WO2014006925A1 - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
WO2014006925A1
WO2014006925A1 PCT/JP2013/054005 JP2013054005W WO2014006925A1 WO 2014006925 A1 WO2014006925 A1 WO 2014006925A1 JP 2013054005 W JP2013054005 W JP 2013054005W WO 2014006925 A1 WO2014006925 A1 WO 2014006925A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens unit
variable focus
light
illumination device
Prior art date
Application number
PCT/JP2013/054005
Other languages
French (fr)
Japanese (ja)
Inventor
敬 市川
川口 浩司
Original Assignee
株式会社タムロン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タムロン filed Critical 株式会社タムロン
Publication of WO2014006925A1 publication Critical patent/WO2014006925A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/06Controlling the distribution of the light emitted by adjustment of elements by movement of refractors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • G03B15/03Combinations of cameras with lighting apparatus; Flash units
    • G03B15/05Combinations of cameras with electronic flash apparatus; Electronic flash units
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2215/00Special procedures for taking photographs; Apparatus therefor
    • G03B2215/05Combinations of cameras with electronic flash units
    • G03B2215/0589Diffusors, filters or refraction means
    • G03B2215/0592Diffusors, filters or refraction means installed in front of light emitter

Definitions

  • the present invention relates to a lighting device, and more particularly to a lighting device capable of changing an illumination range or a light projection range.
  • an illumination device that includes a light source and an optical lens and emits light emitted from the light source through the optical lens.
  • the focal length of the light emitted from the light source can be changed to change the light distribution angle (illumination range).
  • illumination light is irradiated to a predetermined range by changing the light distribution angle of light emitted from the light source to a narrow angle or a wide angle according to a required illumination effect. be able to.
  • Patent Document 2 In recent years, in this type of lighting device, it has been proposed to use a liquid lens called a so-called variable focus lens instead of an optical lens (see, for example, “Patent Document 2”).
  • the curvature of the liquid lens can be changed by applying a voltage or the like.
  • the focal length of the liquid lens can be changed within a certain range without moving the position of the liquid lens. For this reason, in the illuminating device described in Patent Document 2, it is not necessary to provide a movement control mechanism for moving and controlling (driving control) the position of the liquid lens, and the apparatus can be downsized.
  • the light source and the liquid lens may not be brought close to each other due to the influence of heat generated in the light source or mechanical limitations.
  • a liquid lens is used as the lens, it is expensive to manufacture a liquid lens having a large lens diameter.
  • the lens diameter of the liquid lens is increased, it becomes difficult to precisely control the liquid surface shape, and the lens performance may be deteriorated. Therefore, it is not preferable to increase the lens diameter.
  • an object of the present invention is to provide an illumination device that can employ a liquid lens having a small lens diameter and has high illumination efficiency.
  • An illumination device includes a light source, a converging lens unit having a positive refractive power, and a variable focus lens unit capable of changing a focal position in a state where the lens position is fixed, in the order, and the converging lens
  • the light beam diameter of the emitted light emitted from the light source is converged to be equal to or smaller than the lens diameter of the variable focus lens unit, and is incident on the variable focus lens unit.
  • a lens diameter of the variable focus lens unit is formed smaller than a lens diameter of the convergent lens unit.
  • an optical lens unit having a predetermined refractive power is provided on the downstream side of the optical path of the variable focus lens unit.
  • variable focus lens unit is a liquid lens that changes a focus position based on a focus position change signal input from the outside.
  • the focal position change signal is information regarding an imaging range input from the imaging device.
  • the light source, the converging lens unit, and the variable focal lens unit are provided in this order, and the converging lens unit converges the luminous flux diameter of the emitted light to be equal to or smaller than the lens diameter of the focal variable lens unit, Since the light is incident on the variable focus lens unit, the entire luminous flux of the emitted light emitted from the light source can be incident on the variable focus lens unit even if the lens diameter of the variable focus lens unit is small. Therefore, even when it is necessary to increase the separation distance between the light source and the variable focus lens unit due to the prevention of the influence of heat of the light source, mechanical restrictions, etc., the variable focus lens unit using a liquid lens with a small lens diameter It is possible to provide an illumination device with high illumination efficiency. In addition, even when the separation distance between the light source and the variable focus lens unit in each lighting device is different, the liquid lens or the like constituting the variable focus lens unit can be used as a common component, thereby reducing costs. Can be planned.
  • Illumination device 10 An example of a functional configuration of the illumination device 10 according to the present invention is shown in FIG.
  • the illumination device 10 according to the present embodiment includes a light source 11, a converging lens unit 12 having a positive refractive power, and a variable focus lens unit that can change a focal position while fixing the lens position. 13 in this order, and the convergent lens unit 12 converges the luminous flux diameter of the emitted light to be equal to or smaller than the lens diameter of the variable focus lens unit 13 and enters the variable focus lens unit 13. To do.
  • the illumination device 10 of the present embodiment includes an optical lens unit 14 having a predetermined refractive power on the downstream side of the optical path of the variable focus lens unit 13, and each of these optical system elements 10a.
  • the converging lens unit 12, the variable focus lens unit 13, and the optical lens unit 14 are arranged with a predetermined separation distance in order along the optical path of the light emitted from the light source 11.
  • the illumination device 10 of the present embodiment includes a focus position change signal input unit 15 and a control unit 16 as a control system element 10b for electrically controlling the variable focus lens unit 13. And.
  • the control system element 10b will be described.
  • Optical system element 10a (1) Light source 11
  • the light source 11 shown in FIG. 1 is not particularly limited as long as it can be used as the light source 11 of the lighting device 10, and in addition to a light emitting element such as a light emitting diode and an organic EL element, an incandescent bulb, a halogen bulb, and a fluorescent bulb.
  • a conventionally known light source 11 such as a lamp can be used.
  • These may be point light sources or surface light sources. Further, both the point light source and the surface light source can be configured using a plurality of light emitting elements and the like. These can select the suitable light source 11 suitably according to the use of the said illuminating device 10.
  • the converging lens unit 12 has a positive refractive power, and is configured using, for example, a lens having a positive refractive power such as a convex lens or a convex lens group or a lens group having a positive refractive power as a whole.
  • a lens having a positive refractive power such as a convex lens or a convex lens group or a lens group having a positive refractive power as a whole.
  • the converging lens unit 12 is configured by a lens group composed of a plurality of lenses, it is only necessary to show positive refractive power as the entire lens group, and the specific configuration is not limited.
  • the converging lens unit 12 condenses or converts the emitted light diffused and irradiated from the light source 11 into parallel light so that the diameter of the light beam is smaller than the lens diameter of the variable focus lens unit 13, and the variable focus lens unit 13. Any lens configuration may be used as long as it can enter the lens.
  • variable focus lens unit 13 is configured using a lens that can change the focal position of incident light with the lens position fixed.
  • a lens for example, a lens that changes the focal position of incident light by applying an electrical signal can be used. More specifically, a liquid lens that changes an interface shape according to a signal value or the like by applying an electrical signal or the like can be used.
  • changing the focal position refers to changing the focal length of the lens, and more specifically, moving the focal position back and forth along the optical axis.
  • the lens constituting the variable focus lens unit 13 for example, a circular thin film (including a thin plate; the same applies hereinafter) made of two elastically deformable transparent materials and a frame for supporting the thin film in parallel.
  • the liquid lens is composed of a body and a transparent liquid filled in the thin film, and the surface of the thin film is deformed into a concave shape or a convex shape by applying a voltage (hereinafter referred to as “first mode”
  • first mode The liquid lens can be used.
  • the focal position of the lens can be changed because the curvature of the thin film changes as the center position of the thin film moves along the lens axis.
  • silicone oil can be used as the transparent liquid filled in the thin film.
  • a liquid lens 20 shown in FIG. 2 includes an electrically conductive liquid (conductive liquid layer) 22 and an insulating liquid (insulating liquid layer) in a substantially cylindrical container 21 formed of a transparent material such as acrylic resin. ) 23.
  • conductive liquid layer electrically conductive liquid
  • insulating liquid layer insulating liquid layer
  • These liquids have different refractive indexes and do not mix with each other.
  • an aqueous solution containing an electrolyte or the like can be used as the conductive liquid, for example.
  • silicone oil can be used as the insulating liquid.
  • Electrodes 26 and 27 are provided on both sides of the container 21 in the thickness direction via the insulating member 24.
  • the interface between the conductive liquid layer 22 and the insulating liquid layer 23 exhibits a curved surface shape having a certain curvature.
  • the interface shape between the conductive liquid layer 22 and the insulating liquid layer 23 changes according to the applied voltage value due to a so-called electrowetting phenomenon.
  • the light source 11 emits the focal position of the light incident on the liquid lens 20 by moving the apex position of the interface (the position of the curved surface that protrudes in the most axial direction) along the central axis x. It can be moved back and forth along the optical axis of light. For example, in the illustrated example, the vertex position can be moved from a to a ′.
  • variable focus lens unit 13 may employ any of the above-described liquid lenses, but the lens diameter of the focus lens unit 13 is formed smaller than the lens diameter of the converging lens unit 12. Is preferred.
  • the lens diameter of the variable focus lens unit 13 refers to the lens diameter when the variable focus lens unit 13 is formed using one liquid lens as described above. Further, if the variable focus lens unit 13 is formed using a plurality of liquid lenses or the like, this indicates the maximum lens diameter (maximum lens diameter) of each lens.
  • the lens diameter of the converging lens unit 12 refers to the lens diameter when the converging lens unit 12 is formed using one optical lens, and the converging lens unit 12 includes a plurality of optical lenses. When formed using a lens or the like, the maximum lens diameter (maximum lens diameter) among the lens diameters of each optical lens or the like is indicated.
  • the optical lens unit 14 can be configured using a lens or a lens group having a predetermined refractive power.
  • the lens group is a lens group in which a plurality of lenses are arranged along the optical axis and have a predetermined refractive power when viewed as a whole lens group.
  • the predetermined refractive power means that the reciprocal of the focal length of the lens shows a predetermined value, and that the refractive power of the optical lens unit 14 does not change unlike the variable focus lens unit 13. .
  • the refractive power of the optical lens unit 14 may be either positive or negative, and may be selected according to the light distribution angle required for the illumination device 10 or the like. For example, when the optical lens unit 14 has a positive refractive power, that is, when it is configured as a convex lens, the light distribution angle (irradiation range) of light emitted from the illumination device 10 can be converged by the variable focus lens unit 13. It is possible to converge to a narrower range than a simple range.
  • the optical lens unit 14 when the optical lens unit 14 has negative refractive power, the irradiation range of the light irradiated from the illumination device 10 can be diffused to a wider range than the range that can be diffused by the variable focus lens unit 13. it can.
  • the optical lens unit 14 when it is necessary to converge light in a range narrower than the light distribution angle that can be changed by the variable focus lens unit 13, the optical lens unit 14 is configured using a lens or a lens group having a positive refractive power. It is preferable to do.
  • the optical lens unit 14 when it is necessary to scatter light over a wider range than the light distribution angle that can be changed by the variable focus lens unit 13, the optical lens unit 14 is configured using a lens or a lens group having a negative refractive power. It is preferable to do.
  • the focal length of the lens or lens group constituting the optical lens unit 14 is appropriately determined according to the light distribution angle required for the illumination device 10 and the focus position changeable range of the variable focus lens unit 13. You can choose the one with
  • the converging lens unit 12, the variable focus lens unit 13, and the optical lens unit 14 are each on the optical axis of the irradiation light of the light source 11. Are arranged in series along each other, and each position is fixed. The separation distances of the convergent lens unit 12, the variable focus lens unit 13, and the optical lens unit 14 with respect to the light source 11 are appropriately set appropriately according to the light distribution angle required for the illumination device 10, respectively. Positioned.
  • control system element 10b Next, the control system element 10b of the illuminating device 10 of this Embodiment is demonstrated in order of the focus position change signal input part 15 and the control part 16. FIG. However, in the present invention, these control system elements 10b are arbitrary components, and the lighting device 10 according to the present invention is not necessarily provided with these control system elements 10b.
  • Focus position change signal input unit 15 The focal position change signal input unit 15 inputs an instruction signal (hereinafter referred to as “focal position change signal”) for instructing the change of the focal position (focal length) of the variable focus lens unit 13 from the outside. It is an input device.
  • the focal position change signal input unit 15 is not particularly limited as long as it can input the focal position change signal in some form.
  • the focal position change signal input unit 15 can be configured as a controller of the illumination device 10 used by the user.
  • the controller includes an input unit for instructing the user to change the illumination range such as expansion or reduction of the illumination range of the illumination device 10, an input unit for instructing increase / decrease in the amount of illumination light, and the like. can do.
  • These instruction signals relating to expansion or reduction of the illumination range, increase / decrease in the amount of illumination light, etc. input from the user side can be used as the focal position change signal.
  • information regarding the imaging range can be used as the focal position change signal from the imaging device side.
  • the information relating to the imaging range includes various information relating to imaging such as information relating to the position and size (view angle) of the imaging range, information relating to the brightness of the imaging range, and the like.
  • the focal position change signal input unit 15 can be configured as a connection interface with the imaging device.
  • Control unit 16 The control unit 16 is electrically connected to the focal position change signal input unit 15, and receives the focal position change signal from the focal position change signal input unit 15.
  • the control unit 16 stores in advance association information in which various control signals to be output to the variable focus lens unit 13 are associated with various input focal position change signals.
  • a focus position change signal is input from the focus position change signal input unit 15 to the control unit 16
  • a predetermined control signal corresponding to the input focus position change signal is variable based on the association information.
  • the light source 11, the converging lens part 12, and the focus variable lens part 13 are provided in the said order, and the light beam diameter of emitted light is provided by the converging lens part 12. Since the light beam is converged to be equal to or smaller than the lens diameter of the variable focus lens unit 13 and is incident on the variable focus lens unit 13, the entire luminous flux of the emitted light emitted from the light source 11 is focused even when the variable diameter lens unit 13 has a small lens diameter. The light can enter the variable lens unit 13.
  • a liquid lens (with a small lens diameter) ( 20) can be used to configure the variable focus lens unit 13, and it is possible to provide the illumination device 10 with high illumination efficiency. Further, even if the distance between the light source 11 and the variable focus lens unit 13 is different in each lighting device 10, the diameter of the light beam incident on the variable focus lens unit 13 is adjusted by the converging lens unit 12. Therefore, the liquid lens 20 or the like constituting the variable focus lens unit 13 can be used as a common component, so that the cost can be reduced.
  • the illumination device 10 of the present embodiment has an optical lens unit 14 having a predetermined refractive power on the downstream side of the optical path of the variable focus lens unit 12.
  • the optical lens unit 14 can change the focal position in an optically wider range than the focal position that can be changed in the variable focus lens unit 13. Therefore, according to the illuminating device 10 of this Embodiment, compared with the case where a focus position is changed only by the focus variable lens part 13, the range which can change a light distribution angle (irradiation range) is optically expanded. Therefore, the illumination light can be diffused to a wider range or converged to a narrower range.
  • liquid lenses having different focal lengths and lens diameters for each small-lot product (illumination device 10), and the illumination device (100) that illuminates a wide range using one type of liquid lens, a narrow range
  • the liquid lens (20) having a small lens diameter can be used as a common component when manufacturing any of the lighting devices (100). Can be used.
  • the imaging device illumination device 30 is an imaging device illumination device 30 that irradiates illumination light into an imaging region by the above-described illumination device 10 according to the embodiment of the present invention.
  • the illumination range can be changed.
  • the configuration of the imaging device illumination device 30 may be the same as that of the illumination device 10 described above.
  • a signal for instructing increase / decrease in the amount of illumination light in the imaging region, enlargement / reduction of the illumination range, or the like is input as a focus position change signal via the focus position change signal input unit 15, and the response to these instruction signals
  • it is more preferable to change the illumination range by controlling the focal position of the variable focus lens unit 13 by the control unit 16.
  • the illumination device 10 of the present invention can form the variable focus lens unit 13 using a liquid lens having a small lens diameter.
  • the convergent lens unit 12 can cause the total luminous flux of the light emitted from the light source 11 to enter the variable focus lens unit 13. Therefore, by using the lighting device 10 as the imaging device lighting device 30, the lighting device 10 (30) can be reduced in weight and thickness.
  • the angle of view of the imaging device is different, such as a wide-angle system or a telephoto system, using one type of liquid lens, it is possible to irradiate light at a light distribution angle corresponding to each imaging field angle. It is not necessary to create a liquid lens having a different focal length and lens diameter for each small-lot product (illumination device 10), and the liquid lens can be used as a common component in either a wide-angle system or a telephoto system.
  • the illumination device 10 and the imaging device illumination device 30 of the present embodiment described above have been described as changing the focal position of light incident on the variable focus lens unit 13 mainly by electrical control.
  • the illumination device 10 and the imaging device illumination device 30 are not limited to the illumination device 10 and the imaging device illumination device 30 of the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. .
  • the control system element 10b (the focal position change signal input unit 15 and the control unit 16) shown in FIG. 1 is not an essential configuration in the illumination device 10 and the imaging device illumination device 30 of the present invention as described above.
  • the focus variable lens unit 13 has been described as performing focus position change control in accordance with the focus position change signal input from the focus position change signal input unit 15. Or according to the installation position of the said imaging device illumination device 30, you may set so that the focus position of the focus variable lens part 13 may become a predetermined position previously. Even in this case, the light distribution angle of the illumination device 10 or the imaging device illumination device 30 is changed according to the installation position or the like of the illumination device 10 or the imaging device illumination device 30. The illumination range and the like can be adjusted as appropriate.
  • the liquid lens that changes the curvature by a mechanical mechanism has the same configuration as the liquid lens of the first aspect, and is formed on the lens frame by rotating the lens frame.
  • the liquid contained between the thin films is exchanged with the liquid container, and the volume of the liquid between the thin films is changed, thereby deforming the surface shape of the thin film into a concave shape or a convex shape.
  • a liquid lens having a configuration in which the focal position is changed by such a mechanical mechanism can be preferably employed, and the focal position of the variable focus lens unit 13 may be manually changed.
  • the focus variable lens unit 13 has been described mainly using the liquid lens 20 that moves the focal position back and forth along the optical axis of the emitted light emitted from the light source 11 as an example.
  • the lighting device 10 according to the present invention is not limited to this.
  • the configuration of the electrodes 26 and 27 and the control of the voltage value applied between the electrodes 26 and 27 can be changed.
  • the vertex position of the interface between the conductive liquid layer 22 and the insulating liquid layer 23 can be moved to a position different from the central axis.
  • the optical axis direction of the light emitted from the light source 11 can be changed.
  • the light distribution direction of the illumination device 10 can be changed.
  • the light distribution direction can be changed within a wider area than the area where the light distribution direction can be changed by the variable focus lens unit 13.
  • FIG. 3 the structural example of the illuminating device 30 (10) of Example 1 is shown.
  • a point light source is employed as the light source 11 and a lens (convex lens) having a positive refractive power is employed as the converging lens unit 12.
  • the liquid lens 20 of the 2nd aspect mentioned above was used as the focus variable lens part 13, and these were arrange
  • FIG. 3A shows an example in which the variable focus lens unit 13 functions as a convex lens
  • FIG. 3B shows an example in which the variable focus lens unit 13 functions as a concave lens.
  • the dotted line indicates the optical path
  • the alternate long and short dash line indicates the optical axis (hereinafter the same applies to FIGS. 4 to 8).
  • the emitted light emitted from the light source 11 diffuses at a predetermined diffusion angle. If the converging lens unit 12 is not provided between the light source 11 and the variable focus lens unit 13, the luminous flux diameter of the emitted light increases as the distance from the light source 11 increases, and the variable focus lens unit 13 In order to make the total luminous flux of the emitted light incident, it is necessary to make the lens diameter much larger than the example shown in FIG. However, in the illuminating device 30 of the first embodiment, the converging lens unit 12 is provided between the light source 11 and the variable focus lens unit 13, and the light beam diameter of the emitted light is made incident on the liquid lens 20 by the converging lens unit 12.
  • the variable focus lens unit 13 can be configured. Further, the light distribution angle can be adjusted as shown in FIGS. 3A and 3B by changing the curvature of the variable focus lens unit 13 and appropriately changing the focal position.
  • FIG. 4 shows a configuration example of the illumination device 40 (10) of the second embodiment.
  • the illuminating device 40 of Example 2 is the same as the illuminating device 30 of Example 1 except that the optical lens unit 14 configured using a convex lens having positive refractive power is disposed on the downstream side of the optical path of the variable focus lens unit 13. Adopted the configuration.
  • a lens group having positive refractive power as a whole may be used instead of the convex lens.
  • the variable focus lens 13 when used as a convex lens, it has a positive refractive power downstream of the focal position of the variable focus lens 13 in the optical path.
  • An optical lens unit 14 is provided. Since the optical lens unit 14 has a positive refractive power, it can converge the incident light and narrow the light distribution angle. Therefore, when the variable focus lens unit 13 is used as a convex lens or a concave lens, the light distribution angle of the illumination device 40 can be narrowed as compared with the illumination device 30 of the first embodiment. That is, by providing the optical lens unit 14 having a positive refractive power, the illumination range of the illumination device 40 can be changed in a narrower range.
  • FIG. 5 shows a configuration example of the illumination device 50 (10) of the third embodiment.
  • the illumination device 50 according to the third embodiment is the same as the illumination device 30 according to the first embodiment except that the optical lens unit 14 configured using a concave lens having negative refractive power is disposed on the downstream side of the optical path of the variable focus lens unit 13. Adopted the configuration.
  • a lens group having negative refractive power as a whole may be used instead of the concave lens.
  • the illumination device 50 of Example 3 has the same configuration as that of the illumination device 40 of Example 2 except that the refractive power of the optical lens unit 14 is negative. Since the optical lens unit 14 has a negative refractive power, the light incident on the optical lens unit 14 diffuses. Therefore, as shown in FIGS. 5A and 5B, the illumination device is different from the illumination device 30 of Example 1 when the variable focus lens unit 13 is used as a convex lens or a concave lens. 10 light distribution angles can be expanded. That is, by providing the optical lens unit 14 having negative refractive power, the illumination range of the illumination device 50 can be changed in a wider range.
  • FIG. 6 shows a configuration example of the illumination device 60 (10) of the fourth embodiment.
  • the structure similar to the illuminating device 30 of Example 1 was employ
  • the convex lens may be replaced with one using two single-sided convex lenses so that the convex surfaces face each other.
  • the converging lens unit 12 is configured by a lens group including a convex lens and a concave lens, so that the light beam diameter of light incident on the variable focus lens unit 13 is compared with the illuminating device of the first embodiment. Can be slightly enlarged. Accordingly, as shown in FIGS. 6A and 6B, the light distribution angle different from that of the illumination device 30 of the first embodiment is used regardless of whether the variable focus lens unit 13 is used as a convex lens or a concave lens. Light can be irradiated.
  • the illuminating device 70 of Example 5 shown in FIG. 7 has the same configuration as that of the illuminating device 40 of Example 2, and includes an optical lens unit 14 having positive refractive power on the downstream side of the optical path of the variable focus lens unit 13. ing.
  • the illuminating device 70 of Example 5 after converging the emitted light emitted from the light source 11 by the converging lens unit 12 so that the focal point is located between the converging lens unit 12 and the variable focus lens unit 13, Diffused light that has been diffused again is incident on the variable focus lens unit 13. For this reason, illumination light can be irradiated at a different light distribution angle from the illumination device 10 of the second embodiment.
  • the illuminating device 80 of Example 6 shown in FIG. 8 has the same configuration as the illuminating device 50 of Example 3, and includes an optical lens unit 14 having negative refractive power on the downstream side of the optical path of the variable focus lens unit 13. ing.
  • the focal point of the outgoing light emitted from the light source 11 by the converging lens unit 12 is positioned between the converging lens unit 12 and the variable focus lens unit 13 in the same manner as in Example 5.
  • the diffused light diffused again is made incident on the variable focus lens unit 13. For this reason, illumination light can be irradiated at a light distribution angle different from that of the illumination device 50 of the third embodiment.
  • the converging lens unit 12 and the optical lens unit are used as a common component, the converging lens unit 12 and the optical lens unit.
  • the refractive power of 14 it becomes possible to irradiate light at various light distribution angles as shown in FIGS.
  • the light source, the converging lens unit, and the variable focal lens unit are provided in this order, and the converging lens unit converges the luminous flux diameter of the emitted light to be equal to or smaller than the lens diameter of the focal variable lens unit, Since the light is incident on the variable focus lens unit, the entire luminous flux of the emitted light emitted from the light source can be incident on the variable focus lens unit even if the lens diameter of the variable focus lens unit is small. Therefore, even when it is necessary to increase the separation distance between the light source and the variable focus lens unit due to the prevention of the influence of heat of the light source, mechanical restrictions, etc., the variable focus lens unit using a liquid lens with a small lens diameter It is possible to provide an illumination device with high illumination efficiency. In addition, even when the separation distance between the light source and the variable focus lens unit in each lighting device is different, the liquid lens or the like constituting the variable focus lens unit can be used as a common component, thereby reducing costs. You can plan.

