WO2014002722A1 - Fluorescent material, light-emitting device, and lighting device - Google Patents

Fluorescent material, light-emitting device, and lighting device Download PDF

Info

Publication number
WO2014002722A1
WO2014002722A1 PCT/JP2013/065660 JP2013065660W WO2014002722A1 WO 2014002722 A1 WO2014002722 A1 WO 2014002722A1 JP 2013065660 W JP2013065660 W JP 2013065660W WO 2014002722 A1 WO2014002722 A1 WO 2014002722A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
emitting device
light emitting
fluorescent material
Prior art date
Application number
PCT/JP2013/065660
Other languages
French (fr)
Japanese (ja)
Inventor
慶太 小林
康人 伏井
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to JP2014522511A priority Critical patent/JPWO2014002722A1/en
Publication of WO2014002722A1 publication Critical patent/WO2014002722A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/77746Aluminium Nitrides or Aluminium Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

The purpose of the present invention is: to provide a fluorescent material that, while being a yellow light, also has a high amount of a red component and a green component; and to provide a light-emitting device and a lighting device that employ said fluorescent material and have good color rendering characteristics. The fluorescent material of the present invention comprises a garnet structure having a LuaCebAlcOdNe composition, and a, b, c, d, and e satisfy the following conditions: 1.50 ≤ a ≤ 2.85, 0.15 ≤ b ≤ 1.50, 2 ≤ a + b ≤ 4, 4.0 ≤ c ≤ 7.0, 7.0 ≤ d ≤ 16.0, 0.005 ≤ e ≤ 5.0, 8 ≤ d + e ≤ 16. Also provided are a light-emitting device that comprises the fluorescent material and a light-emitting element, and a lighting device that comprises the light-emitting device.

Description

蛍光体、発光装置及び照明装置Phosphor, light emitting device and lighting device
 本願発明は、蛍光体、発光装置及び照明装置に関する。 The present invention relates to a phosphor, a light emitting device, and a lighting device.
 特許文献1には、青色発光ダイオード又はレーザーダイオードチップで発光する青色光と、この青色光(波長:420nmから470nm)を蛍光体で変換した黄色光とで白色を発光する発光装置が示されている。ここでの蛍光体は、セリウム付活YAG(イットリウム・アルミニウム・ガーネット)のYの一部をLu、Sc、Gd、Laで置換したものである。
 特許文献2には、青色光を黄色光に変換する蛍光体として、YAGが示されている。
Patent Document 1 discloses a light emitting device that emits white light using blue light emitted from a blue light emitting diode or laser diode chip and yellow light obtained by converting the blue light (wavelength: 420 nm to 470 nm) with a phosphor. Yes. Here, the phosphor is obtained by replacing part of Y of cerium activated YAG (yttrium, aluminum, garnet) with Lu, Sc, Gd, and La.
Patent Document 2 discloses YAG as a phosphor that converts blue light into yellow light.
 しかし、セリウム付活YAGが発する黄色光には、赤色成分(波長:600nmから700nm)や緑色成分(波長:510nmから550nm)が少ないため、青色発光ダイオードと組み合わせた場合に、演色性の高い白色光が得られないという課題があった。 However, yellow light emitted from cerium-activated YAG has a small red component (wavelength: 600 nm to 700 nm) and green component (wavelength: 510 nm to 550 nm), and therefore has a high color rendering property when combined with a blue light emitting diode. There was a problem that light could not be obtained.
 特許文献3では、赤色成分や緑色成分を確保して演色性を高めるために、緑色及び赤色発光の蛍光体を用いているが、異なる蛍光体を混合すると、一方の蛍光体の発光を他方の蛍光体が吸収して発光効率が低下するという新たな課題があった。 In Patent Document 3, green and red light emitting phosphors are used to secure a red component and a green component to enhance color rendering. However, when different phosphors are mixed, light emission of one phosphor is caused to occur on the other. There has been a new problem that the phosphor absorbs and the luminous efficiency decreases.
特開平10-190066号公報Japanese Patent Laid-Open No. 10-190066 特開2003-8082号公報JP 2003-8082 A 国際公開第06/093298号パンフレットInternational Publication No. 06/093298 Pamphlet
 本発明の目的は、黄色光でありながら赤色成分や緑色成分が多い蛍光体を提供すること、及び、この蛍光体を用いて演色性の高い発光装置及び照明装置を提供することにある。 An object of the present invention is to provide a phosphor having a large amount of red and green components while being yellow light, and to provide a light emitting device and a lighting device having high color rendering properties using the phosphor.
