WO2014005269A1 - 频谱带宽分配方法和设备 - Google Patents

频谱带宽分配方法和设备 Download PDF

Info

Publication number
WO2014005269A1
WO2014005269A1 PCT/CN2012/078075 CN2012078075W WO2014005269A1 WO 2014005269 A1 WO2014005269 A1 WO 2014005269A1 CN 2012078075 W CN2012078075 W CN 2012078075W WO 2014005269 A1 WO2014005269 A1 WO 2014005269A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
spectrum bandwidth
bandwidth
spectrum
path
Prior art date
Application number
PCT/CN2012/078075
Other languages
English (en)
French (fr)
Inventor
刘宁
资小兵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2012/078075 priority Critical patent/WO2014005269A1/zh
Priority to EP12880709.6A priority patent/EP2863671B1/en
Priority to RU2015103068/07A priority patent/RU2596155C2/ru
Priority to CN201280001022.9A priority patent/CN102893630B/zh
Publication of WO2014005269A1 publication Critical patent/WO2014005269A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer

Definitions

  • the present invention relates to communication technologies, and in particular, to a spectrum bandwidth allocation method and device. Background of the invention
  • the requirements for the transmission rate of optical communication networks are also increasing.
  • signals at rates above 400 Gb/s will occupy a wider spectrum bandwidth.
  • the maximum spectrum bandwidth required by each rate signal can be used as a fixed frequency interval (for example, 50 GHz/100 GHz), but such a spectrum bandwidth allocation method would be adopted. Lead to serious waste of spectrum.
  • the optical network will evolve from a fixed bandwidth optical network to a variable bandwidth optical network, that is, from a fixed spectrum bandwidth to a flexible variable spectrum bandwidth.
  • a smaller-width spectrum unit slice (for example, 12.5 GHz) can be defined, and a channel for transmitting a traffic signal can occupy a plurality of spectrum unit slices to achieve flexible configuration of spectrum bandwidth.
  • a relatively large spectrum bandwidth is reserved as a guard band. The utilization of spectrum bandwidth in an optical communication network is significantly reduced. Summary of the invention
  • the embodiments of the present invention provide a spectrum bandwidth allocation method and apparatus, which can improve the utilization of spectrum bandwidth in an optical communication network.
  • an embodiment of the present invention provides a spectrum bandwidth allocation method, including: acquiring a request message for adding a first service, determining a path of the first service; and the request message carrying a channel of the first service Information of the first spectrum bandwidth to be occupied; If the path of the second service in the existing service is the same as the path of the first service, determining the adjacent idle spectrum bandwidth of the second spectrum bandwidth occupied by the channel of the second service as the allocated resource, the second spectrum The adjacent idle spectrum bandwidth of the bandwidth meets the requirement of adding the third spectrum bandwidth required for the first service, where the third spectrum bandwidth includes: the first spectrum bandwidth, the first service and the same path The fourth spectrum bandwidth required by the protection band between the channels of the second service, where the fourth spectrum bandwidth is smaller than the spectrum bandwidth occupied by the protection band between the channels of the two services with different paths;
  • the implementation of the present invention provides a device, where the device includes: a message acquiring unit, a path determining unit, a first bandwidth selecting unit, and a first bandwidth allocating unit; wherein the message acquiring unit is configured to obtain Adding a request message of the first service, and determining a path of the first service; the request message carrying information about a first spectrum bandwidth required by the channel of the first service;
  • the path determining unit is configured to receive a determination result output by the message obtaining unit, and determine whether a path of each service in the existing service is the same as a path of the first service;
  • the first bandwidth selection unit configured to receive the result of the determination by the path determining unit, that the path of the second service in the existing service is the same as the path of the first service, and determine the channel of the second service.
  • An adjacent idle spectrum bandwidth of the occupied second spectrum bandwidth is used as an allocation resource, and an adjacent idle spectrum bandwidth of the second spectrum bandwidth satisfies a requirement for adding a third spectrum bandwidth required for adding the first service, where
  • the third spectrum bandwidth includes: the first spectrum bandwidth, the fourth spectrum bandwidth required by the guard band between the first service and the second service channel with the same path, and the fourth spectrum bandwidth is smaller than the path The spectrum bandwidth occupied by the guard band between the channels of the two different services;
  • the first bandwidth allocation unit is configured to receive a determination result output by the first bandwidth selection unit, and allocate the first service from a neighboring idle spectrum bandwidth of the second spectrum bandwidth.
  • the third spectrum bandwidth is configured to receive a determination result output by the first bandwidth selection unit, and allocate the first service from a neighboring idle spectrum bandwidth of the second spectrum bandwidth.
  • the new service to be added it is required to determine whether the path of the new service is the same as the path of the existing service. If the same, the spectrum occupied by the channel of the service of the same path is determined in the existing service. Bandwidth, and selecting adjacent idle spectrum bandwidths for the spectrum bandwidth that meet the requirements for adding new services, and then allocating spectrum bandwidth for the new traffic adjacent to the spectrum bandwidth.
  • the allocated spectrum bandwidth includes the spectrum bandwidth required for the channel of the new service, and the spectrum bandwidth required for the guard band between the new service and the channel of the existing service; and the two services of the same path
  • the guard band between the channels is narrower than the guard band between the channels of the two services that are not the same path.
  • the technical solution of the embodiment of the present invention is to connect the spectrum bandwidth occupied by the channel of the service of the same path as much as possible by using a relatively small spectrum bandwidth as a guard band, which obviously improves the spectrum bandwidth in the optical communication network.
  • FIG. 1 is a schematic flowchart of a method for allocating a spectrum bandwidth according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of spectrum bandwidth allocation according to another embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a network according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an apparatus according to an embodiment of the present invention. detailed description
  • FIG. 1 is a schematic flowchart of a method for allocating a spectrum bandwidth according to an embodiment of the method, where the method includes:
  • a request message for adding a first service is obtained, and a path of the first service is determined.
  • the request message carries information about a first spectrum bandwidth that is required to be occupied by a channel of the first service.
  • an implementation situation is: the request message obtained by the source node device carries information about the spectrum bandwidth occupied by the channel of the new service and the new service. The information of the path, so that the source node device can quickly determine the path of the new service according to the obtained request message.
  • a request message obtained by a path computation element (PCE) carries information about a spectrum bandwidth occupied by a channel of the new service, a source node of the new service, and a sink node. Information, and then the PCE can calculate the path of the new service by using the CSPF (Constrained Shortest Path First) algorithm according to the request message and the network topology information.
  • PCE path computation element
  • the adjacent idle spectrum bandwidth of the second spectrum bandwidth occupied by the channel of the second service is determined as an allocation resource, and the adjacent idle spectrum bandwidth of the second spectrum bandwidth is required to meet the requirement for adding the first service.
  • the third spectrum bandwidth is: the third spectrum bandwidth includes: the first spectrum bandwidth, the fourth spectrum required by the guard band between the first service and the second service channel Bandwidth, the fourth spectrum bandwidth is smaller than the spectrum bandwidth occupied by the guard band between the channels of the two services whose paths are not the same.
  • FIG. 2 is a schematic diagram of spectrum bandwidth allocation according to another embodiment of the present invention.
  • the fiber link uploads and loses 4 services.
  • the figure shows the spectrum bandwidth occupied by the channels transmitting 4 services, that is, the spectrum bandwidth occupied by channel 1, channel 2, channel 3 and channel 4.
  • a guard band needs to be reserved between the channels of the two services, that is, the spectrum bandwidth is reserved as the guard band between channel 1 and channel 2.
  • the spectrum bandwidth is reserved as the guard band between channel 2 and channel 3, and the left side of channel 1
  • the spectrum bandwidth, the spectrum bandwidth between channel 3 and channel 4, and the spectrum bandwidth on the right side of channel 4 are all idle spectrum bandwidths, which can be used to allocate resources for new services.
  • the third spectrum bandwidth is allocated to the first service from adjacent idle spectrum bandwidths of the second spectrum bandwidth.
  • the allocated spectrum bandwidth includes the spectrum bandwidth required for the channel of the new service, and the spectrum bandwidth required for the guard band between the new service and the channel of the existing service; and the protection band in this embodiment Required spectrum
  • the bandwidth is smaller than the spectrum bandwidth required for the guard band in the prior art (for example, 2 slices or 1 slice). That is to say, in the present embodiment, the guard bands between the channels of the two services of the same path are narrower than the guard bands between the channels of the two services of the different paths. Therefore, the technical solution of the embodiment of the present invention is to connect the spectrum bandwidth occupied by the channel of the service of the same path as much as possible by using a relatively small spectrum bandwidth as a guard band, which obviously improves the spectrum bandwidth in the optical communication network.
  • the utilization rate can also effectively avoid the problem that signal crosstalk is easily generated between channels of services of different paths.
  • the technical solution of the embodiment can more significantly improve the utilization of the spectrum bandwidth in the optical communication network, and can also more effectively avoid signals easily generated between channels of different paths of services.
