WO2014003517A1 - Mobile robot and method for covering and controlling entire online path of mobile robot - Google Patents

Mobile robot and method for covering and controlling entire online path of mobile robot Download PDF

Info

Publication number
WO2014003517A1
WO2014003517A1 PCT/KR2013/005823 KR2013005823W WO2014003517A1 WO 2014003517 A1 WO2014003517 A1 WO 2014003517A1 KR 2013005823 W KR2013005823 W KR 2013005823W WO 2014003517 A1 WO2014003517 A1 WO 2014003517A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile robot
cell
obstacle
robot
new
Prior art date
Application number
PCT/KR2013/005823
Other languages
French (fr)
Korean (ko)
Inventor
이순걸
이채혁
Original Assignee
인텔렉추얼디스커버리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인텔렉추얼디스커버리 주식회사 filed Critical 인텔렉추얼디스커버리 주식회사
Publication of WO2014003517A1 publication Critical patent/WO2014003517A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/027Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector

Definitions

  • the present invention relates to a mobile robot and a method for controlling the movement path of the mobile robot, and more particularly, to an efficient method for controlling the movement path of the mobile robot by measuring the moving distance.
  • Robots have been developed for industrial use and as part of factory automation, or have been used to collect or collect information on behalf of humans in extreme environments that humans cannot tolerate. Recently, as the researches of these robots become more active, robots used at home as well as robots used for cutting-edge space development have been developed. A typical example of such a home robot is a cleaning robot.
  • mobile robots such as cleaning robots used in real life
  • the work environment is less affected, but instead, the work environment has a problem that the efficiency is sharply worsened when the work environment is wider.
  • An object of the present invention is to provide a method for controlling a robot's movement path, which reduces duplication of movement paths in a working environment that is not recognized in advance, and minimizes movement of the movement robots, thereby increasing overall work time efficiency.
  • a method for controlling a movement path of a robot comprising: installing a mobile robot in a workspace that is not recognized in advance; Recognizing the obstacle by the mobile robot; Dividing the workspace into a plurality of cells bounded by an extension of at least an outer circumferential surface of the virtual rectangle corresponding to the obstacle; Selecting any one of the plurality of cells and driving the mobile robot in a path that minimizes the number of revolutions of the mobile robot while traveling linearly inside the selected cell; Terminating driving when the mobile robot covers all areas of the selected cell and forming a new cell when a new workspace is recognized at the terminated point; And driving the new cell, and repeating the formation and driving of the new cell until there is no new space that the mobile robot no longer covers at the point where the driving ends.
  • the mobile robot according to the present invention is a body portion installed in the work space; A moving part installed at one side of the body part to move the body part; Peripheral sensing unit that can recognize the obstacle in the workspace; And dividing the workspace into a plurality of cells including an extension line of the outer circumferential surface of the obstacle, selecting any one of the plurality of cells, and linearly traveling the selected cell in the selected cell, A control unit which instructs the moving unit to travel in a path that minimizes the number of steps;
  • the body part ends the driving when the body part covers all areas of the selected cell, and when the peripheral sensing unit recognizes the new workspace at the point where the body part stops running, the controller detects the new cell. Instructing the moving unit to drive the newly formed new cell, and forming a new cell until there is no new space that the body part no longer covers at the point where the running of the body part is finished; Repeat the run.
  • the present invention not only reduces the energy consumption of the robot, but also has the advantage of increasing the life of the robot.
  • FIG. 1 is a block diagram of a mobile robot according to an embodiment of the present invention.
  • FIG. 2 is a flow chart for a mobile robot control method according to an embodiment of the present invention.
  • Figure 3a is a diagram showing that the mobile robot according to the mobile robot control method according to an embodiment of the present invention to recognize the obstacle.
  • Figure 3b is a view showing that the mobile robot recognizes the obstacle in accordance with an embodiment of the present invention when the obstacle is not rectangular.
  • Figure 4 is a view showing a mobile robot according to a mobile robot control method according to an embodiment of the present invention to set the cell.
  • FIG. 5 is a view showing a mobile robot moving in the first cell according to the mobile robot control method according to an embodiment of the present invention.
  • FIG. 6 is a view showing that the mobile robot according to the mobile robot control method according to an embodiment of the present invention moves in the second cell after finishing the movement in the first cell.
  • FIG. 7 is a view showing that the mobile robot according to the mobile robot control method according to an embodiment of the present invention moves in the third cell after finishing the movement in the second cell.
  • FIG. 8 is a view showing the premise path running of the mobile robot according to the mobile robot control method according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of a mobile robot according to an embodiment of the present invention
  • Figure 2 is a flow chart for a mobile robot control method according to an embodiment of the present invention.
  • a mobile robot 1 includes a body part (not shown) forming an outer shape, a peripheral sensor 3 capable of recognizing obstacles in a work space, and the body.
  • the moving part 4 and the control part 2 which are provided in one side of a part are included.
  • the body portion there is no limitation on the shape of the body portion, it is preferable to be formed in a sufficient width to cover the work space.
  • the peripheral sensing unit 3 serves to detect the surrounding environment and obstacles, and may be a non-contact sensor. Detailed description thereof will be described later.
  • the moving part 4 may be coupled to the body part to move the body part.
  • the moving unit 4 may be a wheel coupled to the lower surface of the body portion, or may be a chain coupled to the wheel.
  • the control unit 2 divides the work space where the mobile robot 1 performs the cleaning and the like into a plurality of cells including the extension line of the outer circumferential surface of the obstacle as a boundary.
  • controller 2 selects any one of the cells.
  • the control unit 2 instructs the moving unit 4 to travel in a path that minimizes the number of revolutions of the body unit while traveling linearly inside the selected cell.
  • the mobile robot R is first installed in a workspace that is not recognized in advance.
  • the mobile robot R recognizes the obstacle (S10).
  • the obstacle may be furniture or the like that can be disposed indoors.
  • the mobile robot R recognizes not only the obstacle but also the surrounding environment, and the surrounding environment may be an edge wall defining a workspace.
  • a point which can characterize the obstacle and the surrounding environment.
  • the point may be a point or a line defining the shape of the obstacle, and the point may form a boundary of the cell when the mobile robot R divides the workspace into a plurality of cells.
  • the point may be a vertex portion or a corner portion of the rectangle.
  • the minimum rectangle surrounding the obstacle is virtually formed and the virtual obstacle is placed as a virtual obstacle (see FIG. 3B).
  • the mobile robot R divides the working space into a plurality of cells including at least an extension line of the outer circumferential surface of the obstacle as a boundary (S30).
  • any one of the plurality of cells is selected (S40), and the mobile robot travels in a path that minimizes the rotational speed of the mobile robot while linearly traveling inside the selected cell (S50).
  • the mobile robot R travels the new cell, and repeats the formation of the new cell and the driving until there is no new space that the mobile robot no longer covers at the point where the driving ends.
  • the cover means that the mobile robot R passes while covering the inside of the cell
  • the covering of the inside of the cell means that the mobile robot R covers at least all spaces inside the cell when viewed from the top of the cell. Say that you have covered it once.
  • the mobile robot (R) covers all the inside of each cell, and eventually covers the entire work space without overlap and omission.
  • FIG 3 is a view showing the mobile robot according to the mobile robot control method according to an embodiment of the present invention to recognize the obstacle
  • Figure 4 is a mobile robot according to the mobile robot control method according to an embodiment of the present invention to set the cell It is a figure which shows a state.
  • the mobile robot R according to the mobile robot control method according to the present embodiment recognizes the surrounding environment and obstacles when placed in a workspace that has not been recognized in advance.
  • the mobile robot (R) recognizes the environment and obstacles using a non-contact sensor.