 本発明者らは、鋭意検討した結果、希土類元素からなる付活剤が含有されたガーネット構造を有する化合物に、窒素原子とセリウム原子を多く含有させることで、色度X、ピーク波長及び半値幅が上昇して赤色成分が増え、なおかつ、半値幅の上昇により緑色成分も増加し、これにより、発光色に赤色成分と緑色成分を多く含んだ蛍光体となること、及び、この蛍光体を用いることにより演色性の高い発光装置及び照明装置が得られることを見出し、本発明を完成した。 As a result of intensive studies, the inventors of the present invention have added a nitrogen atom and a cerium atom to a compound having a garnet structure containing an activator composed of a rare earth element, so that the chromaticity X, peak wavelength, and half width are increased. As a result, the red component increases, and the green component also increases due to the increase in the half-value width. As a result, a phosphor containing a large amount of red and green components in the emission color is obtained, and this phosphor is used. As a result, it was found that a light emitting device and a lighting device having high color rendering properties were obtained, and the present invention was completed.
 本発明は、LuCeAlの組成でガーネット構造を有し、a,b,c,d及びeが次の条件を満足する蛍光体である。
1.50≦a≦2.85
0.15≦b≦1.50
2≦a+b≦4
4.0≦c≦7.0
7.0≦d≦16.0
0.005≦e≦5.0
8≦d+e≦16
The present invention is a phosphor having a garnet structure with a composition of Lu a Ce b Al c O d N e , wherein a, b, c, d and e satisfy the following conditions.
1.50 ≦ a ≦ 2.85
0.15 ≦ b ≦ 1.50
2 ≦ a + b ≦ 4
4.0 ≦ c ≦ 7.0
7.0 ≦ d ≦ 16.0
0.005 ≦ e ≦ 5.0
8 ≦ d + e ≦ 16
 他の発明は、発光素子と前記蛍光体とを有する発光装置であり、さらに他の発明は、この発光装置を有する照明装置である。 Another invention is a light emitting device having a light emitting element and the phosphor, and yet another invention is an illumination device having the light emitting device.
 本発明の蛍光体は、黄色発光蛍光体でありながら、色度X、ピーク波長及び半値幅の値が大きく、赤色成分と緑色成分を多く含む。このため、青色発光素子と組合せることにより、演色性の高い白色光を実現する発光装置及び照明装置を得ることができる。 Although the phosphor of the present invention is a yellow light emitting phosphor, the chromaticity X, the peak wavelength, and the half-value width are large, and contains a lot of red and green components. For this reason, by combining with a blue light emitting element, it is possible to obtain a light emitting device and a lighting device that realize white light with high color rendering properties.
本発明に係る実施例10の発光装置を模式的に示した説明図。Explanatory drawing which showed typically the light-emitting device of Example 10 which concerns on this invention.
 本発明は、LuCeAlの組成でガーネット構造を有し、a、b、c、d及びeが次の条件を満足する蛍光体である。
1.50≦a≦2.85
0.15≦b≦1.50
2≦a+b≦4
4.0≦c≦7.0
7.0≦d≦16.0
0.005≦e≦5.0
8≦d+e≦16
The present invention is a phosphor having a garnet structure with a composition of Lu a Ce b Al c O d N e , wherein a, b, c, d and e satisfy the following conditions.
1.50 ≦ a ≦ 2.85
0.15 ≦ b ≦ 1.50
2 ≦ a + b ≦ 4
4.0 ≦ c ≦ 7.0
7.0 ≦ d ≦ 16.0
0.005 ≦ e ≦ 5.0
8 ≦ d + e ≦ 16
 ガーネット構造とは、ガーネット(A12;Aは2価の金属イオンでCa、Mg及びFeからなる群から選ばれる一つ以上の元素。Bは3価の金属イオンでAl、Fe及びCrからなる群より選ばれる1種以上の元素。Oは酸素)に代表される結晶構造と同形の結晶構造をいう。 The garnet structure is a garnet (A 3 B 5 O 12 ; A is a divalent metal ion and one or more elements selected from the group consisting of Ca, Mg and Fe. B is a trivalent metal ion and is composed of Al, Fe And one or more elements selected from the group consisting of Cr, and O is a crystal structure having the same shape as a crystal structure represented by oxygen).