  • the method includes: in S110, if the path of each service in the existing service is different from the path of the first service, determining The adjacent idle spectrum bandwidth of the fifth spectrum bandwidth occupied by the channel of the third service in the existing service is used as the allocated resource, and the adjacent idle spectrum bandwidth of the fifth spectrum bandwidth is required to add the first service.
  • the sixth spectrum bandwidth requirement, the sixth spectrum bandwidth includes: the first spectrum bandwidth, the path of the first service and the channel of the third service are different Seven spectrum bandwidth, the seventh spectrum bandwidth being greater than the fourth spectrum bandwidth.
  • the sixth spectrum bandwidth is allocated to the first service from adjacent idle spectrum bandwidths of the fifth spectrum bandwidth.
  • the new business taking the first business as an example
  • the second service has the same path
  • the new service does not have the same path as the other existing service (for example, the third service)
  • the protection between the two channels of the first service and the second service is performed.
  • the band is narrower, and the protection band between the two channels of the first service and the third service is wider.
  • the method includes: if there are idle spectrum bandwidths that meet the requirements of the third spectrum bandwidth adjacent to both sides of the second spectrum bandwidth,
  • the first idle spectrum bandwidth is adjacent to the spectrum bandwidth occupied by the channel of the fourth service in the existing service
  • the second idle spectrum bandwidth is adjacent to the spectrum bandwidth occupied by the channel of the fifth service in the existing service.
  • the channel bandwidth occupied by the channel of the fourth service is the closest to the distance of the second spectrum bandwidth
  • the path of the fourth service and the path of the fifth service are both the same as the path of the second service
  • the first idle spectrum bandwidth is used as the allocated resource.
  • the method includes: if there are idle spectrums satisfying requirements of the third spectrum bandwidth adjacent to both sides of the second spectrum bandwidth a bandwidth, where the first idle spectrum bandwidth is adjacent to the spectrum bandwidth occupied by the channel of the fourth service in the existing service, and the second idle spectrum bandwidth is compared with the spectrum bandwidth occupied by the channel of the fifth service in the existing service. And the path of the fourth service is the same as the path of the second service, and the path of the fifth service is different from the path of the second service, and the first idle spectrum bandwidth is selected as the allocation. Resources.
  • the method includes: if there are idle spectrums satisfying requirements of the third spectrum bandwidth adjacent to both sides of the second spectrum bandwidth a bandwidth, where the first idle spectrum bandwidth is adjacent to the spectrum bandwidth occupied by the channel of the fourth service in the existing service, the path of the fourth service is the same as the path of the second service, and the second idle spectrum bandwidth is If there is no spectrum bandwidth occupied by a channel of an existing service other than the second service, the first idle spectrum bandwidth is selected as the allocated resource.
  • the method includes: if there are idle spectrums satisfying requirements of the third spectrum bandwidth adjacent to both sides of the second spectrum bandwidth a bandwidth, where the first idle spectrum bandwidth is the fourth service of the existing service The spectrum bandwidth occupied by the channel is adjacent, the path of the fourth service is different from the path of the second service, and the bandwidth of the second idle spectrum is not occupied by the channel of the existing service except the second service.
  • the spectrum bandwidth is adjacent, and the second idle spectrum bandwidth is selected as the allocated resource.
  • the method includes: if there are idle spectrums satisfying requirements of the third spectrum bandwidth adjacent to both sides of the second spectrum bandwidth a bandwidth, where the first idle spectrum bandwidth is adjacent to the spectrum bandwidth occupied by the channel of the fourth service in the existing service, and the second idle spectrum bandwidth is compared with the spectrum bandwidth occupied by the channel of the fifth service in the existing service. And the path of the fourth service and the path of the fifth service are different from the path of the second service, and the first idle spectrum bandwidth or the second idle spectrum bandwidth is arbitrarily selected as the resource allocation.
  • the method includes: if there are two sides adjacent to the second spectrum bandwidth that meet the requirements of the third spectrum bandwidth The idle spectrum bandwidth, wherein the two idle spectrum bandwidths are not adjacent to the spectrum bandwidth occupied by the channels of the existing services other than the second service, and the first idle spectrum bandwidth or the The second idle spectrum bandwidth is used as the allocated resource.
  • the existing service with the same path as the new service taking the first service as an example
  • the second service taking the second service as an example;
  • the spectrum bandwidth occupied by the channel of the existing service On the two sides adjacent to each other, there is an idle spectrum bandwidth that satisfies the requirement of adding the spectrum bandwidth required for the new service, and the idle spectrum bandwidth adjacent to one side needs to be selected as the allocated resource of the new service.
  • the idle spectrum bandwidth between the channels of the two services of the same path is preferentially selected, and then the existing services are selected.
  • the second service is an idle spectrum bandwidth that is not adjacent to the spectrum bandwidth of the channel of other services.
  • the technical solution of the embodiment of the present invention is to connect the spectrum bandwidth occupied by the channel of the service of the same path as much as possible by using a relatively small spectrum bandwidth as a guard band, which obviously improves the optical communication network.
  • the utilization of the spectrum bandwidth in the network and can also effectively avoid the problem of signal crosstalk easily occurring between channels of services of different paths.
  • the method for allocating the spectrum bandwidth provided by the foregoing embodiments may be performed by the source node device, or may be performed by the PCE, or may be performed by other devices, and is merely a specific example, and the embodiment of the present invention is not limited.
  • the source node of the service can obtain the information of the idle spectrum bandwidth on the fiber link between the adjacent nodes by sending a signaling message hop by hop to the node on the path of the service. Or obtaining the information of the idle spectrum bandwidth on the optical link in the optical communication network by receiving the information of the spectrum bandwidth occupied by the channel of the existing service sent by the network management.
  • the above information is stored in advance in the source node, PCE or other device that executes the method of the above embodiment.
  • the device that performs the method of the above embodiment also pre-stores the information of the path of the existing service.
  • FIG. 3 is a schematic structural diagram of a network according to another embodiment of the present invention.
  • service 1 and service 2 are existing services
  • service 3 is a new service
  • service 1 is A ⁇ B ⁇ C
  • service 2 is ⁇ 8, and service 3 is source.
  • the node is the node A
  • the sink node of the service 3 is the node.
  • the total spectrum bandwidth of the fiber link is 30 slices, where the spectrum bandwidth occupied by the channel of the service 1 is slicell ⁇ slicel5, and the spectrum bandwidth occupied by the channel of the service 2 is Slice23 ⁇ slice30, the channel bandwidth of the service 3 needs to occupy 4 slices, and the slice is defined in the variable bandwidth optical network.
  • a small width spectrum unit such as 12.5 GHz.
  • the node A sends a request message for adding a new service 3 to the PCE, where the request message carries the information of the source node A and the sink node C of the new service 3 and the information of the spectrum bandwidth occupied by the channel of the new service 3 by 4 slices.
  • the PCE calculates the path of the new service 3 as A ⁇ B ⁇ C according to the obtained request message and the network topology information.
  • the PCE determines that the path of the existing service 1 is the same as the path of the calculated new service 3, and further determines that the spectrum bandwidth occupied by the channel of the existing service 1 is adjacent to both sides of the slicell ⁇ slicel5, and the addition is satisfied.
  • New service 3 required spectrum bandwidth 5 slices of free spectrum bandwidth required, namely: slicel ⁇ slicelO and slicel6 ⁇ slice22.
  • the PCE determines that the path of the existing service 2 is different from the calculated path of the new service 3, and the spectrum bandwidth slice23 ⁇ slice30 occupied by the channel of the existing service 2 is adjacent to the idle spectrum bandwidth slicel6 ⁇ slice22, and the selection is from
  • the idle spectrum bandwidth slicel ⁇ slicelO allocates 5 slices of spectrum bandwidth for the new service 3, ie: slicelO is allocated as a guard band between the existing service 1 and the channel of the new service 3, and slice6 ⁇ slice9 is allocated as a new service for transmission 3 Channel.
  • the technical solution of the embodiment of the present invention is to connect the spectrum bandwidth occupied by the channel of the service of the same path as much as possible by using a relatively small spectrum bandwidth as a guard band, which obviously improves the spectrum bandwidth in the optical communication network.
  • the utilization rate can also effectively avoid the problem that signal crosstalk is easily generated between channels of services of different paths.
  • 4 is a schematic structural diagram of an apparatus according to an embodiment of the present invention.
  • the device is used to implement allocation of spectrum bandwidth in an optical communication network.
  • the device may be a source node device, or may be a PCE, or may be another device with similar functions. .
  • the device includes: a message obtaining unit 402, a path determining unit 404, a first bandwidth selecting unit 406, and a first bandwidth allocating unit 408, which are as follows.
  • the message obtaining unit 402 is configured to acquire a request message for adding the first service, and determine the first The path of the service; the request message carries information of the first spectrum bandwidth required by the channel of the first service.
  • the path determining unit 404 is configured to receive the determination result output by the message obtaining unit 402, and determine whether the path of each service in the existing service is the same as the path of the first service.
  • the first bandwidth selection unit 406 is configured to receive the result of the determination by the path determining unit 404 that the path of the second service in the existing service is the same as the path of the first service, and determine the channel of the second service.
