WO2014005450A1 - Transmission block size determination method and device, and synchronization method, device, and system - Google Patents

Transmission block size determination method and device, and synchronization method, device, and system Download PDF

Info

Publication number
WO2014005450A1
WO2014005450A1 PCT/CN2013/073899 CN2013073899W WO2014005450A1 WO 2014005450 A1 WO2014005450 A1 WO 2014005450A1 CN 2013073899 W CN2013073899 W CN 2013073899W WO 2014005450 A1 WO2014005450 A1 WO 2014005450A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport block
block size
size
tti bundling
modulation
Prior art date
Application number
PCT/CN2013/073899
Other languages
French (fr)
Chinese (zh)
Inventor
陈宪明
关艳峰
袁弋非
罗薇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014005450A1 publication Critical patent/WO2014005450A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters

Definitions

  • the present invention relates to the field of communications, and in particular to a method and apparatus for determining a transport block size, a synchronization method, a device, and a system.
  • Inter-Cell Interference in a small interval Coordination such as High Interference Indication (HII) and Overload Indication (01)
  • MIMO Multiple Input Multiple Output
  • SD Space Diversity
  • Beamforming BF for short
  • CoMP Coordinated Multiple Point
  • CS/CB Coordinated Scheduling/Coordinated Beamforming
  • JR Joint Receiver
  • the transmission time interval bundle (Transmission Time)
  • TTI Bundling for short
  • the TTI Bundling scheme refers to a scheduler that allocates more than one radio resource to a UE.
  • the basic idea of the scheme is to allow the UE to continuously transmit the same Transmission Block (TB) Redundancy Version (RV) continuously on the ⁇ .
  • FIG. 1 is an uplink using a TTI Bundling scheme according to the related art.
  • Transmission diagram as shown in Figure 1, by adding Cyclic Redundancy Check (CRC) bits, Channel Coding (CC) and Rate Matching (RM) processes Four RVs (RV0 to RV3) associated with a TB are generated; then, the above four RVs (RV0 to RV3) are transmitted on successive four ⁇ (TTI n to ⁇ n+3 ), respectively.
  • the TTI Bundling scheme supports transmitting a transport block with a larger Transmission Block Size (TBS), thereby obtaining a codec gain, saving control overhead, and finally implementing uplink coverage. improve.
  • TBS Transmission Block Size
  • the present invention provides a method for synchronizing and determining a transport block size, so as to at least solve the problem that the transport block size cannot be synchronized when data transmission is performed by using TTI Bundling in the related art.
  • a method for synchronizing a transport block size including: a base station (eNB) acquiring a frequency domain physical resource block number of a user equipment (UE) and a modulation coding scheme index of the UE; The frequency domain physical resource block number and the modulation and coding scheme index determine a temporary transport block size; and determine a size factor of a TTI Bundling transport block size according to the temporary transport block size and/or a transmission time interval bundle (TTI Bundling) size
  • TTI Bundling size is a number of consecutive transmission time intervals ⁇ performing TTI Bundling; the eNB determines the TTI Bundling transport block according to the scale factor of the TTI Bundling transport block size and the temporary transport block size
  • the eNB notifies the UE of the size factor of the TTI Bundling transport block size, the number of the frequency domain physical resource block, and the modulation and coding scheme index, or the eNB performs the frequency domain physical resource.
  • the acquiring, by the eNB, the TTI Bundling transport block size according to the TTI Bundling transport block size scale factor and the temporary transport block size comprises: determining, by the eNB, that the TTI Bundling transport block size is the TTI Bundling transport block The product of the size factor of the size and the size of the temporary transport block.
  • the TTI Bundling transport block size has a scale factor greater than or equal to the number of consecutive transmission time intervals ⁇ in which the TTI Bundling is performed.
  • the size factor of the TTI Bundling transport block size is notified to the UE by the eNB by using a radio resource control RRC message or a downlink control information format DCI.
  • the determining, by the eNB, the temporary transport block size according to the frequency domain physical resource block number and the modulation and coding scheme index the eNB determining, according to the modulation and coding scheme index and the first correspondence, a transport block index, the eNB. Determining the temporary transport block size according to the S S , the frequency domain physical resource block number 7 and the second correspondence relationship.
  • the first correspondence is a mapping relationship from a modulation coding scheme index to a modulation order ⁇ « and a transport block size index;
  • the second correspondence is from the transport block size index and the frequency domain physics The number of resource blocks ⁇ ⁇ to the temporary transport block size mapping relationship.
  • a method for determining a transport block size includes: acquiring, by a user equipment (UE), a number of frequency domain physical resource blocks of the UE, a modulation coding scheme index of the UE, and a transmission time interval bundle ( ⁇ Bundling) a scaling factor of a transport block size, wherein the scale factor of the TTI Bundling transport block size is determined according to a temporary transport block size and/or a TTI Bundling size, where the TTI Bundling size The number of consecutive transmission time intervals TTIs for performing TTI Bundling; the UE determining the temporary transmission block size according to the frequency domain physical resource block number and the modulation and coding scheme index, and according to the TTI Bundling transmission block size The scale factor and the temporary transport block size determine the TTI Bundling transport block size.
  • the determining, by the UE, the TTI Bundling transport block size according to the TTI Bundling transport block size scale factor and the temporary transport block size comprises: determining, by the UE, that the TTI Bundling transport block size is the TTI Bundling transport block The product of the size factor of the size and the size of the temporary transport block.
  • the TTI Bundling transport block size has a scale factor greater than or equal to the number of consecutive transmission time intervals ⁇ in which the TTI Bundling is performed.
  • the UE acquires a scale factor of the TTI Bundling transport block size by: receiving a radio resource control RRC message; receiving a downlink control information format DCI; and the UE according to the frequency domain physical resource block number and
  • the modulation and coding scheme index determines the temporary transport block size, and determines a scale factor of the transport block size according to the temporary transport block size and/or the TTI Bundling size.
  • the determining, by the UE, the temporary transport block size according to the frequency domain physical resource block number and the modulation and coding scheme index the determining, by the UE, the transport block according to the modulation and coding scheme index and the first correspondence relationship the index of the physical resource blocks UE ⁇ domain and a second corresponding relationship between the temporary transport block size determining the ⁇ S, according to the frequency.
  • the first correspondence is a mapping relationship from a modulation coding scheme index to a modulation order ⁇ TM and a transport block size index
  • the second correspondence is a slave transport block size index and the frequency domain physical resource block Number ⁇ to the mapping relationship of the temporary transport block size.
  • a synchronization device for transmitting a block size which is applied to a base station (eNB), and includes: a first acquiring module, configured to acquire a frequency domain physical resource block number of the user equipment UE, and the UE And a first determining module, configured to determine a temporary transport block size according to the frequency domain physical resource block number and the modulation and coding scheme index; and the second determining module is configured to be according to the temporary transport block size and/or Or a transmission time interval bundle TTI Bundling size determining a size factor of a TTI Bundling transport block size, where the TTI Bundling size is a number of consecutive transmission time intervals TTI for performing TTI Bundling; and a third determining module, configured to be according to the TTI Determining a size factor of the Bundling transport block size and the temporary transport block size to determine the TTI Bundling transport block size; a notification module, configured to set a size factor of the TTI Bundling transport block size
  • the first determining module includes: a first determining unit, configured to determine a transport block index according to the modulation and coding scheme index and the first correspondence; a second determining unit, configured to perform index according to the modulation and coding scheme, The number of the frequency domain physical resource block and the second correspondence relationship determine a size of the temporary transmission block; the first correspondence relationship is a mapping relationship from a modulation and coding scheme index to a modulation order and the transport block size index; The second correspondence is a mapping relationship from the transport block size index and the number of frequency domain physical resource blocks to the temporary transport block size.
  • a device for determining a transport block size which is applied to a user equipment UE, and includes: a second acquiring module, configured to acquire a frequency domain physical resource block number of the UE, and a modulation and coding scheme of the UE Index and transmission time interval bundle size factor of the TTI Bundling transport block size, wherein the scale factor of the ⁇ Bundling transport block size is determined according to a temporary transport block size and/or a transmission time interval bundle TTI Bundling size, where The TTI Bundling size is a number of consecutive transmission time intervals ⁇ performing TTI Bundling; the fourth determining module is configured to determine a temporary transport block size according to the frequency domain physical resource block number and the modulation and coding scheme index; And a module configured to determine a TTI Bundling transport block size according to a scale factor of the TTI Bundling transport block size and the temporary transport block size.
  • the fourth determining module includes: a third determining unit, configured to determine a transport block index according to the modulation and coding scheme index and the first correspondence; a fourth determining unit, configured to perform index according to the modulation and coding scheme, The frequency domain physical resource block number and the second correspondence relationship determine a size of the temporary transport block; the first pair The relationship should be a mapping from the modulation coding scheme index to the modulation order and the transport block size index; the second correspondence is from the transport block size index and the frequency domain physical resource block number to the temporary The mapping relationship of the transport block size.
  • a transmission block size synchronization system comprising the above-described transport block size synchronizing apparatus and the above-described transport block size determining means.
  • the eNB may determine the temporary transport block size by using the frequency domain physical resource block number and the modulation and coding scheme index, and then determine the TTI Bundling transport block size according to the determined size factor of the TTI Bundling transport block size and the size of the temporary transport block. And transmitting the parameters to the UE for synchronization, which solves the problem that the transmission block size cannot be synchronized when using TTI Bundling for data transmission in the related art, thereby improving the uplink coverage when using TTI Bundling for data transmission. effect.
  • FIG. 1 is a schematic diagram of uplink transmission using a TTI Bundling scheme according to the related art
  • FIG. 2 is a flowchart of a method for synchronizing transport block sizes according to an embodiment of the present invention
  • FIG. 3 is a transmission according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing a structure of a synchronization block of a transport block size according to an embodiment of the present invention
  • FIG. 5 is a block diagram showing a preferred structure of a transport block size synchronizing apparatus according to an embodiment of the present invention
  • 6 is a structural block diagram of a device for determining the size of a transport block according to an embodiment of the present invention
  • FIG. 7 is a block diagram showing a preferred configuration of a device for determining the size of a transport block according to an embodiment of the present invention
  • FIG. 8 is a transmission according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for synchronizing transport block sizes according to an embodiment of the present invention. As shown in FIG. 2, the method includes the following steps S202 to S206. Step S202: The eNB acquires the number of frequency domain physical resource blocks of the UE and the modulation and coding scheme index of the UE.
  • Step S204 The eNB determines a temporary transport block size according to the frequency domain physical resource block number and the modulation and coding scheme index, and determines a size factor of the TTI Bundling transport block size according to the temporary transport block size and/or the TTI Bundling size, where The TTI Bundling size is the number of consecutive TTIs that perform TTI Bundling.
  • Step S206 The eNB determines a TTI Bundling transport block size according to the TTI Bundling transport block size scale factor and the temporary transport block size.
  • Step S208 The eNB notifies the UE of the TTI Bundling transport block size scale factor, the frequency domain physical resource block number, and the modulation and coding scheme index, or the eNB notifies the UE of the frequency domain physical resource block number and the modulation and coding scheme index, and triggers the UE. Synchronize the TTI Bundling transport block size.
  • the eNB may determine the temporary transport block size by using the frequency domain physical resource block number and the modulation and coding scheme index, and then determine the scale factor of the TTI Bundling transport block size according to the temporary transport block size and/or the TTI Bundling size, and also according to the TTI Bundling.
  • the size factor of the transport block size and the size of the temporary transport block determine the TTI Bundling transport block size, and the parameters are sent to the UE for synchronization, thereby realizing the synchronization of the TTI Bundling transport block size, overcoming the related art, using TTI Bundling
  • the TTI Bundling transport block size may be obtained according to the TTI Bundling transmission requirement, and the TTI Bundling transport block size may be determined by using the TTI Bundling transport block size scale factor and the temporary transport block size.
  • the eNB may determine the ⁇ Bundling transport block size as the TTI Bundling transport block.
  • the TTI Bundling transport block size scale factor can be selected as needed.
  • the TTI Bundling transport block size has a scale factor greater than or equal to the number of consecutive transmission time intervals TTI for performing TTI Bundling.
  • the size factor of the TTI Bundling transport block size may be notified to the UE by the eNB through a (RRC) message or a preset downlink control information format (DCI).
  • RRC radio resource control information format
  • the eNB may determine the temporary transmission block size according to the frequency domain physical resource block number and the modulation and coding scheme index in multiple manners.
  • the eNB may adopt the following manner: The code scheme index (/ Mes ) and the first correspondence determine a transport block index (/ ras ); then the eNB determines the size of the temporary transport block according to the / Mes , the frequency domain physical resource block number (N PM ), and the second correspondence relationship .
  • the first correspondence is a mapping relationship from the modulation and coding scheme index / Mes to the modulation order ⁇ cauliflower and the transport block size index I TBS , and the mapping relationship as shown in Table 1 may be adopted: Table 1
  • G m is a modulation order
  • the second correspondence is a mapping relationship from the transport block size index ⁇ and the number of the frequency domain physical resource blocks to the temporary transport block size, for example, as shown in Table 2 The mapping relationship shown. Table 2
  • FIG. 3 is a transport block size according to an embodiment of the present invention.
  • a flowchart of the determination method, as shown in FIG. 3, the method includes the following steps S302 to S306.
  • Step S302 The UE acquires a size factor of the number of the physical frequency resource blocks of the UE, the UE modulation and coding scheme index, and the ⁇ Bundling transport block size, where the size factor of the TTI Bundling transport block size is based on the temporary transport block size and/or The TTI Bundling is sized, wherein the TTI Bundling size is the number of consecutive ticks that perform TTI Bundling.
  • Step S304 Determine the temporary transport block size according to the frequency domain physical resource block number and the modulation and coding scheme index.
  • Step S306 The UE determines the TTI Bundling transport block size according to the scale factor of the TTI Bundling transport block size and the temporary transport block size.
  • the UE determines the size of the temporary transport block by using the received frequency domain physical resource block number and the modulation and coding scheme index, and then determines the TTI Bundling transport block size according to the TTI Bundling transport block size scale factor and the size of the temporary transport block.
  • the synchronization of the TTI Bundling transport block size on the UE side and the base station side is overcome, which overcomes the problem that the transmission block size synchronization under the TTI Bundling cannot be realized in the related art, thereby achieving the effect of using TTI Bundling to improve the uplink coverage.
  • the TTI Bundling transport block size may be obtained according to the TTI Bundling transmission requirement, and the TTI Bundling transport block size may be determined by using the TTI Bundling transport block size scale factor and the temporary transport block size.
  • the eNB may determine the ⁇ Bundling transport block size as the TTI Bundling transport block.
  • the TTI Bundling transport block size scale factor can be selected as needed.
  • the TTI Bundling transport block size has a scale factor greater than or equal to the number of consecutive transmission time intervals TTI for performing TTI Bundling.
  • the scaling factor of the TTI Bundling transport block size is obtained by one of the following methods: Manner 1: Receive Radio Resource Control (RRC) message; Method 2: Receive downlink control information format DCI; Method 3: The UE determines the temporary transport block size according to the frequency domain physical resource block number and the modulation and coding scheme index, according to the temporary transport block size And/or TTI Bundling size determines the scale factor of the transport block size.
  • RRC Radio Resource Control
  • Method 3 The UE determines the temporary transport block size according to the frequency domain physical resource block number and the modulation and coding scheme index, according to the temporary transport block size And/or TTI Bundling size determines the scale factor of the transport block size.
  • This preferred embodiment increases the diversity of scale factors that transmit TTI Bundling transport block sizes.