 上記一般式において、Luはルテチウムであり、ルテチウムの一部はY、Sc、La、Gd及びSmの単種又は複数種で置換することもできる。Ceはセリウムであり、セリウムの一部はPr、Nd、Eu、Tb、Dy、Ho、Er、Tm、Yb及びMnの単種又は複数種で置換することもできる。Alはアルミニウムであり、アルミニウムの一部はGa及びIn単種又は複数種で置換することもできる。Oは酸素であり、Nは窒素である。 In the above general formula, Lu is lutetium, and a part of lutetium can be substituted with one or more of Y, Sc, La, Gd and Sm. Ce is cerium, and a part of cerium may be substituted with one or more of Pr, Nd, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Mn. Al is aluminum, and a part of aluminum can be substituted with Ga or In single type or plural types. O is oxygen and N is nitrogen.
 ルテチウムにおけるaの値は、あまりに小さいとルテチウム含有効果が発揮されず、あまりに大きいと相対的にセリウムの量が減少し、赤色成分が減少してしまうため、1.50以上2.85以下である。
 セリウムにおけるbの値は、あまりに小さいと蛍光体として発光強度が低くなり、大きいと赤色成分が増えるが、あまりに大きいと発光強度が顕著に低下するため、0.15以上1.50以下であり、好ましい下限値は0.3である。
 このaとbの合計はあまりに小さくても発光強度の顕著な低下が起こり、あまりに大きくても発光強度の顕著な低下が起こるため、2以上4以下であり、好ましくは2.5以上3.5以下である。
 アルミニウムにおけるcの値は、あまりに小さくても発光強度の顕著な低下が起こり、あまりに大きくても発光強度の低下が起こるため、4.0以上7.0以下であり、好ましくは5.0以上7.0以下である。
 酸素におけるdの値は、あまりに小さくても発光強度の顕著な低下が起こり、あまりに大きくても発光強度の低下が起こるため、7.0以上16.0以下であり、好ましくは11.0以上16.0以下である。
 窒素におけるeの値は、あまりに小さいと赤色成分が減少し、大きいと赤色成分が増えるが、あまりに大きいと発光強度が低下するため、0.005以上5.0以下であり、好ましくは0.02以上5.0以下である。
 dとeの合計は、あまりに小さくても発光強度の顕著な低下が起こり、あまりに大きくても発光強度の低下が起こるため、8以上16以下である。
If the value of a in lutetium is too small, the effect of containing lutetium is not exhibited, and if it is too large, the amount of cerium is relatively reduced and the red component is reduced, so that it is 1.50 or more and 2.85 or less. .
If the value of b in cerium is too small, the emission intensity as a phosphor decreases, and if it is large, the red component increases, but if it is too large, the emission intensity decreases significantly, so it is 0.15 or more and 1.50 or less, A preferred lower limit is 0.3.
Even if the sum of a and b is too small, the emission intensity is remarkably lowered, and if it is too large, the emission intensity is remarkably lowered. Therefore, it is 2 or more and 4 or less, preferably 2.5 or more and 3.5 or less. It is as follows.
When the value of c in aluminum is too small, the light emission intensity is remarkably lowered, and when it is too large, the light emission intensity is lowered. Therefore, the value of c is 4.0 or more and 7.0 or less, preferably 5.0 or more and 7 or less. 0.0 or less.
When the value of d in oxygen is too small, the emission intensity is remarkably lowered, and if it is too large, the emission intensity is lowered, so that it is 7.0 or more and 16.0 or less, preferably 11.0 or more and 16 or less. 0.0 or less.
When the value of e in nitrogen is too small, the red component decreases, and when it is large, the red component increases. However, when it is too large, the emission intensity decreases, and is 0.005 or more and 5.0 or less, preferably 0.02. It is 5.0 or less.
The total of d and e is 8 or more and 16 or less because the light emission intensity is remarkably lowered even if it is too small, and the light emission intensity is lowered if it is too large.
 窒素原子は、ガーネット構造を有する蛍光体の結晶格子内や結晶格子間に存在する。 Nitrogen atoms exist in and between crystal lattices of phosphors having a garnet structure.
 本発明の蛍光体は、Lu、Ce、Al、O及びNを含んだ化合物同士を混合した後、焼成することで製造できる。 The phosphor of the present invention can be manufactured by mixing compounds containing Lu, Ce, Al, O, and N and then firing them.
