WO2014006254A1 - Nanopartículas recubiertas de gelatina - Google Patents

Nanopartículas recubiertas de gelatina Download PDF

Info

Publication number
WO2014006254A1
WO2014006254A1 PCT/ES2013/070462 ES2013070462W WO2014006254A1 WO 2014006254 A1 WO2014006254 A1 WO 2014006254A1 ES 2013070462 W ES2013070462 W ES 2013070462W WO 2014006254 A1 WO2014006254 A1 WO 2014006254A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
gelatin
core
nanoparticle
iron oxide
Prior art date
Application number
PCT/ES2013/070462
Other languages
English (en)
French (fr)
Inventor
Beatriz SALINAS RODRÍGUEZ
Jesús RUIZ-CABELLO OSUNA
Fernando HERRANZ RABANAL
Original Assignee
Fundación Centro Nacional De Investigaciones Cardiovasculares Carlos Iii
Universidad Complutense De Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundación Centro Nacional De Investigaciones Cardiovasculares Carlos Iii, Universidad Complutense De Madrid filed Critical Fundación Centro Nacional De Investigaciones Cardiovasculares Carlos Iii
Publication of WO2014006254A1 publication Critical patent/WO2014006254A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide (Fe3O4)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0015Phosphorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0065Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the luminescent/fluorescent agent having itself a special physical form, e.g. gold nanoparticle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/22Compounds of iron
    • C09C1/24Oxides of iron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • C09K11/777Oxyhalogenides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/948Hydrolases (3) acting on peptide bonds (3.4)
    • G01N2333/95Proteinases, i.e. endopeptidases (3.4.21-3.4.99)
    • G01N2333/964Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue
    • G01N2333/96425Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals
    • G01N2333/96427Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals in general
    • G01N2333/9643Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals in general with EC number
    • G01N2333/96486Metalloendopeptidases (3.4.24)
    • G01N2333/96491Metalloendopeptidases (3.4.24) with definite EC number
    • G01N2333/96494Matrix metalloproteases, e. g. 3.4.24.7
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means

