WO2014002900A1 - 画像処理装置および画像処理方法 - Google Patents

画像処理装置および画像処理方法 Download PDF

Info

Publication number
WO2014002900A1
WO2014002900A1 PCT/JP2013/067113 JP2013067113W WO2014002900A1 WO 2014002900 A1 WO2014002900 A1 WO 2014002900A1 JP 2013067113 W JP2013067113 W JP 2013067113W WO 2014002900 A1 WO2014002900 A1 WO 2014002900A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
unit
encoding
data
frame memory
Prior art date
Application number
PCT/JP2013/067113
Other languages
English (en)
French (fr)
Inventor
碩 陸
鈴木 輝彦
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US14/402,238 priority Critical patent/US20150139310A1/en
Priority to JP2014522598A priority patent/JPWO2014002900A1/ja
Publication of WO2014002900A1 publication Critical patent/WO2014002900A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/573Motion compensation with multiple frame prediction using two or more reference frames in a given prediction direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/597Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding

Definitions

  • the present technology relates to an image processing device and an image processing method, and more particularly, to an image processing device and an image processing method capable of reducing the number of reference images that can be stored while suppressing deterioration in accuracy of a predicted image. .
  • MPEG compressed by orthogonal transform such as discrete cosine transform and motion compensation is used for the purpose of efficient transmission and storage of information.
  • a device compliant with a method such as Moving (Pictures Experts Group) phase) is becoming popular in both information distribution at broadcast stations and information reception in general households.
  • the MPEG2 (ISO / IEC 13818-2) system is defined as a general-purpose image encoding system, and is a standard that covers both interlaced and progressively scanned images, standard resolution images, and high-definition images. Widely used in a wide range of applications for consumer and consumer applications.
  • a standard resolution interlaced scanning image having 720 ⁇ 480 pixels is 4 to 8 Mbps
  • a high resolution interlaced scanning image having 1920 ⁇ 1088 pixels is 18 to 22 MBps.
  • MPEG2 was mainly intended for high-quality encoding suitable for broadcasting, but it did not support encoding methods with a lower code amount (bit rate) than MPEG1, that is, a higher compression rate. With the widespread use of mobile terminals, the need for such an encoding system is expected to increase in the future, and the MPEG4 encoding system has been standardized accordingly. Regarding the MPEG4 image coding system, the standard was approved as an international standard in December 1998 as ISO / IEC 449 14496-2.
  • H.264 Based on 26L, H. Standardization to achieve higher coding efficiency by incorporating functions that are not supported by 26L is performed as JointJModel of Enhanced-Compression Video Coding. This standardization was implemented in March 2003 by H.C. It was internationally standardized under the names of H.264 and MPEG-4® Part 10 (AVC (Advanced Video Coding)).
  • AVC Advanced Video Coding
  • JCTVC Joint Collaboration Collaboration Team-Video Coding
  • HEVC High Standardization of an encoding method called Efficiency (Video Coding) is underway.
  • CommitteeCommitdraft which is the first draft version specification, was issued in February 2012 (see Non-Patent Document 1, for example).
  • the present technology has been made in view of such a situation, and is capable of reducing the number of reference images that can be stored while suppressing deterioration in accuracy of a predicted image.
  • An image processing apparatus includes a predicted image generation unit that generates a predicted image of an image using a reference image, and a storage unit that preferentially stores the reference image that is close in display order to the image.
  • the image processing method according to one aspect of the present technology corresponds to the image processing apparatus according to one aspect of the present technology.
  • a predicted image of an image is generated using a reference image, and the reference image whose display order is close to that of the image is preferentially stored.
  • FIG. 1 It is a block diagram which shows the structural example of one Embodiment of the encoding apparatus to which this technique is applied. It is a figure explaining the 1st example of the reference image memorize
  • FIG. 1 It is a block diagram which shows the structural example of one Embodiment of the decoding apparatus to which this technique is applied. It is a flowchart explaining the detail of the decoding process of the decoding apparatus of FIG. It is a figure which shows the example of a multiview image encoding system. It is a figure which shows the main structural examples of the multiview image coding apparatus to which this technique is applied. It is a figure which shows the main structural examples of the multiview image decoding apparatus to which this technique is applied. It is a figure which shows the example of a hierarchy image coding system. It is a figure explaining the example of spatial scalable encoding. It is a figure explaining the example of temporal scalable encoding.
  • FIG. 1 is a block diagram illustrating a configuration example of an embodiment of an encoding device to which the present technology is applied.
  • a / D conversion unit 31 includes an A / D conversion unit 31, a screen rearrangement buffer 32, a calculation unit 33, an orthogonal transformation unit 34, a quantization unit 35, a lossless encoding unit 36, an accumulation buffer 37, and an inverse quantization unit. 38, inverse orthogonal transform unit 39, addition unit 40, deblock filter 41, adaptive offset filter 42, adaptive loop filter 43, frame memory 44, switch 45, intra prediction unit 46, motion prediction / compensation unit 47, prediction image selection unit 48 and a rate control unit 49.
  • the A / D conversion unit 31 of the encoding device 11 performs A / D conversion on an image in frame units input as an input signal, and outputs and stores the image in the screen rearrangement buffer 32.
  • the screen rearrangement buffer 32 rearranges the stored frame-by-frame images in the order for encoding according to the GOP structure, the arithmetic unit 33, the intra prediction unit 46, and the motion prediction / compensation unit. Output to 47.
  • the calculating unit 33 performs encoding by calculating the difference between the predicted image supplied from the predicted image selecting unit 48 and the encoding target image output from the screen rearrangement buffer 32. Specifically, the calculation unit 33 performs encoding by subtracting the predicted image supplied from the predicted image selection unit 48 from the encoding target image output from the screen rearrangement buffer 32. The computing unit 33 outputs the resulting image to the orthogonal transform unit 34 as residual information. When the predicted image is not supplied from the predicted image selection unit 48, the calculation unit 33 outputs the image read from the screen rearrangement buffer 32 as it is to the orthogonal transform unit 34 as residual information.
  • the orthogonal transform unit 34 performs orthogonal transform on the residual information from the calculation unit 33 to generate an orthogonal transform coefficient.
  • the orthogonal transform unit 34 supplies the generated orthogonal transform coefficient to the quantization unit 35.
  • the quantization unit 35 quantizes the orthogonal transform coefficient supplied from the orthogonal transform unit 34 using the quantization parameter supplied from the rate control unit 49.
  • the quantization unit 35 inputs the resulting coefficient to the lossless encoding unit 36.
  • the lossless encoding unit 36 acquires information indicating the optimal intra prediction mode (hereinafter referred to as intra prediction mode information) from the intra prediction unit 46. Further, the lossless encoding unit 36 acquires information indicating the optimal inter prediction mode (hereinafter referred to as inter prediction mode information), a motion vector, and the like from the motion prediction / compensation unit 47. Further, the lossless encoding unit 36 acquires a quantization parameter from the rate control unit 49.
  • the lossless encoding unit 36 acquires the storage flag, index or offset, and type information from the adaptive offset filter 42 as offset filter information, and acquires the filter coefficient from the adaptive loop filter 43.
  • the lossless encoding unit 36 performs variable length encoding (for example, CAVLC (Context-Adaptive Variable Length Coding)), arithmetic encoding (for example, CABAC) on the quantized coefficients supplied from the quantization unit 35. (Context-Adaptive Binary Arithmetic Coding) etc.) is performed.
  • variable length encoding for example, CAVLC (Context-Adaptive Variable Length Coding)
  • CABAC arithmetic encoding
  • CABAC Context-Adaptive Binary Arithmetic Coding
  • the lossless encoding unit 36 relates to encoding quantization parameters, offset filter information, and filter coefficients such as intra prediction mode information, inter prediction mode information, motion vectors, and information for specifying a reference image. Lossless encoding is performed as encoded information.
  • the lossless encoding unit 36 supplies the encoding information and the coefficients that have been losslessly encoded to the accumulation buffer 37 as encoded data and accumulates them.
  • the losslessly encoded information may be losslessly encoded coefficient header information (slice header).
  • the accumulation buffer 37 temporarily stores the encoded data supplied from the lossless encoding unit 36.
  • the accumulation buffer 37 outputs the stored encoded data.
  • the quantized coefficient output from the quantizing unit 35 is also input to the inverse quantizing unit 38.
  • the inverse quantization unit 38 performs inverse quantization on the coefficient quantized by the quantization unit 35 using the quantization parameter supplied from the rate control unit 49, and inverses the orthogonal transform coefficient obtained as a result. This is supplied to the orthogonal transform unit 39.
  • the inverse orthogonal transform unit 39 performs inverse orthogonal transform on the orthogonal transform coefficient supplied from the inverse quantization unit 38.
  • the inverse orthogonal transform unit 39 supplies residual information obtained as a result of the inverse orthogonal transform to the addition unit 40.
  • the addition unit 40 adds the residual information supplied from the inverse orthogonal transform unit 39 and the prediction image supplied from the prediction image selection unit 48 to obtain a locally decoded image.
  • the adding unit 40 sets the residual information supplied from the inverse orthogonal transform unit 39 as a decoded image that is locally decoded.
  • the adder 40 supplies the locally decoded image to the deblocking filter 41 and also supplies it to the frame memory 44 for accumulation.
  • the deblocking filter 41 performs adaptive deblocking filter processing for removing block distortion on the locally decoded image supplied from the adding unit 40 and supplies the resulting image to the adaptive offset filter 42. .
  • the adaptive offset filter 42 performs an adaptive offset filter (SAO: Sample adaptive offset) process that mainly removes ringing on the image after the adaptive deblocking filter process by the deblocking filter 41.
  • SAO Sample adaptive offset
  • the adaptive offset filter 42 determines the type of adaptive offset filter processing for each LCU (Largest Coding Unit) which is the maximum coding unit, and obtains an offset used in the adaptive offset filter processing.
  • the adaptive offset filter 42 performs the determined type of adaptive offset filter processing on the image after the adaptive deblocking filter processing, using the obtained offset. Then, the adaptive offset filter 42 supplies the image after the adaptive offset filter processing to the adaptive loop filter 43.
  • the adaptive offset filter 42 has a buffer for storing the offset.
  • the adaptive offset filter 42 determines whether the offset used for the adaptive deblocking filter processing is already stored in the buffer for each LCU.
  • the adaptive offset filter 42 determines that the offset used for the adaptive deblocking filter processing is already stored in the buffer, the adaptive offset filter 42 stores a storage flag indicating whether the offset is stored in the buffer, and the offset is stored in the buffer. Is set to a value (1 in this case) indicating that the
  • the adaptive offset filter 42 stores, for each LCU, a storage flag set to 1, an index indicating the storage position of the offset in the buffer, and type information indicating the type of adaptive offset filter processing that has been performed. 36.
  • the adaptive offset filter 42 stores the offsets in order in the buffer.
  • the adaptive offset filter 42 sets the storage flag to a value (in this case, 0) indicating that the offset is not stored in the buffer. Then, the adaptive offset filter 42 supplies the storage flag, offset, and type information set to 0 to the lossless encoding unit 36 for each LCU.
  • the adaptive loop filter 43 performs an adaptive loop filter (ALF: Adaptive Loop Filter) process on the image after the adaptive offset filter process supplied from the adaptive offset filter 42, for example, for each LCU.
  • ALF Adaptive Loop Filter
  • the adaptive loop filter process for example, a process using a two-dimensional Wiener filter is used. Of course, filters other than the Wiener filter may be used.
  • the adaptive loop filter 43 is configured so that the residual of the original image that is the image output from the screen rearrangement buffer 32 and the image after the adaptive loop filter processing is minimized for each LCU. A filter coefficient used in the processing is calculated. Then, the adaptive loop filter 43 performs adaptive loop filter processing for each LCU using the calculated filter coefficient on the image after the adaptive offset filter processing.
  • the adaptive loop filter 43 supplies the image after the adaptive loop filter processing to the frame memory 44.
  • the adaptive loop filter 43 supplies the filter coefficient to the lossless encoding unit 36.
  • the adaptive loop filter processing is performed for each LCU, but the processing unit of the adaptive loop filter processing is not limited to the LCU. However, the processing can be efficiently performed by combining the processing units of the adaptive offset filter 42 and the adaptive loop filter 43.
  • the frame memory 44 is a DPB, and stores an image supplied from the adaptive loop filter 43 or an image supplied from the adder 40 as a decoded image.
  • the decoded image stored in the frame memory 44 is output as a reference image to the intra prediction unit 46 or the motion prediction / compensation unit 47 via the switch 45.
  • the intra prediction unit 46 performs intra prediction processing of all candidate intra prediction modes using the reference image read out from the frame memory 44 via the switch 45, and generates a prediction image of the encoding target image. To do.
  • the intra prediction unit 46 calculates cost function values for all candidate intra prediction modes based on the image read from the screen rearrangement buffer 32 and the predicted image generated as a result of the intra prediction process. (Details will be described later). Then, the intra prediction unit 46 determines the intra prediction mode that minimizes the cost function value as the optimal intra prediction mode.
  • the intra prediction unit 46 supplies the predicted image generated in the optimal intra prediction mode and the corresponding cost function value to the predicted image selection unit 48.
  • the intra prediction unit 46 supplies the intra prediction mode information to the lossless encoding unit 36 when the prediction image selection unit 48 is notified of selection of a prediction image generated in the optimal intra prediction mode.
  • the cost function value is also called RD (Rate Distortion) cost. It is calculated based on a method of either High Complexity mode or Low Complexity mode as defined by JM (Joint Model) which is reference software in the H.264 / AVC format.
  • D is the difference (distortion) between the original image and the decoded image
  • R is the amount of generated code including up to the coefficient of orthogonal transform
  • is the Lagrange multiplier given as a function of the quantization parameter QP.
  • D is the difference (distortion) between the original image and the predicted image
  • Header_Bit is the code amount of the encoding information
  • QPtoQuant is a function given as a function of the quantization parameter QP.
  • the motion prediction / compensation unit 47 performs motion prediction / compensation processing for all candidate inter prediction modes. Specifically, the motion prediction / compensation unit 47 selects all candidate inter prediction modes based on the image supplied from the screen rearrangement buffer 32 and the reference image read from the frame memory 44 via the switch 45. The motion vector is detected. The motion prediction / compensation unit 47 functions as a predicted image generation unit, performs compensation processing on the reference image based on the motion vector, and generates a predicted image of the encoding target image.
  • the motion prediction / compensation unit 47 calculates the cost function value for all candidate inter prediction modes based on the image and the predicted image supplied from the screen rearrangement buffer 32, and the cost function value.
  • the inter prediction mode that minimizes is determined as the optimal inter measurement mode.
  • the motion prediction / compensation unit 47 supplies the cost function value of the optimal inter prediction mode and the corresponding prediction image to the prediction image selection unit 48.
  • the motion prediction / compensation unit 47 specifies inter prediction mode information, a corresponding motion vector, and a reference image when the prediction image selection unit 48 is notified of selection of a prediction image generated in the optimal inter prediction mode. Are output to the lossless encoding unit 36.
  • the predicted image selection unit 48 Based on the cost function values supplied from the intra prediction unit 46 and the motion prediction / compensation unit 47, the predicted image selection unit 48 has a smaller corresponding cost function value of the optimal intra prediction mode and the optimal inter prediction mode. Are determined as the optimum prediction mode. Then, the predicted image selection unit 48 supplies the predicted image in the optimal prediction mode to the calculation unit 33 and the addition unit 40. Further, the predicted image selection unit 48 notifies the intra prediction unit 46 or the motion prediction / compensation unit 47 of selection of the predicted image in the optimal prediction mode.
  • the rate control unit 49 determines the quantization parameter used in the quantization unit 35 based on the encoded data stored in the storage buffer 37 so that overflow or underflow does not occur.
  • the rate control unit 49 supplies the determined quantization parameter to the quantization unit 35, the lossless encoding unit 36, and the inverse quantization unit 38.
  • FIG. 2 is a diagram illustrating reference images stored in the frame memory 44 when the number of reference images that can be stored in the frame memory 44 is six.
  • the frame memory 44 has a temporary storage area for temporarily storing a decoded image of one image to be encoded and a long-term storage area for storing decoded images of five or less encoded images. .
  • I represents an I picture
  • B represents a B picture.
  • the numbers after I and B represent the display order of the corresponding pictures.
  • the top row shows pictures arranged in the encoding order (decoding order).
  • the second row from the top describes the display order (POC (Picture Order Count)) of the topmost picture.
  • the third row from the top describes the picture displayed when decoding the topmost picture.
  • the fourth to eighth stages from the top describe pictures stored in the long-term storage area of the frame memory 44 when the top picture is encoded.
  • the ninth row from the top represents the display order of pictures used as reference images for L0 prediction at the time of encoding the uppermost picture, and the tenth row from the top represents L1 at the time of encoding the uppermost picture. This represents the display order of pictures used as reference images for prediction. The same applies to FIGS. 3 to 5 described later.
  • the frame memory 44 stores, in the long-term storage area, a picture that has not been displayed yet when the picture to be encoded is decoded.
  • the frame memory 44 has been displayed at the time of decoding the picture to be encoded, and does not store a picture that is not used as a reference image in the long-term storage area.
  • the frame memory 44 preferentially stores a picture with a smaller quantization parameter in the long-term storage area than a picture whose display order is close to the picture to be encoded. For example, when encoding a B picture (B5 picture) whose display order is fifth, the frame memory 44 is more quantized than a B picture (B2 picture) whose display order is close to that of the B5 picture and whose display order is second.
  • the I picture (I0 picture) having the small display parameter and the 0th display order is preferentially stored in the long-term storage area.
  • FIG. 3 is a diagram illustrating a first example of reference images stored in the frame memory 44 when the number of reference images that can be stored in the frame memory 44 is five.
  • the frame memory 44 has a temporary storage area for temporarily storing a decoded image of one encoding target image and a long-term storage area for storing a decoded image of four or less encoded images. .
  • the frame memory 44 stores, in the long-term storage area, a picture that has not yet been displayed when the picture to be encoded is decoded.
  • the frame memory 44 has been displayed at the time of decoding the picture to be encoded, and does not store a picture that is not used as a reference image in the long-term storage area.
  • the frame memory 44 preferentially stores in the long-term storage area pictures that are close in display order to the pictures to be encoded. For example, when encoding a B picture (B6 picture) whose display order is sixth, the frame memory 44 has a display order closer to the B6 picture than the I0 picture whose display order is zero, and the second display order. Are preferentially stored in the long-term storage area.
  • FIG. 4 is a diagram illustrating a second example of reference images stored in the frame memory 44 when the number of reference images that can be stored in the frame memory 44 is five.
  • the frame memory 44 temporarily stores a decoded image of one image to be encoded, And a long-term storage area for storing decoded images of four or less encoded images.
  • the frame memory 44 stores, in the long-term storage area, pictures that have not yet been displayed when decoding a picture to be encoded.
  • the frame memory 44 has been displayed at the time of decoding the picture to be encoded, and does not store a picture that is not used as a reference image in the long-term storage area.
  • the frame memory 44 stores in the long-term storage area a part of the picture whose display order is close to that of the encoding target picture. For example, when encoding a B6 picture whose display order is sixth, the frame memory 44 has a smaller quantization parameter than the B2 picture whose display order is close to that of the B6 picture and whose display order is second.
  • the 0th I0 picture is preferentially stored in the long-term storage area.
  • the frame memory 44 is closer in display order to the B7 picture than the I0 picture whose display order is zero, and the display order is fourth. Are preferentially stored in the long-term storage area.
  • FIG. 5 is a diagram illustrating a third example of reference images stored in the frame memory 44 when the number of reference images that can be stored in the frame memory 44 is five.
  • the frame memory 44 temporarily stores a decoded image of one image to be encoded, And a long-term storage area for storing decoded images of four or less encoded images.
  • the frame memory 44 stores, in the long-term storage area, a picture that has not been displayed yet when the picture to be encoded is decoded.
  • the frame memory 44 has been displayed at the time of decoding the picture to be encoded, and does not store a picture that is not used as a reference image in the long-term storage area.
  • the frame memory 44 preferentially stores a picture with a smaller quantization parameter in the long-term storage area than a picture whose display order is close to the picture to be encoded. For example, when encoding a B6 picture whose display order is sixth, the frame memory 44 has a smaller quantization parameter than the B2 picture whose display order is close to that of the B6 picture and whose display order is second.
  • the 0th I0 picture is preferentially stored in the long-term storage area.
  • the number of reference images that can be stored in the frame memory 44 is determined according to the size of the image to be encoded, that is, the profile level. For example, when the encoding target image is large, the number of reference images that can be stored in the frame memory 44 is five. When the encoding target image is small, the number of reference images that can be stored in the frame memory 44 is six. It is made a sheet.
  • the frame memory 44 may store the reference images by any of the methods shown in FIGS. Also, the method of FIGS. 3 to 5 may be switched according to the type of image to be encoded. In this case, for example, when the image to be encoded is a moving image, the method of FIG. 3 is used, and when the image to be encoded is a still image, the method of FIG. 5 is used.
  • FIG. 6 is a flowchart illustrating details of the encoding process of the encoding device 11 of FIG.
  • the A / D conversion unit 31 of the encoding device 11 performs A / D conversion on the frame unit image input as the input signal, and outputs and stores the image in the screen rearrangement buffer 32.
  • step S32 the screen rearrangement buffer 32 rearranges the stored frame images in the display order in the order for encoding according to the GOP structure.
  • the screen rearrangement buffer 32 supplies the rearranged frame-unit images to the calculation unit 33, the intra prediction unit 46, and the motion prediction / compensation unit 47.
  • step S33 the intra prediction unit 46 performs intra prediction processing in all candidate intra prediction modes. Further, the intra prediction unit 46 calculates cost function values for all candidate intra prediction modes based on the image read from the screen rearrangement buffer 32 and the predicted image generated as a result of the intra prediction process. Is calculated. Then, the intra prediction unit 46 determines the intra prediction mode that minimizes the cost function value as the optimal intra prediction mode. The intra prediction unit 46 supplies the predicted image generated in the optimal intra prediction mode and the corresponding cost function value to the predicted image selection unit 48.
  • the motion prediction / compensation unit 47 performs motion prediction / compensation processing for all candidate inter prediction modes.
  • the motion prediction / compensation unit 47 calculates cost function values for all candidate inter prediction modes based on the images supplied from the screen rearrangement buffer 32 and the predicted images, and the cost function values are calculated. The minimum inter prediction mode is determined as the optimum inter measurement mode. Then, the motion prediction / compensation unit 47 supplies the cost function value of the optimal inter prediction mode and the corresponding prediction image to the prediction image selection unit 48.
  • step S ⁇ b> 34 the predicted image selection unit 48 selects one of the optimal intra prediction mode and the optimal inter prediction mode based on the cost function values supplied from the intra prediction unit 46 and the motion prediction / compensation unit 47 by the process of step S ⁇ b> 33. The one with the smallest cost function value is determined as the optimum prediction mode. Then, the predicted image selection unit 48 supplies the predicted image in the optimal prediction mode to the calculation unit 33 and the addition unit 40.
  • step S35 the predicted image selection unit 48 determines whether or not the optimal prediction mode is the optimal inter prediction mode.
  • the predicted image selection unit 48 notifies the motion prediction / compensation unit 47 of the selection of the predicted image generated in the optimal inter prediction mode.
  • step S36 the motion prediction / compensation unit 47 supplies the inter prediction mode information, the corresponding motion vector, information for specifying the reference image, and the like to the lossless encoding unit 36, and the process proceeds to step S38.
  • step S35 when it is determined in step S35 that the optimal prediction mode is not the optimal inter prediction mode, that is, when the optimal prediction mode is the optimal intra prediction mode, the predicted image selection unit 48 performs the prediction generated in the optimal intra prediction mode.
  • the intra prediction unit 46 is notified of the image selection.
  • step S37 the intra prediction unit 46 supplies the intra prediction mode information to the lossless encoding unit 36, and the process proceeds to step S38.
  • step S38 the calculation unit 33 performs encoding by subtracting the prediction image supplied from the prediction image selection unit 48 from the image supplied from the screen rearrangement buffer 32.
  • the computing unit 33 outputs the resulting image to the orthogonal transform unit 34 as residual information.
  • step S39 the orthogonal transform unit 34 performs orthogonal transform on the residual information from the calculation unit 33 and supplies the resulting orthogonal transform coefficient to the quantization unit 35.
  • step S40 the quantization unit 35 quantizes the coefficient supplied from the orthogonal transform unit 34 using the quantization parameter supplied from the rate control unit 49.