  • An adjacent idle spectrum bandwidth of the occupied second spectrum bandwidth is used as an allocation resource, and an adjacent idle spectrum bandwidth of the second spectrum bandwidth satisfies a requirement for adding a third spectrum bandwidth required for adding the first service, where
  • the third spectrum bandwidth includes: the first spectrum bandwidth, the fourth spectrum bandwidth required by the guard band between the first service and the second service channel with the same path, and the fourth spectrum bandwidth is smaller than the path
  • the protection bandwidth between the channels of the two services is not the same as the bandwidth occupied by the spectrum.
  • the first bandwidth allocating unit 408 is configured to receive the determination result output by the first bandwidth selecting unit 406, and allocate the third spectrum to the first service from the adjacent idle spectrum bandwidth of the second spectrum bandwidth. bandwidth.
  • the allocated spectrum bandwidth includes the spectrum bandwidth required for the channel of the new service, and the spectrum bandwidth required for the guard band between the new service and the channel of the existing service; and the protection band in this embodiment
  • the required spectrum bandwidth is smaller than the spectrum bandwidth required for the guard band in the prior art (for example, 2 slices or 1 slice). That is to say, in this embodiment, the channels of the two services of the same path are The guard band between the two is narrower than the guard band between the channels of the two services that are not the same path. Therefore, the technical solution of the embodiment of the present invention is to connect the spectrum bandwidth occupied by the channel of the service of the same path as much as possible by using a relatively small spectrum bandwidth as a guard band, which obviously improves the spectrum bandwidth in the optical communication network.
  • the utilization rate can also effectively avoid the problem that signal crosstalk is easily generated between channels of services of different paths.
  • the device further includes a second bandwidth selection unit 410 and a second bandwidth allocation unit 412, the details of which are as follows.
  • the second bandwidth selection unit 410 is configured to receive the result of the determination by the path determining unit 404 that the path of each service in the existing service is different from the path of the first service, and determine the existing service.
  • the adjacent idle spectrum bandwidth of the fifth spectrum bandwidth occupied by the channel of the third service is used as the allocated resource, and the adjacent idle spectrum bandwidth of the fifth spectrum bandwidth satisfies the sixth spectrum bandwidth required for adding the first service. It is required that the sixth spectrum bandwidth includes: a first spectrum bandwidth, a seventh spectrum bandwidth required by a guard band between the first service and the third service channel The seventh spectrum bandwidth is greater than the fourth spectrum bandwidth.
  • the second bandwidth allocation unit 412 is configured to allocate the sixth spectrum bandwidth for the first service from adjacent idle spectrum bandwidths of the fifth spectrum bandwidth.
  • the new service and another existing service have the same path
  • the new service and another existing service the third service is For example, the protection path between the two channels of the first service and the second service is narrow, and the protection band between the two channels of the first service and the third service is wider.
  • the first bandwidth selection unit 406 in the apparatus may include a plurality of subunits as follows:
  • a receiving subunit 4061 configured to receive the result of the determination by the path determining unit 404 that the path of the second service in the existing service is the same as the path of the first service;
  • the determining subunit 4062 is configured to determine, as the allocated resource, the adjacent idle spectrum bandwidth of the second spectrum bandwidth occupied by the channel of the second service. It is worth noting that when the existing service with the same path as the new service (taking the first service as an example) is determined (taking the second service as an example;), and further determining the spectrum bandwidth occupied by the channel of the existing service On the two sides adjacent to each other, there is an idle spectrum bandwidth that satisfies the requirement of adding the spectrum bandwidth required for the new service, and the idle spectrum bandwidth adjacent to one side needs to be selected as the allocated resource of the new service. Then, for the determining sub-unit 4062 in the first bandwidth selecting unit 406, it may further include one or more sub-units, each of which functions as a function of determining a resource allocation. The details are as follows.
  • the determining subunit 4062 includes:
  • a first sub-unit configured to determine, in the adjacent two sides of the second spectrum bandwidth, an idle spectrum bandwidth that meets a requirement of the third spectrum bandwidth, where the first idle spectrum bandwidth is in the existing service
  • the spectrum bandwidth occupied by the channel of the fourth service is adjacent, and the bandwidth of the second idle spectrum is adjacent to the spectrum bandwidth occupied by the channel of the fifth service in the existing service, and the spectrum bandwidth occupied by the channel of the fourth service is
  • the second spectrum bandwidth is the closest, and the path of the fourth service and the path of the fifth service are both the same as the path of the second service, and the first idle spectrum bandwidth is selected as the allocated resource.
  • the determining subunit 4062 includes:
  • a second sub-unit configured to determine, in the adjacent two sides of the second spectrum bandwidth, an idle spectrum bandwidth that meets the requirement of the third spectrum bandwidth, where the first idle spectrum bandwidth is in the existing service
  • the spectrum bandwidth occupied by the channel of the fourth service is adjacent, and the bandwidth of the second idle spectrum is adjacent to the spectrum bandwidth occupied by the channel of the fifth service in the existing service, and the path of the fourth service and the path of the second service If the path of the fifth service is different from the path of the second service, the first idle spectrum bandwidth is selected as the allocated resource.
  • the determining subunit 4062 includes: a third sub-unit, configured to determine, in the adjacent two sides of the second spectrum bandwidth, an idle spectrum bandwidth that meets the requirement of the third spectrum bandwidth, where the first idle spectrum bandwidth is in the existing service
  • the spectrum bandwidth occupied by the channel of the fourth service is adjacent, the path of the fourth service is the same as the path of the second service, and the bandwidth of the second idle spectrum is not related to other existing services except the second service. If the spectrum bandwidth occupied by the channel is adjacent, the first idle spectrum bandwidth is selected as the allocated resource.
  • the determining subunit 4062 includes:
  • a fourth sub-unit configured to determine, in the adjacent two sides of the second spectrum bandwidth, an idle spectrum bandwidth that meets the requirement of the third spectrum bandwidth, where the first idle spectrum bandwidth is in the existing service
  • the spectrum occupied by the channel of the fourth service is adjacent, the path of the fourth service is different from the path of the second service, and the bandwidth of the second idle spectrum is not related to the existing service except the second service.
  • the spectrum bandwidth occupied by the channel is adjacent, and the second idle spectrum bandwidth is selected as the allocated resource.
  • the determining subunit 4062 includes:
  • a fifth sub-unit configured to determine, in the adjacent two sides of the second spectrum bandwidth, an idle spectrum bandwidth that meets the requirement of the third spectrum bandwidth, where the first idle spectrum bandwidth is in the existing service
  • the spectrum bandwidth occupied by the channel of the fourth service is adjacent, and the bandwidth of the second idle spectrum is adjacent to the spectrum bandwidth occupied by the channel of the fifth service in the existing service, and the path of the fourth service and the path of the fifth service If the path is different from the path of the second service, the first idle spectrum bandwidth or the second idle spectrum bandwidth is arbitrarily selected as the allocated resource.
  • the determining subunit 4062 includes:
  • a sixth sub-unit configured to have two idle spectrum bandwidths satisfying requirements of the third spectrum bandwidth at two adjacent sides of the second spectrum bandwidth, where the two idle spectrum bandwidths are not If the spectrum bandwidth occupied by the channels of the existing services other than the second service are adjacent, the first idle spectrum bandwidth or the second idle spectrum bandwidth is arbitrarily selected as the allocated resource.
  • the idle spectrum bandwidth between the channels of the two services of the same path is preferentially selected, and the spectrum of the channel other than the existing service (for example, the second service is selected) is not selected.
  • the idle spectrum bandwidth adjacent to the bandwidth If neither of the two types of idle spectrum bandwidth exists, the idle spectrum bandwidth between the channels of the two services of different paths is selected. Therefore, the technical solution of the embodiment of the present invention is to connect the spectrum bandwidth occupied by the channel of the service of the same path as much as possible by using a relatively small spectrum bandwidth as a guard band, which obviously improves the spectrum bandwidth in the optical communication network.
  • the utilization rate can also effectively avoid the problem that signal crosstalk is easily generated between channels of services of different paths.
  • the technical solution of the embodiment of the present invention only modifies the weight of a part of the link in the network, and does not need to affect the traffic of all the links in the network, but the prior art solution is Modifying the weight of all links in the network will inevitably affect the traffic of all links.
  • the technical solution of the embodiment of the present invention not only can quickly and effectively solve the problem of excessive traffic occurring in a certain area of the network, but also affects the service transmitted in the network as little as possible, thereby avoiding the change of the prior art solution. All link weights in the network affect the situation of all services transmitted in the network.
  • the communication connections referred to in the above embodiments may be communication connections through some interfaces, devices or units, and may be in electrical, mechanical or other form. It should also be noted that the "first,”, “second,”, “third,”, “fourth,”, “fifth,”, “sixth,” and “first” in the above embodiments The description of the present invention is intended to be illustrative, and is not intended to limit the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Optical Communication System (AREA)