Definitions

  • the present invention relates to gelatin coated nanoparticles, wherein the gelatin is covalently linked, the process of obtaining said nanoparticles, as well as their use in diagnostic imaging techniques and in the controlled release of drugs. Background of the invention
  • Naked nanoparticles in general are not stable in water at neutral pH or in physiological fluids, where they tend to agglomerate and precipitate, so it is necessary to stabilize these nanoparticles, either by steric or electrostatic stabilization.
  • Water stabilization and solubilization is generally performed by coating with organic molecules, including small organic molecules, surfactants, polymers, biomolecules, inorganic coatings such as silica, metal or nonmetallic substances, metal oxide or metal sulfide. Polymer functionalization allows to design the properties of nanoparticles.
  • Water-soluble iron oxide nanoparticles functionalized with azelaic acid have been described by oxidation of iron oxide nanoparticles coated with oleic acid [Herranz F. et al. Contrast Media Mol. Imaging 2008, 3, 215-222]. Said nanoparticles are compatible with aqueous media. Gelatin coated iron oxide nanoparticles have also been described [Gaire B. et al. J. Microencapsul. 2011, 28, 240-247], where the surface charge induced by the pH of the gelatin is used for adsorption of it on the surface of the iron oxide nanoparticle. The nanoparticles obtained are stable, soluble in water and have a narrow particle size distribution. The advantages mentioned in this document in relation to gelatin coating are a decrease in toxicity and an increase in cell uptake.
  • WO 2009/040811 describes magnetic nanoparticles composed of gelatin / iron oxide, wherein the gelatin provides additional stabilization against the agglomeration of the nanoparticles, as well as the presence of functional groups for the binding of appropriate ligands, such as adriamycin .
  • WO 2009/072982 describes the coating of iron oxide / gelatin nanoparticles with gelatin which is subjected to a subsequent cross-linking step by the action of a transglutaminase.
  • the main advantages described for gelatin coated iron oxide nanoparticles is an additional stabilization against agglomeration as well as the presence of functional groups for ligand binding.
  • nanoparticles coated with organic molecules have been described, there is a need to develop new nanoparticles to improve stability in aqueous media, toxicity, biocompatibility and especially the time of permanence in blood of the nanoparticles described in the prior art. , while providing a strong and lasting bond between the coating and the nanoparticle core.
  • the authors of the present invention have solved this need by providing nanoparticles in which the core thereof is covalently bonded to a gelatin coating.
  • the invention relates to a nanoparticle comprising a core and a gelatin coating, wherein the gelatin is covalently bonded to the core and wherein the core is selected from an iron oxide core and a core of UC P.
  • the invention in a second aspect, relates to a method of obtaining nanoparticles as defined in the first aspect, which comprises: (a) dispersing nanoparticles in which the core thereof is selected from an iron oxide core and a UCNP core and said core is coated with an unsaturated monocarboxylic acid of formula (II), or a salt thereof, in a solvent, where n and n are independently selected from a number from 1 to 10;
  • step (b) treating the dispersion obtained in step (a) with an oxidant
  • step (c) treating the mixture resulting from step (b) with an aqueous solution;
  • step (d) providing gelatin and reacting it with the nanoparticles obtained in step (c) in the presence of a carboxylic acid activator, wherein the gelatin is optionally covalently bound to a drug.
  • the invention in a third aspect, relates to a composition comprising nanoparticles as defined in the first aspect, wherein the nanoparticles are monodispersed.
  • the invention relates to a contrast agent comprising the nanoparticles defined in the first aspect.
  • the invention relates to the use of the nanoparticles defined in the first aspect, or of the contrast agent defined in the fourth aspect, for the imaging diagnosis of a pathology of the cardiovascular system.
  • the invention relates to the use of the nanoparticles defined in the first aspect, wherein said nanoparticles further comprise a drug covalently linked to the gelatin, to prepare a medicament.
  • the invention relates to the use of nanoparticles defined in the first aspect, wherein said nanoparticles further comprise a drug covalently bound to gelatin, for the manufacture of a medicament for the treatment and / or prevention of a disease. that requires that medication.
  • the invention relates to the use of the nanoparticles defined in the first aspect, wherein said nanoparticles further comprise a drug covalently bound to the gelatin, for the controlled release of the drug covalently bound to the gelatin.
  • the invention relates to a method of in vitro detection of an extracellular matrix metalloproteinase in a sample comprising:
  • extracellular matrix metalloproteinase is a gelatinase
  • Figure 1 shows the thermogravimetric analysis of the azelaic acid coated nanoparticles obtained in example 3 and the gelatin coated nanoparticles obtained in example 6 from the nanoparticles of example 3.
  • Figure 2 shows the TEM images of the gelatin coated nanoparticles of example 6 obtained from the nanoparticles of example 3.
  • Figure 3 shows the TEM images of the gelatin coated nanoparticles of example 6 obtained from the nanoparticles of example 3.
  • Figure 4 shows the FTIR spectrum of gelatin coated nanoparticles of example 6 obtained from the nanoparticles of example 3 compared to free gelatin.
  • Figure 5 shows the measurements of the Vibrating Sample Magnetometer (VSM) of the gelatin coated nanoparticles of example 6 obtained from the nanoparticles of example 3.
  • VSM Vibrating Sample Magnetometer
  • Figure 6 shows the signal strength of gelatin coated nanoparticles of example 6 obtained from the nanoparticles of example 3 in the liver.
  • Figure 7 shows the blood R 2 values of gelatin coated nanoparticles of example 6 obtained from the nanoparticles of example 3.
  • Figure 8 shows kinetic images of MRI (magnetic resonance imaging) of iron oxide nanoparticles without gelatin obtained in example 3.
  • Figure 9 shows MRI kinetic images of gelatin coated iron oxide nanoparticles of example 6 obtained from nanoparticles of example 3.
  • Figure 10 shows the biodistribution of the gelatin coated iron oxide nanoparticles of example 6 obtained from nanoparticles of example 3.
  • Figure 11 shows the evolution of the hydrodynamic size and zeta potential of the core nanoparticles of Fe 3 C "4 as a function of the gelatin concentration studied in example 9.
  • Figure 12 shows the T 2 values of gelatin coated iron oxide nanoparticles as a function of the concentration of MMP-2 obtained in example 10.
  • Figure 13 shows the T 2 values of gelatin coated iron oxide nanoparticles as a function of the concentration of MMP-1 obtained in example 12.
  • the invention relates to a nanoparticle comprising a core and a gelatin coating, wherein the gelatin is attached covalently to the nucleus and where the nucleus is selected from the group consisting of an iron oxide core and UCNP core.
  • bare iron oxide and UCNP nanoparticles have a ratio between the surface and the high volume, which implies a high surface energy. Consequently, such naked nanoparticles tend to aggregate to minimize surface energy.
  • bare iron oxide nanoparticles oxidize easily in the presence of air, often resulting in a loss of magnetism and dispersivity. Therefore, it is usual to protect the nanoparticles with a coating in order to increase their stability.
  • Typical coatings known to those skilled in the art are organic compounds having a hydrophilic group, such as a hydroxyl group (-OH), carboxylic acid (-COOH), phosphate (-P (0) (OH) 2 ), silanol ( -SOH), among others, and a hydrophobic group, such as alkyl, alkenyl, alkynyl and aryl.
  • a hydrophilic group such as a hydroxyl group (-OH), carboxylic acid (-COOH), phosphate (-P (0) (OH) 2 ), silanol ( -SOH), among others
  • a hydrophobic group such as alkyl, alkenyl, alkynyl and aryl.
  • alkyl refers to a linear, cyclic or branched hydrocarbon chain radical consisting of carbon and hydrogen atoms, which does not contain unsaturation, which has 1 to 30, preferably 5 to 20 carbon atoms, and which is attached to the rest of the molecule through a simple bond.
  • the alkyl radicals may be optionally substituted by one or more substituents such as halogen, for example F, Cl, Br and I, carbonyl and nitro.
  • alkenyl refers to a linear, cyclic or branched hydrocarbon chain radical consisting of carbon and hydrogen atoms, which contains at least one double bond, having 2 to 30, preferably 5 to 20 carbon atoms, and that it is attached to the rest of the molecule through a simple bond.
  • the alkyl radicals may be optionally substituted by one or more substituents such as halogen, for example F, Cl, Br and I, carbonyl and nitro.
  • alkynyl refers to a linear, cyclic or branched hydrocarbon chain radical consisting of carbon and hydrogen atoms, which contains at least one triple bond, having 2 to 30, preferably 5 to 20 carbon atoms, and that it is attached to the rest of the molecule through a simple bond. Alkyl radicals they may be optionally substituted by one or more substituents such as halogen, for example F, Cl, Br and I, carbonyl and nitro.
  • aryl means a monocyclic or polycyclic hydrocarbon radical comprising 1, 2, 3 or 4 aromatic nuclei, said nuclei being linked with, and / or covalently linked with each other, each of said nuclei being optionally and independently substituted by one or more substituents such as halogen, for example F, Cl, Br and I, carbonyl and nitro.
  • covalent should be understood as the formation of a bond between two atoms or groups of atoms by sharing electron pairs.
  • the covalent bond between the gelatin coating and the core of the nanoparticle of the present invention refers to the bonding through a covalent bond between an amino or carboxylic acid group of the gelatin of the coating and a group of the protective layer of the nanoparticle capable of forming a covalent bond with said amino or carboxylic acid group of the gelatin, such as a carboxylic acid, an amino, a hydroxyl, an aldehyde, a ketone, a haloalkyl, etc.
  • the covalent attachment of the gelatin to the core is through a dicarboxylic acid bridge of formula (I),
  • n is a number from 1 to 10, more preferably n is selected from a number from 3 to 7, even more preferably n is 5.
  • the compound of formula (I) may be optionally substituted by one or more substituents, preferably 1, 2, 3 or 4 substituents, independently selected from the group consisting of alkyl, preferably an alkyl of 1 to 6 carbon atoms, such as methyl , ethyl, propyl, isopropyl, butyl, sec-butyl, terebutyl, pentyl and hexyl; halogen, such as F, Cl, Br and I; nitro group (-N0 2 ); amino group (-H 2 ); hydroxyl (-OH); and mercapto group (-SH).
  • substituents preferably 1, 2, 3 or 4 substituents, independently selected from the group consisting of alkyl, preferably an alkyl of 1 to 6 carbon atoms, such as methyl , ethyl, propyl, isopropyl, butyl, sec-butyl, terebutyl, pentyl and hexyl; halogen
  • the substituents are selected from the group consisting of alkyl, preferably an alkyl of 1 to 6 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tere-butyl, pentyl and hexyl; halogen, such as F, Cl, Br and I; and nitro group (-
  • the covalent bond between the gelatin of the coating and the nucleus of the nanoparticle that is produced through the dicarboxylic acid of formula (I) refers to the formation of an amide bond -CO- H- from one of the groups - COOH of the compound of formula (I) and a group -NH 2 of the gelatin, that is, the gelatin is bound to the compound of formula (I) by the point (a) shown in structure (III) (where the dashed line indicates the link formed).
  • the other -COOH group of the compound of formula (I) interacts with the surface of the iron oxide core in an ionic / covalent manner, that is, the iron oxide core binds to the compound of formula (I) by point (b) shown in structure (III) (where the broken line indicates the bond formed).
  • the core of the nanoparticles of the present invention is iron oxide or
  • the type of iron oxide can be selected from any of those customary in the field of nanoparticles and which are known to those skilled in the art, such as, for example, Fe 3 0 4 (magnetite), a-Fe 2 0 3 ( hematite), y-Fe 2 0 3 (maghemite), FeO (wustita), 8-Fe 2 0 3 and P-Fe 2 0 3 , among others.
  • the iron oxide is selected from Fe 3 0 4 and y-Fe 2 0 3 .
  • up-converting nanophosphor or "UCNP” or “upstream conversion phosphorescent nanoparticles” refers to rare earth nanoparticles that have the ability to convert near-infrared (NIR, infrared) light energy into visible light or NIR of greater energy.
  • UCNP include those whose core is NaYF 4 , NaGdF 4 or NaGdFYb @ NaGdF4, doped with Yb, Er, Tb and / or Tm.
  • the UNCPs are NaGdF Yb 25% , Tm 0; 5 % @NaGdF, that is, a NaGdF 4 core doped with Yb and Tm and around a layer of NaGdF 4 .
  • nanoparticle means a particle of a hydrodynamic size of from 1 to 1000 nm, preferably from 30 nm to 250 nm, even more preferably between 30 nm and 100 nm or between 90 nm and 140 nm, most preferred of 60 nm or 150 nm.
  • hydrodynamic size refers to the diameter of the nucleus of the nanoparticles plus the surfactant on the surface.
  • the hydrodynamic size is determined for the nanoparticles suspended in an electrolyte. In said suspension, a distribution of electrolyte ions occurs around the surface of the nanoparticle. A first monolayer of ions of the opposite sign electrostatically bound to the nanoparticle and an area around the envelope solution that has an excess of ions of the opposite sign to that of the nanoparticle, outside of this zone the ion concentration is constant at all points and equal to that of the electrolyte.
  • the diameter of the monolayer and the surrounding area is the hydrodynamic size. The size is measured in 10 mM phosphate buffer, at 25 ° C, pH 7, 1, in a Malvern Zetasizer nanoZS device.
  • Iron oxide nanoparticles can be classified into superparamagnetic iron oxide nanoparticles (SPIO), which have a hydrodynamic size greater than 50 nm, and ultra-small superparamagnetic iron oxide nanoparticles (USPIO, ultrasmall superparamagnetic iron oxide) , which have a hydrodynamic size less than 50 nm.
  • SPIO superparamagnetic iron oxide nanoparticles
  • USPIO ultra-small superparamagnetic iron oxide
  • the zeta potential of the defined gelatin coated nanoparticles of the present invention is comprised between -5 mV and -60 mV.
  • the zeta potential of the nanoparticles is between -5 mV and -25 mV in the case of nanoparticles whose hydrodynamic size is between 30 nm and 70 nm, preferably 60 nm.
  • the zeta potential of the nanoparticles is between -30 mV and -60 mV in the case of nanoparticles whose hydrodynamic size is between 90 nm and 140 nm, preferably 110 nm.
  • the zeta potential of the nanoparticles is between -10 mV and -15 mV in the case of nanoparticles whose hydrodynamic size is between 30 nm and 70 nm, preferably 60 nm. More preferably, the zeta potential of the nanoparticles is between -40 mV and -50 mV in the case of nanoparticles whose hydrodynamic size is between 90 nm and 140 nm, preferably 110 nm.
  • zeta potential refers to a measure of the surface charge of the nanoparticles, determined.
  • the zeta potential is determined for the nanoparticles suspended in an electrolyte. In said suspension, a distribution of electrolyte ions occurs around the surface of the nanoparticle.
  • a first monolayer of ions of the opposite sign electrostatically bound to the nanoparticle and an area around the envelope solution that has an excess of ions of the opposite sign to that of the nanoparticle, outside of this zone the ion concentration is constant at all points and equal to that of the electrolyte.
  • the potential difference between the monolayer and the surrounding area is the zeta potential.
  • the zeta potential determines the degree of repulsion between adjacent loading nanoparticles of the same sign. If it drops more than a certain value, the attractive forces exceed those of repulsion and the nanoparticles are added.
  • the potential was measured in particle solutions with KN03 0.01 M, measuring electrophoretic mobility in Zetasizer nanoZS equipment
  • the gelatin-bonded nanoparticles whose core is iron oxide defined above have a transverse relaxivity between 40 mM ' V 1 and 80 mM ' V 1 , preferably between 50 mM ' V 1 and 60 mM ' V 1 .
  • the gelatin-bonded nanoparticles whose core is of UNCP defined above have a longitudinal relaxivity between 0.5 mM ' V 1 and 15 mM ' V 1 .
  • transverse relaxivity or 2 and the term “longitudinal relaxivity” or refer to a measure of the ability of nanoparticles to decrease the time of transverse relaxation (T 2 ) and longitudinal ( ⁇ /), respectively, of the surrounding protons per unit of nanoparticle concentration. This ability is relevant in the design of contrast agents for diagnostic imaging techniques such as magnetic resonance imaging (MRI).
  • MRI magnetic resonance imaging
  • a radio frequency pulse disturbs the alignment of the spins in balance, and spin relaxation back to balance is monitored at high temporal resolution.
  • Two relaxation processes occur, longitudinal relaxation ( ⁇ /) and transverse relaxation (T 2 ). The previous relaxation processes can be independently monitored to generate different magnetic resonance images.
  • Magnetic nanoparticles that decrease the relaxation times T ⁇ and T 2 .
  • Iron oxide nanoparticles affect the transverse relaxation time (T 2 ) of water.
  • T 2 transverse relaxation time
  • the effectiveness of a nanoparticle as a contrast agent is characterized by measuring the relajativity ⁇ r ⁇ yr 2 ) of the water protons surrounding the nanoparticle. Such relaxivity is inversely proportional to the individual relaxation time measured over a range of contrast concentrations.
  • the magnetic properties of iron oxide nuclei influence both the values of r and the values of r 2 .
  • Transversal and longitudinal relajativities are determined using a Bruker minispec mq60 relaxometer with a 1.5 T field.
  • gelatin of the nanoparticles of the present invention refers to a protein obtained by partial hydrolysis of collagen. Generally, collagen is extracted from the skin, bones, connective tissue, organs or intestines of some animals such as cows, pigs, chickens, among others.
  • the covalently bound gelatin in the nanoparticles of the invention has a Bloom force between 50 g Bloom and 500 g Bloom, preferably between 50 g Bloom and 200 g Bloom.
  • the "Bloom force” refers to the strength of the jelly. This force determines the weight (in grams) required by a probe (of a 1.27 cm diameter) to deflect the surface of the gelatin 4 mm without breaking it.
  • the invention is directed to nanoparticles as defined above, which further comprise a drug covalently bound to the gelatin.
  • the gelatin has amino (-NH 2 ) and carboxylic acid (-COOH) groups that can be covalently linked to drugs by reactions known to those skilled in the art.
  • drug refers to a chemical compound that induces a desired pharmacological and / or physiological effect.
  • drugs that can bind to the nanoparticles of the present invention are analgesics / antipyretics for the treatment of pain, febrile conditions, rheumatoid arthritis, osteoarthritis, osteoporosis, ankylosing spondylitis, rheumatoid syndromes, dysmenorrhea, musculoskeletal disorders, headaches, low back pain and odontalgias.
  • Gil ⁇ es de la Tourette and Korea such as haloperidol, loxapine, thioridazine, thiothixen, fluphenazine, trifluoperazine, chlorpromazine, perfenazine, and prochlorperazine; antiarrhythmic agents for the treatment of tachycardias and arrhythmias, such as bretilium, esmolol, verapamil, amiodarone, encainide, digoxin, digitoxin, mexyletin, disopyramide, procainamide, qui ⁇ i dyna, flecainide, tocainide, and lidocaine; antiarthritic agents for the treatment of rheumatoid arthritis, osteoarthritis, polyarthritis and ankylosing spondylitis, such as phenylbutazone, sulindac, penicillamine, salsalate, piroxicam, azathioprine, indomethacin
  • the drug is selected from the group consisting of ketotifen, traxanox, ipratropium, tiotropium, theophylline, infliximab, beclomethasone, prednisone, hydrocortisone, methylprednisolone, cortisone, dexamethasone, prednisolone, doxorubothroxyl thiothyloxothroxothroxyl thiothyloxytrothroxothroxyl thiothyloxytrothroxothroxothroxyl thiaxythioxyl thyrothoxycinothroxyl thiothyroxothyroxothyroxothyroxothyroxothyroxothyroxothyroxothyroxothothothroxyl thiatrokyrothroxyl thiatrokyrothroxyl thiatrokyrothroxyl thiatro
  • the drug is selected from the group consisting of doxorubicin and fluorouracil.
  • pharmaceutically acceptable salts refers to any pharmaceutically acceptable salt, which, upon administration to the recipient, can provide (directly or indirectly) a drug as described herein.
  • the preparation of salts can be carried out by methods known in the art.
  • pharmaceutically acceptable salts of compounds provided herein may be acid addition salts, base addition salts or metal salts, and may be synthesized from the original compound containing a basic or acidic moiety by conventional chemical methods.
  • such salts are prepared, for example, by reacting the free base or acid forms of those drugs with an appropriate stoichiometric amount of acid or base in water or in an organic solvent or in a mixture of the two.
  • non-aqueous media such as ether, ethyl acetate, ethanol, isopropanol or acetonitrile are preferred.
  • acid addition salts include mineral acid addition salts such as, for example, hydrochloride, hydrobromide, iodhydrate, sulfate, nitrate, phosphate, and organic acid addition salts such as, for example, acetate, maleate, fumarate. , citrate, oxalate, succinate, tartrate, malate, mandelate, methanesulfonate and p-toluenesulfonate.
  • alkali addition salts include inorganic salts such as, for example, ammonium, and organic alkaline salts such as, for example, ethylenediamine, ethanolamine, ⁇ , ⁇ -dialkylene ethanolamine, triethanolamine, glucamine and basic amino acid salts.
  • metal salts include, for example, sodium, potassium, calcium, magnesium, aluminum and lithium salts.
  • pharmaceutically acceptable refers to molecular entities and compositions that are physiologically tolerable and do not normally produce an allergic or similar unwanted reaction, such as gastric discomfort, dizziness and the like, when administered to a human being.
  • the term “pharmaceutically acceptable” means approved by a federal or state regulatory agency or listed in the US Pharmacopoeia. or other Pharmacopoeia generally recognized for use in animals and more particularly in humans.
  • the invention in another aspect, relates to a composition comprising nanoparticles as defined above, wherein the nanoparticles are monodispersed.
  • the term “monodispersed” refers to nanoparticles that have a PDI value (polydispersity index) equal to or less than 0.25, that is, they have substantially the same hydrodynamic size, where at least 75% of the nanoparticles have the same size, more preferably at least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, even more preferably at least 99%.
  • PDI value polydispersity index
  • the invention in another aspect, relates to a process for obtaining the nanoparticles of the invention defined above.
  • the main advantages of this procedure is its great reproducibility, especially in relation to the size and surface composition of the nanoparticles obtained by said process.
  • Said procedure comprises the following steps:
  • step (b) treating the dispersion obtained in step (a) with an oxidant
  • step (c) treating the mixture resulting from step (b) with an aqueous solution;
  • step (d) providing gelatin and reacting it with the nanoparticles obtained in step (c) in the presence of a carboxylic acid activator, wherein the gelatin is optionally covalently bound to a drug.
  • the first stage of the process, step (a) is the dispersion of nanoparticles, coated with an unsaturated monocarboxylic acid of formula (II), or a salt thereof, in a solvent.
  • the nanoparticles can be iron oxide or UC P, as defined above.
  • the nanoparticles are iron oxide.
  • the iron oxide nanoparticles refer to the iron oxide core as defined above, that is, the type of iron oxide can be selected from any of those customary in the field of nanoparticles and which are known to the expert in the matter, for example, Fe 3 0 4 (magnetite), a-Fe 2 0 3 (hematite), and-Fe 2 0 3 (magh emita), FeO (wustita), 8-Fe 2 0 3 and P -Fe 2 0 3 , among others, preferably Fe 3 0 4 and y-Fe 2 0 3 .
  • the UCNP nanoparticles refer to those defined above, whose core is NaYF 4 , NaGdF 4 or NaGdFYb @ NaGdF4, doped with Yb, Er, Tb and / or Tm.
  • the UNCPs are 5 % NaGdF Yb 2 , Tm 0; 5 % @NaGdF, that is, a NaGdF core doped with Yb and Tm and around a NaGdF layer.
  • the compound of formula (II) may be optionally substituted by one or more substituents, preferably 1, 2, 3 or 4 substituents, independently selected from the group consisting of alkyl, preferably an alkyl of 1 to 6 carbon atoms, such as methyl , ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl and n-hexyl; halogen, such as F, Cl, Br and I; nitro group (-N0 2 ); amino group (-NH 2 ); hydroxyl (-OH); and mercapto group (-SH).
  • substituents preferably 1, 2, 3 or 4 substituents, independently selected from the group consisting of alkyl, preferably an alkyl of 1 to 6 carbon atoms, such as methyl , ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, ter
  • the substituents are selected from the group consisting of alkyl, preferably an alkyl of 1 to 6 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tere-butyl, pentyl and hexyl; halogen, such as F, Cl, Br and I; and nitro group (- N0 2 ).
  • the solvent used for the dispersion of step (a) can be any usual solvent known to the person skilled in the art.
  • Non-limiting examples of such solvents are linear, cyclic or branched alkanes of 5 to 15 carbon atoms, preferably 5 to 7 carbon atoms, such as, for example, w-pentane, n-hexane, cyclohexane, "-cyclohexane, w- heptane and «-octane; chlorinated solvents of 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, with 1 to 6 chlorine atoms, preferably 1 to 4 chlorine atoms, such as chloroform and dichloromethane; and mixtures thereof.
  • the solvent is selected from alkane w-hexane, cyclohexane, chloroform, dichloromethane and mixtures thereof. More preferably, the solvent is selected from w-hexane, chloroform and mixtures thereof.
  • the iron oxide nanoparticles coated with unsaturated monocarboxylic acid of formula (II) used in step (a) can be obtained by methods known to those skilled in the art and described in the state of the art.
  • An example of such procedures is coprecipitation in aqueous medium, where ferric and ferrous ions are mixed in solutions of high basicity at room temperature or at elevated temperature, said coprecipitation can be performed in the presence of a protective or surfactant agent or can be subsequently coated the nanoparticles obtained with said protector or surfactant.
  • iron oxide nanoparticles Another common method of obtaining iron oxide nanoparticles is the thermal decomposition of organic iron compounds, such as iron N-nitrosophenylhydroxylamine (Fe (cup) 3 ), iron acetylacetonate (Fe (acac) 3 ), iron pentacarbonyl (Fe (CO) 5 ), iron trichloride (FeCl 3 ), iron oleate, and sodium oleate / iron trichloride, at elevated temperature.
  • thermal decomposition is carried out in the presence of a surfactant.
  • Another common procedure for the synthesis of iron oxide nanoparticles is sonochemical synthesis, where iron precursors decompose by action of a high frequency (for example, from 20 KHz to 10 MHz).
  • the unsaturated monocarboxylic acid of formula (II) can be present, iron oxide nanoparticles coated in said unsaturated monocarboxylic acid of formula (II) being formed in situ.
  • the iron oxide nanoparticles can be synthesized and subsequently coated with said unsaturated monocarboxylic acid of formula (II).