  • the UE may determine the temporary transmission block size according to the frequency domain physical resource block number and the modulation and coding scheme index in multiple manners.
  • the UE may adopt the following manner: The UE may perform index according to the modulation and coding scheme ( ⁇ s ) and the first correspondence determine the transport block index U TBS , and then the eNB determines the size of the temporary transport block according to the / Mes , the frequency domain physical resource block number (N PM ), and the second correspondence.
  • the first correspondence is a mapping relationship from the modulation coding scheme index I MCS to the modulation order ⁇ asparagus and the transport block size index I TBS , and the mapping relationship as shown in Table 3 may be adopted: Table 3
  • G ⁇ is a modulation order
  • the second correspondence is a mapping relationship from the transport block size index ⁇ and the frequency domain physical resource block number ⁇ ⁇ to the temporary transport block size, for example, as shown in Table 4 The mapping relationship shown. Table 4
  • a transport block size synchronization software is provided for performing the technical solutions described in the above embodiments and preferred embodiments.
  • a storage medium is also provided, wherein the storage block size synchronization software is stored, including but not limited to: an optical disk, a floppy disk, a hard disk, a rewritable memory, and the like.
  • the embodiment of the present invention further provides a synchronization device for transmitting a block size, which can be applied to a base station eNB, and the synchronization device of the transmission block size can be used to implement the synchronization method and a preferred implementation manner of the foregoing transmission block size, which has been described.
  • the modules involved in the synchronization device of the transport block size will be described below.
  • the term "module" may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus includes: a first obtaining module 42, a first determining module 44, a second determining module 46, and a third determining.
  • Module 48 and notification module 49 the above structure will be described in detail below.
  • the first obtaining module 42 is configured to acquire the number of frequency domain physical resource blocks of the UE and the modulation and coding scheme index of the UE.
  • the first determining module 44 is connected to the first obtaining module 42 and configured to be acquired according to the first acquiring module 42.
  • the number of the frequency domain physical resource blocks, the modulation and coding scheme index determines the size of the temporary transport block;
  • the second determining module 46 is connected to the first determining module 44, and is set to the temporary transport block size determined by the first determining module 44 and/or Or a TTI Bundling size determining a size factor of a TTI Bundling transport block size, wherein the TTI Bundling size is a number of consecutive transmission time intervals TTI performing TTI Bundling; a third determining module 48, coupled to the first determining module 44 and the second The determining module 46 is configured to determine a TTI Bundling transport block size according to the temporary transport block size determined by the first determining module 44 and the size factor of the TTI Bundling transport block size determined by the second determining module 46; the notification module 48, connected to the first obtaining The module 42 and the second determining module 46 are arranged to set the size of the TTI Bundling transport block determined by the second determining module 46 to be large The small factor, the number of frequency domain
  • FIG. 5 is a block diagram showing a preferred structure of a transport block size synchronizing apparatus according to an embodiment of the present invention.
  • the first determining module 44 includes: a first determining unit 442 and a second determining unit 444, which are described below. The structure is described in detail.
  • the first determining unit 442 is configured to determine a transport block index / ras according to the modulation and coding scheme index I MC and the first correspondence relationship ; the second determining unit 444 is connected to the first determining unit 442, and is configured to be configured according to the first determining unit 442.
  • the determined / Mes , the number of frequency domain physical resource blocks N PM and the second correspondence determine the size of the temporary transport block.
  • a software for determining the size of a transport block for performing the technical solutions described in the above embodiments and preferred embodiments is also provided.
  • a storage medium wherein the storage medium has the above-mentioned transport block size determining software, including but not limited to: an optical disc, a floppy disk, a hard disk, a rewritable memory, and the like.
  • the embodiment of the present invention further provides a device for determining the size of a transport block, which can be applied to a UE, and the device for determining the size of the transport block can be used to implement the method for determining the size of the transport block, and a preferred implementation manner.
  • the modules involved in the apparatus for determining the size of the transport block will be described below.
  • the term "module" may implement a combination of software and/or hardware of a predetermined function.
  • FIG. 6 is a structural block diagram of a device for determining a size of a transport block according to an embodiment of the present invention. As shown in FIG. 6, the device includes: a second obtaining module 62, a fourth determining module 64, and a fifth determining module 66, The above structure will be described in detail.
  • the second obtaining module 62 is configured to acquire a frequency factor physical resource resource block of the UE, a modulation coding scheme index of the UE, and a size factor of a TTI Bundling transport block size, where the scale factor of the TTI Bundling transport block size is based on the temporary transmission
  • the block size and/or the TTI Bundling size is determined, wherein the TTI Bundling size is the number of consecutive TTIs that perform TTI Bundling;
  • the fourth determining module 64 is coupled to the second obtaining module 62, and configured to be acquired according to the second obtaining module 62.
  • the number of the frequency domain physical resource blocks and the modulation and coding scheme index determine the size of the temporary transmission block.
  • the fifth determining module 66 is connected to the second obtaining module 62 and the fourth determining module 64, and is configured to be acquired according to the second obtaining module 62.
  • the TTI Bundling transport block size scale factor and the temporary transport block size determined by the fourth determining module 64 determine the TTI Bundling transport block size.
  • FIG. 7 is a block diagram showing a preferred structure of a device for determining the size of a transport block according to an embodiment of the present invention. As shown in FIG. 7, the fourth determining module 64 includes: a third determining unit 642 and a fourth determining unit 644, The above structure is described in detail.
  • the third determining unit 642 is configured to determine a transport block index / ras according to the modulation and coding scheme index I MC and the first correspondence relationship ; the fourth determining unit 644 is connected to the third determining unit 642 and configured to be configured according to the third determining unit 642
  • the determined / Mes , the number of physical resource blocks N PRB and the second correspondence determine the size of the temporary transport block.
  • the embodiment also provides a synchronization system for transporting block size.
  • FIG. 8 is a structural block diagram of a synchronization system for transporting block size according to an embodiment of the present invention. As shown in FIG. 8, the system includes: a synchronization device for transporting block size.
  • the first embodiment of the present invention provides a method for synchronizing a TTI Bundling TBS.
  • the preset TTI Bundling size is 4, that is, the number of consecutive MIMOs performing TTI Bundling is 4; Sounding Reference Signal (SRS); It is assumed that the eNB acquires the current channel state between the UE and the eNB by measuring the above SRS; it is assumed that the eNB has no cooperation with the neighboring eNB.
  • the method includes the following steps S402 to S424.
  • Step S402 The eNB determines that the current channel quality is lower than a certain threshold.
  • RRC Radio Resource Control
  • the TTI Bundling flag is set to "1". , indicates that the TTI Bundling operation is enabled.
  • Step S406 The UE receives and parses the RRC message, and obtains the “Enable TTI Bundling Flag” control signaling.
  • Step S408 The eNB acquires a frequency domain physical resource block to be allocated for the UE according to the current channel state.
  • Step S410 The eNB acquires the TBS index/ ras according to the MCS index/ Mes and Table 5.
  • Step S412 The eNB acquires a temporary transport block size (Temporary TBS, abbreviated as T-TBS) according to the frequency domain PRB number N ra2 ⁇ , the TBS index / ras, and the following Table 6.
  • T-TBS Temporal Transport Block Size
  • Step S414 The eNB determines a Scaling Factor (SF) of the TTI Bundling TBS according to the preset TTI Bundling size and/or T-TBS, and determines a TTI Bundling TBS according to the SF and B T-TBS.
  • the size, 5fee7i7a5 represents T-TBS, , f 2 and respectively represent different mapping relationships.
  • the SF is determined by one of the following methods: determining SF according to Si ZeiTIBum g ; determining SF according to Sizer-TBS; determining SF according to Sizem Bundling and Size T - TBS .
  • the implementation of /, / 2 and can be:
  • Step S416 The eNB notifies the UE of the frequency domain PRB number N PRB and the MCS index I MCS .
  • the eNB notifies the UE through the DCI format 0; the DCI format 0 is used for the scheduling of the PUSCH, and is carried by the Physical Downlink Control Channel (PDCCH).
  • the DCI format 0 includes at least the fields shown in Table 7. Wherein the number of PRB N PRB in the frequency domain is described by "resource block allocation and resource allocation Hopping" field, the MCS index / Mes is described by "modulation, coding scheme and redundancy coding” field. Table 7 DCI format 0
  • Format 0 and format 1A distinguishes the flag (lbit)
  • Uplink subframe number (applies to time division duplex mode)
  • Step S418 The UE receives and parses the DCI format 0, and obtains the frequency domain PRB number N and MCS cable bow
  • Step S420 The UE acquires the TBS cable II TBS according to the MCS index I MCS and Table 1.
  • Step S422 The UE acquires the T-TBS according to the frequency domain PRB number N PRB , the TBS cable II TBS and the table 2 .
  • Step S424 The UE determines that the TTI Bundling operation is enabled according to the foregoing “Enable TTI Bundling Flag”; determines a TTI Bundling TBS SF according to the preset TTI Bundling size and/or T-TBS, and determines a TTI according to the SF and the T-TBS. Bundling TBS.
  • the SF is determined by one of the following methods: determining SF according to Si Z e TTj mdHêt g ; determining SF according to Size T ⁇ TBS; determining SF according to Sizem Bundling and Size T ⁇ TBS .
  • the UE uses the same mapping as the eNB.
  • the TBS is equal to the product of the SF and the T-TBS.
  • a preferred embodiment of determining the TTI Bundling TBS SF according to the preset ⁇ Bundling size and/or T-TBS is used, which needs to be explained.
  • a mode different from the preferred embodiment may be adopted.
  • the synchronization between the eNB and the UE is implemented by the TTI Bundling TBS by using the foregoing steps in the embodiment.
  • the second embodiment of the present invention provides a TTI.
  • the preset TTI Bundling size is 4, that is, the number of consecutive ⁇ s performing TTI Bundling is 4; assume that the UE transmits the SRS; The current channel state between the eNBs; the eNB is not cooperating with the neighboring eNBs.
  • the method includes the following steps S502 to S524.
  • Step S502 The eNB determines that the current channel quality is lower than a certain threshold;
  • Step S504 The eNB enables the TTI Bundling operation, and notifies the UE by using an RRC message carrying the "Enable TTI Bundling Flag" and the "Tcal Bundling TBS Scaling Factor (SF)" control signaling;
  • the TTI Bundling flag is "1", indicating that the TTI Bundling operation is enabled; preferably, the eNB determines the TTI Bundling TBS SF according to the preset TTI Bundling size and/or the previous T-TBS statistics; preferably, the TTI Bundling TBS SF
  • the STI is greater than or equal to the preset TTI Bundling size;
  • Step S506 The UE receives and parses the RRC message, and obtains the “Enable TTI Bundling Flag” and the “TTI Bundling TBS SF” control signaling.
  • Step S508 The eNB obtains according to the current channel state.
  • the frequency domain PRB number N ra2 ⁇ and the MCS index/ Mes allocated to the UE are prepared; wherein the frequency domain PRB number represents the number of RBs allocated in the frequency domain, and usually each RB is composed of multiple frequency domain subcarriers.
  • Step S510 The eNB acquires the TBS index/ ras according to the MCS index/ Mes and the table 1; Step S512: The eNB acquires the T-TBS according to the frequency domain PRB number N PffS , the TBS index, and the table 2; Step S514: The eNB acquires the TBS according to the TTI Bundling TBS SF and the T-TBS; specifically, the TBS is equal to the product of the TTI Bundling TBS SF and the T-TBS; Step S516: The eNB notifies the UE of the frequency domain PRB number N PRB and the MCS index I the MCS; specifically, the eNB notifies the UE through a DCI format 0; DCI format 0 is used for PUSCH scheduling, and carries on the physical downlink control channel PDCCH.
  • the DCI format 0 includes at least a field as shown in Table 3.
  • the frequency domain is described by the PRB H "Hopping resource block allocation and resource allocation 'field, the MCS index / Mes is described by" modulation, coding scheme and redundancy coding "field.
  • Step S518 The UE receives and parses the DCI format 0, and obtains the frequency domain PRB number N PRB and MCS cable bow
  • Step S520 The UE acquires the TBS index/ ras according to the MCS index/ Mes and the table 1; Step S522: The UE acquires the T-TBS according to the frequency domain PRB number N PRB , the TBS cable II TBS and the table 2; Step S524 The UE judges that the TTI Bundling operation is enabled according to the "Enable TTI Bundling Flag", and acquires the TBS according to the TTI Bundling TBS SF and the T-TBS.
  • TBS is equal to the product of TTI Bundling TBS SF and T-TBS.
  • the TTI Bundling TBS SF is notified by the eNB through the RRC message.
  • the third embodiment of the present invention provides a TTI Bundling TBS synchronization method.
  • the preset ⁇ Bundling size is 4, that is, the number of consecutive TTIs that perform TTI Bundling is 4; It is assumed that the eNB acquires the current channel state between the UE and the eNB by measuring the above SRS; it is assumed that the eNB has no cooperation with the neighboring eNB.
  • the method includes the following steps S602 to S624.
  • Step S602 The eNB determines that the current channel quality is lower than a certain threshold; Step S604: The eNB enables the TTI Bundling operation; Step S606: The eNB acquires the frequency domain PRB number N ra2 ⁇ and the MCS index/ Mes to be allocated for the UE according to the current channel state.
  • the frequency domain PRB number indicates the number of RBs allocated in the frequency domain, usually each RB is more The frequency domain subcarriers are formed.
  • Step S612 The eNB determines TTI Bundling TBS SF according to the preset TTI Bundling size and/or T-TBS, and according to the TTI Bundling TBS SF and T- The TBS acquires the TBS; preferably, the TTI Bundling TBS SF is greater than or equal to the preset TTI Bundling size; preferably, the TBS is equal to the product of the TTI Bundling TBS SF and the T-TBS.
  • Step S614 The eNB notifies the UE of the frequency domain PRB number N PRB , the MCS index I MCS , the enable TTI Bundling flag, and the TTI Bundling TBS SF. Specifically, the eNB notifies the UE by using the improved DCI format 0; the improved DCI format 0 is also used for scheduling of the PUSCH, and is carried by the physical downlink control channel PDCCH. Specifically, the DCI format 0 includes at least a field as shown in Table 8.
  • the frequency domain PRB H is described by a "resource block allocation and a Hopping resource allocation” field, and the MCS index / Mes is described by a “modulation, coding scheme, and redundancy coding” field, enabling the TTI Bundling flag by "Enable TTI Bundling” Flag "Field Description, TTI Bundling TBS SF by" TTI Bundling TBS
  • Format 0 and format 1A distinguishes the flag (lbit)
  • Uplink subframe number (applies to time division duplex mode)
  • Step S616 The UE receives and parses the DCI format 0, and obtains the frequency domain PRB number N PRB , the MCS index I MCS , the enable TTI Bundling flag, and the TTI Bundling TBS SF.
  • Step S618 The UE acquires the TBS index / ras according to the MCS index / Mes and the table 5.
  • Step S620 The UE acquires the T-TBS according to the frequency domain PRB number N PRB , the TBS cable II TBS, and the table 6.
  • Step S622 The UE determines that the TTI Bundling operation is enabled according to the "Enable TTI Bundling Flag", and acquires the TBS according to the TTI Bundling TBS SF and the T-TBS. Specifically, TBS is equal to the product of TTI Bundling TBS SF and T-TBS. In this embodiment, the TTI Bundling TBS SF is notified by the eNB to the UE through DCI format 0. Through the above steps of the embodiment, the synchronization between the eNB and the UE by the TTI Bundling TBS is implemented. Through the foregoing embodiments, a method for synchronizing, determining, and determining a transport block size is provided.
  • the eNB may determine a temporary transport block size by using a frequency domain physical resource block number and a modulation and coding scheme index, and then, according to the determined TTI Bundling transport block.
  • the size factor of the size and the size of the temporary transport block determine the TTI Bundling transport block size, and send the parameter to the UE for synchronization, which solves the problem that the transmission block size synchronization under the TTI Bundling cannot be realized in the related art, and further
  • the effect of using TTI Bundling to improve the uplink coverage is achieved.
  • the method is simple to implement, has low control overhead and good backward compatibility. It should be noted that these technical effects are not all of the above embodiments, and some technical effects are obtained by some preferred embodiments.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device so that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or Multiple modules or steps are made into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only a preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Disclosed are a transmission block size determination method and device, and synchronization method, device, and system, the synchronization method comprising: an eNB obtaining the number of frequency domain physical resource blocks (PRBs) and the modulation and coding scheme (MCS) index of an UE; determining the size of a temporary transmission block according to the number of frequency domain PRBs and the MCS index; determining, according to the size of the temporary transmission block and/or the size of the transmission time interval (TTI) bundling, the scale factor for the size of the TTI bundling; determining, according to the scale factor and the size of the temporary transmission block, the size of a TTI bundling transmission block; notifying the UE the scale factor of the size of the TTI bundling transmission block, the number of the frequency domain PRBs, and the MCS index, or notifying the UE the number of the frequency domain PRBs and the MCS index, and triggering the UE to synchronize the transmission block size. The present invention solves the synchronization problem of the size of TTI bundling transmission blocks, thereby enhancing uplink coverage.

