007066A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012150996A JP2014012875A (en) 2012-07-05 2012-07-05 Plasma processing device
JP2012-150996 2012-07-05

Publications (1)

Publication Number Publication Date
WO2014007066A1 true WO2014007066A1 (en) 2014-01-09

Family

ID=49881825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066918 WO2014007066A1 (en) 2012-07-05 2013-06-20 Plasma processing device

Country Status (3)

Country Link
JP (1) JP2014012875A (en)
TW (1) TW201409564A (en)
WO (1) WO2014007066A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242668A (en) * 2006-03-06 2007-09-20 Tokyo Electron Ltd Processing system
JP2011166101A (en) * 2010-01-15 2011-08-25 Ckd Corp Vacuum control system, and vacuum control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242668A (en) * 2006-03-06 2007-09-20 Tokyo Electron Ltd Processing system
JP2011166101A (en) * 2010-01-15 2011-08-25 Ckd Corp Vacuum control system, and vacuum control method

Also Published As

Publication number Publication date
TW201409564A (en) 2014-03-01
JP2014012875A (en) 2014-01-23

Similar Documents

Publication Publication Date Title
US8623172B2 (en) Gas flow path structure and substrate processing apparatus
US20200411350A1 (en) Method and apparatus for substrate transfer and radical confinement
KR101944894B1 (en) Symmetric plasma process chamber
JP5090468B2 (en) Apparatus for adjusting electrode gap in capacitively coupled high-frequency plasma reactor
JP5805227B2 (en) Plasma processing equipment
JP5050369B2 (en) Processing equipment
US8568554B2 (en) Movable gas introduction structure and substrate processing apparatus having same
JP2011511474A (en) Gap-adjustable capacitively coupled RF plasma reactor with axial displacement bellows and non-contact particle seal
JP2020504244A (en) Target cooling of physical vapor deposition processing system
JP2012004196A (en) Plasma processing apparatus and processing gas supply structure for the same
JP5285403B2 (en) Vacuum container and plasma processing apparatus
US20160217976A1 (en) Vacuum processing apparatus
JP6163064B2 (en) Film forming apparatus and film forming method
JP2016066684A (en) Gate valve and substrate processing system
WO2014007066A1 (en) Plasma processing device
CN109659213B (en) Reaction chamber and semiconductor processing equipment
JP5558035B2 (en) Plasma processing apparatus and method
JP6750928B2 (en) Vacuum processing device
JP6899697B2 (en) Gate valve device and board processing system
US11004703B1 (en) Gas flow guiding device for semiconductor processing apparatus and method of using the same
JP6235293B2 (en) Plasma processing equipment
JP5353555B2 (en) Electron beam equipment
JP5743120B2 (en) Plasma processing apparatus and method
KR20230133264A (en) plasma processing device
KR101555208B1 (en) Plasma processing apparatus and opening and closing mechanism used therein

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13813987

Country of ref document: EP

Kind code of ref document: A1