  • the iron oxide nanoparticles coated with the unsaturated monocarboxylic acid of formula (II) are obtained by thermal decomposition of an organic iron compound selected from the group consisting of iron N-nitrosophenylhydroxylamine, iron acetylacetonate, pentacarbonyl of iron, iron trichloride, in the presence of said unsaturated monocarboxylic acid of formula (II) and a surfactant, in a solvent at a temperature between 150 ° C and 400 ° C, preferably between 150 ° C and 300 ° C, even more preferably at 200 ° C.
  • surfactant refers to substances that influence by means of surface tension on the contact surface between two phases.
  • Surfactants are composed of a hydrophobic part and a hydrophilic part.
  • examples of surfactants are primary, secondary or tertiary alkylmonoamines, primary, secondary or tertiary alkylmonoalcohols, alkyldiols, alkylmonocarboxylic acid esters, glycol esters, wherein said surfactants can also be ethoxylated and where alkyl is as defined above.
  • the surfactants are selected from alquilmonoaminas and alkyldiols, more preferably alquilmonoaminas and C30-C10 alkyl diols , more preferably the surfactant is a Cio-C 3 monoalkylamine o- In a particular embodiment of the invention the surfactant is oleylamine.
  • the solvent used in obtaining the iron oxide nanoparticles coated with the unsaturated monocarboxylic acid of formula (II) is a high boiling solvent, preferably boiling point higher than the temperature at which said thermal decomposition is performed. , whose temperature has been previously defined between 150 ° C and 400 ° C.
  • the solvent must have a boiling point greater than 150 ° C.
  • the solvent has a boiling point greater than 150 ° C, more preferably greater than 200 ° C, more preferably greater than 250 ° C, more preferably greater than 300 ° C, more preferably greater than 350 ° C, even more preferably above 400 ° C.
  • Suitable solvents are benzyl ether, phenyl ether, octadecene, o-dichlorobenzene, octyl ether, triolctylamine and mixtures thereof.
  • the solvent is phenyl ether.
  • UCNP nanoparticles are obtained by hydrothermal decomposition of metal precursors. Such precursors can be nitrates, oxides, chlorides and, more often, fluoros.
  • the source of F can also vary greatly, using HF, NH 4 F, NH 4 HF 2 , NaBF 4 , KBF 4 or 1-butyl, 2-methylimidazolonium tetrafluorborate.
  • step (b) is, the treatment of the dispersion of nanoparticles obtained in the step (a) defined above, preferably iron oxide nanoparticles, with an oxidant .
  • oxidant should be understood as a reagent or mixture of reagents capable of producing an oxidative rupture of the unsaturation or double bond present in the monocarboxylic acid of formula (II), yielding a compound of formula (I) having an acid group carboxylic carbon on which said oxidative breakdown has occurred, as shown in scheme 1 below.
  • oxidants are well known to those skilled in the art and are described, for example in MB Smith and J. March, "March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure", 2007, 6th edition, Wiley-Interscience, New Jersey (USA), p. 1736-1745.
  • the oxidizing step (b) is selected from the group consisting of KMn0 4 os0 4/03 NaI0 4 / RU0 2 / NaTi0 4, O3, RUCI3 / O3 and PdCyCuC.
  • the oxidant of step (b) is KMn0 4 .
  • aqueous solution refers to a solution in which the solvent is water or mostly water, that is, where at least 55% of the volume of the solvent with respect to the total volume of solvent is water, preferably at least 60 %, more preferably at least 70%, more preferably at least 80%), more preferably at least 90%, even more preferably at least 95%), even more preferably at least 99%.
  • the solvent of said aqueous solution comprises water as a major component but can also comprise other water miscible solvents, such as alcohols, for example, methanol, ethanol, isopropanol, ethers, such as for example tetrahydrofuran, 2-methyltetrahydrofuran, dioxane and mixtures thereof. same.
  • the solvent of the aqueous solution is water.
  • the aqueous solution may also contain acids, bases or salts dissolved in the solvent.
  • the aqueous solution of step (c) is an acidic aqueous solution.
  • Acid aqueous solution should be understood as an aqueous solution as defined above, which has a pH of less than 7, preferably a pH in the range of 2.5 to 4.5, more preferably a pH in the range of 2.8 to 3.0.
  • the acidic aqueous solution comprises an acid or acidic buffer dissolved therein. Examples of acids are hydrochloric acid, acetic acid, nitric acid, sulfuric acid, phosphoric acid, among others.
  • the “acid buffer” refers to the mixture of a weak acid and its conjugate base, generally the sodium salt, which has the property of keeping the pH of a solution stable against the addition of relatively small amounts of strong acids or strong bases, such as acetic acid / acetate buffer, citric acid / citrate, phosphate buffer, etc.
  • the acidic aqueous solution of step (c) is an acetic acid / acetate buffer.
  • the aqueous solution of step (c) is a basic aqueous solution.
  • Base aqueous solution should be understood as an aqueous solution as defined above, which has a pH greater than 7, preferably a pH in the range of 9 to 12, more preferably a pH in the range. range from 9 to 10.
  • the basic aqueous solution comprises a base or basic buffer dissolved therein. Examples of bases are sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, among others.
  • the "basic buffer” refers to the mixture of a weak base and its conjugate acid which has the property of keeping the pH of a solution stable against the addition of relatively small amounts of strong acids or bases, such as ammonia / ammonium chloride.
  • the basic aqueous solution of step (c) is an aqueous NaOH solution.
  • step (d) The last stage of the process, step (d), is to provide gelatin and make it react with the nanoparticles obtained in the previous stage, step (c), in the presence of a carboxylic acid activator, wherein the gelatin is optionally covalently bound to a drug
  • gelatin to nanoparticles, preferably to iron oxide nanoparticles, is covalent, as defined above.
  • Said gelatin may comprise a drug covalently bound thereto, as defined above and where examples of said drugs are provided.
  • the drug covalently bound to gelatin is selected from the group consisting of doxorubicin and fluorouracil.
  • the gelatin used in step (d) is as defined above.
  • said gelatin has a Bloom force between 50 g Bloom and 500 g Bloom, preferably between 50 g Bloom and 200 g Bloom.
  • step (c) The reaction of the gelatin with the nanoparticles obtained in the previous stage, step (c), wherein said nanoparticles, preferably of iron oxide, are coated with an acid of formula (II), as defined above, consists of the formation of a covalent bond, amide bond -CO- H- from one of the -COOH groups of the compound of formula (I) and a -NH 2 group of the gelatin, that is, the gelatin binds to the compound of formula (I) by point (a), as shown above in structure (III).
  • amides from a carboxylic acid and an amine is known to those skilled in the art, and is described for example in MB Smith and J. March, "March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure", 2007, 6th edition, Wiley Interscience, New Jersey (USA), pp. 1430-1434.
  • the Most of the amide formation reactions from a carboxylic acid and an amine comprise the activation of the carboxylic acid, for example by formation of the acid chloride, anhydride or ester of the carboxylic acid, by activation with a carboxylic acid activator.
  • a “carboxylic acid activator” should be understood as a compound that increases the chemical reactivity of the carboxylic acid group in the amide formation reaction.
  • Such carboxylic acid activators can also be used in the presence of a secondary carboxylic acid activator, such as N-hydroxysulfosuccinimide (sulfo-HS), N-hydroxysuccinimide (HS), N-hydroxybenzotriazole (HOBt) and 4- (N, N- dimethylamino) pyridine (DMAP).
  • a secondary carboxylic acid activator such as N-hydroxysulfosuccinimide (sulfo-HS), N-hydroxysuccinimide (HS), N-hydroxybenzotriazole (HOBt) and 4- (N, N- dimethylamino) pyridine (DMAP).
  • acid addition salt should be understood as meaning any form of a compound, of EDC in the present case, in which it assumes an ionic or charged form, and is coupled with a counterion (anion).
  • acid addition salts examples include mineral acid addition salts such as, for example, hydrochloride, hydrobromide, iodhydrate, nitrate, phosphate, and organic acid addition salts such as, for example, acetate.
  • mineral acid addition salts such as, for example, hydrochloride, hydrobromide, iodhydrate, nitrate, phosphate, and organic acid addition salts such as, for example, acetate.
  • acetate Preferably it is a hydrochloride.
  • step (d) comprises: (di) mixing a carboxylic acid activator with a solvent;
  • step (d2) treating the nanoparticles obtained in step (c) with the mixture of step (di) and gelatin, wherein the gelatin is optionally covalently bound to a drug;
  • step (d3) isolate the nanoparticles resulting from step (d2).
  • Step (di) comprises mixing a carboxylic acid activator, defined above, with a solvent.
  • Suitable solvents for this reaction stage are selected from inert solvents in the reaction of amide formation from a carboxylic acid and an amine. Examples of such solvents are dimethylformamide, dichloromethane, dichloroethane, chloroform, n-butanol, dimethyl sulfoxide, tetrahydrofuran, dioxane, water and mixtures thereof.
  • the solvent used in this step is water.
  • the carboxylic acid activator is a carbodiimide, for example EDC or an acid addition salt thereof, DCC or DIC, and optionally further comprises a secondary carboxylic acid activator selected from the group consisting of in N-hydroxysulfosuccinimide, N-hydroxysuccinimide, N-hydroxybenzotriazole. More preferably, the carbodiimide is EDC or EDC hydrochloride and the secondary carboxylic acid activator is present. Even more preferably, carbodiimide is EDC hydrochloride and the secondary carboxylic acid activator is sulfo-N-hydroxysuccinimide.
  • step (c) The nanoparticles obtained in step (c), that is, nanoparticles coated with a carboxylic acid of formula (I), preferably iron oxide, are then treated with the mixture of step (di) and the gelatin defined above.
  • This treatment yields the covalent binding of gelatin to the nucleus by forming an amide bond from one of the -COOH groups of the compound of formula (I) that covers the nanoparticles obtained in step (c), preferably of iron oxide, and an H- 2 group of the gelatin (the binding takes place by point (a), as shown above in structure (III)), as defined above.
  • step (d3) wherein the nanoparticles obtained in step (d2), that is, gelatin coated nanoparticles covalently bonded to the core, preferably iron oxide, through an amide bond with a carboxylic acid of formula (I), are isolated.
  • This process of isolating the obtained nanoparticles can be carried out by conventional methods known to those skilled in the art, such as filtration, centrifugation, magnet separation, etc.
  • the nanoparticles obtained in step (d2) are isolated by separation with the help of a magnet.
  • the nanoparticles isolated in step (d3) can be purified, for example by washing with a solvent, for example water, until substantially reagents and / or residues are removed from the previous steps of the process.
  • a solvent for example water
  • the magnetic behavior of the nanoparticles of the invention make said nanoparticles suitable as contrast agents in diagnostic techniques by image, such as magnetic resonance imaging and optical fluorescence imaging.
  • Magnetic resonance imaging is a non-invasive diagnostic technique that uses the phenomenon of magnetic resonance imaging to obtain information about the structure and composition of the body to be analyzed. This information is processed by computers and transformed into images inside what has been analyzed. It uses magnetic fields to align the nuclear magnetization of (usually) water protons in the body. The radiofrequency fields are used to systematically alter the alignment of that magnetization, causing hydrogen nuclei to produce a rotational magnetic field detectable by the scanner. This signal can be manipulated with additional magnetic fields and thus build the images with more information.
  • Optical fluorescence imaging is a non-invasive diagnostic technique that uses the phenomenon of fluorescence to obtain information about the composition of the body to be analyzed.
  • This technique is based on the excitation of UCNP core nanoparticles as defined above with electromagnetic radiation in the near-infrared spectrum area (i.e., wavelength between 800 nm and 2500 nm), the conversion of said electromagnetic radiation in higher energy radiation (preferably of a wavelength between 400 nm and 900 nm).
  • the invention relates to a contrast agent comprising nanoparticles as defined above.
  • Said contrast agent can comprise both nanoparticles whose core is iron oxide, and nanoparticles whose core is UCNP, as a mixture thereof.
  • the contrast agent comprises nanoparticles whose core is iron oxide.
  • contrast agent refers to a substance or composition that is used to improve visibility on magnetic resonance imaging of structures or fluids within the body.
  • the magnetic properties of iron oxide nuclei influence both the values of r and the values of r 2 , as explained above. Therefore they improve the contrast of the MRI images.
  • UCNPs The fluorescent properties of UCNPs make them suitable for use in fluorescence-based imaging.
  • excitation occurs in the NIR while the emission occurs in light of greater energy, such as the visible or the NIR (of greater energy than the excitation).
  • the advantages of UCNP is a less damaging excitation, without autofluorescence and with high penetration capacity.
  • the invention relates to the use of the nanoparticles or the contrast agent of the present invention in the manufacture of a diagnostic agent for the diagnostic imaging of a pathology of the cardiovascular system.
  • the invention in another aspect, relates to or the contrast agent of the present invention, for use in the imaging diagnosis of a pathology of the cardiovascular system.
  • the "cardiovascular system” refers to the anatomical structure that drives and circulates the blood. In humans, the cardiovascular system is made up of the heart, blood vessels (arteries, veins and capillaries) and blood.
  • the "pathologies of the cardiovascular system” are for example ischemic heart disease, coronary heart disease, coronary heart disease, cardiac ischemia or myocardial ischemia, such as angina pectoris, Prinzmetal angina, acute myocardial infarction and Dressler syndrome; pulmonary circulation conditions, such as pulmonary hypertension, pulmonary thromboembolism and cor pulmonale; pericardium conditions such as pericarditis, pericardial effusion and pericardial tamponade; endocardial conditions and valvulopathies, such as endocarditis, mitral insufficiency, mitral prolapse, mitral stenosis, aortic insufficiency, aortic stenosis, tricuspid insufficiency, tricuspid stenosis, pulmonary insufficiency, pulmonary stenosis, hypereosinophilic syndrome, endomyocardial fibrosis, Loeff bidepic end
  • a particular embodiment of the invention relates to the use of the nanoparticles of the present invention in the manufacture of a diagnostic agent for the imaging diagnosis of a pathology of the cardiovascular system selected from the group consisting of pulmonary hypertension, aortic stenosis, pulmonary insufficiency, cerebrovascular conditions, thrombosis, atherosclerosis and heart failure.
  • the invention relates to nanoparticles or the contrast agent of the present invention for use in imaging diagnosis of a pathology of the cardiovascular system selected from the group consisting of pulmonary hypertension, aortic stenosis, pulmonary insufficiency, conditions cerebrovascular, thrombosis, atherosclerosis and heart failure.
  • the invention relates to the use of nanoparticles of the present invention, preferably those with an iron oxide core, which have a gelatin bound drug for preparing a medicament.
  • the invention relates to the use of nanoparticles of the present invention, preferably those with iron oxide core, which have a drug bonded to the gelatin for the manufacture of a medicament for the treatment and / or prevention of a disease that requires said medication.
  • the invention relates to nanoparticles of the present invention that have a drug bound to gelatin for use in medicine.
  • the disease to be treated will depend on the drug bound to the nanoparticles of the invention, that is, it will be a disease that can be treated with said drug. Based on the drugs bound to the nanoparticles and the diseases that can be treated with them defined above, the disease that will be treated with the nanoparticles bound to a drug according to the invention will be determined.
  • the antineoplastic doxorubicin and fluorouracil are used to treat cancer. Therefore, in a particular embodiment of the present invention, the use of the nanoparticles according to the invention that present a drug selected from doxorubicin and covalently linked fluorouracil for the manufacture of a medicament for the treatment of cancer is directed.
  • the invention It relates to nanoparticles of the present invention that have a drug selected from doxorubicin and covalently linked fluorouracil for use in the treatment of cancer.
  • the invention relates to a method of treating cancer in a subject suffering from said disease which comprises administering a therapeutically effective amount of nanoparticles of the present invention having a drug selected from doxorubicin and covalently linked fluorouracil.
  • therapeutically effective amount refers to the amount of active ingredient calculated to produce the desired effect and will generally be determined, among other reasons, by the characteristics of the active ingredient used and the therapeutic effect that is going to get.
  • nanoparticles of the present invention preferably those with iron oxide core, which have a drug bound to the gelatin, are also used in another aspect of the invention for the controlled release of the drug covalently bound to the gelatin.
  • the drug bound to gelatin has been defined above.
  • controlled release is meant that the drug releases at a specific site in an organism. Said controlled release is achieved through the magnetic properties of the nanoparticles of the present invention with the use of an external magnetic attraction or by functionalization of the nanoparticles with molecules that recognize targets on which to act. Controlled release allows reducing the dose of the drug and disappearance of unwanted side effects on other healthy cells or tissues, as well as facilitating the passage of the drug through biological barriers, such as the blood brain barrier.
  • MMP extracellular matrix metalloproteinases
  • a suitable substrate for determining the activity of MMPs is gelatin. Therefore, the NPs of the invention are useful for detecting in a sample the presence of MMP activity since degradation of the gelatin shell will result in a change in the properties of the particles that can be easily detectable.
  • Said MMP activity detection is selective of gelatinases, preferably MMP-2 or MMP-9, compared to other MMPs such as collagenases. Therefore, in another aspect of the invention it relates to a method of in vitro detection of MMP in a sample, comprising:
  • extracellular matrix metalloproteinase is a gelatinase, such as MMP-2 and MMP-9.
  • MMP extracellular matrix metalloproteinases
  • MMP zinc dependent endopeptidases.
  • MMP are MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-11, MMP-12, MMP-13, MMP-14, MMP- 15, MMP-16, MMP-17, MMP-18, MMP-19, MMP-20, MMP-21, MMP-23A, MMP-23B, MMP-24, MMP-25, MMP-26, MMP-27 and MMP-28. They are involved in the cleavage of cell surface receptors, release of apoptotic ligands and activation / deactivation of chemokines / cytokines.
  • MMP-2 and MMP-9 are relevant in metastases and MMP-1 in rheumatoid arthritis and osteoarthritis.
  • Gelatinases refer to enzymes capable of degrading gelatin to smaller polypeptides and / or their constituent amino acids. Examples of gelatinases are MMP-2 and MMP-9.
  • MMPs are selected from gelatinases, preferably MMP-2 and MMP-9, more preferably MMP-2.
  • the step (a) that consists in contacting the sample with the nanoparticles of the invention, either with nanoparticles as defined above with an iron oxide core or with a UC P core is performed by culturing said nanoparticles with the sample, preferably at a temperature between 5 ° C and 38 ° C, more preferably between 35 ° C and 38 ° C, and preferably for a period of time between 1 min and 3 h.
  • the change detected in step (b) is a change in the physical properties of the nanoparticles due to the interaction of the gelatin that covers the nanoparticles with the MMP when said MMPs are present in the sample to be analyzed, that is, due to the degradation of gelatin by said MMPs.
  • the degradation of the gelatin that covers the nanoparticles entails a change in the properties of said nanoparticles.
  • Said change is preferably a change in at least one of the properties of the nanoparticles, selected from the group consisting of hydrodynamic size, zeta potential, transverse relaxivity (r 2 ) and transverse relaxation (T 2 ) (in the case of nanoparticles whose core is iron oxide), longitudinal relaxivity (r ⁇ ) and longitudinal relaxation (Ti) (in the case of nanoparticles whose core is UC P), as defined above, and fluorescence (in the case of nanoparticles whose core is UCNP).
  • the change is in fluorescence of the nanoparticles, and therefore the nanoparticles used in step (a) have a UCNP core.
  • the change is in transverse relaxation, and therefore the nanoparticles used in step (a) have a Fe 3 04 core.
  • the change refers to both an increase and a decrease in the property detected in step (b) with respect to the same property in the nanoparticles before interacting with the sample.
  • a change in the fluorescence of the core nanoparticles of UCNP refers to a change between the intensity and / or wavelength of the fluorescence emission after an excitation between 800 nm and 1200 nm of the nanoparticles before interacting with the sample with respect to at the intensity and / or wavelength of the fluorescence emission after an excitation between 800 nm and 1200 nm of the nanoparticle mixture and shown in step (b).
  • said ranges when expressing the range of values of a parameter between two values or extremes, said ranges include the values of the extremes in addition to the intermediate values defined by said extremes.
  • Hydrodynamic diameter characterization was carried out by dynamic light scattering measurements using a Nano Sizer ZS (Malvern) and nanoparticle dispersions at a concentration of 0.5 mM Fe in water.
  • the particles 0.5 mM Fe were diluted in a 0.01 M solution of KNO 3 .
  • HNO 3 or KOH were used for pH variations during the measurement of zeta potential.
  • the samples were analyzed by Fourier transform infrared spectroscopy (FTIR) using a Perkin Elmer 400 device, by direct measurement of the powder samples.
  • FTIR Fourier transform infrared spectroscopy
  • thermogravimetric analysis of the nanoparticles, in powder form was performed in a Seiko TG / ATD 320U, SSC 5200 equipment. The analysis was carried out from room temperature to 1000 ° C at a rate of 10 ° C / min in a flow of constant air of 100 mL / min.
  • Iron acetylacetonate (Fe (acac) 3) was used as precursor and phenyl ether as solvent.
  • a mixture of 0.71 g of Fe (acac) 3 (2 mmol), 2.38 g of 1,2-hexadecanediol (10 mmol), 1.69 g of oleic acid (6 mmol), 1.6 g of Oleilamine (6 mmol) and 20 mL of phenyl ether were mixed in a three-mouth flask. Then the mixture is heated with mechanical stirring and nitrogen flow to a temperature of 200 ° C. This temperature was maintained for 120 minutes and then increased to reflux, 254 ° C, for 30 minutes under a nitrogen atmosphere. Finally the reaction was cooled to room temperature. To remove the by-products formed, the reaction was added to the ethanol mixture and centrifuged at 8500 rpm for 10 minutes. Finally, the particles were mixed with 20 mL of hexane to obtain a stable suspension.
  • Example 3 Oxidation of iron oxide nanoparticles for stabilization in water (acid route). They were dissolved in chloroform (60 mL), 0.3 g of ⁇ 0 4 (1.9 mmol) and 0.8 g (4.3 mmol) of benzyltrimethylammonium chloride. The mixture was added to a concentrated solution (10 mg / mL Fe) of hydrophobic nanoparticles obtained in Example 1, the Reaction was carried out with mechanical stirring and at reflux for 4 hours. After that time 50 mL of AcOH / AcO buffer " (pH 2.9) was added and stirring and heating was continued for 20 hours. After that time the reaction was cooled and NaHS0 3 (3 x 5 mL) was added to remove the rest of permanganate Finally, the dispersion was washed several times with NaOH solution (1%) and water to obtain a stable dispersion in water.
  • thermogravimetric analysis of the obtained nanoparticles is shown in Figure 1.
  • the magnetized sample is redispersed in 8 mL of 10 mM phosphate buffer, at pH 7 and the purification process is repeated 3 more times. Finally a sample dispersed in 8 mL of phosphate buffer and sonic for 3 hours to undo the possible aggregates formed.
  • thermogravimetric analysis of the nanoparticles obtained is shown in Figure 1.
  • Example 7 Residence time in blood. 0.8 mL of nanoparticles of example 6 obtained from the nanoparticles of example 3 were injected at a concentration of 1 mg / mL in rats. Signal intensity in the liver was measured by magnetic resonance imaging (MRI). A reduction in signal intensity is expected when nanoparticles reach the liver indicating a loss of nanoparticles in the blood due to recognition by the immune system. Blood samples were taken from the rats at different times, mixed with heparin and the T 2 times measured with a Bruker mq60 relaxometer. The intensity of the signal in the liver as a function of time is shown in Figure 6. The values of R 2 in blood as a function of time are shown in Figure 7. The MRI kinetics images show the results obtained with the nanoparticles with and without gelatin coating (from example 3 and example 6 obtained at from nanopar 'ticles of example 3, respectively) ( Figures 8 and 9).
  • Example 9 Study of the evolution of the hydrodynamic size and zeta potential of the core nanoparticles of Fe30 4 as a function of the gelatin concentration.
  • Example 10 Detection test of MMP-2.
  • nanoparticles of example 6 obtained from the nanoparticles of example 3 were used and five solutions were prepared, each with 200 ⁇ . of nanoparticles at 0.05 mg / mL Fe, to which MMP-2 were added at different concentrations (50, 37.5, 25, 6.25, 1.25 ng / mL). All solutions were dispersed in a solution of CaCl 2 (0.10 mM) in phosphate buffer (pH 7.1, 10 mM) to obtain a final volume in all 400 samples. Finally the solutions were incubated at 37 ° C in Relaxometry tubes and the T 2 was measured every 15 minutes in a relaxometer for 4 hours. The results are shown in Figure 12.
  • Example 11 Detection test of MMP-9.
  • the nanoparticles of example 6 obtained from the nanoparticles of example 3 were used and five solutions were prepared, each with 200 ⁇ . of nanoparticles at 0.05 mg / mL Fe, to which MMP-9 were added at different concentrations (50, 37.5, 25, 6.25, 1.25 ng / mL). All solutions were dispersed in a solution of CaCl 2 (0.10 mM) in phosphate buffer (pH 7.1, 10 mM) to obtain a final volume in all samples of 400 ⁇ L. Finally the solutions were incubated at 37 ° C in relaxometry tubes and the T 2 was measured every 15 minutes in a relaxometer for 4 hours. The results obtained were similar to those represented in Figure 12. A large variation of T 2 after the incubation time and proportional to the concentration of MMP-9.
  • the nanoparticles of example 6 obtained from the nanoparticles of example 3 were used and five solutions were prepared, each with 200 ⁇ L of nanoparticles at 0.05 mg / mL Fe, to which MMP-1 were added to different concentrations (5000, 500, 25, and 1.25 ng / mL). All solutions were dispersed in a solution of CaCl 2 (0.10 mM) in phosphate buffer (pH 7.1, 10 mM) to obtain a final volume in all samples of 400 Finally the solutions were incubated at 37 ° C in relaxometry tubes and the T 2 was measured every 15 minutes in a relaxometer for 4 hours. The results are shown in Figure 13.