Abstract

本发明提供了一种频谱带宽分配方法和设备。该方法和设备是针对待添加的新业务,需要判断新业务的路径是否与已有业务的路径相同,若相同,则在已有业务中确定相同路径的业务的通道占用的频谱带宽,以及选择满足添加新业务的要求的该频谱带宽的相邻的空闲频谱带宽,然后在该频谱带宽的相邻处为该新业务分配频谱带宽,并且相同路径的两个业务的通道之间的保护带比不相同路径的两个业务的通道之间的保护带窄。本发明实施例的技术方案将相同路径的业务的通道占用的频谱带宽,通过作为保护带的比较小的频谱带宽串联起来,这明显地提高了光通信网络中的频谱带宽的利用率。

Description

频谱带宽分配方法和设备
技术领域
本发明涉及通信技术, 尤其涉及一种频谱带宽分配方法和设备。 发明背景
随着通信系统中大容量业务的出现, 对光通信网络的传输速率的要求 也越来越高。 随着通信系统中信号速率的提升, 400Gb/s以上速率的信号将 占据更宽的频谱带宽。 在多速率混合组网时, 为了避免相邻通道之间的信 号串扰,可以采用各速率信号需要的最大频谱带宽作为固定的频率间隔(例 如 50GHz/100GHz ), 但是采用这样的频谱带宽分配方法会导致频谱浪费严 重。 为了提高光通信网中业务配置的灵活性, 光网络将由固定带宽光网络 向可变带宽光网络的方向演进, 即从固定的频谱带宽变为灵活可变的频谱 带宽。
在可变频谱带宽的光通信网络中, 可以定义更小宽度的频谱单位 slice (例如 12.5 GHz ) , 并允许传送业务信号的通道占用多个频谱单位 slice, 以 实现频谱带宽的灵活配置。 在现有技术的方案中, 对于采用多载波技术的 信号而言, 由于频谱的矩形度较高, 为了减少传输两个业务信号的通道间 的信号串扰, 会保留比较大频谱带宽作为保护带, 明显降低了光通信网络 中的频谱带宽的利用率。 发明内容
有鉴于此, 本发明实施方式提供一种频谱带宽分配方法及装置, 能够 提高光通信网络中的频谱带宽的利用率。
第一方面, 本发明实施方式提供了一种频谱带宽分配方法, 包括: 获取添加第一业务的请求消息, 确定所述第一业务的路径; 所述请求 消息携带所述第一业务的通道所需占用的第一频谱带宽的信息; 若已有业务中第二业务的路径与所述第一业务的路径相同, 确定所述 第二业务的通道占用的第二频谱带宽的相邻的空闲频谱带宽作为分配资源 , 所述第二频谱带宽的相邻的空闲频谱带宽满足添加所述第一业务所需的第 三频谱带宽的要求, 所述第三频谱带宽包括: 所述第一频谱带宽、 路径相 同的所述第一业务和所述第二业务的通道之间的保护带所需占用的第四频 谱带宽, 所述第四频谱带宽小于路径不相同的两个业务的通道之间的保护 带占用的频谱带宽;
从所述第二频谱带宽的相邻的空闲频谱带宽中为所述第一业务分配所 述第三频谱带宽。
第二方面, 本发明实现方式提供了一种设备, 所述设备包括: 消息获 取单元、 路径判断单元、 第一带宽选择单元和第一带宽分配单元; 其中, 所述消息获取单元, 用于获取添加第一业务的请求消息, 确定所述第 一业务的路径; 所述请求消息携带所述第一业务的通道所需占用的第一频 谱带宽的信息;
所述路径判断单元, 用于接收所述消息获取单元输出的确定结果, 判 断已有业务中各业务的路径是否与所述第一业务的路径相同;
所述第一带宽选择单元, 用于接收所述路径判断单元输出的判断结果 是所述已有业务中第二业务的路径与所述第一业务的路径相同, 确定所述 第二业务的通道占用的第二频谱带宽的相邻的空闲频谱带宽作为分配资源 , 所述第二频谱带宽的相邻的空闲频谱带宽满足添加所述第一业务所需的第 三频谱带宽的要求, 所述第三频谱带宽包括: 所述第一频谱带宽、 路径相 同的所述第一业务和所述第二业务的通道之间的保护带所需占用的第四频 谱带宽, 所述第四频谱带宽小于路径不相同的两个业务的通道之间的保护 带占用的频谱带宽;
所述第一带宽分配单元, 用于接收所述第一带宽选择单元输出的确定 结果, 从所述第二频谱带宽的相邻的空闲频谱带宽中为所述第一业务分配 所述第三频谱带宽。
在上述实施例的技术方案中, 针对待添加的新业务, 需要判断新业务 的路径是否与已有业务的路径相同, 若相同, 则在已有业务中确定相同路 径的业务的通道占用的频谱带宽, 以及选择满足添加新业务的要求的该频 谱带宽的相邻的空闲频谱带宽, 然后在该频谱带宽的相邻处为该新业务分 配频谱带宽。 其中, 被分配的频谱带宽包括该新业务的通道所需占用的频 谱带宽、 以及该新业务和已有业务的通道之间的保护带所需占用的频谱带 宽; 并且相同路径的两个业务的通道之间的保护带比不相同路径的两个业 务的通道之间的保护带窄。 所以, 本发明实施例的技术方案是尽可能地将 相同路径的业务的通道占用的频谱带宽, 通过作为保护带的比较小的频谱 带宽串联起来, 这明显地提高了光通信网络中的频谱带宽的利用率, 附图简要说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一筒单地介绍, 显而易见地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其它的附图。
图 1为本发明一方法实施例提供的频谱带宽分配方法的流程示意图; 图 2为本发明另一方法实施例提供的频谱带宽分配示意图;
图 3为本发明另一方法实施例提供的网络结构示意图;
图 4为本发明一设备实施例提供的结构示意图。 具体实施方式
以下描述中, 为了说明而不是为了限定, 提出了诸如特定设备结构、 技术之类的具体细节, 以便透切理解本发明。 然而, 本领域的技术人员应 情况中, 省略对众所周知的装置、 电路以及方法的详细说明, 以免不必要 的细节妨碍本发明的描述。
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述,显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其它实施例, 都属于本发明保护的范围。
本发明一实施例提供了一种频谱带宽分配方法, 如图 1所示, 图 1为 本发明一方法实施例提供的频谱带宽分配方法的流程示意图, 所述方法包 括:
在 S102中,获取添加第一业务的请求消息,确定所述第一业务的路径; 所述请求消息携带所述第一业务的通道所需占用的第一频谱带宽的信息。
值得说明的是, 针对需要在光通信网络添加传输的新业务, 可选地, 一种实现情况是: 源节点设备获得的请求消息携带该新业务的通道占用的 频谱带宽的信息和该新业务的路径的信息, 以便于源节点设备能够根据获 取到的请求消息快速地确定该新业务的路径。 或者, 可选地, 另一种实现 情况是: PCE ( Path Computation Element, 路径计算单元 )获得的请求消息 携带该新业务的通道占用的频谱带宽的信息、 该新业务的源节点和宿节点 的信息, 然后 PCE 根据该请求消息和网络拓朴信息, 可以采用 CSPF ( Constrained Shortest Path First, 考虑约束条件的最短路径计算)算法计算 出该新业务的路径。
在 S104中, 判断已有业务中各业务的路径是否与所述第一业务的路径 相同。
值得说明的是, 当光通信网络同时传输多个业务时, 会存在至少一个 已有业务与待添加的新业务都具备相同的路径。
在 S106中, 若所述已有业务中第二业务的路径与所述第一业务的路径 相同, 确定所述第二业务的通道占用的第二频谱带宽的相邻的空闲频谱带 宽作为分配资源, 所述第二频谱带宽的相邻的空闲频谱带宽满足添加所述 第一业务所需的第三频谱带宽的要求, 所述第三频谱带宽包括: 所述第一 频谱带宽、 路径相同的所述第一业务和所述第二业务的通道之间的保护带 所需占用的第四频谱带宽, 所述第四频谱带宽小于路径不相同的两个业务 的通道之间的保护带占用的频谱带宽。
值得说明的是, 为了便于理解业务的通道占用的频谱带宽、 两个业务 的通道之间的保护带占用的频谱带宽、 以及空闲频谱带宽, 请参见附图 2。 图 2为本发明另一方法实施例提供的频谱带宽分配示意图。 光纤链路上传 输了 4个业务, 图中显示了传输 4个业务的通道占用的频谱带宽的情况, 即通道 1、 通道 2、 通道 3和通道 4占用的频谱带宽。 两个业务的通道之间 需要预留保护带, 即通道 1和通道 2之间保留了频谱带宽作为保护带, 同 理通道 2和通道 3之间保留了频谱带宽作为保护带, 通道 1左侧的频谱带 宽、 通道 3与通道 4之间的频谱带宽及通道 4右侧的频谱带宽都属于空闲 频谱带宽, 该空闲频谱带宽都可以被用于为新业务分配资源。
在 S108中, 从所述第二频谱带宽的相邻的空闲频谱带宽中为所述第一 业务分配所述第三频谱带宽。
值得说明的是, 在现有技术中, 无论两个业务的路径是相同的还是不 同的, 两个业务的通道之间都会预留比较大的频谱带宽 (例如, 通常情况 下是 3个 slice )作为保护带。 然而, 在本发明的实施例中, 针对待添加的 新业务, 需要判断新业务的了路径是否与已有业务的路径相同, 若相同, 则在已有业务中确定相同路径的业务的通道占用的频谱带宽, 以及选择满 足添加新业务的要求的该频谱带宽的相邻的空闲频谱带宽, 然后在该频谱 带宽的相邻处为该新业务分配频谱带宽。 其中, 被分配的频谱带宽包括该 新业务的通道所需占用的频谱带宽、 以及该新业务和已有业务的通道之间 的保护带所需占用的频谱带宽; 并且本实施例中的保护带所需占用的频谱 带宽比现有技术中的保护带所需占用的频谱带宽要小 (例如, 2个 slice或 者 1个 slice )。 也就是说, 在本实施例中, 相同路径的两个业务的通道之间 的保护带比不相同路径的两个业务的通道之间的保护带窄。 所以, 本发明 实施例的技术方案是尽可能地将相同路径的业务的通道占用的频谱带宽, 通过作为保护带的比较小的频谱带宽串联起来, 这明显地提高了光通信网 络中的频谱带宽的利用率, 并且还可以有效地避免不同路径的业务的通道 间容易产生信号串扰的问题。
