WO2014005273A1 - 一种线扫描x光成像仪 - Google Patents

一种线扫描x光成像仪 Download PDF

Info

Publication number
WO2014005273A1
WO2014005273A1 PCT/CN2012/078085 CN2012078085W WO2014005273A1 WO 2014005273 A1 WO2014005273 A1 WO 2014005273A1 CN 2012078085 W CN2012078085 W CN 2012078085W WO 2014005273 A1 WO2014005273 A1 WO 2014005273A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
ray imager
optical fiber
laser source
line scan
Prior art date
Application number
PCT/CN2012/078085
Other languages
English (en)
French (fr)
Inventor
吕洪光
Original Assignee
邦盛医疗装备(天津)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 邦盛医疗装备(天津)股份有限公司 filed Critical 邦盛医疗装备(天津)股份有限公司
Priority to PCT/CN2012/078085 priority Critical patent/WO2014005273A1/zh
Publication of WO2014005273A1 publication Critical patent/WO2014005273A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B42/00Obtaining records using waves other than optical waves; Visualisation of such records by using optical means
    • G03B42/08Visualisation of records by optical means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector

Definitions

  • the present invention relates to an imager, and more particularly to a line scan X-ray imager. Background technique
  • the scanning line is arranged by a dozen independent lasers, the optical path is difficult to stabilize, the optical layout is large, and the cost is high;
  • the present invention has been made to solve the deficiencies in the prior art, and an object of the present invention is to provide a simple structure, only need to use a laser source, and perform circular-to-straight transformation of laser light through a fiber optic row to overcome the layout volume of the optical system.
  • a line scan X-ray imager with the disadvantages of large and difficult optical path stability and high cost.
  • a line scan X-ray imager of the present invention comprises a laser source, a fiber array, a film transport mechanism, a line scan IP, a photocoupler and an image collection device, and the laser source and the optical fiber are arranged along the line
  • the side panels of the sheet structure slide back and forth, the fiber array and the line scan IP are both located below the film transport mechanism, the fiber array is located above the line scan IP, the optocoupler and the fiber array Connected, the optocoupler is coupled to the image collection device.
  • a line scan X-ray imager of the present invention may also be:
  • a collimating lens is disposed between the optical fiber row and the laser source, and the collimating lens is fixed at a front end of the excitation light source, and a front end of the collimating lens corresponds to a position of a bundle end of the rear end of the optical fiber row.
  • the optical fiber row includes a fluorescent collecting portion and a scanning line forming portion, and the scanning line forming portion Arranged side by side with the fluorescent collecting portion, the fluorescent collecting portion is located directly above the film transporting mechanism, and the fluorescent collecting portion is located directly below the photocoupler.
  • An optical filter is disposed between the fluorescent collector and the photocoupler.
  • a glass round bar is disposed between the fluorescent collecting portion and the line scan IP, and the glass round bar is located directly below the fiber array.
  • the laser source is a helium laser source or a semiconductor laser diode.
  • the optocoupler includes an electronic signal processor and at least five charge coupled devices.
  • the bottom end supporting fibers of the fluorescent collecting portion of the optical fiber row are arranged in a rectangular shape, and at least five supporting optical fibers are arranged at the top end of the fluorescent collecting portion, and the number and position of the branched optical fibers correspond to the number and position of the charge coupled devices.
  • the charge coupled device is an asymmetrical linear array device.
  • the charge coupled device is a line array device of 50 ⁇ m 200 ⁇ pixels.
  • a line scan X-ray imager of the present invention which comprises a laser source, a fiber array, a film transport mechanism, a line scan pupil, a photocoupler and an image collection device, the laser source and the fiber arrangement
  • the side panels of the slab structure slide back and forth, the fiber row and the line scan IP are both located below the film transport mechanism, the fiber row is located above the line scan IP, the optocoupler and the The optical fiber row is connected, and the photocoupler is connected to the image collecting device.
  • the line scan X-ray imager shown in Figure 1 rotates counterclockwise or rotates clockwise by 90°, that is, the film transport mechanism 7 and the line scan IP board are vertically set, and the human station scans the IP board online.
  • the back side of the board, then the separate laser source and the fiber optic row scan the IP forward or backward to move at a speed, while the laser source emits laser light, passes through the fiber row, and then excites the fluorescence through the line scan IP, and then the fluorescence is
  • the optical fibers located above the line scan IP are arranged and collected and then converted into photoelectric signals by the charge coupler optical signal processor, and finally the images, objects and partial images of the human body that need to collect the images are collected by the image collecting device.
  • the electrical signal is converted into a binary digital signal for image processing to complete X-ray imaging.
  • DRAWINGS 1 is a schematic view of a specific embodiment of a line scan X-ray imager of the present invention.
  • a line scan X-ray imager of the present invention includes a laser source 1, a fiber array, a film transport mechanism 7, a line scan IP board 8, a photocoupler 5, and an image collection device 6,
  • the laser source 1 and the optical fiber row slide back and forth along the side panels of the slab structure, and the optical fiber row and the line scanning IP board (IP is an imaging plate) are located at the film transport mechanism 7 Below, the fiber array is located above the line scan IP board, the optocoupler is connected to the fiber array, and the photocoupler is connected to the image collection device 6.
  • the laser source 1 can be any laser source 1 on the market today, such as a krypton laser source 1, a semiconductor laser diode (LD), or the like can be used in the present imager.
  • power W 15-200 mV
  • many lasers are well matched to the excitation spectrum and sensitivity of today's stored laser materials.
  • LD is a very compact light source with small size, low operating voltage and easy to use.