Description

传输块大小的确定方法及装置、 同步方法、 装置及系统 技术领域 本发明涉及通信领域, 具体而言, 涉及一种传输块大小的确定方法及装置、 同步 方法、 装置及系统。 背景技术 随着无线通信技术的快速发展, 有限的频谱资源逐渐成为制约无线通信发展的最 主要因素, 但正是有限的频谱资源激发了新技术的出现。 在无线通信系统中容量和覆 盖是两个重要的性能指标。 在现有的长期演进 (Long Term Evolution, 简称为 LTE) 系统中, 为了增强上行 数据信道覆盖性能, 多种先进的技术已经被采用, 包括: (1 ) 小区间的干扰协调 (Inter-Cell Interference Coordination,简称为 ICIC),例如高干扰指示(High Interference Indication, HII) 与过载指示 (Overload Indication, 简称为 01) 方法; (2) 多输入多 输出(Multiple Input Multiple Output,简称为 MIMO),例如空间分集(Space Diversity, 简称为 SD)与波束成型(Beamforming, 简称为 BF)方法; (3 )协作多点(Coordinated Multiple Point, 简称为 CoMP), 它是基于 MIMO发展起来的技术, 例如协作调度 /协 作波束成型 (Coordinated Scheduling/ Coordinated Beamforming, 简称为 CS/CB) 与联 合接收 (Joint Receiver, 简称为 JR) 方法。 由于当前网络和未来一段时间内, 用户设 备 (User Equipment, 简称为 UE)均为单天线, MIMO和 CoMP技术对于上行的改善 有限。 在现有的 LTE系统中, 尽管已经使用了多种技术来改善上行的传输性能, 尤其是 上行覆盖性能, 但通过目前的网络测试和仿真发现, 中等速率的物理上行共享信道 (Physical Uplink Shared Channel,简称为 PUSCH)仍然是各个信道中覆盖性能受限的 信道, 原因在于 UE的发送功率有限。 这对上行中等速率覆盖性能提升提出了新的需 求。 为了进一步的提升上行中等速率覆盖, 传输时间间隔集束 (Transmission Time The present invention relates to the field of communications, and in particular to a method and apparatus for determining a transport block size, a synchronization method, a device, and a system. BACKGROUND OF THE INVENTION With the rapid development of wireless communication technologies, limited spectrum resources have gradually become the most important factor restricting the development of wireless communications, but it is the limited spectrum resources that have stimulated the emergence of new technologies. Capacity and coverage are two important performance metrics in wireless communication systems. In the existing Long Term Evolution (LTE) system, in order to enhance the uplink data channel coverage performance, a variety of advanced technologies have been adopted, including: (1) Inter-Cell Interference in a small interval Coordination (referred to as ICIC), such as High Interference Indication (HII) and Overload Indication (01); (2) Multiple Input Multiple Output (MIMO), for example Space Diversity (referred to as SD) and Beamforming (BF for short); (3) Coordinated Multiple Point (CoMP), which is a technology developed based on MIMO, such as cooperative scheduling. Coordinated Scheduling/Coordinated Beamforming (CS/CB for short) and Joint Receiver (JR). Due to the current network and the user equipment (User Equipment, UE for short) are single antennas in the future, MIMO and CoMP technologies have limited improvement on the uplink. In the existing LTE system, although various techniques have been used to improve the uplink transmission performance, especially the uplink coverage performance, the medium-speed physical uplink shared channel (Physical Uplink Shared Channel) is found through current network testing and simulation. , abbreviated as PUSCH) is still a channel with limited coverage performance in each channel, because the transmission power of the UE is limited. This puts new demands on the performance of uplink medium rate coverage. In order to further improve the uplink medium rate coverage, the transmission time interval bundle (Transmission Time)
Internal Bundling, 简称为 TTI Bundling) 方案已经被建议。 TTI Bundling方案是指调 度器为 UE分配超过 1个 ΤΉ的无线资源。 该方案的基本思想是允许 UE在连续 ΤΉ 上连续发送同一传输块 (Transmission Block, 简称为 TB ) 冗余版本 (Redundancy Version, 简称为 RV)。 具体地, 图 1是根据相关技术的采用 TTI Bundling方案的上行 传输示意图, 如图 1所示, 通过填加循环冗余校验 (Cyclic Redundancy Check, 简称 为 CRC) 比特、信道编码(Channel Coding, 简称为 CC)与速率匹配(Rate Matching, 简称为 RM) 过程, 与某 TB有关的 4个 RV (RV0至 RV3 )被产生; 然后, 上述 4个 RV (RV0至 RV3 )分别在连续的 4个 ΤΉ (TTI n至 ΤΤΙ n+3 )上被发送。 其中, 与传 统方案相比, TTI Bundling 方案支持发送具有更大传输块大小 (Transmission Block Size, 简称为 TBS) 的传输块, 从而获取了编解码增益, 节省了控制开销, 最终实现 了上行覆盖的提高。 为保证增强节点 B (evolved NodeB, 简称为 eNB) 正确解码 TB, 在 eNB与 UE 间必须准确地实现相应 TBS的同步,但是相关技术中在采用 TTI Bundling进行数据传 输时如何进行传输块大小的同步, 目前尚未提出有效且简单的解决方案。 发明内容 本发明提供了一种传输块大小的同步、 确定方法及装置, 以至少解决相关技术中 在采用 TTI Bundling进行数据传输时无法实现传输块大小同步的问题。 根据本发明的一个方面, 提供了一种传输块大小的同步方法, 包括: 基站 (eNB) 获取用户设备(UE)的频域物理资源块数和该 UE的调制编码方案索引; 所述 eNB根 据所述频域物理资源块数和所述调制编码方案索引确定临时传输块大小; 并根据所述 临时传输块大小和 /或传输时间间隔集束 (TTI Bundling) 大小确定 TTI Bundling传输 块大小的尺度因子, 其中, 所述 TTI Bundling大小为执行 TTI Bundling的连续的传输 时间间隔 ΤΉ的数目;所述 eNB根据所述 TTI Bundling传输块大小的尺度因子和所述 临时传输块大小确定所述 TTI Bundling传输块大小;所述 eNB将所述 TTI Bundling传 输块大小的尺度因子、 所述频域物理资源块数和所述调制编码方案索引通知给所述 UE, 或者, 所述 eNB将所述频域物理资源块数和所述调制编码方案索引通知给所述 UE, 触发所述 UE进行所述 TTI Bundling传输块大小的同步。 优选地,所述 eNB根据所述 TTI Bundling传输块大小的尺度因子和所述临时传输 块大小获取 TTI Bundling传输块大小包括:所述 eNB确定所述 TTI Bundling传输块大 小为所述 TTI Bundling传输块大小的尺度因子与所述临时传输块大小的乘积。 优选地, 所述 TTI Bundling传输块大小的尺度因子大于或等于执行 TTI Bundling 的连续的传输时间间隔 ΤΉ的数目。 优选地,所述 TTI Bundling传输块大小的尺度因子由所述 eNB通过无线资源控制 RRC消息或者下行控制信息格式 DCI通知给所述 UE。 优选地, 所述 eNB根据所述频域物理资源块数和调制编码方案索引, 确定临时传 输块大小包括:所述 eNB根据所述调制编码方案索引 和第一对应关系确定传输块 索引 所述 eNB根据所述 ^S、 所述频域物理资源块数7 和第二对应关系确定 所述临时传输块大小。 优选地,所述第一对应关系为从调制编码方案索引 到调制阶数 β«和传输块大 小索引 的映射关系;所述第二对应关系为从所述传输块大小索引 和所述频域物 理资源块数^ ^到所述临时传输块大小的映射关系。 根据本发明的又一方面,提供了一种传输块大小的确定方法,包括:用户设备 (UE) 获取该 UE的频域物理资源块数、该 UE的调制编码方案索引和传输时间间隔集束 (ΤΉ Bundling) 传输块大小的尺度因子, 其中, 所述 TTI Bundling传输块大小的尺度因子 是根据临时传输块大小和 /或传输时间间隔集束 (TTI Bundling) 大小确定的, 其中, 所述 TTI Bundling大小为执行 TTI Bundling的连续的传输时间间隔 TTI的数目; 所述 UE根据所述频域物理资源块数和所述调制编码方案索引确定所述临时传输块大小,并 根据所述 TTI Bundling 传输块大小的尺度因子和所述临时传输块大小确定 TTI Bundling传输块大小。 优选地, 所述 UE根据所述 TTI Bundling传输块大小的尺度因子和所述临时传输 块大小确定 TTI Bundling传输块大小包括: 所述 UE确定所述 TTI Bundling传输块大 小为所述 TTI Bundling传输块大小的尺度因子与所述临时传输块大小的乘积。 优选地, 所述 TTI Bundling传输块大小的尺度因子大于或等于执行 TTI Bundling 的连续的传输时间间隔 ΤΉ的数目。 优选地, 所述 UE通过以下方式之一获取所述 TTI Bundling传输块大小的尺度因 子: 接收无线资源控制 RRC消息; 接收下行控制信息格式 DCI; 所述 UE根据所述频 域物理资源块数和所述调制编码方案索引确定所述临时传输块大小, 根据所述临时传 输块大小和 /或所述 TTI Bundling大小确定所述传输块大小的尺度因子。 优选地, 所述 UE根据所述频域物理资源块数和所述调制编码方案索引, 确定临 时传输块大小包括: 所述 UE根据所述调制编码方案索引 ^^和第一对应关系确定传 输块索引 所述 UE根据所述 ^S、 所述频域物理资源块数^^和第二对应关系 确定所述临时传输块大小。 优选地,所述第一对应关系为从调制编码方案索引 到调制阶数 β™和传输块大 小索引 的映射关系;所述第二对应关系为从传输块大小索引 和所述频域物理资 源块数^ 到所述临时传输块大小的映射关系。 根据本发明的另一方面,提供了一种传输块大小的同步装置,应用于基站(eNB), 包括: 第一获取模块, 设置为获取用户设备 UE的频域物理资源块数和该 UE的调制 编码方案索引; 第一确定模块, 设置为根据所述频域物理资源块数和所述调制编码方 案索引确定临时传输块大小; 第二确定模块, 设置为根据所述临时传输块大小和 /或传 输时间间隔集束 TTI Bundling大小确定 TTI Bundling传输块大小的尺度因子, 其中, 所述 TTI Bundling大小为执行 TTI Bundling的连续的传输时间间隔 TTI的数目; 第三 确定模块, 设置为根据所述 TTI Bundling传输块大小的尺度因子和所述临时传输块大 小确定所述 TTI Bundling传输块大小; 通知模块, 设置为将所述 TTI Bundling传输块 大小的尺寸因子、所述频域物理资源块数和所述调制编码方案索引通知给所述 UE,或 者, 将所述频域物理资源块数和所述调制编码方案索引通知给所述 UE, 触发所述 UE 进行所述 TTI Bundling传输块大小的同步。 优选地, 所述第一确定模块包括: 第一确定单元, 设置为根据所述调制编码方案 索引和第一对应关系确定传输块索引; 第二确定单元, 设置为根据所述调制编码方案 索引、 所述频域物理资源块数和第二对应关系确定该临时传输块的大小; 所述第一对 应关系为从调制编码方案索引到调制阶数和所述传输块大小索引的映射关系; 所述第 二对应关系为从所述传输块大小索引和所述频域物理资源块数到所述临时传输块大小 的映射关系。 根据本发明的又一方面,提供了一种传输块大小的确定装置,应用于用户设备 UE, 包括: 第二获取模块, 设置为获取 UE的频域物理资源块数、 该 UE的调制编码方案 索引和传输时间间隔集束 TTI Bundling 传输块大小的尺度因子, 其中, 所述 ΤΉ Bundling传输块大小的尺度因子是根据临时传输块大小和 /或传输时间间隔集束 TTI Bundling大小确定的, 其中, 所述 TTI Bundling大小为执行 TTI Bundling的连续的传 输时间间隔 ΤΉ的数目; 第四确定模块, 设置为根据所述频域物理资源块数和所述调 制编码方案索引,确定临时传输块大小;第五确定模块,设置为根据所述 TTI Bundling 传输块大小的尺度因子和所述临时传输块大小确定 TTI Bundling传输块大小。 优选地, 所述第四确定模块包括: 第三确定单元, 设置为根据所述调制编码方案 索引和第一对应关系确定传输块索引; 第四确定单元, 设置为根据所述调制编码方案 索引、 所述频域物理资源块数和第二对应关系确定该临时传输块的大小; 所述第一对 应关系为从调制编码方案索引到调制阶数和所述传输块大小索引的映射关系; 所述第 二对应关系为从所述传输块大小索引和所述频域物理资源块数到所述临时传输块大小 的映射关系。 根据本发明的又一方面, 提供了一种传输块大小的同步系统, 包括上述的传输块 大小的同步装置和上述的传输块大小的确定装置。 通过本发明, eNB可以使用频域物理资源块数和调制编码方案索引, 确定临时传 输块大小, 然后根据确定的 TTI Bundling传输块大小的尺度因子和该临时传输块的大 小确定 TTI Bundling传输块大小, 并将参数发送给 UE进行同步, 解决了相关技术中 在采用 TTI Bundling进行数据传输时无法实现传输块大小的同步的问题, 进而达到了 使用 TTI Bundling进行数据传输时, 提高了上行覆盖范围的效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中- 图 1是根据相关技术的采用 TTI Bundling方案的上行传输示意图; 图 2是根据本发明实施例的传输块大小的同步方法的流程图; 图 3是根据本发明实施例的传输块大小的确定方法的流程图; 图 4是根据本发明实施例的传输块大小的同步装置的结构框图; 图 5是根据本发明实施例的传输块大小的同步装置的优选的结构框图; 图 6是根据本发明实施例的传输块大小的确定装置的结构框图; 图 7是根据本发明实施例的传输块大小的确定装置的优选的结构框图; 以及 图 8是根据本发明实施例的传输块大小的同步系统的结构框图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 本实施例提供了一种传输块大小的同步方法, 图 2是根据本发明实施例的传输块 大小的同步方法的流程图, 如图 2所示, 该方法包括如下的步骤 S202至步骤 S206。 步骤 S202: eNB获取 UE的频域物理资源块数和该 UE的调制编码方案索引。 步骤 S204: eNB根据该频域物理资源块数和该调制编码方案索引确定临时传输块 大小;并根据该临时传输块大小和 /或 TTI Bundling大小确定 TTI Bundling传输块大小 的尺度因子, 其中, 该 TTI Bundling大小为执行 TTI Bundling的连续的 TTI的数目。 步骤 S206: eNB根据该 TTI Bundling传输块大小尺度因子和该临时传输块大小确 定 TTI Bundling传输块大小。 步骤 S208: eNB将 TTI Bundling传输块大小的尺度因子、频域物理资源块数和调 制编码方案索引通知给 UE, 或者, eNB将频域物理资源块数和调制编码方案索引通 知给 UE, 触发 UE进行 TTI Bundling传输块大小的同步。 通过上述步骤, eNB可以使用频域物理资源块数和调制编码方案索引确定临时传 输块大小,然后根据临时传输块大小和 /或 TTI Bundling大小确定 TTI Bundling传输块 大小的尺度因子, 还根据 TTI Bundling传输块大小的尺度因子和该临时传输块的大小 确定 TTI Bundling传输块大小, 并将参数发送给 UE进行同步, 实现了 TTI Bundling 传输块大小的同步, 克服了相关技术中, 在采用 TTI Bundling的方式进行数据传输时 无法实现 TTI Bundling传输块大小的同步的问题, 进而达到了提高采用 TTI Bundling 的方式进行传输时的上行覆盖范围的效果。 在实施时, 可以根据 TTI Bundling传输的要求, 使用 TTI Bundling传输块大小的 尺度因子和临时传输块大小获取 TTI Bundling传输块大小,例如, eNB可以确定该 ΤΉ Bundling传输块大小为该 TTI Bundling传输块大小的尺度因子与该临时传输块的大小 的乘积。 该实施方式对现有技术的改动比较小, 且实施起来比较简单。 TTI Bundling 传输块大小的尺度因子可以根据需要进行选择, 比较优的, TTI Bundling传输块大小 的尺度因子大于或等于执行 TTI Bundling的连续的传输时间间隔 TTI的数目。 优选的, 上述优选实施方式中, TTI Bundling传输块大小的尺度因子可以由 eNB 通过 (RRC) 消息或者预设的下行控制信息格式 (DCI)通知给该 UE。 该优选实施方 式提高了发送 TTI Bundling传输块大小的尺度因子的多样性。 在实施中, eNB可以通过多种方式实现根据该频域物理资源块数和调制编码方案 索引确定临时传输块大小, 比较优的, 可以采用如下的方式: eNB可以根据该调制编 码方案索引 (/Mes ) 和第一对应关系确定传输块索引 (/ras ); 然后 eNB根据该 /Mes、 该频域物理资源块数 (NP M )和第二对应关系确定临时传输块的大小。 比较优的, 该 第一对应关系为从调制编码方案索引 /Mes到调制阶数 β„和传输块大小索引 ITBS的映 射关系, 可以采用如表 1所示的映射关系: 表 1
Figure imgf000009_0001
Internal Bundling (TTI Bundling for short) has been proposed. The TTI Bundling scheme refers to a scheduler that allocates more than one radio resource to a UE. The basic idea of the scheme is to allow the UE to continuously transmit the same Transmission Block (TB) Redundancy Version (RV) continuously on the ΤΉ. Specifically, FIG. 1 is an uplink using a TTI Bundling scheme according to the related art. Transmission diagram, as shown in Figure 1, by adding Cyclic Redundancy Check (CRC) bits, Channel Coding (CC) and Rate Matching (RM) processes Four RVs (RV0 to RV3) associated with a TB are generated; then, the above four RVs (RV0 to RV3) are transmitted on successive four ΤΉ (TTI n to ΤΤΙ n+3 ), respectively. Compared with the traditional solution, the TTI Bundling scheme supports transmitting a transport block with a larger Transmission Block Size (TBS), thereby obtaining a codec gain, saving control overhead, and finally implementing uplink coverage. improve. In order to ensure that the enhanced TB (evolved NodeB, eNB for short) correctly decodes the TB, the corresponding TBS synchronization must be accurately implemented between the eNB and the UE. However, how to synchronize the transport block size when using TTI Bundling for data transmission in the related art There is currently no effective and simple solution. SUMMARY OF THE INVENTION The present invention provides a method for synchronizing and determining a transport block size, so as to at least solve the problem that the transport block size cannot be synchronized when data transmission is performed by using TTI Bundling in the related art. According to an aspect of the present invention, a method for synchronizing a transport block size is provided, including: a base station (eNB) acquiring a frequency domain physical resource block number of a user equipment (UE) and a modulation coding scheme index of the UE; The frequency domain physical resource block number and the modulation and coding scheme index determine a temporary transport block size; and determine a size factor of a TTI Bundling transport block size according to the temporary transport block size and/or a transmission time interval bundle (TTI Bundling) size The TTI Bundling size is a number of consecutive transmission time intervals 执行 performing TTI Bundling; the eNB determines the TTI Bundling transport block according to the scale factor of the TTI Bundling transport block size and the temporary transport block size The eNB notifies the UE of the size factor of the TTI Bundling transport block size, the number of the frequency domain physical resource block, and the modulation and coding scheme index, or the eNB performs the frequency domain physical resource. Notifying the UE of the number of blocks and the modulation and coding scheme index, triggering the UE to perform synchronization of the TTI Bundling transport block size Preferably, the acquiring, by the eNB, the TTI Bundling transport block size according to the TTI Bundling transport block size scale factor and the temporary transport block size comprises: determining, by the eNB, that the TTI Bundling transport block size is the TTI Bundling transport block The product of the size factor of the size and the size of the temporary transport block. Preferably, the TTI Bundling transport block size has a scale factor greater than or equal to the number of consecutive transmission time intervals 执行 in which the TTI Bundling is performed. Preferably, the size factor of the TTI Bundling transport block size is notified to the UE by the eNB by using a radio resource control RRC message or a downlink control information format DCI. Preferably, the determining, by the eNB, the temporary transport block size according to the frequency domain physical resource block number and the modulation and coding scheme index, the eNB determining, according to the modulation and coding scheme index and the first correspondence, a transport block index, the eNB. Determining the temporary transport block size according to the S S , the frequency domain physical resource block number 7 and the second correspondence relationship. Preferably, the first correspondence is a mapping relationship from a modulation coding scheme index to a modulation order β« and a transport block size index; the second correspondence is from the transport block size index and the frequency domain physics The number of resource blocks ^ ^ to the temporary transport block size mapping relationship. According to still another aspect of the present invention, a method for determining a transport block size includes: acquiring, by a user equipment (UE), a number of frequency domain physical resource blocks of the UE, a modulation coding scheme index of the UE, and a transmission time interval bundle ( ΤΉ Bundling) a scaling factor of a transport block size, wherein the scale factor of the TTI Bundling transport block size is determined according to a temporary transport block size and/or a TTI Bundling size, where the TTI Bundling size The number of consecutive transmission time intervals TTIs for performing TTI Bundling; the UE determining the temporary transmission block size according to the frequency domain physical resource block number and the modulation and coding scheme index, and according to the TTI Bundling transmission block size The scale factor and the temporary transport block size determine the TTI Bundling transport block size. Preferably, the determining, by the UE, the TTI Bundling transport block size according to the TTI Bundling transport block size scale factor and the temporary transport block size comprises: determining, by the UE, that the TTI Bundling transport block size is the TTI Bundling transport block The product of the size factor of the size and the size of the temporary transport block. Preferably, the TTI Bundling transport block size has a scale factor greater than or equal to the number of consecutive transmission time intervals 执行 in which the TTI Bundling is performed. Preferably, the UE acquires a scale factor of the TTI Bundling transport block size by: receiving a radio resource control RRC message; receiving a downlink control information format DCI; and the UE according to the frequency domain physical resource block number and The modulation and coding scheme index determines the temporary transport block size, and determines a scale factor of the transport block size according to the temporary transport block size and/or the TTI Bundling size. Preferably, the determining, by the UE, the temporary transport block size according to the frequency domain physical resource block number and the modulation and coding scheme index, the determining, by the UE, the transport block according to the modulation and coding scheme index and the first correspondence relationship the index of the physical resource blocks UE ^^ domain and a second corresponding relationship between the temporary transport block size determining the ^ S, according to the frequency. Preferably, the first correspondence is a mapping relationship from a modulation coding scheme index to a modulation order β TM and a transport block size index; the second correspondence is a slave transport block size index and the frequency domain physical resource block Number ^ to the mapping relationship of the temporary transport block size. According to another aspect of the present invention, a synchronization device for transmitting a block size is provided, which is applied to a base station (eNB), and includes: a first acquiring module, configured to acquire a frequency domain physical resource block