Abstract

La presente invención se relaciona con nanopartículas que comprenden un núcleo y un recubrimiento de gelatina, en donde la gelatina está unida covalentemente al núcleo y en donde el núcleo se selecciona del grupo que consiste en un núcleo de óxido de hierro y un núcleo de nanopartículas fosforescentes de conversión ascendente (up-converting nanophosphor); así como procedimientos de obtención y usos de las mismas.

Description

NANOPARTÍCULAS RECUBIERTAS DE GELATINA
Campo de la invención La presente invención se relaciona con nanopartículas recubiertas de gelatina, en donde la gelatina está unida covalentemente, el proceso de obtención de dichas nanopartículas, así como su uso en técnicas de diagnóstico por imagen y en la liberación controlada de fármacos. Antecedentes de la invención
En los últimos años, ha aumentado el uso de nanopartículas de óxido de hierro, que presentan comportamiento superparamagnético, en aplicaciones biomédicas tales como agentes de contraste para imagen por resonancia magnética (MRI), reconocimiento celular y administración de fármacos, así como el uso de up-converting nanophosphors (UCNP, nanopartículas fosforescentes de conversión ascendente) para imagen por fluorescencia óptica.
Las nanopartículas desnudasen general no son estables en agua a pH neutro o en fluidos fisiológicos, en donde tienden a aglomerarse y precipitar, por ello es necesario estabilizar estas nanopartículas, ya sea mediante estabilización estérica o electrostática.
Se han estudiado diferentes recubrimientos para modificar la superficie de las nanopartículas que permitan además estabilizarlas, aumentar su biocompatibilidad y mejorar la captación celular [Laurent S. et al. Future Med. Chem. 2010, 2, 427-449]. La estabilización y solubilización en agua generalmente se realiza por recubrimiento con moléculas orgánicas, incluyendo moléculas orgánicas pequeñas, tensioactivos, polímeros, biomoléculas, recubrimientos inorgánicos tales como sílica, sustancias metálicas o no metálicas, óxido de metal o sulfuro de metal. La funcionalización con polímeros permite diseñar las propiedades de las nanopartículas.
Se han descrito nanopartículas de óxido de hierro solubles en agua funcionalizadas con ácido azelaico, por oxidación de nanopartículas de óxido de hierro recubiertas con ácido oleico [Herranz F. et al. Contrast Media Mol. Imaging 2008, 3, 215-222]. Dichas nanopartículas son compatibles con medios acuosos. También se han descrito nanopartículas de óxido de hierro recubiertas de gelatina [Gaire B. et al. J. Microencapsul. 2011, 28, 240-247], en donde la carga superficial inducida por el pH de la gelatina se utiliza para la adsorción de la misma sobre la superficie de la nanopartícula de óxido de hierro. Las nanopartículas obtenidas son estables, solubles en agua y presentan una distribución estrecha del tamaño de partícula. Las ventajas mencionadas en este documento en relación al recubrimiento de gelatina son una disminución de la toxicidad y un aumento de la captación celular.
Wu y colaboradores [Wu W. et al. Nanoscale Res. Lett. 2008, 3, 397-415] han descrito nanopartículas de óxido de hierro funcionalizadas con materiales orgánicos o inorgánicos y mencionan también la posibilidad de funcionalizar las nanopartículas con gelatina, lo que proporcionaría las ventajas de su uso como agente gelificante, emulsionante hidrofílico así como una mayor biocompatibilidad.
El documento WO 2009/040811 describe nanopartículas magnéticas compuestas de gelatina/óxido de hierro, en donde la gelatina proporciona estabilización adicional frente a la aglomeración de las nanopartículas, así como la presencia de grupos funcionales para la unión de ligandos apropiados, como por ejemplo adriamicina.
El documento WO 2009/072982 describe el recubrimiento de nanopartículas de óxido de hierro/gelatina con gelatina que se somete a una etapa posterior de reticulación por acción de una transglutaminasa. Las principales ventajas descritas para las nanopartículas de óxido de hierro recubiertas con gelatina es una estabilización adicional frente a la aglomeración así como la presencia de grupos funcionales para la unión de ligandos.
A pesar de que se han descrito nanopartículas recubiertas con moléculas orgánicas, existe la necesidad de desarrollar nuevas nanopartículas para mejorar la estabilidad en medios acuosos, toxicidad, biocompatibilidad y sobre todo el tiempo de permanencia en sangre de las nanopartículas descritas en el estado de la técnica, a la vez que se proporciona una unión fuerte y duradera entre el recubrimiento y el núcleo de la nanopartícula. Los autores de la presente invención han resuelto esta necesidad proporcionando nanopartículas en donde el núcleo de las mismas está unido covalentemente a un recubrimiento de gelatina.
Sumario de la invención En un primer aspecto, la invención se relaciona con una nanopartícula que comprende un núcleo y un recubrimiento de gelatina, en donde la gelatina está unida covalentemente al núcleo y en donde el núcleo se selecciona de entre un núcleo de óxido de hierro y un núcleo de UC P.
En un segundo aspecto, la invención se relaciona con un procedimiento de obtención de nanopartículas según se han definido en el primer aspecto, que comprende: (a) dispersar nanopartículas en donde el núcleo de las mismas se selecciona de entre un núcleo de óxido de hierro y un núcleo de UCNP y dicho núcleo está recubierto de un ácido monocarboxílico insaturado de fórmula (II),o una sal del mismo, en un disolvente,
Figure imgf000004_0001
en donde n y m se seleccionan independientemente de un número de 1 a 10;
(b) tratar con un oxidante la dispersión de obtenida en la etapa (a);
(c) tratar la mezcla resultante de la etapa (b) con una disolución acuosa; y
(d) proveer gelatina y hacerla reaccionar con las nanopartículas obtenidas en la etapa (c) en presencia de un activador de ácido carboxílico, en donde la gelatina opcionalmente está unida covalentemente a un fármaco.
En un tercer aspecto, la invención se relaciona con una composición que comprende nanopartículas según se han definido en el primer aspecto, en donde las nanopartículas son monodispersas.
En un cuarto aspecto, la invención se relaciona con un agente de contraste que comprende las nanopartículas definidas en el primer aspecto.
En otro aspecto, la invención se relaciona con el uso de las nanopartículas definidas en el primer aspecto, o del agente de contraste definido en el cuarto aspecto, para el diagnóstico por imagen de una patología del sistema cardiovascular. En otro aspecto, la invención se relaciona con el uso de las nanopartículas definidas en el primer aspecto, en donde dichas nanopartículas comprenden además un fármaco unido covalentemente a la gelatina, para preparar un medicamento.
En otro aspecto, la invención se relaciona con el uso de las nanopartículas definidas en el primer aspecto, en donde dichas nanopartículas comprenden además un fármaco unido covalentemente a la gelatina, para la fabricación de un medicamento para el tratamiento y/o prevención de una enfermedad que requiera dicho medicamento.
En otro aspecto, la invención se relaciona con el uso de de las nanopartículas definidas en el primer aspecto, en donde dichas nanopartículas comprenden además un fármaco unido covalentemente a la gelatina, para la liberación controlada del fármaco unido covalentemente a la gelatina.
En otro aspecto, la invención se relaciona con un método de detección in vitro de una metaloproteinasa de la matriz extracelular en una muestra que comprende:
(a) contactar la muestra con nanopartículas según se han definido en el primer aspecto; y
(b) detectar un cambio en al menos una propiedad de la nanopartícula,
en donde la metaloproteinasa de la matriz extracelular es una gelatinasa.
Descripción de los dibujos
La Figura 1 muestra el análisis termogravimétrico de las nanopartículas recubiertas de ácido azelaico obtenidas en el ejemplo 3 y de las nanopartículas recubiertas de gelatina obtenidas en el ejemplo 6 a partir de las nanopartículas del ejemplo 3.
La Figura 2 muestra las imágenes TEM de las nanopartículas recubiertas de gelatina del ejemplo 6 obtenidas a partir de las nanopartículas del ejemplo 3.
La Figura 3 muestra las imágenes TEM de las nanopartículas recubiertas de gelatina del ejemplo 6 obtenidas a partir de las nanopartículas del ejemplo 3.
La Figura 4 muestra el espectro de FTIR de nanopartículas recubiertas de gelatina del ejemplo 6 obtenidas a partir de las nanopartículas del ejemplo 3 en comparación con la gelatina libre. La Figura 5 muestra las medidas del Magnetómetro de Muestra Vibrante (VSM) de las nanopartículas recubiertas de gelatina del ejemplo 6 obtenidas a partir de las nanopartículas del ejemplo 3.
La Figura 6 muestra la intensidad de la señal de nanopartículas recubiertas de gelatina del ejemplo 6 obtenidas a partir de las nanopartículas del ejemplo 3 en el hígado.
La Figura 7 muestra los valores de R2 en sangre de nanopartículas recubiertas de gelatina del ejemplo 6 obtenidas a partir de las nanopartículas del ejemplo 3.
La Figura 8 muestra imágenes cinéticas de IRM (imagen por resonancia magnética) de nanopartículas de óxido de hierro sin gelatina obtenidas en el ejemplo 3.
La Figura 9 muestra imágenes cinéticas de IRM de nanopartículas de óxido de hierro recubiertas de gelatina del ejemplo 6 obtenidas a partir de nanopartículas del ejemplo 3.
La Figura 10 muestra la biodistribución de las nanopartículas de óxido de hierro recubiertas de gelatina del ejemplo 6 obtenidas a partir de nanopartículas del ejemplo 3.
La Figura 11 muestra la evolución del tamaño hidrodinámico y el potencial zeta de las nanopartículas de núcleo de Fe3C"4 en función de la concentración de gelatina estudiado en el ejemplo 9.
La Figura 12 muestra los valores de T2 de nanopartículas de óxido de hierro recubiertas de gelatina en función de la concentración de MMP-2 obtenidos en el ejemplo 10.
La Figura 13 muestra los valores de T2 de nanopartículas de óxido de hierro recubiertas de gelatina en función de la concentración de MMP-1 obtenidos en el ejemplo 12.
Descripción detallada de la invención
Nanopartículas recubiertas de gelatina En un primer aspecto, la invención se relaciona con una nanopartícula que comprende un núcleo y un recubrimiento de gelatina, en donde la gelatina está unida covalentemente al núcleo y en donde el núcleo se selecciona del grupo que consiste en un núcleo de óxido de hierro y núcleo de UCNP.
La protección de nanopartículas de óxido de hierro y UCNP desnudas es un procedimiento habitual en el estado de la técnica ya que las nanopartículas de óxido de hierro y UCNP presentan una razón entre la superficie y el volumen elevada, hecho que implica una elevada energía superficial. En consecuencia, tales nanopartículas desnudas tienden a agregarse para minimizar la energía superficial. Además, las nanopartículas de óxido de hierro desnudas se oxidan fácilmente en presencia de aire, produciéndose con frecuencia una pérdida de magnetismo y dispersividad. Por ello es habitual proteger las nanopartículas con un recubrimiento con el fin de aumentar la estabilidad de las mismas.
Recubrimientos habituales conocidos por el experto en la materia son compuestos orgánicos que presentan un grupo hidrofílico, tales como un grupo hidroxilo (-OH), ácido carboxílico (-COOH), fosfato (-P(0)(OH)2), silanol (-SOH), entre otros, y un grupo hidrofóbico, tal como alquilo, alquenilo, alquinilo y arilo.
El término "alquilo" se refiere a un radical de cadena hidrocarbonada lineal, cíclica o ramificada que consiste en átomos de carbono e hidrógeno, que no contiene insaturación, que tiene 1 a 30, preferiblemente de 5 a 20 átomos de carbono, y que está unido al resto de la molécula mediante un enlace sencillo. Los radicales alquilo pueden estar opcionalmente sustituidos por uno o más sustituyentes tales como halógeno, por ejemplo F, Cl, Br y I, carbonilo y nitro.
El término "alquenilo" se refiere a un radical de cadena hidrocarbonada lineal, cíclica o ramificada que consiste en átomos de carbono e hidrógeno, que contiene al menos un doble enlace, que tiene 2 a 30, preferiblemente de 5 a 20 átomos de carbono, y que está unido al resto de la molécula mediante un enlace sencillo. Los radicales alquilo pueden estar opcionalmente sustituidos por uno o más sustituyentes tales como halógeno, por ejemplo F, Cl, Br y I, carbonilo y nitro.
El término "alquinilo" se refiere a un radical de cadena hidrocarbonada lineal, cíclica o ramificada que consiste en átomos de carbono e hidrógeno, que contiene al menos un triple enlace, que tiene 2 a 30, preferiblemente de 5 a 20 átomos de carbono, y que está unido al resto de la molécula mediante un enlace sencillo. Los radicales alquilo pueden estar opcionalmente sustituidos por uno o más sustituyentes tales como halógeno, por ejemplo F, Cl, Br y I, carbonilo y nitro.
El término "arilo" significa un radical hidrocarbonado monocíclico o policíclico que comprende 1, 2, 3 ó 4 núcleos aromáticos, dichos núcleos estando unidos con, y/o covalentemente enlazados uno con el otro, cada uno de dichos núcleos estando opcional e independientemente sustituidos por uno o más sustituyentes tales como halógeno, por ejemplo F, Cl, Br y I, carbonilo y nitro.
El término "covalente", "unión covalente", "unido/a covalentemente", debe entenderse como la formación de un enlace entre dos átomos o grupos de átomos por compartición de pares de electrones.
La unión covalente entre el recubrimiento de gelatina y el núcleo de la nanopartícula de la presente invención se refiere a la unión a través de un enlace covalente entre un grupo amino o ácido carboxílico de la gelatina del recubrimiento y un grupo de la capa de protección de la nanopartícula capaz de formar un enlace covalente con dicho grupo amino o ácido carboxílico de la gelatina, tal como un ácido carboxílico, un amino, un hidroxilo, un aldehido, una cetona, un haloalquilo, etc.
En una realización de la invención, la unión covalente de la gelatina al núcleo es a través de un puente de ácido dicarboxílico de fórmula (I),
Figure imgf000008_0001
(I)
en donde n es un número de 1 a 10, más preferiblemente n se selecciona de un número de 3 a 7, aún más preferiblemente n es 5.
El compuesto de fórmula (I) puede estar opcionalmente sustituido por uno o más sustituyentes, preferentemente 1, 2, 3 o 4 sustituyentes, seleccionados independientemente del grupo que consiste en alquilo, preferentemente un alquilo de 1 a 6 átomos de carbono, tal como metilo, etilo, propilo, isopropilo, butilo, sec-butilo, tere- butilo, pentilo y hexilo; halógeno, tal como F, Cl, Br y I; grupo nitro (-N02); grupo amino (- H2); hidroxilo (-OH); y grupo mercapto (-SH). Preferentemente, los sustituyentes se seleccionan del grupo que consiste en alquilo, preferentemente un alquilo de 1 a 6 átomos de carbono, tal como metilo, etilo, propilo, isopropilo, butilo, sec-butilo, tere-butilo, pentilo y hexilo; halógeno, tal como F, Cl, Br y I; y grupo nitro (-
N02).
La unión covalente entre la gelatina del recubrimiento y el núcleo de la nanopartícula que se produce a través del ácido dicarboxílico de fórmula (I) hace referencia a la formación de un enlace amida -CO- H- a partir de uno de los grupos - COOH del compuesto de fórmula (I) y un grupo -NH2 de la gelatina, es decir, la gelatina se une al compuesto de fórmula (I) por el punto (a) que se muestra en la estructura (III) (en donde la línea discontinua indica el enlace formado). Por otra parte, el otro grupo -COOH del compuesto de fórmula (I) interacciona con la superficie del núcleo de óxido de hierro de forma iónica/covalente, es decir, el núcleo de óxido de hierro se une al compuesto de fórmula (I) por el punto (b) que se muestra en la estructura (III) (en donde la línea discontinua indica el enlace formado).
Figure imgf000009_0001
(III) El núcleo de las nanopartículas de la presente invención es de óxido de hierro o
UC P.
El tipo de óxido de hierro se puede seleccionar de cualquiera de los habituales en el campo de las nanopartículas y que son conocidos por el experto en la materia, como por ejemplo, Fe304 (magnetita), a-Fe203 (hematita), y-Fe203 (maghemita), FeO (wustita), 8-Fe203 y P-Fe203, entre otros. En una realización preferida de la invención, el óxido de hierro se selecciona de Fe304 y y-Fe203.
El término "up-converting nanophosphor" o "UCNP" o "nanopartículas fosforescentes de conversión ascendente" hace referencia a nanopartículas de tierras raras que presentan la capacidad de convertir energía de luz del infrarrojo cercano (NIR, mar infrared) en luz visible o NIR de mayor energía. Ejemplos de UCNP son aquellas cuyo núcleo es de NaYF4, NaGdF4o NaGdFYb@NaGdF4,dopados con Yb, Er, Tb y/o Tm. Preferiblemente, las UNCP son NaGdF Yb25%,Tm0;5%@NaGdF , es decir, un núcleo de NaGdF4 dopado con Yb y Tm y alrededor una capa de NaGdF4.
En el contexto de la presente invención, debe entenderse por "nanopartícula" una partícula de un tamaño hidrodinámico de desde 1 hasta 1000 nm, preferiblemente de 30 nm a 250 nm, aún más preferiblemente entre 30 nm y 100 nm o entre 90 nm y 140 nm, lo más preferido de 60 nm o 150 nm.
El término "tamaño hidrodinámico" hace referencia al diámetro del núcleo de las nanopartículas más el surfactante en la superficie. El tamaño hidrodinámico se determina para las nanopartículas en suspensión en un electrolito. En dicha suspensión se produce una distribución de iones del electrolito alrededor de la superficie de la nanopartícula. Un primera monocapa de iones de signo contrario unidos electrostáticamente a la nanopartícula y una zona alrededor de disolución envolvente que tiene un exceso de iones de signo contrario al de la nanopartícula, fuera de esta zona la concentración de iones es constante en todos los puntos e igual a la del electrolito. El diámetro de la monocapa y la zona envolvente es el tamaño hidrodinámico. El tamaño se mide en tampón fosfato 10 mM, a 25 °C, pH 7, 1, en un equipo Zetasizer nanoZS de Malvern.
Las nanopartículas de óxido de hierro se pueden clasificar en nanopartículas de óxido de hierro superparamagnéticas (SPIO, supermagnetic iron oxide), que presentan un tamaño hidrodinámico mayor que 50 nm, y nanopartículas de óxido de hierro superparamagnéticas ultrapequeñas (USPIO, ultrasmall superparamagnetic iron oxide), que presentan un tamaño hidrodinámico menor que 50 nm.
En una realización preferida de la invención, el potencial zeta de las nanopartículas recubiertas de gelatina definidas de la presente invención está comprendido entre -5 mV y -60 mV. Preferiblemente, el potencial zeta de las nanopartículas está comprendido entre -5 mV y -25 mV en el caso de nanopartículas cuyo tamaño hidrodinámico está comprendido entre 30 nm y 70 nm, preferiblemente 60 nm. Preferiblemente, el potencial zeta de las nanopartículas está comprendido entre -30 mV y -60 mV en el caso de nanopartículas cuyo tamaño hidrodinámico está comprendido entre 90 nm y 140 nm, preferiblemente 110 nm. Más preferiblemente, el potencial zeta de las nanopartículas está comprendido entre -10 mV y -15 mV en el caso de nanopartículas cuyo tamaño hidrodinámico está comprendido entre 30 nm y 70 nm, preferiblemente 60 nm. Más preferiblemente, el potencial zeta de las nanopartículas está comprendido entre -40 mV y -50 mV en el caso de nanopartículas cuyo tamaño hidrodinámico está comprendido entre 90 nm y 140 nm, preferiblemente 110 nm.
El término "potencial zeta" o ζ hace referencia a una medida de la carga superficial de las nanopartículas, determinado. El potencial zeta se determina para las nanopartículas en suspensión en un electrolito. En dicha suspensión se produce una distribución de iones del electrolito alrededor de la superficie de la nanopartícula. Un primera monocapa de iones de signo contrario unidos electrostáticamente a la nanopartícula y una zona alrededor de disolución envolvente que tiene un exceso de iones de signo contrario al de la nanopartícula, fuera de esta zona la concentración de iones es constante en todos los puntos e igual a la del electrolito. La diferencia de potencial entre la monocapa y la zona envolvente es el potencial zeta. El potencial zeta determina el grado de repulsión entre nanopartículas adyacentes de carga del mismo signo. Si baja más de un valor determinado, las fuerzas de atracción exceden a las de repulsión y las nanopartículas se agregan. El potencial se midió en disoluciones de las partículas con KN03 0.01 M, midiendo la movilidad electroforética en equipo Zetasizer nanoZS del Malvern
En una realización preferida de la invención, las nanopartículas unidas covalentemente a gelatina cuyo núcleo es de óxido de hierro definidas anteriormente, presentan una relajatividad transversal comprendida entre 40 mM'V1 y 80 mM'V1, preferiblemente entre 50 mM'V1 y 60 mM'V1.
En una realización particular de la invención, las nanopartículas unidas covalentemente a gelatina cuyo núcleo es de UNCP definidas anteriormente, presentan una relajatividad longitudinal comprendida entre 0,5 mM'V1 y 15 mM'V1.