Abstract

The present invention addresses the problem of providing a lighting device that is capable of using a liquid lens with a small diameter, and that has high lighting efficiency. In order to solve this problem, the present invention provides a lighting device that is characterized by being provided with a light source (11), a converging lens (12) having a positive refractive power, and a variable focus lens (13) wherein the focus position can be changed with the lens position in a fixed state, in that order. The lighting device is further characterized in that the converging lens (12) causes the beam diameter of emitted light that is emitted from the light source (11) to converge to the diameter of the variable focus lens (13) or less, and causes the beam to enter the variable focus lens (13).

Description

照明装置Lighting device
 本件発明は、照明装置に関し、特に照明範囲又は投光範囲を変更化可能な照明装置に関する。 The present invention relates to a lighting device, and more particularly to a lighting device capable of changing an illumination range or a light projection range.
 従来より、光源と、光学レンズとを備え、光源から照射された光を光学レンズを介して出射する照明装置が知られている。このような照明装置の中には、光源と光学レンズとの間の距離を変化させることにより、光源から出射された光の焦点距離を変化させて、配光角度(照明範囲)を変更可能にしたものがある(例えば、「特許文献1」参照。)。特許文献1に記載の照明装置によれば、要求される照明効果に応じて、光源から出射された光の配光角度を狭角又は広角に変化させて、照明光を所定の範囲に照射することができる。 2. Description of the Related Art Conventionally, there is known an illumination device that includes a light source and an optical lens and emits light emitted from the light source through the optical lens. In such an illuminating device, by changing the distance between the light source and the optical lens, the focal length of the light emitted from the light source can be changed to change the light distribution angle (illumination range). (For example, refer to “Patent Document 1”). According to the illumination device described in Patent Document 1, illumination light is irradiated to a predetermined range by changing the light distribution angle of light emitted from the light source to a narrow angle or a wide angle according to a required illumination effect. be able to.
 この種の照明装置では、近年、光学レンズの代わりに、いわゆる焦点可変レンズと称される液体レンズを用いることが提案されている(例えば、「特許文献2」参照。)。液体レンズは、電圧を印加する等により、その曲率を変化させることができる。液体レンズを採用することにより、液体レンズの位置を移動させることなく、液体レンズの焦点距離を一定の範囲内で変化させることができる。このため、特許文献2に記載の照明装置では、液体レンズの位置を移動制御(駆動制御)するための移動制御機構を設ける必要がなく、装置の小型化を図ることができる。 In recent years, in this type of lighting device, it has been proposed to use a liquid lens called a so-called variable focus lens instead of an optical lens (see, for example, “Patent Document 2”). The curvature of the liquid lens can be changed by applying a voltage or the like. By adopting the liquid lens, the focal length of the liquid lens can be changed within a certain range without moving the position of the liquid lens. For this reason, in the illuminating device described in Patent Document 2, it is not necessary to provide a movement control mechanism for moving and controlling (driving control) the position of the liquid lens, and the apparatus can be downsized.
特開2004-355934号公報JP 2004-355934 A 特開2009-54491号公報JP 2009-54491 A
 しかしながら、光源において発生する熱の影響や、機械的な制限等により、光源と液体レンズとを近接させることができない場合がある。照明効率の高い照明装置を実現するには、光源から照射された全光束をレンズに入射させる必要がある。このため、光源と液体レンズとの離間距離が大きくなるにつれ、レンズ径の大きなレンズを用いる必要がある。しかしながら、レンズとして、液体レンズを用いる場合、レンズ径の大きな液体レンズを製造するには、コストを要する。また、液体レンズのレンズ径を大きくすると、液面形状を精密に制御するのが困難になり、レンズ性能が劣化する場合がある。従って、レンズ径を大きくすることは好ましくない。 However, the light source and the liquid lens may not be brought close to each other due to the influence of heat generated in the light source or mechanical limitations. In order to realize an illumination device with high illumination efficiency, it is necessary to make the total luminous flux emitted from the light source enter the lens. For this reason, it is necessary to use a lens having a large lens diameter as the distance between the light source and the liquid lens increases. However, when a liquid lens is used as the lens, it is expensive to manufacture a liquid lens having a large lens diameter. Further, when the lens diameter of the liquid lens is increased, it becomes difficult to precisely control the liquid surface shape, and the lens performance may be deteriorated. Therefore, it is not preferable to increase the lens diameter.
 そこで、本件発明の課題は、レンズ径の小さな液体レンズを採用することができ、且つ、照明効率の高い照明装置を提供することにある。 Therefore, an object of the present invention is to provide an illumination device that can employ a liquid lens having a small lens diameter and has high illumination efficiency.
 そこで、本発明者等は、鋭意研究を行った結果、以下の構成を採用することで上記課題を解決するに到った。 Thus, as a result of intensive studies, the present inventors have solved the above problems by adopting the following configuration.
 本件発明に係る照明装置は、光源と、正の屈折力を有する収束レンズ部と、レンズ位置を固定した状態で焦点位置を変化可能な焦点可変レンズ部とを、当該順序で備え、当該収束レンズ部により、光源から出射された出射光の光束径を当該焦点可変レンズ部のレンズ径以下に収束させて、当該焦点可変レンズ部に入射させることを特徴とする。 An illumination device according to the present invention includes a light source, a converging lens unit having a positive refractive power, and a variable focus lens unit capable of changing a focal position in a state where the lens position is fixed, in the order, and the converging lens The light beam diameter of the emitted light emitted from the light source is converged to be equal to or smaller than the lens diameter of the variable focus lens unit, and is incident on the variable focus lens unit.
 本件発明に係る照明装置において、前記焦点可変レンズ部のレンズ径は、前記収束レンズ部のレンズ径よりも小さく形成されたものであることが好ましい。 In the illumination device according to the present invention, it is preferable that a lens diameter of the variable focus lens unit is formed smaller than a lens diameter of the convergent lens unit.
 本件発明に係る照明装置において、前記焦点可変レンズ部の光路下流側に、所定の屈折力を有する光学レンズ部を備えることが好ましい。 In the illumination apparatus according to the present invention, it is preferable that an optical lens unit having a predetermined refractive power is provided on the downstream side of the optical path of the variable focus lens unit.
 本件発明に係る照明装置において、前記焦点可変レンズ部は、外部から入力される焦点位置変更信号に基づいて焦点位置を変化させる液体レンズであることが好ましい。 In the illumination device according to the present invention, it is preferable that the variable focus lens unit is a liquid lens that changes a focus position based on a focus position change signal input from the outside.
 本件発明に係る照明装置において、前記焦点位置変更信号は、撮像装置から入力される撮像範囲に関する情報であることが好ましい。 In the illumination device according to the present invention, it is preferable that the focal position change signal is information regarding an imaging range input from the imaging device.
 本件発明によれば、光源と、収束レンズ部と、焦点可変レンズ部とを、当該順序で備え、収束レンズ部により、出射光の光束径を焦点可変レンズ部のレンズ径以下に収束させて、焦点可変レンズ部に入射させるため、焦点可変レンズ部のレンズ径が小さくても、光源から照射された出射光の全光束を焦点可変レンズ部に入射させることができる。従って、光源の熱の影響の防止、機械的な制約等により、光源と焦点可変レンズ部との間の離間距離を空ける必要がある場合でも、レンズ径の小さな液体レンズを用いて焦点可変レンズ部を構成することができ、且つ、照明効率の高い照明装置を提供することができる。また、個々の照明装置における光源と焦点可変レンズ部との間の離間距離が異なる場合であっても、焦点可変レンズ部を構成する液体レンズ等を共通部品として用いることができるため、コスト低減を図ることができる。 According to the present invention, the light source, the converging lens unit, and the variable focal lens unit are provided in this order, and the converging lens unit converges the luminous flux diameter of the emitted light to be equal to or smaller than the lens diameter of the focal variable lens unit, Since the light is incident on the variable focus lens unit, the entire luminous flux of the emitted light emitted from the light source can be incident on the variable focus lens unit even if the lens diameter of the variable focus lens unit is small. Therefore, even when it is necessary to increase the separation distance between the light source and the variable focus lens unit due to the prevention of the influence of heat of the light source, mechanical restrictions, etc., the variable focus lens unit using a liquid lens with a small lens diameter It is possible to provide an illumination device with high illumination efficiency. In addition, even when the separation distance between the light source and the variable focus lens unit in each lighting device is different, the liquid lens or the like constituting the variable focus lens unit can be used as a common component, thereby reducing costs. Can be planned.
本件発明に係る照明装置の機能的構成の一例を示すブロック図である。It is a block diagram which shows an example of a functional structure of the illuminating device which concerns on this invention. 液体レンズの一例を示す模式図である。It is a schematic diagram which shows an example of a liquid lens. 本件発明に係る照明装置の具体的構成例(実施例1)を示す模式図である。It is a schematic diagram which shows the specific structural example (Example 1) of the illuminating device which concerns on this invention. 本件発明に係る照明装置の具体的構成例(実施例2)を示す模式図である。It is a schematic diagram which shows the specific structural example (Example 2) of the illuminating device which concerns on this invention. 本件発明に係る照明装置の具体的構成例(実施例3)を示す模式図である。It is a schematic diagram which shows the specific structural example (Example 3) of the illuminating device which concerns on this invention. 本件発明に係る照明装置の具体的構成例(実施例4)を示す模式図である。It is a schematic diagram which shows the specific structural example (Example 4) of the illuminating device which concerns on this invention. 本件発明に係る照明装置の具体的構成例(実施例5)を示す模式図である。It is a schematic diagram which shows the specific structural example (Example 5) of the illuminating device which concerns on this invention. 本件発明に係る照明装置の具体的構成例(実施例6)を示す模式図である。It is a schematic diagram which shows the specific structural example (Example 6) of the illuminating device which concerns on this invention.
 以下、図面を参照して、本発明に係る照明装置の好ましい実施の形態を説明する。まず、照明装置の実施の形態を説明する。 Hereinafter, a preferred embodiment of a lighting device according to the present invention will be described with reference to the drawings. First, an embodiment of a lighting device will be described.
1.照明装置10
 本件発明に係る照明装置10の機能的構成の一例を図1に示す。図1に示すように、本実施の形態の照明装置10は、光源11と、正の屈折力を有する収束レンズ部12と、レンズ位置を固定した状態で焦点位置を変化可能な焦点可変レンズ部13とを、当該順序で備え、当該収束レンズ部12により、出射光の光束径を当該焦点可変レンズ部13のレンズ径以下に収束させて、当該焦点可変レンズ部13に入射させることを特徴とする。
1. Illumination device 10
An example of a functional configuration of the illumination device 10 according to the present invention is shown in FIG. As shown in FIG. 1, the illumination device 10 according to the present embodiment includes a light source 11, a converging lens unit 12 having a positive refractive power, and a variable focus lens unit that can change a focal position while fixing the lens position. 13 in this order, and the convergent lens unit 12 converges the luminous flux diameter of the emitted light to be equal to or smaller than the lens diameter of the variable focus lens unit 13 and enters the variable focus lens unit 13. To do.