number of the user equipment UE, and the UE And a first determining module, configured to determine a temporary transport block size according to the frequency domain physical resource block number and the modulation and coding scheme index; and the second determining module is configured to be according to the temporary transport block size and/or Or a transmission time interval bundle TTI Bundling size determining a size factor of a TTI Bundling transport block size, where the TTI Bundling size is a number of consecutive transmission time intervals TTI for performing TTI Bundling; and a third determining module, configured to be according to the TTI Determining a size factor of the Bundling transport block size and the temporary transport block size to determine the TTI Bundling transport block size; a notification module, configured to set a size factor of the TTI Bundling transport block size, the frequency domain physical resource block number, and The modulation coding scheme index is notified to the UE, or the number of physical resource blocks and the frequency domain are The modulation and coding scheme index is notified to the UE, and the UE is triggered to perform synchronization of the TTI Bundling transport block size. Preferably, the first determining module includes: a first determining unit, configured to determine a transport block index according to the modulation and coding scheme index and the first correspondence; a second determining unit, configured to perform index according to the modulation and coding scheme, The number of the frequency domain physical resource block and the second correspondence relationship determine a size of the temporary transmission block; the first correspondence relationship is a mapping relationship from a modulation and coding scheme index to a modulation order and the transport block size index; The second correspondence is a mapping relationship from the transport block size index and the number of frequency domain physical resource blocks to the temporary transport block size. According to still another aspect of the present invention, a device for determining a transport block size is provided, which is applied to a user equipment UE, and includes: a second acquiring module, configured to acquire a frequency domain physical resource block number of the UE, and a modulation and coding scheme of the UE Index and transmission time interval bundle size factor of the TTI Bundling transport block size, wherein the scale factor of the ΤΉ Bundling transport block size is determined according to a temporary transport block size and/or a transmission time interval bundle TTI Bundling size, where The TTI Bundling size is a number of consecutive transmission time intervals 执行 performing TTI Bundling; the fourth determining module is configured to determine a temporary transport block size according to the frequency domain physical resource block number and the modulation and coding scheme index; And a module configured to determine a TTI Bundling transport block size according to a scale factor of the TTI Bundling transport block size and the temporary transport block size. Preferably, the fourth determining module includes: a third determining unit, configured to determine a transport block index according to the modulation and coding scheme index and the first correspondence; a fourth determining unit, configured to perform index according to the modulation and coding scheme, The frequency domain physical resource block number and the second correspondence relationship determine a size of the temporary transport block; the first pair The relationship should be a mapping from the modulation coding scheme index to the modulation order and the transport block size index; the second correspondence is from the transport block size index and the frequency domain physical resource block number to the temporary The mapping relationship of the transport block size. According to still another aspect of the present invention, there is provided a transmission block size synchronization system comprising the above-described transport block size synchronizing apparatus and the above-described transport block size determining means. Through the present invention, the eNB may determine the temporary transport block size by using the frequency domain physical resource block number and the modulation and coding scheme index, and then determine the TTI Bundling transport block size according to the determined size factor of the TTI Bundling transport block size and the size of the temporary transport block. And transmitting the parameters to the UE for synchronization, which solves the problem that the transmission block size cannot be synchronized when using TTI Bundling for data transmission in the related art, thereby improving the uplink coverage when using TTI Bundling for data transmission. effect. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are set to illustrate,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1 is a schematic diagram of uplink transmission using a TTI Bundling scheme according to the related art; FIG. 2 is a flowchart of a method for synchronizing transport block sizes according to an embodiment of the present invention; FIG. 3 is a transmission according to an embodiment of the present invention. FIG. 4 is a block diagram showing a structure of a synchronization block of a transport block size according to an embodiment of the present invention; FIG. 5 is a block diagram showing a preferred structure of a transport block size synchronizing apparatus according to an embodiment of the present invention; 6 is a structural block diagram of a device for determining the size of a transport block according to an embodiment of the present invention; FIG. 7 is a block diagram showing a preferred configuration of a device for determining the size of a transport block according to an embodiment of the present invention; and FIG. 8 is a transmission according to an embodiment of the present invention. Block diagram of the block size synchronization system. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. This embodiment provides a method for synchronizing a transport block size. FIG. 2 is a flowchart of a method for synchronizing transport block sizes according to an embodiment of the present invention. As shown in FIG. 2, the method includes the following steps S202 to S206. Step S202: The eNB acquires the number of frequency domain physical resource blocks of the UE and the modulation and coding scheme index of the UE. Step S204: The eNB determines a temporary transport block size according to the frequency domain physical resource block number and the modulation and coding scheme index, and determines a size factor of the TTI Bundling transport block size according to the temporary transport block size and/or the TTI Bundling size, where The TTI Bundling size is the number of consecutive TTIs that perform TTI Bundling. Step S206: The eNB determines a TTI Bundling transport block size according to the TTI Bundling transport block size scale factor and the temporary transport block size. Step S208: The eNB notifies the UE of the TTI Bundling transport block size scale factor, the frequency domain physical resource block number, and the modulation and coding scheme index, or the eNB notifies the UE of the frequency domain physical resource block number and the modulation and coding scheme index, and triggers the UE. Synchronize the TTI Bundling transport block size. Through the above steps, the eNB may determine the temporary transport block size by using the frequency domain physical resource block number and the modulation and coding scheme index, and then determine the scale factor of the TTI Bundling transport block size according to the temporary transport block size and/or the TTI Bundling size, and also according to the TTI Bundling. The size factor of the transport block size and the size of the temporary transport block determine the TTI Bundling transport block size, and the parameters are sent to the UE for synchronization, thereby realizing the synchronization of the TTI Bundling transport block size, overcoming the related art, using TTI Bundling In the manner of data transmission, the problem of synchronization of the TTI Bundling transport block size cannot be achieved, and the effect of improving the uplink coverage when transmitting by TTI Bundling is achieved. In implementation, the TTI Bundling transport block size may be obtained according to the TTI Bundling transmission requirement, and the TTI Bundling transport block size may be determined by using the TTI Bundling transport block size scale factor and the temporary transport block size. For example, the eNB may determine the ΤΉ Bundling transport block size as the TTI Bundling transport block. The product of the size factor of the size and the size of the temporary transport block. This embodiment has relatively small modifications to the prior art and is relatively simple to implement. The TTI Bundling transport block size scale factor can be selected as needed. Preferably, the TTI Bundling transport block size has a scale factor greater than or equal to the number of consecutive transmission time intervals TTI for performing TTI Bundling. Preferably, in the foregoing preferred embodiment, the size factor of the TTI Bundling transport block size may be notified to the UE by the eNB through a (RRC) message or a preset downlink control information format (DCI). This preferred embodiment increases the diversity of scale factors that transmit TTI Bundling transport block sizes. In an implementation, the eNB may determine the temporary transmission block size according to the frequency domain physical resource block number and the modulation and coding scheme index in multiple manners. Preferably, the eNB may adopt the following manner: The code scheme index (/ Mes ) and the first correspondence determine a transport block index (/ ras ); then the eNB determines the size of the temporary transport block according to the / Mes , the frequency domain physical resource block number (N PM ), and the second correspondence relationship . Preferably, the first correspondence is a mapping relationship from the modulation and coding scheme index / Mes to the modulation order β „ and the transport block size index I TBS , and the mapping relationship as shown in Table 1 may be adopted: Table 1
Figure imgf000009_0001
其中, Gm为调制阶数; 该第二对应关系为从该传输块大小索引 ^和该频域物理资源块数 ^^到该临时 传输块大小的映射关系, 例如, 可以采用如表 2所示的映射关系。 表 2Wherein, G m is a modulation order; the second correspondence is a mapping relationship from the transport block size index ^ and the number of the frequency domain physical resource blocks to the temporary transport block size, for example, as shown in Table 2 The mapping relationship shown. Table 2
Figure imgf000009_0002
6 328 176 256 392 504 600 712 808
Figure imgf000009_0002
6 328 176 256 392 504 600 712 808
7 104 224 328 472 584 712 840 968 7 104 224 328 472 584 712 840 968
8 120 256 392 536 680 808 968 1096  8 120 256 392 536 680 808 968 1096
9 136 296 456 616 776 936 1096 1256  9 136 296 456 616 776 936 1096 1256
10 144 328 504 680 872 1032 1224 1384  10 144 328 504 680 872 1032 1224 1384
11 176 376 584 776 1000 1192 1384 1608  11 176 376 584 776 1000 1192 1384 1608
12 208 440 680 904 1128 1352 1608 1800  12 208 440 680 904 1128 1352 1608 1800
13 224 488 744 1000 1256 1544 1800 2024 基于与上述优选实施例相同的构思, 在 UE侧, 本实施例提供了一种传输块大小 的确定方法, 图 3是根据本发明实施例的传输块大小的确定方法的流程图, 如图 3所 示, 该方法包括如下的步骤 S302至步骤 S306。 步骤 S302: UE获取该 UE频域物理资源块数、 该 UE调制编码方案索引和 ΤΉ Bundling传输块大小的尺度因子, 其中, 该 TTI Bundling传输块大小的尺度因子是根 据临时传输块大小和 /或 TTI Bundling大小确定的, 其中, 该 TTI Bundling大小为执行 TTI Bundling的连续的 ΤΉ的数目。 步骤 S304: 根据频域物理资源块数和调制编码方案索引, 确定临时传输块大小。 步骤 S306: UE根据 TTI Bundling传输块大小的尺度因子和临时传输块大小确定 TTI Bundling传输块大小。 通过上述步骤, UE使用接收到的频域物理资源块数和调制编码方案索引确定临时 传输块的大小, 然后根据 TTI Bundling传输块大小的尺度因子和该临时传输块的大小 确定 TTI Bundling传输块大小, 实现了 TTI Bundling传输块大小在 UE侧和基站侧的 同步, 克服了相关技术中无法实现在 TTI Bundling下进行传输块大小的同步的问题, 进而达到了使用 TTI Bundling提高上行覆盖的效果。 在实施时, 可以根据 TTI Bundling传输的要求, 使用 TTI Bundling传输块大小的 尺度因子和临时传输块大小获取 TTI Bundling传输块大小,例如, eNB可以确定该 ΤΉ Bundling传输块大小为该 TTI Bundling传输块大小的尺度因子与该临时传输块的大小 的乘积。 该实施方式对现有技术的改动比较小, 且实施起来比较简单。 TTI Bundling 传输块大小的尺度因子可以根据需要进行选择, 比较优的, TTI Bundling传输块大小 的尺度因子大于或等于执行 TTI Bundling的连续的传输时间间隔 TTI的数目。 优选地, 上述优选实施方式中, 通过以下方式之一获取 TTI Bundling传输块大小 的尺度因子: 方式一: 接收无线资源控制 (RRC) 消息; 方式二: 接收下行控制信息格式 DCI; 方式三: UE根据频域物理资源块数和调制编码方案索引, 确定临时传输块大小, 根据临时传输块大小和 /或 TTI Bundling大小确定传输块大小的尺度因子。 该优选实施方式提高了发送 TTI Bundling传输块大小的尺度因子的多样性。 在实施中, UE可以通过多种方式实现根据该频域物理资源块数和调制编码方案索 引确定临时传输块大小, 比较优的, 可以采用如下的方式: UE可以根据该调制编码方 案索引 ( ^s )和第一对应关系确定传输块索引 UTBS , 然后 eNB根据该 /Mes、 该频 域物理资源块数 (NP M )和第二对应关系确定临时传输块的大小。 比较优的, 该第一 对应关系为从调制编码方案索引 IMCS到调制阶数 β„和传输块大小索引 ITBS的映射关 系, 可以采用如表 3所示的映射关系: 表 313 224 488 744 1000 1256 1544 1800 2024 Based on the same concept as the above-described preferred embodiment, on the UE side, the present embodiment provides a method for determining a transport block size, and FIG. 3 is a transport block size according to an embodiment of the present invention. A flowchart of the determination method, as shown in FIG. 3, the method includes the following steps S302 to S306. Step S302: The UE acquires a size factor of the number of the physical frequency resource blocks of the UE, the UE modulation and coding scheme index, and the ΤΉ Bundling transport block size, where the size factor of the TTI Bundling transport block size is based on the temporary transport block size and/or The TTI Bundling is sized, wherein the TTI Bundling size is the number of consecutive ticks that perform TTI Bundling. Step S304: Determine the temporary transport block size according to the frequency domain physical resource block number and the modulation and coding scheme index. Step S306: The UE determines the TTI Bundling transport block size according to the scale factor of the TTI Bundling transport block size and the temporary transport block size. Through the above steps, the UE determines the size of the temporary transport block by using the received frequency domain physical resource block number and the modulation and coding scheme index, and then determines the TTI Bundling transport block size according to the TTI Bundling transport block size scale factor and the size of the temporary transport block. The synchronization of the TTI Bundling transport block size on the UE side and the base station side is overcome, which overcomes the problem that the transmission block size synchronization under the TTI Bundling cannot be realized in the related art, thereby achieving the effect of using TTI Bundling to improve the uplink coverage. In implementation, the TTI Bundling transport block size may be obtained according to the TTI Bundling transmission requirement, and the TTI Bundling transport block size may be determined by using the TTI Bundling transport block size scale factor and the temporary transport block size. For example, the eNB may determine the ΤΉ Bundling transport block size as the TTI Bundling transport block. The product of the size factor of the size and the size of the temporary transport block. This embodiment has relatively small modifications to the prior art and is relatively simple to implement. The TTI Bundling transport block size scale factor can be selected as needed. Preferably, the TTI Bundling transport block size has a scale factor greater than or equal to the number of consecutive transmission time intervals TTI for performing TTI Bundling. Preferably, in the above preferred embodiment, the scaling factor of the TTI Bundling transport block size is obtained by one of the following methods: Manner 1: Receive Radio Resource Control (RRC) message; Method 2: Receive downlink control information format DCI; Method 3: The UE determines the temporary transport block size according to the frequency domain physical resource block number and the modulation and coding scheme index, according to the temporary transport block size And/or TTI Bundling size determines the scale factor of the transport block size. This preferred embodiment increases the diversity of scale factors that transmit TTI Bundling transport block sizes. In an implementation, the UE may determine the temporary transmission block size according to the frequency domain physical resource block number and the modulation and coding scheme index in multiple manners. Preferably, the UE may adopt the following manner: The UE may perform index according to the modulation and coding scheme (^ s ) and the first correspondence determine the transport block index U TBS , and then the eNB determines the size of the temporary transport block according to the / Mes , the frequency domain physical resource block number (N PM ), and the second correspondence. Preferably, the first correspondence is a mapping relationship from the modulation coding scheme index I MCS to the modulation order β „ and the transport block size index I TBS , and the mapping relationship as shown in Table 3 may be adopted: Table 3