El término "relajatividad transversal" o r2 y el término "relajatividad longitudinal" o r¡ hacen referencia a una medida de la capacidad de las nanopartículas de disminuir el tiempo de relajación transversal (T2) y longitudinal (Γ/), respectivamente, de los protones circundantes por unidad de concentración de nanopartícula. Esta capacidad es relevante en el diseño de agentes de contraste para técnicas de diagnóstico por imagen como la imagen por resonancia magnética (IRM). La IRM utiliza los espines magnéticos de los núcleos de hidrógeno alineados por un campo magnético externo. Un pulso de radiofrecuencia perturba el alineamiento de los espines en el equilibrio, y la relajación del espín de vuelta al equilibrio se monitoriza a elevada resolución temporal. Ocurren dos procesos de relajación, la relajación longitudinal (Γ/) y la relajación transversal (T2). Se pueden monitorizar independientemente los anteriores procesos de relajación para generar diferentes imágenes de resonancia magnética. Las variaciones locales en la densidad del espín de los protones, atribuidas en gran medida a moléculas de agua y causadas por variaciones en el entorno biológico, afectan a las respuestas de relajación a partir de las cuales se pueden construir las imágenes. Una mejora en el contraste de la IRM se puede lograr utilizando nanopartículas magnéticas que disminuyen los tiempos de relajación T¡ yT2. Las nanopartículas de óxido de hierro afectan el tiempo de relajación transversal (T2) del agua. La eficacia de una nanopartícula como agente de contraste se caracteriza midiendo la relajatividad {r¡ y r2) de los protones de agua que rodean a la nanopartícula. Dicha relajatividad es inversamente proporcional al tiempo de relajación individuales medidas a lo largo de un rango de concentraciones del contraste. Las propiedades magnéticas de los núcleos de óxido de hierro influyen tanto sobre los valores de r¡ como sobre los valores de r2. Cuanto mayor es el valor de r2 mejor es el contraste negativo de las imágenes y cuando mayor es el valor de r¡ mejor es el contraste positivo. Según el valor de la relación r2lr¡ se puede realizar contraste positivo también con las partículas de óxido de hierro si dicho valor es pequeño. Estos valores de relajatividad varían en función del tamaño de las nanopartículas.
Las relajatividades transversal y longitudinal se determinan empleando un relaxómetro minispec mq60 de Bruker con una campo de 1.5 T.
El término "gelatina" de las nanopartículas de la presente invención se refiere a una proteína obtenida por hidrólisis parcial de colágeno. Generalmente, el colágeno se extrae de la piel, huesos, tejido conectivo, órganos o intestinos de algunos animales tales como vacas, cerdos, pollos, entre otros.
En otra realización preferida, la gelatina unida covalentemente en las nanopartículas de la invención presenta una fuerza Bloom comprendida entre 50 g Bloom y 500 g Bloom, preferiblemente entre 50 g Bloom y 200 g Bloom.
La "fuerza Bloom" hace referencia a la fuerza de la gelatina. Esta fuerza determina el peso (en gramos) necesario por una sonda (de un diámetro 1,27 cm) para desviar la superficie de la gelatina 4 mm sin romperla. En otra realización, la invención se dirige a nanopartículas según se han definido anteriormente, que comprenden además un fármaco unido covalentemente a la gelatina.
La gelatina presenta grupos amino (-NH2) y ácido carboxílico (-COOH) que se pueden unir covalentemente a fármacos mediante reacciones conocidas por el experto en la materia.
El término "fármaco" hace referencia a un compuesto químico que induce un efecto farmacológico y/o fisiológico deseado. Ejemplos de fármacos que pueden unirse a las nanopartículas de la presente invención son analgésicos/antipiréticos para el tratamiento del dolor, estados febriles, artritis reumatoide, artrosis, osteoporosis, espondilitis anquilosante, síndromes reumatoides, dismenorrea, alteraciones musculoesqueléticas, cefaleas, lumbalgias y odontalgias, tales como aspirina, acetaminofeno, ibuprofeno, naproxeno, buprenorfina, propoxifeno, meperidina, hidromorfona, morfina, oxicodona, codeína, dihidrocodeína, pentazocina, hidroxodona, levorfanol, diflunisal, salicilato de trolamina, nalbufina, ácido mefenámico, butorfanol, salicilato de colina, butalbital, feniltoloxamina, metotrimeprazina, cinamedrina, y meprobamato; antiasmáticos para el tratamiento de asma, rinitis y afección cutánea alérgica, tales como ketotifeno, y traxanox; agentes para el tratamiento de patologías pulmonares como por ejemplo EPOC y ALI, tales como ipratropio, tiotropio, teofilina, infliximab, beclometasona, prednisona, hidrocortisona, metilprednisolona, cortisona, dexametasona, y prednisolona; antibióticos para el tratamiento de infecciones bacterianas como por ejemplo tuberculosis, brucelosis, peste, endocarditis por estreptococo, infección urinaria, gonorrea, diarrea, enteritis, salmonella, meningitis, bacteriemia, uretitis, brucelosis, psitacosis, tifus exantemático, tales como neomicina, estreptomicina, cloranfenicol, cefalosporina, ampicilina, penicilina, tetraciclina, ciprofloxacino, amikacina, aztreonam, cloranfenicol, ciprofloxacina, clindamicina, metronidazol, gentamicina, lincomicina, tobramicina, vancomicina, polimixina B, colistimetato, y colistina; antidepresivos para el tratamiento de trastornos psiconeuróticos y depresiones, como por ejemplo neurosis, depresión reactiva, depresión ansiosa, depresión psicótica, depresión endógena, temblores, disquinesias y trastorno de ansiedad, tales como nefopam, oxipertina, doxepino, amoxapina, trazodona, amitriptilina, maprotilina, fenelzina, duloxetina, desipramina, nortriptilina, tranilcipromina, fluoxetina, imipramina, isocarboxazida, trimipramina, y protriptilina; agentes antifúngicos para el tratamiento de infecciones fúngicas, por ejemplo por dermatofitosis, onicomicosis, pitiriasis, candidasis, paracoccidioidomicosis, hitoplasmosis, coccidioidomicosis, blastomicosis, queratitis fúngica, aspergilosis, esporotricosis y cromomicosis, tales como griseofulvina, ketoconazol, itraconazol, anfotericina B, nistatina, y candicidina; agentes antihipertensivos para el tratamiento de la hipertensión, tales como propanolol, propafenona, oxprenolol, nifedipina, reserpina, trimetafán, fenoxibenzamina, pargilina, deserpidina, diazoxida, guanetidina, minoxidilo, rescinamina, alseroxilona, y fentolamina; agentes antiinflamatorios no esteroideos para el tratamiento de artritis reumatoide, osteoartritis, artrosis, espondilitis anquilosante, bursitis, tendinitis y sinovitis, tales como indometacina, ketoprofeno, aspirina, diclofenaco, ketorolaco, flurbiprofeno, naproxeno, ibuprofeno, ramifenazona, piroxicam, celecoxib, y rofecoxib; agentes antiinflamatorios esteroideos, tales como cortisona, dexametasona, hidrocortisona, prednisolona, y prednisona; antineoplásicos para el tratamiento del cáncer, por ejemplo linfomas, leucemias, cáncer de mama, de ovario, de cérvix uterino, de pulmón, de estómago, de testículo, de próstata, de colon, de páncreas, de vejiga, melanomas, colorrectal, hepatocelular, óseo, cerebral y linfoma no Hodgkin, tales como ciclofosfamida, actinomicina, bleomicina, dactinomicina, daunorubicina, doxorubicina, epirubicina, mitomicina, metotrexato, fluorouracilo, gemcitabina, carmustina, etopósido, canfotecina y sus derivados, paclitaxel y sus derivados, docetaxel y sus derivados, vinblastina, vincristina, goserilina, cisplatino, carboplatino, leuprólido, tamoxifeno, y ácido retinoico; ansiolíticos para el tratamiento de trastornos del sueño, neurosis y ansiedad, tales como lorazepam, buspirona, prazepam, oxazepam, diazepam, hidroxizina, alprazolam, droperidol, halazepam, clormezanona, y dantroleno; agentes inmunosupresores para el tratamiento de uveítis endógenos, psoriasis, síndrome nefrótico, artritis reumatoide, dermatitis atópica, inmunosupresión tras trasplante de órganos, enfermedad inflamatoria intestinal, esclerosis múltiple, lupus eritematoso sistémico, dermatomiositis, poliomiositis, hepatitis crónica autoinmune, poliarteritis nodosa, anemia hemolítica autoinmune, púrpura trombocitopénica idiopática y pioderma gangrenoso, tales como ciclosporina, azatioprina, mizoribina, y tacrolimus; agentes antimigrañosos para el tratamiento de migrañas y cefaleas, tales como triptanos, por ejemplo sumatriptán, ergotamina, propanolol, y dicloralfenazona; sedantes/hipnóticos para el tratamiento del insomnio, tales como barbituratos, por ejemplo pentobarbital y secobarbital, y benzodiazapinas, por ejemplo flurazepam, triazolam, y midazolam; antianginosos para el tratamiento de angina de pecho, cardiopatía isquémica, insuficiencia coronaria, taquicardia paroxística supraventricular y fibrilación/flutter auricular, tales como bloqueantes beta- adrenérgicos, bloqueantes del canal de calcio, por ejemplo nifedipino y diltiazem, y nitratos, por ejemplo nitroglicerina, dinitrato de isosorbida, tetranitrato de pentaeritritol y tetranitrato de eritritilo; agentes antipsicóticos para el tratamiento de esquizofrenia, psicosis paranoides, ansiedad, estados maníacos, delirium tremens, tics motores, tartamudeo, síntomas del s. Gilíes de la Tourette y corea, tales como haloperidol, loxapina, tioridazina, tiotixeno, flufenazina, trifluoperazina, clorpromazina, perfenazina, y proclorperazina; agentes antiarrítmicos para el tratamiento de taquicardias y arritmias, tales como bretilio, esmolol, verapamilo, amiodarona, encainida, digoxina, digitoxina, mexiletina, disopiramida, procainamida, quiñi dina, flecainida, tocainida, y lidocaína; agentes antiartríticos para el tratamiento de artritis reumatoides, artrosis, poliartritis y espondilitis anquilosante, tales como fenilbutazona, sulindaco, penicilamina, salsalato, piroxicam, azatioprina, indometacina, meclofenamato, ketoprofeno, auranofina, aurotioglucosa, y tolmetina; agentes para el tratamiento de la gota, tales como alopurinol y colchicina; anticoagulantes y trombolíticos para el tratamiento de afecciones del sistema venoso superficial, trombosis venosas, tromboembolismo arterial, trombosis coronarias, derrames pleurales, embolismo pulmonar e ictus isquémico, tales como heparina, warfarina, uroquinasa, estreptoquinasa y alteplasa; agentes antifibrinolíticos para el tratamiento de hemorragias, tales como ácido aminocaproico; agentes hemoreológicos para el tratamiento de trastornos circulatorios, trastornos vasculares, por ejemplo, úlceras distales de las extremidades inferiores, gangrena, enfermedad vascular periférica, trastornos vasculares de la retina, del nervio óptico y auditivos, tales como pentoxifilina; agentes anticonvulsivos para el tratamiento de epilepsias, tales como ácido valproico, fenitoína, clonazepam, primidona, fenobarbital, carbamazepina, amobarbital, metarbital, mefenitoína, etosuximida, fensuximida, etotoína, secobarbital, clorazepato, y trimetadiona; antihistamínicos/antipruríticos para el tratamiento de reacciones alérgicas como por ejemplo prurito, urticaria y rinitis alérgica, tales como hidroxizina, difenhidramina, clorfeniramina, bromfeniramina, ciproheptadina, terfenadina, clemastina, triprolidina, carbinoxamina, difenilpiralina, fenindamina, azatadina, tripelenamina, dexclorfeniramina, y metdilazina; agentes antivirales para el tratamiento de infecciones víricas como por ejemplo VIH, gripe, hepatitis C crónica y herpes, tales como interferón alfa, beta o gamma, zidovudina, amantadina, ribavirina, y aciclovir; compuestos esteroideos y hormonas para el tratamiento de endometriosis, agioedema, hipogonadismos masculino, menopausia, anemia aplásica, osteoporosis, carcinoma de mama, trastorno del deseo sexual, amenorrea, esterilidad, dismenorrea, endometriosis, anticoncepción e hipotiroidismo , tales como andrógenos, por ejemplo danazol, testosterona, fluoximesterona, etiltestosterona, y metiltestosterona, estrógenos, por ejemplo estradiol y estropipato, progestinas, por ejemplo medroxiprogesterona y noretindrona, y hormonas tiroideas, por ejemplo levotiroxina; corticoesteroides para el tratamiento de tiroiditos, osteoartritis, artritis reumatoide, bursitis, epicondilitis, artritis, lupus eritematoso sistémico, espondilitis anquilosante, dermatitis, psoriasis, colitis ulcerativa, enteritis, sarcoidosis y queloides, tales como triamcinolona, betametasona, dexametasona, prednisona, metilprednisolona, triamcinolona, hidrocortisona, fludrocortisona, parametasona, y prednisolona; agentes hipoglucemiantes para el tratamiento de la diabetes, como por ejemplo diabetes mellitus tipo 2, tales como insulina, gliburida, clorpropamida, glipizida, tolbutamida y tolazamida; agentes hipolimidémicos para disminuir los niveles de lípidos en sangre por ejemplo en hipercolesterolemia, tales como clofibrato, dextrotiroxina, probucol, pravastatina, atorvastatina, lovastatina y niacina; agentes antiulcerosos para el tratamiento de úlceras gástricas, intestinales y esofágicas, tales como famotidina, cimetidina y ranitidina; inhibidores de la bomba de protones para el tratamiento de dispepsia, úlcera péptica, reflujo gastroesofágico y síndrome de Zollinger-Ellison, tales como omeprazol; agentes para el tratamiento de la disfunción eréctil, tales como sildenafilo, vardenafilo, tadalafilo y alprostadilo; y las sales farmacéuticamente aceptables de los mismos.
En una realización preferida de la invención, el fármaco se selecciona del grupo que consiste en ketotifeno, traxanox, ipratropio, tiotropio, teofilina, infliximab, beclometasona, prednisona, hidrocortisona, metilprednisolona,cortisona, dexametasona, prednisolona, doxorubicina, fluorouracilo, clofibrato, dextrotiroxina, probucol, pravastatina, atorvastatina, lovastatina, niacina, insulina, gliburida, clorpropamida, glipizida, tolbutamida, tolazamida, propanolol, propafenona, oxprenolol, nifedipina, reserpina, trimetafán, fenoxibenzamina, pargilina, deserpidina, diazoxida, guanetidina, minoxidilo, rescinamina, alseroxilona, y fentolamina.
En una realización aún más preferida de la invención, el fármaco se selecciona del grupo que consiste en doxorubicina y fluorouracilo.
El término "sales farmacéuticamente aceptables" se refiere a cualquier sal farmacéuticamente aceptable, que, tras administración al receptor puede proporcionar (directa o indirectamente) un fármaco tal como se describe en el presente documento. La preparación de sales, puede llevarse a cabo mediante métodos conocidos en la técnica. Por ejemplo, sales farmacéuticamente aceptables de compuestos proporcionados en el presente documento pueden ser sales de adición de ácidos, sales de adición de bases o sales metálicas, y pueden sintetizarse a partir del compuesto original que contiene un resto básico o ácido mediante métodos químicos convencionales. Generalmente, tales sales, se preparan por ejemplo, haciendo reaccionar las formas de base o ácido libre de esos fármacos con una cantidad estequiométrica de ácido o base apropiados en agua o en un disolvente orgánico o en una mezcla de los dos. Generalmente, se prefieren medios no acuosos como éter, acetato de etilo, etanol, isopropanol o acetonitrilo. Ejemplos de las sales de adición de ácidos incluyen sales de adición de ácidos minerales tales como, por ejemplo clorhidrato, bromhidrato, yodhidrato, sulfato, nitrato, fosfato, y sales de adición de ácidos orgánicos tales como, por ejemplo, acetato, maleato, fumarato, citrato, oxalato, succinato, tartrato, malato, mandelato, metanosulfonato y p-toluenosulfonato. Ejemplos de sales de adición de álcali incluyen sales inorgánicas tales como, por ejemplo, amonio, y sales alcalinas orgánicas tales como, por ejemplo, etilendiamina, etanolamina, Ν,Ν-dialquilenetanolamina, trietanolamina, glucamina y sales de aminoácidos básicos. Ejemplos de sales metálicas incluyen, por ejemplo, sales de sodio, potasio, calcio, magnesio, aluminio y litio. Además, el término "farmacéuticamente aceptable" se refiere a entidades moleculares y composiciones que son fisiológicamente tolerables y no producen normalmente una reacción no deseada alérgica o similar, tal como molestias gástricas, mareos y similares, cuando se administra a un ser humano. Preferiblemente, tal como se utiliza en el presente documento, el término "farmacéuticamente aceptable" significa aprobado por una agencia reguladora del gobierno federal o de un estado o enumerado en la Farmacopea de los EE.UU. u otra farmacopea reconocida generalmente para su uso en animales y más particularmente en seres humanos.
En otro aspecto, la invención se relaciona con una composición que comprende nanopartículas según se han definido anteriormente, en donde las nanopartículas son monodispersas.
El término "monodispersa" hace referencia a nanopartículas que presentan un valor de PDI (índice de polidispersividad) igual o menor de 0,25, es decir, presentan sustancialmente el mismo tamaño hidrodinámico, en donde al menos el 75% de las nanopartículas presentan el mismo tamaño, más preferiblemente al menos el 80%, más preferiblemente al menos el 85%, más preferiblemente al menos el 90%, más preferiblemente al menos el 95%, aún más preferiblemente al menos el 99%. Debe entenderse por "sustancialmente el mismo tamaño hidrodinámico" una variación de ± 25% del tamaño hidrodinámico definido, preferiblemente ± 20%, más preferiblemente ± 15%), más preferiblemente ± 10%, más preferiblemente ± 5%, aún más preferiblemente ± 1%.
Procedimiento de obtención de las nanopartículas recubiertas de gelatina
En otro aspecto, la invención se relaciona con un procedimiento para la obtención de las nanopartículas de la invención definidas anteriormente. Las principales ventajas de dicho procedimiento es su gran reproducibilidad, especialmente en relación al tamaño y composición de la superficie de las nanopartículas obtenidas mediante dicho procedimiento.
Dicho procedimiento comprende las siguientes etapas:
(a) dispersar nanopartículas en donde el núcleo de las mismas se selecciona de entre un núcleo de óxido de hierro y un núcleo de UC P y dicho núcleo está recubierto de un ácido monocarboxílico insaturado de fórmula (II),o una sal del mismo, en un disolvente, en donde n y m se seleccionan independientemente de un número de 1 a 10;
(b) tratar con un oxidante la dispersión de obtenida en la etapa (a);
(c) tratar la mezcla resultante de la etapa (b) con una disolución acuosa; y
(d) proveer gelatina y hacerla reaccionar con las nanopartículas obtenidas en la etapa (c) en presencia de un activador de ácido carboxílico, en donde la gelatina opcionalmente está unida covalentemente a un fármaco.
La primera etapa del procedimiento, etapa (a), es la dispersión de nanopartículas, recubiertas de un ácido monocarboxílico insaturado de fórmula (II), o una sal del mismo, en un disolvente. Las nanopartículas pueden ser de óxido de hierro o UC P, tal como se ha definido anteriormente. Preferiblemente, las nanopartículas son de óxido de hierro.
Las nanopartículas de óxido de hierro hacen referencia al núcleo de óxido de hierro según se ha definido anteriormente, es decir, el tipo de óxido de hierro se puede seleccionar de cualquiera de los habituales en el campo de las nanopartículas y que son conocidos por el experto en la materia, como por ejemplo, Fe304 (magnetita), a-Fe203 (hematita), y-Fe203 (magh emita), FeO (wustita), 8-Fe203 y P-Fe203, entre otros, preferiblemente Fe304 y y-Fe203.
Las nanopartículas de UCNP hacen referencia a aquellas definidas anteriormente, cuyo núcleo es de NaYF4, NaGdF4 o NaGdFYb@NaGdF4, dopados con Yb, Er, Tb y/o Tm. Preferiblemente, las UNCP son NaGdF Yb25%,Tm0;5%@NaGdF , es decir, un núcleo de NaGdF dopado con Yb y Tm y alrededor una capa de NaGdF .
En una realización preferida de la invención, en el ácido monocarboxílico insaturado de la etapa (a) n=m y se seleccionan de un número de 3 a 7. Más preferiblemente n=m=5.
El compuesto de fórmula (II) puede estar opcionalmente sustituido por uno o más sustituyentes, preferentemente 1, 2, 3 o 4 sustituyentes, seleccionados independientemente del grupo que consiste en alquilo, preferentemente un alquilo de 1 a 6 átomos de carbono, tal como metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, terc-butilo, n-pentilo y n-hexilo; halógeno, tal como F, Cl, Br y I; grupo nitro (-N02); grupo amino (-NH2); hidroxilo (-OH); y grupo mercapto (-SH). Preferentemente, los sustituyentes se seleccionan del grupo que consiste en alquilo, preferentemente un alquilo de 1 a 6 átomos de carbono, tal como metilo, etilo, propilo, isopropilo, butilo, sec-butilo, tere-butilo, pentilo y hexilo; halógeno, tal como F, Cl, Br y I; y grupo nitro (- N02).
El disolvente utilizado para la dispersión de la etapa (a) puede ser cualquier disolvente habitual conocido por el experto en la materia. Ejemplos no limitativos de dichos disolventes son aléanos lineales, cíclicos o ramificados de 5 a 15 átomos de carbono, preferiblemente de 5 a 7 átomos de carbono, como por ejemplo, w-pentano, n- hexano, ciclohexano, «-ciclohexano, w-heptano y «-octano; disolventes clorados de 1 a 10 átomos de carbono, preferiblemente de 1 a 6 átomos de carbono, con de 1 a 6 átomos de cloro, preferiblemente de 1 a 4 átomos de cloro, como por ejemplo cloroformo y diclorometano; y mezclas de los mismos. Preferiblemente el disolvente se selecciona de alcano w-hexano, ciclohexano, cloroformo, diclorometano y mezclas de los mismos. Más preferiblemente, el disolvente se selecciona de w-hexano, cloroformo y mezclas de los mismos.
Las nanopartículas de óxido de hierro recubiertas de ácido monocarboxílico insaturado de fórmula (II) utilizadas en la etapa (a) se pueden obtener por procedimientos conocidos por el experto en la materia y descritos en el estado de la técnica. Un ejemplo de tales procedimientos es la coprecipitación en medio acuoso, en donde se mezclan iones férricos y ferrosos en soluciones de elevada basicidad a temperatura ambiente o a temperatura elevada, dicha coprecipitación se puede realizar en presencia de un agente protector o tensoactivo o se puede recubrir posteriormente las nanopartículas obtenidas con dicho protector o tensoactivo. Otro método habitual de obtención de nanopartículas de óxido de hierro es la descomposición térmica de compuestos orgánicos de hierro, tales como N-nitrosofenilhidroxilamina de hierro (Fe(cup)3), acetilacetonato de hierro (Fe(acac)3), pentacarbonilo de hierro (Fe(CO)5), tricloruro de hierro (FeCl3), oleato de hierro, y oleato sódico/tricloruro de hierro, a elevada temperatura. Generalmente la descomposición térmica se realiza en presencia de un tensoactivo. Otro procedimiento habitual para la síntesis de nanopartículas de óxido de hierro es la síntesis sonoquímica, en donde los precursores de hierro se descomponen por acción de una frecuencia elevada (por ejemplo, de 20 KHz a 10 MHz). En todos estos métodos el ácido monocarboxílico insaturado de fórmula (II) puede estar presente, formándose in situ las nanopartículas de óxido de hierro recubiertas de dicho ácido monocarboxílico insaturado de fórmula (II) o alternativamente se pueden sintetizar las nanopartículas de óxido de hierro y recubrirlas posteriormente con dicho ácido monocarboxílico insaturado de fórmula (II).