 また、本実施の形態の照明装置10は、図1に示すように、焦点可変レンズ部13の光路下流側に、所定の屈折力を有する光学レンズ部14を備え、これらの各光学系要素10a(収束レンズ部12、焦点可変レンズ部13、光学レンズ部14)は光源11からの出射光の光路に沿って順に所定の離間距離を空けて配置される。本実施の形態の照明装置10は、これらの光学系要素10aの他、焦点可変レンズ部13を電気的に制御するための制御系要素10bとして、焦点位置変更信号入力部15と、制御部16とを備えている。以下、光学系要素10aについて説明した後に、制御系要素10bについて説明する。 Further, as shown in FIG. 1, the illumination device 10 of the present embodiment includes an optical lens unit 14 having a predetermined refractive power on the downstream side of the optical path of the variable focus lens unit 13, and each of these optical system elements 10a. The converging lens unit 12, the variable focus lens unit 13, and the optical lens unit 14 are arranged with a predetermined separation distance in order along the optical path of the light emitted from the light source 11. In addition to these optical system elements 10a, the illumination device 10 of the present embodiment includes a focus position change signal input unit 15 and a control unit 16 as a control system element 10b for electrically controlling the variable focus lens unit 13. And. Hereinafter, after describing the optical system element 10a, the control system element 10b will be described.
1-1.光学系要素10a
(1)光源11
 図1に示す光源11は、照明装置10の光源11として利用可能なものであれば特に限定されるものではなく、発光ダイオード、有機EL素子等の発光素子の他、白熱電球、ハロゲン電球、蛍光灯などの従来公知の光源11を用いて構成することができる。また、これらは点光源であってもよく、面光源であってもよい。また、点光源及び面光源のいずれについても複数の発光素子等を用いて構成することができる。これらは、当該照明装置10の用途に応じて、適宜、適切な光源11を選択することができる。
1-1. Optical system element 10a
(1) Light source 11
The light source 11 shown in FIG. 1 is not particularly limited as long as it can be used as the light source 11 of the lighting device 10, and in addition to a light emitting element such as a light emitting diode and an organic EL element, an incandescent bulb, a halogen bulb, and a fluorescent bulb. A conventionally known light source 11 such as a lamp can be used. These may be point light sources or surface light sources. Further, both the point light source and the surface light source can be configured using a plurality of light emitting elements and the like. These can select the suitable light source 11 suitably according to the use of the said illuminating device 10. FIG.
(2)収束レンズ部12
 収束レンズ部12は、上述したとおり、正の屈折力を有し、例えば、凸レンズ又は凸レンズ群等の正の屈折力を有するレンズ又は全体として正の屈折力を有するレンズ群を用いて構成される。複数枚のレンズから成るレンズ群により、収束レンズ部12を構成する場合には、レンズ群全体として正の屈折力を示せばよく、その具体的な構成が限定されるものではない。すなわち、収束レンズ部12は、光源11から拡散照射された出射光を集光、或いは平行光に変換して、焦点可変レンズ部13のレンズ径よりも小さな光束径にして、焦点可変レンズ部13に入射させることができれば、どのようなレンズ構成であってもよい。
(2) Converging lens unit 12
As described above, the converging lens unit 12 has a positive refractive power, and is configured using, for example, a lens having a positive refractive power such as a convex lens or a convex lens group or a lens group having a positive refractive power as a whole. . When the converging lens unit 12 is configured by a lens group composed of a plurality of lenses, it is only necessary to show positive refractive power as the entire lens group, and the specific configuration is not limited. That is, the converging lens unit 12 condenses or converts the emitted light diffused and irradiated from the light source 11 into parallel light so that the diameter of the light beam is smaller than the lens diameter of the variable focus lens unit 13, and the variable focus lens unit 13. Any lens configuration may be used as long as it can enter the lens.
(3)焦点可変レンズ部13
 焦点可変レンズ部13は、レンズ位置を固定した状態で入射した光の焦点位置を変化可能なレンズを用いて構成される。このようなレンズとして、例えば、電気的な信号を与えることにより、入射した光の焦点位置を変化させるレンズを用いることができる。より具体的には、電気的な信号等を与えることにより、信号値等に応じて界面形状を変化させる液体レンズを用いることができる。このような液体レンズを用いることにより、焦点可変レンズ部13に入射する光の焦点位置を変化させることができ、光源11から出射された光の配光角度を変化させることができる。
 但し、本実施の形態において、焦点位置を変化させるとは、当該レンズの焦点距離を変化させることを指し、より具体的には光軸に沿って焦点位置を前後に移動させることを指す。
(3) Variable focus lens unit 13
The variable focus lens unit 13 is configured using a lens that can change the focal position of incident light with the lens position fixed. As such a lens, for example, a lens that changes the focal position of incident light by applying an electrical signal can be used. More specifically, a liquid lens that changes an interface shape according to a signal value or the like by applying an electrical signal or the like can be used. By using such a liquid lens, the focal position of the light incident on the variable focus lens unit 13 can be changed, and the light distribution angle of the light emitted from the light source 11 can be changed.
However, in the present embodiment, changing the focal position refers to changing the focal length of the lens, and more specifically, moving the focal position back and forth along the optical axis.
 焦点可変レンズ部13を構成する一例のレンズとして、例えば、弾性変形可能な2枚の透明材料からなる円形の薄膜(但し、薄板を含む。以下同じ。)と、この薄膜を平行に支持する枠体と、薄膜の内部に充填される透明な液体等とから構成され、電圧を印加することにより、当該薄膜表面が凹状又は凸状に変形する液体レンズ(以下、便宜的に「第一の態様の液体レンズ」と称する。)を用いることができる。このような構成のレンズを用いた場合、当該薄膜の中心位置がレンズ軸に沿って移動することにより薄膜の曲率が変化するため、当該レンズの焦点位置を変化させることができる。なお、薄膜の内部に充填される透明な液体として、例えば、シリコーンオイルを用いることができる。 As an example of the lens constituting the variable focus lens unit 13, for example, a circular thin film (including a thin plate; the same applies hereinafter) made of two elastically deformable transparent materials and a frame for supporting the thin film in parallel. The liquid lens is composed of a body and a transparent liquid filled in the thin film, and the surface of the thin film is deformed into a concave shape or a convex shape by applying a voltage (hereinafter referred to as “first mode” The liquid lens can be used. When the lens having such a configuration is used, the focal position of the lens can be changed because the curvature of the thin film changes as the center position of the thin film moves along the lens axis. For example, silicone oil can be used as the transparent liquid filled in the thin film.
 また、焦点可変レンズ部13を構成する他の例のレンズとして、2種の液体が収容された図2に示す構成を有する液体レンズ20(以下、便宜的に「第二の態様の液体レンズ」と称する。)を採用してもよい。図2に示す液体レンズ20は、アクリル樹脂等の透明材料で形成された略円筒形の容器21内に導電性を有する液体(導電性液体層)22と絶縁性を有する液体(絶縁性液体層)23とが収容されている。これらの液体は異なる屈折率を有し、互いに混じり合うことがないものを用いる。なお、導電性を有する液体として、例えば、電解質等を含む水溶液を用いることができる。また、絶縁性の液体として、例えば、シリコーンオイルを用いることができる。当該容器21の底面21a(円形状の面)に垂直であり、且つ底面21aの中心を通る中心線を当該レンズの中心軸xとした場合、この中心軸xに沿って導電性液体層22と絶縁性液体層23とが積層されている。容器21内の絶縁性液体層23が配置される側には所定の傾斜を有する絶縁部材24が設けられている。この絶縁部材24と内周壁面との間の距離は、導電性液体層22側から絶縁性液体層23側に向かうにつれて大きくなり、容器21内には当該絶縁部材24により、断面テーパー状の凹部25が形成されている。絶縁部材24を介して、当該容器21の厚み方向の両側には電極26、27が設けられている。電極26、27間に電圧が印加されていない場合、導電性液体層22と絶縁性液体層23との間の界面は、一定の曲率を有する曲面形状を呈する。そして、電極26、27間に電圧を印加した場合、印加された電圧値に応じて、いわゆるエレクトロウェッティング現象により、導電性液体層22と絶縁性液体層23との界面形状が変化する。このとき、上記中心軸xに沿って、当該界面の頂点位置(当該曲面の最も軸方向に突出する位置)を移動させることにより、当該液体レンズ20に入射した光の焦点位置を光源11の照射光の光軸に沿って前後に移動させることができる。例えば、図示例では、頂点位置をaからa’の位置まで移動させることができる。 Further, as another example of the lens constituting the variable focus lens unit 13, the liquid lens 20 having the structure shown in FIG. 2 in which two kinds of liquids are accommodated (hereinafter referred to as “liquid lens of the second aspect” for convenience). May be adopted. A liquid lens 20 shown in FIG. 2 includes an electrically conductive liquid (conductive liquid layer) 22 and an insulating liquid (insulating liquid layer) in a substantially cylindrical container 21 formed of a transparent material such as acrylic resin. ) 23. These liquids have different refractive indexes and do not mix with each other. Note that an aqueous solution containing an electrolyte or the like can be used as the conductive liquid, for example. For example, silicone oil can be used as the insulating liquid. When a central line that is perpendicular to the bottom surface 21a (circular surface) of the container 21 and passes through the center of the bottom surface 21a is the central axis x of the lens, the conductive liquid layer 22 and the central axis x An insulating liquid layer 23 is laminated. An insulating member 24 having a predetermined inclination is provided on the side of the container 21 where the insulating liquid layer 23 is disposed. The distance between the insulating member 24 and the inner peripheral wall surface increases from the conductive liquid layer 22 side toward the insulating liquid layer 23 side, and a concave portion having a tapered cross section is formed in the container 21 by the insulating member 24. 25 is formed. Electrodes 26 and 27 are provided on both sides of the container 21 in the thickness direction via the insulating member 24. When no voltage is applied between the electrodes 26 and 27, the interface between the conductive liquid layer 22 and the insulating liquid layer 23 exhibits a curved surface shape having a certain curvature. When a voltage is applied between the electrodes 26 and 27, the interface shape between the conductive liquid layer 22 and the insulating liquid layer 23 changes according to the applied voltage value due to a so-called electrowetting phenomenon. At this time, the light source 11 emits the focal position of the light incident on the liquid lens 20 by moving the apex position of the interface (the position of the curved surface that protrudes in the most axial direction) along the central axis x. It can be moved back and forth along the optical axis of light. For example, in the illustrated example, the vertex position can be moved from a to a ′.
 ここで、焦点可変レンズ部13は上記いずれの態様の液体レンズを採用してもよいが、焦点レンズ部13のレンズ径は、収束レンズ部12のレンズ径よりも小さく形成されたものであることが好ましい。但し、焦点可変レンズ部13のレンズ径とは、当該焦点可変レンズ部13が上述した様に1つの液体レンズを用いて形成される場合には、そのレンズ径を指す。また、仮に、当該焦点可変レンズ部13が複数の液体レンズ等を用いて形成される場合には、各レンズのレンズ径のうち最大のもの(最大レンズ径)を指す。同様に、収束レンズ部12のレンズ径とは、当該収束レンズ部12が1枚の光学レンズを用いて形成される場合には、そのレンズ径を指し、当該収束レンズ部12が複数枚の光学レンズ等を用いて形成される場合には、各光学レンズ等のレンズ径のうち最大のもの(最大レンズ径)を指す。 Here, the variable focus lens unit 13 may employ any of the above-described liquid lenses, but the lens diameter of the focus lens unit 13 is formed smaller than the lens diameter of the converging lens unit 12. Is preferred. However, the lens diameter of the variable focus lens unit 13 refers to the lens diameter when the variable focus lens unit 13 is formed using one liquid lens as described above. Further, if the variable focus lens unit 13 is formed using a plurality of liquid lenses or the like, this indicates the maximum lens diameter (maximum lens diameter) of each lens. Similarly, the lens diameter of the converging lens unit 12 refers to the lens diameter when the converging lens unit 12 is formed using one optical lens, and the converging lens unit 12 includes a plurality of optical lenses. When formed using a lens or the like, the maximum lens diameter (maximum lens diameter) among the lens diameters of each optical lens or the like is indicated.
(4)光学レンズ部14
 次に、光学レンズ部14について説明する。光学レンズ部14は、所定の屈折力を有するレンズ又はレンズ群を用いて構成することができる。なお、レンズ群とは複数枚のレンズが光軸に沿って配置され、レンズ群全体でみたときに所定の屈折力を有するものをいう。
(4) Optical lens unit 14
Next, the optical lens unit 14 will be described. The optical lens unit 14 can be configured using a lens or a lens group having a predetermined refractive power. The lens group is a lens group in which a plurality of lenses are arranged along the optical axis and have a predetermined refractive power when viewed as a whole lens group.