  • the non-contact sensor is a sensor that obtains information from the measurement target without contacting the measurement target, and there is also a method of determining the position and shape of the measurement target by measuring reflected waves by emitting light, electromagnetic waves, ultrasonic waves, lasers, etc. to the measurement target. There is a method of identifying the position and shape of the measurement object using a camera. Since the non-contact sensor is already known technology, in the present embodiment, a well-known technology is adopted, and detailed description thereof will be omitted in the description of the present embodiment.
  • the mobile robot R recognizes the shape of the surrounding environment of the workspace by using the non-contact sensor. In detail, the mobile robot R recognizes whether the geographic shape of the work space is rectangular or curved, and detects whether there is a protrusion at the edge of the work space.
  • the mobile robot R may recognize that the workspace where the mobile robot R is located includes a rectangular shape including at least a first wall W1 and a second wall W2.
  • the mobile robot (R) can recognize that the wall is installed around its smooth form.
  • the mobile robot (R) Recognizing the edge shape of the work space by the mobile robot (R) is the mobile robot (R) is to work in the early stage of work in order to cover the entire interior of the work space, such as to clean the work space This is because it moves along the edge of the space.
  • the mobile robot R recognizes the edge shape of the workspace and then recognizes the obstacles 10 and 20 disposed inside the workspace.
  • the obstacle is composed of the first obstacle 10 and the second obstacle 20 having a rectangular shape as an example.
  • the mobile robot R may also rotate in place to direct the non-contact sensor into the working space.
  • the mobile robot R sets a point that can characterize the shape of the obstacles 10 and 20.
  • the point is a part that becomes a boundary of the cell when the mobile robot R divides the workspace into a plurality of cells, and may be a vertex and an outer circumferential surface of the obstacles 10 and 20.
  • the mobile robot R may emit light or ultrasonic waves to the first obstacle 10 to recognize that the first obstacle 10 is located between L1 and L2.
  • the mobile robot R has a vertex P1, a horizontal edge 11, and a vertical edge 12 set from the first obstacle 10 as the point, and the second edge 12 as the point. Similarly, in the obstacle 20, the vertices, the horizontal edges 21, and the vertical edges 22 seen by the mobile robot R are set as points.
  • the mobile robot R converts the workspace into a plurality of cells based on the first and second walls W1 and W2 recognized as edges of the workspace, and the portions recognized as points in the obstacles 10 and 20. Start dividing.
  • the mobile robot R constructs an environment map in real time by recognizing the current position, obstacles, and environment of the robot using a non-contact sensor.
  • the mobile robot R is located at the lower left corner. In this position, the mobile robot R is bounded by an extension line between the edges W1 and W2 of the already recognized working space and the edges 11, 12, 21 and 22 of the obstacle 10 and 20. Divide into multiple virtual cells.
  • the mobile robot R includes a first virtual cell Cp1 defined by a line extending the vertical wall 12 of the first obstacle 10, the second wall W2, and the work space. It is divided into a first virtual wall C1 and a second virtual cell Cp2 defined by a line extending the horizontal 21 of the second obstacle 20.
  • the first virtual cell Cp1 is a rectangle having a horizontal length ap1 and a vertical length bp1
  • the second virtual cell Cp2 is a rectangle having a horizontal length a1 and a vertical length b1.
  • the mobile robot R selects any one of the first virtual cell Cp1 and the second virtual cell Cp2 and starts to move inside the selected cell.
  • the mobile robot R may be set to select a cell having a larger area among the two virtual cells.
  • the criterion for selecting one of the two cells by the mobile robot R is not limited thereto, and there may be other criteria.
  • the mobile robot R selects the second virtual cell Cp2 having a larger area among the first virtual cell Cp1 and the second virtual cell Cp2.
  • FIG. 5 is a view showing a mobile robot according to a mobile robot control method according to an embodiment of the present invention to move in the first cell
  • Figure 6 is a mobile robot according to a mobile robot control method according to an embodiment of the present invention
  • 7 is a diagram illustrating movement in the second cell after finishing the movement in the first cell
  • FIG. 7 illustrates a movement of the mobile robot according to the mobile robot control method according to the embodiment of the present invention after the movement in the second cell.
  • FIG. 8 is a diagram illustrating movement in a cell
  • FIG. 8 is a diagram illustrating preliminary path driving of a mobile robot according to a mobile robot control method according to an exemplary embodiment of the present invention.
  • the mobile robot (R) is a path that reduces the number of revolutions of the mobile robot (R) while the linear running is long in consideration of the shape and width of the cell and the size of the mobile robot in the cell Drive
  • the mobile robot R In order to measure the distance traveled by the mobile robot R, the mobile robot R is provided with an odometer, that is, a driving recorder that integrates the travel distance.
  • an odometer that is, a driving recorder that integrates the travel distance.
  • the mobile robot R travels inside the first cell C1.
  • the first cell C1 is a space in which the mobile robot R first travels, and the second virtual cell Cp2 is selected as the first travel space and is redefined as a first cell C1. .
  • the mobile robot R sets a start point S1 and an end point E1 within the first cell C1.
  • the starting point S1 of the mobile robot R becomes a lower left side in which the mobile robot R is initially installed.
  • the end point E1 is determined by simulating a path in which the mobile robot R starts from the start point and reduces the number of revolutions while driving linearly.
  • the mobile robot R starts from the lower left of the first cell C1 and travels to the right along the first wall W1 that forms the lower boundary of the first cell C1. 3 When the wall (W3) is detected, it rotates vertically upwards 90 degrees.
  • the mobile robot R proceeds upward by the width of the mobile robot R, rotates to the left by 90 degrees and travels to the left again.
  • the mobile robot R rotates vertically to face upward when the wall is sensed while traveling to the left, and proceeds upward by the width of the mobile robot R.
  • the mobile robot R proceeds upwards and then travels again to the right side, and when it encounters a wall, the mobile robot R rotates upward and moves by the width of the mobile robot R as the first cell C1 repeats. ) It covers the inside tightly.
  • the rising of the mobile robot R by the width of the mobile robot R at the left end and the right end of the first cell C1 may prevent the traveling area of the mobile robot R from overlapping.
  • it When driving in a state in contact with the upper end of the first cell (C1), it may slightly overlap with the previous traveling area.
  • An end point E1 of the first cell C1 of the mobile robot R becomes an upper left or upper right end of the first cell C1 having a rectangular shape.
  • FIG. 5 it is shown that the end point E1 in the first cell C1 is the upper right corner.
  • a virtual cell is created for a new space recognized at the end point.
  • a new space defined by the horizontal length a2 and the vertical length b2 at the upper end point is recognized, and this new space is defined as a virtual cell Cp3. .
  • the mobile robot R recognizes a new space defined by the horizontal length a2 and the vertical length b2 of the upper portion, and the new space is referred to as the virtual cell Cp4. In this embodiment, it is assumed that the end point E1 of the first cell C1 of the mobile robot R is at the upper right.
  • the mobile robot R may recognize a space defined by a boundary with a space that has already traveled at an end point, an extension line of an outer circumferential surface of an obstacle, and a border of a work space as a virtual cell.
  • the mobile robot R Since the mobile robot R recognizes the third virtual cell Cp3 which is only one virtual cell at the end point of the first cell C1, the mobile robot R has no choice but to select the third virtual cell Cp3 as a second cell. Recognize as (C2) and drive.
  • the second cell C2 has a rectangular shape having a length a2 and a length b2, an extension line of the left vertical edge 24 of the second obstacle 20, an upper end of the first cell C1, and a work space. The border is defined by the wall.
  • the manner in which the mobile robot R travels in the second cell C2 is the same as in the first cell C1.
  • An end point E2 of the second cell C2 of the mobile robot R may be an upper left corner of the second cell C2, and the mobile robot R is recognized at the end point E2.
  • the third cell C3, which is a space, may be determined as the next travel space.
  • the driving of the mobile robot R in the third cell C3 is also the same as the driving in the first cell C1 and the second cell C2, and the virtual cell at the driving and ending points Repeating the setting will eventually cover all of the workspaces as shown in FIG.
  • the present invention even if the mobile robot does the same work, it can be completed in a short time, there is an advantage that the work efficiency is improved.
  • the present invention not only reduces the energy consumption of the robot, but also has the advantage of increasing the life of the robot.