  • the quantized coefficient is input to the lossless encoding unit 36 and the inverse quantization unit 38.
  • step S41 of FIG. 7 the inverse quantization unit 38 inversely quantizes the quantized coefficient supplied from the quantization unit 35 using the quantization parameter supplied from the rate control unit 49, and obtains the result.
  • the obtained orthogonal transform coefficient is supplied to the inverse orthogonal transform unit 39.
  • step S42 the inverse orthogonal transform unit 39 performs inverse orthogonal transform on the orthogonal transform coefficient supplied from the inverse quantization unit 38, and supplies the residual information obtained as a result to the addition unit 40.
  • step S43 the adding unit 40 adds the residual information supplied from the inverse orthogonal transform unit 39 and the predicted image supplied from the predicted image selecting unit 48, and obtains a locally decoded image.
  • the adder 40 supplies the obtained image to the deblock filter 41 and also supplies it to the frame memory 44.
  • step S44 the deblocking filter 41 performs a deblocking filtering process on the locally decoded image supplied from the adding unit 40.
  • the deblocking filter 41 supplies the resulting image to the adaptive offset filter 42.
  • step S45 the adaptive offset filter 42 performs an adaptive offset filter process on the image supplied from the deblocking filter 41 for each LCU.
  • the adaptive offset filter 42 supplies the resulting image to the adaptive loop filter 43. Further, the adaptive offset filter 42 supplies the storage flag, index or offset, and type information to the lossless encoding unit 36 as offset filter information for each LCU.
  • step S46 the adaptive loop filter 43 performs an adaptive loop filter process for each LCU on the image supplied from the adaptive offset filter.
  • the adaptive loop filter 43 supplies the resulting image to the frame memory 44.
  • the adaptive loop filter 43 also supplies the filter coefficient used in the adaptive loop filter process to the lossless encoding unit 36.
  • step S47 the frame memory 44 stores the image supplied from the adaptive loop filter 43 or the image supplied from the adder 40 as described with reference to FIGS.
  • the image stored in the frame memory 44 is output as a reference image to the intra prediction unit 46 or the motion prediction / compensation unit 47 via the switch 45.
  • the lossless encoding unit 36 includes intra-prediction mode information, inter-prediction mode information, a motion vector, information for specifying a reference image, and the like.
  • the filter coefficient is losslessly encoded as encoded information.
  • step S49 the lossless encoding unit 36 performs lossless encoding on the quantized coefficient supplied from the quantization unit 35. Then, the lossless encoding unit 36 generates encoded data from the encoding information that has been losslessly encoded in the process of step S48 and the coefficient that has been losslessly encoded.
  • step S50 the accumulation buffer 37 temporarily accumulates the encoded data supplied from the lossless encoding unit 36.
  • step S51 the rate control unit 49 determines the quantization parameter used in the quantization unit 35 based on the encoded data stored in the storage buffer 37 so that overflow or underflow does not occur.
  • the rate control unit 49 supplies the determined quantization parameter to the quantization unit 35, the lossless encoding unit 36, and the inverse quantization unit 38.
  • step S52 the accumulation buffer 37 outputs the stored encoded data.
  • the frame memory 44 of the encoding device 11 can reduce the number of reference images that can be stored to five by storing as described with reference to FIGS. Further, as described with reference to FIGS. 3 and 4, the frame memory 44 preferentially stores a decoded image having a display order close to that of the encoding target image as a reference image, so that the encoding target image is a moving image. Or the like, it is possible to suppress deterioration in accuracy of the predicted image.
  • the frame memory 44 preferentially stores a decoded image having a small quantization parameter as a reference image, so that an image to be encoded is a still image or the like. It is possible to suppress deterioration in accuracy of the predicted image.
  • FIG. 8 is a block diagram illustrating a configuration example of an embodiment of a decoding device to which the present technology is applied, which decodes an encoded stream transmitted from the encoding device 11 of FIG.
  • a replacement buffer 139 a D / A conversion unit 140, a frame memory 141, a switch 142, an intra prediction unit 143, a motion compensation unit 144, and a switch 145.
  • the accumulation buffer 131 of the decoding device 113 receives and accumulates the encoded data transmitted from the encoding device 11 of FIG.
  • the accumulation buffer 131 supplies the accumulated encoded data to the lossless decoding unit 132.
  • the lossless decoding unit 132 obtains quantized coefficients and encoded information by performing lossless decoding such as variable length decoding and arithmetic decoding on the encoded data from the accumulation buffer 131.
  • the lossless decoding unit 132 supplies the quantized coefficient to the inverse quantization unit 133.
  • the lossless decoding unit 132 supplies intra prediction mode information and the like as encoded information to the intra prediction unit 143, and provides motion vectors, inter prediction mode information, information for specifying a reference image, and the like to the motion compensation unit 144. Supply.
  • the lossless decoding unit 132 supplies intra prediction mode information or inter prediction mode information as encoded information to the switch 145.
  • the lossless decoding unit 132 supplies offset filter information as encoded information to the adaptive offset filter 137 and supplies filter coefficients to the adaptive loop filter 138.
  • the same processing as that performed by the prediction / compensation unit 47 is performed, whereby the image is decoded.
  • the inverse quantization unit 133 inversely quantizes the quantized coefficient from the lossless decoding unit 132 and supplies the orthogonal transform coefficient obtained as a result to the inverse orthogonal transform unit 134.
  • the inverse orthogonal transform unit 134 performs inverse orthogonal transform on the orthogonal transform coefficient from the inverse quantization unit 133.
  • the inverse orthogonal transform unit 134 supplies residual information obtained as a result of the inverse orthogonal transform to the addition unit 135.
  • the adding unit 135 performs decoding by adding the residual information as the decoding target image supplied from the inverse orthogonal transform unit 134 and the prediction image supplied from the switch 145.
  • the adding unit 135 supplies an image obtained as a result of decoding to the deblocking filter 136 and also supplies it to the frame memory 141.
  • the adding unit 135 supplies the image that is the residual information supplied from the inverse orthogonal transform unit 134 to the deblocking filter 136 as an image obtained as a result of decoding, This is supplied to the frame memory 141.
  • the deblock filter 136 performs an adaptive deblock filter process on the image supplied from the adder 135 and supplies the resulting image to the adaptive offset filter 137.
  • the adaptive offset filter 137 has a buffer for sequentially storing offsets supplied from the lossless decoding unit 132. Further, the adaptive offset filter 137 performs adaptive offset filter processing on the image after the adaptive deblocking filter processing by the deblocking filter 136 based on the offset filter information supplied from the lossless decoding unit 132 for each LCU. .
  • the adaptive offset filter 137 uses the offset included in the offset filter information for the image after the deblocking filter processing in units of LCUs.
  • the type of adaptive offset filter processing indicated by the type information is performed.
  • the adaptive offset filter 137 is stored at the position indicated by the index included in the offset filter information with respect to the image after the deblocking filter processing in units of LCUs. Read the offset. Then, the adaptive offset filter 137 performs the type of adaptive offset filter processing indicated by the type information using the read offset. The adaptive offset filter 137 supplies the image after the adaptive offset filter processing to the adaptive loop filter 138.
  • the adaptive loop filter 138 performs an adaptive loop filter process for each LCU on the image supplied from the adaptive offset filter 137 using the filter coefficient supplied from the lossless decoding unit 132.
  • the adaptive loop filter 138 supplies the resulting image to the frame memory 141 and the screen rearrangement buffer 139.
  • the screen rearrangement buffer 139 stores the image supplied from the adaptive loop filter 138 in units of frames.
  • the screen rearrangement buffer 139 rearranges the stored frame-by-frame images for encoding in the original display order and supplies them to the D / A conversion unit 140.
  • the D / A conversion unit 140 D / A converts the frame unit image supplied from the screen rearrangement buffer 139 and outputs it as an output signal.
  • the frame memory 141 is a DPB, and stores the image supplied from the adaptive loop filter 138 or the image supplied from the adder 135 as a decoded image, similarly to the frame memory 44. Specifically, information for specifying a decoded image stored in the frame memory 44 in FIG. 1, information for specifying the method in FIGS. 2 to 5, and the like are transmitted from the encoding device 11.
  • the frame memory 141 controls the storage of the decoded image in the same manner as the frame memory 44 based on the information transmitted from the encoding device 11.
  • the image stored in the frame memory 141 is read as a reference image, and is supplied to the motion compensation unit 144 or the intra prediction unit 143 via the switch 142.
  • the intra prediction unit 143 performs an intra prediction process in the intra prediction mode indicated by the intra prediction mode information supplied from the lossless decoding unit 132, using the reference image read from the frame memory 141 via the switch 142.
  • the intra prediction unit 143 supplies the prediction image of the decoding target image generated as a result to the switch 145.
  • the motion compensation unit 144 reads the reference image from the frame memory 141 via the switch 142 based on the information for specifying the reference image supplied from the lossless decoding unit 132.
  • the motion compensation unit 144 functions as a predicted image generation unit, and performs motion compensation processing in the optimal inter prediction mode indicated by the inter prediction mode information using the motion vector and the reference image.
  • the motion compensation unit 144 supplies the predicted image of the decoding target image generated as a result to the switch 145.
  • the switch 145 supplies the prediction image supplied from the intra prediction unit 143 to the addition unit 135.
  • the switch 145 supplies the prediction image supplied from the motion compensation unit 144 to the adding unit 135.
  • FIG. 9 is a flowchart for explaining the details of the decoding process of the decoding device 113 of FIG.
  • the accumulation buffer 131 of the decoding device 113 receives and accumulates encoded data in units of frames transmitted from the encoding device 11.
  • the accumulation buffer 131 supplies the accumulated encoded data to the lossless decoding unit 132.
  • step S132 the lossless decoding unit 132 losslessly decodes the encoded data from the accumulation buffer 131 to obtain quantized coefficients and encoded information.
  • the lossless decoding unit 132 supplies the quantized coefficient to the inverse quantization unit 133.
  • the lossless decoding unit 132 supplies intra prediction mode information and the like as encoded information to the intra prediction unit 143, and provides motion vectors, inter prediction mode information, information for specifying a reference image, and the like to the motion compensation unit 144. Supply.
  • the lossless decoding unit 132 supplies intra prediction mode information or inter prediction mode information as encoded information to the switch 145.
  • the lossless decoding unit 132 supplies offset filter information as encoded information to the adaptive offset filter 137 and supplies filter coefficients to the adaptive loop filter 138.
  • step S133 the inverse quantization unit 133 inversely quantizes the quantized coefficient from the lossless decoding unit 132, and supplies the orthogonal transform coefficient obtained as a result to the inverse orthogonal transform unit 134.
  • step S134 the motion compensation unit 144 determines whether or not the inter prediction mode information is supplied from the lossless decoding unit 132. If it is determined in step S134 that the inter prediction mode information has been supplied, the process proceeds to step S135.
  • step S135 the motion compensation unit 144 reads the reference image based on the information for specifying the reference image supplied from the lossless decoding unit 132, and uses the motion vector and the reference image to perform the optimum indicated by the inter prediction mode information. Perform motion compensation processing in inter prediction mode.
  • the motion compensation unit 144 supplies the predicted image generated as a result to the addition unit 135 via the switch 145, and the process proceeds to step S137.
  • step S134 when it is determined in step S134 that the inter prediction mode information is not supplied, that is, when the intra prediction mode information is supplied to the intra prediction unit 143, the process proceeds to step S136.
  • step S136 the intra prediction unit 143 performs intra prediction processing in the intra prediction mode indicated by the intra prediction mode information, using the reference image read from the frame memory 141 via the switch 142.
  • the intra prediction unit 143 supplies the prediction image generated as a result of the intra prediction process to the adding unit 135 via the switch 145, and the process proceeds to step S137.
  • step S137 the inverse orthogonal transform unit 134 performs inverse orthogonal transform on the orthogonal transform coefficient from the inverse quantization unit 133, and supplies the residual information obtained as a result to the addition unit 135.
  • step S138 the adding unit 135 adds the residual information supplied from the inverse orthogonal transform unit 134 and the predicted image supplied from the switch 145.
  • the adding unit 135 supplies the image obtained as a result to the deblocking filter 136 and also supplies it to the frame memory 141.
  • step S139 the deblocking filter 136 performs deblocking filtering on the image supplied from the adding unit 135 to remove block distortion.
  • the deblocking filter 136 supplies the resulting image to the adaptive offset filter 137.
  • step S140 the adaptive offset filter 137 performs adaptive offset filter processing for each LCU on the image after the deblocking filter processing by the deblocking filter 136 based on the offset filter information supplied from the lossless decoding unit 132. .
  • the adaptive offset filter 137 supplies the image after the adaptive offset filter processing to the adaptive loop filter 138.
  • step S141 the adaptive loop filter 138 performs adaptive loop filter processing for each LCU on the image supplied from the adaptive offset filter 137 using the filter coefficient supplied from the lossless decoding unit 132.
  • the adaptive loop filter 138 supplies the resulting image to the frame memory 141 and the screen rearrangement buffer 139.
  • step S142 the frame memory 141 stores the image supplied from the adder 135 or the image supplied from the adaptive loop filter 138 by the method of FIGS. 2 to 5 similar to the frame memory 44 of FIG. .
  • the image stored in the frame memory 141 is supplied as a reference image to the motion compensation unit 144 or the intra prediction unit 143 via the switch 142.
  • step S143 the screen rearrangement buffer 139 stores the image supplied from the adaptive loop filter 138 in units of frames, and rearranges the stored frame-by-frame images for encoding in the original display order. To the D / A converter 140.
  • step S144 the D / A conversion unit 140 D / A converts the frame unit image supplied from the screen rearrangement buffer 139, outputs it as an output signal, and ends the process.
  • the frame memory 141 of the decoding device 113 stores the decoded image by the method of FIGS. 3 to 5 similar to the frame memory 44, thereby reducing the number of reference images that can be stored to five. Can do. Also, the frame memory 141 preferentially stores a decoded image having a display order close to that of the encoding target image as a reference image by the method of FIGS. 3 and 4, so that the encoding target image is a moving image or the like. In some cases, deterioration in accuracy of the predicted image can be suppressed.
  • the frame memory 141 preferentially stores a decoded image having a small quantization parameter as a reference image by the method of FIGS. 4 and 5, so that when the image to be encoded is a still image or the like, the predicted image It is possible to suppress deterioration in accuracy.
  • FIG. 10 shows an example of the multi-view image encoding method.
  • a multi-viewpoint image includes a plurality of viewpoint images, and a predetermined one viewpoint image among the plurality of viewpoints is designated as a base view image.
  • Each viewpoint image other than the base view image is treated as a non-base view image.
  • the image of each view is encoded / decoded.
  • the method of the above-described embodiment is applied to the encoding / decoding of each view. May be. In this way, it is possible to reduce the number of reference images that can be stored while suppressing deterioration in accuracy of the predicted image.
  • dQP (base view) Current_CU_QP (base view)-LCU_QP (base view) (1-2)
  • dQP (base view) Current_CU_QP (base view)-Previsous_CU_QP (base view) (1-3)
  • dQP (base view) Current_CU_QP (base view)-Slice_QP (base view)
  • dQP (non-base view) Current_CU_QP (non-base view)-LCU_QP (non-base view) (2-2)
  • dQP (non-base view) Current QP (non-base view)-Previsous QP (non-base view) (2-3)
  • the above (1) to (4) can be used in combination.
  • a method of obtaining a quantization parameter difference at the slice level between the base view and the non-base view (combining 3-1 and 2-3), between the base view and the non-base view
  • the method of taking the difference of the quantization parameter at the LCU level (combining 3-2 and 2-1) can be considered.
  • the difference can be improved even when multi-viewpoint encoding is performed.
  • a flag for identifying whether or not there is a dQP whose value is not 0 can be set for each of the above dQPs.
  • FIG. 11 is a diagram illustrating a multi-view image encoding apparatus that performs the multi-view image encoding described above.
  • the multi-view image encoding apparatus 600 includes an encoding unit 601, an encoding unit 602, and a multiplexing unit 603.
  • the encoding unit 601 encodes the base view image and generates a base view image encoded stream.
  • the encoding unit 602 encodes the non-base view image and generates a non-base view image encoded stream.
  • the multiplexing unit 603 multiplexes the base view image encoded stream generated by the encoding unit 601 and the non-base view image encoded stream generated by the encoding unit 602 to generate a multi-view image encoded stream. To do.
  • the encoding device 11 can be applied to the encoding unit 601 and the encoding unit 602 of the multi-view image encoding device 600.
  • the multi-view image encoding apparatus 600 sets and transmits a difference value between the quantization parameter set by the encoding unit 601 and the quantization parameter set by the encoding unit 602.
  • FIG. 12 is a diagram illustrating a multi-view image decoding apparatus that performs the above-described multi-view image decoding.
  • the multi-view image decoding device 610 includes a demultiplexing unit 611, a decoding unit 612, and a decoding unit 613.
  • the demultiplexing unit 611 demultiplexes the multi-view image encoded stream in which the base view image encoded stream and the non-base view image encoded stream are multiplexed, and the base view image encoded stream and the non-base view image The encoded stream is extracted.
  • the decoding unit 612 decodes the base view image encoded stream extracted by the demultiplexing unit 611 to obtain a base view image.
  • the decoding unit 613 decodes the non-base view image encoded stream extracted by the demultiplexing unit 611 to obtain a non-base view image.
  • the decoding device 113 can be applied to the decoding unit 612 and the decoding unit 613 of the multi-viewpoint image decoding device 610.
  • the multi-view image decoding device 610 performs inverse quantization by setting the quantization parameter from the difference value between the quantization parameter set by the encoding unit 601 and the quantization parameter set by the encoding unit 602. .
  • FIG. 13 shows an example of a multi-view image encoding method.
  • the hierarchical image includes a plurality of hierarchical images so as to have a scalable function with respect to a predetermined parameter, and an image of a predetermined one of the plurality of hierarchical layers is It is specified in the base layer image. Images in each layer other than the base layer image are treated as non-base layer images.
  • dQP (base layer) Current_CU_QP (base layer)-LCU_QP (base layer) (1-2)
  • dQP (base layer) Current_CU_QP (base layer)-Previsous_CU_QP (base layer) (1-3)
  • dQP (base layer) Current_CU_QP (base layer)-Slice_QP (base layer)
  • non-base-layer (2-1)
  • dQP (non-base layer) Current_CU_QP (non-base layer)-LCU_QP (non-base layer) (2-2)
  • dQP (non-base layer) Current QP (non-base layer)-Previsous QP (non-base layer) (2-3)
  • the above (1) to (4) can be used in combination.
  • the method of taking the difference of the quantization parameter at the LCU level (combining 3-2 and 2-1) can be considered. In this manner, by applying the difference repeatedly, the encoding efficiency can be improved even when hierarchical encoding is performed.
  • a flag for identifying whether or not there is a dQP whose value is not 0 can be set for each of the above dQPs.
  • parameters having a scalable function are arbitrary.
  • the spatial resolution as shown in FIG. 14 may be used as the parameter (spatial scalability).
  • the resolution of the image is different for each layer.
  • each picture has two layers of a base layer having a spatially lower resolution than the original image and an enhancement layer from which the original spatial resolution can be obtained by combining with the base layer. Is layered.
  • this number of hierarchies is an example, and the number of hierarchies can be hierarchized.
  • temporal resolution as shown in FIG. 15 may be applied as a parameter for providing such scalability (temporal scalability).
  • the frame rate is different for each layer.
  • each picture is divided into two layers of a base layer having a lower frame rate than the original moving image and an enhancement layer in which the original frame rate can be obtained by combining with the base layer. Layered.
  • this number of hierarchies is an example, and the number of hierarchies can be hierarchized.
  • a signal-to-noise ratio (SNR (Signal to Noise ratio)) may be applied (SNR ⁇ ⁇ scalability) as a parameter for providing such scalability.
  • SNR Signal-to-noise ratio
  • the SN ratio is different for each layer. That is, in this case, as shown in FIG. 16, each picture is hierarchized into two layers: a base layer having a lower SNR than the original image, and an enhancement layer from which the original SNR is obtained by combining with the base layer.
  • this number of hierarchies is an example, and the number of hierarchies can be hierarchized.
  • bit depth can also be used as a parameter for providing scalability (bit-depth scalability).
  • bit-depth scalability bit depth scalability
  • the bit depth differs for each layer.
  • the base layer is composed of an 8-bit image, and an enhancement layer is added to the base layer, whereby a 10-bit image can be obtained.
  • a chroma format can be used as a parameter for providing scalability (chroma scalability).
  • the chroma format differs for each layer.
  • the base layer is composed of component images in 4: 2: 0 format, and by adding an enhancement layer (enhancement layer) to this, a component image in 4: 2: 2 format can be obtained. Can be.
  • FIG. 17 is a diagram illustrating a hierarchical image encoding apparatus that performs the above-described hierarchical image encoding.
  • the hierarchical image encoding device 620 includes an encoding unit 621, an encoding unit 622, and a multiplexing unit 623.
  • the encoding unit 621 encodes the base layer image and generates a base layer image encoded stream.
  • the encoding unit 622 encodes the non-base layer image and generates a non-base layer image encoded stream.
  • the multiplexing unit 623 multiplexes the base layer image encoded stream generated by the encoding unit 621 and the non-base layer image encoded stream generated by the encoding unit 622 to generate a hierarchical image encoded stream. .
  • the encoding device 11 can be applied to the encoding unit 621 and the encoding unit 622 of the hierarchical image encoding device 620.
  • the hierarchical image encoding device 620 sets and transmits a difference value between the quantization parameter set by the encoding unit 621 and the quantization parameter set by the encoding unit 622.
  • FIG. 18 is a diagram illustrating a hierarchical image decoding apparatus that performs the hierarchical image decoding described above.
  • the hierarchical image decoding device 630 includes a demultiplexing unit 631, a decoding unit 632, and a decoding unit 633.
  • the demultiplexing unit 631 demultiplexes the hierarchical image encoded stream in which the base layer image encoded stream and the non-base layer image encoded stream are multiplexed, and the base layer image encoded stream and the non-base layer image code Stream.
  • the decoding unit 632 decodes the base layer image encoded stream extracted by the demultiplexing unit 631 to obtain a base layer image.
  • the decoding unit 633 decodes the non-base layer image encoded stream extracted by the demultiplexing unit 631 to obtain a non-base layer image.
  • the decoding device 113 can be applied to the decoding unit 632 and the decoding unit 633 of the hierarchical image decoding device 630.
  • the hierarchical image decoding apparatus 630 performs inverse quantization by setting the quantization parameter from the difference value between the quantization parameter set by the encoding unit 621 and the quantization parameter set by the encoding unit 622.
  • the series of processes described above can be executed by hardware or can be executed by software.
  • a program constituting the software is installed in the computer.
  • the computer includes, for example, a general-purpose personal computer capable of executing various functions by installing various programs by installing a computer incorporated in dedicated hardware.
  • FIG. 19 is a block diagram showing an example of the hardware configuration of a computer that executes the above-described series of processing by a program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • an input / output interface 805 is connected to the bus 804.
  • An input unit 806, an output unit 807, a storage unit 808, a communication unit 809, and a drive 810 are connected to the input / output interface 805.
  • the input unit 806 includes a keyboard, a mouse, a microphone, and the like.
  • the output unit 807 includes a display, a speaker, and the like.
  • the storage unit 808 includes a hard disk, a nonvolatile memory, and the like.
  • the communication unit 809 includes a network interface or the like.
  • the drive 810 drives a removable medium 811 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the CPU 801 loads the program stored in the storage unit 808 to the RAM 803 via the input / output interface 805 and the bus 804 and executes the program, for example. Is performed.
  • the program executed by the computer (CPU 801) can be provided by being recorded on a removable medium 811 as a package medium, for example.
  • the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the storage unit 808 via the input / output interface 805 by attaching the removable medium 811 to the drive 810.
  • the program can be received by the communication unit 809 via a wired or wireless transmission medium and installed in the storage unit 808.
  • the program can be installed in the ROM 802 or the storage unit 808 in advance.
  • the program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
  • FIG. 20 illustrates a schematic configuration of a television apparatus to which the present technology is applied.
  • the television apparatus 900 includes an antenna 901, a tuner 902, a demultiplexer 903, a decoder 904, a video signal processing unit 905, a display unit 906, an audio signal processing unit 907, a speaker 908, and an external interface unit 909. Furthermore, the television apparatus 900 includes a control unit 910, a user interface unit 911, and the like.
  • the tuner 902 selects a desired channel from the broadcast wave signal received by the antenna 901, demodulates it, and outputs the obtained encoded bit stream to the demultiplexer 903.
  • the demultiplexer 903 extracts video and audio packets of the program to be viewed from the encoded bit stream, and outputs the extracted packet data to the decoder 904. Further, the demultiplexer 903 supplies a packet of data such as EPG (Electronic Program Guide) to the control unit 910. If scrambling is being performed, descrambling is performed by a demultiplexer or the like.
  • EPG Electronic Program Guide
  • the decoder 904 performs packet decoding processing, and outputs video data generated by the decoding processing to the video signal processing unit 905 and audio data to the audio signal processing unit 907.
  • the video signal processing unit 905 performs noise removal, video processing according to user settings, and the like on the video data.