  • the film transport mechanism 7 is also a general-purpose device. In particular use, the line scan X-ray imager shown in Figure 1 rotates counterclockwise or 90 degrees clockwise.
  • the film transporting mechanism 7 and the line scanning IP board 8 are all vertically arranged, the human station scans the back side of the IP board online, and then the separate laser source 1 and the optical fiber array scan the IP board along the line to move up or down, while The laser source 1 emits laser light, passes through the fiber array, and then excites the fluorescence through the line scan IP board, and then the fluorescence is received by the fiber row above the line scan IP board and then converted into photoelectric signals by the photoelectric processor 5, and finally passed.
  • the image collecting device 6 collects the partial images of the objects, articles, and human bodies that need to collect the images, converts the electrical signals into binary digital signals, performs image processing, and completes X-ray imaging.
  • the structure is simple, only one laser source 1 is needed, and the circular-to-straight transformation of the laser light through the optical fiber row is not composed of a plurality of laser sources 1 like the current imager. Therefore, the layout volume of such an optical system is much smaller than that of the prior art, the optical path is more stable, and the cost is greatly reduced. And this The invented line scan X-ray imager uses a non-focal length scanning method to further reduce the volume of the device under the same scanning format.
  • the line scan X-ray imager of the present invention can be widely used in computer X-ray imager, medical and health system radiology, medical and health system radiology, general X-ray digital system, Small dedicated dental X-ray digital system, field hospitals, industrial non-destructive testing, etc., can be used in a wide range of applications, can achieve huge economic benefits, and effectively save energy and avoid pollution.
  • a line scan X-ray imager of the present invention please refer to FIG. 1 .
  • a collimating lens 10 is disposed between the fiber array and the laser source 1 , and the collimating lens 10 is fixed to the front end of the laser source 1, and the front end of the collimator lens 10 corresponds to the position of the bundle end of the rear end of the optical fiber row.
  • the function of the collimating lens 10 is to change the laser light emitted by the laser source 1 into parallel light to facilitate the subsequent fiber discharge.
  • the exit pupil of the collimator lens 10 has a diameter of 6 mm.
  • the collimator lens 10 of the laser source 1 is an inverse Gaussian system.
  • the collimator lens 10 of the inverse Gaussian system can make the laser spot energy distribution uniform. It is also possible to add a grating at the front end of the collimator lens 10 such that the output beam energy distribution is less than 1/e 2 (the spot diameter is less than 84% of the maximum energy).
  • the semiconductor laser diode in order to output the fluorescence energy more stable, can also be installed with light stabilization measures.
  • a line scan X-ray imager of the present invention may also be based on the foregoing technical solution, the fiber array includes a fluorescent collecting portion 9 and a scanning line forming portion 2, and the scanning line forming portion 2 Arranged in parallel with the fluorescent collecting portion, the fluorescent collecting portion 9 is located directly above the film transporting mechanism 7.
  • the scanning line forming portion 2 forms a laser scanning line, and the fluorescent collecting portion 9 collects the fluorescence excited by the line scanning IP board, so that the input and output of the same optical path can be realized, and the collecting efficiency is high; the excitation optical path of the existing imaging system is overcome. There is a large angle between the layout of the collected light path and the disadvantage of low collection efficiency.
  • the bottom end supporting fibers of the fluorescent collecting portion 9 of the optical fiber row are arranged in a rectangular shape, and the top end of the fluorescent collecting portion 9 is arranged with at least five supporting optical fibers, and the number and position of the branched optical fibers correspond to the number and position of the charge coupled devices.
  • the end of the scanning line forming portion is a flat end face of the fiber bundle.
  • the lower end of the fluorescent collecting portion 9 is arranged in a growth direction to facilitate input of the optical fiber from there.
  • the upper end of the fluorescent collecting portion 9 is composed of a plurality of (at least five) branched fibers, which facilitates the fluorescence of the output of the fluorescent collector corresponding to the output of the photocoupler 5.
  • the fluorescent collecting portion 9 is located directly above the film transporting mechanism 7, and the fluorescent collecting portion 9 is located directly below the photocoupler 5, thereby facilitating the excitation of the fluorescent input and output.
  • a still further preferred solution is to provide an optical filter 4 between the fluorescent collector and the photocoupler. The function of the optical filter 4 is to filter out the line scan IP board surface. A reflected excitation laser (an excitation red light with a fluorescence intensity of 107). Avoid affecting the quality of the image being imaged. It is also possible to provide a glass round bar 3 between the fluorescent collecting portion 9 and the line scanning IP plate, and the glass round bar 3 is located directly below the optical fiber row. The function of the glass round bar 3 is to compress the laser output from the lower end of the fiber to a line of 80-100 ⁇ m.
  • a line scan X-ray imager of the present invention may also be based on the foregoing technical solution, the photocoupler 5 comprising an electronic signal processor and at least five charge coupled devices.
  • the function of the photocoupler 5 is to convert the collected fluorescent light signal into an electrical signal.
  • the charge-coupled device determines the number of charge-coupled devices based on the number of scanning pixels in a row and the image elements of a charge-coupled device.
  • the charge coupled device is an asymmetrical linear array device. The direction in which the cell size is small is arranged in the scanning scan line. The non-parallel nature of the pixels allows the system to maintain high resolution along the scan line and collect enough fluorescence.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