Figure imgf000011_0001
Figure imgf000011_0001
其中, G为调制阶数; 该第二对应关系为从该传输块大小索引 ^和该频域物理资源块数 ^^到该临时 传输块大小的映射关系, 例如, 可以采用如表 4所示的映射关系。 表 4 Wherein, G is a modulation order; the second correspondence is a mapping relationship from the transport block size index ^ and the frequency domain physical resource block number ^ ^ to the temporary transport block size, for example, as shown in Table 4 The mapping relationship shown. Table 4
Figure imgf000012_0001
Figure imgf000012_0001
需要说明的是, 在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的 计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但是在某些情况下, 可 以以不同于此处的顺序执行所示出或描述的步骤。 在另外一个实施例中, 还提供了一种传输块大小的同步软件, 该软件用于执行上 述实施例及优选实施例中描述的技术方案。 在另外一个实施例中, 还提供了一种存储介质, 该存储介质中存储有上述传输块 大小的同步软件, 该存储介质包括但不限于: 光盘、 软盘、 硬盘、 可擦写存储器等。 本发明实施例还提供了一种传输块大小的同步装置, 可以应用于基站 eNB, 该传 输块大小的同步装置可以用于实现上述传输块大小的同步方法及优选实施方式, 已经 进行过说明的, 不再赘述, 下面对该传输块大小的同步装置中涉及到的模块进行说明。 如以下所使用的, 术语"模块"可以实现预定功能的软件和 /或硬件的组合。 尽管以下实 施例所描述的系统和方法较佳地以软件来实现, 但是硬件, 或者软件和硬件的组合的 实现也是可能并被构想的。 图 4是根据本发明实施例的传输块大小的同步装置的结构框图, 如图 4所示, 该 装置包括: 第一获取模块 42、 第一确定模块 44、 第二确定模块 46、 第三确定模块 48 和通知模块 49, 下面对上述结构进行详细说明。 第一获取模块 42, 设置为获取 UE的频域物理资源块数和该 UE的调制编码方案 索引; 第一确定模块 44, 连接至第一获取模块 42, 设置为根据第一获取模块 42获取 到的该频域物理资源块数、 该调制编码方案索引确定临时传输块的大小; 第二确定模 块 46, 连接至第一确定模块 44, 设置为第一确定模块 44确定的临时传输块大小和 / 或 TTI Bundling大小确定 TTI Bundling传输块大小的尺度因子,其中,该 TTI Bundling 大小为执行 TTI Bundling的连续的传输时间间隔 TTI的数目; 第三确定模块 48, 连接 至第一确定模块 44和第二确定模块 46, 设置为根据第一确定模块 44确定的临时传输 块大小和第二确定模块 46 确定的 TTI Bundling 传输块大小的尺度因子确定 TTI Bundling传输块大小; 通知模块 48, 连接至第一获取模块 42和第二确定模块 46, 设 置为将第二确定模块 46确定的 TTI Bundling传输块的尺寸大小因子、 第一获取模块 42获取到的频域物理资源块数和该调制编码方案索引通知给该 UE, 或者将第一获取 模块 42获取到的频域物理资源块数和该调制编码方案索引通知给该 UE, 触发该 UE 进行该 TTI Bundling传输块大小的同步。 优选地,第三确定模块 48确定该 TTI Bundling传输块大小为该 TTI Bundling传输 块大小的尺度因子与该临时传输块的大小的乘积。 图 5是根据本发明实施例的传输块大小的同步装置的优选的结构框图, 如图 5所 示, 第一确定模块 44包括: 第一确定单元 442和第二确定单元 444, 下面对上述结构 进行详细描述。 第一确定单元 442, 设置为根据该调制编码方案索引 IMC 和第一对应关系确 定传输块索引 /ras ; 第二确定单元 444, 连接至第一确定单元 442, 设置为根据第一确 定单元 442确定的 /Mes、 该频域物理资源块数 NP M和第二对应关系确定该临时传输块 的大小。 在又一个实施例中, 还提供了一种传输块大小的确定软件, 该软件用于执行上述 实施例及优选实施例中描述的技术方案。 在另外一个实施例中, 还提供了一种存储介质, 该存储介质中存储有上述传输块 大小的确定软件, 该存储介质包括但不限于: 光盘、 软盘、 硬盘、 可擦写存储器等。 本发明实施例还提供了一种传输块大小的确定装置,可以应用于 UE,该传输块大 小的确定装置可以用于实现上述传输块大小的确定方法及优选实施方式, 已经进行过 说明的, 不再赘述, 下面对该传输块大小的确定装置中涉及到的模块进行说明。 如以 下所使用的, 术语"模块"可以实现预定功能的软件和 /或硬件的组合。 尽管以下实施例 所描述的系统和方法较佳地以软件来实现, 但是硬件, 或者软件和硬件的组合的实现 也是可能并被构想的。 图 6是根据本发明实施例的传输块大小的确定装置的结构框图, 如图 6所示, 该 装置包括: 第二获取模块 62, 第四确定模块 64和第五确定模块 66, 下面对上述结构 进行详细说明。 第二获取模块 62, 设置为获取 UE的频域物理资源块数、 该 UE的调制编码方案 索引和 TTI Bundling传输块大小的尺度因子, 其中, 该 TTI Bundling传输块大小的尺 度因子是根据临时传输块大小和 /或 TTI Bundling大小确定的, 其中, TTI Bundling 大小为执行 TTI Bundling的连续的 TTI的数目; 第四确定模块 64, 连接至第二获取模 块 62, 设置为根据第二获取模块 62获取到的频域物理资源块数、 调制编码方案索引 确定临时传输块的大小; 第五确定模块 66, 连接至第二获取模块 62和第四确定模块 64,设置为根据第二获取模块 62获取到的 TTI Bundling传输块大小的尺度因子和第四 确定模块 64确定的临时传输块大小确定 TTI Bundling传输块大小。 图 7是根据本发明实施例的传输块大小的确定装置的优选的结构框图, 如图 7所 示, 该第四确定模块 64包括: 第三确定单元 642和第四确定单元 644, 下面对上述结 构进行详细描述。 第三确定单元 642, 设置为根据该调制编码方案索引 IMC 和第一对应关系确 定传输块索引 /ras ; 第四确定单元 644, 连接至第三确定单元 642, 设置为根据第三确 定单元 642确定的 /Mes、 该物理资源块数 NPRB和第二对应关系确定该临时传输块的大 小。 本实施例还提供了一种传输块大小的同步系统, 图 8是根据本发明实施例的传输 块大小的同步系统的结构框图, 如图 8所示, 该系统包括: 传输块大小的同步装置 2 和传输块大小的确定装置 4, 其中, 传输块大小的同步装置 2的结构如图 4或 5所示, 传输块大小的确定装置 4的结构如图 6或 7所示, 在此不再赘述。 下面将结合优选实施例进行说明, 以下优选实施例结合了上述实施例及优选实施 方式。 优选实施例一 本实施例提供了一种 TTI Bundling TBS的同步方法, 在本实施例中, 假设预设的 TTI Bundling大小为 4, 即执行 TTI Bundling的连续的 ΤΉ的数目为 4; 假设 UE发送 探测参考信号 (Sounding Reference Signal, SRS); 假设 eNB通过测量上述 SRS获取 在 UE与 eNB间的当前信道状态; 假设 eNB与相邻 eNB无协作。 该方法包括如下步骤 S402至步骤 S424。 步骤 S402: eNB判断当前信道质量低于某一门限值。 步骤 S404: eNB使能 TTI Bundling操作, 并通过承载"使能 TTI Bundling标志" 控制信令的射频资源控制 (Radio Resource Control, RRC) 消息通知该 UE; 其中, 使 能 TTI Bundling标志为 "1", 表示使能 TTI Bundling操作。 步骤 S406: UE接收并解析该 RRC消息, 获取该 "使能 TTI Bundling标志"控制信 令; 步骤 S408 : eNB 根据当前信道状态, 获取准备为 UE 分配的频域物理资源块It should be noted that the steps shown in the flowchart of the accompanying drawings may be performed in a computer system such as a set of computer executable instructions, and, although the logical order is shown in the flowchart, in some cases, The steps shown or described may be performed in an order different than that herein. In another embodiment, a transport block size synchronization software is provided for performing the technical solutions described in the above embodiments and preferred embodiments. In another embodiment, a storage medium is also provided, wherein the storage block size synchronization software is stored, including but not limited to: an optical disk, a floppy disk, a hard disk, a rewritable memory, and the like. The embodiment of the present invention further provides a synchronization device for transmitting a block size, which can be applied to a base station eNB, and the synchronization device of the transmission block size can be used to implement the synchronization method and a preferred implementation manner of the foregoing transmission block size, which has been described. For further description, the modules involved in the synchronization device of the transport block size will be described below. As used hereinafter, the term "module" may implement a combination of software and/or hardware of a predetermined function. Although the systems and methods described in the following embodiments are preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated. 4 is a structural block diagram of a synchronization block of a transport block size according to an embodiment of the present invention. As shown in FIG. 4, the apparatus includes: a first obtaining module 42, a first determining module 44, a second determining module 46, and a third determining. Module 48 and notification module 49, the above structure will be described in detail below. The first obtaining module 42 is configured to acquire the number of frequency domain physical resource blocks of the UE and the modulation and coding scheme index of the UE. The first determining module 44 is connected to the first obtaining module 42 and configured to be acquired according to the first acquiring module 42. The number of the frequency domain physical resource blocks, the modulation and coding scheme index determines the size of the temporary transport block; the second determining module 46 is connected to the first determining module 44, and is set to the temporary transport block size determined by the first determining module 44 and/or Or a TTI Bundling size determining a size factor of a TTI Bundling transport block size, wherein the TTI Bundling size is a number of consecutive transmission time intervals TTI performing TTI Bundling; a third determining module 48, coupled to the first determining module 44 and the second The determining module 46 is configured to determine a TTI Bundling transport block size according to the temporary transport block size determined by the first determining module 44 and the size factor of the TTI Bundling transport block size determined by the second determining module 46; the notification module 48, connected to the first obtaining The module 42 and the second determining module 46 are arranged to set the size of the TTI Bundling transport block determined by the second determining module 46 to be large The small factor, the number of frequency domain physical resource blocks acquired by the first obtaining module 42 and the modulation and coding scheme index are notified to the UE, or the number of frequency domain physical resource blocks acquired by the first obtaining module 42 and the modulation and coding scheme index. Notifying the UE, triggering the UE to perform synchronization of the TTI Bundling transport block size. Preferably, the third determining module 48 determines that the TTI Bundling transport block size is a product of a size factor of the TTI Bundling transport block size and a size of the temporary transport block. FIG. 5 is a block diagram showing a preferred structure of a transport block size synchronizing apparatus according to an embodiment of the present invention. As shown in FIG. 5, the first determining module 44 includes: a first determining unit 442 and a second determining unit 444, which are described below. The structure is described in detail. The first determining unit 442 is configured to determine a transport block index / ras according to the modulation and coding scheme index I MC and the first correspondence relationship ; the second determining unit 444 is connected to the first determining unit 442, and is configured to be configured according to the first determining unit 442. The determined / Mes , the number of frequency domain physical resource blocks N PM and the second correspondence determine the size of the temporary transport block. In still another embodiment, a software for determining the size of a transport block for performing the technical solutions described in the above embodiments and preferred embodiments is also provided. In another embodiment, a storage medium is provided, wherein the storage medium has the above-mentioned transport block size determining software, including but not limited to: an optical disc, a floppy disk, a hard disk, a rewritable memory, and the like. The embodiment of the present invention further provides a device for determining the size of a transport block, which can be applied to a UE, and the device for determining the size of the transport block can be used to implement the method for determining the size of the transport block, and a preferred implementation manner. Further, the modules involved in the apparatus for determining the size of the transport block will be described below. As used hereinafter, the term "module" may implement a combination of software and/or hardware of a predetermined function. Although the following examples The described systems and methods are preferably implemented in software, but hardware, or a combination of software and hardware, is also possible and contemplated. FIG. 6 is a structural block diagram of a device for determining a size of a transport block according to an embodiment of the present invention. As shown in FIG. 6, the device includes: a second obtaining module 62, a fourth determining module 64, and a fifth determining module 66, The above structure will be described in detail. The second obtaining module 62 is configured to acquire a frequency factor physical resource resource block of the UE, a modulation coding scheme index of the UE, and a size factor of a TTI Bundling transport block size, where the scale factor of the TTI Bundling transport block size is based on the temporary transmission The block size and/or the TTI Bundling size is determined, wherein the TTI Bundling size is the number of consecutive TTIs that perform TTI Bundling; the fourth determining module 64 is coupled to the second obtaining module 62, and configured to be acquired according to the second obtaining module 62. The number of the frequency domain physical resource blocks and the modulation and coding scheme index determine the size of the temporary transmission block. The fifth determining module 66 is connected to the second obtaining module 62 and the fourth determining module 64, and is configured to be acquired according to the second obtaining module 62. The TTI Bundling transport block size scale factor and the temporary transport block size determined by the fourth determining module 64 determine the TTI Bundling transport block size. FIG. 7 is a block diagram showing a preferred structure of a device for determining the size of a transport block according to an embodiment of the present invention. As shown in FIG. 7, the fourth determining module 64 includes: a third determining unit 642 and a fourth determining unit 644, The above structure is described in detail. The third determining unit 642 is configured to determine a transport block index / ras according to the modulation and coding scheme index I MC and the first correspondence relationship ; the fourth determining unit 644 is connected to the third determining unit 642 and configured to be configured according to the third determining unit 642 The determined / Mes , the number of physical resource blocks N PRB and the second correspondence determine the size of the temporary transport block. The embodiment also provides a synchronization system for transporting block size. FIG. 8 is a structural block diagram of a synchronization system for transporting block size according to an embodiment of the present invention. As shown in FIG. 8, the system includes: a synchronization device for transporting block size. 2 and a transmission block size determining device 4, wherein the structure of the transport block size synchronizing device 2 is as shown in FIG. 4 or 5, and the structure of the transport block size determining device 4 is as shown in FIG. 6 or 7, and is no longer Narration. The following description will be made in conjunction with the preferred embodiments, and the following preferred embodiments incorporate the above-described embodiments and preferred embodiments. The first embodiment of the present invention provides a method for synchronizing a TTI Bundling TBS. In this embodiment, the preset TTI Bundling size is 4, that is, the number of consecutive MIMOs performing TTI Bundling is 4; Sounding Reference Signal (SRS); It is assumed that the eNB acquires the current channel state between the UE and the eNB by measuring the above SRS; it is assumed that the eNB has no cooperation with the neighboring eNB. The method includes the following steps S402 to S424. Step S402: The eNB determines that the current channel quality is lower than a certain threshold. Step S404: The eNB enables the TTI Bundling operation, and notifies the UE by using a Radio Resource Control (RRC) message carrying the "Enable TTI Bundling Flag" control signaling. The TTI Bundling flag is set to "1". , indicates that the TTI Bundling operation is enabled. Step S406: The UE receives and parses the RRC message, and obtains the “Enable TTI Bundling Flag” control signaling. Step S408: The eNB acquires a frequency domain physical resource block to be allocated for the UE according to the current channel state.
(Physical Resource Block, PRB) 数 NPRB以及调制编码方案 (Modulation and Coding(Physical Resource Block, PRB) Number N PRB and modulation coding scheme (Modulation and Coding)
Scheme, MCS)索引 /Mes; 其中, 频域 PRB数表示在频域上分配的资源块(ResourceScheme, MCS) index / Mes ; where the frequency domain PRB number represents the resource block allocated in the frequency domain (Resource
Block, 简称为 RB) 数, 通常每个 RB由多个频域子载波构成。 步骤 S410: eNB根据该 MCS索引 /Mes与表 5获取 TBS索引 /ras。 表 5 PUSCH调制、 TBS索弓 I表 Block, abbreviated as RB), usually consists of multiple frequency domain subcarriers per RB. Step S410: The eNB acquires the TBS index/ ras according to the MCS index/ Mes and Table 5. Table 5 PUSCH modulation, TBS cable bow I table
Figure imgf000015_0001
注: 0„表示调制阶数。 步骤 S412: eNB根据该频域 PRB数 Nra2}、 TBS索引 /ras以及下面的表 6获取临 时传输块大小 (Temporary TBS, 简称为 T-TBS )。
Figure imgf000015_0001
Note: 0 „ indicates the modulation order. Step S412: The eNB acquires a temporary transport block size (Temporary TBS, abbreviated as T-TBS) according to the frequency domain PRB number N ra2} , the TBS index / ras, and the following Table 6.
表 6 TBS表 (维度 27 X 110)  Table 6 TBS Table (Dimensions 27 X 110)
Figure imgf000016_0002
Figure imgf000016_0002
步骤 S414: eNB根据该预设 TTI Bundling大小和 /或 T-TBS确定 TTI Bundling TBS 的尺度因子 (Scaling Factor, SF) , 并根据该 SF禾 B T-TBS确定 TTI Bundling TBS。 具体地, SF = j] (Sizem Bundling, SlZeT-TBs) ^ 或, SF = f2 iSizeTTI Bundling ) ^ SF =f3 i izeT-TBs) 其中, ^feejT/a^tog表示 TTI Bundling大小, 5fee7i7a5表示 T-TBS, 、 f2 和 分别表示不同的映射关系。通过以下方式之一确定 SF:根据 SiZeiTIBum g确定 SF; 根据 Sizer-TBS确定 SF; 根据 Sizem Bundling和 SizeT-TBS确定 SF。 具体地, /, /2与 的实施方式可以为: Step S414: The eNB determines a Scaling Factor (SF) of the TTI Bundling TBS according to the preset TTI Bundling size and/or T-TBS, and determines a TTI Bundling TBS according to the SF and B T-TBS. Specifically, SF = j] (Sizem Bundling, SlZe T - TBs) ^ or, SF = f 2 iSize T TI Bundling ) ^ SF = f 3 i ize T - TBs) where ^feejT/a^tog represents TTI Bundling The size, 5fee7i7a5 represents T-TBS, , f 2 and respectively represent different mapping relationships. The SF is determined by one of the following methods: determining SF according to Si ZeiTIBum g ; determining SF according to Sizer-TBS; determining SF according to Sizem Bundling and Size T - TBS . Specifically, the implementation of /, / 2 and can be:
SizeT THh Size T THh