  • the video signal processing unit 905 generates video data of a program to be displayed on the display unit 906, image data by processing based on an application supplied via a network, and the like.
  • the video signal processing unit 905 generates video data for displaying a menu screen for selecting an item and the like, and superimposes the video data on the video data of the program.
  • the video signal processing unit 905 generates a drive signal based on the video data generated in this way, and drives the display unit 906.
  • the display unit 906 drives a display device (for example, a liquid crystal display element or the like) based on a drive signal from the video signal processing unit 905 to display a program video or the like.
  • a display device for example, a liquid crystal display element or the like
  • the audio signal processing unit 907 performs predetermined processing such as noise removal on the audio data, performs D / A conversion processing and amplification processing on the processed audio data, and outputs the audio data to the speaker 908.
  • the external interface unit 909 is an interface for connecting to an external device or a network, and transmits and receives data such as video data and audio data.
  • a user interface unit 911 is connected to the control unit 910.
  • the user interface unit 911 includes an operation switch, a remote control signal receiving unit, and the like, and supplies an operation signal corresponding to a user operation to the control unit 910.
  • the control unit 910 is configured using a CPU (Central Processing Unit), a memory, and the like.
  • the memory stores a program executed by the CPU, various data necessary for the CPU to perform processing, EPG data, data acquired via a network, and the like.
  • the program stored in the memory is read and executed by the CPU at a predetermined timing such as when the television device 900 is activated.
  • the CPU executes each program to control each unit so that the television device 900 operates in accordance with the user operation.
  • the television device 900 includes a bus 912 for connecting the tuner 902, the demultiplexer 903, the video signal processing unit 905, the audio signal processing unit 907, the external interface unit 909, and the control unit 910.
  • the decoder 904 is provided with the function of the image processing apparatus (image processing method) of the present application. For this reason, it is possible to reduce the number of reference images that can be stored while suppressing deterioration in accuracy of the predicted image.
  • FIG. 21 illustrates a schematic configuration of a mobile phone to which the present technology is applied.
  • the cellular phone 920 includes a communication unit 922, an audio codec 923, a camera unit 926, an image processing unit 927, a demultiplexing unit 928, a recording / reproducing unit 929, a display unit 930, and a control unit 931. These are connected to each other via a bus 933.
  • an antenna 921 is connected to the communication unit 922, and a speaker 924 and a microphone 925 are connected to the audio codec 923. Further, an operation unit 932 is connected to the control unit 931.
  • the mobile phone 920 performs various operations such as transmission / reception of voice signals, transmission / reception of e-mail and image data, image shooting, and data recording in various modes such as a voice call mode and a data communication mode.
  • the voice signal generated by the microphone 925 is converted into voice data and compressed by the voice codec 923 and supplied to the communication unit 922.
  • the communication unit 922 performs audio data modulation processing, frequency conversion processing, and the like to generate a transmission signal.
  • the communication unit 922 supplies a transmission signal to the antenna 921 and transmits it to a base station (not shown).
  • the communication unit 922 performs amplification, frequency conversion processing, demodulation processing, and the like of the reception signal received by the antenna 921, and supplies the obtained audio data to the audio codec 923.
  • the audio codec 923 performs data expansion of the audio data and conversion to an analog audio signal and outputs the result to the speaker 924.
  • the control unit 931 receives character data input by operating the operation unit 932 and displays the input characters on the display unit 930.
  • the control unit 931 generates mail data based on a user instruction or the like in the operation unit 932 and supplies the mail data to the communication unit 922.
  • the communication unit 922 performs mail data modulation processing, frequency conversion processing, and the like, and transmits the obtained transmission signal from the antenna 921.
  • the communication unit 922 performs amplification, frequency conversion processing, demodulation processing, and the like of the reception signal received by the antenna 921, and restores mail data. This mail data is supplied to the display unit 930 to display the mail contents.
  • the mobile phone 920 can also store the received mail data in a storage medium by the recording / playback unit 929.
  • the storage medium is any rewritable storage medium.
  • the storage medium is a removable medium such as a semiconductor memory such as a RAM or a built-in flash memory, a hard disk, a magnetic disk, a magneto-optical disk, an optical disk, a USB memory, or a memory card.
  • the image data generated by the camera unit 926 is supplied to the image processing unit 927.
  • the image processing unit 927 performs encoding processing of image data and generates encoded data.
  • the demultiplexing unit 928 multiplexes the encoded data generated by the image processing unit 927 and the audio data supplied from the audio codec 923 by a predetermined method, and supplies the multiplexed data to the communication unit 922.
  • the communication unit 922 performs modulation processing and frequency conversion processing of multiplexed data, and transmits the obtained transmission signal from the antenna 921.
  • the communication unit 922 performs amplification, frequency conversion processing, demodulation processing, and the like of the reception signal received by the antenna 921, and restores multiplexed data. This multiplexed data is supplied to the demultiplexing unit 928.
  • the demultiplexing unit 928 performs demultiplexing of the multiplexed data, and supplies the encoded data to the image processing unit 927 and the audio data to the audio codec 923.
  • the image processing unit 927 performs a decoding process on the encoded data to generate image data.
  • the image data is supplied to the display unit 930 and the received image is displayed.
  • the audio codec 923 converts the audio data into an analog audio signal, supplies the analog audio signal to the speaker 924, and outputs the received audio.
  • the image processing unit 927 is provided with the function of the image processing device (image processing method) of the present application. For this reason, it is possible to reduce the number of reference images that can be stored while suppressing deterioration in accuracy of the predicted image.
  • FIG. 22 illustrates a schematic configuration of a recording / reproducing apparatus to which the present technology is applied.
  • the recording / reproducing apparatus 940 records, for example, audio data and video data of a received broadcast program on a recording medium, and provides the recorded data to the user at a timing according to a user instruction.
  • the recording / reproducing device 940 can also acquire audio data and video data from another device, for example, and record them on a recording medium. Further, the recording / reproducing apparatus 940 decodes and outputs the audio data and video data recorded on the recording medium, thereby enabling image display and audio output on the monitor apparatus or the like.
  • the recording / reproducing apparatus 940 includes a tuner 941, an external interface unit 942, an encoder 943, an HDD (Hard Disk Drive) unit 944, a disk drive 945, a selector 946, a decoder 947, an OSD (On-Screen Display) unit 948, a control unit 949, A user interface unit 950 is included.
  • Tuner 941 selects a desired channel from a broadcast signal received by an antenna (not shown).
  • the tuner 941 outputs an encoded bit stream obtained by demodulating the received signal of a desired channel to the selector 946.
  • the external interface unit 942 includes at least one of an IEEE 1394 interface, a network interface unit, a USB interface, a flash memory interface, and the like.
  • the external interface unit 942 is an interface for connecting to an external device, a network, a memory card, and the like, and receives data such as video data and audio data to be recorded.
  • the encoder 943 performs encoding by a predetermined method when the video data and audio data supplied from the external interface unit 942 are not encoded, and outputs an encoded bit stream to the selector 946.
  • the HDD unit 944 records content data such as video and audio, various programs, and other data on a built-in hard disk, and reads them from the hard disk during playback.
  • the disk drive 945 records and reproduces signals with respect to the mounted optical disk.
  • An optical disk such as a DVD disk (DVD-Video, DVD-RAM, DVD-R, DVD-RW, DVD + R, DVD + RW, etc.), a Blu-ray (registered trademark) disk, or the like.
  • the selector 946 selects one of the encoded bit streams from the tuner 941 or the encoder 943 and supplies it to either the HDD unit 944 or the disk drive 945 when recording video or audio. Further, the selector 946 supplies the encoded bit stream output from the HDD unit 944 or the disk drive 945 to the decoder 947 at the time of reproduction of video and audio.
  • the decoder 947 performs a decoding process on the encoded bit stream.
  • the decoder 947 supplies the video data generated by performing the decoding process to the OSD unit 948.
  • the decoder 947 outputs audio data generated by performing the decoding process.
  • the OSD unit 948 generates video data for displaying a menu screen for selecting an item and the like, and superimposes it on the video data output from the decoder 947 and outputs the video data.
  • a user interface unit 950 is connected to the control unit 949.
  • the user interface unit 950 includes an operation switch, a remote control signal receiving unit, and the like, and supplies an operation signal corresponding to a user operation to the control unit 949.
  • the control unit 949 is configured using a CPU, a memory, and the like.
  • the memory stores programs executed by the CPU and various data necessary for the CPU to perform processing.
  • the program stored in the memory is read and executed by the CPU at a predetermined timing such as when the recording / reproducing apparatus 940 is activated.
  • the CPU executes the program to control each unit so that the recording / reproducing device 940 operates according to the user operation.
  • the decoder 947 is provided with the function of the image processing apparatus (image processing method) of the present application. For this reason, it is possible to reduce the number of reference images that can be stored while suppressing deterioration in accuracy of the predicted image.
  • FIG. 23 illustrates a schematic configuration of an imaging apparatus to which the present technology is applied.
  • the imaging device 960 images a subject, displays an image of the subject on a display unit, and records it on a recording medium as image data.
  • the imaging device 960 includes an optical block 961, an imaging unit 962, a camera signal processing unit 963, an image data processing unit 964, a display unit 965, an external interface unit 966, a memory unit 967, a media drive 968, an OSD unit 969, and a control unit 970. Have. In addition, a user interface unit 971 is connected to the control unit 970. Furthermore, the image data processing unit 964, the external interface unit 966, the memory unit 967, the media drive 968, the OSD unit 969, the control unit 970, and the like are connected via a bus 972.
  • the optical block 961 is configured using a focus lens, a diaphragm mechanism, and the like.
  • the optical block 961 forms an optical image of the subject on the imaging surface of the imaging unit 962.
  • the imaging unit 962 is configured using a CCD or CMOS image sensor, generates an electrical signal corresponding to the optical image by photoelectric conversion, and supplies the electrical signal to the camera signal processing unit 963.
  • the camera signal processing unit 963 performs various camera signal processing such as knee correction, gamma correction, and color correction on the electrical signal supplied from the imaging unit 962.
  • the camera signal processing unit 963 supplies the image data after the camera signal processing to the image data processing unit 964.
  • the image data processing unit 964 performs an encoding process on the image data supplied from the camera signal processing unit 963.
  • the image data processing unit 964 supplies the encoded data generated by performing the encoding process to the external interface unit 966 and the media drive 968. Further, the image data processing unit 964 performs a decoding process on the encoded data supplied from the external interface unit 966 and the media drive 968.
  • the image data processing unit 964 supplies the image data generated by performing the decoding process to the display unit 965. Further, the image data processing unit 964 superimposes the processing for supplying the image data supplied from the camera signal processing unit 963 to the display unit 965 and the display data acquired from the OSD unit 969 on the image data. To supply.
  • the OSD unit 969 generates display data such as a menu screen and icons made up of symbols, characters, or figures and outputs them to the image data processing unit 964.
  • the external interface unit 966 includes, for example, a USB input / output terminal, and is connected to a printer when printing an image.
  • a drive is connected to the external interface unit 966 as necessary, a removable medium such as a magnetic disk or an optical disk is appropriately mounted, and a computer program read from them is installed as necessary.
  • the external interface unit 966 has a network interface connected to a predetermined network such as a LAN or the Internet.
  • the control unit 970 reads encoded data from the media drive 968 in accordance with an instruction from the user interface unit 971, and supplies the encoded data to the other device connected via the network from the external interface unit 966. it can.
  • the control unit 970 may acquire encoded data and image data supplied from another device via the network via the external interface unit 966 and supply the acquired data to the image data processing unit 964. it can.
  • any readable / writable removable medium such as a magnetic disk, a magneto-optical disk, an optical disk, or a semiconductor memory is used.
  • the recording medium may be any type of removable medium, and may be a tape device, a disk, or a memory card. Of course, a non-contact IC (Integrated Circuit) card may be used.
  • media drive 968 and the recording medium may be integrated and configured by a non-portable storage medium such as a built-in hard disk drive or an SSD (Solid State Drive).
  • a non-portable storage medium such as a built-in hard disk drive or an SSD (Solid State Drive).
  • the control unit 970 is configured using a CPU.
  • the memory unit 967 stores a program executed by the control unit 970, various data necessary for the control unit 970 to perform processing, and the like.
  • the program stored in the memory unit 967 is read and executed by the control unit 970 at a predetermined timing such as when the imaging device 960 is activated.
  • the control unit 970 controls each unit so that the imaging device 960 performs an operation according to a user operation by executing a program.
  • the image data processing unit 964 is provided with the function of the image processing apparatus (image processing method) of the present application. For this reason, it is possible to reduce the number of reference images that can be stored while suppressing deterioration in accuracy of the predicted image.
  • scalable coding is used for selection of data to be transmitted, for example, as in the example shown in FIG.
  • the distribution server 1002 reads the scalable encoded data stored in the scalable encoded data storage unit 1001, and via the network 1003, the personal computer 1004, the AV device 1005, the tablet This is distributed to the terminal device such as the device 1006 and the mobile phone 1007.
  • the distribution server 1002 selects and transmits encoded data of appropriate quality according to the capability of the terminal device, the communication environment, and the like. Even if the distribution server 1002 transmits unnecessarily high-quality data, the terminal device does not always obtain a high-quality image, and may cause a delay or an overflow. Moreover, there is a possibility that the communication band is unnecessarily occupied or the load on the terminal device is unnecessarily increased. On the other hand, even if the distribution server 1002 transmits unnecessarily low quality data, there is a possibility that an image with sufficient image quality cannot be obtained in the terminal device. Therefore, the distribution server 1002 appropriately reads and transmits the scalable encoded data stored in the scalable encoded data storage unit 1001 as encoded data having an appropriate quality with respect to the capability and communication environment of the terminal device. .
  • the scalable encoded data storage unit 1001 stores scalable encoded data (BL + EL) 1011 encoded in a scalable manner.
  • the scalable encoded data (BL + EL) 1011 is encoded data including both a base layer and an enhancement layer, and is a data that can be decoded to obtain both a base layer image and an enhancement layer image. It is.
  • the distribution server 1002 selects an appropriate layer according to the capability of the terminal device that transmits data, the communication environment, and the like, and reads the data of the layer. For example, the distribution server 1002 reads high-quality scalable encoded data (BL + EL) 1011 from the scalable encoded data storage unit 1001 and transmits it to the personal computer 1004 and the tablet device 1006 with high processing capability as they are. . On the other hand, for example, the distribution server 1002 extracts base layer data from the scalable encoded data (BL + EL) 1011 for the AV device 1005 and the cellular phone 1007 having a low processing capability, and performs scalable encoding. Although it is data of the same content as the data (BL + EL) 1011, it is transmitted as scalable encoded data (BL) 1012 having a lower quality than the scalable encoded data (BL + EL) 1011.
  • BL scalable encoded data
  • scalable encoded data By using scalable encoded data in this way, the amount of data can be easily adjusted, so that the occurrence of delay and overflow can be suppressed, and the unnecessary increase in the load on the terminal device and communication medium can be suppressed. be able to.
  • scalable encoded data (BL + EL) 1011 since scalable encoded data (BL + EL) 1011 has reduced redundancy between layers, the amount of data can be reduced as compared with the case where encoded data of each layer is used as individual data. . Therefore, the storage area of the scalable encoded data storage unit 1001 can be used more efficiently.
  • the hardware performance of the terminal device varies depending on the device.
  • the application which a terminal device performs is also various, the capability of the software is also various.
  • the network 1003 serving as a communication medium can be applied to any communication network including wired, wireless, or both, such as the Internet and a LAN (Local Area Network), and has various data transmission capabilities. Furthermore, there is a risk of change due to other communications.
  • the distribution server 1002 communicates with the terminal device that is the data transmission destination before starting data transmission, and the hardware performance of the terminal device, the performance of the application (software) executed by the terminal device, etc. Information regarding the capability of the terminal device and information regarding the communication environment such as the available bandwidth of the network 1003 may be obtained. The distribution server 1002 may select an appropriate layer based on the information obtained here.
  • the layer extraction may be performed by the terminal device.
  • the personal computer 1004 may decode the transmitted scalable encoded data (BL + EL) 1011 and display a base layer image or an enhancement layer image. Further, for example, the personal computer 1004 extracts the base layer scalable encoded data (BL) 1012 from the transmitted scalable encoded data (BL + EL) 1011 and stores it or transfers it to another device. The base layer image may be displayed after decoding.
  • the numbers of the scalable encoded data storage unit 1001, the distribution server 1002, the network 1003, and the terminal devices are arbitrary.
  • the example in which the distribution server 1002 transmits data to the terminal device has been described, but the usage example is not limited to this.
  • the data transmission system 1000 may be any system as long as it transmits a scalable encoded data to a terminal device by selecting an appropriate layer according to the capability of the terminal device or a communication environment. Can be applied to the system.
  • scalable coding is used for transmission via a plurality of communication media, for example, as in the example shown in FIG.
  • the broadcast station 1101 transmits base layer scalable encoded data (BL) 1121 by terrestrial broadcasting 1111. Also, the broadcast station 1101 transmits enhancement layer scalable encoded data (EL) 1122 via an arbitrary network 1112 including a wired or wireless communication network or both (for example, packetized transmission).
  • BL base layer scalable encoded data
  • EL enhancement layer scalable encoded data
  • the terminal apparatus 1102 has a reception function of the terrestrial broadcast 1111 broadcast by the broadcast station 1101 and receives base layer scalable encoded data (BL) 1121 transmitted via the terrestrial broadcast 1111.
  • the terminal apparatus 1102 further has a communication function for performing communication via the network 1112, and receives enhancement layer scalable encoded data (EL) 1122 transmitted via the network 1112.
  • BL base layer scalable encoded data
  • EL enhancement layer scalable encoded data
  • the terminal device 1102 decodes the base layer scalable encoded data (BL) 1121 acquired via the terrestrial broadcast 1111 according to, for example, a user instruction, and obtains or stores a base layer image. Or transmit to other devices.
  • BL base layer scalable encoded data
  • the terminal device 1102 for example, in response to a user instruction, the base layer scalable encoded data (BL) 1121 acquired via the terrestrial broadcast 1111 and the enhancement layer scalable encoded acquired via the network 1112 Data (EL) 1122 is combined to obtain scalable encoded data (BL + EL), or decoded to obtain an enhancement layer image, stored, or transmitted to another device.
  • BL base layer scalable encoded data
  • EL enhancement layer scalable encoded acquired via the network 1112 Data
  • the scalable encoded data can be transmitted via a communication medium that is different for each layer, for example. Therefore, the load can be distributed, and the occurrence of delay and overflow can be suppressed.
  • the communication medium used for transmission may be selected for each layer. For example, scalable encoded data (BL) 1121 of a base layer having a relatively large amount of data is transmitted via a communication medium having a wide bandwidth, and scalable encoded data (EL) 1122 having a relatively small amount of data is transmitted. You may make it transmit via a communication medium with a narrow bandwidth. Further, for example, the communication medium for transmitting the enhancement layer scalable encoded data (EL) 1122 is switched between the network 1112 and the terrestrial broadcast 1111 according to the available bandwidth of the network 1112. May be. Of course, the same applies to data of an arbitrary layer.
  • the number of layers is arbitrary, and the number of communication media used for transmission is also arbitrary.
  • the number of terminal devices 1102 serving as data distribution destinations is also arbitrary.
  • broadcasting from the broadcasting station 1101 has been described as an example, but the usage example is not limited to this.
  • the data transmission system 1100 can be applied to any system as long as it is a system that divides scalable encoded data into a plurality of layers and transmits them through a plurality of lines.
  • scalable coding is used for storing coded data, for example, as in the example shown in FIG.
  • the imaging device 1201 performs scalable coding on image data obtained by imaging the subject 1211, and as scalable coded data (BL + EL) 1221, a scalable coded data storage device 1202. To supply.
  • the scalable encoded data storage device 1202 stores the scalable encoded data (BL + EL) 1221 supplied from the imaging device 1201 with quality according to the situation. For example, in the normal case, the scalable encoded data storage device 1202 extracts base layer data from the scalable encoded data (BL + EL) 1221, and the base layer scalable encoded data ( BL) 1222. On the other hand, for example, in the case of attention, the scalable encoded data storage device 1202 stores scalable encoded data (BL + EL) 1221 with high quality and a large amount of data.
  • the scalable encoded data storage device 1202 can store an image with high image quality only when necessary, so that an increase in the amount of data can be achieved while suppressing a reduction in the value of the image due to image quality degradation. And the use efficiency of the storage area can be improved.
  • the imaging device 1201 is a surveillance camera.
  • the monitoring target for example, an intruder
  • the content of the captured image is likely to be unimportant, so reduction of the data amount is given priority, and the image data (scalable coding Data) is stored in low quality.
  • the image quality is given priority and the image data (scalable) (Encoded data) is stored with high quality.
  • whether it is normal time or attention time may be determined by the scalable encoded data storage device 1202 analyzing an image, for example.
  • the imaging apparatus 1201 may make a determination, and the determination result may be transmitted to the scalable encoded data storage device 1202.
  • the criterion for determining whether the time is normal or noting is arbitrary, and the content of the image as the criterion is arbitrary. Of course, conditions other than the contents of the image can also be used as the criterion. For example, it may be switched according to the volume or waveform of the recorded sound, may be switched at every predetermined time, or may be switched by an external instruction such as a user instruction.
  • the number of states is arbitrary, for example, normal, slightly attention, attention, very attention, etc.
  • three or more states may be switched.
  • the upper limit number of states to be switched depends on the number of layers of scalable encoded data.
  • the imaging apparatus 1201 may determine the number of layers for scalable coding according to the state. For example, in a normal case, the imaging apparatus 1201 may generate base layer scalable encoded data (BL) 1222 with low quality and a small amount of data, and supply the scalable encoded data storage apparatus 1202 to the scalable encoded data storage apparatus 1202. For example, when attention is paid, the imaging device 1201 generates scalable encoded data (BL + EL) 1221 having a high quality and a large amount of data, and supplies the scalable encoded data storage device 1202 to the scalable encoded data storage device 1202. May be.
  • BL base layer scalable encoded data
  • BL + EL scalable encoded data
  • the monitoring camera has been described as an example.
  • the use of the imaging system 1200 is arbitrary and is not limited to the monitoring camera.
  • LCU is the largest CU (Coding Unit), and CTU (Coding Tree Unit) includes the LCU CTB (Coding Tree Block) and parameters for processing on the LCU base (level). Unit.
  • the CU constituting the CTU is a unit including CB (Coding Block) and parameters for processing on the CU base (level).
  • the present invention relates to image media (bitstream) compressed by orthogonal transform such as discrete cosine transform and motion compensation, such as MPEG, H.26x, etc., and network media such as satellite broadcast, cable TV, the Internet, and mobile phones.
  • orthogonal transform such as discrete cosine transform and motion compensation
  • network media such as satellite broadcast, cable TV, the Internet, and mobile phones.
  • the present invention can be applied to an apparatus that is used when transmitting / receiving data via a disk or processing on a storage medium such as an optical, magnetic disk, or flash memory.
  • the encoding method in the present invention may be an encoding method other than the HEVC method.
  • the present technology can have the following configurations.
  • a predicted image generation unit that generates a predicted image of the image using the reference image;
  • An image processing apparatus comprising: a storage unit that preferentially stores the reference image whose display order is close to that of the image.
  • the storage unit preferentially stores the reference image whose display order is close to that of the image, and when the image is a still image, the storage unit prioritizes the reference image having a small quantization parameter.
  • the image processing apparatus according to (1).
  • the image processing apparatus according to any one of (1) to (3), wherein the number of reference images that can be stored in the storage unit is determined based on a size of the image.
  • the image processing device A predicted image generation step of generating a predicted image of the image using the reference image; A storage step of preferentially storing the reference image having a display order close to that of the image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