En una realización preferida, las nanopartículas de óxido de hierro recubiertas con el ácido monocarboxílico insaturado de fórmula (II)se obtienen por descomposición térmica de un compuesto orgánico de hierro seleccionado del grupo que consiste en N- nitrosofenilhidroxilamina de hierro, acetilacetonato de hierro, pentacarbonilo de hierro, tricloruro de hierro, en presencia de dicho ácido monocarboxílico insaturado de fórmula (II) y un tensoactivo, en un disolvente a una temperatura comprendida entre 150 °C y 400 °C, preferiblemente entre 150 °C y 300 °C, aún más preferiblemente a 200 °C.
El término "tensoactivo" hace referencia a sustancias que influyen por medio de la tensión superficial en la superficie de contacto entre dos fases. Los tensoactivos se componen de una parte hidrófoba y un parte hidrófita. Ejemplos de tensoactivos son alquilmonoaminas primarias, secundarias o terciarias, alquilmonoalcoholes primarios, secundarios o terciarios, alquildioles, ésteres de ácidos alquilmonocarboxílicos, ésteres de glicol, en donde además dichos tensoactivos pueden estar etoxilados y en donde alquilo es como se ha definido anteriormente. Preferiblemente, los tensoactivos se seleccionan de alquilmonoaminas y alquildioles, más preferiblemente de alquilmonoaminas y alquildioles C10-C30, más preferiblemente el tensoactivo es una monoalquilamina Cio-C3o- En una realización particular de la invención el tensoactivo es oleilamina.
El disolvente utilizado en la obtención de las nanopartículas de óxido de hierro recubiertas con el ácido monocarboxílico insaturado de fórmula (II) es un disolvente de punto de ebullición elevado, preferiblemente de punto de ebullición superior a la temperatura a la que se realiza dicha descomposición térmica, cuya temperatura se ha definido anteriormente de entre 150 °C y 400 °C. Por ejemplo, si la descomposición térmica se realiza a 150 °C, el disolvente debe presentar un punto de ebullición superior a 150 °C. Preferiblemente, el disolvente tiene un punto de ebullición superior a 150 °C, más preferiblemente superior a 200 °C, más preferiblemente superior a 250 °C, más preferiblemente superior a 300 °C, más preferiblemente superior a 350 °C, aún más preferiblemente superior a 400 °C. Ejemplos de disolventes preferidos son benciléter, feniléter, octadeceno, o-diclorobenceno, octiléter, triolctilamina y mezclas de los mismos. En una realización particular de la invención el disolvente es feniléter. Las nanopartículas UCNP se obtienen por descomposición hidrotermal de precursores metálicos. Dichos precursores pueden ser nitratos, óxidos, cloruros y, más a menudo, fluoros. La fuente de F también puede variar mucho, empleándose HF, NH4F, NH4HF2, NaBF4, KBF4 o tetrafluorborato de 1-butil, 2-metilimidazolonio.
La siguiente etapa en el procedimiento de obtención de nanopartículas según la invención es la etapa (b), es decir, el tratamiento de la dispersión de nanopartículas obtenidas en la etapa (a) definida anteriormente, preferiblemente nanopartículas de óxido de hierro, con un oxidante.
El término "oxidante" debe entenderse como un reactivo o mezcla de reactivos capaz de producir una ruptura oxidativa de la insaturación o doble enlace presente en el ácido monocarboxílico de fórmula (II), rindiendo un compuesto de fórmula (I) que presenta un grupo ácido carboxílico en el carbono sobre el que se ha producido dicha ruptura oxidativa, según se muestra en el esquema 1 a continuación. Este tipo de oxidantes son ampliamente conocidos por el experto en la materia y se describen, por ejemplo en M.B. Smith y J. March, "March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure", 2007, 6a edición, Wiley-Interscience, New Jersey (EE.UU.), págs. 1736-1745.
Figure imgf000022_0001
Esquema 1 En una realización preferida de la invención, el oxidante de la etapa (b) se selecciona del grupo que consiste en KMn04, Os04/03, NaI04/Ru02/NaTi04, O3, RUCI3/O3 y PdCyCuC . En una realización todavía más preferida, el oxidante de la etapa (b) es KMn04.
La siguiente etapa del procedimiento, la etapa (c), es el tratamiento de la mezcla resultante de la etapa anterior, etapa (b), con una disolución acuosa. El término "disolución acuosa" hace referencia a una disolución en la que el disolvente es agua o mayoritariamente agua, es decir, en donde al menos el 55% del volumen del disolvente respecto al volumen total de disolvente es agua, preferiblemente al menos el 60%, más preferiblemente al menos el 70%, más preferiblemente al menos el 80%), más preferiblemente al menos el 90%, aún más preferiblemente al menos el 95%), aún más preferiblemente al menos el 99%. El disolvente de dicha disolución acuosa comprende agua como componente mayoritario pero además puede comprender otros disolventes miscibles en agua, tales como alcoholes, por ejemplo, metanol, etanol, isopropanol, éteres, como por ejemplo tetrahidrofurano, 2-metiltetrahidrofurano, dioxano y mezclas de los mismos. Preferiblemente, el disolvente de la disolución acuosa es agua.
La disolución acuosa puede contener además ácidos, bases o sales disueltas en el disolvente.
En una realización preferida de la invención, la disolución acuosa de la etapa (c) es una disolución acuosa ácida.
Debe entenderse por "disolución acuosa ácida" una disolución acuosa según se ha definido anteriormente, que presenta un pH inferior a 7, preferiblemente un pH comprendido en el rango de 2,5 a 4,5, más preferiblemente un pH comprendido en el rango de 2,8 a 3,0. La disolución acuosa ácida comprende un ácido o tampón ácido disuelto en la misma. Ejemplos de ácidos son ácido clorhídrico, ácido acético, ácido nítrico, ácido sulfúrico, ácido fosfórico, entre otros. El "tampón ácido" hace referencia a la mezcla de un ácido débil y su base conjugada, generalmente la sal sódica, que tiene la propiedad de mantener estable el pH de una disolución frente a la adición de cantidades relativamente pequeñas de ácidos o bases fuertes, tales como el tampón ácido acético/acetato, ácido cítrico/ci trato, tampón fosfato, etc.
En una realización más preferida de la invención, la disolución acuosa ácida de la etapa (c) es un tampón de ácido acético/acetato.
En otra realización preferida de la invención, la disolución acuosa de la etapa (c) es una disolución acuosa básica.
Debe entenderse por "disolución acuosa básica" una disolución acuosa según se ha definido anteriormente, que presenta un pH superior a 7, preferiblemente un pH comprendido en el rango de 9 a 12, más preferiblemente un pH comprendido en el rango de 9 a 10. La disolución acuosa básica comprende una base o tampón básico disuelto en la misma. Ejemplos de bases son hidróxido de sodio, hidróxido de potasio, carbonato de sodio, carbonato de potasio, entre otros. El "tampón básico" hace referencia a la mezcla de una base débil y su ácido conjugado que tiene la propiedad de mantener estable el pH de una disolución frente a la adición de cantidades relativamente pequeñas de ácidos o bases fuertes, tales como el tampón amoniaco/cloruro amónico.
En una realización más preferida de la invención, la disolución acuosa básica de la etapa (c) es una disolución acuosa de NaOH.
La última etapa del procedimiento, la etapa (d), es proveer gelatina y hacerla reaccionar con las nanopartículas obtenidas en la etapa anterior, etapa (c), en presencia de un activador de ácido carboxílico, en donde la gelatina opcionalmente está unida covalentemente a un fármaco.
La unión de la gelatina a las nanopartículas, preferiblemente a las nanopartículas de óxido de hierro, es covalente, tal como se ha definido anteriormente. Dicha gelatina, puede comprender un fármaco unido covalentemente a la misma, tal como se ha definido anteriormente y en donde se proporcionan ejemplos de dichos fármacos. En una realización particular, el fármaco unido covalentemente a la gelatina se selecciona del grupo que consiste en doxorubicina y fluorouracilo.
La gelatina utilizada en la etapa (d) es como se ha definido anteriormente. En una realización particular, dicha gelatina presenta una fuerza Bloom comprendida entre 50 g Bloom y 500 g Bloom, preferiblemente entre 50 g Bloom y 200 g Bloom.
La reacción de la gelatina con las nanopartículas obtenidas en la etapa anterior, etapa (c), en donde dichas nanopartículas, preferiblemente de óxido de hierro, están recubiertas de un ácido de fórmula (II), según se ha definido anteriormente, consiste en la formación de un enlace covalente, enlace amida -CO- H- a partir de uno de los grupos -COOH del compuesto de fórmula (I) y un grupo -NH2 de la gelatina, es decir, la gelatina se une al compuesto de fórmula (I) por el punto (a), tal como se muestra anteriormente en la estructura (III).
La formación de amidas a partir de un ácido carboxílico y una amina es conocida por el experto en la materia, y se describe por ejemplo en M.B. Smith y J. March, "March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure", 2007, 6a edición, Wiley-Interscience, New Jersey (EE.UU.), págs. 1430-1434. La mayoría de las reacciones de formación de amidas a partir de un ácido carboxílico y una amina comprenden la activación del ácido carboxílico, por ejemplo mediante formación del cloruro de ácido, anhídrido o éster del ácido carboxílico, por activación con activador de ácido carboxílico.
Un "activador de ácido carboxílico" debe entenderse como un compuesto que aumenta la reactividad química del grupo ácido carboxílico en la reacción de formación de amidas. Ejemplos de dichos activadores son carbodiimidas (compuestos que presentan el grupo -N=C=N-), tales como, N-(3-dimetilaminopropil)-N'- etilcarbodiimida (o l-etil-3-(3-dimetilaminopropil)carbodiimida, EDC) o una sal de adición de ácido de la misma, N,N'-diciclohexilcarbodiimida (DCC) y Ν,Ν'- diisopropilcarbodiimida (DIC); reactivos basados en fosfonio, tales como, hexafluorofosfato de (benzotriazol-l-iloxi)tris(dimetilamino)fosfonio (BOP), hexafluorofosfato de (benzotriazol-l-iloxi)tripirrolidinofosfonio (PyBOP), hexafluorofosfato de (7-azabenzotriazol-l-iloxi)tripirrolidinofosfonio (PyAOP), hexafluorofosfato de bromotripirrolidinofosfonio (PyBroP) y cloruro bis(2-oxo-3- oxazolidinil)fosfínico (BOP-C1); reactivos basados en uronio, tales como hexafluorofosfato de O-(benzotriazol- 1 -il)-N,N,N',N'-tetrametiluronio(HBTU), tetrafluoroborato de O-(benzotriazol-l-il)-N,N,N',N'-tetrametiluronio (TBTU), hexafluorofosfato de O-(7-azabenzotriazol-l-il)-N,N,N',N'-tetrametiluronio (HATU), tetrafluoroborato de O-(7-azabenzotriazol-l-il)-N,N,N',N'-tetrametiluronio (TATU), hexafluorofosfato de O-(6-clorobenzotriazol-l-il)-N,N,N',N'-tetrametiluronio (HCTU), tetrafluoroborato de N,N,N',N'-tetrametil-O-(N-succinimidil)uronio (TSTU), tetrafluoroborato de O-(5-norborneno-2,3-dicarboximido)-N,N,N',N'-tetrametiluronio (TNTU), tetrafluoroborato de O-[(etoxicarbonil)cianometilenamino]-N,N,N',N'- tetrametiluronio (TOTU), tetrafluoroborato de O-(2-oxo-l(2H)piridil)-N,N,N'N'- tetrametiluronio (TPTU) y tetrafluoroborato de O-(3,4-dihidro-4-oxo- 1,2,3 - benzotriazin-3-il)-N,N,N',N'-tetrametiluronio; carbonildiimidazol (CDI); 3- (dietilfosforiloxi)-l,2,3-benzotriazin-4(3H)-ona (DEPBT); y hexafluorofosfato de cloro-N,N,N',N'-tetrametilformamidinio. Dichos activadores de ácido carboxílico pueden utilizarse además en presencia de un activador secundario de ácido carboxílico, tales como N-hidroxisulfosuccinimida (sulfo- HS), N-hidroxisuccinimida ( HS), N- hidroxibenzotriazol (HOBt) y 4-(N,N-dimetilamino)piridina (DMAP). El término "sal de adición de ácido" debe entenderse que significa cualquier forma de un compuesto, de EDC en el presente caso, en los que asume una forma iónica o cargada, y se acoplan con un contraión (anión). Ejemplos de las sales de adición de ácidos incluyen sales de adición de ácidos minerales tales como, por ejemplo clorhidrato, bromhidrato, yodhidrato, nitrato, fosfato, y sales de adición de ácidos orgánicos tales como, por ejemplo, acetato. Preferiblemente es un clorhidrato.
Por lo tanto, en una realización preferida de la invención, la etapa (d) comprende: (di) mezclar un activador de ácido carboxílico con un disolvente;
(d2) tratar las nanopartículas obtenidas en la etapa (c) con la mezcla de la etapa (di) y la gelatina, en donde la gelatina opcionalmente está unida covalentemente a un fármaco; y
(d3) aislar las nanopartículas resultantes de la etapa (d2).
La etapa (di) comprende mezclar un activador de ácido carboxílico, definido anteriormente, con un disolvente. Disolventes adecuados para esta etapa de reacción se seleccionan de disolventes inertes en la reacción de formación de amidas a partir de un ácido carboxílico y una amina. Ejemplos de tales disolventes son dimetilformamida, diclorometano, dicloroetano, cloroformo, n-butanol, dimetilsulfóxido, tetrahidrofurano, dioxano, aguay mezclas de los mismos. Preferiblemente el disolvente utilizado en esta etapa es agua.
En una realización preferida de la invención, el activador de ácido carboxílico es una carbodiimida, por ejemplo EDC o una sal de adición de ácido de la misma, DCC o DIC, y opcionalmente comprende además un activador de ácido carboxílico secundario seleccionado del grupo que consiste en N-hidroxisulfosuccinimida, N- hidroxisuccinimida, N-hidroxibenzotriazol. Más preferiblemente, la carbodiimida es EDC o clorhidrato de EDC y el activador de ácido carboxílico secundario está presente. Aún más preferiblemente, la carbodiimida es el clorhidrato de EDC y el activador de ácido carboxílico secundario es sulfo-N-hidroxisuccinimida.
A continuación se tratan las nanopartículas obtenidas en la etapa (c), es decir, nanopartículas recubiertas de un ácido carboxílico de fórmula (I), preferiblemente de óxido de hierro, con la mezcla de la etapa (di) y la gelatina definida anteriormente. Este tratamiento rinde la unión covalente de la gelatina al núcleo por formación de un enlace amida a partir de uno de los grupos -COOH del compuesto de fórmula (I) que recubre las nanopartículas obtenidas en la etapa (c), preferiblemente de óxido de hierro, y un grupo - H2 de la gelatina (la unión tiene lugar por el punto (a), tal como se muestra anteriormente en la estructura (III)), tal como se ha definido anteriormente.
La última etapa del procedimiento es la etapa (d3), en donde las nanopartículas obtenidas en la etapa (d2), es decir, nanopartículas recubiertas de gelatina unida covalentemente al núcleo, preferiblemente de óxido de hierro, a través de un enlace amida con un ácido carboxílico de fórmula (I), se aislan. Este procedimiento de aislar las nanopartículas obtenidas puede llevarse a cabo mediante métodos convencionales conocidos por el experto en la materia, tales como filtración, centrifugación, separación mediante un imán, etc. Preferiblemente las nanopartículas obtenidas en la etapa (d2) se aislan por separación con ayuda de un imán.
Opcionalmente, las nanopartículas aisladas en la etapa (d3) se pueden purificar, por ejemplo mediante lavados con un disolvente, por ejemplo agua, hasta eliminar sustancialmente reactivos y/o residuos de las etapas anteriores del procedimiento.
Usos de las nanopartículas recubiertas de gelatina
El comportamiento magnético de las nanopartículas de la invención, su tamaño, biocompatibilidad, estabilidad en medios acuosos y en especial su elevado tiempo de circulación en sangre tras ser inyectadas en un organismo hacen que dichas nanopartículas sean adecuadas como agentes de contraste en técnicas de diagnóstico por imagen, tales como imagen por resonancia magnética e imagen por fluorescencia óptica.
La imagen por resonancia magnética es una técnica de diagnóstico no invasiva que utiliza el fenómeno de la resonancia magnética para obtener información sobre la estructura y composición del cuerpo a analizar. Esta información es procesada por ordenadores y transformada en imágenes del interior de lo que se ha analizado. Utiliza campos magnéticos para alinear la magnetización nuclear de (usualmente) protones del agua en el cuerpo. Los campos de radiofrecuencia se usan para sistemáticamente alterar el alineamiento de esa magnetización, causando que los núcleos de hidrógeno produzcan un campo magnético rotacional detectable por el escáner. Esa señal puede ser manipulada con adicionales campos magnéticos y así construir con más información las imágenes. La imagen por fluorescencia óptica es una técnica de diagnóstico no invasiva que utiliza el fenómeno de fluorescencia para obtener información sobre la composición del cuerpo a analizar. Esta técnica se basa en la excitación de las nanopartículas de núcleo de UCNP según se han definido anteriormente con radiación electromagnética en la zona del espectro del infrarrojo cercano (es decir, de longitud de onda comprendida entre 800 nm y 2500 nm), la conversión de dicha radiación electromagnética en radiación de mayor energía (preferiblemente de longitud de onda comprendida entre 400 nm y 900 nm).
Por lo tanto, en otro aspecto, la invención se relaciona con un agente de contraste que comprende nanopartículas según se han definido anteriormente. Dicho agente de contraste puede comprender tanto nanopartículas cuyo núcleo es de óxido de hierro, como nanopartículas cuyo núcleo es de UCNP, como mezcla de las mismas. Preferiblemente el agente de contraste comprende nanopartículas cuyo núcleo es de óxido de hierro.
El término "agente de contraste" hace referencia a una sustancia o composición que se usa para mejorar la visibilidad en las imágenes por resonancia magnética de estructuras o fluidos dentro del cuerpo.
Las propiedades magnéticas de los núcleos de óxido de hierro influyen sobre tanto sobre los valores de r¡ como sobre los valores de r2, tal como se ha explicado anteriormente. Por lo tanto mejoran el contraste de las imágenes de resonancia magnética.
Las propiedades fluorescentes de las UCNP las hace adecuadas para su uso en imagen basada en fluorescencia. Además, la excitación se produce en el NIR mientras que la emisión se produce en luz de mayor energía, tal como el visible o el NIR (de mayor energía que la excitación). Las ventajas de las UCNP es una excitación menos perjudicial, sin autofluorescencia y con elevada capacidad de penetración.
En otro aspecto, la invención se relaciona con el uso de las nanopartículas o el agente de contraste de la presente invención en la fabricación de un agente de diagnóstico para el diagnóstico por imagen de una patología del sistema cardiovascular.
En otro aspecto, la invención se relaciona con o el agente de contraste de la presente invención, para su uso en el diagnóstico por imagen de una patología del sistema cardiovascular. El "sistema cardiovascular" hace referencia a la estructura anatómica que conduce y hace circular la sangre. En el ser humano, el sistema cardiovascular está formado por el corazón, los vasos sanguíneos (arterias, venas y capilares) y la sangre.
Las "patologías del sistema cardiovascular" son por ejemplo cardiopatía isquémica, enfermedad coronaria, coronariopatía, isquemia cardiaca o isquemia miocárdica, tales como angina de pecho, angina de Prinzmetal, infarto agudo de miocardio y síndrome de Dressler; afecciones de la circulación pulmonar, tales como hipertensión pulmonar, tromboembolismo pulmonar y cor pulmonale; afecciones del pericardio tales como pericarditis, efusión pericárdica y taponamiento pericárdico; afecciones del endocardio y valvulopatías, tales como endocarditis, insuficiencia mitral, prolapso mitral, estenosis mitral, insuficiencia aórtica, estenosis aórtica, insuficiencia tricuspídea, estenosis tricuspídea, insuficiencia pulmonar, estenosis pulmonar, síndrome hipereosinofílico, fibrosis endomiocárdica, endocarditis de Loeffler y válvula aórtica bicúspide; afecciones del miocardio tales como miocarditis, miocardiopatía, miocardiopatía extrínseca, miocardiopatía intrínseca, endocarditis de Loeffler y displasia arritmogénica; afecciones del sistema de conducción eléctrica del corazón, tales como bloqueo cardíaco, bloqueo atrioventricular, bloqueo de rama, bloqueo bifascicular, bloqueo trifascicular, síndrome de pre-excitación, síndrome de Wolff- Parkinson-White, síndrome de Lown-Ganong-Levine, síndrome del intervalo QT largo, síndrome de Adams-Stokes, parada cardiorrespiratoria, trastornos del ritmo cardíaco, taquicardia paroxística, flutter auricular, fibrilación, contracción prematura y síndrome del seno enfermo; afecciones cerebrovasculares tales como hemorragia intracraneal, hemorragia intracerebral, hemorragia extra-axial, hemorragia intraaxial, hemorragia intraventricular, hemorragia intraparenquimatosa, enfermedad de Binswanger y enfermedad de Moyamoya; patologías de arterias, arteriolas y capilares tales como aterosclerosis, estenosis de la arteria renal, disección de la aorta, aneurisma, enfermedad de Raynaud, enfermedad de Buerger, arteritis, aortitis, arteritis de células gigantes, claudicación intermitente, fístula arteriovenosa, telangiectasia hereditaria hemorrágica y angioma aracniforme; patologías de venas tales como variz, hemorroide, variz esofágica, varicocele, váriz gástrica, caput medusae, síndrome de la vena cava superior, trombosis, flebitis, trombosis venosa profunda, síndrome de May-Thurner, trombosis de la vena porta, trombosis venosa, síndrome de Budd-Chiari, trombosis de la vena renal y enfermedad de Paget-Schroetter; insuficiencia cardiaca; hipertrofia cardíaca; hipertrofia auricular; e hipertrofia ventricular.