Abstract

The present invention relates to a method for controlling a moving path of a robot. The method for controlling a moving path of a robot, according to the present invention, comprises the steps of: installing a mobile robot in a work space which has not been recognized in advance; allowing the mobile robot to recognize an obstacle; dividing the working space into at least a plurality of cells having, as boundaries, extensions of an outer surface of the obstacle; selecting one cell from among the plurality of cells, and allowing the mobile robot to linearly travel inside the selected cell and to travel in a path for minimizing the RPM of the mobile robot; stopping the traveling of the mobile robot when the mobile robot covers all areas of the selected cell, and forming a new cell if a new work space is recognized at the stopped point; and traveling in the new cell, and repeating the formation of and the traveling in the new cell until there are no new spaces which have not been covered by the mobile robot at the point at which the traveling of the mobile robot has been stopped. Thus, according to the present invention, the mobile robot can complete the same work in a short time, thereby obtaining an excellent work efficiency.

Description

이동로봇 및 이동로봇의 온라인 전역경로 커버 제어방법Mobile Robot and Online Global Path Cover Control Method of Mobile Robot
본 발명은 이동로봇 및 이동로봇의 이동경로 제어방법에 관한 것이고, 보다 상세하게는 이동거리 측정을 통한 이동로봇의 효율적인 이동경로 제어방법에 관한 것이다.The present invention relates to a mobile robot and a method for controlling the movement path of the mobile robot, and more particularly, to an efficient method for controlling the movement path of the mobile robot by measuring the moving distance.
로봇은 산업용으로 개발되어 공장 자동화의 일환으로 사용되거나, 인간이 견딜 수 없는 극한의 환경에서 인간을 대신하여 정보를 수집하거나 채집하는데 사용되어 왔다. 최근에는 이러한 로봇의 연구가 활발해 짐에 따라 최첨단 우주개발에 사용되는 로봇은 물론 가정에서 이용되는 로봇이 개발되기에 이르렀다. 이러한 가정용 로봇의 대표적인 예가 바로 청소로봇이다.Robots have been developed for industrial use and as part of factory automation, or have been used to collect or collect information on behalf of humans in extreme environments that humans cannot tolerate. Recently, as the researches of these robots become more active, robots used at home as well as robots used for cutting-edge space development have been developed. A typical example of such a home robot is a cleaning robot.
일반적으로 실생활에서 사용되는 청소로봇과 같은 이동로봇은 단순히 센서에 의해 근접 물체만 판단하고 임의로 반복되는 왕복운동을 통하여 주어진 영역을 커버하는 경우가 대부분이다. 이러한 경우에는 작업환경에 대한 영향을 적게 받지만, 대신 작업환경의 공간이 넓어지면 효율이 급격히 나빠지는 문제점이 있었다. In general, mobile robots, such as cleaning robots used in real life, usually cover only a given area by reciprocating movements that are randomly repeated by a sensor to judge only nearby objects. In this case, the work environment is less affected, but instead, the work environment has a problem that the efficiency is sharply worsened when the work environment is wider.
그렇지 않은 경우라도 작업영역의 맵이 주어지고 사전에 경로가 계획되어야 하는 경우가 많으며, 이 경우에 작업 도중 환경이 달라지면 이러한 경로를 사용하지 못하게 되는 문제점이 있었다. Even if it is not, a map of the work area is given and a path must be planned in advance, and in this case, if the environment is changed during the work, there is a problem that these paths cannot be used.
본 발명의 목적은 미리 인식하지 않은 작업환경에서 이동경로의 중복을 줄이고, 이동로봇의 움직임을 최소화하여 전체 작업시간 효율을 높이는 로봇의 이동경로 제어방법을 제공하는 것에 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method for controlling a robot's movement path, which reduces duplication of movement paths in a working environment that is not recognized in advance, and minimizes movement of the movement robots, thereby increasing overall work time efficiency.
본 발명에 의한 로봇의 이동경로 제어방법에는, 이동로봇을 미리 인식되지 않은 작업공간에 설치하는 단계; 이동로봇이 장애물을 인식하는 단계; 상기 작업공간을 적어도 상기 장애물에 대응되는 가상 직사각형의 외주면의 연장선을 경계로 하는 다수의 셀로 나누는 단계; 상기 다수의 셀 가운데 어느 하나의 셀을 선택하여, 상기 이동로봇이 선택된 셀 내부를 직선주행 하면서 상기 이동로봇의 회전수를 최소화하는 경로로 주행하는 단계; 상기 이동로봇이 상기 선택된 셀의 모든 영역을 커버하면 주행을 종료하고, 종료된 지점에서 새로운 작업공간이 인식되면, 새로운 셀을 형성하는 단계; 및 상기 새로운 셀을 주행하고, 주행이 종료된 지점에서 더 이상 상기 이동로봇이 커버하지 않은 새로운 공간이 없을 때까지 새로운 셀을 형성 및 주행을 반복하는 단계를 포함한다. In accordance with another aspect of the present invention, there is provided a method for controlling a movement path of a robot, the method comprising: installing a mobile robot in a workspace that is not recognized in advance; Recognizing the obstacle by the mobile robot; Dividing the workspace into a plurality of cells bounded by an extension of at least an outer circumferential surface of the virtual rectangle corresponding to the obstacle; Selecting any one of the plurality of cells and driving the mobile robot in a path that minimizes the number of revolutions of the mobile robot while traveling linearly inside the selected cell; Terminating driving when the mobile robot covers all areas of the selected cell and forming a new cell when a new workspace is recognized at the terminated point; And driving the new cell, and repeating the formation and driving of the new cell until there is no new space that the mobile robot no longer covers at the point where the driving ends.
또한, 본 발명에 의한 이동로봇은 작업공간에 설치되는 바디부; 상기 바디부의 일측에 설치되어 상기 바디부를 움직이는 이동부; 상기 작업공간 내의 장애물을 인식할 수 있는 주변 감지부; 및 상기 작업공간을 상기 장애물의 외주면의 연장선을 경계로 포함하는 다수의 셀로 나누고, 상기 다수의 셀 가운데 어느 하나의 셀을 선택하고, 상기 바디부가 선택된 셀 내부를 직선주행 하면서, 상기 바디부의 회전수를 최소화하는 경로로 주행하도록 상기 이동부에 지시를 내리는 제어부; 를 포함하며, 상기 바디부가 상기 선택된 셀의 모든 영역을 커버하면 상기 바디부는 주행을 종료하고, 상기 바디부의 주행이 종료된 지점에서 상기 주변 감지부가 새로운 작업공간을 인식하면, 상기 제어부는 새로운 셀을 형성하고, 상기 바디부가 상기 새로 형성된 새로운 셀을 주행하도록 상기 이동부에 지시를 내리고, 상기 바디부의 주행이 종료된 지점에서 더 이상 상기 바디부가 커버하지 않은 새로운 공간이 없을 때까지 새로운 셀을 형성 및 주행을 반복한다. In addition, the mobile robot according to the present invention is a body portion installed in the work space; A moving part installed at one side of the body part to move the body part; Peripheral sensing unit that can recognize the obstacle in the workspace; And dividing the workspace into a plurality of cells including an extension line of the outer circumferential surface of the obstacle, selecting any one of the plurality of cells, and linearly traveling the selected cell in the selected cell, A control unit which instructs the moving unit to travel in a path that minimizes the number of steps; The body part ends the driving when the body part covers all areas of the selected cell, and when the peripheral sensing unit recognizes the new workspace at the point where the body part stops running, the controller detects the new cell. Instructing the moving unit to drive the newly formed new cell, and forming a new cell until there is no new space that the body part no longer covers at the point where the running of the body part is finished; Repeat the run.
본 발명에 의하면, 이동로봇이 같은 일을 하더라도 빠른 시간 내에 완료할 수 있어서 작업효율이 좋아지는 장점이 있다. According to the present invention, even if the mobile robot to do the same work can be completed in a short time has the advantage that the work efficiency is improved.
또한, 본 발명에 의하면 로봇의 에너지 소비를 줄일 뿐만 아니라, 로봇의 수명도 증가하는 장점이 있다. In addition, the present invention not only reduces the energy consumption of the robot, but also has the advantage of increasing the life of the robot.
도 1은 본 발명의 실시예에 의한 이동로봇의 블록도.1 is a block diagram of a mobile robot according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 의한 이동로봇 제어방법에 대한 순서도.2 is a flow chart for a mobile robot control method according to an embodiment of the present invention.
도 3a은 본 발명의 실시예에 의한 이동로봇 제어방법에 따른 이동로봇이 장애물을 인식하는 것을 나타내는 도면.Figure 3a is a diagram showing that the mobile robot according to the mobile robot control method according to an embodiment of the present invention to recognize the obstacle.
도 3b는 장애물이 직사각형이 아닌 경우 본 발명의 실시예에 의한 이동로봇이 장애물을 인식하는 것을 나타내는 도면.Figure 3b is a view showing that the mobile robot recognizes the obstacle in accordance with an embodiment of the present invention when the obstacle is not rectangular.