一种线扫描X光成像仪,包括:激光源(1)、光纤排(2,9)、输片机构(7)、线扫描IP(8)、光电耦合器(5)和图像采集装置(6)。激光源(1)和光纤排(2,9)沿输片机构(7)的侧片前后滑动,光纤排(2,9)和线扫描IP(8)均位于输片机构(7)的下方,光纤排(2,9)位于线扫描IP(8)的上方,光电耦合器(5)与光纤排(9)连接,光电耦合器(5)与图像采集装置(6)连接。本发明的线扫描X光成像仪结构简单,只需要使用一个激光源,通过光纤排进行激光的圆-直变换,克服了光学系统体积大、光路难于稳定、成本高的缺点。

Description

一种线扫描 X光成像仪 技术领域
本发明涉及一种成像仪, 特别是涉及一种线扫描 X光成像仪。 背景技术
目前市场上出现了很多的 X光成像仪, 市场上的 X光成像仪结构特点 和缺陷是:
1 )扫描线用十几个独立的激光器排列而成, 光路稳定难、 光学布局体 积大、 成本高;
2 ) 两个长柱面镜压缩激光排, 形成扫描细线, 结构大、 成本高;
3 ) 荧光收集系统结构复杂、 难以加工、 成本高、 收集效率不高;
4 )激励光路与收集光路布局之间有较大夹角, 影响收集效率;
5 ) CCD 器件拼接, 技术难度大、 成本高;
6 ) 飞点扫描故有的光学焦距, 使设备体积难以小型化。 发明内容
本发明是为了解决现有技术中的不足而完成的, 本发明的目的是提供一 种结构简单、 只需要使用一个激光源, 通过光纤排进行激光的圓-直变换, 克服了光学系统布局体积大、光路稳定难、成本高的缺点的线扫描 X光成像 仪。
本发明的一种线扫描 X光成像仪,包括一个激光源、光纤排、输片机构、 线扫描 IP、 光电耦合器和图像釆集装置, 所述激光源和所述光纤排沿所述输 片结构的侧片前后滑动, 所述光纤排和所述线扫描 IP均位于所述输片机构 的下方, 所述光纤排位于所述线扫描 IP上方, 所述光电耦合器与所述光纤 排连接, 所述光电耦合器与图像釆集装置连接。
本发明的一种线扫描 X光成像仪还可以是:
所述光纤排与所述激光源之间有准直透镜, 所述准直透镜固定在所述激 光源前端, 所述准直透镜的前端与所述光纤排后端的集束端位置对应。
所述光纤排包括荧光收集部分和扫描线形成部分, 所述扫描线形成部分 与所述荧光收集部分并排设置, 所述荧光收集部分位于所述输片机构的正上 方, 所述荧光收集部分位于所述光电耦合器正下方。
所述荧光收集器与所述光电耦合器之间设置光学滤波器。
所述荧光收集部分与所述线扫描 IP之间设置一根玻璃圓棒, 所述玻璃 圓棒位于所述光纤排正下方。
所述激光源为氦氖激光源或半导体激光二极管。
所述光电耦合器包括电子信号处理器和至少五个电荷耦合器件。
所述光纤排的荧光收集部分底端支光纤排列成长方形, 所述荧光收集部 分顶端排列至少五个支光纤, 所述支光纤数量和位置与所述电荷耦合器件的 数量和位置对应。
所述电荷耦合器件为非对称性线阵器件。
所述电荷耦合器件为 50μπι 200μπι像素的线阵器件。
本发明的一种线扫描 X光成像仪, 由于其包括一个激光源、 光纤排、 输 片机构、 线扫描 ΙΡ、 光电耦合器和图像釆集装置, 所述激光源和所述光纤排 沿所述输片结构的侧片前后滑动, 所述光纤排和所述线扫描 IP均位于所述 输片机构的下方, 所述光纤排位于所述线扫描 IP上方, 所述光电耦合器与 所述光纤排连接, 所述光电耦合器与图像釆集装置连接。 