SF = (SizeTTI Bunding , SizeT— ) = SizeTTI Bunding - [l + ^ - max SF = (Size TTI Bunding , Size T — ) = Size TTI Bunding - [l + ^ - max
THh
Figure imgf000016_0001
SizeT— TBS TH2
THh
Figure imgf000016_0001
Size T — TBS TH2
SF = f SizeTTBS ) = C + K: max 0, TBS SF = f Size TTBS ) = C + K : max 0, TBS
TH2 TBS 其中, K2与 C表示常数因子, TH1TBS与 rffiras表示传输块大小门限, max 表示取最大值操作。 优选地, 映射关系 , 与 也可以通过查表的形式实现。 具体地, 使 TBS等于 SF与 T-TBS的乘积。 步骤 S416: eNB通知 UE该频域 PRB数 NPRB与 MCS索引 IMCS。 例如: eNB通过 DCI格式 0通知 UE; DCI格式 0用于 PUSCH的调度, 并且承载 于物理下行控制信道(Physical Downlink Control Channel, PDCCH)。 具体地, DCI格 式 0至少包含的字段如表 7所示。其中,该频域 PRB数 NPRB由"资源块分配以及 Hopping 资源分配"字段所描述, 该 MCS索引 /Mes由"调制、 编码方案以及冗余编码"字段所描 述。 表 7 DCI格式 0 TH2 TBS where K 2 and C represent constant factors, TH1 TBS and rffiras represent transport block size thresholds, and max represents maximum operations. Preferably, the mapping relationship can also be implemented by looking up a table. Specifically, the TBS is made equal to the product of SF and T-TBS. Step S416: The eNB notifies the UE of the frequency domain PRB number N PRB and the MCS index I MCS . For example, the eNB notifies the UE through the DCI format 0; the DCI format 0 is used for the scheduling of the PUSCH, and is carried by the Physical Downlink Control Channel (PDCCH). Specifically, the DCI format 0 includes at least the fields shown in Table 7. Wherein the number of PRB N PRB in the frequency domain is described by "resource block allocation and resource allocation Hopping" field, the MCS index / Mes is described by "modulation, coding scheme and redundancy coding" field. Table 7 DCI format 0
格式 0和格式 1A区分的标志 ( lbit)  Format 0 and format 1A distinguishes the flag (lbit)
Hopping标志 ( lbit)  Hopping logo (lbit)
资源块分配以及 Hopping资源分配 (与带宽有关)  Resource block allocation and Hopping resource allocation (related to bandwidth)
调制、 编码方案以及冗余编码 (5bit)  Modulation, coding scheme and redundant coding (5bit)
新数据指示 (lbit)  New data indication (lbit)
被调度的 PUSCH的传输功率控制命令 (2bit)  Transmission power control command of scheduled PUSCH (2bit)
解调用导频的循环移位 Gbit)  Solving the cyclic shift of the pilot Gbit)
上行子帧序号 (应用于时分双工模式)  Uplink subframe number (applies to time division duplex mode)
信道质量指示请求 (lbit) 步骤 S418: UE接收并解析该 DCI格式 0, 获取该频域 PRB数 N 与 MCS索弓 | Channel quality indication request (lbit) Step S418: The UE receives and parses the DCI format 0, and obtains the frequency domain PRB number N and MCS cable bow |
I MCS 步骤 S420: UE根据该 MCS索引 IMCS与表格 1获取 TBS索弓 I ITBS。 步骤 S422: UE根据该频域 PRB数 NPRB、 TBS索弓 I ITBS与表格 2获取 T-TBS。 步骤 S424: UE根据上述"使能 TTI Bundling标志"判断 TTI Bundling操作被使能; 根据该预设 TTI Bundling大小和 /或 T-TBS确定 TTI Bundling TBS SF,并根据该 SF和 T-TBS确定 TTI Bundling TBS。 具体地, SF = fi iSizem Bundling, SizeT-TBs) ^ 或, SF = f2 iSizeTTI Bundling) ^ SF =f3 i.SizeT-TBs) \ 其中, ^feema^tog表示 TTI Bundling大小, SizeT-TBS ¾ T-TBS , 、 f2 和 分别表示不同的映射关系。通过以下方式之一确定 SF:根据 SiZeTTj mdHg确定 SF; 根据 SizeT-TBS确定 SF; 根据 Sizem Bundling和 SizeT-TBS确定 SF。 需要说明的是, UE与 eNB使用相同的映射关系 与 )。 具体地, TBS等于 SF与 T-TBS的乘积。 在本实施例中, 采用了根据预设 ΤΉ Bundling大小和 /或 T-TBS确定 TTI Bundling TBS SF的优选实施方式, 需要说明的是, 在实施中, 可以采用不同于本优选实施例的 方式。 通过本实施例的上述步骤, 实现了 TTI Bundling TBS在 eNB与 UE间的同步。 优选实施例二 本实施例提供了一种 TTI Bundling TBS的同步方法, 在本实施例中, 假设预设的 TTI Bundling大小为 4, 即执行 TTI Bundling的连续的 ΤΉ的数目为 4; 假设 UE发送 SRS ; 假设 eNB通过测量上述 SRS获取在 UE与 eNB间的当前信道状态; 假设 eNB 与相邻的 eNB无协作。 该方法包括如下步骤 S502至步骤 S524。 步骤 S502: eNB判断当前信道质量低于某一门限值; 步骤 S504: eNB使能 TTI Bundling操作, 并通过承载"使能 TTI Bundling标志" 与" TTI Bundling TBS的尺度因子 (Scaling Factor, SF ) "控制信令的 RRC消息通知该 UE; 其中, "使能 TTI Bundling标志"为 "1", 表示使能 TTI Bundling操作; 优选地, eNB根据该预设的 TTI Bundling大小和 /或之前的 T-TBS统计确定 TTI Bundling TBS SF; 优选地, TTI Bundling TBS SF大于等于该预设 TTI Bundling大小; 步骤 S506: UE接收并解析该 RRC消息,获取该 "使能 TTI Bundling标志"以及" TTI Bundling TBS SF "控制信令; 步骤 S508 : eNB根据当前信道状态, 获取准备为 UE分配的频域 PRB数 Nra2}以 及 MCS索引 /Mes; 其中, 频域 PRB数表示在频域上分配的 RB数, 通常每个 RB由 多个频域子载波构成。 步骤 S510: eNB根据该 MCS索引 /Mes与表格 1获取 TBS索引 /ras; 步骤 S512: eNB根据该频域 PRB数 NPffS、 TBS索引 与表格 2获取 T-TBS ; 步骤 S514: eNB根据该 TTI Bundling TBS SF与 T-TBS获取 TBS; 具体地, TBS等于 TTI Bundling TBS SF与 T-TBS的乘积; 步骤 S516: eNB通知 UE该频域 PRB数 NPRB与 MCS索引 IMCS; 具体地, eNB通过 DCI格式 0通知 UE; DCI格式 0用于 PUSCH的调度, 并且承 载于物理下行控制信道 PDCCH。 具体地, DCI格式 0至少包含的字段如表格 3所示。 其中,该频域 PRB H 由"资源块分配以及 Hopping资源分配"字段所描述,该 MCS 索引 /Mes由"调制、 编码方案以及冗余编码"字段所描述。 步骤 S518: UE接收并解析该 DCI格式 0, 获取该频域 PRB数 NPRB与 MCS索弓 |I MCS Step S420: The UE acquires the TBS cable II TBS according to the MCS index I MCS and Table 1. Step S422: The UE acquires the T-TBS according to the frequency domain PRB number N PRB , the TBS cable II TBS and the table 2 . Step S424: The UE determines that the TTI Bundling operation is enabled according to the foregoing “Enable TTI Bundling Flag”; determines a TTI Bundling TBS SF according to the preset TTI Bundling size and/or T-TBS, and determines a TTI according to the SF and the T-TBS. Bundling TBS. Specifically, SF = fi iSizem Bundling, Size T - TBs) ^ or, SF = f 2 iSize T TI Bundling) ^ SF = f 3 i. Size T - TBs) \ where ^feema^tog represents the TTI Bundling size, Size T -TBS 3⁄4 T-TBS , , f 2 and respectively represent different mapping relationships. The SF is determined by one of the following methods: determining SF according to Si Z e TTj mdHg ; determining SF according to Size T −TBS; determining SF according to Sizem Bundling and Size TTBS . It should be noted that the UE uses the same mapping as the eNB. Specifically, the TBS is equal to the product of the SF and the T-TBS. In this embodiment, a preferred embodiment of determining the TTI Bundling TBS SF according to the preset ΤΉ Bundling size and/or T-TBS is used, which needs to be explained. In the implementation, a mode different from the preferred embodiment may be adopted. The synchronization between the eNB and the UE is implemented by the TTI Bundling TBS by using the foregoing steps in the embodiment. The second embodiment of the present invention provides a TTI. In the present embodiment, the preset TTI Bundling size is 4, that is, the number of consecutive ΤΉs performing TTI Bundling is 4; assume that the UE transmits the SRS; The current channel state between the eNBs; the eNB is not cooperating with the neighboring eNBs. The method includes the following steps S502 to S524. Step S502: The eNB determines that the current channel quality is lower than a certain threshold; Step S504: The eNB enables the TTI Bundling operation, and notifies the UE by using an RRC message carrying the "Enable TTI Bundling Flag" and the "Tcal Bundling TBS Scaling Factor (SF)" control signaling; The TTI Bundling flag is "1", indicating that the TTI Bundling operation is enabled; preferably, the eNB determines the TTI Bundling TBS SF according to the preset TTI Bundling size and/or the previous T-TBS statistics; preferably, the TTI Bundling TBS SF The STI is greater than or equal to the preset TTI Bundling size; Step S506: The UE receives and parses the RRC message, and obtains the “Enable TTI Bundling Flag” and the “TTI Bundling TBS SF” control signaling. Step S508: The eNB obtains according to the current channel state. The frequency domain PRB number N ra2} and the MCS index/ Mes allocated to the UE are prepared; wherein the frequency domain PRB number represents the number of RBs allocated in the frequency domain, and usually each RB is composed of multiple frequency domain subcarriers. Step S510: The eNB acquires the TBS index/ ras according to the MCS index/ Mes and the table 1; Step S512: The eNB acquires the T-TBS according to the frequency domain PRB number N PffS , the TBS index, and the table 2; Step S514: The eNB acquires the TBS according to the TTI Bundling TBS SF and the T-TBS; specifically, the TBS is equal to the product of the TTI Bundling TBS SF and the T-TBS; Step S516: The eNB notifies the UE of the frequency domain PRB number N PRB and the MCS index I the MCS; specifically, the eNB notifies the UE through a DCI format 0; DCI format 0 is used for PUSCH scheduling, and carries on the physical downlink control channel PDCCH. Specifically, the DCI format 0 includes at least a field as shown in Table 3. Wherein the frequency domain is described by the PRB H "Hopping resource block allocation and resource allocation 'field, the MCS index / Mes is described by" modulation, coding scheme and redundancy coding "field. Step S518: The UE receives and parses the DCI format 0, and obtains the frequency domain PRB number N PRB and MCS cable bow|
I MCS; 步骤 S520: UE根据该 MCS索引 /Mes与表格 1获取 TBS索引 /ras; 步骤 S522: UE根据该频域 PRB数 NPRB、 TBS索弓 I ITBS与表格 2获取 T-TBS; 步骤 S524: UE根据"使能 TTI Bundling标志"判断 TTI Bundling操作被使能, 并 根据该 TTI Bundling TBS SF与 T-TBS获取 TBS。 例如: TBS等于 TTI Bundling TBS SF与 T-TBS的乘积。 在本实施例中, TTI Bundling TBS SF是由 eNB通过 RRC消息通知 UE。 通过本 实施例的上述步骤, 实现了 TTI Bundling TBS在 eNB与 UE间的同步。 优选实施例三 本实施例提供了一种 TTI Bundling TBS同步方法,在本实施例中,假设预设的 ΤΉ Bundling大小为 4,即执行 TTI Bundling的连续的 TTI的数目为 4;假设 UE发送 SRS; 假设 eNB通过测量上述 SRS获取在 UE与 eNB间的当前信道状态; 假设 eNB与相邻 的 eNB无协作。 该方法包括如下步骤 S602至步骤 S624。 步骤 S602: eNB判断当前信道质量低于某一门限值; 步骤 S604: eNB使能 TTI Bundling操作; 步骤 S606: eNB根据当前信道状态, 获取准备为 UE分配的频域 PRB数 Nra2}以 及 MCS索引 /Mes; 其中, 频域 PRB数表示在频域上分配的 RB数, 通常每个 RB由 多个频域子载波构成。 步骤 S608: eNB根据该 MCS索引 /Mes与表格 5获取 TBS索引 /ras; 步骤 S610: eNB根据该频域?!^数^^、 TBS索引 /ras与表格 6获取 T-TBS; 步骤 S612: eNB根据该预设 TTI Bundling大小和 /或 T-TBS确定 TTI Bundling TBS SF, 并根据该 TTI Bundling TBS SF与 T-TBS获取 TBS; 优选地, 该 TTI Bundling TBS SF大于等于该预设的 TTI Bundling大小; 优选地, TBS等于 TTI Bundling TBS SF与 T-TBS的乘积。 步骤 S614: eNB通知 UE该频域 PRB数 NPRB、 MCS索引 IMCS、使能 TTI Bundling 标志以及 TTI Bundling TBS SF。 具体地, eNB通过改进的 DCI格式 0通知 UE;改进的 DCI格式 0同样用于 PUSCH 的调度, 并且承载于物理下行控制信道 PDCCH。具体地, DCI格式 0至少包含的字段 如表格 8所示。其中, 该频域 PRB H 由"资源块分配以及 Hopping资源分配"字段 描述,该 MCS索引 /Mes由"调制、编码方案以及冗余编码"字段描述,使能 TTI Bundling 标志由 "使能 TTI Bundling标志"字段描述, TTI Bundling TBS SF由" TTI Bundling TBSIMCS; Step S520: The UE acquires the TBS index/ ras according to the MCS index/ Mes and the table 1; Step S522: The UE acquires the T-TBS according to the frequency domain PRB number N PRB , the TBS cable II TBS and the table 2; Step S524 The UE judges that the TTI Bundling operation is enabled according to the "Enable TTI Bundling Flag", and acquires the TBS according to the TTI Bundling TBS SF and the T-TBS. For example: TBS is equal to the product of TTI Bundling TBS SF and T-TBS. In this embodiment, the TTI Bundling TBS SF is notified by the eNB through the RRC message. Through the above steps of the embodiment, the synchronization between the eNB and the UE by the TTI Bundling TBS is implemented. The third embodiment of the present invention provides a TTI Bundling TBS synchronization method. In this embodiment, the preset ΤΉ Bundling size is 4, that is, the number of consecutive TTIs that perform TTI Bundling is 4; It is assumed that the eNB acquires the current channel state between the UE and the eNB by measuring the above SRS; it is assumed that the eNB has no cooperation with the neighboring eNB. The method includes the following steps S602 to S624. Step S602: The eNB determines that the current channel quality is lower than a certain threshold; Step S604: The eNB enables the TTI Bundling operation; Step S606: The eNB acquires the frequency domain PRB number N ra2} and the MCS index/ Mes to be allocated for the UE according to the current channel state. The frequency domain PRB number indicates the number of RBs allocated in the frequency domain, usually each RB is more The frequency domain subcarriers are formed. Step S608: The eNB acquires the TBS index/ ras according to the MCS index/ Mes and the table 5; Step S610: According to the frequency domain? ! ^^, TBS index / ras and Table 6 obtain T-TBS; Step S612: The eNB determines TTI Bundling TBS SF according to the preset TTI Bundling size and/or T-TBS, and according to the TTI Bundling TBS SF and T- The TBS acquires the TBS; preferably, the TTI Bundling TBS SF is greater than or equal to the preset TTI Bundling size; preferably, the TBS is equal to the product of the TTI Bundling TBS SF and the T-TBS. Step S614: The eNB notifies the UE of the frequency domain PRB number N PRB , the MCS index I MCS , the enable TTI Bundling flag, and the TTI Bundling TBS SF. Specifically, the eNB notifies the UE by using the improved DCI format 0; the improved DCI format 0 is also used for scheduling of the PUSCH, and is carried by the physical downlink control channel PDCCH. Specifically, the DCI format 0 includes at least a field as shown in Table 8. The frequency domain PRB H is described by a "resource block allocation and a Hopping resource allocation" field, and the MCS index / Mes is described by a "modulation, coding scheme, and redundancy coding" field, enabling the TTI Bundling flag by "Enable TTI Bundling" Flag "Field Description, TTI Bundling TBS SF by" TTI Bundling TBS
SF"字段描述。 表 8改进的 DCI 格式 0 SF" field description. Table 8 Improved DCI format 0
格式 0和格式 1A区分的标志 ( lbit)  Format 0 and format 1A distinguishes the flag (lbit)
Hopping标志 ( lbit)  Hopping logo (lbit)
资源块分配以及 Hopping资源分配 (与带宽有关)  Resource block allocation and Hopping resource allocation (related to bandwidth)
调制、 编码方案以及冗余编码 (5bit)  Modulation, coding scheme and redundant coding (5bit)
新数据指示 (lbit)  New data indication (lbit)
被调度的 PUSCH的传输功率控制命令 (2bit)  Transmission power control command of scheduled PUSCH (2bit)
解调用导频的循环移位 (3bit)  Solving the cyclic shift of the pilot (3bit)
上行子帧序号 (应用于时分双工模式)  Uplink subframe number (applies to time division duplex mode)
信道质量指示请求 (lbit)  Channel quality indication request (lbit)
_ 使能 TTI Bundling标志 (lbit)  _ Enable TTI Bundling logo (lbit)
_ TTI Bundling TBS SF (未来决定) 步骤 S616: UE接收并解析该 DCI格式 0,获取该频域 PRB数 NPRB、MCS索引 IMCS、 使能 TTI Bundling标志以及 TTI Bundling TBS SF。 步骤 S618: UE根据该 MCS索引 /Mes与表格 5获取 TBS索引 /ras。 步骤 S620: UE根据该频域 PRB数 NPRB、 TBS索弓 I ITBS与表格 6获取 T-TBS。 步骤 S622: UE根据"使能 TTI Bundling标志"判断 TTI Bundling操作被使能, 并 根据该 TTI Bundling TBS SF与 T-TBS获取 TBS。 具体地, TBS等于 TTI Bundling TBS SF与 T-TBS的乘积。 在本实施例中, TTI Bundling TBS SF由 eNB通过 DCI格式 0通知 UE。通过本实 施例的上述步骤, 实现了 TTI Bundling TBS在 eNB与 UE间的同步。 通过上述实施例, 提供了一种传输块大小的同步、 确定方法及装置, eNB可以使 用频域物理资源块数和调制编码方案索引, 确定临时传输块大小, 然后, 根据确定的 TTI Bundling传输块大小的尺度因子和该临时传输块的大小, 确定 TTI Bundling传输 块大小,并将该参数发送给 UE进行同步, 解决了相关技术中无法实现在 TTI Bundling 下进行传输块大小的同步的问题,进而达到了使用 TTI Bundling提高上行覆盖的效果。 该方法实现简单, 控制开销小且后向兼容性较好。 需要说明的是, 这些技术效果并不 是上述所有的实施方式所具有的, 有些技术效果是某些优选实施方式才能取得的。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而可以将 它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限 制于任何特定的硬件和软件结合。 以上该仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术 人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任 何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。 _ TTI Bundling TBS SF (future decision) Step S616: The UE receives and parses the DCI format 0, and obtains the frequency domain PRB number N PRB , the MCS index I MCS , the enable TTI Bundling flag, and the TTI Bundling TBS SF. Step S618: The UE acquires the TBS index / ras according to the MCS index / Mes and the table 5. Step S620: The UE acquires the T-TBS according to the frequency domain PRB number N PRB , the TBS cable II TBS, and the table 6. Step S622: The UE determines that the TTI Bundling operation is enabled according to the "Enable TTI Bundling Flag", and acquires the TBS according to the TTI Bundling TBS SF and the T-TBS. Specifically, TBS is equal to the product of TTI Bundling TBS SF and T-TBS. In this embodiment, the TTI Bundling TBS SF is notified by the eNB to the UE through DCI format 0. Through the above steps of the embodiment, the synchronization between the eNB and the UE by the TTI Bundling TBS is implemented. Through the foregoing embodiments, a method for synchronizing, determining, and determining a transport block size is provided. The eNB may determine a temporary transport block size by using a frequency domain physical resource block number and a modulation and coding scheme index, and then, according to the determined TTI Bundling transport block. The size factor of the size and the size of the temporary transport block, determine the TTI Bundling transport block size, and send the parameter to the UE for synchronization, which solves the problem that the transmission block size synchronization under the TTI Bundling cannot be realized in the related art, and further The effect of using TTI Bundling to improve the uplink coverage is achieved. The method is simple to implement, has low control overhead and good backward compatibility. It should be noted that these technical effects are not all of the above embodiments, and some technical effects are obtained by some preferred embodiments. Obviously, those skilled in the art should understand that the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device so that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or Multiple modules or steps are made into a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software. The above is only a preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Claims