Una realización particular de la invención, se relaciona con el uso de las nanopartículas de la presente invención en la fabricación de un agente de diagnóstico para el diagnóstico por imagen de una patología del sistema cardiovascular seleccionada del grupo que consiste en hipertensión pulmonar, estenosis aórtica, insuficiencia pulmonar, afecciones cerebrovasculares, trombosis, aterosclerosis e insuficiencia cardiaca.
En otro realización particular, la invención se relaciona con nanopartículas o el agente de contraste de la presente invención para su uso en el diagnóstico por imagen de una patología del sistema cardiovascular seleccionada del grupo que consiste en hipertensión pulmonar, estenosis aórtica, insuficiencia pulmonar, afecciones cerebrovasculares, trombosis, aterosclerosis e insuficiencia cardiaca.
En otro aspecto, la invención se relaciona con el uso de nanopartículas de la presente invención, preferiblemente aquellos con núcleo de óxido de hierro, que presentan un fármaco unido a la gelatina para preparar un medicamento.
En otro aspecto, la invención se relaciona con el uso de nanopartículas de la presente invención, preferiblemente aquellos con núcleo de óxido de hierro, que presentan un fármaco unido a la gelatina para la fabricación de un medicamento para el tratamiento y/o prevención de una enfermedad que requiera dicho medicamento.
En otro aspecto, la invención se relaciona con nanopartículas de la presente invención que presentan un fármaco unido a la gelatina para su uso en medicina.
La enfermedad a tratar dependerá del fármaco unido a las nanopartículas de la invención, es decir, será una enfermedad susceptible de ser tratada con dicho fármaco. En base a los fármacos unidos a las nanopartículas y las enfermedades que se pueden tratar con los mismos definidos anteriormente, se determinará la enfermedad que será tratada con las nanopartículas unidas a un fármaco según la invención. Por ejemplo, los antineoplásicos doxorubicina y fluorouracilo se utilizan para tratar el cáncer. Por lo tanto, en una realización particular de la presente invención se dirige el uso de las nanopartículas según la invención que presentan un fármaco seleccionado de entre doxorubicina y fluorouracilo unido covalentemente para la fabricación de un medicamento para el tratamiento del cáncer. En otra realización particular, la invención se relaciona con nanopartículas de la presente invención que presentan un fármaco seleccionado de entre doxorubicina y fluorouracilo unido covalentemente para su uso en el tratamiento del cáncer. En otra realización particular, la invención se relaciona con un método de tratamiento del cáncer en un sujeto que padece dicha enfermedad que comprende administrar una cantidad terapéuticamente eficaz de nanopartículas de la presente invención que presentan un fármaco seleccionado de entre doxorubicina y fluorouracilo unido covalentemente.
En el sentido utilizado en esta descripción "cantidad terapéuticamente eficaz" se refiere a la cantidad de principio activo calculada para producir el efecto deseado y estará determinada generalmente, entre otros motivos, por las propias características del principio activo utilizado y el efecto terapéutico que va a obtenerse.
Las nanopartículas de la presente invención, preferiblemente aquellas con núcleo de óxido de hierro, que presentan un fármaco unido a la gelatina, también se utilizan en otro aspecto de la invención para la liberación controlada del fármaco unido covalentemente a la gelatina. El fármaco unido a la gelatina se ha definido anteriormente.
Por "liberación controlada" se entiende que el fármaco libera en un sitio concreto de un organismo. Dicha liberación controlada se logra a través de las propiedades magnéticas de las nanopartículas de la presente invención con el uso de una atracción magnética externa o por funcionalización de las nanopartículas con moléculas que reconocen dianas sobre las que actuar. La liberación controlada permite reducir la dosis del fármaco y desaparición de efectos secundarios no deseados sobre otras células o tejidos sanos, así como facilitar el paso del fármaco a través de las barreras biológicas, como por ejemplo la barrera hematoencefálica.
Método de detección in vitro de metaloproteinasas de la matriz extracelular (MMP)
Es conocido que un sustrato adecuado para determinar la actividad de las MMP es la gelatina. Por lo tanto, las NP de la invención resultan de utilidad para detectar en una muestra la presencia de actividad MMP puesto que la degradación de la cubierta de gelatina dará lugar a un cambio en las propiedades de las partículas que puede ser fácilmente detectable. Dicha detección de actividad MMP es selectiva de gelatinasas, preferiblemente MMP-2 o MMP-9, frente a otras MMP como son las colagenasas. Por tanto, en otro aspecto de la invención se relaciona con un método de detección in vitro de MMP en una muestra, que comprende:
(a) contactar la muestra con nanopartículas según se han definido anteriormente; y (b) detectar un cambio en al menos una propiedad de la nanopartícula,
en donde la metaloproteinasa de la matriz extracelular es una gelatinasas, como por ejemplo MMP-2 y MMP-9.
Las "MMP" o "metaloproteinasas de la matriz extracelular" son endopeptidasas dependientes de zinc. Ejemplos de MMP son MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-11, MMP-12, MMP-13, MMP-14, MMP-15, MMP- 16, MMP- 17, MMP- 18, MMP- 19, MMP-20, MMP-21, MMP-23A, MMP-23B, MMP- 24, MMP-25, MMP-26, MMP-27 y MMP-28. Están involucradas en la escisión de receptores de la superficie celular, liberación de ligandos apoptóticos y activación/desactivación de quimiocinas/citocinas. También están relacionadas con procesos fisiológicos y patológicos tales como morfogénesis, angiogénesis, reparación tisular, cirrosis, artritis y metástasis. Se cree que MMP-2 y MMP-9 son relevantes en metástasis y MMP-1 en artritis reumatoide y osteoartritis.
Las "gelatinasas" hacen referencia a enzimas capaces de degradar la gelatina a polipéptidos de menor tamaño y/o a sus aminoácidos constitutivos. Ejemplos de gelatinasas son MMP-2 y MMP-9.
El método de detección in vivo de MMP definido anteriormente, las MMP se seleccionan de entre gelatinasas, preferiblemente MMP-2 y MMP-9, más preferiblemente MMP-2.
La etapa (a) que consiste en contactar la muestra con las nanopartículas de la invención, ya sea con nanopartículas según se ha definido anteriormente con núcleo de óxido de hierro o con núcleo de UC P se realiza por cultivo de dichas nanopartículas con la muestra, preferiblemente a una temperatura comprendida entre 5 °C y 38 °C, más preferiblemente entre 35 °C y 38 °C, y preferiblemente durante un periodo de tiempo comprendido entre 1 min y 3 h.
El cambio detectado en la etapa (b) es un cambio en las propiedades físicas de las nanopartículas debido a la interacción de la gelatina que recubre las nanopartículas con la MMP cuándo dichas MMP están presentes en la muestra a analizar, es decir, debido a la degradación de la gelatina por dichas MMP. La degradación de la gelatina que recubre las nanopartículas conlleva un cambio en las propiedades de dichas nanopartículas. Dicho cambio es preferiblemente un cambio en al menos una de las propiedades de las nanopartículas, seleccionadas del grupo que consiste en el tamaño hidrodinámico, el potencial zeta, la relajatividad transversal (r2) y relajación transversal (T2) (en el caso de nanopartículas cuyo núcleo es de óxido de hierro), la relajatividad longitudinal (r¡) y relajación longitudinal (Ti) (en el caso de nanopartículas cuyo núcleo es de UC P), tal como se han definido anteriormente, y la fluorescencia (en el caso de nanopartículas cuyo núcleo es de UCNP). En una realización preferida el cambio es en fluorescencia de las nanopartículas, y por lo tanto las nanopartículas utilizadas en la etapa (a) tienen un núcleo de UCNP. En otra realización preferida, el cambio es en la relajación transversal, y por lo tanto las nanopartículas utilizadas en la etapa (a) tienen un núcleo de Fe304.
El cambio hace referencia tanto a un aumento como a una disminución de la propiedad detectada en la etapa (b) respecto a la misma propiedad en las nanopartículas antes de interaccionar con la muestra.
Un cambio en la fluorescencia de las nanopartículas de núcleo de UCNP hace referencia a un cambio entre la intensidad y/o longitud de onda de la emisión de fluorescencia tras una excitación entre 800 nm y 1200 nm de las nanopartículas antes de interaccionar con la muestra respecto a las intensidad y/o longitud de onda de la emisión de fluorescencia tras una excitación entre 800 nm y 1200 nm de la mezcla de nanopartículas y muestra en la etapa (b).
En el contexto de la presente invención, al expresar el rango de valores de un parámetro comprendido entre dos valores o extremos, dichos rangos incluyen los valores de los extremos además de los valores intermedios definidos por dichos extremos.
Los siguientes ejemplos son meramente ilustrativos y no se deben considerar como limitativos de la invención. Ejemplos
Métodos de caracterización de las nanopartículas. El tamaño y forma de las partículas se estudió empleando un microscopio de transmisión electrónica 200-KeV JEOL-2000 FXII. En una rejilla de cobre, recubierta con carbón y secada a 50 °C se colocó una gota de una suspensión diluida de las nanopartículas en hexano (las hidrófobas) o en agua (para las partículas oxidadas y las recubiertas con gelatina).
La caracterización del diámetro hidrodinámico se llevó a cabo mediante medidas de dispersión dinámica de luz empleando un Nano Sizer ZS (Malvern) y dispersiones de nanopartículas a una concentración de 0,5 mM Fe en agua.
Para la medida del potencial Z se diluyeron las partículas (0,5 mM Fe) en una disolución 0,01 M de KNO3. Para las variaciones de pH durante la medida del potencial zeta se emplearon HNO3 o KOH.
Las muestras se analizaron por espectroscopia de infrarrojo con transformada de Fourier (FTIR) empleando un equipo Perkin Elmer 400, por medida directa de las muestras en polvo.
El análisis termogravimétrico de las nanopartículas, en forma de polvo, se realizó en un equipo Seiko TG/ATD 320U, SSC 5200. El análisis se realizó desde temperatura ambiente hasta los 1000 °C a razón de 10°C/min en un flujo de aire constante de 100 mL/min.
Para la evaluación de las prestaciones de las partículas como agentes de contraste en imagen por resonancia se empleó un MINISPEC MQ60 (Bruker) a 37 °C con un campo magnético de 1,5 T. Las velocidades de relajación RÍ (1/TÍ, s"1, i = 1, 2) se obtuvieron de la medida directa de los tiempos de relajación (Ti, s). El ajuste lineal de los datos, Ri frente a la concentración de Fe o Gd, permite obtener los valores de relajatividad para las distintas nanopartículas ( , s^raM"1).
Ejemplo 1. Síntesis del núcleo de óxido de hierro.
Se empleó acetilacetonato de hierro (Fe(acac)3)como precursor y feniléter como disolvente. Una mezcla de 0,71 g de Fe(acac)3 (2 mmol), 2,38 g de 1,2-hexadecanodiol (10 mmol), 1,69 g de ácido oleico (6 mmol), 1,6 g de oleilamina (6 mmol) y 20 mL de feniléter fueron mezclados en una matraz de tres bocas. A continuación la mezcla se calentó con agitación mecánica y flujo de nitrógeno hasta una temperatura de 200 °C. Se mantuvo esta temperatura durante 120 minutos y a continuación se aumentó a reflujo, 254 °C, durante 30 minutos en atmósfera de nitrógeno. Finalmente se enfrió la reacción a temperatura ambiente. Para eliminar los subproductos formados la reacción se añadió a la mezcla etanol y se centrifugó a 8500 rpm durante 10 minutos. Finalmente, las partículas se mezclaron con 20 mL de hexano para obtener una suspensión estable.
Ejemplo 2. Síntesis del núcleo de las nanopartículas fosforescentes de conversión ascendente (UCNP).
A una mezcla principal A de GdCl3 6H20 (0,8307g), YbCl3 6H20 (0,2906g) se añaden 25 mL de ácido oleico y se deja agitando intensamente a 110°C durante 60 minutos en atmósfera inerte de nitrógeno. Transcurrido este tiempo se añade una disolución B de TmCl3 6H20 (0,00573g), ácido oleico (5mL) y octadeceno (5mL) que previamente ha sido calentada durante 30 minutos a 150°C. Una vez mezclada la disolución A con B se deja reaccionando durante una hora y posteriormente se añaden 35 mL de octadeceno. Se deja enfriar hasta los 60°C y una vez alcanzada dicha temperatura se añade gota a gota una tercera disolución C de NaOH (0,3 g) y H4F (0,446 g) disueltos en 30 mL de MeOH. La mezcla de las disoluciones A, B y C se deja reaccionando a 290°C durante 90 minutos, en atmósfera inerte y con agitación moderada observándose pequeñas explosiones durante este tiempo debido a la formación de los núcleos. Pasado este tiempo la mezcla se deja enfriar a temperatura ambiente. El producto generado se redispersa en etanol y se purifica centrifugando a 7000 rpm durante 25 minutos. Se repite el procedimiento 5 veces y el sólido obtenido se redispersa en 20 mi de hexano.
Ejemplo 3. Oxidación de las nanopartículas de óxido de hierro para estabilización en agua (vía ácida). Se disolvieron en cloroformo (60 mL), 0,3 g de ΚΜη04 (1,9 mmol) y 0,8 g (4,3 mmol) de cloruro de benciltrimetilamonio. Se añadió la mezcla a una disolución concentrada (10 mg/mL Fe) de nanopartículas hidrófobas obtenidas en el Ejemplo 1, la reacción se llevó a cabo con agitación mecánica y a reflujo durante 4 horas. Pasado ese tiempo se añadió 50 mL de tampón AcOH/AcO" (pH 2,9) y se continuó la agitación y calefacción durante 20 horas. Pasado ese tiempo se enfrió la reacción y se añadió NaHS03 (3 x 5 mL) para eliminar el resto de permanganato. Finalmente se lavó la dispersión varias veces con disolución de NaOH (1%) y agua para obtener una dispersión estable en agua.
El análisis termogravimétrico de las nanop articulas obtenidas se muestra en la Figura 1. Ejemplo 4. Oxidación de las nanopartículas de óxido de hierro para estabilización en agua (vía básica).
Se procede de igual manera que en el Ejemplo 3 pero, en lugar de 50 mL de tampón AcOH/AcO" (pH 2,9), se añadió 20 mL de NaOH (1%).
Ejemplo 5. Síntesis de UCNP estables en agua.
Se disolvieron en cloroformo (60 mL), 0,3 g de KMn04 (1,9 mmol) y 0,8 g (4,3 mmol) de cloruro de benciltrimetilamonio. Se añadió la mezcla a una disolución de nanopartículas hidrófobas obtenidas en el Ejemplo 2, la reacción se llevó a cabo con agitación mecánica y a reflujo durante 4 horas. Pasado ese tiempo se añadió 50 mL de tampón AcOH/AcO" (pH 2,9) y se continuó la agitación y calefacción durante 20 horas. Pasado ese tiempo se enfrió la reacción y se añadió NaHS03 (3 x 5 mL) para eliminar el resto de permanganato. Finalmente se lavó la dispersión varias veces con disolución de NaOH (1%) y agua para obtener una dispersión estable en agua.
Ejemplo 6. Método general para el recubrimiento con gelatina.
3 mL de una muestra nanopartículas de óxido hierro hidrófilas obtenidas en los Ejemplos 3 y 4 ( 1,9 mg/mL Fe) se mezclan con 12 mg (0,06 mmol) de EDC y seguidamente con 15 mg (0,07mmol) de sulfo-N-hidroxisucci dimida y se deja agitando vigorosamente en vortex durante 40 minutos y a temperatura ambiente. Transcurrido este tiempo se añade sobre dicha mezcla 3 mg (1% m/v) de gelatina porcina (90-110 g Bloom) y se lleva nuevamente a vortex, donde se deja reaccionando a temperatura ambiente durante 90 minutos más. Posteriormente la disolución es purificada con ayuda de imán, retirando la fase acuosa una vez que no se observen nanopartículas en disolución. La muestra imantada se redispersa en 8 mL de tampón fosfato, 10 mM, a pH 7 y se repite el proceso de purificación 3 veces más. Finalmente a muestra dispersa en 8 mL de tampón fosfato y se sónica durante 3 horas para deshacer los posibles agregados formados.
Las nanopartículas recubiertas de gelatina (ejemplo 6) obtenidas a partir de las nanopartículas del ejemplo 3 presentan un tamaño hidrodinámico (N=12) de 45,1 ± 11,6 nm, un potencial zeta de -14,8 ± 4,6 mV y un r2 de 49 mM'V1.
El análisis termogravimétrico de las nanopartículas obtenidas se muestra en la Figura 1.
Las imágenes de microscopía de transmisión electrónica de nanopartículas recubiertas de gelatina (ejemplo 6) obtenidas a partir de las nanopartículas del ejemplo 3 se muestran en la Figuras 2 y 3.
El espectro de FTIR de nanopartículas recubiertas de gelatina (ejemplo 6) obtenidas a partir de las nanopartículas del ejemplo 3 se muestra en la Figura 4.
El comportamiento superparamagnético de nanopartículas recubiertas de gelatina (ejemplo 6) obtenidas a partir de las nanopartículas del ejemplo 3 se muestra en la Figura 5.
Ejemplo 7. Tiempo de residencia en sangre. Se inyectaron 0,8 mL de nanopartículas del ejemplo 6 obtenidas a partir de las nanopartículas del ejemplo 3 a una concentración de 1 mg/mL en ratas. Se midió la intensidad de la señal en el hígado mediante imagen por resonancia magnética (MRI). Se espera una reducción de la intensidad de la señal cuando las nanopartículas llegan al hígado indicando una pérdida de nanopartículas en sangre debido al reconocimiento por parte del sistema inmunitario. Se tomaron muestras de sangre de las ratas a diferentes tiempos, se mezclaron con heparina y se midieron los tiempos T2 con un relaxómetro Bruker mq60. La intensidad de la señal en el hígado en función del tiempo se muestra en la Figura 6. Los valores de R2 en sangre en función del tiempo se muestran en la Figura 7. Las imágenes de cinética IRM muestran los resultados obtenidos con las nanopartículas con y sin recubrir con gelatina (del ejemplo 3 y ejemplo 6 obtenidas a partir de la nanopar'ticulas del ejemplo 3, respectivamente) (Figuras 8 y 9).
Ejemplo 8. Biodistribución.
24 h después de haber finalizado el experimento del Ejemplo 7, se sacrificaron los ratones, y se extrajeron el hígado, bazo y pulmones. Los distintos órganos fueron homogeneizados y se tomó una alícuota del mismo. A dicha alícuota se le aplicó una mezcla de azul de prusia para la cuantificación de Fe por medidas colorimétricas. De esta forma se cuantificó la cantidad de Fe por célula en cada órgano. El resultado de la biodistribución de las nanopartículas del ejemplo 6 obtenidas a partir de las nanopartículas del ejemplo 3 se muestra en la Figura 10.
Ejemplo 9. Estudio de la evolución del tamaño hidrodinámico y el potencial zeta de las nanopartículas de núcleo de Fe304 en función de la concentración de gelatina.
3 mL de una muestra de nanopartículas de óxido hierro hidrófitas obtenidas en los Ejemplos 3 y 4 ( 1,9 mg/mL Fe) se mezclan con 12 mg (0,06 mmol) de EDC y seguidamente con 15 mg (0,07mmol) de sulfo-N-hidroxisucci dimida y se deja agitando vigorosamente en vortex durante 40 minutos y a temperatura ambiente. Transcurrido este tiempo se añade sobre dicha mezcla diferentes concentraciones de gelatina porcina (90-110 g Bloom), desde 1 mg/mL a 7 mg/mL y se lleva nuevamente a vortex, donde se deja reaccionando a temperatura ambiente durante 90 minutos más. Posteriormente la disolución es purificada con ayuda de imán, retirando la fase acuosa una vez que no se observen nanopartículas en disolución. La muestra imantada se redispersa en 8 mL de tampón fosfato, 10 mM, a pH 7 y se repite el proceso de purificación 3 veces más. Finalmente a muestra dispersa en 8 mL de tampón fosfato y se sónica durante 3 horas para deshacer los posibles agregados formados. Los resultados se muestran en la Figura 11. Ejemplo 10. Ensayo de detección de MMP-2.
Se utilizaron las nanopartículas del ejemplo 6 obtenidas a partir de las nanopartículas del ejemplo 3 y se prepararon cinco disoluciones, cada una con 200 μΐ. de nanopartículas a 0.05 mg/mL de Fe, a las que se añadieron las MMP-2 a diferentes concentraciones (50, 37,5, 25, 6,25, 1,25 ng/mL). Todas las soluciones fueron dispersadas en una disolución de CaCl2 (0, 10 mM) en tampón fosfato (pH 7, 1, 10 mM) para obtener un volumen final en todas las muestras de 400 Finalmente las disoluciones fueron incubadas a 37 °C en tubos de relaxometría y el T2 fue medido cada 15 minutos en un relaxómetro durante 4 horas. Los resultados se muestran en la Figura 12.
Ejemplo 11. Ensayo de detección de MMP-9. Se utilizaron las nanopartículas del ejemplo 6 obtenidas a partir de las nanopartículas del ejemplo 3 y se prepararon cinco disoluciones, cada una con 200 μΐ. de nanopartículas a 0,05 mg/mL de Fe, a las que se añadieron las MMP-9 a diferentes concentraciones (50, 37,5, 25, 6,25, 1,25 ng/mL). Todas las soluciones fueron dispersadas en una disolución de CaCl2 (0, 10 mM) en tampón fosfato (pH 7, 1, 10 mM) para obtener un volumen final en todas las muestras de 400 μL. Finalmente las disoluciones fueron incubadas a 37 °C en tubos de relaxometría y el T2 fue medido cada 15 minutos en un relaxómetro durante 4 horas. Los resultados obtenidos fueron similares a los representados en la figura 12. Un gran variación del T2 pasado el tiempo de incubación y proporcional a la concentración de MMP-9.
Ejemplo 12. Ensayo de detección de MMP-1.
Se utilizaron las nanopartículas del ejemplo 6 obtenidas a partir de las nanopartículas del ejemplo 3 y se prepararon cinco disoluciones, cada una con 200 μL de nanopartículas a 0,05 mg/mL de Fe, a las que se añadieron las MMP-1 a diferentes concentraciones (5000, 500, 25, y 1,25 ng/mL). Todas las soluciones fueron dispersadas en una disolución de CaCl2 (0, 10 mM) en tampón fosfato (pH 7, 1, 10 mM) para obtener un volumen final en todas las muestras de 400 Finalmente las disoluciones fueron incubadas a 37 °C en tubos de relaxometría y el T2 fue medido cada 15 minutos en un relaxómetro durante 4 horas. Los resultados se muestran en la Figura 13.