在具体的使用时, 如图 1所示的线扫描 X光成像仪逆时针旋转或顺时针旋转 90° , 即输片机 构 7和线扫描 IP板均为竖直设置, 人站在线扫描 IP板板的后侧, 然后单独 的激光源和光纤排沿线扫描 IP向前或向后勾速移动, 同时激光源发出激光, 经过光纤排的作用, 再经过线扫描 IP激励出荧光, 然后该荧光被位于线扫 描 IP上方的光纤排接并收集然后经过电荷耦合器光学信号处理器进行光电 信号的转换, 最终通过图像釆集装置将需要釆集图像的物体、 物品和人体的 部分图像釆集下来, 将电信号转化为二进制的数字信号, 进行图像处理, 完 成 X光成像。 因此相对于现有技术而言, 具有的优点是结构简单、 只需要使 用一个激光源, 通过光纤排进行激光的圓-直变换, 不像现在的成像仪那样 由多个激光源构成, 因此这样的光学系统布局体积相对于现有技术而言要小 很多, 光路更加稳定, 成本大大减低。 而且本发明的线扫描 X光成像仪, 釆 用的是无焦距式扫描方式, 在相同的扫描幅面下, 进一步缩小设备的体积。 附图说明 图 1为本发明线扫描 X光成像仪具体实施例示意图。
图号说明
1 ...激光源 2…扫描线形成部分 3…玻璃圓棒
4…光学滤波器 5…光电耦合器 6...图像釆集装置
7…输片机构 8...线扫描 IP板 9...荧光收集部分 10…准直透镜 具体实施方式
下面结合附图的图 1对本发明的一种线扫描 X光成像仪作进一步详细说 明。
本发明的一种线扫描 X光成像仪, 请参考图 1 , 包括一个激光源 1、 光 纤排、 输片机构 7、 线扫描 IP板 8、 光电耦合器 5和图像釆集装置 6, 所述 激光源 1和所述光纤排沿所述输片结构的侧片前后滑动, 所述光纤排和所述 线扫描 IP板 (IP为影像板,即 imaging plate ))均位于所述输片机构 7的下方, 所述光纤排位于所述线扫描 IP板上方, 所述光电耦合器与所述光纤排连接, 所述光电耦合器与图像釆集装置 6连接。 在此, 激光源 1可以是现在市场的 任何一种激光源 1 , 比如氦氖激光源 1、 半导体激光二极管 (LD )等都可以 使用在本成像仪中。 使用时, LD的波长 λ =650ηπι, 功率 W=15-200mV, 有 许多激光与今天的储存激光材料的激励光谱和灵敏度良好匹配。 另外 LD是 十分紧凑的光源, 体积小、 工作电压低、 使用方便。 输片机构 7也是目前通 用的设备就可。在具体的使用时,如图 1所示的线扫描 X光成像仪逆时针旋 转或顺时针旋转 90。 , 即输片机构 7和线扫描 IP板 8均为竖直设置, 人站 在线扫描 IP板的后侧, 然后单独的激光源 1和光纤排沿线扫描 IP板向上或 向下勾速移动, 同时激光源 1发出激光, 经过光纤排的作用, 再经过线扫描 IP板激励出荧光, 然后该荧光被位于线扫描 IP板上方的光纤排接收然后经 过光电处理器 5进行光电信号的转换, 最终通过图像釆集装置 6将需要釆集 图像的物体、 物品和人体的部分图像釆集下来, 将电信号转化为二进制的数 字信号, 进行图像处理, 完成 X光成像。 因此相对于现有技术而言, 具有的 优点是结构简单、 只需要使用一个激光源 1 , 通过光纤排进行激光的圓 -直变 换, 不像现在的成像仪那样由多个激光源 1构成, 因此这样的光学系统布局 体积相对于现有技术而言要小很多, 光路更加稳定, 成本大大减低。 而且本 发明的线扫描 X光成像仪,釆用的是无焦距式扫描方式,在相同的扫描幅面 下, 进一步缩小设备的体积。 由于其体积小、 光路稳定且成本比较低, 本发 明的线扫描 X光成像仪可广泛用于计算机 X光成像仪、 医疗卫生系统放射 科、 医疗卫生系统放射科、 通用 X射线摄影数字化系统、 小型专用牙科 X 光摄影数字化系统、 野战医院、 工业无损检测等方面, 使用范围广, 可取得 巨大的经济效益, 并有效节省能源, 避免污染。