权 利 要 求 书  Claims
1. 一种传输块大小的同步方法, 包括: 1. A method of synchronizing transport block sizes, comprising:
基站 eNB获取用户设备 UE的频域物理资源块数和该 UE的调制编码方案 索引;  The base station eNB acquires the number of frequency domain physical resource blocks of the user equipment UE and the modulation and coding scheme index of the UE;
所述 eNB 根据所述频域物理资源块数和所述调制编码方案索引确定临时 传输块大小; 并根据所述临时传输块大小和 /或传输时间间隔集束 TTI Bundling 大小确定 TTI Bundling传输块大小的尺度因子, 其中, 所述 TTI Bundling大小 为执行 TTI Bundling的连续的传输时间间隔 TTI的数目;  Determining, by the eNB, a temporary transport block size according to the frequency domain physical resource block number and the modulation and coding scheme index; and determining a TTI Bundling transport block size according to the temporary transport block size and/or the transmission time interval bundle TTI Bundling size a scale factor, where the TTI Bundling size is a number of consecutive transmission time intervals TTIs for performing TTI Bundling;
所述 eNB根据所述 TTI Bundling传输块大小的尺度因子和所述临时传输块 大小确定所述 TTI Bundling传输块大小;  Determining, by the eNB, the TTI Bundling transport block size according to a scale factor of the TTI Bundling transport block size and the temporary transport block size;
所述 eNB将所述 TTI Bundling传输块大小的尺度因子、所述频域物理资源 块数和所述调制编码方案索引通知给所述 UE, 或者, 所述 eNB将所述频域物 理资源块数和所述调制编码方案索引通知给所述 UE, 触发所述 UE进行所述 TTI Bundling传输块大小的同步。  And the eNB notifies the UE of the TTI Bundling transport block size scale factor, the frequency domain physical resource block number, and the modulation and coding scheme index, or the eNB uses the frequency domain physical resource block number And the modulation and coding scheme index is notified to the UE, and the UE is triggered to perform synchronization of the TTI Bundling transport block size.
2. 根据权利要求 1所述的方法, 其中, 所述 eNB根据所述 TTI Bundling传输块大 小的尺度因子和所述临时传输块大小获取 TTI Bundling传输块大小包括: 2. The method according to claim 1, wherein the acquiring, by the eNB, a TTI Bundling transport block size according to a size factor of the TTI Bundling transport block size and the temporary transport block size comprises:
所述 eNB确定所述 TTI Bundling传输块大小为所述 TTI Bundling传输块大 小的尺度因子与所述临时传输块大小的乘积。  The eNB determines that the TTI Bundling transport block size is a product of a scale factor of the TTI Bundling transport block size and the temporary transport block size.
3. 根据权利要求 2所述的方法, 其中, 3. The method according to claim 2, wherein
所述 TTI Bundling传输块大小的尺度因子大于或等于执行 TTI Bundling的 连续的传输时间间隔 TTI的数目。  The scale factor of the TTI Bundling transport block size is greater than or equal to the number of consecutive transmission time intervals TTI for performing TTI Bundling.
4. 根据权利要求 3所述的方法, 其中, 4. The method according to claim 3, wherein
所述 TTI Bundling传输块大小的尺度因子由所述 eNB通过无线资源控制 RRC消息或者下行控制信息格式 DCI通知给所述 UE。  The scale factor of the TTI Bundling transport block size is notified to the UE by the eNB by using a radio resource control RRC message or a downlink control information format DCI.
5. 根据权利要求 1至 4中任一项所述的方法, 其中, 所述 eNB根据所述频域物理 资源块数和调制编码方案索引, 确定临时传输块大小包括: 所述 eNB 根据所述调制编码方案索引 /Mes和第一对应关系确定传输块索 引 J / 1 TBS - ' The method according to any one of claims 1 to 4, wherein the determining, by the eNB, the temporary transport block size according to the frequency domain physical resource block number and the modulation and coding scheme index comprises: Determining, by the eNB, a transport block index J / 1 TBS - ' according to the modulation and coding scheme index / Mes and the first correspondence relationship
所述 eNB 根据所述 /Mes、 所述频域物理资源块数 NP M和第二对应关系确 定所述临时传输块大小。 根据权利要求 5所述的方法, 其中, 所述第一对应关系为从调制编码方案索引 /Mes到调制阶数 0„和传输块大 小索引 /ras的映射关系; 所述第二对应关系为从所述传输块大小索引 /ras和所述频域物理资源块数 ^^到所述临时传输块大小的映射关系。 一种传输块大小的确定方法, 包括: The eNB according to the / Mes, the number of physical resource blocks in the frequency domain and N PM second correspondence determining said temporary transport block size. The method according to claim 5, wherein the first correspondence is a mapping relationship from a modulation coding scheme index / Mes to a modulation order 0 „ and a transport block size index / ras ; the second correspondence is a slave a mapping relationship between the transport block size index/ ras and the number of the frequency domain physical resource blocks to the temporary transport block size. A method for determining a transport block size, including:
用户设备 UE获取该 UE的频域物理资源块数、该 UE的调制编码方案索引 和传输时间间隔集束 TTI Bundling传输块大小的尺度因子, 其中, 所述 ΤΉ Bundling 传输块大小的尺度因子是根据临时传输块大小和 /或传输时间间隔集 束 TTI Bundling大小确定的,其中,所述 TTI Bundling大小为执行 TTI Bundling 的连续的传输时间间隔 TTI的数目;  The user equipment UE acquires the frequency domain physical resource block number of the UE, the modulation coding scheme index of the UE, and the size factor of the transmission time interval bundle TTI Bundling transport block size, where the scale factor of the ΤΉ Bundling transport block size is based on the temporary The transport block size and/or the transmission time interval bundle TTI Bundling size is determined, wherein the TTI Bundling size is a number of consecutive transmission time intervals TTI for performing TTI Bundling;
所述 UE根据所述频域物理资源块数和所述调制编码方案索引确定所述临 时传输块大小, 并根据所述 TTI Bundling传输块大小的尺度因子和所述临时传 输块大小确定 TTI Bundling传输块大小。 根据权利要求 7所述的方法, 其中, 所述 UE根据所述 TTI Bundling传输块大 小的尺度因子和所述临时传输块大小确定 TTI Bundling传输块大小包括:  Determining, by the UE, the temporary transport block size according to the frequency domain physical resource block number and the modulation and coding scheme index, and determining a TTI Bundling transmission according to the TTI Bundling transport block size scale factor and the temporary transport block size. Block size. The method according to claim 7, wherein the determining, by the UE, the TTI Bundling transport block size according to the size factor of the TTI Bundling transport block size and the temporary transport block size comprises:
所述 UE确定所述 TTI Bundling传输块大小为所述 TTI Bundling传输块大 小的尺度因子与所述临时传输块大小的乘积。 根据权利要求 8所述的方法, 其中,  The UE determines that the TTI Bundling transport block size is a product of a scale factor of the TTI Bundling transport block size and the temporary transport block size. The method according to claim 8, wherein
所述 TTI Bundling传输块大小的尺度因子大于或等于执行 TTI Bundling的 连续的传输时间间隔 TTI的数目。 根据权利要求 9所述的方法, 其中,  The scale factor of the TTI Bundling transport block size is greater than or equal to the number of consecutive transmission time intervals TTI for performing TTI Bundling. The method according to claim 9, wherein
所述 UE通过以下方式之一获取所述 TTI Bundling传输块大小的尺度因子: 接收无线资源控制 RRC消息; 接收下行控制信息格式 DCI; The UE acquires a scale factor of the TTI Bundling transport block size by using one of the following manners: receiving a radio resource control RRC message; Receiving a downlink control information format DCI;
所述 UE根据所述频域物理资源块数和所述调制编码方案索引确定所述临 时传输块大小,根据所述临时传输块大小和 /或所述 ΤΉ Bundling大小确定所述 传输块大小的尺度因子。  Determining, by the UE, the temporary transport block size according to the frequency domain physical resource block number and the modulation and coding scheme index, and determining a size of the transport block size according to the temporary transport block size and/or the ΤΉ Bundling size factor.
11. 根据权利要求 7至 10中任一项所述的方法, 其中, 所述 UE根据所述频域物理 资源块数和所述调制编码方案索引, 确定临时传输块大小包括: The method according to any one of claims 7 to 10, wherein the determining, by the UE, the temporary transport block size according to the frequency domain physical resource block number and the modulation and coding scheme index comprises:
所述 UE根据所述调制编码方案索引 /Mes和第一对应关系确定传输块索引Determining, by the UE, a transport block index according to the modulation and coding scheme index/ Mes and the first correspondence relationship
ITBS; ITBS;
所述 UE根据所述 IMCS、 所述频域物理资源块数 NPRB和第二对应关系确定 所述临时传输块大小。 The UE determines the temporary transport block size according to the I MCS , the frequency domain physical resource block number N PRB, and the second correspondence relationship.
12. 根据权利要求 11所述的方法, 其中, 所述第一对应关系为从调制编码方案索引 /Mes到调制阶数 0„和传输块大 小索引 /ras的映射关系; 所述第二对应关系为从传输块大小索引 /ras和所述频域物理资源块数 NP M 到所述临时传输块大小的映射关系。 12. The method according to claim 11, wherein the first correspondence is a mapping relationship from a modulation coding scheme index / Mes to a modulation order 0 „ and a transport block size index / ras ; the second correspondence A mapping relationship from the transport block size index / ras and the frequency domain physical resource block number N PM to the temporary transport block size.
13. 一种传输块大小的同步装置, 应用于基站 eNB, 包括: A synchronization device for transmitting a block size, which is applied to a base station eNB, and includes:
第一获取模块, 设置为获取用户设备 UE的频域物理资源块数和该 UE的 调制编码方案索引;  a first acquiring module, configured to acquire a frequency domain physical resource block number of the user equipment UE and an index of a modulation and coding scheme of the UE;
第一确定模块, 设置为根据所述频域物理资源块数和所述调制编码方案索 引确定临时传输块大小;  a first determining module, configured to determine a temporary transport block size according to the frequency domain physical resource block number and the modulation and coding scheme index;
第二确定模块, 设置为根据所述临时传输块大小和 /或传输时间间隔集束 TTI Bundling大小确定 TTI Bundling传输块大小的尺度因子, 其中, 所述 TTI Bundling大小为执行 TTI Bundling的连续的传输时间间隔 TTI的数目;  a second determining module, configured to determine a size factor of a TTI Bundling transport block size according to the temporary transport block size and/or a transmission time interval bundle TTI Bundling size, where the TTI Bundling size is a continuous transmission time for performing TTI Bundling The number of interval TTIs;
第三确定模块, 设置为根据所述 TTI Bundling传输块大小的尺度因子和所 述临时传输块大小确定所述 TTI Bundling传输块大小;  a third determining module, configured to determine the TTI Bundling transport block size according to a scale factor of the TTI Bundling transport block size and the temporary transport block size;
通知模块, 设置为将所述 TTI Bundling传输块大小的尺度因子、 所述频域 物理资源块数和所述调制编码方案索引通知给所述 UE, 或者, 将所述频域物 理资源块数和所述调制编码方案索引通知给所述 UE, 触发所述 UE进行所述 TTI Bundling传输块大小的同步。 a notification module, configured to notify the UE of a scale factor of the TTI Bundling transport block size, the frequency domain physical resource block number, and the modulation and coding scheme index, or the number of the frequency domain physical resource block and The modulation and coding scheme index is notified to the UE, and the UE is triggered to perform synchronization of the TTI Bundling transport block size.
14. 根据权利要求 13所述的装置, 其中, 所述第一确定模块包括: 第一确定单元, 设置为根据所述调制编码方案索引和第一对应关系确定传 输块索引; The device according to claim 13, wherein the first determining module comprises: a first determining unit, configured to determine a transport block index according to the modulation and coding scheme index and the first correspondence;
第二确定单元, 设置为根据所述调制编码方案索引、 所述频域物理资源块 数和第二对应关系确定该临时传输块的大小;  a second determining unit, configured to determine a size of the temporary transport block according to the modulation and coding scheme index, the frequency domain physical resource block number, and the second correspondence relationship;
所述第一对应关系为从调制编码方案索引到调制阶数和所述传输块大小索 引的映射关系;  The first correspondence is a mapping relationship from a modulation coding scheme index to a modulation order and the transport block size index;
所述第二对应关系为从所述传输块大小索引和所述频域物理资源块数到所 述临时传输块大小的映射关系。  The second correspondence is a mapping relationship from the transport block size index and the number of frequency domain physical resource blocks to the temporary transport block size.
15. 一种传输块大小的确定装置, 应用于用户设备 UE, 包括: A device for determining a size of a transport block, which is applied to a user equipment UE, and includes:
第二获取模块, 设置为获取 UE的频域物理资源块数、 该 UE的调制编码 方案索引和传输时间间隔集束 TTl Bundling传输块大小的尺度因子, 其中, 所 述 TTl Bundling传输块大小的尺度因子是根据临时传输块大小和 /或传输时间 间隔集束 TTl Bundling大小确定的, 其中, 所述 ΤΉ Bundling大小为执行 TTI Bundling的连续的传输时间间隔 TTI的数目;  a second acquiring module, configured to acquire a frequency factor physical resource resource block of the UE, a modulation coding scheme index of the UE, and a scaling factor of a transmission time interval bundle TT1 Bundling transport block size, where the TT1 Bundling transport block size scale factor And determining, according to the temporary transport block size and/or the transmission time interval bundle TT1 Bundling size, where the ΤΉ Bundling size is the number of consecutive transmission time intervals TTI for performing TTI Bundling;
第四确定模块, 设置为根据所述频域物理资源块数和所述调制编码方案索 弓 I, 确定临时传输块大小;  a fourth determining module, configured to determine a temporary transport block size according to the number of the frequency domain physical resource blocks and the modulation and coding scheme;
第五确定模块, 设置为根据所述 TTI Bundling传输块大小的尺度因子和所 述临时传输块大小确定 TTI Bundling传输块大小。  And a fifth determining module, configured to determine a TTI Bundling transport block size according to the scale factor of the TTI Bundling transport block size and the temporary transport block size.
16. 根据权利要求 15所述的装置, 其中, 所述第四确定模块包括: 第三确定单元, 设置为根据所述调制编码方案索引和第一对应关系确定传 输块索引; The device according to claim 15, wherein the fourth determining module comprises: a third determining unit, configured to determine a transport block index according to the modulation and coding scheme index and the first correspondence;
第四确定单元, 设置为根据所述调制编码方案索引、 所述频域物理资源块 数和第二对应关系确定该临时传输块的大小;  a fourth determining unit, configured to determine a size of the temporary transport block according to the modulation and coding scheme index, the frequency domain physical resource block number, and the second correspondence relationship;
所述第一对应关系为从调制编码方案索引到调制阶数和所述传输块大小索 引的映射关系;  The first correspondence is a mapping relationship from a modulation coding scheme index to a modulation order and the transport block size index;
所述第二对应关系为从所述传输块大小索引和所述频域物理资源块数到所 述临时传输块大小的映射关系。 The second correspondence is a mapping relationship from the transport block size index and the number of frequency domain physical resource blocks to the temporary transport block size.
7. 一种传输块大小的同步系统, 包括根据权利要求 13或 14所述的传输块大小的 同步装置和根据权利要求 15或 16所述的传输块大小的确定装置。 A transmission block size synchronizing system comprising a transport block size synchronizing apparatus according to claim 13 or 14, and a transport block size determining apparatus according to claim 15 or 16.
PCT/CN2013/073899 2012-04-18 2013-04-08 Transmission block size determination method and device, and synchronization method, device, and system WO2014005450A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210114686.8A CN103378924B (en) 2012-04-18 2012-04-18 The determination method and device of transport block size, synchronous method, apparatus and system
CN201210114686.8 2012-04-18