 本技術は、予測画像の精度の劣化を抑制しつつ、参照画像の記憶可能な枚数を削減することができるようにする画像処理装置および画像処理方法に関する。 動き予測・補償部は、参照画像を用いて符号化対象の画像の予測画像を生成する。フレームメモリは、例えばDPB(Decoded Picture Buffer)であり、符号化対象の画像と表示順が近い参照画像を優先的に記憶する。本技術は、例えば、HEVC(High Efficiency Video Coding)方式の符号化装置に適用することができる。

Description

画像処理装置および画像処理方法
 本技術は、画像処理装置および画像処理方法に関し、特に、予測画像の精度の劣化を抑制しつつ、参照画像の記憶可能な枚数を削減することができるようにした画像処理装置および画像処理方法に関する。
 近年、画像情報をデジタルとして取り扱い、その際、効率の高い情報の伝送、蓄積を目的とし、画像情報特有の冗長性を利用して、離散コサイン変換等の直交変換と動き補償により圧縮するMPEG(Moving Picture Experts Group phase)などの方式に準拠した装置が、放送局などの情報配信、および一般家庭における情報受信の双方において普及しつつある。
 特に、MPEG2(ISO/IEC 13818-2)方式は、汎用画像符号化方式として定義されており、飛び越し走査画像及び順次走査画像の双方、並びに標準解像度画像及び高精細画像を網羅する標準で、プロフェッショナル用途及びコンシューマー用途の広範なアプリケーションに現在広く用いられている。MPEG2方式を用いることにより、例えば720×480画素を持つ標準解像度の飛び越し走査画像であれば4乃至8Mbps、1920×1088画素を持つ高解像度の飛び越し走査画像であれば18乃至22MBpsの符号量(ビットレート)を割り当てることで、高い圧縮率と良好な画質の実現が可能である。
 MPEG2は主として放送用に適合する高画質符号化を対象としていたが、MPEG1より低い符号量(ビットレート)、つまりより高い圧縮率の符号化方式には対応していなかった。携帯端末の普及により、今後そのような符号化方式のニーズは高まると思われ、これに対応してMPEG4符号化方式の標準化が行われた。MPEG4の画像符号化方式に関しては、1998年12月にISO/IEC 14496-2として規格が国際標準に承認された。
 更に、近年、当初テレビ会議用の画像符号化を目的として、H.26L (ITU-T Q6/16 VCEG)という標準の規格化が進んでいる。H.26LはMPEG2やMPEG4といった従来の符号化方式に比べ、その符号化、復号化により多くの演算量が要求されるものの、より高い符号化効率が実現されることが知られている。
 また、現在、MPEG4の活動の一環として、このH.26Lをベースに、H.26Lではサポートされない機能をも取り入れ、より高い符号化効率を実現する標準化がJoint Model of Enhanced-Compression Video Codingとして行われている。この標準化は、2003年3月にH.264及びMPEG-4 Part10(AVC(Advanced Video Coding))という名の元に国際標準化された。
 更に、その拡張として、RGBや4:2:2、4:4:4といった、業務用に必要な符号化ツールや、MPEG-2で規定されていた8x8DCTや量子化マトリクスをも含んだFRExt (Fidelity Range Extension)の標準化が2005年2月に完了し、これにより、AVCは、映画に含まれるフィルムノイズをも良好に表現することが可能な符号化方式となり、Blu-Ray(登録商標) Disc等の幅広いアプリケーションに用いられる運びとなった。
 しかしながら、昨今、ハイビジョン画像の4倍の、4000×2000画素程度の画像を圧縮したい、或いは、インターネットのような、限られた伝送容量の環境において、ハイビジョン画像を配信したいといった、更なる高圧縮率符号化に対するニーズが高まっている。このため、ITU-T傘下のVCEG(Video Coding Expert Group)において、符号化効率の改善に関する検討が継続され行なわれている。
 また、現在、H.264/AVCより更なる符号化効率の向上を目的として、ITU-TとISO/IECとの共同の標準化団体であるJCTVC(Joint Collaboration Team-Video Coding)により、HEVC(High Efficiency Video Coding)と呼ばれる符号化方式の標準化が進められている。HEVC規格については、2012年2月に最初のドラフト版仕様であるCommittee draftが発行されている(例えば、非特許文献1参照)。
Benjamin Bross,Woo-Jin Han,Jens-Rainer Ohm,Gary J.Sullivan,Thomas Wiegand,"High efficiency video coding(HEVC) text specification draft 6",JCTVC-H1003 ver20,2012.2.17
 ところで、HEVC方式においてDPB(Decoded Picture Buffer)に記憶可能な参照画像の枚数をより削減したいという要望がある。
 本技術は、このような状況に鑑みてなされたものであり、予測画像の精度の劣化を抑制しつつ、参照画像の記憶可能な枚数を削減することができるようにするものである。
 本技術の一側面の画像処理装置は、参照画像を用いて画像の予測画像を生成する予測画像生成部と、前記画像と表示順が近い前記参照画像を優先的に記憶する記憶部とを備える画像処理装置である。
 本技術の一側面の画像処理方法は、本技術の一側面の画像処理装置に対応する。
 本技術の一側面においては、参照画像を用いて画像の予測画像が生成され、前記画像と表示順が近い前記参照画像が優先的に記憶される。
 本技術によれば、予測画像の精度の劣化を抑制しつつ、参照画像の記憶可能な枚数を削減することができる。
本技術を適用した符号化装置の一実施の形態の構成例を示すブロック図である。 フレームメモリに記憶される参照画像の第1の例を説明する図である。 フレームメモリに記憶される参照画像の第2の例を説明する図である。 フレームメモリに記憶される参照画像の第3の例を説明する図である。 フレームメモリに記憶される参照画像の第4の例を説明する図である。 図3の符号化装置の符号化処理の詳細を説明するフローチャートである。 図3の符号化装置の符号化処理の詳細を説明するフローチャートである。 本技術を適用した復号装置の一実施の形態の構成例を示すブロック図である。 図8の復号装置の復号処理の詳細を説明するフローチャートである。 多視点画像符号化方式の例を示す図である。 本技術を適用した多視点画像符号化装置の主な構成例を示す図である。 本技術を適用した多視点画像復号装置の主な構成例を示す図である。 階層画像符号化方式の例を示す図である。 スペーシャルなスケーラブル符号化の例を説明する図である。 テンポラルなスケーラブル符号化の例を説明する図である。 信号雑音比のスケーラブル符号化の例を説明する図である。 本技術を適用した階層画像符号化装置の主な構成例を示す図である。 本技術を適用した階層画像復号装置の主な構成例を示す図である。 コンピュータのハードウエアの構成例を示すブロック図である。 本技術を適用したテレビジョン装置の概略構成例を示す図である。 本技術を適用した携帯電話機の概略構成例を示す図である。 本技術を適用した記録再生装置の概略構成例を示す図である。 本技術を適用した撮像装置の概略構成例を示す図である。 スケーラブル符号化利用の一例を示すブロック図である。 スケーラブル符号化利用の他の例を示すブロック図である。 スケーラブル符号化利用のさらに他の例を示すブロック図である。
 <一実施の形態>
 (符号化装置の一実施の形態の構成例)
 図1は、本技術を適用した符号化装置の一実施の形態の構成例を示すブロック図である。
 図1の符号化装置11は、A/D変換部31、画面並べ替えバッファ32、演算部33、直交変換部34、量子化部35、可逆符号化部36、蓄積バッファ37、逆量子化部38、逆直交変換部39、加算部40、デブロックフィルタ41、適応オフセットフィルタ42、適応ループフィルタ43、フレームメモリ44、スイッチ45、イントラ予測部46、動き予測・補償部47、予測画像選択部48、およびレート制御部49により構成される。
 具体的には、符号化装置11のA/D変換部31は、入力信号として入力されたフレーム単位の画像をA/D変換し、画面並べ替えバッファ32に出力して記憶させる。画面並べ替えバッファ32は、記憶した表示の順番のフレーム単位の画像を、GOP構造に応じて、符号化のための順番に並べ替え、演算部33、イントラ予測部46、および動き予測・補償部47に出力する。
 演算部33は、予測画像選択部48から供給される予測画像と、画面並べ替えバッファ32から出力された符号化対象の画像の差分を演算することにより符号化を行う。具体的には、演算部33は、画面並べ替えバッファ32から出力された符号化対象の画像から、予測画像選択部48から供給される予測画像を減算することにより符号化を行う。演算部33は、その結果得られる画像を、残差情報として直交変換部34に出力する。なお、予測画像選択部48から予測画像が供給されない場合、演算部33は、画面並べ替えバッファ32から読み出された画像をそのまま残差情報として直交変換部34に出力する。
 直交変換部34は、演算部33からの残差情報を直交変換し、直交変換係数を生成する。直交変換部34は、生成された直交変換係数を量子化部35に供給する。
 量子化部35は、直交変換部34から供給される直交変換係数に対して、レート制御部49から供給される量子化パラメータを用いて量子化を行う。量子化部35は、その結果得られる係数は、可逆符号化部36に入力される。
 可逆符号化部36は、最適イントラ予測モードを示す情報(以下、イントラ予測モード情報という)をイントラ予測部46から取得する。また、可逆符号化部36は、最適インター予測モードを示す情報(以下、インター予測モード情報という)、動きベクトルなどを動き予測・補償部47から取得する。また、可逆符号化部36は、レート制御部49から量子化パラメータを取得する。
 また、可逆符号化部36は、適応オフセットフィルタ42から格納フラグ、インデックスまたはオフセット、および種類情報をオフセットフィルタ情報として取得し、適応ループフィルタ43からフィルタ係数を取得する。
 可逆符号化部36は、量子化部35から供給される量子化された係数に対して、可変長符号化(例えば、CAVLC(Context-Adaptive Variable Length Coding)など)、算術符号化(例えば、CABAC(Context-Adaptive Binary Arithmetic Coding)など)などの可逆符号化を行う。
 また、可逆符号化部36は、イントラ予測モード情報、または、インター予測モード情報、動きベクトル、参照画像を特定するための情報など、量子化パラメータ、オフセットフィルタ情報、およびフィルタ係数を、符号化に関する符号化情報として可逆符号化する。可逆符号化部36は、可逆符号化された符号化情報と係数を、符号化データとして蓄積バッファ37に供給し、蓄積させる。なお、可逆符号化された符号化情報は、可逆符号化された係数のヘッダ情報(スライスヘッダ)とされてもよい。
 蓄積バッファ37は、可逆符号化部36から供給される符号化データを、一時的に記憶する。また、蓄積バッファ37は、記憶している符号化データを出力する。
 また、量子化部35より出力された、量子化された係数は、逆量子化部38にも入力される。逆量子化部38は、量子化部35により量子化された係数に対して、レート制御部49から供給される量子化パラメータを用いて逆量子化を行い、その結果得られる直交変換係数を逆直交変換部39に供給される。
 逆直交変換部39は、逆量子化部38から供給される直交変換係数に対して逆直交変換を行う。逆直交変換部39は、逆直交変換の結果得られる残差情報を加算部40に供給する。
 加算部40は、逆直交変換部39から供給される残差情報と、予測画像選択部48から供給される予測画像を加算して、局部的に復号された画像を得る。なお、予測画像選択部48から予測画像が供給されない場合、加算部40は、逆直交変換部39から供給される残差情報を局部的に復号された復号画像とする。加算部40は、局部的に復号された画像をデブロックフィルタ41に供給するとともに、フレームメモリ44に供給して蓄積させる。
 デブロックフィルタ41は、加算部40から供給される局部的に復号された画像に対して、ブロック歪を除去する適応デブロックフィルタ処理を行い、その結果得られる画像を適応オフセットフィルタ42に供給する。
 適応オフセットフィルタ42は、デブロックフィルタ41による適応デブロックフィルタ処理後の画像に対して、主にリンギングを除去する適応オフセットフィルタ(SAO: Sample adaptive offset)処理を行う。
 具体的には、適応オフセットフィルタ42は、最大の符号化単位であるLCU(Largest Coding Unit)ごとに適応オフセットフィルタ処理の種類を決定し、その適応オフセットフィルタ処理で用いられるオフセットを求める。適応オフセットフィルタ42は、求められたオフセットを用いて、適応デブロックフィルタ処理後の画像に対して、決定された種類の適応オフセットフィルタ処理を行う。そして、適応オフセットフィルタ42は、適応オフセットフィルタ処理後の画像を適応ループフィルタ43に供給する。
 また、適応オフセットフィルタ42は、オフセットを格納するバッファを有している。適応オフセットフィルタ42は、LCUごとに、適応デブロックフィルタ処理に用いられたオフセットが既にバッファに格納されているかどうかを判定する。
 適応オフセットフィルタ42は、適応デブロックフィルタ処理に用いられたオフセットが既にバッファに格納されていると判定した場合、オフセットがバッファに格納されているかを示す格納フラグを、オフセットがバッファに格納されていることを示す値(ここでは1)に設定する。
 そして、適応オフセットフィルタ42は、LCUごとに、1に設定された格納フラグ、バッファにおけるオフセットの格納位置を示すインデックス、および、行われた適応オフセットフィルタ処理の種類を示す種類情報を可逆符号化部36に供給する。
 一方、適応オフセットフィルタ42は、適応デブロックフィルタ処理に用いられたオフセットがまだバッファに格納されていない場合、そのオフセットを順にバッファに格納する。また、適応オフセットフィルタ42は、格納フラグを、オフセットがバッファに格納されていないことを示す値(ここでは0)に設定する。そして、適応オフセットフィルタ42は、LCUごとに、0に設定された格納フラグ、オフセット、および種類情報を可逆符号化部36に供給する。
 適応ループフィルタ43は、適応オフセットフィルタ42から供給される適応オフセットフィルタ処理後の画像に対して、例えば、LCUごとに、適応ループフィルタ(ALF:Adaptive Loop Filter)処理を行う。適応ループフィルタ処理としては、例えば、2次元のウィナーフィルタ(Wiener Filter)による処理が用いられる。もちろん、ウィナーフィルタ以外のフィルタが用いられてもよい。
 具体的には、適応ループフィルタ43は、LCUごとに、画面並べ替えバッファ32から出力される画像である原画像と適応ループフィルタ処理後の画像の残差が最小となるように、適応ループフィルタ処理で用いられるフィルタ係数を算出する。そして、適応ループフィルタ43は、適応オフセットフィルタ処理後の画像に対して、算出されたフィルタ係数を用いて、LCUごとに適応ループフィルタ処理を行う。
 適応ループフィルタ43は、適応ループフィルタ処理後の画像をフレームメモリ44に供給する。また、適応ループフィルタ43は、フィルタ係数を可逆符号化部36に供給する。
 なお、ここでは、適応ループフィルタ処理は、LCUごとに行われるものとするが、適応ループフィルタ処理の処理単位は、LCUに限定されない。但し、適応オフセットフィルタ42と適応ループフィルタ43の処理単位を合わせることにより、処理を効率的に行うことができる。
 フレームメモリ44は、DPBであり、適応ループフィルタ43から供給される画像、または、加算部40から供給される画像を復号画像として蓄積する。フレームメモリ44に蓄積された復号画像は、参照画像としてスイッチ45を介してイントラ予測部46または動き予測・補償部47に出力される。
 イントラ予測部46は、フレームメモリ44からスイッチ45を介して読み出された参照画像を用いて、候補となる全てのイントラ予測モードのイントラ予測処理を行い、符号化対象の画像の予測画像を生成する。
 また、イントラ予測部46は、画面並べ替えバッファ32から読み出された画像と、イントラ予測処理の結果生成される予測画像とに基づいて、候補となる全てのイントラ予測モードに対してコスト関数値(詳細は後述する)を算出する。そして、イントラ予測部46は、コスト関数値が最小となるイントラ予測モードを、最適イントラ予測モードに決定する。
 イントラ予測部46は、最適イントラ予測モードで生成された予測画像、および、対応するコスト関数値を、予測画像選択部48に供給する。イントラ予測部46は、予測画像選択部48から最適イントラ予測モードで生成された予測画像の選択が通知された場合、イントラ予測モード情報を可逆符号化部36に供給する。
 なお、コスト関数値は、RD(Rate Distortion)コストともいい、例えば、H.264/AVC方式における参照ソフトウエアであるJM(Joint Model)で定められているような、High Complexity モードか、Low Complexity モードのいずれかの手法に基づいて算出される。
 具体的には、コスト関数値の算出手法としてHigh Complexity モードが採用される場合、候補となる全ての予測モードに対して、仮に復号までが行われ、次の式(1)で表わされるコスト関数値が各予測モードに対して算出される。
 Cost(Mode)=D+λ・R                 ・・・(1)
 Dは、原画像と復号画像の差分(歪)、Rは、直交変換の係数まで含んだ発生符号量、λは、量子化パラメータQPの関数として与えられるラグランジュ乗数である。
 一方、コスト関数値の算出手法としてLow Complexity モードが採用される場合、候補となる全ての予測モードに対して、予測画像の生成、および、符号化情報の符号量の算出が行われ、次の式(2)で表わされるコスト関数が各予測モードに対して算出される。
 Cost(Mode)=D+QPtoQuant(QP)・Header_Bit       ・・・(2)
 Dは、原画像と予測画像の差分(歪)、Header_Bitは、符号化情報の符号量、QPtoQuantは、量子化パラメータQPの関数として与えられる関数である。
 Low Complexity モードにおいては、全ての予測モードに対して、予測画像を生成するだけでよく、復号画像を生成する必要がないため、演算量が少なくて済む。
 動き予測・補償部47は、候補となる全てのインター予測モードの動き予測・補償処理を行う。具体的には、動き予測・補償部47は、画面並べ替えバッファ32から供給される画像と、フレームメモリ44からスイッチ45を介して読み出される参照画像に基づいて、候補となる全てのインター予測モードの動きベクトルを検出する。そして、動き予測・補償部47は、予測画像生成部として機能し、その動きベクトルに基づいて参照画像に補償処理を施し、符号化対象の画像の予測画像を生成する。
 このとき、動き予測・補償部47は、画面並べ替えバッファ32から供給される画像と予測画像とに基づいて、候補となる全てのインター予測モードに対してコスト関数値を算出し、コスト関数値が最小となるインター予測モードを最適インター測モードに決定する。そして、動き予測・補償部47は、最適インター予測モードのコスト関数値と、対応する予測画像を予測画像選択部48に供給する。また、動き予測・補償部47は、予測画像選択部48から最適インター予測モードで生成された予測画像の選択が通知された場合、インター予測モード情報、対応する動きベクトル、参照画像を特定するための情報などを可逆符号化部36に出力する。
 予測画像選択部48は、イントラ予測部46および動き予測・補償部47から供給されるコスト関数値に基づいて、最適イントラ予測モードと最適インター予測モードのうちの、対応するコスト関数値が小さい方を、最適予測モードに決定する。そして、予測画像選択部48は、最適予測モードの予測画像を、演算部33および加算部40に供給する。また、予測画像選択部48は、最適予測モードの予測画像の選択をイントラ予測部46または動き予測・補償部47に通知する。
 レート制御部49は、蓄積バッファ37に蓄積された符号化データに基づいて、オーバーフローあるいはアンダーフローが発生しないように、量子化部35で用いられる量子化パラメータを決定する。レート制御部49は、決定された量子化パラメータを、量子化部35、可逆符号化部36、および逆量子化部38に供給する。
 (フレームメモリに記憶される参照画像の第1の例)
 図2は、フレームメモリ44に記憶可能な参照画像の枚数が6枚である場合にフレームメモリ44に記憶される参照画像を説明する図である。
 図2に示すように、フレームメモリ44に記憶可能な参照画像の枚数が6枚である場合、1枚の符号化対象の画像の復号画像と、5枚以下の符号化済みの画像の復号画像とが、フレームメモリ44に記憶される。即ち、フレームメモリ44は、1枚の符号化対象の画像の復号画像を一時的に記憶する一時記憶領域と、5枚以下の符号化済みの画像の復号画像を記憶する長期記憶領域とを有する。
 なお、図2において、Iは、Iピクチャを表し、Bは、Bピクチャを表す。また、IやBの後の数字は、対応するピクチャの表示順を表す。図2において、最上段は、ピクチャを、符号化順(復号順)に並べて記載したものである。上から2番目の段は、最上段のピクチャの表示順(POC(Picture Order Count))を記載したものである。上から3番目の段は、最上段のピクチャの復号時に表示されるピクチャを記載したものである。
 また、上から4番目乃至8番目の段は、最上段のピクチャの符号化時にフレームメモリ44の長期記憶領域に記憶されるピクチャを記載したものである。上から9番目の段は、最上段のピクチャの符号化時のL0予測に参照画像として用いられるピクチャの表示順を表し、上から10番目の段は、最上段のピクチャの符号化時のL1予測に参照画像として用いられるピクチャの表示順を表す。これらのことは、後述する図3乃至図5においても同様である。
 図2に示すように、フレームメモリ44は、符号化対象のピクチャの復号時にまだ表示が終わらないピクチャを、長期記憶領域に記憶する。一方、フレームメモリ44は、符号化対象のピクチャの復号時に表示が済んでおり、参照画像として用いられないピクチャを、長期記憶領域に記憶しない。
 さらに、フレームメモリ44は、符号化対象のピクチャと表示順が近いピクチャよりも、量子化パラメータの小さいピクチャを優先的に長期記憶領域に記憶する。例えば、フレームメモリ44は、表示順が5番目であるBピクチャ(B5ピクチャ)の符号化時に、B5ピクチャと表示順が近い、表示順が2番目であるBピクチャ(B2ピクチャ)よりも、量子化パラメータの小さい、表示順が0番目であるIピクチャ(I0ピクチャ)を優先的に長期記憶領域に記憶する。
 (フレームメモリに記憶される参照画像の第2の例)
 図3は、フレームメモリ44に記憶可能な参照画像の枚数が5枚である場合にフレームメモリ44に記憶される参照画像の第1の例を説明する図である。
 図3に示すように、フレームメモリ44に記憶可能な参照画像の枚数が5枚である場合、1枚の符号化対象の画像の復号画像と、4枚以下の符号化済みの画像の復号画像とが、フレームメモリ44に記憶される。即ち、フレームメモリ44は、1枚の符号化対象の画像の復号画像を一時的に記憶する一時記憶領域と、4枚以下の符号化済みの画像の復号画像を記憶する長期記憶領域とを有する。
 図3に示すように、フレームメモリ44は、符号化対象のピクチャの復号時にまだ表示が終わらないピクチャを、長期記憶領域に記憶する。一方、フレームメモリ44は、符号化対象のピクチャの復号時に表示が済んでおり、参照画像として用いられないピクチャを、長期記憶領域に記憶しない。