基于上述实施例的方法, 可选地, 在另一个实施例中, 在为所述第一 业务分配所述第三频谱带宽之后, 确定通过光纤链路上的相干接收机传输 该新业务。 相关接收机具有比较好的选频能力, 所以可以利用相干接收机 获取该新业务, 那么, 使得具备相同路径的新业务与已有业务的通道之间 的保护带, 可以被分配更小的频谱带宽 (例如, 1个 slice ), 那么该实施例 的技术方案可以更加显著地提高了光通信网络中的频谱带宽的利用率, 并 且还可以更加有效地避免不同路径的业务的通道间容易产生信号串扰的问 题。
基于上述实施例的方法, 可选地, 在另一个实施例中, 该方法包括: 在 S110中, 若所述已有业务中各业务的路径与所述第一业务的路径不 相同, 确定所述已有业务中的第三业务的通道占用的第五频谱带宽的相邻 的空闲频谱带宽作为分配资源, 所述第五频谱带宽的相邻的空闲频谱带宽 满足添加所述第一业务所需的第六频谱带宽的要求, 所述第六频谱带宽包 括: 所述第一频谱带宽、 路径不相同的所述第一业务和所述第三业务的通 道之间的保护带所需占用的第七频谱带宽, 所述第七频谱带宽大于所述第 四频谱带宽。
在 S112中, 从所述第五频谱带宽的相邻的空闲频谱带宽中为所述第一 业务分配所述第六频谱带宽。
值得说明的是, 由于新业务(以第一业务为例) 与一个已有业务(以 第二业务为例)都具备相同的路径, 而新业务与另一个已有业务(以第三 业务为例) 不具备相同的路径, 所以第一业务与第二业务的两通道之间的 保护带较窄, 第一业务与第三业务的两通道之间的保护带较宽。
基于上述实施例的方法, 可选地, 在另一个实施例中, 该方法包括: 若所述第二频谱带宽的两侧相邻处有满足所述第三频谱带宽的要求的空闲 频谱带宽, 其中, 第一空闲频谱带宽与所述已有业务中第四业务的通道占 用的频谱带宽相邻, 第二空闲频谱带宽与所述已有业务中第五业务的通道 占用的频谱带宽相邻, 所述第四业务的通道占用的频谱带宽与所述第二频 谱带宽距离最近, 所述第四业务的路径和所述第五业务的路径都与所述第 二业务的路径相同, 则选取所述第一空闲频谱带宽作为所述分配资源。
或者, 基于上述实施例的方法, 可选地, 在另一个实施例中, 该方法 包括: 若所述第二频谱带宽的两侧相邻处有满足所述第三频谱带宽的要求 的空闲频谱带宽, 其中, 第一空闲频谱带宽与所述已有业务中第四业务的 通道占用的频谱带宽相邻, 第二空闲频谱带宽与所述已有业务中第五业务 的通道占用的频谱带宽相邻, 所述第四业务的路径与所述第二业务的路径 相同, 所述第五业务的路径与所述第二业务的路径不相同, 则选取所述第 一空闲频谱带宽作为所述分配资源。
或者, 基于上述实施例的方法, 可选地, 在另一个实施例中, 该方法 包括: 若所述第二频谱带宽的两侧相邻处有满足所述第三频谱带宽的要求 的空闲频谱带宽, 其中, 第一空闲频谱带宽与所述已有业务中第四业务的 通道占用的频谱带宽相邻, 所述第四业务的路径与所述第二业务的路径相 同, 第二空闲频谱带宽没有与除所述第二业务之外的其它已有业务的通道 占用的频谱带宽相邻, 则选取所述第一空闲频谱带宽作为所述分配资源。
或者, 基于上述实施例的方法, 可选地, 在另一个实施例中, 该方法 包括: 若所述第二频谱带宽的两侧相邻处有满足所述第三频谱带宽的要求 的空闲频谱带宽, 其中, 第一空闲频谱带宽与所述已有业务中第四业务的 通道占用的频谱带宽相邻, 所述第四业务的路径与所述第二业务的路径不 相同, 第二空闲频谱带宽没有与除所述第二业务之外的其它已有业务的通 道占用的频谱带宽相邻, 则选取所述第二空闲频谱带宽作为所述分配资源。
或者, 基于上述实施例的方法, 可选地, 在另一个实施例中, 该方法 包括: 若所述第二频谱带宽的两侧相邻处有满足所述第三频谱带宽的要求 的空闲频谱带宽, 其中, 第一空闲频谱带宽与所述已有业务中第四业务的 通道占用的频谱带宽相邻, 第二空闲频谱带宽与所述已有业务中第五业务 的通道占用的频谱带宽相邻, 所述第四业务的路径和所述第五业务的路径 都与所述第二业务的路径不相同, 则任意选取所述第一空闲频谱带宽或者 所述第二空闲频谱带宽作为所述分配资源。
或者, 基于上述实施例的方法, 可选地, 在另一个实施例中, 该方法 包括: 若所述第二频谱带宽的两侧相邻处有满足所述第三频谱带宽的要求 的两个空闲频谱带宽, 其中, 所述两个空闲频谱带宽没有与除所述第二业 务之外的其它已有业务的通道占用的频谱带宽相邻, 则任意选取所述第一 空闲频谱带宽或者所述第二空闲频谱带宽作为所述分配资源。
值得说明的是, 当确定了与新业务(以第一业务为例) 的路径相同的 已有业务(以第二业务为例;), 并且进一步确定了已有业务的通道占用的频 谱带宽的两侧相邻处, 有满足添加该新业务所需频谱带宽的要求的空闲频 谱带宽, 则需要选择其中一侧相邻处的空闲频谱带宽作为该新业务的分配 资源。 上述详细地描述了针对六种不同情况下如何确定分配资源的实现方 式,总的来说,优先选择相同路径的两个业务的通道之间的空闲频谱带宽, 其次选择除已有业务(以第二业务为例) 以外没有与其它业务的通道的频 谱带宽相邻的空闲频谱带宽, 若前述两种类型的空闲频谱带宽都不存在, 则再选择不同路径的两个业务的通道之间的空闲频谱带宽。 所以, 本发明 实施例的技术方案是尽可能地将相同路径的业务的通道占用的频谱带宽, 通过作为保护带的比较小的频谱带宽串联起来, 这明显地提高了光通信网 络中的频谱带宽的利用率, 并且还可以有效地避免不同路径的业务的通道 间容易产生信号串扰的问题。
上述实施例提供的频谱带宽分配方法, 可以由源节点设备执行, 也可 以由 PCE执行, 还可以由其它设备执行, 在此仅为具体举例, 对本发明实 施例不做任何限制。
值得说明的是, 在光通信网络中, 业务的源节点可以通过向业务的路 径上的节点逐跳发送信令消息的方式, 获取相邻节点之间的光纤链路上的 空闲频谱带宽的信息; 或者通过接收由网管发送的已有业务的通道占用的 频谱带宽的信息的方式, 获取光通信网络中光纤链路上的空闲频谱带宽的 信息。 上述信息, 都会预先保存在执行上述实施例方法的源节点、 PCE或 者其它设备内。 另外, 执行上述实施例方法的设备也会预先保存已有业务 的路径的信息。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机 可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序 代码的介质。 下面以具有 3个节点的光通信网络及执行主体是 PCE为例, 更进一步 地阐述本发明实施例的技术方案。请参见图 3 , 图 3为本发明另一方法实施 例提供的网络结构示意图。 如图 3所示的虚线, 业务 1和业务 2为已有业 务, 业务 3为需要新添的业务, 业务 1的路径为 A→B→C, 业务 2的路径 为 →8, 业务 3的源节点是节点 A, 业务 3的宿节点是节点(。 光纤链路 的总频谱带宽是 30 个 slice , 其中, 业务 1 的通道占用的频谱带宽是 slicell~slicel5 , 业务 2的通道占用的频谱带宽是 slice23~slice30, 业务 3的 通道所需占用的频谱带宽为 4个 slice, slice是可变带宽光网络中定义的较 小的宽度频谱单位, 例如 12.5GHz。
在 S302中, 节点 A向 PCE发送添加新业务 3的请求消息, 该请求消 息携带新业务 3的源节点 A和宿节点 C的信息和新业务 3的通道占用的频 谱带宽 4个 slice的信息。
在 S304中, PCE根据获取到的该请求消息和网络拓朴信息, 计算出新 业务 3的路径为 A→B→C。
在 S306中, PCE判断出已有业务 1的路径与计算出的新业务 3的路径 相同,进一步判断出已有业务 1的通道占用的频谱带宽 slicell~slicel5的两 侧相邻处, 有满足添加新业务 3所需频谱带宽 5个 slice要求的空闲频谱带 宽, 即: slicel~slicelO和 slicel6~slice22。
在 S308中, PCE确定已有业务 2的路径与计算出的新业务 3的路径不 相同,并且已有业务 2的通道占用的频谱带宽 slice23~slice30与空闲频谱带 宽 slicel6~slice22相邻, 选择从空闲频谱带宽 slicel~slicelO中为新业务 3 分配频谱带宽 5个 slice, 即: slicelO被分配作为已有业务 1和新业务 3的 通道之间的保护带, slice6~slice9被分配作为传输新业务 3的通道。
所以, 本发明实施例的技术方案是尽可能地将相同路径的业务的通道 占用的频谱带宽, 通过作为保护带的比较小的频谱带宽串联起来, 这明显 地提高了光通信网络中的频谱带宽的利用率, 并且还可以有效地避免不同 路径的业务的通道间容易产生信号串扰的问题。 图 4为本发明一设备实施例提供的结构示意图, 该设备用于实现光通 信网络中频谱带宽的分配, 该设备可以是源节点设备, 或者可以是 PCE, 或者可以是其它具备类似功能的设备。 如图 4所示, 该设备包括: 消息获 取单元 402、 路径判断单元 404、 第一带宽选择单元 406和第一带宽分配单 元 408, 具体内容如下。
消息获取单元 402, 用于获取添加第一业务的请求消息,确定所述第一 业务的路径; 所述请求消息携带所述第一业务的通道所需占用的第一频谱 带宽的信息。
路径判断单元 404, 用于接收所述消息获取单元 402输出的确定结果, 判断已有业务中各业务的路径是否与所述第一业务的路径相同。