도 4는 본 발명의 실시예에 의한 이동로봇 제어방법에 따른 이동로봇이 셀을 설정하는 모습을 나타내는 도면.Figure 4 is a view showing a mobile robot according to a mobile robot control method according to an embodiment of the present invention to set the cell.
도 5는 본 발명의 실시예에 의한 이동로봇 제어방법에 따른 이동로봇이 첫 번째 셀에서 이동하는 모습을 나타내는 도면.5 is a view showing a mobile robot moving in the first cell according to the mobile robot control method according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 의한 이동로봇 제어방법에 따른 이동로봇이 첫 번째 셀에서의 이동을 마치고, 두 번째 셀에서 이동하는 것을 나타내는 도면.6 is a view showing that the mobile robot according to the mobile robot control method according to an embodiment of the present invention moves in the second cell after finishing the movement in the first cell.
도 7은 본 발명의 실시예에 의한 이동로봇 제어방법에 따른 이동로봇이 두 번째 셀에서의 이동을 마치고, 세 번째 셀에서 이동하는 것을 나타내는 도면.7 is a view showing that the mobile robot according to the mobile robot control method according to an embodiment of the present invention moves in the third cell after finishing the movement in the second cell.
도 8은 본 발명의 실시예에 의한 이동로봇 제어방법에 따른 이동로봇의 전제적인 경로주행을 나타내는 도면.8 is a view showing the premise path running of the mobile robot according to the mobile robot control method according to an embodiment of the present invention.
이하에서는 도면을 참조하여 본 발명의 구체적인 실시예를 상세하게 설명한다. 다만, 본 발명의 사상이 그와 같은 실시예에 제한되지 않고, 본 발명의 사상을 실시예를 이루는 구성요소의 부가, 변경 및 삭제 등에 의해서 다르게 제안될 수 있을 것이나, 이 또한 본 발명의 사상에 포함되는 것이다.Hereinafter, with reference to the drawings will be described in detail a specific embodiment of the present invention. However, the spirit of the present invention is not limited to such an embodiment, and the idea of the present invention may be differently proposed by adding, changing, and deleting the elements constituting the embodiment. It is included.
도 1은 본 발명의 실시예에 의한 이동로봇의 블록도이고, 도 2는 본 발명의 실시예에 의한 이동로봇 제어방법에 대한 순서도이다. 1 is a block diagram of a mobile robot according to an embodiment of the present invention, Figure 2 is a flow chart for a mobile robot control method according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 실시예에 의한 이동로봇(1)에는 외형을 형성하는 바디부(미도시)와, 작업공간 내의 장애물을 인식할 수 있는 주변 감지부(3)와, 상기 바디부의 일측에 설치되는 이동부(4)와, 제어부(2)가 포함된다. Referring to FIG. 1, a mobile robot 1 according to an embodiment of the present invention includes a body part (not shown) forming an outer shape, a peripheral sensor 3 capable of recognizing obstacles in a work space, and the body. The moving part 4 and the control part 2 which are provided in one side of a part are included.
상기 바디부의 형상에는 제한이 없고, 작업공간을 충분히 커버할 수 있도록 충분한 넓이로 형성되는 것이 바람직하다. There is no limitation on the shape of the body portion, it is preferable to be formed in a sufficient width to cover the work space.
상기 주변 감지부(3)는 주변환경 및 장애물을 감지하는 역할을 하고, 비접촉 센서가 될 수 있다. 이에 대한 자세한 설명은 후술한다. The peripheral sensing unit 3 serves to detect the surrounding environment and obstacles, and may be a non-contact sensor. Detailed description thereof will be described later.
상기 이동부(4)는 상기 바디부에 결합되어 상기 바디부를 이동시킬 수 있다. 일례로, 상기 이동부(4)는 상기 바디부의 하면에 결합되는 바퀴가 될 수 있고, 또는 바퀴와 결합된 체인이 될 수 있다. The moving part 4 may be coupled to the body part to move the body part. In one example, the moving unit 4 may be a wheel coupled to the lower surface of the body portion, or may be a chain coupled to the wheel.
상기 제어부(2)는 이동로봇(1)이 청소 등의 작업을 수행하는 작업공간을 상기 장애물의 외주면의 연장선을 경계로 포함하는 다수의 셀로 나눈다. The control unit 2 divides the work space where the mobile robot 1 performs the cleaning and the like into a plurality of cells including the extension line of the outer circumferential surface of the obstacle as a boundary.
또한, 상기 제어부(2)는 상기 다수의 셀 가운데 어느 하나의 셀을 선택한다. In addition, the controller 2 selects any one of the cells.
상기 제어부(2)는 상기 바디부는 선택된 셀 내부를 직선주행 하면서, 상기 바디부의 회전수를 최소화하는 경로로 주행하도록 상기 이동부(4)에 지시를 내린다. The control unit 2 instructs the moving unit 4 to travel in a path that minimizes the number of revolutions of the body unit while traveling linearly inside the selected cell.
도 2를 참조하면, 본 발명의 실시예에 의한 이동로봇의 제어방법은, 먼저 이동로봇(R)을 미리 인식되지 않은 작업공간에 설치한다. 2, in the control method of the mobile robot according to the embodiment of the present invention, the mobile robot R is first installed in a workspace that is not recognized in advance.
그 다음에 상기 이동로봇(R)이 장애물을 인식한다(S10). 상기 이동로봇(R)을 청소로봇이라고 가정했을 때, 상기 장애물은 실내에 배치될 수 있는 가구 등이 될 수 있다.Then, the mobile robot R recognizes the obstacle (S10). When the mobile robot R is assumed to be a cleaning robot, the obstacle may be furniture or the like that can be disposed indoors.
또한, 상기 이동로봇(R)은 상기 장애물뿐만 아니라 주위 환경을 인식하며, 상기 주위 환경은 작업공간을 정의하는 테두리 벽이 될 수 있다.In addition, the mobile robot R recognizes not only the obstacle but also the surrounding environment, and the surrounding environment may be an edge wall defining a workspace.
그 다음에, 상기 장애물 및 주위 환경을 특징지을 수 있는 포인트를 설정한다. 상기 포인트는 상기 장애물의 형상을 정의하는 점 또는 선이 될 수 있고, 상기 포인트는 상기 이동로봇(R)이 작업공간을 다수의 셀로 나눌 때, 상기 셀의 경계를 형성할 수 있다. 예를 들어, 상기 장애물이 직사각형으로 형성되는 경우, 상기 포인트는 직사각형의 꼭지점 부분 또는 모서리 부분이 될 수 있다.Then, a point is set which can characterize the obstacle and the surrounding environment. The point may be a point or a line defining the shape of the obstacle, and the point may form a boundary of the cell when the mobile robot R divides the workspace into a plurality of cells. For example, when the obstacle is formed into a rectangle, the point may be a vertex portion or a corner portion of the rectangle.
만약, 상기 장애물이 직사각형이 아닌 경우에는 그 장애물을 둘러싸는 최소 직사각형을 가상적으로 형성하고 이를 가상 장애물로 둔다(도 3b 참조). If the obstacle is not a rectangle, the minimum rectangle surrounding the obstacle is virtually formed and the virtual obstacle is placed as a virtual obstacle (see FIG. 3B).
그 다음에, 상기 이동로봇(R)은 상기 작업공간을 적어도 상기 장애물의 외주면의 연장선을 경계로 포함하는 다수의 셀로 나눈다(S30).Next, the mobile robot R divides the working space into a plurality of cells including at least an extension line of the outer circumferential surface of the obstacle as a boundary (S30).
그 다음에, 상기 다수의 셀 가운데 어느 하나의 셀을 선택하고(S40), 상기 이동로봇이 선택된 셀 내부를 직선주행 하면서 상기 이동로봇의 회전수를 최소화하는 경로로 주행한다(S50). Next, any one of the plurality of cells is selected (S40), and the mobile robot travels in a path that minimizes the rotational speed of the mobile robot while linearly traveling inside the selected cell (S50).
그 다음에, 상기 이동로봇(R)이 상기 선택된 셀의 모든 영역을 커버하면 주행을 종료하고, 종료된 지점에서 새로운 작업공간이 인식되면, 새로운 셀을 형성한다(S60). Next, when the mobile robot R covers all areas of the selected cell, the driving ends, and when a new workspace is recognized at the terminated point, a new cell is formed (S60).
그리고, 상기 이동로봇(R)은 상기 새로운 셀을 주행하고, 주행이 종료된 지점에서 더 이상 상기 이동로봇이 커버하지 않은 새로운 공간이 없을 때까지 새로운 셀을 형성 및 주행을 반복한다. In addition, the mobile robot R travels the new cell, and repeats the formation of the new cell and the driving until there is no new space that the mobile robot no longer covers at the point where the driving ends.
여기서 커버한다는 의미는 상기 이동로봇(R)이 셀 내부를 덮으면서 지나가는 것을 말하고, 셀 내부를 모두 커버한다는 것은 셀의 상부에서 보았을 때, 상기 이동로봇(R)이 상기 셀 내부의 모든 공간을 적어도 한번은 덮으면서 지나쳤다는 것을 말한다. Here, the cover means that the mobile robot R passes while covering the inside of the cell, and the covering of the inside of the cell means that the mobile robot R covers at least all spaces inside the cell when viewed from the top of the cell. Say that you have covered it once.
상기 이동로봇(R)은 각각의 셀 내부를 전부 커버하게 되고, 결국에는 작업공간 전부에 대하여 중복 및 빠짐이 없이 커버하게 된다.The mobile robot (R) covers all the inside of each cell, and eventually covers the entire work space without overlap and omission.
이하에서는 본 발명의 실시예에 의한 이동로봇의 제어방법을 상세히 설명하기로 한다. Hereinafter, a control method of a mobile robot according to an embodiment of the present invention will be described in detail.
도 3은 본 발명의 실시예에 의한 이동로봇 제어방법에 따른 이동로봇이 장애물을 인식하는 것을 나타내는 도면이고, 도 4는 본 발명의 실시예에 의한 이동로봇 제어방법에 따른 이동로봇이 셀을 설정하는 모습을 나타내는 도면이다.3 is a view showing the mobile robot according to the mobile robot control method according to an embodiment of the present invention to recognize the obstacle, Figure 4 is a mobile robot according to the mobile robot control method according to an embodiment of the present invention to set the cell It is a figure which shows a state.