 さらに、フレームメモリ44は、符号化対象のピクチャと表示順が近いピクチャを優先的に長期記憶領域に記憶する。例えば、フレームメモリ44は、表示順が6番目であるBピクチャ(B6ピクチャ)の符号化時に、表示順が0番目であるI0ピクチャよりも、B6ピクチャと表示順が近い、表示順が2番目であるB2ピクチャを優先的に長期記憶領域に記憶する。
 (フレームメモリに記憶される参照画像の第3の例)
 図4は、フレームメモリ44に記憶可能な参照画像の枚数が5枚である場合にフレームメモリ44に記憶される参照画像の第2の例を説明する図である。
 上述したように、フレームメモリ44に記憶可能な参照画像の枚数が5枚である場合、フレームメモリ44は、1枚の符号化対象の画像の復号画像を一時的に記憶する一時記憶領域と、4枚以下の符号化済みの画像の復号画像を記憶する長期記憶領域とを有する。
 図4に示すように、フレームメモリ44は、符号化対象のピクチャの復号時にまだ表示が終わらないピクチャを、長期記憶領域に記憶する。一方、フレームメモリ44は、符号化対象のピクチャの復号時に表示が済んでおり、参照画像として用いられないピクチャを、長期記憶領域に記憶しない。
 さらに、フレームメモリ44は、符号化対象のピクチャと表示順が近いピクチャを部分的に優先して長期記憶領域に記憶する。例えば、フレームメモリ44は、表示順が6番目であるB6ピクチャの符号化時に、B6ピクチャと表示順が近い、表示順が2番目であるB2ピクチャよりも、量子化パラメータの小さい、表示順が0番目であるI0ピクチャを優先的に長期記憶領域に記憶する。
 一方、フレームメモリ44は、表示順が7番目であるBピクチャ(B7ピクチャ)の符号化時に、表示順が0番目であるI0ピクチャよりも、B7ピクチャと表示順が近い、表示順が4番目であるBピクチャ(B4ピクチャ)を優先的に長期記憶領域に記憶する。
 (フレームメモリに記憶される参照画像の第4の例)
 図5は、フレームメモリ44に記憶可能な参照画像の枚数が5枚である場合にフレームメモリ44に記憶される参照画像の第3の例を説明する図である。
 上述したように、フレームメモリ44に記憶可能な参照画像の枚数が5枚である場合、フレームメモリ44は、1枚の符号化対象の画像の復号画像を一時的に記憶する一時記憶領域と、4枚以下の符号化済みの画像の復号画像を記憶する長期記憶領域とを有する。
 図5に示すように、フレームメモリ44は、符号化対象のピクチャの復号時にまだ表示が終わらないピクチャを、長期記憶領域に記憶する。一方、フレームメモリ44は、符号化対象のピクチャの復号時に表示が済んでおり、参照画像として用いられないピクチャを、長期記憶領域に記憶しない。
 さらに、フレームメモリ44は、符号化対象のピクチャと表示順が近いピクチャよりも、量子化パラメータの小さいピクチャを優先的に長期記憶領域に記憶する。例えば、フレームメモリ44は、表示順が6番目であるB6ピクチャの符号化時に、B6ピクチャと表示順が近い、表示順が2番目であるB2ピクチャよりも、量子化パラメータの小さい、表示順が0番目であるI0ピクチャを優先的に長期記憶領域に記憶する。
 なお、フレームメモリ44に記憶可能な参照画像の枚数は、符号化対象の画像の大きさ、即ちプロファイルのレベルなどに応じて決定される。例えば、符号化対象の画像が大きい場合、フレームメモリ44に記憶可能な参照画像の枚数は5枚とされ、符号化対象の画像が小さい場合、フレームメモリ44に記憶可能な参照画像の枚数は6枚とされる。
 また、フレームメモリ44に記憶可能な参照画像の枚数が5枚である場合、フレームメモリ44は、図3乃至図5のいずれの方法で参照画像を記憶してもよい。また、符号化対象の画像の種類等に応じて、図3乃至図5の方法が切り替えられるようにしてもよい。この場合、例えば、符号化対象の画像が動画像である場合図3の方法が用いられ、符号化対象の画像が静止画像である場合図5の方法が用いられる。
 (符号化装置の処理の説明)
 図6は、図3の符号化装置11の符号化処理の詳細を説明するフローチャートである。
 図6のステップS31において、符号化装置11のA/D変換部31は、入力信号として入力されたフレーム単位の画像をA/D変換し、画面並べ替えバッファ32に出力して記憶させる。
 ステップS32において、画面並べ替えバッファ32は、記憶した表示の順番のフレームの画像を、GOP構造に応じて、符号化のための順番に並べ替える。画面並べ替えバッファ32は、並べ替え後のフレーム単位の画像を、演算部33、イントラ予測部46、および動き予測・補償部47に供給する。
 ステップS33において、イントラ予測部46は、候補となる全てのイントラ予測モードのイントラ予測処理を行う。また、イントラ予測部46は、画面並べ替えバッファ32から読み出された画像と、イントラ予測処理の結果生成される予測画像とに基づいて、候補となる全てのイントラ予測モードに対してコスト関数値を算出する。そして、イントラ予測部46は、コスト関数値が最小となるイントラ予測モードを、最適イントラ予測モードに決定する。イントラ予測部46は、最適イントラ予測モードで生成された予測画像、および、対応するコスト関数値を、予測画像選択部48に供給する。
 また、動き予測・補償部47は、候補となる全てのインター予測モードの動き予測・補償処理を行う。また、動き予測・補償部47は、画面並べ替えバッファ32から供給される画像と予測画像とに基づいて、候補となる全てのインター予測モードに対してコスト関数値を算出し、コスト関数値が最小となるインター予測モードを最適インター測モードに決定する。そして、動き予測・補償部47は、最適インター予測モードのコスト関数値と、対応する予測画像を予測画像選択部48に供給する。
 ステップS34において、予測画像選択部48は、ステップS33の処理によりイントラ予測部46および動き予測・補償部47から供給されるコスト関数値に基づいて、最適イントラ予測モードと最適インター予測モードのうちのコスト関数値が最小となる方を、最適予測モードに決定する。そして、予測画像選択部48は、最適予測モードの予測画像を、演算部33および加算部40に供給する。
 ステップS35において、予測画像選択部48は、最適予測モードが最適インター予測モードであるかどうかを判定する。ステップS35で最適予測モードが最適インター予測モードであると判定された場合、予測画像選択部48は、最適インター予測モードで生成された予測画像の選択を動き予測・補償部47に通知する。
 そして、ステップS36において、動き予測・補償部47は、インター予測モード情報、対応する動きベクトル、参照画像を特定するための情報などを可逆符号化部36に供給し、処理をステップS38に進める。
 一方、ステップS35で最適予測モードが最適インター予測モードではないと判定された場合、即ち最適予測モードが最適イントラ予測モードである場合、予測画像選択部48は、最適イントラ予測モードで生成された予測画像の選択をイントラ予測部46に通知する。そして、ステップS37において、イントラ予測部46は、イントラ予測モード情報を可逆符号化部36に供給し、処理をステップS38に進める。
 ステップS38において、演算部33は、画面並べ替えバッファ32から供給される画像から、予測画像選択部48から供給される予測画像を減算することにより符号化を行う。演算部33は、その結果得られる画像を、残差情報として直交変換部34に出力する。
 ステップS39において、直交変換部34は、演算部33からの残差情報に対して直交変換を施し、その結果得られる直交変換係数を量子化部35に供給する。
 ステップS40において、量子化部35は、レート制御部49から供給される量子化パラメータを用いて直交変換部34から供給される係数を量子化する。量子化された係数は、可逆符号化部36と逆量子化部38に入力される。
 図7のステップS41において、逆量子化部38は、レート制御部49から供給される量子化パラメータを用いて、量子化部35から供給される量子化された係数を逆量子化し、その結果得られる直交変換係数を逆直交変換部39に供給する。
 ステップS42において、逆直交変換部39は、逆量子化部38から供給される直交変換係数に対して逆直交変換を施し、その結果得られる残差情報を加算部40に供給する。
 ステップS43において、加算部40は、逆直交変換部39から供給される残差情報と、予測画像選択部48から供給される予測画像を加算し、局部的に復号された画像を得る。加算部40は、得られた画像をデブロックフィルタ41に供給するとともに、フレームメモリ44に供給する。
 ステップS44において、デブロックフィルタ41は、加算部40から供給される局部的に復号された画像に対して、デブロッキングフィルタ処理を行う。デブロックフィルタ41は、その結果得られる画像を適応オフセットフィルタ42に供給する。
 ステップS45において、適応オフセットフィルタ42は、デブロックフィルタ41から供給される画像に対して、LCUごとに適応オフセットフィルタ処理を行う。適応オフセットフィルタ42は、その結果得られる画像を適応ループフィルタ43に供給する。また、適応オフセットフィルタ42は、LCUごとに、格納フラグ、インデックスまたはオフセット、および種類情報を、オフセットフィルタ情報として可逆符号化部36に供給する。
 ステップS46において、適応ループフィルタ43は、適応オフセットフィルタ42から供給される画像に対して、LCUごとに適応ループフィルタ処理を行う。適応ループフィルタ43は、その結果得られる画像をフレームメモリ44に供給する。また、適応ループフィルタ43は、適応ループフィルタ処理で用いられたフィルタ係数を可逆符号化部36に供給する。
 ステップS47において、フレームメモリ44は、図2乃至図5で説明したように、適応ループフィルタ43から供給される画像または加算部40から供給される画像を蓄積する。フレームメモリ44に蓄積された画像は、参照画像としてスイッチ45を介してイントラ予測部46または動き予測・補償部47に出力される。
 ステップS48において、可逆符号化部36は、イントラ予測モード情報、または、インター予測モード情報、動きベクトル、参照画像を特定するための情報など、レート制御部49からの量子化パラメータ、オフセットフィルタ情報、およびフィルタ係数を、符号化情報として可逆符号化する。
 ステップS49において、可逆符号化部36は、量子化部35から供給される量子化された係数を可逆符号化する。そして、可逆符号化部36は、ステップS48の処理で可逆符号化された符号化情報と可逆符号化された係数から、符号化データを生成する。
 ステップS50において、蓄積バッファ37は、可逆符号化部36から供給される符号化データを、一時的に蓄積する。
 ステップS51において、レート制御部49は、蓄積バッファ37に蓄積された符号化データに基づいて、オーバーフローあるいはアンダーフローが発生しないように、量子化部35で用いられる量子化パラメータを決定する。レート制御部49は、決定された量子化パラメータを、量子化部35、可逆符号化部36、および逆量子化部38に供給する。
 ステップS52において、蓄積バッファ37は、記憶している符号化データを出力する。
 なお、図6および図7の符号化処理では、説明を簡単化するため、常に、イントラ予測処理と動き予測・補償処理が行われるようにしたが、実際には、ピクチャタイプ等によっていずれか一方のみが行われる場合もある。
 以上のように、符号化装置11のフレームメモリ44は、図3乃至図5で説明したように記憶することにより、参照画像の記憶可能な枚数を5枚に削減することができる。また、フレームメモリ44は、図3や図4で説明したように、符号化対象の画像と表示順が近い復号画像を参照画像として優先的に記憶することにより、符号化対象の画像が動画像などである場合、予測画像の精度の劣化を抑制することができる。
 さらに、フレームメモリ44は、図4や図5で説明したように、量子化パラメータの小さい復号画像を参照画像として優先的に記憶することにより、符号化対象の画像が静止画像などである場合、予測画像の精度の劣化を抑制することができる。
 (復号装置の一実施の形態の構成例)
 図8は、図3の符号化装置11から伝送される符号化ストリームを復号する、本技術を適用した復号装置の一実施の形態の構成例を示すブロック図である。
 図8の復号装置113は、蓄積バッファ131、可逆復号部132、逆量子化部133、逆直交変換部134、加算部135、デブロックフィルタ136、適応オフセットフィルタ137、適応ループフィルタ138、画面並べ替えバッファ139、D/A変換部140、フレームメモリ141、スイッチ142、イントラ予測部143、動き補償部144、およびスイッチ145により構成される。
 復号装置113の蓄積バッファ131は、図3の符号化装置11から伝送されてくる符号化データを受け取り、蓄積する。蓄積バッファ131は、蓄積されている符号化データを可逆復号部132に供給する。
 可逆復号部132は、蓄積バッファ131からの符号化データに対して、可変長復号や、算術復号等の可逆復号を施すことで、量子化された係数と符号化情報を得る。可逆復号部132は、量子化された係数を逆量子化部133に供給する。また、可逆復号部132は、符号化情報としてのイントラ予測モード情報などをイントラ予測部143に供給し、動きベクトル、インター予測モード情報、参照画像を特定するための情報などを動き補償部144に供給する。
 さらに、可逆復号部132は、符号化情報としてのイントラ予測モード情報またはインター予測モード情報をスイッチ145に供給する。可逆復号部132は、符号化情報としてのオフセットフィルタ情報を適応オフセットフィルタ137に供給し、フィルタ係数を適応ループフィルタ138に供給する。
 逆量子化部133、逆直交変換部134、加算部135、デブロックフィルタ136、適応オフセットフィルタ137、適応ループフィルタ138、フレームメモリ141、スイッチ142、イントラ予測部143、および、動き補償部144は、図4の逆量子化部38、逆直交変換部39、加算部40、デブロックフィルタ41、適応オフセットフィルタ42、適応ループフィルタ43、フレームメモリ44、スイッチ45、イントラ予測部46、および、動き予測・補償部47とそれぞれ同様の処理を行い、これにより、画像が復号される。
 具体的には、逆量子化部133は、可逆復号部132からの量子化された係数を逆量子化し、その結果得られる直交変換係数を逆直交変換部134に供給する。
 逆直交変換部134は、逆量子化部133からの直交変換係数に対して逆直交変換を行う。逆直交変換部134は、逆直交変換の結果得られる残差情報を加算部135に供給する。
 加算部135は、逆直交変換部134から供給される復号対象の画像としての残差情報と、スイッチ145から供給される予測画像を加算することにより、復号を行う。加算部135は、復号の結果得られる画像をデブロックフィルタ136に供給するとともに、フレームメモリ141に供給する。なお、スイッチ145から予測画像が供給されない場合、加算部135は、逆直交変換部134から供給される残差情報である画像を復号の結果得られる画像として、デブロックフィルタ136に供給するとともに、フレームメモリ141に供給する。
 デブロックフィルタ136は、加算部135から供給される画像に対して適応デブロックフィルタ処理を行い、その結果得られる画像を適応オフセットフィルタ137に供給する。
 適応オフセットフィルタ137は、可逆復号部132から供給されるオフセットを順に格納するバッファを有する。また、適応オフセットフィルタ137は、LCUごとに、可逆復号部132から供給されるオフセットフィルタ情報に基づいて、デブロックフィルタ136による適応デブロックフィルタ処理後の画像に対して、適応オフセットフィルタ処理を行う。
 具体的には、オフセットフィルタ情報に含まれる格納フラグが0である場合、適応オフセットフィルタ137は、LCU単位のデブロックフィルタ処理後の画像に対して、そのオフセットフィルタ情報に含まれるオフセットを用いて、種類情報が示す種類の適応オフセットフィルタ処理を行う。
 一方、オフセットフィルタ情報に含まれる格納フラグが1である場合、適応オフセットフィルタ137は、LCU単位のデブロックフィルタ処理後の画像に対して、そのオフセットフィルタ情報に含まれるインデックスが示す位置に格納されるオフセットを読み出す。そして、適応オフセットフィルタ137は、読み出されたオフセットを用いて、種類情報が示す種類の適応オフセットフィルタ処理を行う。適応オフセットフィルタ137は、適応オフセットフィルタ処理後の画像を、適応ループフィルタ138に供給する。
 適応ループフィルタ138は、適応オフセットフィルタ137から供給される画像に対して、可逆復号部132から供給されるフィルタ係数を用いて、LCUごとに適応ループフィルタ処理を行う。適応ループフィルタ138は、その結果得られる画像をフレームメモリ141および画面並べ替えバッファ139に供給する。
 画面並べ替えバッファ139は、適応ループフィルタ138から供給される画像をフレーム単位で記憶する。画面並べ替えバッファ139は、記憶した符号化のための順番のフレーム単位の画像を、元の表示の順番に並び替え、D/A変換部140に供給する。
 D/A変換部140は、画面並べ替えバッファ139から供給されるフレーム単位の画像をD/A変換し、出力信号として出力する。
 フレームメモリ141は、DPBであり、フレームメモリ44と同様に、適応ループフィルタ138から供給される画像または加算部135から供給される画像を、復号画像として蓄積する。具体的には、図1のフレームメモリ44に記憶する復号画像を指定する情報や、図2乃至図5の方法を指定する情報等が、符号化装置11から伝送されてくる。フレームメモリ141は、符号化装置11から伝送されてくる情報に基づいて、フレームメモリ44と同様に復号画像の記憶を制御する。フレームメモリ141に蓄積された画像は参照画像として読み出され、スイッチ142を介して動き補償部144またはイントラ予測部143に供給される。
 イントラ予測部143は、フレームメモリ141からスイッチ142を介して読み出された参照画像を用いて、可逆復号部132から供給されるイントラ予測モード情報が示すイントラ予測モードのイントラ予測処理を行う。イントラ予測部143は、その結果生成される復号対象の画像の予測画像をスイッチ145に供給する。
 動き補償部144は、可逆復号部132から供給される参照画像を特定するための情報に基づいて、フレームメモリ141からスイッチ142を介して、参照画像を読み出す。動き補償部144は、予測画像生成部として機能し、動きベクトルと参照画像を用いて、インター予測モード情報が示す最適インター予測モードの動き補償処理を行う。動き補償部144は、その結果生成される復号対象の画像の予測画像をスイッチ145に供給する。
 スイッチ145は、可逆復号部132からイントラ予測モード情報が供給された場合、イントラ予測部143から供給される予測画像を加算部135に供給する。一方、可逆復号部132からインター予測モード情報が供給された場合、スイッチ145は、動き補償部144から供給される予測画像を加算部135に供給する。
 (復号装置の処理の説明)
 図9は、図8の復号装置113の復号処理の詳細を説明するフローチャートである。
 図9のステップS131において、復号装置113の蓄積バッファ131は、符号化装置11から伝送されてくるフレーム単位の符号化データを受け取り、蓄積する。蓄積バッファ131は、蓄積されている符号化データを可逆復号部132に供給する。
 ステップS132において、可逆復号部132は、蓄積バッファ131からの符号化データを可逆復号し、量子化された係数と符号化情報を得る。可逆復号部132は、量子化された係数を逆量子化部133に供給する。また、可逆復号部132は、符号化情報としてのイントラ予測モード情報などをイントラ予測部143に供給し、動きベクトル、インター予測モード情報、参照画像を特定するための情報などを動き補償部144に供給する。
 さらに、可逆復号部132は、符号化情報としてのイントラ予測モード情報またはインター予測モード情報をスイッチ145に供給する。可逆復号部132は、符号化情報としてのオフセットフィルタ情報を適応オフセットフィルタ137に供給し、フィルタ係数を適応ループフィルタ138に供給する。
 ステップS133において、逆量子化部133は、可逆復号部132からの量子化された係数を逆量子化し、その結果得られる直交変換係数を逆直交変換部134に供給する。
 ステップS134において、動き補償部144は、可逆復号部132からインター予測モード情報が供給されたかどうかを判定する。ステップS134でインター予測モード情報が供給されたと判定された場合、処理はステップS135に進む。
 ステップS135において、動き補償部144は、可逆復号部132から供給される参照画像を特定するための情報に基づいて参照画像を読み出し、動きベクトルと参照画像を用いて、インター予測モード情報が示す最適インター予測モードの動き補償処理を行う。動き補償部144は、その結果生成される予測画像を、スイッチ145を介して加算部135に供給し、処理をステップS137に進める。
 一方、ステップS134でインター予測モード情報が供給されていないと判定された場合、即ちイントラ予測モード情報がイントラ予測部143に供給された場合、処理はステップS136に進む。
 ステップS136において、イントラ予測部143は、フレームメモリ141からスイッチ142を介して読み出された参照画像を用いて、イントラ予測モード情報が示すイントラ予測モードのイントラ予測処理を行う。イントラ予測部143は、イントラ予測処理の結果生成される予測画像を、スイッチ145を介して加算部135に供給し、処理をステップS137に進める。
 ステップS137において、逆直交変換部134は、逆量子化部133からの直交変換係数に対して逆直交変換を施し、その結果得られる残差情報を加算部135に供給する。
 ステップS138において、加算部135は、逆直交変換部134から供給される残差情報と、スイッチ145から供給される予測画像を加算する。加算部135は、その結果得られる画像をデブロックフィルタ136に供給するとともに、フレームメモリ141に供給する。
 ステップS139において、デブロックフィルタ136は、加算部135から供給される画像に対してデブロッキングフィルタ処理を行い、ブロック歪を除去する。デブロックフィルタ136は、その結果得られる画像を適応オフセットフィルタ137に供給する。
 ステップS140において、適応オフセットフィルタ137は、可逆復号部132から供給されるオフセットフィルタ情報に基づいて、デブロックフィルタ136によるデブロックフィルタ処理後の画像に対して、LCUごとに適応オフセットフィルタ処理を行う。適応オフセットフィルタ137は、適応オフセットフィルタ処理後の画像を、適応ループフィルタ138に供給する。
 ステップS141において、適応ループフィルタ138は、適応オフセットフィルタ137から供給される画像に対して、可逆復号部132から供給されるフィルタ係数を用いて、LCUごとに適応ループフィルタ処理を行う。適応ループフィルタ138は、その結果得られる画像をフレームメモリ141および画面並べ替えバッファ139に供給する。
 ステップS142において、フレームメモリ141は、図1のフレームメモリ44と同様の図2乃至図5の方法で、加算部135から供給される画像、または、適応ループフィルタ138から供給される画像を蓄積する。フレームメモリ141に蓄積された画像は、参照画像としてスイッチ142を介して動き補償部144またはイントラ予測部143に供給される。
 ステップS143において、画面並べ替えバッファ139は、適応ループフィルタ138から供給される画像をフレーム単位で記憶し、記憶した符号化のための順番のフレーム単位の画像を、元の表示の順番に並び替え、D/A変換部140に供給する。
 ステップS144において、D/A変換部140は、画面並べ替えバッファ139から供給されるフレーム単位の画像をD/A変換し、出力信号として出力し、処理を終了する。