Publications (1)

Publication Number Publication Date
WO2014005450A1 true WO2014005450A1 (en) 2014-01-09

Family

ID=49463518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073899 WO2014005450A1 (en) 2012-04-18 2013-04-08 Transmission block size determination method and device, and synchronization method, device, and system

Country Status (2)

Country Link
CN (1) CN103378924B (en)
WO (1) WO2014005450A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10651968B2 (en) 2017-01-05 2020-05-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method and communication device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104618075B (en) * 2013-11-01 2019-02-19 中兴通讯股份有限公司 Method for transmission processing and device, network side equipment, the UE of TTI boundling
US9474064B2 (en) * 2015-01-28 2016-10-18 Alcatel Lucent System and method for controlling an operation of an application by forecasting a smoothed transport block size
WO2016119193A1 (en) * 2015-01-30 2016-08-04 Nec Corporation Method and apparatus for performing fractional subframe transmission
CN108353285B (en) * 2015-10-16 2021-02-05 华为技术有限公司 Method for determining size of transmission block, user equipment and base station
US10383012B2 (en) 2016-05-26 2019-08-13 Qualcomm Incorporated Method and apparatuses for accessing unlicensed and licensed frequency bands
CN109478946B (en) * 2016-08-03 2021-09-03 Oppo广东移动通信有限公司 Method and device for transmitting data
CN107690195B (en) * 2016-08-03 2020-05-05 普天信息技术有限公司 Multi-network resource joint distribution method
WO2018060169A1 (en) * 2016-09-30 2018-04-05 Telefonaktiebolaget Lm Ericsson (Publ) Transport block size determination for short transmission time interval
CN108631833B (en) * 2017-03-24 2020-11-20 北京紫光展锐通信技术有限公司 Uplink precoding transmission method and device and user equipment
CN110113143B (en) 2017-04-28 2020-12-25 华为技术有限公司 Parameter configuration method and device
CN109150370B (en) * 2017-06-13 2021-07-16 维沃移动通信有限公司 Method for determining size of transmission block and communication equipment
CN109413743B (en) * 2017-08-18 2020-10-23 维沃移动通信有限公司 Method for determining physical resource block binding size and user terminal
CN109495968B (en) * 2017-09-12 2023-01-13 华为技术有限公司 Method and device for data transmission
WO2020199044A1 (en) * 2019-03-29 2020-10-08 华为技术有限公司 Method and apparatus for determining tbs
WO2020199588A1 (en) * 2019-03-29 2020-10-08 华为技术有限公司 Tbs determination method and apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020110095A1 (en) * 2001-02-09 2002-08-15 Jiang Sam Shiaw-Shiang Determination of acceptable sequence number ranges in a communications protocol
CN101179836A (en) * 2006-11-08 2008-05-14 中兴通讯股份有限公司 Method of decoding reinforced uplink physical channel of time-division synchronous code division multiple access system
CN101754268A (en) * 2008-12-04 2010-06-23 中国移动通信集团公司 User uplink data scheduling method and user equipment
CN102088732A (en) * 2009-12-02 2011-06-08 爱立信(中国)通信有限公司 Method and equipment for optimizing TBS table for low speed service

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101296009B (en) * 2008-06-27 2012-05-16 中兴通讯股份有限公司 Downlink self-adapting method
CN102055576A (en) * 2010-12-29 2011-05-11 大唐移动通信设备有限公司 Method and device for determining HARQ (Hybrid Automatic Repeat request) mode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020110095A1 (en) * 2001-02-09 2002-08-15 Jiang Sam Shiaw-Shiang Determination of acceptable sequence number ranges in a communications protocol
CN101179836A (en) * 2006-11-08 2008-05-14 中兴通讯股份有限公司 Method of decoding reinforced uplink physical channel of time-division synchronous code division multiple access system
CN101754268A (en) * 2008-12-04 2010-06-23 中国移动通信集团公司 User uplink data scheduling method and user equipment
CN102088732A (en) * 2009-12-02 2011-06-08 爱立信(中国)通信有限公司 Method and equipment for optimizing TBS table for low speed service

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10651968B2 (en) 2017-01-05 2020-05-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method and communication device
TWI694698B (en) * 2017-01-05 2020-05-21 大陸商Oppo廣東移動通信有限公司 Method for transmitting data and communication apparatus
US11489617B2 (en) 2017-01-05 2022-11-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method and communication device

Also Published As

Publication number Publication date
CN103378924A (en) 2013-10-30
CN103378924B (en) 2018-09-11

Similar Documents

Publication Publication Date Title
WO2014005450A1 (en) Transmission block size determination method and device, and synchronization method, device, and system
US10560937B2 (en) Method and equipment for determining transmitting resources in V2X communication
JP7013373B2 (en) Terminals, wireless communication methods and systems
US8548483B2 (en) Feedback mapping for D2D control signals
JP2022179633A (en) Terminal, radio communication method, base station, and system
JP2022020863A (en) Terminal, wireless communication method, base station, and wireless communication system
US10667241B2 (en) Signalling report transmission in carrier aggregation
JP7210282B2 (en) Terminal, wireless communication method, base station and system
JP7418507B2 (en) Terminals, wireless communication methods, base stations and systems
EP3691328A1 (en) User terminal and radio communication method
JP7074667B2 (en) Terminals, wireless communication methods, base stations and systems
CN111557114A (en) Method and apparatus for channel state information transmission
WO2014000214A1 (en) Downlink-data feedback information transmission method, terminal, and base station
JP7305557B2 (en) Terminal, wireless communication method, base station and system
JP2022095951A (en) Terminal, radio communication method, base station, and system
JPWO2019215934A1 (en) User terminal and wireless communication method
TW201824908A (en) Method for transmitting information, network equipment, and terminal equipment
JPWO2018124029A1 (en) User terminal and wireless communication method
CN115516805A (en) Systems and methods relating to subslot Physical Uplink Control Channel (PUCCH) repetition
TW201918044A (en) User terminal and wireless communication method
TW201818736A (en) Method for transmitting uplink control information, terminal equipment and network equipment
JPWO2019069465A1 (en) Terminals, wireless communication methods and base stations
WO2019029463A1 (en) Method and device for receiving control information and sending control information
JPWO2019215935A1 (en) User terminal and wireless communication method
CN116325611A (en) Communication method, terminal device, network device, and computer-readable medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13813733

Country of ref document: EP

Kind code of ref document: A1