 ここで、上記所定の屈折力とは、当該レンズの焦点距離の逆数が所定の値を示すことを指し、焦点可変レンズ部13とは異なり当該光学レンズ部14の屈折力が変化しないことを指す。光学レンズ部14の屈折力は、正及び負のいずれであってもよく、当該照明装置10に要求される配光角度等に応じて、いずれかを選択すればよい。例えば、光学レンズ部14が正の屈折力を有する場合、すなわち凸レンズとして構成される場合、当該照明装置10から照射される光の配光角度(照射範囲)を、焦点可変レンズ部13により収束可能な範囲よりも、より狭い範囲に収束することができる。一方、光学レンズ部14が負の屈折力を有する場合、当該照明装置10から照射される光の照射範囲を、焦点可変レンズ部13により拡散可能な範囲よりも、より広い範囲まで拡散させることができる。換言すると、焦点可変レンズ部13により変更可能な配光角度よりも狭い範囲に光を収束させる必要がある場合には、正の屈折力を有するレンズ又はレンズ群を用いて光学レンズ部14を構成することが好ましい。一方、焦点可変レンズ部13により変更可能な配光角度よりもより広い範囲に光を散乱させる必要がある場合には、光学レンズ部14を負の屈折力を有するレンズ又はレンズ群を用いて構成することが好ましい。また、光学レンズ部14を構成するレンズ又はレンズ群の焦点距離は、当該照明装置10に要求される配光角度と、焦点可変レンズ部13の焦点位置変化可能範囲とに応じて、適宜、適切な値のものを選択することができる。 Here, the predetermined refractive power means that the reciprocal of the focal length of the lens shows a predetermined value, and that the refractive power of the optical lens unit 14 does not change unlike the variable focus lens unit 13. . The refractive power of the optical lens unit 14 may be either positive or negative, and may be selected according to the light distribution angle required for the illumination device 10 or the like. For example, when the optical lens unit 14 has a positive refractive power, that is, when it is configured as a convex lens, the light distribution angle (irradiation range) of light emitted from the illumination device 10 can be converged by the variable focus lens unit 13. It is possible to converge to a narrower range than a simple range. On the other hand, when the optical lens unit 14 has negative refractive power, the irradiation range of the light irradiated from the illumination device 10 can be diffused to a wider range than the range that can be diffused by the variable focus lens unit 13. it can. In other words, when it is necessary to converge light in a range narrower than the light distribution angle that can be changed by the variable focus lens unit 13, the optical lens unit 14 is configured using a lens or a lens group having a positive refractive power. It is preferable to do. On the other hand, when it is necessary to scatter light over a wider range than the light distribution angle that can be changed by the variable focus lens unit 13, the optical lens unit 14 is configured using a lens or a lens group having a negative refractive power. It is preferable to do. The focal length of the lens or lens group constituting the optical lens unit 14 is appropriately determined according to the light distribution angle required for the illumination device 10 and the focus position changeable range of the variable focus lens unit 13. You can choose the one with the right value.
(5)光学系要素10aの配置
 本実施の形態の照明装置10では、上述したとおり、収束レンズ部12、焦点可変レンズ部13、光学レンズ部14は、それぞれ光源11の照射光の光軸に沿って直列に配置されており、それぞれの位置は固定される。光源11に対する、収束レンズ部12、焦点可変レンズ部13及び光学レンズ部14の離間距離は、それぞれ当該照明装置10に要求される配光角度等に応じて、適宜、適切な距離となるように位置決めされる。
(5) Arrangement of Optical System Element 10a In the illumination device 10 of the present embodiment, as described above, the converging lens unit 12, the variable focus lens unit 13, and the optical lens unit 14 are each on the optical axis of the irradiation light of the light source 11. Are arranged in series along each other, and each position is fixed. The separation distances of the convergent lens unit 12, the variable focus lens unit 13, and the optical lens unit 14 with respect to the light source 11 are appropriately set appropriately according to the light distribution angle required for the illumination device 10, respectively. Positioned.
1-2.制御系要素10b
 次に、本実施の形態の照明装置10の制御系要素10bについて、焦点位置変更信号入力部15、制御部16の順に説明する。但し、本件発明において、これらの制御系要素10bは任意の構成要素であり、本件発明に係る照明装置10がこれらの制御系要素10bを必ずしも備える必要はない。
1-2. Control system element 10b
Next, the control system element 10b of the illuminating device 10 of this Embodiment is demonstrated in order of the focus position change signal input part 15 and the control part 16. FIG. However, in the present invention, these control system elements 10b are arbitrary components, and the lighting device 10 according to the present invention is not necessarily provided with these control system elements 10b.
(1)焦点位置変更信号入力部15
 焦点位置変更信号入力部15は、外部から焦点可変レンズ部13の焦点位置(焦点距離)の変更を指示するための指示信号(以下、「焦点位置変更信号」と称する。)を入力するための入力装置である。焦点位置変更信号入力部15は、何らかの形態で焦点位置変更信号を入力することのできる構成であれば、特に限定されるものではない。例えば、当該焦点位置変更信号入力部15をユーザが使用する照明装置10のコントローラとして構成することができる。この場合、当該コントローラは、ユーザから当該照明装置10の照明範囲の拡大又は縮小等の照明範囲の変更を指示するための入力部、照明光量の増減を指示するための入力部などを備える構成とすることができる。ユーザ側から入力される、照明範囲の拡大又は縮小、照明光量の増減などに関するこれらの指示信号を上記焦点位置変更信号として用いることができる。また、例えば、当該照明装置10を撮像装置の撮像範囲に光を照射するために用いる場合には、撮像装置側から撮像範囲に関する情報を当該焦点位置変更信号とすることができる。但し、撮像範囲に関する情報とは、撮像範囲の位置や大きさ(画角)等に関する情報、或いは、撮像範囲の明るさに関する情報等、撮像に関する種々の情報を含む。また、照明装置10が撮像装置から撮像範囲に関する情報の入力を受け付ける場合、当該焦点位置変更信号入力部15は、撮像装置との接続インターフェースとして構成とすることができる。
(1) Focus position change signal input unit 15
The focal position change signal input unit 15 inputs an instruction signal (hereinafter referred to as “focal position change signal”) for instructing the change of the focal position (focal length) of the variable focus lens unit 13 from the outside. It is an input device. The focal position change signal input unit 15 is not particularly limited as long as it can input the focal position change signal in some form. For example, the focal position change signal input unit 15 can be configured as a controller of the illumination device 10 used by the user. In this case, the controller includes an input unit for instructing the user to change the illumination range such as expansion or reduction of the illumination range of the illumination device 10, an input unit for instructing increase / decrease in the amount of illumination light, and the like. can do. These instruction signals relating to expansion or reduction of the illumination range, increase / decrease in the amount of illumination light, etc. input from the user side can be used as the focal position change signal. Further, for example, when the illumination device 10 is used for irradiating light to the imaging range of the imaging device, information regarding the imaging range can be used as the focal position change signal from the imaging device side. However, the information relating to the imaging range includes various information relating to imaging such as information relating to the position and size (view angle) of the imaging range, information relating to the brightness of the imaging range, and the like. Further, when the illumination device 10 receives input of information regarding the imaging range from the imaging device, the focal position change signal input unit 15 can be configured as a connection interface with the imaging device.
(2)制御部16
 制御部16は、焦点位置変更信号入力部15と電気的に接続されており、焦点位置変更信号入力部15から焦点位置変更信号が入力される。制御部16には、予め、入力される各種の焦点位置変更信号に対して、焦点可変レンズ部13に出力すべきそれぞれの制御信号を対応付けた対応付け情報が記憶されている。制御部16に対して、焦点位置変更信号入力部15から焦点位置変更信号が入力された場合、当該対応付け情報に基づいて、入力された焦点位置変更信号に応じた所定の制御信号を焦点可変レンズ部13に出力し、焦点可変レンズ部13の焦点距離を変化させる。例えば、焦点可変レンズ部13が印加された電圧値に応じて、焦点距離を変化させるものである場合、制御部16は入力された焦点位置変更信号に応じた電圧値の電圧が焦点可変レンズ部13に印加されるように制御する。
(2) Control unit 16
The control unit 16 is electrically connected to the focal position change signal input unit 15, and receives the focal position change signal from the focal position change signal input unit 15. The control unit 16 stores in advance association information in which various control signals to be output to the variable focus lens unit 13 are associated with various input focal position change signals. When a focus position change signal is input from the focus position change signal input unit 15 to the control unit 16, a predetermined control signal corresponding to the input focus position change signal is variable based on the association information. Output to the lens unit 13 to change the focal length of the variable focus lens unit 13. For example, when the focal length is changed in accordance with the voltage value applied to the variable focus lens unit 13, the control unit 16 determines that the voltage of the voltage value corresponding to the input focal position change signal is the variable focus lens unit. 13 to be applied.
 以上説明した本実施の形態の照明装置10によれば、光源11と、収束レンズ部12と、焦点可変レンズ部13とを、当該順序で備え、収束レンズ部12により、出射光の光束径を焦点可変レンズ部13のレンズ径以下に収束させて、焦点可変レンズ部13に入射させるため、焦点可変レンズ部13のレンズ径が小さい場合でも、光源11から照射された出射光の全光束を焦点可変レンズ部13に入射させることができる。従って、光源11の熱の影響の防止、機械的な制約等により、光源11と焦点可変レンズ部14との間の離間距離を一定距離以上設ける必要がある場合でも、レンズ径の小さな液体レンズ(20)を用いて焦点可変レンズ部13を構成することができ、且つ、照明効率の高い照明装置10を提供することができる。また、個々の照明装置10において光源11と焦点可変レンズ部13との間の離間距離が異なる場合であっても、収束レンズ部12により、焦点可変レンズ部13に入射する光の光束径を調整することができるため、焦点可変レンズ部13を構成する液体レンズ20等を共通部品として用いることができるため、コスト低減を図ることができる。 According to the illuminating device 10 of this Embodiment demonstrated above, the light source 11, the converging lens part 12, and the focus variable lens part 13 are provided in the said order, and the light beam diameter of emitted light is provided by the converging lens part 12. Since the light beam is converged to be equal to or smaller than the lens diameter of the variable focus lens unit 13 and is incident on the variable focus lens unit 13, the entire luminous flux of the emitted light emitted from the light source 11 is focused even when the variable diameter lens unit 13 has a small lens diameter. The light can enter the variable lens unit 13. Therefore, even when it is necessary to provide a certain distance or more between the light source 11 and the variable focus lens unit 14 due to prevention of the influence of heat of the light source 11 and mechanical restrictions, a liquid lens (with a small lens diameter) ( 20) can be used to configure the variable focus lens unit 13, and it is possible to provide the illumination device 10 with high illumination efficiency. Further, even if the distance between the light source 11 and the variable focus lens unit 13 is different in each lighting device 10, the diameter of the light beam incident on the variable focus lens unit 13 is adjusted by the converging lens unit 12. Therefore, the liquid lens 20 or the like constituting the variable focus lens unit 13 can be used as a common component, so that the cost can be reduced.
 また、本実施の形態の照明装置10は、焦点可変レンズ部12の光路下流側に所定の屈折力を有する光学レンズ部14を有する。この光学レンズ部14により、焦点可変レンズ部13において変化可能な焦点位置よりも光学的に広い範囲で焦点位置を変化させることができる。従って、本実施の形態の照明装置10によれば、焦点可変レンズ部13のみにより焦点位置を変化させる場合と比較すると、配光角度(照射範囲)の変更可能な範囲を光学的に拡大することができるため、照明光をより広い範囲まで拡散、あるいはより狭い範囲に収束させることができる。 Further, the illumination device 10 of the present embodiment has an optical lens unit 14 having a predetermined refractive power on the downstream side of the optical path of the variable focus lens unit 12. The optical lens unit 14 can change the focal position in an optically wider range than the focal position that can be changed in the variable focus lens unit 13. Therefore, according to the illuminating device 10 of this Embodiment, compared with the case where a focus position is changed only by the focus variable lens part 13, the range which can change a light distribution angle (irradiation range) is optically expanded. Therefore, the illumination light can be diffused to a wider range or converged to a narrower range.