本发明的一种线扫描 X光成像仪, 请参考图 1 , 在上述技术方案的基础 上还可以是所述光纤排与所述激光源 1 之间有准直透镜 10, 所述准直透镜 10固定在所述激光源 1前端, 所述准直透镜 10的前端与所述光纤排后端的 集束端位置对应。 设置准直透镜 10的作用是将激光源 1发出的激光变成平 行光, 方便后续的光纤排作用。 优选地准直透镜 10的出瞳口直径为 6mm。 具体可以是激光源 1的准直透镜 10为反高斯系统, 因为半导体激光二极管 输出能量为高斯分布, 因此使用反高斯系统的准直透镜 10可以使得激光斑 能量分布均勾。 还可以是在准直透镜 10前端出瞳口加设光栅, 使得输出光 束能量分布小于 1/e2处 (光斑直径小于最大能量的 84%处)。 另外, 为了输 出荧光能量更加稳定, 半导体激光二极管还可以加装稳光措施。
本发明的一种线扫描 X光成像仪, 参考图 1 , 还可以是在前述技术方案 的基础上, 所述光纤排包括荧光收集部分 9和扫描线形成部分 2, 所述扫描 线形成部分 2与所述荧光收集部分并列设置, 所述荧光收集部分 9位于所述 输片机构 7的正上方。 所述扫描线形成部分 2形成激光扫描线, 而荧光收集 部分 9则收集由线扫描 IP板激励出来的荧光, 这样可以实现输入、 输出同 光路, 收集效率高; 克服了现有成像系统激励光路和收集光路布局之间有较 大夹角, 收集效率低的缺点。 所述光纤排的荧光收集部分 9底端支光纤排列 成长方形, 所述荧光收集部分 9顶端排列至少五个支光纤, 所述支光纤数量 和位置与所述电荷耦合器件的数量和位置对应。扫描线形成部分端部为光纤 集束平端面。 荧光收集部分 9的下端排列成长方向方便光纤从该处输入。 而 荧光收集部分 9上端由多个(至少五个)支光纤组成, 方便对应光电耦合器 5输出荧光收集器输入的荧光。 所述荧光收集部分 9位于所述输片机构 7的 正上方, 所述荧光收集部分 9位于所述光电耦合器 5正下方, 这样方便激励 出的荧光输入和输出。 更进一步优选的技术方案为所述荧光收集器与所述光 电耦合器之间设置光学滤波器 4。光学滤波器 4的作用是滤除线扫描 IP板面 反射的激励激光(其荧光强度大 107的激励红光)。 避免影响成像图像的质 量。 还可以是所述荧光收集部分 9与所述线扫描 IP板之间设置一根玻璃圓 棒 3 , 所述玻璃圓棒 3位于所述光纤排正下方。 设置玻璃圓棒 3的作用是使 得光纤排下端输出的激光压缩成 80-100μπι的线条。
本发明的一种线扫描 X光成像仪, 参考图 1 , 还可以是在前述技术方案 的基础上,所述光电耦合器 5包括电子信号处理器和至少五个电荷耦合器件。 光电耦合器 5作用是将收集到的荧光的光信号转换为电信号。 电荷耦合器件 是根据一行的扫描像元数与一个电荷耦合器件的像元素, 决定使用电荷耦合 器件的数目, 将多个各电荷耦合器件进行并接。 这样由于荧光收集部分 9是 光纤排的一部分, 使得电荷耦合器件的拼接变得容易实现; 克服了目前必须 用专用荧光收集部分 9的要求, 从而降低了成本。 还可以是所述电荷耦合器 件为非对称性线阵器件。 像元尺寸小的方向按发射扫描线排列。 而像素的非 对成性, 允许系统沿扫描线维持高的分辨率还能收集足够的荧光。
上述仅对本发明中的几种具体实施例加以说明,但并不能作为本发明的 保护范围, 凡是依据本发明中的设计精神所作出的等效变化或修饰, 均应认 为落入本发明的保护范围。