 以上のように、復号装置113のフレームメモリ141は、フレームメモリ44と同様の図3乃至図5の方法で復号画像を記憶することにより、参照画像の記憶可能な枚数を5枚に削減することができる。また、フレームメモリ141は、図3や図4の方法で、符号化対象の画像と表示順が近い復号画像を参照画像として優先的に記憶することにより、符号化対象の画像が動画像などである場合、予測画像の精度の劣化を抑制することができる。
 さらに、フレームメモリ141は、図4や図5の方法で、量子化パラメータの小さい復号画像を参照画像として優先的に記憶することにより、符号化対象の画像が静止画像などである場合、予測画像の精度の劣化を抑制することができる。
(多視点画像符号化・多視点画像復号への適用)
 上述した一連の処理は、多視点画像符号化・多視点画像復号に適用することができる。図10は、多視点画像符号化方式の一例を示す。
 図10に示されるように、多視点画像は、複数の視点の画像を含み、その複数の視点のうちの所定の1つの視点の画像が、ベースビューの画像に指定されている。ベースビューの画像以外の各視点の画像は、ノンベースビューの画像として扱われる。
 図10のような多視点画像符号化を行う場合、各ビューの画像を符号化・復号するが、この各ビューの符号化・復号に対して、上述した実施の形態の方法を適用するようにしてもよい。このようにすることにより、予測画像の精度の劣化を抑制しつつ、参照画像の記憶可能な枚数を削減することができる。
 また、各ビュー(同一ビュー)において、量子化パラメータの差分をとることもできる:
 (1)base-view:
  (1-1) dQP(base view)=Current_CU_QP(base view)-LCU_QP(base view)
  (1-2) dQP(base view)=Current_CU_QP(base view)-Previsous_CU_QP(base view)
  (1-3) dQP(base view)=Current_CU_QP(base view)-Slice_QP(base view)
 (2)non-base-view:
  (2-1) dQP(non-base view)=Current_CU_QP(non-base view)-LCU_QP(non-base view)
  (2-2) dQP(non-base view)=CurrentQP(non-base view)-PrevisousQP(non-base view)
  (2-3) dQP(non-base view)=Current_CU_QP(non-base view)-Slice_QP(non-base view)
 多視点画像符号化を行う場合、各ビュー(異なるビュー)において、量子化パラメータの差分をとることもできる:
 (3)base-view/ non-base view:
  (3-1) dQP(inter-view)=Slice_QP(base view)-Slice_QP(non-base view)
  (3-2) dQP(inter-view)=LCU_QP(base view)-LCU_QP(non-base view)
 (4)non-base view / non-base view :
  (4-1) dQP(inter-view)=Slice_QP(non-base view i)-Slice_QP(non-base view j)
  (4-2) dQP(inter-view)=LCU_QP(non-base view i)-LCU_QP(non-base view j)
 この場合、上記(1)乃至(4)を組み合わせて用いることもできる。たとえば、ノンベースビューでは、ベースビューとノンベースビューとの間においてスライスレベルで量子化パラメータの差分をとる手法(3-1と2-3とを組み合わせる)、ベースビューとノンベースビューとの間においてLCUレベルで量子化パラメータの差分をとる手法(3-2と2-1とを組み合わせる)、が考えられる。このように、差分を繰り返して適用することにより、多視点符号化を行った場合においても、符号化効率を向上させることができる。
 上述した手法と同様に、上記の各dQPに対して、値が0でないdQPが存在するか否かを識別するフラグをセットすることもできる。
 (多視点画像符号化装置の構成例)
 図11は、上述した多視点画像符号化を行う多視点画像符号化装置を示す図である。図11に示されるように、多視点画像符号化装置600は、符号化部601、符号化部602、および多重化部603を有する。
 符号化部601は、ベースビュー画像を符号化し、ベースビュー画像符号化ストリームを生成する。符号化部602は、ノンベースビュー画像を符号化し、ノンベースビュー画像符号化ストリームを生成する。多重化部603は、符号化部601において生成されたベースビュー画像符号化ストリームと、符号化部602において生成されたノンベースビュー画像符号化ストリームとを多重化し、多視点画像符号化ストリームを生成する。
 この多視点画像符号化装置600の符号化部601および符号化部602に対して、符号化装置11を適用することができる。この場合、多視点画像符号化装置600は、符号化部601が設定する量子化パラメータと符号化部602が設定する量子化パラメータとの差分値を設定して、伝送させる。
 (多視点画像復号装置の構成例)
 図12は、上述した多視点画像復号を行う多視点画像復号装置を示す図である。図12に示されるように、多視点画像復号装置610は、逆多重化部611、復号部612、および復号部613を有する。
 逆多重化部611は、ベースビュー画像符号化ストリームとノンベースビュー画像符号化ストリームとが多重化された多視点画像符号化ストリームを逆多重化し、ベースビュー画像符号化ストリームと、ノンベースビュー画像符号化ストリームとを抽出する。復号部612は、逆多重化部611により抽出されたベースビュー画像符号化ストリームを復号し、ベースビュー画像を得る。復号部613は、逆多重化部611により抽出されたノンベースビュー画像符号化ストリームを復号し、ノンベースビュー画像を得る。
 この多視点画像復号装置610の復号部612および復号部613に対して、復号装置113を適用することができる。この場合、多視点画像復号装置610は、符号化部601が設定する量子化パラメータと符号化部602が設定する量子化パラメータとの差分値から量子化パラメータを設定して、逆量子化を行う。
 (階層画像符号化・階層画像復号への適用)
 上述した一連の処理は、階層画像符号化・階層画像復号に適用することができる。図13は、多視点画像符号化方式の一例を示す。
 図13に示されるように、階層画像は、所定のパラメータについてスケーラブル(scalable)機能を有するように、複数の階層の画像を含み、その複数の階層のうちの所定の1つの階層の画像が、ベースレイヤの画像に指定されている。ベースレイヤの画像以外の各階層の画像は、ノンベースレイヤの画像として扱われる。
 図13のような階層画像符号化を行う場合、各レイヤ(同一レイヤ)において、量子化パラメータの差分をとることもできる:
 (1)base-layer:
  (1-1)dQP(base layer)=Current_CU_QP(base layer)-LCU_QP(base layer)
  (1-2)dQP(base layer)=Current_CU_QP(base layer)-Previsous_CU_QP(base layer)
  (1-3)dQP(base layer)=Current_CU_QP(base layer)-Slice_QP(base layer)
 (2)non-base-layer:
  (2-1)dQP(non-base layer)=Current_CU_QP(non-base layer)-LCU_QP(non-base layer)
  (2-2)dQP(non-base layer)=CurrentQP(non-base layer)-PrevisousQP(non-base layer)
  (2-3)dQP(non-base layer)=Current_CU_QP(non-base layer)-Slice_QP(non-base layer)
 階層符号化を行う場合、各レイヤ(異なるレイヤ)において、量子化パラメータの差分をとることもできる:
 (3)base-layer/ non-base layer:
  (3-1)dQP(inter-layer)=Slice_QP(base layer)-Slice_QP(non-base layer)
  (3-2)dQP(inter-layer)=LCU_QP(base layer)-LCU_QP(non-base layer)
 (4)non-base layer / non-base layer :
  (4-1)dQP(inter-layer)=Slice_QP(non-base layer i)-Slice_QP(non-base layer j)
  (4-2)dQP(inter-layer)=LCU_QP(non-base layer i)-LCU_QP(non-base layer j)
 この場合、上記(1)乃至(4)を組み合わせて用いることもできる。たとえば、ノンベースレイヤでは、ベースレイヤとノンベースレイヤとの間においてスライスレベルで量子化パラメータの差分をとる手法(3-1と2-3とを組み合わせる)、ベースレイヤとノンベースレイヤとの間においてLCUレベルで量子化パラメータの差分をとる手法(3-2と2-1とを組み合わせる)、が考えられる。このように、差分を繰り返して適用することにより、階層符号化を行った場合においても、符号化効率を向上させることができる。
 上述した手法と同様に、上記の各dQPに対して、値が0でないdQPが存在するか否かを識別するフラグをセットすることもできる。
  (スケーラブルなパラメータ)
  このような階層画像符号化・階層画像復号(スケーラブル符号化・スケーラブル復号)において、スケーラブル(scalable)機能を有するパラメータは、任意である。例えば、図14に示されるような空間解像度をそのパラメータとしてもよい(spatial scalability)。このスペーシャルスケーラビリティ(spatial scalability)の場合、レイヤ毎に画像の解像度が異なる。つまり、この場合、図14に示されるように、各ピクチャが、元の画像より空間的に低解像度のベースレイヤと、ベースレイヤと合成することにより元の空間解像度が得られるエンハンスメントレイヤの2階層に階層化される。もちろん、この階層数は一例であり、任意の階層数に階層化することができる。
  また、このようなスケーラブル性を持たせるパラメータとして、他には、例えば、図15に示されるような、時間解像度を適用しても良い(temporal scalability)。このテンポラルスケーラビリティ(temporal scalability)の場合、レイヤ毎にフレームレートが異なる。つまり、この場合、図15に示されるように、各ピクチャが、元の動画像より低フレームレートのベースレイヤと、ベースレイヤと合成することにより元のフレームレートが得られるエンハンスメントレイヤの2階層に階層化される。もちろん、この階層数は一例であり、任意の階層数に階層化することができる。
  さらに、このようなスケーラブル性を持たせるパラメータとして、例えば、信号雑音比(SNR(Signal to Noise ratio))を適用しても良い(SNR scalability)。このSNRスケーラビリティ(SNR scalability)の場合、レイヤ毎にSN比が異なる。つまり、この場合、図16に示されるように、各ピクチャが、元の画像よりSNRの低いベースレイヤと、ベースレイヤと合成することにより元のSNRが得られるエンハンスメントレイヤの2階層に階層化される。もちろん、この階層数は一例であり、任意の階層数に階層化することができる。
  スケーラブル性を持たせるパラメータは、上述した例以外であっても、もちろんよい。例えば、スケーラブル性を持たせるパラメータとして、ビット深度を用いることもできる(bit-depth scalability)。このビット深度スケーラビリティ(bit-depth scalability)の場合、レイヤ毎にビット深度が異なる。この場合、例えば、ベースレイヤ(base layer)が8ビット(bit)画像よりなり、これにエンハンスメントレイヤ(enhancement layer)を加えることにより、10ビット(bit)画像が得られるようにすることができる。
  また、スケーラブル性を持たせるパラメータとして、クロマフォーマットを用いることもできる(chroma scalability)。このクロマスケーラビリティ(chroma scalability)の場合、レイヤ毎にクロマフォーマットが異なる。この場合、例えば、ベースレイヤ(base layer)が4:2:0フォーマットのコンポーネント画像よりなり、これにエンハンスメントレイヤ(enhancement layer)を加えることにより、4:2:2フォーマットのコンポーネント画像が得られるようにすることができる。
 (階層画像符号化装置の構成例)
 図17は、上述した階層画像符号化を行う階層画像符号化装置を示す図である。図17に示されるように、階層画像符号化装置620は、符号化部621、符号化部622、および多重化部623を有する。
 符号化部621は、ベースレイヤ画像を符号化し、ベースレイヤ画像符号化ストリームを生成する。符号化部622は、ノンベースレイヤ画像を符号化し、ノンベースレイヤ画像符号化ストリームを生成する。多重化部623は、符号化部621において生成されたベースレイヤ画像符号化ストリームと、符号化部622において生成されたノンベースレイヤ画像符号化ストリームとを多重化し、階層画像符号化ストリームを生成する。
 この階層画像符号化装置620の符号化部621および符号化部622に対して、符号化装置11を適用することができる。この場合、階層画像符号化装置620は、符号化部621が設定する量子化パラメータと符号化部622が設定する量子化パラメータとの差分値を設定して、伝送させる。
 (階層画像復号装置の構成例)
 図18は、上述した階層画像復号を行う階層画像復号装置を示す図である。図18に示されるように、階層画像復号装置630は、逆多重化部631、復号部632、および復号部633を有する。
 逆多重化部631は、ベースレイヤ画像符号化ストリームとノンベースレイヤ画像符号化ストリームとが多重化された階層画像符号化ストリームを逆多重化し、ベースレイヤ画像符号化ストリームと、ノンベースレイヤ画像符号化ストリームとを抽出する。復号部632は、逆多重化部631により抽出されたベースレイヤ画像符号化ストリームを復号し、ベースレイヤ画像を得る。復号部633は、逆多重化部631により抽出されたノンベースレイヤ画像符号化ストリームを復号し、ノンベースレイヤ画像を得る。
 この階層画像復号装置630の復号部632および復号部633に対して、復号装置113を適用することができる。この場合、階層画像復号装置630は、符号化部621が設定する量子化パラメータと符号化部622が設定する量子化パラメータとの差分値から量子化パラメータ設定して、逆量子化を行う。
 (本技術を適用したコンピュータの説明)
 上述した一連の処理は、ハードウエアにより実行することもできるし、ソフトウエアにより実行することもできる。一連の処理をソフトウエアにより実行する場合には、そのソフトウエアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウエアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどが含まれる。
 図19は、上述した一連の処理をプログラムにより実行するコンピュータのハードウエアの構成例を示すブロック図である。
 コンピュータにおいて、CPU(Central Processing Unit)801,ROM(Read Only Memory)802,RAM(Random Access Memory)803は、バス804により相互に接続されている。
 バス804には、さらに、入出力インタフェース805が接続されている。入出力インタフェース805には、入力部806、出力部807、記憶部808、通信部809、及びドライブ810が接続されている。
 入力部806は、キーボード、マウス、マイクロホンなどよりなる。出力部807は、ディスプレイ、スピーカなどよりなる。記憶部808は、ハードディスクや不揮発性のメモリなどよりなる。通信部809は、ネットワークインタフェースなどよりなる。ドライブ810は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブルメディア811を駆動する。
 以上のように構成されるコンピュータでは、CPU801が、例えば、記憶部808に記憶されているプログラムを、入出力インタフェース805及びバス804を介して、RAM803にロードして実行することにより、上述した一連の処理が行われる。
 コンピュータ(CPU801)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア811に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
 コンピュータでは、プログラムは、リムーバブルメディア811をドライブ810に装着することにより、入出力インタフェース805を介して、記憶部808にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部809で受信し、記憶部808にインストールすることができる。その他、プログラムは、ROM802や記憶部808に、あらかじめインストールしておくことができる。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
 (テレビジョン装置の構成例)
 図20は、本技術を適用したテレビジョン装置の概略構成を例示している。テレビジョン装置900は、アンテナ901、チューナ902、デマルチプレクサ903、デコーダ904、映像信号処理部905、表示部906、音声信号処理部907、スピーカ908、外部インタフェース部909を有している。さらに、テレビジョン装置900は、制御部910、ユーザインタフェース部911等を有している。
 チューナ902は、アンテナ901で受信された放送波信号から所望のチャンネルを選局して復調を行い、得られた符号化ビットストリームをデマルチプレクサ903に出力する。
 デマルチプレクサ903は、符号化ビットストリームから視聴対象である番組の映像や音声のパケットを抽出して、抽出したパケットのデータをデコーダ904に出力する。また、デマルチプレクサ903は、EPG(Electronic Program Guide)等のデータのパケットを制御部910に供給する。なお、スクランブルが行われている場合、デマルチプレクサ等でスクランブルの解除を行う。
 デコーダ904は、パケットの復号化処理を行い、復号処理化によって生成された映像データを映像信号処理部905、音声データを音声信号処理部907に出力する。
 映像信号処理部905は、映像データに対して、ノイズ除去やユーザ設定に応じた映像処理等を行う。映像信号処理部905は、表示部906に表示させる番組の映像データや、ネットワークを介して供給されるアプリケーションに基づく処理による画像データなどを生成する。また、映像信号処理部905は、項目の選択などのメニュー画面等を表示するための映像データを生成し、それを番組の映像データに重畳する。映像信号処理部905は、このようにして生成した映像データに基づいて駆動信号を生成して表示部906を駆動する。
 表示部906は、映像信号処理部905からの駆動信号に基づき表示デバイス(例えば液晶表示素子等)を駆動して、番組の映像などを表示させる。
 音声信号処理部907は、音声データに対してノイズ除去などの所定の処理を施し、処理後の音声データのD/A変換処理や増幅処理を行いスピーカ908に供給することで音声出力を行う。
 外部インタフェース部909は、外部機器やネットワークと接続するためのインタフェースであり、映像データや音声データ等のデータ送受信を行う。
 制御部910にはユーザインタフェース部911が接続されている。ユーザインタフェース部911は、操作スイッチやリモートコントロール信号受信部等で構成されており、ユーザ操作に応じた操作信号を制御部910に供給する。
 制御部910は、CPU(Central Processing Unit)やメモリ等を用いて構成されている。メモリは、CPUにより実行されるプログラムやCPUが処理を行う上で必要な各種のデータ、EPGデータ、ネットワークを介して取得されたデータ等を記憶する。メモリに記憶されているプログラムは、テレビジョン装置900の起動時などの所定タイミングでCPUにより読み出されて実行される。CPUは、プログラムを実行することで、テレビジョン装置900がユーザ操作に応じた動作となるように各部を制御する。
 なお、テレビジョン装置900では、チューナ902、デマルチプレクサ903、映像信号処理部905、音声信号処理部907、外部インタフェース部909等と制御部910を接続するためバス912が設けられている。
 このように構成されたテレビジョン装置では、デコーダ904に本願の画像処理装置(画像処理方法)の機能が設けられる。このため、予測画像の精度の劣化を抑制しつつ、参照画像の記憶可能な枚数を削減することができる。
 (携帯電話機の構成例)
 図21は、本技術を適用した携帯電話機の概略構成を例示している。携帯電話機920は、通信部922、音声コーデック923、カメラ部926、画像処理部927、多重分離部928、記録再生部929、表示部930、制御部931を有している。これらは、バス933を介して互いに接続されている。
 また、通信部922にはアンテナ921が接続されており、音声コーデック923には、スピーカ924とマイクロホン925が接続されている。さらに制御部931には、操作部932が接続されている。
 携帯電話機920は、音声通話モードやデータ通信モード等の各種モードで、音声信号の送受信、電子メールや画像データの送受信、画像撮影、またはデータ記録等の各種動作を行う。
 音声通話モードにおいて、マイクロホン925で生成された音声信号は、音声コーデック923で音声データへの変換やデータ圧縮が行われて通信部922に供給される。通信部922は、音声データの変調処理や周波数変換処理等を行い、送信信号を生成する。また、通信部922は、送信信号をアンテナ921に供給して図示しない基地局へ送信する。また、通信部922は、アンテナ921で受信した受信信号の増幅や周波数変換処理および復調処理等を行い、得られた音声データを音声コーデック923に供給する。音声コーデック923は、音声データのデータ伸張やアナログ音声信号への変換を行いスピーカ924に出力する。
 また、データ通信モードにおいて、メール送信を行う場合、制御部931は、操作部932の操作によって入力された文字データを受け付けて、入力された文字を表示部930に表示する。また、制御部931は、操作部932におけるユーザ指示等に基づいてメールデータを生成して通信部922に供給する。通信部922は、メールデータの変調処理や周波数変換処理等を行い、得られた送信信号をアンテナ921から送信する。また、通信部922は、アンテナ921で受信した受信信号の増幅や周波数変換処理および復調処理等を行い、メールデータを復元する。このメールデータを、表示部930に供給して、メール内容の表示を行う。
 なお、携帯電話機920は、受信したメールデータを、記録再生部929で記憶媒体に記憶させることも可能である。記憶媒体は、書き換え可能な任意の記憶媒体である。例えば、記憶媒体は、RAMや内蔵型フラッシュメモリ等の半導体メモリ、ハードディスク、磁気ディスク、光磁気ディスク、光ディスク、USBメモリ、またはメモリカード等のリムーバブルメディアである。
 データ通信モードにおいて画像データを送信する場合、カメラ部926で生成された画像データを、画像処理部927に供給する。画像処理部927は、画像データの符号化処理を行い、符号化データを生成する。