Claims

REIVINDICACIONES
1. Nanopartícula que comprende un núcleo y un recubrimiento de gelatina, en donde la gelatina está unida covalentemente al núcleo y en donde el núcleo se selecciona de entre un núcleo de óxido de hierro y un núcleo UCNP.
2. Nanopartícula según la reivindicación 1, en donde el núcleo es de óxido de hierro.
3. Nanopartícula según la reivindicación!, en donde el óxido de hierro se selecciona del grupo que consiste en Fe3C"4 y y-Fe203.
4. Nanopartícula según cualquiera de las reivindicaciones anteriores, en donde la unión covalente de la gelatina al núcleo es a través de un puente de ácido dicarboxílico de fórmula (I),
HOOC^ ^ TOOH
(i)
en donde n es un número de 1 a 10.
5. Nanopartícula según la reivindicación 4, en donde n es un número de 3 a 7.
6. Nanopartícula según la reivindicación 5, en donde n es 5.
7. Nanopartícula según cualquiera de las reivindicaciones anteriores, en donde la nanopartícula presenta un tamaño hidrodinámico comprendido entre 30 nm y
250nm.
8. Nanopartícula según cualquiera de las reivindicaciones anteriores, en donde la nanopartícula presenta un potencial zeta comprendido entre -5 mV y -60 mV.
Nanopartícula según cualquiera de las reivindicaciones 2 a 8, en donde el núcleo de la nanopartículas es de óxido de hierro y la nanopartícula presenta una relajatividad transversal comprendida entre 40 mM'V1 y 80 mM'V1.
10. Nanopartícula según cualquiera de las reivindicaciones anteriores, en donde la gelatina presenta una fuerza Bloom comprendida entre 50 g Bloom y 500 g Bloom.
11. Nanopartícula según cualquiera de las reivindicaciones anteriores que comprenden además un fármaco unido covalentemente a la gelatina.
12. Nanopartícula según la reivindicación 11, en donde el fármaco se selecciona del grupo que consiste en ketotifeno, traxanox, ipratropio, tiotropio, teofilina, infliximab, beclometasona, prednisona, hidrocortisona, metilprednisolona,cortisona, dexametasona, prednisolona, doxorubicina, fluorouracilo, clofibrato, dextrotiroxina, probucol, pravastatina, atorvastatina, lovastatina, niacina, insulina, gliburida, clorpropamida, glipizida, tolbutamida, tolazamida, propanolol, propafenona, oxprenolol, nifedipina, reserpina, trimetafán, fenoxibenzamina, pargilina, deserpidina, diazoxida, guanetidina, minoxidilo, rescinamina, alseroxilona, y fentolamina.
13. Procedimiento de obtención de nanopartículas según cualquiera de las reivindicaciones 1 a 12, que comprende:
(a) dispersar nanopartículas en donde el núcleo de las mismas se selecciona de entre un núcleo de óxido de hierro y un núcleo de UCNP y dicho núcleo está recubierto de un ácido monocarboxílico insaturado de fórmula (II),o una sal del mismo, en un disolvente;
Figure imgf000042_0001
(Π) en donde n y m se seleccionan independientemente de un número de 1 a 10; (b) tratar con un oxidante la dispersión de obtenida en la etapa (a); (c) tratar la mezcla resultante de la etapa (b) con una disolución acuosa; y
(d) proveer gelatina y hacerla reaccionar con las nanopartículas obtenidas en la etapa (c) en presencia de un activador de ácido carboxílico, en donde la gelatina opcionalmente está unida covalentemente a un fármaco.
14. Procedimiento según la reivindicación 13, en donde en el ácido monocarboxílico de fórmula (II) n=m y se seleccionan de un número de 3 a 7.
15. Procedimiento según la reivindicación 14 en donde n=m=5.
16. Procedimiento según cualquiera de las reivindicaciones 13 a 15 en donde el núcleo de las nanopartículas es de óxido de hierro.
17. Procedimiento según la reivindicación 16 en donde las nanopartículas cuyo núcleo óxido de hierro está recubierto de ácido monocarboxílico insaturado de fórmula (II) de la etapa (a) se obtienen por descomposición térmica de un compuesto orgánico de hierro seleccionado del grupo que consiste en N-nitrosofenilhidroxilamina de hierro, acetilacetonato de hierro, pentacarbonilo de hierro, tricloruro de hierro, en presencia de dicho ácido monocarboxílico insaturado de fórmula (II) y un tensioactivo, en un disolvente a una temperatura comprendida entre 150 °C y 400 °C.
18. Procedimiento según cualquiera de las reivindicaciones 13 a 17, en donde el oxidante de la etapa (b) se selecciona del grupo que consiste en KMn04, OSO4/O3, NaI04/Ru02/NaTi04, 03, RuCl3/03 y PdCl2/CuCl2.
19. Procedimiento según cualquiera de las reivindicaciones 13 a 18, en donde la disolución acuosa de la etapa (c) es una disolución acuosa ácida.
20. Procedimiento según cualquiera la reivindicación 19, en donde la disolución acuosa ácida es una disolución acuosa cuyo pH está comprendido en el rango de 2,5 a 4,5.
21. Procedimiento según la reivindicación 20, en donde la disolución acuosa ácida es un tampón de ácido acético/acetato.
22. Procedimiento según cualquiera de las reivindicaciones 13 a 18, en donde la disolución acuosa de la etapa (c) es una disolución acuosa básica.
23. Procedimiento según la reivindicación 22, en donde la disolución acuosa básica es una disolución acuosa cuyo pH está comprendido en el rango de 9 a 12.
24. Procedimiento según la reivindicación 23, en donde la disolución acuosa básica es una disolución acuosa de NaOH.
25. Procedimiento según cualquiera de las reivindicaciones 13 a 24, en donde la etapa (d) comprende:
(di) mezclar un activador de ácido carboxílico con un disolvente;
(d2) tratar las nanopartículas obtenidas en la etapa (c) con la mezcla de la etapa
(di) y la gelatina, en donde la gelatina opcionalmente está unida covalentemente a un fármaco; y
(d3) aislar las nanopartículas resultantes de la etapa (d2).
26. Procedimiento según la reivindicación 25, en donde el activador de ácido carboxílico es una carbodiimida y opcionalmente comprende además un activador de ácido carboxílico secundario seleccionado del grupo que consiste en N- hidroxisulfosuccinimida, N-hidroxisuccinimida, N-hidroxibenzotriazol.
27. Procedimiento según la reivindicación 26 en donde la carbodiimida de la etapa (di) es N-(3-dimetilaminopropil)-N'-etilcarbodiimida o una sal de adición de ácido de la misma, y el activador de ácido carboxílico secundario está presente.
28. Procedimiento según cualquiera de las reivindicaciones 25 a 27, en donde el disolvente de la etapa (di) es agua.
29. Composición que comprende nanopartículas según se han definido en cualquiera de las reivindicaciones 1 a 12, en donde las nanopartículas son monodispersas.
30. Agente de contraste que comprende nanopartículas definidas en cualquiera de las reivindicaciones 1 a 12.
31. Uso de nanopartículas según cualquiera de las reivindicaciones 1 a 12, o el agente de contraste definido en la reivindicación 30, en la fabricación de un agente de diagnóstico para el diagnóstico por imagen de una patología del sistema cardiovascular.
32. Nanopartículas según cualquiera de las reivindicaciones 1 a 12, o el agente de contraste definido en la reivindicación 30, para su uso en el diagnóstico por imagen de una patología del sistema cardiovascular.
33. Uso de nanopartículas según cualquiera de las reivindicaciones 11 a 12 para preparar un medicamento.
34. Uso de nanopartículas según cualquiera de las reivindicaciones 11 a 12 para la fabricación de un medicamento para el tratamiento y/o prevención de una enfermedad que requiera dicho medicamento.
35. Nanopartículas según cualquiera de las reivindicaciones 11 a 12 para su uso en medicina.
36. Uso de nanopartículas según cualquiera de las reivindicaciones 11 a 12 para la liberación controlada del fármaco unido covalentemente a la gelatina.
37. Método de detección in vitro de una metaloproteinasa de la matriz extracelular en una muestra que comprende:
(a) poner en contacto la muestra con nanopartículas según se han definido en cualquiera de las reivindicaciones 1 a 12; y
(b) detectar un cambio en al menos una propiedad de la nanopartícula, en donde la metaloproteinasa de la matriz extracelular es una gelatinasa.
Método de detección según la reivindicación 37, en donde la gelatinasa selecciona de entre MMP-2 y MMP-9.
Método de detección según cualquiera de las reivindicaciones 37 o 38, en donde el núcleo de las nanopartículas es UCNP y la propiedad en la que se detecta un cambio es la fluorescencia de dichas nanopartículas.
40. Método de detección según cualquiera de las reivindicaciones 37 o 38, en donde el núcleo de las nanopartículas es Fe3C"4 y la propiedad en la que se detecta un cambio es la relajación transversal de dichas nanopartículas.
PCT/ES2013/070462 2012-07-03 2013-07-03 Nanopartículas recubiertas de gelatina WO2014006254A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201231038 2012-07-03
ESP201231038 2012-07-03

Publications (1)

Publication Number Publication Date
WO2014006254A1 true WO2014006254A1 (es) 2014-01-09

Family

ID=49123866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070462 WO2014006254A1 (es) 2012-07-03 2013-07-03 Nanopartículas recubiertas de gelatina

Country Status (1)

Country Link
WO (1) WO2014006254A1 (es)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106063778A (zh) * 2015-04-21 2016-11-02 北京化工大学 一种丙酸倍氯米松透明水相纳米分散体的制备方法
CN108904800A (zh) * 2018-07-07 2018-11-30 上海大学 基于纳米钯异质生长的上转换纳米杂化体系、制备方法及应用
WO2019045795A1 (en) * 2017-08-30 2019-03-07 Micron Technology, Inc MODE REGISTERS DISTRIBUTED IN MEMORY DEVICES
WO2020219370A1 (en) * 2019-04-20 2020-10-29 Trustees Of Dartmouth College Method and apparatus for magnetic nanoparticles development with ultra-small size, uniformity and monodispersity
US11292933B2 (en) * 2018-01-15 2022-04-05 South Dakota Board Of Regents Stable oil-in-water nanoemulsion containing upconverting nanoparticles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030049447A1 (en) * 2001-06-05 2003-03-13 Coletica Treated water-insoluble solid particles, preparation and use
WO2009040811A2 (en) 2007-09-24 2009-04-02 Bar-Ilan University Polymer nanoparticles coated by magnetic metal oxide and uses thereof
WO2009072982A1 (en) 2007-12-07 2009-06-11 Nanyang Polytechnic An automated material dispensing system for dispensing material to marine life
US20100233219A1 (en) * 2006-03-30 2010-09-16 Fujifilm Corporation Inorganic nanoparticle compromising an active substance immobilized on the surface and a polymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030049447A1 (en) * 2001-06-05 2003-03-13 Coletica Treated water-insoluble solid particles, preparation and use
US20100233219A1 (en) * 2006-03-30 2010-09-16 Fujifilm Corporation Inorganic nanoparticle compromising an active substance immobilized on the surface and a polymer
WO2009040811A2 (en) 2007-09-24 2009-04-02 Bar-Ilan University Polymer nanoparticles coated by magnetic metal oxide and uses thereof
WO2009072982A1 (en) 2007-12-07 2009-06-11 Nanyang Polytechnic An automated material dispensing system for dispensing material to marine life

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
FERNANDO HERRANZ ET AL: "A new method for the aqueous functionalization of superparamagnetic Fe 2 O 3 nanoparticles", CONTRAST MEDIA & MOLECULAR IMAGING, vol. 3, no. 6, 1 November 2008 (2008-11-01), pages 215 - 222, XP055082178, ISSN: 1555-4309, DOI: 10.1002/cmmi.254 *
GAIHRE B ET AL: "Gelatin-coated magnetic iron oxide nanoparticles as carrier system: Drug loading and in vitro drug release study", INTERNATIONAL JOURNAL OF PHARMACEUTICS, ELSEVIER BV, NL, vol. 365, no. 1-2, 5 January 2009 (2009-01-05), pages 180 - 189, XP025760702, ISSN: 0378-5173, [retrieved on 20080823], DOI: 10.1016/J.IJPHARM.2008.08.020 *
GAIRE B. ET AL., J. MICROENCAPSUL., vol. 28, 2011, pages 240 - 247
HERRANZ F. ET AL., CONTRAST MEDIA MOL. IMAGING, vol. 3, 2008, pages 215 - 222
LAURENT S. ET AL., FUTURE MED. CHEM., vol. 2, 2010, pages 427 - 449
M.B. SMITH; J. MARCH I: "March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure", 2007, WILEY-INTERSCIENCE, pages: 1430 - 1434
M.B. SMITH; J. MARCH: "March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure", 2007, WILEY-INTERSCIENCE, pages: 1736 - 1745
WU W. ET AL., NANOSCALE RES. LETT., vol. 3, 2008, pages 397 - 415

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106063778A (zh) * 2015-04-21 2016-11-02 北京化工大学 一种丙酸倍氯米松透明水相纳米分散体的制备方法
WO2019045795A1 (en) * 2017-08-30 2019-03-07 Micron Technology, Inc MODE REGISTERS DISTRIBUTED IN MEMORY DEVICES
US11292933B2 (en) * 2018-01-15 2022-04-05 South Dakota Board Of Regents Stable oil-in-water nanoemulsion containing upconverting nanoparticles
CN108904800A (zh) * 2018-07-07 2018-11-30 上海大学 基于纳米钯异质生长的上转换纳米杂化体系、制备方法及应用
CN108904800B (zh) * 2018-07-07 2021-03-26 上海大学 基于纳米钯异质生长的上转换纳米杂化体系、制备方法及应用
WO2020219370A1 (en) * 2019-04-20 2020-10-29 Trustees Of Dartmouth College Method and apparatus for magnetic nanoparticles development with ultra-small size, uniformity and monodispersity

Similar Documents

Publication Publication Date Title
Das et al. Tailor made magnetic nanolights: Fabrication to cancer theranostics applications
Rana et al. Folic acid conjugated Fe 3 O 4 magnetic nanoparticles for targeted delivery of doxorubicin
Lee et al. Paramagnetic inorganic nanoparticles as T1 MRI contrast agents
Ferreira et al. Gold nanoparticles functionalised with stable, fast water exchanging Gd 3+ chelates as high relaxivity contrast agents for MRI
Rowe et al. Tuning the magnetic resonance imaging properties of positive contrast agent nanoparticles by surface modification with RAFT polymers
Li et al. Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking
Zhu et al. Hyperbranched polymers for bioimaging
Demin et al. PMIDA-modified Fe3O4 magnetic nanoparticles: synthesis and application for liver MRI
Lee et al. Magnetic nanoparticles for multi-imaging and drug delivery
Hamoudeh et al. Preparation, characterization and surface study of poly-epsilon caprolactone magnetic microparticles
ES2538255T3 (es) Nanopartículas de liposoma para pruebas de imagen de resonancia magnética de tumores
Yang et al. Ultrabright and ultrastable near-infrared dye nanoparticles for in vitro and in vivo bioimaging
Li et al. Peptide-enhanced tumor accumulation of upconversion nanoparticles for sensitive upconversion luminescence/magnetic resonance dual-mode bioimaging of colorectal tumors
Lim et al. Self-assembled fluorescent magnetic nanoprobes for multimode-biomedical imaging
Jing et al. Covalent attachment of Mn-porphyrin onto doxorubicin-loaded poly (lactic acid) nanoparticles for potential magnetic resonance imaging and pH-sensitive drug delivery
WO2014006254A1 (es) Nanopartículas recubiertas de gelatina
EP2432460B1 (en) Water dispersible glyceryl monooleate magnetic nanoparticle formulation
Zhu et al. Surface modification of Gd nanoparticles with pH-responsive block copolymers for use as smart MRI contrast agents
Iatridi et al. Multifunctional polymeric platform of magnetic ferrite colloidal superparticles for luminescence, imaging, and hyperthermia applications
Mauri et al. MnO nanoparticles embedded in functional polymers as T 1 contrast agents for magnetic resonance imaging
Lee et al. Amphiphilic hyaluronic acid-based nanoparticles for tumor-specific optical/MR dual imaging
KR100862973B1 (ko) 표적부위자기약물전달과 조영제를 위한 양이온성 자성나노복합체
Tallury et al. Fluorescent and paramagnetic chitosan nanoparticles that exhibit high magnetic resonance relaxivity: synthesis, characterization and in vitro studies
CA2982853A1 (en) Texaphyrin-phospholipid conjugates and methods of preparing same
US9125942B2 (en) Paramagnetic metal-nanodiamond conjugates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13759547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13759547

Country of ref document: EP

Kind code of ref document: A1