Claims

权利要求
1、 一种线扫描 X光成像仪, 其特征在于: 包括一个激光源、 光纤排、 输片机构、 线扫描 IP、 光电耦合器和图像釆集装置, 所述激光源和所述光纤 排沿所述输片结构的侧片前后滑动, 所述光纤排和所述线扫描 IP 均位于所 述输片机构的下方, 所述光纤排位于所述线扫描 IP上方, 所述光电耦合器 与所述光纤排连接, 所述光电耦合器与图像釆集装置连接。
2、 根据权利要求 1所述的一种线扫描 X光成像仪, 其特征在于: 所述 光纤排与所述激光源之间有准直透镜, 所述准直透镜固定在所述激光源前 端, 所述准直透镜的前端与所述光纤排后端的集束端位置对应。
3、 根据权利要求 1或 2所述的一种线扫描 X光成像仪, 其特征在于: 所述光纤排包括荧光收集部分和扫描线形成部分, 所述扫描线形成部分与所 述荧光收集部分并排设置, 所述荧光收集部分位于所述输片机构的正上方。
4、 根据权利要求 3所述的一种线扫描 X光成像仪, 其特征在于: 所述 荧光收集部分与所述光电耦合器之间设置光学滤波器。
5、 根据权利要求 3所述的一种线扫描 X光成像仪, 其特征在于: 所述 荧光收集部分与所述线扫描 IP之间设置一根玻璃圓棒, 所述玻璃圓棒位于 所述光纤排正下方。
6、 根据权利要求 3所述的一种线扫描 X光成像仪, 其特征在于: 所述 激光源为氦氖激光源或半导体激光二极管。
7、 根据权利要求 3所述的一种线扫描 X光成像仪, 其特征在于: 所述 光电耦合器包括电子信号处理器和至少五个电荷耦合器件。
8、 根据权利要求 7所述的一种线扫描 X光成像仪, 其特征在于: 所述 光纤排的荧光收集部分底端支光纤排列成长方形, 所述荧光收集部分顶端排 列至少五个支光纤, 所述支光纤数量和位置与所述电荷耦合器件的数量和位 置对应。
9、 根据权利要求 7所述的一种线扫描 X光成像仪, 其特征在于: 所述 电荷耦合器件为非对称性线阵器件。
10、 根据权利要求 9所述的一种线扫描 X光成像仪, 其特征在于: 所 述电荷耦合器件为 50μπι χ 200μπι像素的线阵器件。
PCT/CN2012/078085 2012-07-03 2012-07-03 一种线扫描x光成像仪 WO2014005273A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/078085 WO2014005273A1 (zh) 2012-07-03 2012-07-03 一种线扫描x光成像仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/078085 WO2014005273A1 (zh) 2012-07-03 2012-07-03 一种线扫描x光成像仪

Publications (1)

Publication Number Publication Date
WO2014005273A1 true WO2014005273A1 (zh) 2014-01-09

Family

ID=49881224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078085 WO2014005273A1 (zh) 2012-07-03 2012-07-03 一种线扫描x光成像仪

Country Status (1)