 多重分離部928は、画像処理部927で生成された符号化データと、音声コーデック923から供給された音声データを所定の方式で多重化して通信部922に供給する。通信部922は、多重化データの変調処理や周波数変換処理等を行い、得られた送信信号をアンテナ921から送信する。また、通信部922は、アンテナ921で受信した受信信号の増幅や周波数変換処理および復調処理等を行い、多重化データを復元する。この多重化データを多重分離部928に供給する。多重分離部928は、多重化データの分離を行い、符号化データを画像処理部927、音声データを音声コーデック923に供給する。画像処理部927は、符号化データの復号化処理を行い、画像データを生成する。この画像データを表示部930に供給して、受信した画像の表示を行う。音声コーデック923は、音声データをアナログ音声信号に変換してスピーカ924に供給して、受信した音声を出力する。
 このように構成された携帯電話装置では、画像処理部927に本願の画像処理装置(画像処理方法)の機能が設けられる。このため、予測画像の精度の劣化を抑制しつつ、参照画像の記憶可能な枚数を削減することができる。
 (記録再生装置の構成例)
 図22は、本技術を適用した記録再生装置の概略構成を例示している。記録再生装置940は、例えば受信した放送番組のオーディオデータとビデオデータを、記録媒体に記録して、その記録されたデータをユーザの指示に応じたタイミングでユーザに提供する。また、記録再生装置940は、例えば他の装置からオーディオデータやビデオデータを取得し、それらを記録媒体に記録させることもできる。さらに、記録再生装置940は、記録媒体に記録されているオーディオデータやビデオデータを復号して出力することで、モニタ装置等において画像表示や音声出力を行うことができるようにする。
 記録再生装置940は、チューナ941、外部インタフェース部942、エンコーダ943、HDD(Hard Disk Drive)部944、ディスクドライブ945、セレクタ946、デコーダ947、OSD(On-Screen Display)部948、制御部949、ユーザインタフェース部950を有している。
 チューナ941は、図示しないアンテナで受信された放送信号から所望のチャンネルを選局する。チューナ941は、所望のチャンネルの受信信号を復調して得られた符号化ビットストリームをセレクタ946に出力する。
 外部インタフェース部942は、IEEE1394インタフェース、ネットワークインタフェース部、USBインタフェース、フラッシュメモリインタフェース等の少なくともいずれかで構成されている。外部インタフェース部942は、外部機器やネットワーク、メモリカード等と接続するためのインタフェースであり、記録する映像データや音声データ等のデータ受信を行う。
 エンコーダ943は、外部インタフェース部942から供給された映像データや音声データが符号化されていないとき所定の方式で符号化を行い、符号化ビットストリームをセレクタ946に出力する。
 HDD部944は、映像や音声等のコンテンツデータ、各種プログラムやその他のデータ等を内蔵のハードディスクに記録し、また再生時等にそれらを当該ハードディスクから読み出す。
 ディスクドライブ945は、装着されている光ディスクに対する信号の記録および再生を行う。光ディスク、例えばDVDディスク(DVD-Video、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等)やBlu-ray(登録商標)ディスク等である。
 セレクタ946は、映像や音声の記録時には、チューナ941またはエンコーダ943からのいずれかの符号化ビットストリームを選択して、HDD部944やディスクドライブ945のいずれかに供給する。また、セレクタ946は、映像や音声の再生時に、HDD部944またはディスクドライブ945から出力された符号化ビットストリームをデコーダ947に供給する。
 デコーダ947は、符号化ビットストリームの復号化処理を行う。デコーダ947は、復号処理化を行うことにより生成された映像データをOSD部948に供給する。また、デコーダ947は、復号処理化を行うことにより生成された音声データを出力する。
 OSD部948は、項目の選択などのメニュー画面等を表示するための映像データを生成し、それをデコーダ947から出力された映像データに重畳して出力する。
 制御部949には、ユーザインタフェース部950が接続されている。ユーザインタフェース部950は、操作スイッチやリモートコントロール信号受信部等で構成されており、ユーザ操作に応じた操作信号を制御部949に供給する。
 制御部949は、CPUやメモリ等を用いて構成されている。メモリは、CPUにより実行されるプログラムやCPUが処理を行う上で必要な各種のデータを記憶する。メモリに記憶されているプログラムは、記録再生装置940の起動時などの所定タイミングでCPUにより読み出されて実行される。CPUは、プログラムを実行することで、記録再生装置940がユーザ操作に応じた動作となるように各部を制御する。
 このように構成された記録再生装置では、デコーダ947に本願の画像処理装置(画像処理方法)の機能が設けられる。このため、予測画像の精度の劣化を抑制しつつ、参照画像の記憶可能な枚数を削減することができる。
 (撮像装置の構成例)
 図23は、本技術を適用した撮像装置の概略構成を例示している。撮像装置960は、被写体を撮像し、被写体の画像を表示部に表示させたり、それを画像データとして、記録媒体に記録する。
 撮像装置960は、光学ブロック961、撮像部962、カメラ信号処理部963、画像データ処理部964、表示部965、外部インタフェース部966、メモリ部967、メディアドライブ968、OSD部969、制御部970を有している。また、制御部970には、ユーザインタフェース部971が接続されている。さらに、画像データ処理部964や外部インタフェース部966、メモリ部967、メディアドライブ968、OSD部969、制御部970等は、バス972を介して接続されている。
 光学ブロック961は、フォーカスレンズや絞り機構等を用いて構成されている。光学ブロック961は、被写体の光学像を撮像部962の撮像面に結像させる。撮像部962は、CCDまたはCMOSイメージセンサを用いて構成されており、光電変換によって光学像に応じた電気信号を生成してカメラ信号処理部963に供給する。
 カメラ信号処理部963は、撮像部962から供給された電気信号に対してニー補正やガンマ補正、色補正等の種々のカメラ信号処理を行う。カメラ信号処理部963は、カメラ信号処理後の画像データを画像データ処理部964に供給する。
 画像データ処理部964は、カメラ信号処理部963から供給された画像データの符号化処理を行う。画像データ処理部964は、符号化処理を行うことにより生成された符号化データを外部インタフェース部966やメディアドライブ968に供給する。また、画像データ処理部964は、外部インタフェース部966やメディアドライブ968から供給された符号化データの復号化処理を行う。画像データ処理部964は、復号化処理を行うことにより生成された画像データを表示部965に供給する。また、画像データ処理部964は、カメラ信号処理部963から供給された画像データを表示部965に供給する処理や、OSD部969から取得した表示用データを、画像データに重畳させて表示部965に供給する。
 OSD部969は、記号、文字、または図形からなるメニュー画面やアイコンなどの表示用データを生成して画像データ処理部964に出力する。
 外部インタフェース部966は、例えば、USB入出力端子などで構成され、画像の印刷を行う場合に、プリンタと接続される。また、外部インタフェース部966には、必要に応じてドライブが接続され、磁気ディスク、光ディスク等のリムーバブルメディアが適宜装着され、それらから読み出されたコンピュータプログラムが、必要に応じて、インストールされる。さらに、外部インタフェース部966は、LANやインターネット等の所定のネットワークに接続されるネットワークインタフェースを有する。制御部970は、例えば、ユーザインタフェース部971からの指示にしたがって、メディアドライブ968から符号化データを読み出し、それを外部インタフェース部966から、ネットワークを介して接続される他の装置に供給させることができる。また、制御部970は、ネットワークを介して他の装置から供給される符号化データや画像データを、外部インタフェース部966を介して取得し、それを画像データ処理部964に供給したりすることができる。
 メディアドライブ968で駆動される記録メディアとしては、例えば、磁気ディスク、光磁気ディスク、光ディスク、または半導体メモリ等の、読み書き可能な任意のリムーバブルメディアが用いられる。また、記録メディアは、リムーバブルメディアとしての種類も任意であり、テープデバイスであってもよいし、ディスクであってもよいし、メモリカードであってもよい。もちろん、非接触IC(Integrated Circuit)カード等であってもよい。
 また、メディアドライブ968と記録メディアを一体化し、例えば、内蔵型ハードディスクドライブやSSD(Solid State Drive)等のように、非可搬性の記憶媒体により構成されるようにしてもよい。
 制御部970は、CPUを用いて構成されている。メモリ部967は、制御部970により実行されるプログラムや制御部970が処理を行う上で必要な各種のデータ等を記憶する。メモリ部967に記憶されているプログラムは、撮像装置960の起動時などの所定タイミングで制御部970により読み出されて実行される。制御部970は、プログラムを実行することで、撮像装置960がユーザ操作に応じた動作となるように各部を制御する。
 このように構成された撮像装置では、画像データ処理部964に本願の画像処理装置(画像処理方法)の機能が設けられる。このため、予測画像の精度の劣化を抑制しつつ、参照画像の記憶可能な枚数を削減することができる。
 <スケーラブル符号化の応用例>
 (第1のシステム)
 次に、スケーラブル符号化(階層符号化)されたスケーラブル符号化データの具体的な利用例について説明する。スケーラブル符号化は、例えば、図24に示される例のように、伝送するデータの選択のために利用される。
 図24に示されるデータ伝送システム1000において、配信サーバ1002は、スケーラブル符号化データ記憶部1001に記憶されているスケーラブル符号化データを読み出し、ネットワーク1003を介して、パーソナルコンピュータ1004、AV機器1005、タブレットデバイス1006、および携帯電話機1007等の端末装置に配信する。
 その際、配信サーバ1002は、端末装置の能力や通信環境等に応じて、適切な品質の符号化データを選択して伝送する。配信サーバ1002が不要に高品質なデータを伝送しても、端末装置において高画質な画像を得られるとは限らず、遅延やオーバーフローの発生要因となる恐れがある。また、不要に通信帯域を占有したり、端末装置の負荷を不要に増大させたりしてしまう恐れもある。逆に、配信サーバ1002が不要に低品質なデータを伝送しても、端末装置において十分な画質の画像を得ることができない恐れがある。そのため、配信サーバ1002は、スケーラブル符号化データ記憶部1001に記憶されているスケーラブル符号化データを、適宜、端末装置の能力や通信環境等に対して適切な品質の符号化データとして読み出し、伝送する。
 例えば、スケーラブル符号化データ記憶部1001は、スケーラブルに符号化されたスケーラブル符号化データ(BL+EL)1011を記憶するとする。このスケーラブル符号化データ(BL+EL)1011は、ベースレイヤとエンハンスメントレイヤの両方を含む符号化データであり、復号することにより、ベースレイヤの画像およびエンハンスメントレイヤの画像の両方を得ることができるデータである。
 配信サーバ1002は、データを伝送する端末装置の能力や通信環境等に応じて、適切なレイヤを選択し、そのレイヤのデータを読み出す。例えば、配信サーバ1002は、処理能力の高いパーソナルコンピュータ1004やタブレットデバイス1006に対しては、高品質なスケーラブル符号化データ(BL+EL)1011をスケーラブル符号化データ記憶部1001から読み出し、そのまま伝送する。これに対して、例えば、配信サーバ1002は、処理能力の低いAV機器1005や携帯電話機1007に対しては、スケーラブル符号化データ(BL+EL)1011からベースレイヤのデータを抽出し、スケーラブル符号化データ(BL+EL)1011と同じコンテンツのデータであるが、スケーラブル符号化データ(BL+EL)1011よりも低品質なスケーラブル符号化データ(BL)1012として伝送する。
 このようにスケーラブル符号化データを用いることにより、データ量を容易に調整することができるので、遅延やオーバーフローの発生を抑制したり、端末装置や通信媒体の負荷の不要な増大を抑制したりすることができる。また、スケーラブル符号化データ(BL+EL)1011は、レイヤ間の冗長性が低減されているので、各レイヤの符号化データを個別のデータとする場合よりもそのデータ量を低減させることができる。したがって、スケーラブル符号化データ記憶部1001の記憶領域をより効率よく使用することができる。
 なお、パーソナルコンピュータ1004乃至携帯電話機1007のように、端末装置には様々な装置を適用することができるので、端末装置のハードウエアの性能は、装置によって異なる。また、端末装置が実行するアプリケーションも様々であるので、そのソフトウエアの能力も様々である。さらに、通信媒体となるネットワーク1003も、例えばインターネットやLAN(Local Area Network)等、有線若しくは無線、またはその両方を含むあらゆる通信回線網を適用することができ、そのデータ伝送能力は様々である。さらに、他の通信等によっても変化する恐れがある。
 そこで、配信サーバ1002は、データ伝送を開始する前に、データの伝送先となる端末装置と通信を行い、端末装置のハードウエア性能や、端末装置が実行するアプリケーション(ソフトウエア)の性能等といった端末装置の能力に関する情報、並びに、ネットワーク1003の利用可能帯域幅等の通信環境に関する情報を得るようにしてもよい。そして、配信サーバ1002が、ここで得た情報を基に、適切なレイヤを選択するようにしてもよい。
 なお、レイヤの抽出は、端末装置において行うようにしてもよい。例えば、パーソナルコンピュータ1004が、伝送されたスケーラブル符号化データ(BL+EL)1011を復号し、ベースレイヤの画像を表示しても良いし、エンハンスメントレイヤの画像を表示しても良い。また、例えば、パーソナルコンピュータ1004が、伝送されたスケーラブル符号化データ(BL+EL)1011から、ベースレイヤのスケーラブル符号化データ(BL)1012を抽出し、記憶したり、他の装置に転送したり、復号してベースレイヤの画像を表示したりするようにしてもよい。
 もちろん、スケーラブル符号化データ記憶部1001、配信サーバ1002、ネットワーク1003、および端末装置の数はいずれも任意である。また、以上においては、配信サーバ1002がデータを端末装置に伝送する例について説明したが、利用例はこれに限定されない。データ伝送システム1000は、スケーラブル符号化された符号化データを端末装置に伝送する際、端末装置の能力や通信環境等に応じて、適切なレイヤを選択して伝送するシステムであれば、任意のシステムに適用することができる。
 (第2のシステム)
 また、スケーラブル符号化は、例えば、図25に示される例のように、複数の通信媒体を介する伝送のために利用される。
 図25に示されるデータ伝送システム1100において、放送局1101は、地上波放送1111により、ベースレイヤのスケーラブル符号化データ(BL)1121を伝送する。また、放送局1101は、有線若しくは無線またはその両方の通信網よりなる任意のネットワーク1112を介して、エンハンスメントレイヤのスケーラブル符号化データ(EL)1122を伝送する(例えばパケット化して伝送する)。
 端末装置1102は、放送局1101が放送する地上波放送1111の受信機能を有し、この地上波放送1111を介して伝送されるベースレイヤのスケーラブル符号化データ(BL)1121を受け取る。また、端末装置1102は、ネットワーク1112を介した通信を行う通信機能をさらに有し、このネットワーク1112を介して伝送されるエンハンスメントレイヤのスケーラブル符号化データ(EL)1122を受け取る。
 端末装置1102は、例えばユーザ指示等に応じて、地上波放送1111を介して取得したベースレイヤのスケーラブル符号化データ(BL)1121を、復号してベースレイヤの画像を得たり、記憶したり、他の装置に伝送したりする。
 また、端末装置1102は、例えばユーザ指示等に応じて、地上波放送1111を介して取得したベースレイヤのスケーラブル符号化データ(BL)1121と、ネットワーク1112を介して取得したエンハンスメントレイヤのスケーラブル符号化データ(EL)1122とを合成して、スケーラブル符号化データ(BL+EL)を得たり、それを復号してエンハンスメントレイヤの画像を得たり、記憶したり、他の装置に伝送したりする。
 以上のように、スケーラブル符号化データは、例えばレイヤ毎に異なる通信媒体を介して伝送させることができる。したがって、負荷を分散させることができ、遅延やオーバーフローの発生を抑制することができる。
 また、状況に応じて、伝送に使用する通信媒体を、レイヤ毎に選択することができるようにしてもよい。例えば、データ量が比較的多いベースレイヤのスケーラブル符号化データ(BL)1121を帯域幅の広い通信媒体を介して伝送させ、データ量が比較的少ないエンハンスメントレイヤのスケーラブル符号化データ(EL)1122を帯域幅の狭い通信媒体を介して伝送させるようにしてもよい。また、例えば、エンハンスメントレイヤのスケーラブル符号化データ(EL)1122を伝送する通信媒体を、ネットワーク1112とするか、地上波放送1111とするかを、ネットワーク1112の利用可能帯域幅に応じて切り替えるようにしてもよい。もちろん、任意のレイヤのデータについて同様である。
 このように制御することにより、データ伝送における負荷の増大を、より抑制することができる。
 もちろん、レイヤ数は任意であり、伝送に利用する通信媒体の数も任意である。また、データ配信先となる端末装置1102の数も任意である。さらに、以上においては、放送局1101からの放送を例に説明したが、利用例はこれに限定されない。データ伝送システム1100は、スケーラブル符号化された符号化データを、レイヤを単位として複数に分割し、複数の回線を介して伝送するシステムであれば、任意のシステムに適用することができる。
 (第3のシステム)
 また、スケーラブル符号化は、例えば、図26に示される例のように、符号化データの記憶に利用される。
 図26に示される撮像システム1200において、撮像装置1201は、被写体1211を撮像して得られた画像データをスケーラブル符号化し、スケーラブル符号化データ(BL+EL)1221として、スケーラブル符号化データ記憶装置1202に供給する。
 スケーラブル符号化データ記憶装置1202は、撮像装置1201から供給されるスケーラブル符号化データ(BL+EL)1221を、状況に応じた品質で記憶する。例えば、通常時の場合、スケーラブル符号化データ記憶装置1202は、スケーラブル符号化データ(BL+EL)1221からベースレイヤのデータを抽出し、低品質でデータ量の少ないベースレイヤのスケーラブル符号化データ(BL)1222として記憶する。これに対して、例えば、注目時の場合、スケーラブル符号化データ記憶装置1202は、高品質でデータ量の多いスケーラブル符号化データ(BL+EL)1221のまま記憶する。
 このようにすることにより、スケーラブル符号化データ記憶装置1202は、必要な場合のみ、画像を高画質に保存することができるので、画質劣化による画像の価値の低減を抑制しながら、データ量の増大を抑制することができ、記憶領域の利用効率を向上させることができる。
 例えば、撮像装置1201が監視カメラであるとする。撮像画像に監視対象(例えば侵入者)が写っていない場合(通常時の場合)、撮像画像の内容は重要でない可能性が高いので、データ量の低減が優先され、その画像データ(スケーラブル符号化データ)は、低品質に記憶される。これに対して、撮像画像に監視対象が被写体1211として写っている場合(注目時の場合)、その撮像画像の内容は重要である可能性が高いので、画質が優先され、その画像データ(スケーラブル符号化データ)は、高品質に記憶される。
 なお、通常時であるか注目時であるかは、例えば、スケーラブル符号化データ記憶装置1202が、画像を解析することにより判定しても良い。また、撮像装置1201が判定し、その判定結果をスケーラブル符号化データ記憶装置1202に伝送するようにしてもよい。
 なお、通常時であるか注目時であるかの判定基準は任意であり、判定基準とする画像の内容は任意である。もちろん、画像の内容以外の条件を判定基準とすることもできる。例えば、収録した音声の大きさや波形等に応じて切り替えるようにしてもよいし、所定の時間毎に切り替えるようにしてもよいし、ユーザ指示等の外部からの指示によって切り替えるようにしてもよい。
 また、以上においては、通常時と注目時の2つの状態を切り替える例を説明したが、状態の数は任意であり、例えば、通常時、やや注目時、注目時、非常に注目時等のように、3つ以上の状態を切り替えるようにしてもよい。ただし、この切り替える状態の上限数は、スケーラブル符号化データのレイヤ数に依存する。
 また、撮像装置1201が、スケーラブル符号化のレイヤ数を、状態に応じて決定するようにしてもよい。例えば、通常時の場合、撮像装置1201が、低品質でデータ量の少ないベースレイヤのスケーラブル符号化データ(BL)1222を生成し、スケーラブル符号化データ記憶装置1202に供給するようにしてもよい。また、例えば、注目時の場合、撮像装置1201が、高品質でデータ量の多いベースレイヤのスケーラブル符号化データ(BL+EL)1221を生成し、スケーラブル符号化データ記憶装置1202に供給するようにしてもよい。
 以上においては、監視カメラを例に説明したが、この撮像システム1200の用途は任意であり、監視カメラに限定されない。
 また、LCUとは、最大のサイズのCU(Coding Unit)であり、CTU(Coding Tree Unit)は、LCUのCTB(Coding Tree Block)と、そのLCUベース(レベル)で処理するときのパラメータを含む単位である。また、CTUを構成するCUは、CB(Coding Block)と、そのCUベース(レベル)で処理するときのパラメータを含む単位である。
 本発明は、MPEG,H.26x等のように、離散コサイン変換等の直交変換と動き補償によって圧縮された画像情報(ビットストリーム)を、衛星放送、ケーブルTV、インターネット、携帯電話などのネットワークメディアを介して送受信する際に、若しくは光、磁気ディスク、フラッシュメモリのような記憶メディア上で処理する際に用いられる装置に適用することができる。
 また、本発明における符号化方式は、HEVC方式以外の符号化方式であってもよい。
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 また、本技術は、以下のような構成もとることができる。
 (1)
 参照画像を用いて画像の予測画像を生成する予測画像生成部と、
 前記画像と表示順が近い前記参照画像を優先的に記憶する記憶部と
 を備える画像処理装置。
 (2)
 前記記憶部は、前記画像が動画像である場合、前記画像と表示順が近い前記参照画像を優先的に記憶し、前記画像が静止画像である場合、量子化パラメータの小さい前記参照画像を優先的に記憶する
 前記(1)に記載の画像処理装置。
 (3)
 前記記憶部は、前記画像が静止画像である場合、前記参照画像としてのIピクチャを優先的に記憶する
 前記(2)に記載の画像処理装置。
 (4)
 前記記憶部に記憶可能な前記参照画像の枚数は、前記画像のサイズに基づいて決定される
 前記(1)乃至(3)のいずれかに記載の画像処理装置。
 (5)
 画像処理装置が、
 参照画像を用いて、画像の予測画像を生成する予測画像生成ステップと、
 前記画像と表示順が近い前記参照画像を優先的に記憶する記憶ステップと
 を含む画像処理方法。
 11 符号化装置, 44 フレームメモリ, 47 動き予測・補償部, 113 復号装置, 141 フレームメモリ, 144 動き補償部