 また、本実施の形態の照明装置10は、収束レンズ部12により、光源11からの出射光を所定の屈折率で屈折させることができる。また、光学レンズ部14により、焦点可変レンズ部13から出射した光を更に所定の屈折率で屈折させることができる。このため、収束レンズ部12及び光学レンズ部14の屈折力をそれぞれ適宜調整することにより、個々の照明装置10の配光角度を所望の角度に調整することができる。また、個々の照明装置10の配光角度に関する要求が異なる場合であっても、焦点可変レンズ部13を構成する液体レンズ等を共通部品として用いることができる。すなわち、焦点距離とレンズ径の異なる液体レンズを小ロットの製品(照明装置10)毎に作成する必要がなく、1種類の液体レンズを用いて広い範囲を照明する照明装置(100)、狭い範囲に光を収束させる照明装置(100)(スポットライト)のいずれにも適用することができ、いずれの照明装置(100)を製造する場合にもレンズ径の小さい液体レンズ(20)を共通部品として用いることができる。 Further, the illumination device 10 of the present embodiment can refract the emitted light from the light source 11 with a predetermined refractive index by the converging lens unit 12. In addition, the optical lens unit 14 can further refract the light emitted from the variable focus lens unit 13 with a predetermined refractive index. For this reason, the light distribution angle of each illuminating device 10 can be adjusted to a desired angle by appropriately adjusting the refractive powers of the converging lens unit 12 and the optical lens unit 14, respectively. Further, even when the requirements regarding the light distribution angles of the individual lighting devices 10 are different, the liquid lens or the like constituting the variable focus lens unit 13 can be used as a common component. That is, it is not necessary to create liquid lenses having different focal lengths and lens diameters for each small-lot product (illumination device 10), and the illumination device (100) that illuminates a wide range using one type of liquid lens, a narrow range The liquid lens (20) having a small lens diameter can be used as a common component when manufacturing any of the lighting devices (100). Can be used.
2.撮像装置用照明装置30
 次に、上記照明装置10を、撮像装置用照明装置30として用いる場合の実施の形態を説明する。本実施の形態の撮像装置用照明装置30は、上述した本件発明の実施の形態の照明装置10により、撮像領域内に照明光を照射する撮像装置用照明装置30であって、撮像領域内における照明範囲を変更可能にしたことを特徴とする。
2. Imaging device illumination device 30
Next, an embodiment in the case where the illumination device 10 is used as the imaging device illumination device 30 will be described. The imaging device illumination device 30 according to the present embodiment is an imaging device illumination device 30 that irradiates illumination light into an imaging region by the above-described illumination device 10 according to the embodiment of the present invention. The illumination range can be changed.
 当該撮像装置用照明装置30の構成は、上述の照明装置10と同様の構成を採用することができる。例えば、焦点位置変更信号入力部15を介して、撮像領域内における照明光量の増減、照明範囲の拡大又は縮小等を指示する信号を焦点位置変更信号として入力する構成とし、これらの指示信号に応じて、制御部16により焦点可変レンズ部13の焦点位置を制御して、照明範囲を変更することがより好ましい。 The configuration of the imaging device illumination device 30 may be the same as that of the illumination device 10 described above. For example, a signal for instructing increase / decrease in the amount of illumination light in the imaging region, enlargement / reduction of the illumination range, or the like is input as a focus position change signal via the focus position change signal input unit 15, and the response to these instruction signals Thus, it is more preferable to change the illumination range by controlling the focal position of the variable focus lens unit 13 by the control unit 16.
 上述した様に、本件発明の照明装置10は、レンズ径の小さな液体レンズを用いて焦点可変レンズ部13を構成することができる。また、収束レンズ部12により、光源11からの出射光の全光束を焦点可変レンズ部13に入射させることができる。従って、当該照明装置10を撮像装置用照明装置30として用いることにより、当該照明装置10(30)の軽量化及び薄型化を図ることが可能になる。また、1種類の液体レンズを用いて、広角系或いは望遠系等、撮像装置の画角が異なる場合でも、各撮像画角に応じた配光角度で光を照射することが可能になるため、焦点距離とレンズ径の異なる液体レンズを小ロットの製品(照明装置10)毎に作成する必要がなく、広角系或いは望遠系のいずれの場合でも、液体レンズを共通部品として用いることができる。 As described above, the illumination device 10 of the present invention can form the variable focus lens unit 13 using a liquid lens having a small lens diameter. In addition, the convergent lens unit 12 can cause the total luminous flux of the light emitted from the light source 11 to enter the variable focus lens unit 13. Therefore, by using the lighting device 10 as the imaging device lighting device 30, the lighting device 10 (30) can be reduced in weight and thickness. In addition, even when the angle of view of the imaging device is different, such as a wide-angle system or a telephoto system, using one type of liquid lens, it is possible to irradiate light at a light distribution angle corresponding to each imaging field angle. It is not necessary to create a liquid lens having a different focal length and lens diameter for each small-lot product (illumination device 10), and the liquid lens can be used as a common component in either a wide-angle system or a telephoto system.
 以上説明した本実施の形態の照明装置10及び撮像装置用照明装置30は、主として電気的制御により焦点可変レンズ部13に入射される光の焦点位置を変化させるものとして説明したが、本件発明に係る照明装置10及び撮像装置用照明装置30は、上記実施の形態の照明装置10及び撮像装置用照明装置30に限定されるものではなく、本件発明の趣旨を逸脱しない範囲で適宜変更可能である。 The illumination device 10 and the imaging device illumination device 30 of the present embodiment described above have been described as changing the focal position of light incident on the variable focus lens unit 13 mainly by electrical control. The illumination device 10 and the imaging device illumination device 30 are not limited to the illumination device 10 and the imaging device illumination device 30 of the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. .
 例えば、図1に示す制御系要素10b(焦点位置変更信号入力部15、制御部16)は、上述したとおり、本件発明の照明装置10及び撮像装置用照明装置30において必須の構成ではない。上述した実施の形態では、焦点可変レンズ部13を、焦点位置変更信号入力部15から入力される焦点位置変更信号に応じて、焦点位置の変更制御を行うものとして説明したが、当該照明装置10又は当該撮像装置用照明装置30の設置位置に応じて焦点可変レンズ部13の焦点位置が予め所定の位置となるように設定してもよい。この場合であっても、当該照明装置10又は当該撮像装置用照明装置30の設置位置等に応じて、当該照明装置10又は撮像装置用照明装置30の配光角度を変更して、照明光量、照明範囲等を適宜調整することができる。この場合、電気的な信号により曲率を変化させる液体レンズだけではなく、例えば、機械的な機構により曲率を変化させるように構成された液体レンズを好適に用いることができる。機械的な機構により曲率を変化させる液体レンズとして、具体的には、上記第一の態様の液体レンズと同様の構成を有し、レンズの枠体を回転させることにより、レンズの枠体に形成された液体収容部との間で、薄膜間に収容された液体の授受を行い、それにより薄膜間の液体の容量を変化させて、薄膜の表面形状を凹状又は凸状に変形させるように構成されたものを用いることができる。本件発明では、このような機械的な機構により焦点位置を変化させる構成の液体レンズについても好適に採用することができ、手動で焦点可変レンズ部13の焦点位置を変化させてもよい。 For example, the control system element 10b (the focal position change signal input unit 15 and the control unit 16) shown in FIG. 1 is not an essential configuration in the illumination device 10 and the imaging device illumination device 30 of the present invention as described above. In the embodiment described above, the focus variable lens unit 13 has been described as performing focus position change control in accordance with the focus position change signal input from the focus position change signal input unit 15. Or according to the installation position of the said imaging device illumination device 30, you may set so that the focus position of the focus variable lens part 13 may become a predetermined position previously. Even in this case, the light distribution angle of the illumination device 10 or the imaging device illumination device 30 is changed according to the installation position or the like of the illumination device 10 or the imaging device illumination device 30. The illumination range and the like can be adjusted as appropriate. In this case, not only a liquid lens whose curvature is changed by an electrical signal, but also a liquid lens configured to change the curvature by a mechanical mechanism can be suitably used. Specifically, the liquid lens that changes the curvature by a mechanical mechanism has the same configuration as the liquid lens of the first aspect, and is formed on the lens frame by rotating the lens frame. The liquid contained between the thin films is exchanged with the liquid container, and the volume of the liquid between the thin films is changed, thereby deforming the surface shape of the thin film into a concave shape or a convex shape. Can be used. In the present invention, a liquid lens having a configuration in which the focal position is changed by such a mechanical mechanism can be preferably employed, and the focal position of the variable focus lens unit 13 may be manually changed.
 また、上記実施の形態では、焦点可変レンズ部13として、主として、光源11から照射された出射光の光軸に沿って焦点位置を前後に移動させる液体レンズ20等を例に挙げて説明したが、本件発明に係る照明装置10はこれに限定されるものではない。例えば、上記第二の態様の液体レンズ20と同様の構成を有する液体レンズの中には、電極26、27の構成及び電極26、27間に印加する電圧値の制御を変化させることにより、導電性液体層22と絶縁性液体層23との界面の頂点位置を上記中心軸とは異なる位置に移動させることができるものもある。このような、界面の頂点位置を中心軸とは異なる位置に移動させることのできる液体レンズを採用した場合、光源11から出射された光の光軸方向を変化させることができる。この場合は、当該照明装置10の配光方向を変化させることができる。この場合も、焦点可変レンズ部13により配光方向の変更可能な領域よりもより広い領域内で配光方向を変更することが可能になる。 In the above-described embodiment, the focus variable lens unit 13 has been described mainly using the liquid lens 20 that moves the focal position back and forth along the optical axis of the emitted light emitted from the light source 11 as an example. The lighting device 10 according to the present invention is not limited to this. For example, in a liquid lens having the same configuration as that of the liquid lens 20 of the second aspect, the configuration of the electrodes 26 and 27 and the control of the voltage value applied between the electrodes 26 and 27 can be changed. In some cases, the vertex position of the interface between the conductive liquid layer 22 and the insulating liquid layer 23 can be moved to a position different from the central axis. When such a liquid lens that can move the vertex position of the interface to a position different from the central axis is employed, the optical axis direction of the light emitted from the light source 11 can be changed. In this case, the light distribution direction of the illumination device 10 can be changed. Also in this case, the light distribution direction can be changed within a wider area than the area where the light distribution direction can be changed by the variable focus lens unit 13.
 次に、本件発明を実施例を挙げてより具体的に照明装置10について説明するが、本件発明は以下の実施例に限定されるものではない。 Next, the present invention will be described more specifically with respect to the lighting device 10 by way of examples. However, the present invention is not limited to the following examples.
 図3に、実施例1の照明装置30(10)の構成例を示す。実施例1の照明装置30では、光源11として点光源を採用し、収束レンズ部12として、正の屈折力を有するレンズ(凸レンズ)を採用した。そして、焦点可変レンズ部13として上述した第二の態様の液体レンズ20を用い、これらを光源11から出射される出射光の光軸に沿って順に配置した。
 但し、図3(a)に示すのは、焦点可変レンズ部13を凸レンズとして機能させた例であり、図3(b)に示すのは、焦点可変レンズ部13を凹レンズとして機能させた例である(以下、図4~図8においても同じである)。なお、図3において、点線は光路を示し、一点鎖線は、光軸を示している(以下、図4~図8においても同じである)。
In FIG. 3, the structural example of the illuminating device 30 (10) of Example 1 is shown. In the illumination device 30 of the first embodiment, a point light source is employed as the light source 11 and a lens (convex lens) having a positive refractive power is employed as the converging lens unit 12. And the liquid lens 20 of the 2nd aspect mentioned above was used as the focus variable lens part 13, and these were arrange | positioned in order along the optical axis of the emitted light radiate | emitted from the light source 11. FIG.
However, FIG. 3A shows an example in which the variable focus lens unit 13 functions as a convex lens, and FIG. 3B shows an example in which the variable focus lens unit 13 functions as a concave lens. (The same applies to FIGS. 4 to 8). In FIG. 3, the dotted line indicates the optical path, and the alternate long and short dash line indicates the optical axis (hereinafter the same applies to FIGS. 4 to 8).