Country Link
WO (1) WO2014005273A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107831635A (zh) * 2017-11-30 2018-03-23 中国工程物理研究院激光聚变研究中心 一种x射线条纹相机时标光耦合器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07287100A (ja) * 1994-04-15 1995-10-31 Fuji Photo Film Co Ltd 放射線像変換パネル及び放射線像読取方法
CN1224182A (zh) * 1997-11-07 1999-07-28 压缩技术公司 产生不变尺寸图像点的二极管激励系统和方法
US20050003295A1 (en) * 2003-07-04 2005-01-06 Johan Koninckx Image storage phosphor or scintillator panels coated onto flexible supports
CN1615456A (zh) * 2001-11-21 2005-05-11 埃赛克斯电力工程师股份有限公司 射线照相成像的方法和装置
CN201045634Y (zh) * 2007-04-16 2008-04-09 北京中卫医信医疗设备有限公司 一种x光计算机成像仪装置
CN101313852A (zh) * 2008-07-10 2008-12-03 北京中卫医信医疗设备有限公司 双光路高效荧光收集系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07287100A (ja) * 1994-04-15 1995-10-31 Fuji Photo Film Co Ltd 放射線像変換パネル及び放射線像読取方法
CN1224182A (zh) * 1997-11-07 1999-07-28 压缩技术公司 产生不变尺寸图像点的二极管激励系统和方法
CN1615456A (zh) * 2001-11-21 2005-05-11 埃赛克斯电力工程师股份有限公司 射线照相成像的方法和装置
US20050003295A1 (en) * 2003-07-04 2005-01-06 Johan Koninckx Image storage phosphor or scintillator panels coated onto flexible supports
CN201045634Y (zh) * 2007-04-16 2008-04-09 北京中卫医信医疗设备有限公司 一种x光计算机成像仪装置
CN101313852A (zh) * 2008-07-10 2008-12-03 北京中卫医信医疗设备有限公司 双光路高效荧光收集系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107831635A (zh) * 2017-11-30 2018-03-23 中国工程物理研究院激光聚变研究中心 一种x射线条纹相机时标光耦合器
CN107831635B (zh) * 2017-11-30 2023-10-24 中国工程物理研究院激光聚变研究中心 一种x射线条纹相机时标光耦合器

Similar Documents

Publication Publication Date Title
CN102928346B (zh) 双模成像系统
US9846122B2 (en) Optical metrology system for spectral imaging of a sample
JP5918009B2 (ja) 欠陥検査方法および欠陥検査装置
JP2016519782A (ja) 193nmレーザ及び193nmレーザを用いた検査システム
KR101855599B1 (ko) 광섬유 이용 광 컬렉터와 보조미러를 이용하는 cr 리더
CN104458696A (zh) 基于数字微镜元件的微型固化拉曼光谱仪
WO2012014727A1 (ja) 遠赤外撮像装置およびそれを用いた撮像方法
CN103645136A (zh) 一种提高多光子荧光显微镜成像分辨率的方法及装置
CN109856169B (zh) 一种高分辨显微能谱ct成像方法及系统
CN116183496A (zh) 基于面阵cmos相机的超快泵浦探测瞬态吸收成像系统
CN113418932B (zh) 一种半导体晶片无损探伤装置及方法
WO2014005273A1 (zh) 一种线扫描x光成像仪
CN210166580U (zh) 一种一维线扫描成像结构、显微镜及显微探头
CN109188667B (zh) 多光束阵列多光子重扫描显微成像装置
CN110596009B (zh) 一种高灵敏度大面积激光超声成像方法
CN210166556U (zh) 一种三维微型内窥镜
KR101829554B1 (ko) 광섬유 다발을 이용하는 광 컬렉터를 포함한 cr 리더
CN210990229U (zh) 一种基于硅光电倍增器的口内影像扫描仪
US20130235374A1 (en) Wafer Inspection with Multi-Spot Illumination and Multiple Channels
CN109211854B (zh) 多光束多光子重扫描显微成像装置
TWI426612B (zh) 影像擷取模組及其放射線影像讀取裝置
KR102451446B1 (ko) 고효율 레이저 스캔 장치
JP2014095601A (ja) 光検出装置
CN101819218B (zh) 一种用于扫描隧道显微镜的光收集装置
GB2431536A (en) Linear scanning head for computed radiography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12880606

Country of ref document: EP

Kind code of ref document: A1