第一带宽选择单元 406,用于接收所述路径判断单元 404输出的判断结 果是所述已有业务中第二业务的路径与所述第一业务的路径相同, 确定所 述第二业务的通道占用的第二频谱带宽的相邻的空闲频谱带宽作为分配资 源, 所述第二频谱带宽的相邻的空闲频谱带宽满足添加所述第一业务所需 的第三频谱带宽的要求, 所述第三频谱带宽包括: 所述第一频谱带宽、 路 径相同的所述第一业务和所述第二业务的通道之间的保护带所需占用的第 四频谱带宽, 所述第四频谱带宽小于路径不相同的两个业务的通道之间的 保护带占用的频谱带宽。
第一带宽分配单元 408,用于接收所述第一带宽选择单元 406输出的确 定结果, 从所述第二频谱带宽的相邻的空闲频谱带宽中为所述第一业务分 配所述第三频谱带宽。
值得说明的是, 在现有技术中, 无论两个业务的路径是相同的还是不 同的, 两个业务的通道之间都会预留比较大的频谱带宽 (例如, 通常情况 下是 3个 slice )作为保护带。 然而, 在上述实施例的技术方案中, 针对待 添加的新业务, 需要判断新业务的路径是否与已有业务的路径相同, 若相 同, 则在已有业务中确定相同路径的业务的通道占用的频谱带宽, 以及选 择满足添加新业务的要求的该频谱带宽的相邻的空闲频谱带宽, 然后在该 频谱带宽的相邻处为该新业务分配频谱带宽。 其中, 被分配的频谱带宽包 括该新业务的通道所需占用的频谱带宽、 以及该新业务和已有业务的通道 之间的保护带所需占用的频谱带宽; 并且本实施例中的保护带所需占用的 频谱带宽比现有技术中的保护带所需占用的频谱带宽要小(例如, 2个 slice 或者 1个 slice )。 也就是说, 在本实施例中, 相同路径的两个业务的通道之 间的保护带比不相同路径的两个业务的通道之间的保护带窄。 所以, 本发 明实施例的技术方案是尽可能地将相同路径的业务的通道占用的频谱带宽 , 通过作为保护带的比较小的频谱带宽串联起来, 这明显地提高了光通信网 络中的频谱带宽的利用率, 并且还可以有效地避免不同路径的业务的通道 间容易产生信号串扰的问题。
基于上述实施例的设备, 可选地, 在另一个实施例中, 该设备还包括 第二带宽选择单元 410和第二带宽分配单元 412, 具体内容如下。
第二带宽选择单元 410,用于接收所述路径判断单元 404输出的判断结 果是所述已有业务中各业务的路径与所述第一业务的路径不相同, 确定所 述已有业务中的第三业务的通道占用的第五频谱带宽的相邻的空闲频谱带 宽作为分配资源, 所述第五频谱带宽的相邻的空闲频谱带宽满足添加所述 第一业务所需的第六频谱带宽的要求, 所述第六频谱带宽包括: 所述第一 频谱带宽、 路径不相同的所述第一业务和所述第三业务的通道之间的保护 带所需占用的第七频谱带宽, 所述第七频谱带宽大于所述第四频谱带宽。
第二带宽分配单元 412,用于从所述第五频谱带宽的相邻的空闲频谱带 宽中为所述第一业务分配所述第六频谱带宽。
值得说明的是, 由于新业务(以第一业务为例) 与一个已有业务(以 第二业务为例)都具备相同的路径, 而新业务与另一个已有业务(以第三 业务为例) 不具备相同的路径, 所以第一业务与第二业务的两通道之间的 保护带较窄, 第一业务与第三业务的两通道之间的保护带较宽。
基于上述实施例的设备, 可选地, 在另一个实施例中, 该设备中的第 一带宽选择单元 406可以包括下述多个子单元:
接收子单元 4061 , 用于接收所述路径判断单元 404输出的判断结果是 所述已有业务中所述第二业务的路径与所述第一业务的路径相同;
确定子单元 4062, 用于确定所述第二业务的通道占用的所述第二频谱 带宽的相邻的空闲频谱带宽作为分配资源。 值得说明的是, 当确定了与新业务(以第一业务为例) 的路径相同的 已有业务(以第二业务为例;), 并且进一步确定了已有业务的通道占用的频 谱带宽的两侧相邻处, 有满足添加该新业务所需频谱带宽的要求的空闲频 谱带宽, 则需要选择其中一侧相邻处的空闲频谱带宽作为该新业务的分配 资源。 那么, 针对第一带宽选择单元 406中的确定子单元 4062, 其可以进 一步包括下述一个或多个子单元, 每个子单元(未在附图中示出) 的功能 对应一种确定资源分配的实现方式, 具体内容如下。
基于上述实施例的设备,可选地,在另一个实施例中,确定子单元 4062 包括:
第一子单元, 用于判断出所述第二频谱带宽的两侧相邻处有满足所述 第三频谱带宽的要求的空闲频谱带宽, 其中, 第一空闲频谱带宽与所述已 有业务中第四业务的通道占用的频谱带宽相邻, 第二空闲频谱带宽与所述 已有业务中第五业务的通道占用的频谱带宽相邻, 所述第四业务的通道占 用的频谱带宽与所述第二频谱带宽距离最近, 所述第四业务的路径和所述 第五业务的路径都与所述第二业务的路径相同, 则选取所述第一空闲频谱 带宽作为所述分配资源。
或者, 基于上述实施例的设备, 可选地, 在另一个实施例中, 确定子 单元 4062包括:
第二子单元, 用于判断出所述第二频谱带宽的两侧相邻处有满足所述 第三频谱带宽的要求的空闲频谱带宽, 其中, 第一空闲频谱带宽与所述已 有业务中第四业务的通道占用的频谱带宽相邻, 第二空闲频谱带宽与所述 已有业务中第五业务的通道占用的频谱带宽相邻, 所述第四业务的路径与 所述第二业务的路径相同, 所述第五业务的路径与所述第二业务的路径不 相同, 则选取所述第一空闲频谱带宽作为所述分配资源。
或者, 基于上述实施例的设备, 可选地, 在另一个实施例中, 确定子 单元 4062包括: 第三子单元, 用于判断出所述第二频谱带宽的两侧相邻处有满足所述 第三频谱带宽的要求的空闲频谱带宽, 其中, 第一空闲频谱带宽与所述已 有业务中第四业务的通道占用的频谱带宽相邻, 所述第四业务的路径与所 述第二业务的路径相同, 第二空闲频谱带宽没有与除所述第二业务之外的 其它已有业务的通道占用的频谱带宽相邻, 则选取所述第一空闲频谱带宽 作为所述分配资源。
或者, 基于上述实施例的设备, 可选地, 在另一个实施例中, 确定子 单元 4062包括:
第四子单元, 用于判断出所述第二频谱带宽的两侧相邻处有满足所述 第三频谱带宽的要求的空闲频谱带宽, 其中, 第一空闲频谱带宽与所述已 有业务中第四业务的通道占用的频谱带宽相邻, 所述第四业务的路径与所 述第二业务的路径不相同, 第二空闲频谱带宽没有与除所述第二业务之外 的其它已有业务的通道占用的频谱带宽相邻, 则选取所述第二空闲频谱带 宽作为所述分配资源。
或者, 基于上述实施例的设备, 可选地, 在另一个实施例中, 确定子 单元 4062包括:
第五子单元, 用于判断出所述第二频谱带宽的两侧相邻处有满足所述 第三频谱带宽的要求的空闲频谱带宽, 其中, 第一空闲频谱带宽与所述已 有业务中第四业务的通道占用的频谱带宽相邻, 第二空闲频谱带宽与所述 已有业务中第五业务的通道占用的频谱带宽相邻, 所述第四业务的路径和 所述第五业务的路径都与所述第二业务的路径不相同, 则任意选取所述第 一空闲频谱带宽或者所述第二空闲频谱带宽作为所述分配资源。
或者, 基于上述实施例的设备, 可选地, 在另一个实施例中, 确定子 单元 4062包括:
第六子单元, 用于所述第二频谱带宽的两侧相邻处有满足所述第三频 谱带宽的要求的两个空闲频谱带宽, 其中, 所述两个空闲频谱带宽没有与 除所述第二业务之外的其它已有业务的通道占用的频谱带宽相邻, 则任意 选取所述第一空闲频谱带宽或者所述第二空闲频谱带宽作为所述分配资源。
基于上述各实施例的技术方案可知, 优先选择相同路径的两个业务的 通道之间的空闲频谱带宽, 其次选择除已有业务(以第二业务为例) 以外 没有与其它业务的通道的频谱带宽相邻的空闲频谱带宽, 若前述两种类型 的空闲频谱带宽都不存在, 则再选择不同路径的两个业务的通道之间的空 闲频谱带宽。 所以, 本发明实施例的技术方案是尽可能地将相同路径的业 务的通道占用的频谱带宽, 通过作为保护带的比较小的频谱带宽串联起来, 这明显地提高了光通信网络中的频谱带宽的利用率, 并且还可以有效地避 免不同路径的业务的通道间容易产生信号串扰的问题。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述 描述的设备和单元的具体工作过程, 可以参考前述方法实施例中的对应过 程, 在此不再赘述。
综上, 通过上述实施例的技术方案可以看出, 本发明实施例的技术方 案仅针对网络中一部分链路的权重做修改, 不需要影响网络中所有链路的 流量, 而现有技术方案是对网络中所有链路的权重做修改, 必然影响所有 链路的流量。 显然, 本发明实施例的技术方案不但可以快速且有效地解决 网络中部分区域所出现的流量过大的问题, 而且尽可能少地影响网络中所 传输的业务, 避免了现有技术方案因更改网络中所有链路权重而造成的影 响网络中传输的所有业务的情况。
上述实施例涉及的通信连接可以是通过一些接口、 装置或单元的通信 连接, 可以是电性、 机械或其它的形式。 还需要说明的是, 在上述实施例 中的 "第一,,、 "第二,,、 "第三,,、 "第四,,、 "第五,,、 "第六,, 和 "第七,, 等 类似的表述, 旨在于使实施例的技术方案描述得更加清楚, 并不对本发明 做任何限制。
本领域技术人员可以意识到, 结合本文中所公开的实施例中描述的各 方法步骤和单元, 能够以电子硬件、 计算机软件或者二者的结合来实现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能一般 性地描述了各实施例的步骤及组成。 这些功能究竟以硬件还是软件方式来 执行, 取决于技术方案的特定应用和设计约束条件。 本领域技术人员可以 对每个特定的应用使用不同方法来实现所描述的功能, 但是这种实现不应 认为超出本发明的范围。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员 应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者 对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的原理和范围。