 図3に示すように、光源11から出射された出射光は所定の拡散角度で拡散する。光源11と焦点可変レンズ部13との間に、収束レンズ部12が設けられていなければ、光源11からの離間距離が大きくなるにつれて、出射光の光束径は大きくなり、焦点可変レンズ部13に出射光の全光束を入射させるには、そのレンズ径を図3に示す例よりも格段に大きくする必要がある。しかしながら、本実施例1の照明装置30では、光源11と、焦点可変レンズ部13との間に、収束レンズ部12を設け、収束レンズ部12により上記出射光の光束径を液体レンズ20の入射面において、当該液体レンズ20のレンズ径よりも小さくなるように収束させているため、光源11と焦点可変レンズ部13との離間距離が一定以上離れている場合であっても、レンズ径の小さい液体レンズ20を用いても焦点可変レンズ部13を構成することができる。また、焦点可変レンズ部13の曲率を変化させて、焦点位置を適宜変化させることにより、図3(a)、(b)に示すように、配光角度を調整することができる。なお、これらの点は、以下の実施例2~実施例6においても同様である。 As shown in FIG. 3, the emitted light emitted from the light source 11 diffuses at a predetermined diffusion angle. If the converging lens unit 12 is not provided between the light source 11 and the variable focus lens unit 13, the luminous flux diameter of the emitted light increases as the distance from the light source 11 increases, and the variable focus lens unit 13 In order to make the total luminous flux of the emitted light incident, it is necessary to make the lens diameter much larger than the example shown in FIG. However, in the illuminating device 30 of the first embodiment, the converging lens unit 12 is provided between the light source 11 and the variable focus lens unit 13, and the light beam diameter of the emitted light is made incident on the liquid lens 20 by the converging lens unit 12. Since the surface is converged so as to be smaller than the lens diameter of the liquid lens 20, the lens diameter is small even when the separation distance between the light source 11 and the variable focus lens unit 13 is more than a certain distance. Even when the liquid lens 20 is used, the variable focus lens unit 13 can be configured. Further, the light distribution angle can be adjusted as shown in FIGS. 3A and 3B by changing the curvature of the variable focus lens unit 13 and appropriately changing the focal position. These points are the same in the following Examples 2 to 6.
 図4に、実施例2の照明装置40(10)の構成例を示す。実施例2の照明装置40では、焦点可変レンズ部13の光路下流側に正の屈折力を有する凸レンズを用いて構成した光学レンズ部14を配置した以外は、実施例1の照明装置30と同じ構成を採用した。なお、凸レンズの代わりに全体で正の屈折力を有するレンズ群を用いてもよいのは勿論である。 FIG. 4 shows a configuration example of the illumination device 40 (10) of the second embodiment. The illuminating device 40 of Example 2 is the same as the illuminating device 30 of Example 1 except that the optical lens unit 14 configured using a convex lens having positive refractive power is disposed on the downstream side of the optical path of the variable focus lens unit 13. Adopted the configuration. Of course, a lens group having positive refractive power as a whole may be used instead of the convex lens.
 実施例2の照明装置40では、図4(a)に示すように、焦点可変レンズ13を凸レンズとして用いたときに、焦点可変レンズ13の焦点位置よりも光路下流側に正の屈折力を有する光学レンズ部14が設けられている。当該光学レンズ部14は正の屈折力を有するため、入射した光を収束し、配光角度を狭めることができる。従って、焦点可変レンズ部13を凸レンズとして用いた場合も、凹レンズとして用いた場合も、実施例1の照明装置30と比較すると、当該照明装置40の配光角度を狭めることができる。すなわち、正の屈折力を有する光学レンズ部14を設けることにより、当該照明装置40の照明範囲をより狭い範囲で変化させることができる。 In the illuminating device 40 of Example 2, as shown in FIG. 4A, when the variable focus lens 13 is used as a convex lens, it has a positive refractive power downstream of the focal position of the variable focus lens 13 in the optical path. An optical lens unit 14 is provided. Since the optical lens unit 14 has a positive refractive power, it can converge the incident light and narrow the light distribution angle. Therefore, when the variable focus lens unit 13 is used as a convex lens or a concave lens, the light distribution angle of the illumination device 40 can be narrowed as compared with the illumination device 30 of the first embodiment. That is, by providing the optical lens unit 14 having a positive refractive power, the illumination range of the illumination device 40 can be changed in a narrower range.
 次に、図5に、実施例3の照明装置50(10)の構成例を示す。実施例3の照明装置50では、焦点可変レンズ部13の光路下流側に負の屈折力を有する凹レンズを用いて構成した光学レンズ部14を配置した以外は、実施例1の照明装置30と同じ構成を採用した。なお、凹レンズの代わりに全体で負の屈折力を有するレンズ群を用いてもよいのは勿論である。 Next, FIG. 5 shows a configuration example of the illumination device 50 (10) of the third embodiment. The illumination device 50 according to the third embodiment is the same as the illumination device 30 according to the first embodiment except that the optical lens unit 14 configured using a concave lens having negative refractive power is disposed on the downstream side of the optical path of the variable focus lens unit 13. Adopted the configuration. Of course, a lens group having negative refractive power as a whole may be used instead of the concave lens.
 実施例3の照明装置50では、実施例2の照明装置40と、光学レンズ部14の屈折力が負である点以外は同様の構成を有する。光学レンズ部14が負の屈折力を有するため、当該光学レンズ部14に入射した光は拡散する。従って、図5(a)、(b)に示すように、焦点可変レンズ部13を凸レンズとして用いた場合も、凹レンズとして用いた場合も、実施例1の照明装置30と比較すると、当該照明装置10の配光角度を広げることができる。すなわち、負の屈折力を有する光学レンズ部14を設けることにより、当該照明装置50の照明範囲をより広い範囲で変化させることができる。 The illumination device 50 of Example 3 has the same configuration as that of the illumination device 40 of Example 2 except that the refractive power of the optical lens unit 14 is negative. Since the optical lens unit 14 has a negative refractive power, the light incident on the optical lens unit 14 diffuses. Therefore, as shown in FIGS. 5A and 5B, the illumination device is different from the illumination device 30 of Example 1 when the variable focus lens unit 13 is used as a convex lens or a concave lens. 10 light distribution angles can be expanded. That is, by providing the optical lens unit 14 having negative refractive power, the illumination range of the illumination device 50 can be changed in a wider range.
 図6に、実施例4の照明装置60(10)の構成例を示す。実施例4の照明装置60では、収束レンズ部12を凸レンズと凹レンズとから成るレンズ群により構成した以外は、実施例1の照明装置30と同様の構成を採用した。なお、凸レンズを、2枚の片面凸レンズを用い、その凸面同士が互いに面するように配置したものに替えてもよい。 FIG. 6 shows a configuration example of the illumination device 60 (10) of the fourth embodiment. In the illuminating device 60 of Example 4, the structure similar to the illuminating device 30 of Example 1 was employ | adopted except having comprised the converging lens part 12 by the lens group which consists of a convex lens and a concave lens. Note that the convex lens may be replaced with one using two single-sided convex lenses so that the convex surfaces face each other.
 実施例4の照明装置60では、収束レンズ部12を凸レンズと凹レンズとから成るレンズ群で構成したことにより、焦点可変レンズ部13に入射する光の光束径を実施例1の照明装置と比較するとやや拡大することができる。従って、図6(a)、(b)に示すように、焦点可変レンズ部13を凸レンズとして用いた場合も、凹レンズとして用いた場合も、実施例1の照明装置30とは異なる配光角度で光を照射することができる。 In the illuminating device 60 of the fourth embodiment, the converging lens unit 12 is configured by a lens group including a convex lens and a concave lens, so that the light beam diameter of light incident on the variable focus lens unit 13 is compared with the illuminating device of the first embodiment. Can be slightly enlarged. Accordingly, as shown in FIGS. 6A and 6B, the light distribution angle different from that of the illumination device 30 of the first embodiment is used regardless of whether the variable focus lens unit 13 is used as a convex lens or a concave lens. Light can be irradiated.
 次に、実施例5の照明装置70(10)について説明する。図7に示す実施例5の照明装置70では、実施例2の照明装置40と同様の構成を有し、焦点可変レンズ部13の光路下流側に正の屈折力を有する光学レンズ部14を備えている。実施例5の照明装置70では、収束レンズ部12により、光源11から出射した出射光を、収束レンズ部12と焦点可変レンズ部13との間に焦点が位置するように収束させた上で、焦点可変レンズ部13に再び拡散した拡散光を入射させている。このため、実施例2の照明装置10と異なる配光角度で照明光を照射することができる。 Next, the lighting device 70 (10) of Example 5 will be described. The illuminating device 70 of Example 5 shown in FIG. 7 has the same configuration as that of the illuminating device 40 of Example 2, and includes an optical lens unit 14 having positive refractive power on the downstream side of the optical path of the variable focus lens unit 13. ing. In the illuminating device 70 of Example 5, after converging the emitted light emitted from the light source 11 by the converging lens unit 12 so that the focal point is located between the converging lens unit 12 and the variable focus lens unit 13, Diffused light that has been diffused again is incident on the variable focus lens unit 13. For this reason, illumination light can be irradiated at a different light distribution angle from the illumination device 10 of the second embodiment.
 次に、実施例6の照明装置80(10)について説明する。図8に示す実施例6の照明装置80では、実施例3の照明装置50と同様の構成を有し、焦点可変レンズ部13の光路下流側に負の屈折力を有する光学レンズ部14を備えている。実施例6の照明装置80では、収束レンズ部12により、光源11から出射した出射光を、実施例5と同様に、収束レンズ部12と焦点可変レンズ部13との間に焦点が位置するように収束させた上で、焦点可変レンズ部13に再び拡散した拡散光を入射させている。このため、実施例3の照明装置50と異なる配光角度で照明光を照射することができる。 Next, the lighting device 80 (10) of Example 6 will be described. The illuminating device 80 of Example 6 shown in FIG. 8 has the same configuration as the illuminating device 50 of Example 3, and includes an optical lens unit 14 having negative refractive power on the downstream side of the optical path of the variable focus lens unit 13. ing. In the illuminating device 80 of Example 6, the focal point of the outgoing light emitted from the light source 11 by the converging lens unit 12 is positioned between the converging lens unit 12 and the variable focus lens unit 13 in the same manner as in Example 5. Then, the diffused light diffused again is made incident on the variable focus lens unit 13. For this reason, illumination light can be irradiated at a light distribution angle different from that of the illumination device 50 of the third embodiment.
 以上のように上記実施例1~実施例6の照明装置10(30~80)では、焦点可変レンズ部13を構成する液体レンズ20を共通部品として用いても、収束レンズ部12や光学レンズ部14の屈折力を適宜調整することにより、図3~図8に示す通り、様々な配光角度で光を照射することが可能になる。 As described above, in the illumination devices 10 (30 to 80) of the first to sixth embodiments, even if the liquid lens 20 constituting the variable focus lens unit 13 is used as a common component, the converging lens unit 12 and the optical lens unit. By appropriately adjusting the refractive power of 14, it becomes possible to irradiate light at various light distribution angles as shown in FIGS.
 本件発明によれば、光源と、収束レンズ部と、焦点可変レンズ部とを、当該順序で備え、収束レンズ部により、出射光の光束径を焦点可変レンズ部のレンズ径以下に収束させて、焦点可変レンズ部に入射させるため、焦点可変レンズ部のレンズ径を小さくても、光源から照射された出射光の全光束を焦点可変レンズ部に入射させることができる。従って、光源の熱の影響の防止、機械的な制約等により、光源と焦点可変レンズ部との間の離間距離を空ける必要がある場合でも、レンズ径の小さな液体レンズを用いて焦点可変レンズ部を構成することができ、且つ、照明効率の高い照明装置を提供することができる。また、個々の照明装置における光源と焦点可変レンズ部との間の離間距離が異なる場合であっても、焦点可変レンズ部を構成する液体レンズ等を共通部品として用いることができるため、コスト低減を図ることができる。 According to the present invention, the light source, the converging lens unit, and the variable focal lens unit are provided in this order, and the converging lens unit converges the luminous flux diameter of the emitted light to be equal to or smaller than the lens diameter of the focal variable lens unit, Since the light is incident on the variable focus lens unit, the entire luminous flux of the emitted light emitted from the light source can be incident on the variable focus lens unit even if the lens diameter of the variable focus lens unit is small. Therefore, even when it is necessary to increase the separation distance between the light source and the variable focus lens unit due to the prevention of the influence of heat of the light source, mechanical restrictions, etc., the variable focus lens unit using a liquid lens with a small lens diameter It is possible to provide an illumination device with high illumination efficiency. In addition, even when the separation distance between the light source and the variable focus lens unit in each lighting device is different, the liquid lens or the like constituting the variable focus lens unit can be used as a common component, thereby reducing costs. You can plan.
  10・・・照明装置
  10a・・光学系要素
  10b・・制御系要素
  11・・・光源
  12・・・収束レンズ部
  13・・・焦点可変レンズ部
  14・・・光学レンズ部
  15・・・焦点位置変更信号入力部
  16・・・制御部
  20・・・液体レンズ 
DESCRIPTION OF SYMBOLS 10 ... Illuminating device 10a ... Optical system element 10b ... Control system element 11 ... Light source 12 ... Converging lens part 13 ... Variable focus lens part 14 ... Optical lens part 15 ... Focus Position change signal input unit 16 ... control unit 20 ... liquid lens