도 3 및 도 4를 참조하면, 본 실시예에 의한 이동로봇 제어방법에 따른 이동로봇(R)은 미리 인식하지 못한 작업공간에 놓이면 주변환경 및 장애물을 인식한다. 상기 이동로봇(R)은 비접촉 센서를 이용하여 주변환경 및 장애물을 인식한다. 3 and 4, the mobile robot R according to the mobile robot control method according to the present embodiment recognizes the surrounding environment and obstacles when placed in a workspace that has not been recognized in advance. The mobile robot (R) recognizes the environment and obstacles using a non-contact sensor.
상기 비접촉 센서는 측정대상과 접촉하지 않고 측정대상으로부터 정보를 얻는 센서로서, 측정대상에 빛이나 전자파, 초음파, 레이저 등을 발사하여 반사파를 측정함으로써 측정대상의 위치, 형상을 파악하는 방법도 있고, 카메라 등을 이용하여 측정대상의 위치, 형상을 파악하는 방법이 있다. 상기 비접촉 센서는 이미 공지의 기술이므로, 본 실시예에서는 공지의 기술을 채용하기로 하고, 본 실시예에 대한 설명에서는 자세한 설명을 생략하기로 한다.The non-contact sensor is a sensor that obtains information from the measurement target without contacting the measurement target, and there is also a method of determining the position and shape of the measurement target by measuring reflected waves by emitting light, electromagnetic waves, ultrasonic waves, lasers, etc. to the measurement target. There is a method of identifying the position and shape of the measurement object using a camera. Since the non-contact sensor is already known technology, in the present embodiment, a well-known technology is adopted, and detailed description thereof will be omitted in the description of the present embodiment.
상기 이동로봇(R)은 상기 비접촉 센서를 이용하여 작업공간의 주변환경의 형상을 인식한다. 상세히, 상기 이동로봇(R)은 작업공간의 가장지리 형상이 직사각형인지 곡면형상인지 인식하며, 작업공간의 가장지리에 돌출된 것이 있는지 여부 등을 감지한다. The mobile robot R recognizes the shape of the surrounding environment of the workspace by using the non-contact sensor. In detail, the mobile robot R recognizes whether the geographic shape of the work space is rectangular or curved, and detects whether there is a protrusion at the edge of the work space.
도 3에서 상기 이동로봇(R)은 자신이 있는 작업공간이 적어도 제1 벽(W1) 및 제2 벽(W2)을 포함하는 직사각형 형태임을 인식할 수 있다. 또한, 상기 이동로봇(R)은 자신의 주변에 설치된 벽이 매끄러운 형태임을 인식할 수 있다.In FIG. 3, the mobile robot R may recognize that the workspace where the mobile robot R is located includes a rectangular shape including at least a first wall W1 and a second wall W2. In addition, the mobile robot (R) can recognize that the wall is installed around its smooth form.
상기 이동로봇(R)이 작업공간의 가장자리 형상을 인식하는 것은 상기 이동로봇(R)이 작업공간 내부에서 청소 등의 작업을 빈틈없이 하기 위해, 즉 작업공간 내부 전체를 커버하기 위해 작업초기에 작업공간의 가장자리를 따라서 이동하기 때문이다. Recognizing the edge shape of the work space by the mobile robot (R) is the mobile robot (R) is to work in the early stage of work in order to cover the entire interior of the work space, such as to clean the work space This is because it moves along the edge of the space.
상기 이동로봇(R)은 작업공간의 가장자리 형상을 인식한 다음에, 작업공간 내부에 배치된 장애물(10, 20)을 인식한다. 본 실시예에서는 장애물이 직사각형 형상의 제1 장애물(10)과 제2 장애물(20)로 구성된 것을 예로 들어 설명한다. The mobile robot R recognizes the edge shape of the workspace and then recognizes the obstacles 10 and 20 disposed inside the workspace. In the present embodiment, the obstacle is composed of the first obstacle 10 and the second obstacle 20 having a rectangular shape as an example.
상기 이동로봇(R)은 상기 비접촉센서를 작업공간 내부로 향하게 하기 위해 제자리에서 회전하는 운동을 할 수도 있다.The mobile robot R may also rotate in place to direct the non-contact sensor into the working space.
상기 이동로봇(R)은 상기 장애물(10, 20)의 형상을 특징지을 수 있는 포인트를 설정한다. 상기 포인트는 상기 이동로봇(R)이 작업공간을 다수의 셀로 나누는 경우에 상기 셀의 경계가 되는 부분으로서, 상기 장애물(10, 20)의 꼭지점, 외주면이 될 수 있다.The mobile robot R sets a point that can characterize the shape of the obstacles 10 and 20. The point is a part that becomes a boundary of the cell when the mobile robot R divides the workspace into a plurality of cells, and may be a vertex and an outer circumferential surface of the obstacles 10 and 20.
상기 이동로봇(R)은 상기 제1 장애물(10)에 대하여 빛이나 초음파 등을 발사하여 상기 제1 장애물(10)이 L1 및 L2 사이에 위치되는 것을 인식할 수 있다. The mobile robot R may emit light or ultrasonic waves to the first obstacle 10 to recognize that the first obstacle 10 is located between L1 and L2.
상기 이동로봇(R)은 상기 제1 장애물(10)에서 상기 이동로봇(R)에서 보이는 꼭지점(P1)과, 가로 모서리(11)와, 세로 모서리(12)를 포인트로 설정하였고, 상기 제2 장애물(20)에서도 마찬가지로 상기 이동로봇(R)에서 보이는 꼭지점과, 가로 모서리(21)와, 세로 모서리(22)를 포인트로 설정하였다. The mobile robot R has a vertex P1, a horizontal edge 11, and a vertical edge 12 set from the first obstacle 10 as the point, and the second edge 12 as the point. Similarly, in the obstacle 20, the vertices, the horizontal edges 21, and the vertical edges 22 seen by the mobile robot R are set as points.
상기 이동로봇(R)은 상기 작업공간의 가장자리로 인식된 제1 및 제2 벽(W1, W2)과, 상기 장애물(10, 20)에서 포인트로 인식된 부분을 바탕으로 작업공간을 다수개의 셀로 나누기 시작한다. The mobile robot R converts the workspace into a plurality of cells based on the first and second walls W1 and W2 recognized as edges of the workspace, and the portions recognized as points in the obstacles 10 and 20. Start dividing.
즉, 상기 이동로봇(R)은 비접촉센서를 이용하여 로봇의 현재위치, 장애물, 환경을 인식하여 환경 맵(map)을 실시간으로 구축하는 것이다. That is, the mobile robot R constructs an environment map in real time by recognizing the current position, obstacles, and environment of the robot using a non-contact sensor.
도 3에서 상기 이동로봇(R)은 좌측 아래쪽 구석에 위치하고 있다. 이러한 위치에서 상기 이동로봇(R)은 상기 작업공간을 이미 인식된 작업공간의 가장자리(W1, W2)와 상기 장애물(10, 20)의 가장자리(11, 12, 21, 22)의 연장선을 경계로 하는 다수개의 가상의 셀로 나눈다.In FIG. 3, the mobile robot R is located at the lower left corner. In this position, the mobile robot R is bounded by an extension line between the edges W1 and W2 of the already recognized working space and the edges 11, 12, 21 and 22 of the obstacle 10 and 20. Divide into multiple virtual cells.
상기 이동로봇(R)은 상기 작업공간을 상기 제2 벽(W2)과, 상기 제1 장애물(10)의 세로(12)를 연장하는 선에 의해 정의되는 제1 가상 셀(Cp1)과, 상기 제1 벽(W1)과, 상기 제2 장애물(20)의 가로(21)를 연장하는 선에 의해 정의되는 제2 가상 셀(Cp2)로 나눈다.The mobile robot R includes a first virtual cell Cp1 defined by a line extending the vertical wall 12 of the first obstacle 10, the second wall W2, and the work space. It is divided into a first virtual wall C1 and a second virtual cell Cp2 defined by a line extending the horizontal 21 of the second obstacle 20.
상기 제1 가상 셀(Cp1)은 가로길이가 ap1이고, 세로길이가 bp1인 직사각형이며, 상기 제2 가상 셀(Cp2)은 가로길이가 a1이고, 세로길이가 b1인 직사각형이다.The first virtual cell Cp1 is a rectangle having a horizontal length ap1 and a vertical length bp1, and the second virtual cell Cp2 is a rectangle having a horizontal length a1 and a vertical length b1.
상기 이동로봇(R)은 상기 제1 가상 셀(Cp1)과 상기 제2 가상 셀(Cp2) 가운데 임의의 셀을 선택하고, 그 선택된 셀 내부를 이동하기 시작한다.The mobile robot R selects any one of the first virtual cell Cp1 and the second virtual cell Cp2 and starts to move inside the selected cell.
상기 이동로봇(R)이 상기 두 개의 가상 셀 가운데 그 면적이 더 큰 셀을 선택하는 것으로 설정할 수 있다. 다만, 상기 이동로봇(R)이 두 개의 셀 가운데 어느 하나의 셀을 선택하는 기준은 이에 한정되는 것은 아니고, 다른 기준이 있을 수 있다. The mobile robot R may be set to select a cell having a larger area among the two virtual cells. However, the criterion for selecting one of the two cells by the mobile robot R is not limited thereto, and there may be other criteria.
도 4에서는 상기 이동로봇(R)이 상기 제1 가상 셀(Cp1)과, 상기 제2 가상 셀(Cp2) 가운데 면적이 더 큰 상기 제2 가상 셀(Cp2)을 선택한 것을 확인할 수 있다. In FIG. 4, it can be seen that the mobile robot R selects the second virtual cell Cp2 having a larger area among the first virtual cell Cp1 and the second virtual cell Cp2.