Claims (5)

  1.  参照画像を用いて画像の予測画像を生成する予測画像生成部と、
     前記画像と表示順が近い前記参照画像を優先的に記憶する記憶部と
     を備える画像処理装置。
  2.  前記記憶部は、前記画像が動画像である場合、前記画像と表示順が近い前記参照画像を優先的に記憶し、前記画像が静止画像である場合、量子化パラメータの小さい前記参照画像を優先的に記憶する
     請求項1に記載の画像処理装置。
  3.  前記記憶部は、前記画像が静止画像である場合、前記参照画像としてのIピクチャを優先的に記憶する
     請求項2に記載の画像処理装置。
  4.  前記記憶部に記憶可能な前記参照画像の枚数は、前記画像のサイズに基づいて決定される
     請求項1に記載の画像処理装置。
  5.  画像処理装置が、
     参照画像を用いて、画像の予測画像を生成する予測画像生成ステップと、
     前記画像と表示順が近い前記参照画像を優先的に記憶する記憶ステップと
     を含む画像処理方法。
PCT/JP2013/067113 2012-06-29 2013-06-21 画像処理装置および画像処理方法 WO2014002900A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/402,238 US20150139310A1 (en) 2012-06-29 2013-06-21 Image processing apparatus and image processing method
JP2014522598A JPWO2014002900A1 (ja) 2012-06-29 2013-06-21 画像処理装置および画像処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-147884 2012-06-29
JP2012147884 2012-06-29

Publications (1)

Publication Number Publication Date
WO2014002900A1 true WO2014002900A1 (ja) 2014-01-03

Family

ID=49783052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067113 WO2014002900A1 (ja) 2012-06-29 2013-06-21 画像処理装置および画像処理方法

Country Status (3)

Country Link
US (1) US20150139310A1 (ja)
JP (1) JPWO2014002900A1 (ja)
WO (1) WO2014002900A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI694715B (zh) 2012-06-29 2020-05-21 愛爾蘭商維洛思媒介國際公司 資訊處理設備及資訊處理方法
US9998746B2 (en) * 2016-02-10 2018-06-12 Amazon Technologies, Inc. Video decoder memory optimization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064947A1 (ja) * 2003-12-25 2005-07-14 Nec Corporation 動画像符号化方法及び装置
WO2008105389A1 (ja) * 2007-02-28 2008-09-04 Sony Corporation 画像情報符号化装置及び符号化方法
WO2009095962A1 (ja) * 2008-01-29 2009-08-06 Panasonic Corporation 画像符号化装置、画像符号化方法、画像符号化集積回路および画像符号化プログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2208950A1 (en) * 1996-07-03 1998-01-03 Xuemin Chen Rate control for stereoscopic digital video encoding
JP2000172852A (ja) * 1998-09-28 2000-06-23 Canon Inc 画像処理方法、装置および記録媒体
DE10300048B4 (de) * 2002-01-05 2005-05-12 Samsung Electronics Co., Ltd., Suwon Verfahren und Vorrichtung zur Bildcodierung und -decodierung
US9247259B2 (en) * 2006-10-10 2016-01-26 Flash Networks Ltd. Control of video compression based on file size constraint
US9113194B2 (en) * 2007-12-19 2015-08-18 Arris Technology, Inc. Method and system for interleaving video and data for transmission over a network at a selected bit rate
JP2010016454A (ja) * 2008-07-01 2010-01-21 Sony Corp 画像符号化装置および方法、画像復号装置および方法、並びにプログラム
EP2345258A4 (en) * 2008-11-12 2012-04-25 Thomson Licensing ELIMINATION OF FRAME SCINTILLE I FOR MULTIPHREAD VIDEO CODING PARALLEL TO THE GOP
JP2011082683A (ja) * 2009-10-05 2011-04-21 Sony Corp 画像処理装置、画像処理方法、及び、プログラム
US8873627B2 (en) * 2010-12-07 2014-10-28 Mediatek Inc Method and apparatus of video coding using picture structure with low-delay hierarchical B group
US9516379B2 (en) * 2011-03-08 2016-12-06 Qualcomm Incorporated Buffer management in video codecs

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064947A1 (ja) * 2003-12-25 2005-07-14 Nec Corporation 動画像符号化方法及び装置
WO2008105389A1 (ja) * 2007-02-28 2008-09-04 Sony Corporation 画像情報符号化装置及び符号化方法
WO2009095962A1 (ja) * 2008-01-29 2009-08-06 Panasonic Corporation 画像符号化装置、画像符号化方法、画像符号化集積回路および画像符号化プログラム

Also Published As

Publication number Publication date
US20150139310A1 (en) 2015-05-21
JPWO2014002900A1 (ja) 2016-05-30

Similar Documents

Publication Publication Date Title
US8811480B2 (en) Encoding apparatus, encoding method, decoding apparatus, and decoding method
WO2014002896A1 (ja) 符号化装置および符号化方法、復号装置および復号方法
JP6358475B2 (ja) 画像復号装置および方法、並びに、画像符号化装置および方法
US20150043637A1 (en) Image processing device and method
KR102338523B1 (ko) 디코딩 디바이스, 디코딩 방법, 인코딩 디바이스, 및 인코딩 방법
WO2015053115A1 (ja) 復号装置および復号方法、並びに、符号化装置および符号化方法
US10085038B2 (en) Encoding device, encoding method, decoding device, and decoding method
US20150036744A1 (en) Image processing apparatus and image processing method
US9930353B2 (en) Image decoding device and method
WO2015053116A1 (ja) 復号装置および復号方法、並びに、符号化装置および符号化方法
WO2015098561A1 (ja) 復号装置および復号方法、並びに、符号化装置および符号化方法
WO2013108688A1 (ja) 画像処理装置および方法
JP2015005899A (ja) 復号装置および復号方法、並びに、符号化装置および符号化方法
US20150312581A1 (en) Image processing device and method
WO2014050732A1 (ja) 符号化装置および符号化方法、並びに、復号装置および復号方法
WO2014002900A1 (ja) 画像処理装置および画像処理方法
JP6477930B2 (ja) 符号化装置および符号化方法
US20160286218A1 (en) Image encoding device and method, and image decoding device and method
WO2014141899A1 (ja) 画像処理装置および方法
WO2015053111A1 (ja) 復号装置および復号方法、並びに、符号化装置および符号化方法
JP2015050738A (ja) 復号装置および復号方法、並びに、符号化装置および符号化方法
WO2014156705A1 (ja) 復号装置および復号方法、並びに、符号化装置および符号化方法
WO2014203762A1 (ja) 復号装置および復号方法、並びに、符号化装置および符号化方法
WO2014156707A1 (ja) 画像符号化装置および方法、並びに、画像復号装置および方法
WO2014097937A1 (ja) 画像処理装置および画像処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809140

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522598

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14402238

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13809140

Country of ref document: EP

Kind code of ref document: A1