Claims (5)

  1.  光源と、正の屈折力を有する収束レンズ部と、レンズ位置を固定した状態で焦点位置を変化可能な焦点可変レンズ部とを、当該順序で備え、
     当該収束レンズ部により、光源から出射された出射光の光束径を当該焦点可変レンズ部のレンズ径以下に収束させて、当該焦点可変レンズ部に入射させることを特徴とする照明装置。
    A light source, a converging lens unit having a positive refractive power, and a variable focus lens unit capable of changing a focal position in a state where the lens position is fixed, in that order,
    An illuminating apparatus characterized in that the convergent lens unit converges the light beam diameter of the emitted light emitted from the light source to be equal to or smaller than the lens diameter of the variable focus lens unit and enters the variable focus lens unit.
  2.  前記焦点可変レンズ部のレンズ径は、前記収束レンズ部のレンズ径よりも小さく形成されたものである請求項1に記載の照明装置。 2. The illumination device according to claim 1, wherein a lens diameter of the variable focus lens unit is formed to be smaller than a lens diameter of the converging lens unit.
  3.  前記焦点可変レンズ部の光路下流側に、所定の屈折力を有する光学レンズ部を備える請求項1又は請求項2に記載の照明装置。 The illumination device according to claim 1 or 2, further comprising an optical lens unit having a predetermined refractive power on a downstream side of the optical path of the variable focus lens unit.
  4.  前記焦点可変レンズ部は、外部から入力される焦点位置変更信号に基づいて焦点位置を変化させる液体レンズである請求項1~請求項3のいずれか一項に記載の照明装置。 The illumination device according to any one of claims 1 to 3, wherein the focus variable lens unit is a liquid lens that changes a focus position based on a focus position change signal input from outside.
  5.  前記焦点位置変更信号は、撮像装置から入力される撮像範囲に関する情報である請求項4に記載の照明装置。 The illumination device according to claim 4, wherein the focal position change signal is information relating to an imaging range input from the imaging device.
PCT/JP2013/054005 2012-07-05 2013-02-19 Lighting device WO2014006925A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012151531A JP2014013738A (en) 2012-07-05 2012-07-05 Illuminating device
JP2012-151531 2012-07-05