도 5는 본 발명의 실시예에 의한 이동로봇 제어방법에 따른 이동로봇이 첫 번째 셀에서 이동하는 모습을 나타내는 도면이며, 도 6은 본 발명의 실시예에 의한 이동로봇 제어방법에 따른 이동로봇이 첫 번째 셀에서의 이동을 마치고, 두 번째 셀에서 이동하는 것을 나타내는 도면이고, 도 7은 본 발명의 실시예에 의한 이동로봇 제어방법에 따른 이동로봇이 두 번째 셀에서의 이동을 마치고, 세 번째 셀에서 이동하는 것을 나타내는 도면이며, 도 8은 본 발명의 실시예에 의한 이동로봇 제어방법에 따른 이동로봇의 전제적인 경로주행을 나타내는 도면이다. 5 is a view showing a mobile robot according to a mobile robot control method according to an embodiment of the present invention to move in the first cell, Figure 6 is a mobile robot according to a mobile robot control method according to an embodiment of the present invention 7 is a diagram illustrating movement in the second cell after finishing the movement in the first cell, and FIG. 7 illustrates a movement of the mobile robot according to the mobile robot control method according to the embodiment of the present invention after the movement in the second cell. FIG. 8 is a diagram illustrating movement in a cell, and FIG. 8 is a diagram illustrating preliminary path driving of a mobile robot according to a mobile robot control method according to an exemplary embodiment of the present invention.
도 5 내지 도 8을 참조하면, 상기 이동로봇(R)은 셀 내부에서 셀의 형상 및 넓이와 이동로봇의 크기를 고려하여 직선 주행은 오래 하면서 상기 이동로봇(R)의 회전수는 줄이는 경로로 주행한다. 5 to 8, the mobile robot (R) is a path that reduces the number of revolutions of the mobile robot (R) while the linear running is long in consideration of the shape and width of the cell and the size of the mobile robot in the cell Drive
상기 이동로봇(R)이 주행한 거리를 측정하기 위해 상기 이동로봇(R)에는 주행 거리를 적산하는 오도미터(odometer), 즉 주행 기록계가 설치된다. In order to measure the distance traveled by the mobile robot R, the mobile robot R is provided with an odometer, that is, a driving recorder that integrates the travel distance.
도 5에서 상기 이동로봇(R)은 제1 셀(C1) 내부를 주행하는 것을 확인할 수 있다. 상기 제1 셀(C1)은 상기 이동로봇(R)이 첫 번째로 주행하는 공간이고, 상기 제2 가상 셀(Cp2)이 첫 번째 주행공간으로 선택되어 제1 셀(C1)로 다시 정의된 것이다.In FIG. 5, it can be seen that the mobile robot R travels inside the first cell C1. The first cell C1 is a space in which the mobile robot R first travels, and the second virtual cell Cp2 is selected as the first travel space and is redefined as a first cell C1. .
상기 이동로봇(R)은 상기 제1 셀(C1) 내부에서 시작점(S1) 및 종료점(E1)을 설정한다. 상기 이동로봇(R)의 시작점(S1)은 상기 이동로봇(R)이 처음에 설치된 좌측 하단이 된다. 상기 종료점(E1)은 상기 이동로봇(R)이 상기 시작점에서 출발하여 직선 주행은 오래 하면서 회전수는 줄이는 경로를 시뮬레이션하여 결정한다. The mobile robot R sets a start point S1 and an end point E1 within the first cell C1. The starting point S1 of the mobile robot R becomes a lower left side in which the mobile robot R is initially installed. The end point E1 is determined by simulating a path in which the mobile robot R starts from the start point and reduces the number of revolutions while driving linearly.
상기 이동로봇(R)은 상기 제1 셀(C1)의 좌측 하단에서 출발하여, 상기 제1 셀(C1)의 하단 경계를 형성하는 제1 벽(W1)을 따라서 우측으로 주행하다가 장애물, 즉 제3 벽(W3)을 감지하게 되면 90도 상방을 향하도록 수직으로 회전한다. The mobile robot R starts from the lower left of the first cell C1 and travels to the right along the first wall W1 that forms the lower boundary of the first cell C1. 3 When the wall (W3) is detected, it rotates vertically upwards 90 degrees.
그 다음에, 상기 이동로봇(R)은 상기 이동로봇(R)의 폭만큼 상방으로 진행하고, 90도 좌측으로 회전하여 다시 좌측으로 주행한다. 이와 같이 좌측으로 주행하다가 벽이 감지되면 상기 이동로봇(R)은 상방을 향하도록 수직으로 회전하고, 상기 이동로봇(R)의 폭만큼 상방으로 진행한다.Then, the mobile robot R proceeds upward by the width of the mobile robot R, rotates to the left by 90 degrees and travels to the left again. The mobile robot R rotates vertically to face upward when the wall is sensed while traveling to the left, and proceeds upward by the width of the mobile robot R.
상기 이동로봇(R)은 상방으로 진행한 다음에 다시 우측으로 주행하고, 벽을 만나면 상방을 향하도록 회전 및 상기 이동로봇(R)의 폭만큼 이동하는 동작을 반복함에 따라서 상기 제1 셀(C1) 내부를 빈틈없이 커버하게 된다. The mobile robot R proceeds upwards and then travels again to the right side, and when it encounters a wall, the mobile robot R rotates upward and moves by the width of the mobile robot R as the first cell C1 repeats. ) It covers the inside tightly.
다만, 상기 제1 셀(C1)의 좌측단 및 우측단에서 상기 이동로봇(R)이 상기 이동로봇(R)의 폭만큼 상승하는 것은 상기 이동로봇(R)의 주행영역이 중첩되는 것을 방지하기 위함인데 상기 제1 셀(C1)의 상단부와 접한 상태에서 주행하는 경우, 그 이전의 주행영역과 약간 중첩될 수는 있다. However, the rising of the mobile robot R by the width of the mobile robot R at the left end and the right end of the first cell C1 may prevent the traveling area of the mobile robot R from overlapping. When driving in a state in contact with the upper end of the first cell (C1), it may slightly overlap with the previous traveling area.
상기 이동로봇(R)의 상기 제1 셀(C1)에서의 종료점(E1)은 직사각형 형상의 상기 제1 셀(C1)의 좌측상단 또는 우측상단이 된다. 도 5에서는 상기 제1 셀(C1)에서의 종료점(E1)이 우측 상단인 것이 도시된다. An end point E1 of the first cell C1 of the mobile robot R becomes an upper left or upper right end of the first cell C1 having a rectangular shape. In FIG. 5, it is shown that the end point E1 in the first cell C1 is the upper right corner.
상기 이동로봇(R)이 종료점에 도달하면, 상기 종료점에서 인식된 새로운 공간을 대상으로 가상의 셀을 만들게 된다. 예를 들어, 도 5에서 종료점(E1)이 우측 상단인 경우 종료점에서 상부의 가로길이 a2, 세로길이 b2로 정의되는 새로운 공간을 인식하게 된고, 이러한 새로운 공간을 가상의 셀(Cp3)로 정의한다. When the mobile robot R reaches an end point, a virtual cell is created for a new space recognized at the end point. For example, in FIG. 5, when the end point E1 is the upper right side, a new space defined by the horizontal length a2 and the vertical length b2 at the upper end point is recognized, and this new space is defined as a virtual cell Cp3. .
만약, 상기 이동로봇(R)의 종료점이 좌측 상단이라면, 상기 이동로봇(R)은 상부의 가로길이 a2, 세로길이 b2로 정의되는 새로운 공간을 인식하게 된고, 이러한 새로운 공간을 가상 셀(Cp4)로 정의하지만, 본 실시예에서는 상기 이동로봇(R)의 제1 셀(C1)에서의 종료점(E1)이 우측 상단인 것으로 가정하고 설명하기로 한다. If the end point of the mobile robot R is the upper left corner, the mobile robot R recognizes a new space defined by the horizontal length a2 and the vertical length b2 of the upper portion, and the new space is referred to as the virtual cell Cp4. In this embodiment, it is assumed that the end point E1 of the first cell C1 of the mobile robot R is at the upper right.
이와 같이 상기 이동로봇(R)은 종료점에서 이전에 이미 주행했던 공간과의 경계, 장애물의 외주면의 연장선, 작업공간의 테두리에 의하여 정의되는 공간을 가상의 셀로 인식할 수 있다. In this manner, the mobile robot R may recognize a space defined by a boundary with a space that has already traveled at an end point, an extension line of an outer circumferential surface of an obstacle, and a border of a work space as a virtual cell.
상기 이동로봇(R)은 상기 제1 셀(C1)의 종료점에서 단 하나의 가상 셀인 상기 제3 가상 셀(Cp3)을 인식하므로, 선택의 여지 없이 상기 제3 가상 셀(Cp3)을 제2 셀(C2)로 인식하여 주행한다. 상기 제2 셀(C2)은 가로길이 a2, 세로길이 b2의 직사각형 형상으로, 상기 제2 장애물(20)의 좌측 세로모서리(24)의 연장선과, 제1 셀(C1)의 상단부, 및 작업공간의 테두리 벽에 의해 정의된다. Since the mobile robot R recognizes the third virtual cell Cp3 which is only one virtual cell at the end point of the first cell C1, the mobile robot R has no choice but to select the third virtual cell Cp3 as a second cell. Recognize as (C2) and drive. The second cell C2 has a rectangular shape having a length a2 and a length b2, an extension line of the left vertical edge 24 of the second obstacle 20, an upper end of the first cell C1, and a work space. The border is defined by the wall.
상기 이동로봇(R)이 상기 제2 셀(C2)에서 주행하는 방식은 상기 제1 셀(C1)에서와 같다. The manner in which the mobile robot R travels in the second cell C2 is the same as in the first cell C1.
상기 이동로봇(R)의 상기 제2 셀(C2)의 종료점(E2)은 상기 제2 셀(C2)의 좌측 상단이 될 수 있고, 상기 이동로봇(R)은 상기 종료점(E2)에서 인식되는 공간인 제3 셀(C3)을 다음 주행공간으로 결정할 수 있다. An end point E2 of the second cell C2 of the mobile robot R may be an upper left corner of the second cell C2, and the mobile robot R is recognized at the end point E2. The third cell C3, which is a space, may be determined as the next travel space.
상기 제3 셀(C3)에서의 상기 이동로봇(R)의 주행도 상기 제1 셀(C1) 및 상기 제2 셀(C2)에서의 주행과 마찬가지이고, 이와 같은 주행 및 종료점에서의 가상의 셀 설정을 반복하면 결국 도 8과 같이 작업공간 모두를 커버할 수 있게 된다. The driving of the mobile robot R in the third cell C3 is also the same as the driving in the first cell C1 and the second cell C2, and the virtual cell at the driving and ending points Repeating the setting will eventually cover all of the workspaces as shown in FIG.
따라서, 본 발명에 의하면, 이동로봇이 같은 일을 하더라도 빠른 시간 내에 완료할 수 있어서 작업효율이 좋아지는 장점이 있다. 또한, 본 발명에 의하면 로봇의 에너지 소비를 줄일 뿐만 아니라, 로봇의 수명도 증가하는 장점이 있다. Therefore, according to the present invention, even if the mobile robot does the same work, it can be completed in a short time, there is an advantage that the work efficiency is improved. In addition, the present invention not only reduces the energy consumption of the robot, but also has the advantage of increasing the life of the robot.