Claims

权利 要求 书
1、 一种频谱带宽分配方法, 其特征在于, 包括:
获取添加第一业务的请求消息, 确定所述第一业务的路径; 所述请求 消息携带所述第一业务的通道所需占用的第一频谱带宽的信息;
若已有业务中第二业务的路径与所述第一业务的路径相同, 确定所述 第二业务的通道占用的第二频谱带宽的相邻的空闲频谱带宽作为分配资源 , 所述第二频谱带宽的相邻的空闲频谱带宽满足添加所述第一业务所需的第 三频谱带宽的要求, 所述第三频谱带宽包括: 所述第一频谱带宽、 路径相 同的所述第一业务和所述第二业务的通道之间的保护带所需占用的第四频 谱带宽, 所述第四频谱带宽小于路径不相同的两个业务的通道之间的保护 带占用的频谱带宽;
从所述第二频谱带宽的相邻的空闲频谱带宽中为所述第一业务分配所 述第三频谱带宽。
2、 根据权利要求 1所述的频谱带宽分配方法, 其特征在于, 包括: 若所述已有业务中各业务的路径与所述第一业务的路径不相同, 确定 所述已有业务中的第三业务的通道占用的第五频谱带宽的相邻的空闲频谱 带宽作为分配资源, 所述第五频谱带宽的相邻的空闲频谱带宽满足添加所 述第一业务所需的第六频谱带宽的要求, 所述第六频谱带宽包括: 所述第 一频谱带宽、 路径不相同的所述第一业务和所述第三业务的通道之间的保 护带所需占用的第七频谱带宽, 所述第七频谱带宽大于所述第四频谱带宽; 从所述第五频谱带宽的相邻的空闲频谱带宽中为所述第一业务分配所 述第六频谱带宽。
3、 根据权利要求 1或 2所述的频谱带宽分配方法, 其特征在于, 所述 确定所述第二业务的通道占用的第二频谱带宽的相邻的空闲频谱带宽作为 分配资源包括:
若所述第二频谱带宽的两侧相邻处有满足所述第三频谱带宽的要求的 空闲频谱带宽, 其中, 第一空闲频谱带宽与所述已有业务中第四业务的通 道占用的频谱带宽相邻, 第二空闲频谱带宽与所述已有业务中第五业务的 通道占用的频谱带宽相邻, 所述第四业务的通道占用的频谱带宽与所述第 二频谱带宽距离最近, 所述第四业务的路径和所述第五业务的路径都与所 述第二业务的路径相同, 则选取所述第一空闲频谱带宽作为所述分配资源。
4、 根据权利要求 1或 2所述的频谱带宽分配方法, 其特征在于, 所述 确定所述第二业务的通道占用的第二频谱带宽的相邻的空闲频谱带宽作为 分配资源包括:
若所述第二频谱带宽的两侧相邻处有满足所述第三频谱带宽的要求的 空闲频谱带宽, 其中, 第一空闲频谱带宽与所述已有业务中第四业务的通 道占用的频谱带宽相邻, 第二空闲频谱带宽与所述已有业务中第五业务的 通道占用的频谱带宽相邻, 所述第四业务的路径与所述第二业务的路径相 同, 所述第五业务的路径与所述第二业务的路径不相同, 则选取所述第一 空闲频谱带宽作为所述分配资源。
5、 根据权利要求 1或 2所述的频谱带宽分配方法, 其特征在于, 所述 确定所述第二业务的通道占用的第二频谱带宽的相邻的空闲频谱带宽作为 分配资源包括:
若所述第二频谱带宽的两侧相邻处有满足所述第三频谱带宽的要求的 空闲频谱带宽, 其中, 第一空闲频谱带宽与所述已有业务中第四业务的通 道占用的频谱带宽相邻, 所述第四业务的路径与所述第二业务的路径相同, 第二空闲频谱带宽没有与除所述第二业务之外的其它已有业务的通道占用 的频谱带宽相邻, 则选取所述第一空闲频谱带宽作为所述分配资源。
6、 根据权利要求 1或 2所述的频谱带宽分配方法, 其特征在于, 所述 确定所述第二业务的通道占用的第二频谱带宽的相邻的空闲频谱带宽作为 分配资源包括:
若所述第二频谱带宽的两侧相邻处有满足所述第三频谱带宽的要求的 空闲频谱带宽, 其中, 第一空闲频谱带宽与所述已有业务中第四业务的通 道占用的频谱带宽相邻, 所述第四业务的路径与所述第二业务的路径不相 同, 第二空闲频谱带宽没有与除所述第二业务之外的其它已有业务的通道 占用的频谱带宽相邻, 则选取所述第二空闲频谱带宽作为所述分配资源。
7、 根据权利要求 1~6中任意一项所述的频谱带宽分配方法, 其特征在 于, 包括: 在为所述第一业务分配所述第三频谱带宽之后, 确定通过光纤 链路上的相干接收机传输所述第一业务。
8、 一种计算机程序产品, 其特征在于, 包括计算机程序代码, 当一个 计算机单元执行所述计算机程序代码时, 所述计算机单元执行如权利要求
1-7任意一项权利要求所记载的动作。
9、 一种设备, 其特征在于, 包括: 消息获取单元、 路径判断单元、 第 一带宽选择单元和第一带宽分配单元; 其中,
所述消息获取单元, 用于获取添加第一业务的请求消息, 确定所述第 一业务的路径; 所述请求消息携带所述第一业务的通道所需占用的第一频 谱带宽的信息;
所述路径判断单元, 用于接收所述消息获取单元输出的确定结果, 判 断已有业务中各业务的路径是否与所述第一业务的路径相同;
所述第一带宽选择单元, 用于接收所述路径判断单元输出的判断结果 是所述已有业务中第二业务的路径与所述第一业务的路径相同, 确定所述 第二业务的通道占用的第二频谱带宽的相邻的空闲频谱带宽作为分配资源 , 所述第二频谱带宽的相邻的空闲频谱带宽满足添加所述第一业务所需的第 三频谱带宽的要求, 所述第三频谱带宽包括: 所述第一频谱带宽、 路径相 同的所述第一业务和所述第二业务的通道之间的保护带所需占用的第四频 谱带宽, 所述第四频谱带宽小于路径不相同的两个业务的通道之间的保护 带占用的频谱带宽;
所述第一带宽分配单元, 用于接收所述第一带宽选择单元输出的确定 结果, 从所述第二频谱带宽的相邻的空闲频谱带宽中为所述第一业务分配 所述第三频谱带宽。
10、 根据权利要求 9所述的设备, 其特征在于, 所述设备还包括: 第二带宽选择单元, 用于接收所述路径判断单元输出的判断结果是所 述已有业务中各业务的路径与所述第一业务的路径不相同, 确定所述已有 业务中的第三业务的通道占用的第五频谱带宽的相邻的空闲频谱带宽作为 分配资源, 所述第五频谱带宽的相邻的空闲频谱带宽满足添加所述第一业 务所需的第六频谱带宽的要求, 所述第六频谱带宽包括: 所述第一频谱带 宽、 路径不相同的所述第一业务和所述第三业务的通道之间的保护带所需 占用的第七频谱带宽, 所述第七频谱带宽大于所述第四频谱带宽;
第二带宽分配单元, 用于从所述第五频谱带宽的相邻的空闲频谱带宽 中为所述第一业务分配所述第六频谱带宽。
11、 根据权利要求 9或 10所述的设备, 其特征在于, 所述第一带宽选 择单元包括:
接收子单元, 用于接收所述路径判断单元输出的判断结果是所述已有 业务中所述第二业务的路径与所述第一业务的路径相同; 确定子单元, 用于确定所述第二业务的通道占用的所述第二频谱带宽 的相邻的空闲频谱带宽作为分配资源。
12、根据权利要求 11所述的设备,其特征在于,所述确定子单元包括: 第一子单元, 用于判断出所述第二频谱带宽的两侧相邻处有满足所述 第三频谱带宽的要求的空闲频谱带宽, 其中, 第一空闲频谱带宽与所述已 有业务中第四业务的通道占用的频谱带宽相邻, 第二空闲频谱带宽与所述 已有业务中第五业务的通道占用的频谱带宽相邻, 所述第四业务的通道占 用的频谱带宽与所述第二频谱带宽距离最近, 所述第四业务的路径和所述 第五业务的路径都与所述第二业务的路径相同, 则选取所述第一空闲频谱 带宽作为所述分配资源。
13、根据权利要求 11所述的设备,其特征在于,所述确定子单元包括: 第二子单元, 用于判断出所述第二频谱带宽的两侧相邻处有满足所述 第三频谱带宽的要求的空闲频谱带宽, 其中, 第一空闲频谱带宽与所述已 有业务中第四业务的通道占用的频谱带宽相邻, 第二空闲频谱带宽与所述 已有业务中第五业务的通道占用的频谱带宽相邻, 所述第四业务的路径与 所述第二业务的路径相同, 所述第五业务的路径与所述第二业务的路径不 相同, 则选取所述第一空闲频谱带宽作为所述分配资源。
14、根据权利要求 11所述的设备,其特征在于,所述确定子单元包括: 第三子单元, 用于判断出所述第二频谱带宽的两侧相邻处有满足所述 第三频谱带宽的要求的空闲频谱带宽, 其中, 第一空闲频谱带宽与所述已 有业务中第四业务的通道占用的频谱带宽相邻, 所述第四业务的路径与所 述第二业务的路径相同, 第二空闲频谱带宽没有与除所述第二业务之外的 其它已有业务的通道占用的频谱带宽相邻, 则选取所述第一空闲频谱带宽 作为所述分配资源。
15、根据权利要求 11所述的设备,其特征在于,所述确定子单元包括: 第四子单元, 用于判断出所述第二频谱带宽的两侧相邻处有满足所述 第三频谱带宽的要求的空闲频谱带宽, 其中, 第一空闲频谱带宽与所述已 有业务中第四业务的通道占用的频谱带宽相邻, 所述第四业务的路径与所 述第二业务的路径不相同, 第二空闲频谱带宽没有与除所述第二业务之外 的其它已有业务的通道占用的频谱带宽相邻, 则选取所述第二空闲频谱带 宽作为所述分配资源。
PCT/CN2012/078075 2012-07-02 2012-07-02 频谱带宽分配方法和设备 WO2014005269A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2012/078075 WO2014005269A1 (zh) 2012-07-02 2012-07-02 频谱带宽分配方法和设备
EP12880709.6A EP2863671B1 (en) 2012-07-02 2012-07-02 Spectrum bandwidth allocation method and device
RU2015103068/07A RU2596155C2 (ru) 2012-07-02 2012-07-02 Способ и устройство для выделения спектрального диапазона
CN201280001022.9A CN102893630B (zh) 2012-07-02 2012-07-02 频谱带宽分配方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/078075 WO2014005269A1 (zh) 2012-07-02 2012-07-02 频谱带宽分配方法和设备