Publications (1)

Publication Number Publication Date
WO2014006925A1 true WO2014006925A1 (en) 2014-01-09

Family

ID=49881692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054005 WO2014006925A1 (en) 2012-07-05 2013-02-19 Lighting device

Country Status (2)

Country Link
JP (1) JP2014013738A (en)
WO (1) WO2014006925A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2570808A1 (en) * 2014-11-19 2016-05-20 Pena José Luis Seoane Improved planoconvex lens projector (Machine-translation by Google Translate, not legally binding)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1166911A (en) * 1997-08-26 1999-03-09 Denso Corp Variable light distribution apparatus for vehicle
JP2007101857A (en) * 2005-10-04 2007-04-19 Nikon Corp Focus adjusting device and digital camera
JP2009180758A (en) * 2008-01-29 2009-08-13 Brother Ind Ltd Image display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1166911A (en) * 1997-08-26 1999-03-09 Denso Corp Variable light distribution apparatus for vehicle
JP2007101857A (en) * 2005-10-04 2007-04-19 Nikon Corp Focus adjusting device and digital camera
JP2009180758A (en) * 2008-01-29 2009-08-13 Brother Ind Ltd Image display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2570808A1 (en) * 2014-11-19 2016-05-20 Pena José Luis Seoane Improved planoconvex lens projector (Machine-translation by Google Translate, not legally binding)

Also Published As

Publication number Publication date
JP2014013738A (en) 2014-01-23

Similar Documents

Publication Publication Date Title
RU2508562C2 (en) Beam direction controlling device and light-emitting device
JP5920612B2 (en) Optical structure having two or more microstructured films
JP2008523555A (en) Lighting system
RU2013115918A (en) LIGHTING DEVICE
US20140268871A1 (en) Optics for illumination devices
WO2014006782A1 (en) Lighting device, lighting device for photography and photography system
US20180176486A1 (en) Illumination device, imaging device, and lens
WO2017028780A1 (en) Stage lamp optical system with improved light spot homogeneity
KR20150080919A (en) Curved light duct extraction
KR101419031B1 (en) Light emitting device and lighting device having the same
JP2017009778A (en) Illumination optical unit and illumination device
JP2016058284A (en) Luminaire
CN105051574B (en) Microscope having a transmitted-light lighting device for critical lighting
WO2013140589A1 (en) Light source apparatus, projection display apparatus, and illuminating method
JP6849146B2 (en) Vehicle lighting
JP6271884B2 (en) Illumination device, illumination system, imaging illumination device, and imaging system
WO2014006925A1 (en) Lighting device
WO2016194798A1 (en) Planar light source device and liquid crystal display device
US10795141B2 (en) LED illumination in microscopy
JP2013222704A (en) Cove lighting module
CN104595811A (en) Zoom projection lamp
JP7464417B2 (en) Lighting equipment
TWI547667B (en) Light-emitting module and light-emitting device
WO2014006923A1 (en) Lighting device and imaging system
JP2012227058A (en) Light emitting element illuminating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13813243

Country of ref document: EP

Kind code of ref document: A1