Claims (6)

  1. 이동로봇을 미리 인식되지 않은 작업공간에 설치하는 단계;Installing the mobile robot in a workspace not recognized in advance;
    이동로봇이 장애물을 인식하는 단계;Recognizing the obstacle by the mobile robot;
    상기 작업공간을 적어도 상기 장애물에 대응되는 가상 직사각형의 외주면의 연장선을 경계로 포함하는 다수의 셀로 나누는 단계;Dividing the workspace into a plurality of cells including at least one extension line of an outer circumferential surface of the virtual rectangle corresponding to the obstacle;
    상기 다수의 셀 가운데 어느 하나의 셀을 선택하여, 상기 이동로봇이 선택된 셀 내부를 직선주행 하면서 상기 이동로봇의 회전수를 최소화하는 경로로 주행하는 단계; Selecting any one of the plurality of cells and driving the mobile robot in a path that minimizes the number of revolutions of the mobile robot while traveling linearly inside the selected cell;
    상기 이동로봇이 상기 선택된 셀의 모든 영역을 커버하면 주행을 종료하고, 종료된 지점에서 새로운 작업공간이 인식되면, 새로운 셀을 형성하는 단계; 및Terminating driving when the mobile robot covers all areas of the selected cell and forming a new cell when a new workspace is recognized at the terminated point; And
    상기 새로운 셀을 주행하고, 주행이 종료된 지점에서 더 이상 상기 이동로봇이 커버하지 않은 새로운 공간이 없을 때까지 새로운 셀을 형성 및 주행을 반복하는 단계;Driving the new cell, and forming and running a new cell until there is no new space that the mobile robot no longer covers at the point where the driving ends;
    를 포함하는 로봇의 이동경로 제어방법.Robot movement path control method comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 이동로봇이 장애물을 인식하는 단계는, 상기 장애물의 형상을 특정할 수 있는 꼭지점 또는 모서리를 인식하는 로봇의 이동경로 제어방법.Recognizing the obstacle by the mobile robot, the movement path control method of the robot for recognizing a vertex or corner that can specify the shape of the obstacle.
  3. 제1항에 있어서,The method of claim 1,
    상기 다수의 셀 가운데 어느 하나의 셀을 선택하여, 상기 이동로봇이 선택된 셀 내부를 직선주행 하면서 상기 이동로봇의 회전수를 최소화하는 경로로 주행하는 단계는, 상기 이동로봇이 일 방향으로 주행하다가 상기 장애물 또는 상기 작업공간의 테두리를 만나면 자전하여 상기 이동로봇의 폭만큼 이동하고, 다시 반대 방향으로 주행하는 것을 포함하는 로봇의 이동경로 제어방법. Selecting any one of the plurality of cells, the mobile robot is traveling in a path that minimizes the number of revolutions of the mobile robot while running linearly inside the selected cell, the mobile robot is traveling in one direction When the robot meets an obstacle or the edge of the work space, the robot rotates by the width of the mobile robot and moves in the opposite direction again.
  4. 제1항에 있어서,The method of claim 1,
    상기 이동로봇이 상기 선택된 셀의 모든 영역을 커버하면 주행을 종료하고, 종료된 지점에서 새로운 작업공간이 인식되면, 새로운 셀을 형성하는 단계는, 장애물의 연장선, 작업공간의 테두리, 이미 주행했던 공간과의 경계를 이용하여 새로운 셀을 형성하는 로봇의 이동경로 제어방법.When the mobile robot covers all the areas of the selected cell, the driving ends, and when a new workspace is recognized at the terminated point, forming a new cell includes an extension line of an obstacle, an edge of the workspace, and a space that has already traveled. Method of controlling the movement path of the robot to form a new cell by using the boundary between and.
  5. 제1항에 있어서,The method of claim 1,
    상기 이동로봇은 오도미터 및 비접촉센서를 구비하는 것을 특징으로 하는 로봇의 이동경로 제어방법.The mobile robot is a movement path control method of the robot, characterized in that it comprises an odometer and a non-contact sensor.
  6. 작업공간에 설치되는 바디부;Body portion is installed in the workspace;
    상기 바디부의 일측에 설치되어 상기 바디부를 움직이는 이동부;A moving part installed at one side of the body part to move the body part;
    상기 작업공간 내의 장애물을 인식할 수 있는 주변 감지부; 및Peripheral sensing unit that can recognize the obstacle in the workspace; And
    상기 작업공간을 상기 장애물의 외주면의 연장선을 경계로 포함하는 다수의 셀로 나누고, 상기 다수의 셀 가운데 어느 하나의 셀을 선택하고, 상기 바디부가 선택된 셀 내부를 직선주행 하면서, 상기 바디부의 회전수를 최소화하는 경로로 주행하도록 상기 이동부에 지시를 내리는 제어부;The work space is divided into a plurality of cells including an extension line of the outer circumferential surface of the obstacle, one of the plurality of cells is selected, and the number of rotations of the body part is linearly moved while the body part is linearly traveled inside the selected cell. A control unit for instructing the moving unit to travel along a path to be minimized;
    를 포함하며,Including;
    상기 바디부가 상기 선택된 셀의 모든 영역을 커버하면 상기 바디부는 주행을 종료하고, If the body part covers all areas of the selected cell, the body part ends the driving,
    상기 바디부의 주행이 종료된 지점에서 상기 주변 감지부가 새로운 작업공간을 인식하면, 상기 제어부는 새로운 셀을 형성하고, 상기 바디부가 상기 새로 형성된 새로운 셀을 주행하도록 상기 이동부에 지시를 내리고, 상기 바디부의 주행이 종료된 지점에서 더 이상 상기 바디부가 커버하지 않은 새로운 공간이 없을 때까지 새로운 셀을 형성 및 주행을 반복하는 이동로봇.When the peripheral sensing unit recognizes the new workspace at the point where the running of the body unit is finished, the control unit forms a new cell, instructs the moving unit to run the newly formed new cell, and the body The mobile robot repeats the formation and running of a new cell until there is no new space that the body part no longer covers at the end of the part driving.
PCT/KR2013/005823 2012-06-29 2013-07-01 Mobile robot and method for covering and controlling entire online path of mobile robot WO2014003517A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120071334A KR101372062B1 (en) 2012-06-29 2012-06-29 Moving robot and method for online complete coverage path planning
KR10-2012-0071334 2012-06-29