Publications (1)

Publication Number Publication Date
WO2014005269A1 true WO2014005269A1 (zh) 2014-01-09

Family

ID=47535611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078075 WO2014005269A1 (zh) 2012-07-02 2012-07-02 频谱带宽分配方法和设备

Country Status (4)

Country Link
EP (1) EP2863671B1 (zh)
CN (1) CN102893630B (zh)
RU (1) RU2596155C2 (zh)
WO (1) WO2014005269A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106254242A (zh) * 2016-08-04 2016-12-21 胡汉强 一种数据传输方法、集中控制器、转发面设备和本端通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080070586A1 (en) * 2006-09-18 2008-03-20 Nokia Corporation Method and apparatus for adjusting guard band size between two carriers by quality of service data positioning in the spectrum band
CN102196451A (zh) * 2011-05-27 2011-09-21 华中科技大学 适合多系统共存的动态无线频谱共享方法
CN102447623A (zh) * 2011-11-22 2012-05-09 北京邮电大学 光网络频谱资源碎片级联方法及装置
WO2012066385A1 (en) * 2010-11-17 2012-05-24 Nokia Corporation Apparatus and method to reduce interference between frequency-division duplex and time-division duplex signals in a communication system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0117177D0 (en) * 2001-07-13 2001-09-05 Hughes Philip T System and method for mass broadband communications
US7068938B1 (en) * 2002-03-15 2006-06-27 Xtera Communications, Inc. Band optical add/drop multiplexing
KR100683833B1 (ko) * 2005-12-28 2007-02-16 한국과학기술원 파장 할당 방법을 이용한 다단 분기 파장분할 다중방식수동형 광 가입자망 장치
US8483564B2 (en) * 2009-07-31 2013-07-09 Tyco Electronics Subsea Communications Llc Hybrid optical add-drop multiplexing network and wavelength allocation for the same
EP2403169B1 (en) * 2010-06-29 2013-01-16 Alcatel Lucent A method in an optical network to allocate a total optical bandwidth

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080070586A1 (en) * 2006-09-18 2008-03-20 Nokia Corporation Method and apparatus for adjusting guard band size between two carriers by quality of service data positioning in the spectrum band
WO2012066385A1 (en) * 2010-11-17 2012-05-24 Nokia Corporation Apparatus and method to reduce interference between frequency-division duplex and time-division duplex signals in a communication system
CN102196451A (zh) * 2011-05-27 2011-09-21 华中科技大学 适合多系统共存的动态无线频谱共享方法
CN102447623A (zh) * 2011-11-22 2012-05-09 北京邮电大学 光网络频谱资源碎片级联方法及装置

Also Published As

Publication number Publication date
EP2863671B1 (en) 2016-09-07
RU2015103068A (ru) 2016-08-20
EP2863671A1 (en) 2015-04-22
CN102893630A (zh) 2013-01-23
RU2596155C2 (ru) 2016-08-27
EP2863671A4 (en) 2015-05-20
CN102893630B (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
WO2021036962A1 (zh) 一种业务报文传输的方法及设备
JP7375844B2 (ja) 光ネットワーク管理装置
TW200818751A (en) Wireless communication systems
JP2011510523A5 (zh)
WO2004077712A1 (ja) 無線通信システム及び無線通信方法
JP2016511576A (ja) 光波長分割多重化(wdm)ネットワークにおけるネットワークフラグメンテーション測定
WO2010048859A1 (zh) 一种路径计算方法、节点设备及路径计算单元
CN105391651B (zh) 一种虚拟光网络多层资源汇聚方法和系统
CN112583729B (zh) 一种路径的流量分配方法、网络设备及网络系统
WO2017148446A1 (zh) 一种网络资源调度方法、设备、系统以及网络节点
US20190342889A1 (en) Method and device for data transmission of front-haul transport network, and computer storage medium
KC et al. Cooperative multipath admission control protocol: a load balanced multipath admission policy
JP2011139460A5 (zh)
WO2013109137A1 (en) Allocating bandwidth in wireless multi-hop network
WO2012163015A1 (zh) 路径计算的方法及装置
CN108769842A (zh) 多播业务保护构建方法及装置
WO2014005269A1 (zh) 频谱带宽分配方法和设备
CN108631918A (zh) 数据传输的方法和装置
TW202102021A (zh) 頻譜管理設備、電子設備、無線通信方法和儲存介質
WO2005062869A3 (en) Path engine for optical network
de Lira et al. On combining split spectrum technique with a slot-continuity capacity loss heuristic in elastic optical networks
WO2017041592A1 (zh) 并行发送数据的站点调度方法、装置、设备及系统
CN109150747B (zh) 一种变更业务带宽的方法、装置及计算机可读存储介质
CN109698982B (zh) 控制通道实现方法、装置、设备、存储介质和处理方法
WO2020199046A1 (zh) 一种Wi-Fi通信方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001022.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012880709

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012880709

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015103068

Country of ref document: RU

Kind code of ref document: A