Publications (1)

Publication Number Publication Date
WO2014003517A1 true WO2014003517A1 (en) 2014-01-03

Family

ID=49783559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005823 WO2014003517A1 (en) 2012-06-29 2013-07-01 Mobile robot and method for covering and controlling entire online path of mobile robot

Country Status (2)

Country Link
KR (1) KR101372062B1 (en)
WO (1) WO2014003517A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016096304A1 (en) * 2014-12-16 2016-06-23 Robert Bosch Gmbh Method for mapping a processing area for autonomous robot vehicles
CN110595478A (en) * 2019-09-16 2019-12-20 北京华捷艾米科技有限公司 Robot full-coverage path planning method, device and equipment based on off-line map
CN111329399A (en) * 2020-04-09 2020-06-26 湖南格兰博智能科技有限责任公司 Finite-state-machine-based sweeper target point navigation method
EP3564769A4 (en) * 2016-12-29 2020-08-19 Zhuhai Amicro Semicoductor Co., Ltd. Route planning method for intelligent robot
CN112644738A (en) * 2021-01-19 2021-04-13 哈尔滨工业大学 Planet landing obstacle avoidance trajectory constraint function design method
CN112817309A (en) * 2020-12-30 2021-05-18 东南大学 Geometric folding type robot full-coverage path and generation method thereof
US20210397765A1 (en) * 2018-11-07 2021-12-23 Honda Motor Co., Ltd. Work area zone boundary demarcation apparatus of autonomously navigating work machine
AU2021203120B2 (en) * 2015-04-24 2023-06-22 Avidbots Corp. Apparatus and methods for semi-autonomous cleaning of surfaces

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107843262A (en) * 2017-10-30 2018-03-27 洛阳中科龙网创新科技有限公司 A kind of method of farm machinery all standing trajectory path planning
CN108775902A (en) * 2018-07-25 2018-11-09 齐鲁工业大学 The adjoint robot path planning method and system virtually expanded based on barrier
CN108981710B (en) * 2018-08-07 2019-10-11 北京邮电大学 A kind of complete coverage path planning method of mobile robot
CN113124876B (en) * 2021-04-20 2022-04-15 国家海洋技术中心 Path optimization method and system for unmanned ship in terrain complex sea area traversal monitoring
CN114993308A (en) * 2021-12-31 2022-09-02 丰疆智能(深圳)有限公司 Navigation path planning method and device and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004326692A (en) * 2003-04-28 2004-11-18 Toshiba Tec Corp Autonomous travelling robot
US20050113990A1 (en) * 1998-05-11 2005-05-26 Ehud Peless Area coverage with an autonomous robot
KR20090077547A (en) * 2008-01-11 2009-07-15 삼성전자주식회사 Method and apparatus of path planning for a mobile robot
KR20090104393A (en) * 2008-03-31 2009-10-06 엘지전자 주식회사 Controlling method of robot cleaner
KR20110085499A (en) * 2010-01-20 2011-07-27 엘지전자 주식회사 Robot cleaner and controlling method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050113990A1 (en) * 1998-05-11 2005-05-26 Ehud Peless Area coverage with an autonomous robot
JP2004326692A (en) * 2003-04-28 2004-11-18 Toshiba Tec Corp Autonomous travelling robot
KR20090077547A (en) * 2008-01-11 2009-07-15 삼성전자주식회사 Method and apparatus of path planning for a mobile robot
KR20090104393A (en) * 2008-03-31 2009-10-06 엘지전자 주식회사 Controlling method of robot cleaner
KR20110085499A (en) * 2010-01-20 2011-07-27 엘지전자 주식회사 Robot cleaner and controlling method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016096304A1 (en) * 2014-12-16 2016-06-23 Robert Bosch Gmbh Method for mapping a processing area for autonomous robot vehicles
CN107003675A (en) * 2014-12-16 2017-08-01 罗伯特·博世有限公司 The method that processing surface is surveyed and drawn for autonomous robot vehicle
US10551844B2 (en) 2014-12-16 2020-02-04 Robert Bosch Gmbh Method for mapping a processing area for autonomous robot vehicles
US11844474B2 (en) 2015-04-24 2023-12-19 Avidbots Corp. Apparatus and methods for semi-autonomous cleaning of surfaces
AU2021203120B2 (en) * 2015-04-24 2023-06-22 Avidbots Corp. Apparatus and methods for semi-autonomous cleaning of surfaces
EP3564769A4 (en) * 2016-12-29 2020-08-19 Zhuhai Amicro Semicoductor Co., Ltd. Route planning method for intelligent robot
US20210397765A1 (en) * 2018-11-07 2021-12-23 Honda Motor Co., Ltd. Work area zone boundary demarcation apparatus of autonomously navigating work machine
CN110595478A (en) * 2019-09-16 2019-12-20 北京华捷艾米科技有限公司 Robot full-coverage path planning method, device and equipment based on off-line map
CN111329399A (en) * 2020-04-09 2020-06-26 湖南格兰博智能科技有限责任公司 Finite-state-machine-based sweeper target point navigation method
CN112817309B (en) * 2020-12-30 2021-12-03 东南大学 Geometric folding type robot full-coverage path and generation method thereof
WO2022141737A1 (en) * 2020-12-30 2022-07-07 东南大学 Geometric folding type robot full-coverage path and generation method therefor
CN112817309A (en) * 2020-12-30 2021-05-18 东南大学 Geometric folding type robot full-coverage path and generation method thereof
CN112644738B (en) * 2021-01-19 2021-09-17 哈尔滨工业大学 Planet landing obstacle avoidance trajectory constraint function design method
CN112644738A (en) * 2021-01-19 2021-04-13 哈尔滨工业大学 Planet landing obstacle avoidance trajectory constraint function design method

Also Published As

Publication number Publication date
KR20140003249A (en) 2014-01-09
KR101372062B1 (en) 2014-03-07

Similar Documents

Publication Publication Date Title
WO2014003517A1 (en) Mobile robot and method for covering and controlling entire online path of mobile robot
CN109144067B (en) Intelligent cleaning robot and path planning method thereof
EP3505037B1 (en) Cleaning robot and control method therefor
CA3033972C (en) Robotic system and method for operating on a workpiece
KR100988736B1 (en) Home network system and method for moving the shortest path of autonomous mobile robot
JP4264009B2 (en) Self-propelled vacuum cleaner
JP7262076B2 (en) Mobile robot and control method
KR100877072B1 (en) Method and apparatus of building map for a mobile robot and cleaning simultaneously
CN111596662B (en) Method for judging one circle along global working area, chip and visual robot
CN107340768A (en) A kind of paths planning method of intelligent robot
CN105486311A (en) Indoor robot positioning navigation method and device
CN111328386A (en) Exploration of unknown environments by autonomous mobile robots
EP2870513B1 (en) Autonomous mobile robot and method for operating the same
KR101506738B1 (en) Cleaning robot and the driving method
CN108422419A (en) A kind of intelligent robot and its control method and system
JP2002325708A (en) Robot cleaner, robot cleaning system and method for controlling the same
CN102968122A (en) Covering method of map self-established by mobile platform in unknown region
JP2007213236A (en) Method for planning route of autonomously traveling robot and autonomously traveling robot
CN106155056A (en) Self-movement robot traveling method and device
JP7281707B2 (en) Mobile robot and control method
KR20180070062A (en) A movable object and a method for controlling the same
CN104729502A (en) Robot mapping and positioning method and system based on Bluetooth base station and laser sensor
US20160195875A1 (en) Autonomous mobile robot and method for operating the same
CN104848848A (en) Robot map drafting and positioning method based on wireless base station and laser sensor as well as system thereof
CN105739499A (en) Multipath infrared and ultrasonic sensor distribution structure of autonomous mobile robot obstacle avoidance system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13810631

Country of ref document: EP

Kind code of ref document: A1