 本発明の蛍光体の製造方法は、Lu、Al、O及びCeを含んだ化合物からなる複数の原料を混合する混合工程と、混合工程後の原料混合粉を窒素雰囲気で0.001MPa以上100MPa以下のゲージ圧力、1000℃以上2400℃以下の温度範囲で保持する焼成工程で構成されるのが好ましい。 The phosphor production method of the present invention includes a mixing step of mixing a plurality of raw materials made of a compound containing Lu, Al, O and Ce, and a raw material mixed powder after the mixing step in a nitrogen atmosphere between 0.001 MPa and 100 MPa. It is preferable that it is comprised by the baking process hold | maintained in the temperature range of 1000 gauge or more and 2400 degrees C or less.
 混合工程での原料として、純度99%以上の水酸化物、炭酸塩、硝酸塩、ハロゲン化物、シュウ酸塩など高温で分解し酸化物になりうるもの、純度99.9%以上の酸化物、純度99.9%以上の窒化物を使用することが好ましい。窒化物としてAlN、アジ化物があり、純度99.9%以上のものが好ましい。 As raw materials in the mixing process, hydroxides, carbonates, nitrates, halides, oxalates with a purity of 99% or more, which can be decomposed at high temperatures into oxides, oxides with a purity of 99.9% or more, purity It is preferable to use 99.9% or more of nitride. Examples of the nitride include AlN and azide, and those having a purity of 99.9% or more are preferable.
 出発原料の混合にはボールミル、V型混合機又は攪拌装置等を用いることができる。 For mixing the starting materials, a ball mill, a V-type mixer or a stirring device can be used.
 焼成工程は、例えば1000℃以上2400℃以下の温度範囲と0.001MPa以上100MPa以下の圧力範囲において、1時間以上100時間以下保持することが好ましい。焼成温度は1500℃以上2200℃以下がより好ましい。焼成工程での雰囲気の圧力は、0.7MPa以上70MPa以下がより好ましい。 The firing step is preferably held for 1 hour to 100 hours in a temperature range of 1000 ° C. to 2400 ° C. and a pressure range of 0.001 MPa to 100 MPa, for example. The firing temperature is more preferably 1500 ° C. or higher and 2200 ° C. or lower. As for the pressure of the atmosphere in a baking process, 0.7 MPa or more and 70 MPa or less are more preferable.
 焼成の雰囲気としては、窒素元素含有雰囲気を用いる。窒素元素含有雰囲気としては、具体的には、窒素及び/又はアンモニアを含有する雰囲気があり、アルゴン、ヘリウム等の不活性ガスを含有してもよい。窒素及び/又はアンモニアの含有量は10体積%以上が好ましく、50体積%以上がより好ましく、100体積%がさらに好ましく、窒素元素含有雰囲気が高純度窒素(純度99.99%以上)及び/又は高純度アンモニア(純度99.99%以上)からなる場合が最も好ましい。 As the firing atmosphere, a nitrogen element-containing atmosphere is used. Specifically, the nitrogen element-containing atmosphere includes an atmosphere containing nitrogen and / or ammonia, and may contain an inert gas such as argon or helium. The content of nitrogen and / or ammonia is preferably 10% by volume or more, more preferably 50% by volume or more, still more preferably 100% by volume, and the nitrogen element-containing atmosphere is high purity nitrogen (purity 99.99% or more) and / or The case where it consists of high purity ammonia (purity 99.99% or more) is the most preferable.
 焼成の前に仮焼を行う場合、仮焼の雰囲気は、不活性雰囲気、酸化性雰囲気、還元性雰囲気、窒素元素含有ガス雰囲気のいずれでもよい。不活性雰囲気での不活性ガスとしては、窒素、アルゴンがある。酸化性雰囲気でのガスとしては、空気、酸素、酸素含有窒素、酸素含有アルゴンがある。還元性雰囲気でのガスとしては、水素含有窒素、水素含有アルゴンがある。これらガスには、反応を促進するために、適量のフラックスを添加してもよい。 When calcination is performed before calcination, the calcination atmosphere may be any of an inert atmosphere, an oxidizing atmosphere, a reducing atmosphere, and a nitrogen element-containing gas atmosphere. Examples of the inert gas in the inert atmosphere include nitrogen and argon. Examples of the gas in the oxidizing atmosphere include air, oxygen, oxygen-containing nitrogen, and oxygen-containing argon. Examples of the gas in the reducing atmosphere include hydrogen-containing nitrogen and hydrogen-containing argon. An appropriate amount of flux may be added to these gases in order to promote the reaction.
 焼成用の炉は、焼成温度が高温であり焼成雰囲気が窒素元素含有雰囲気であることから、金属抵抗加熱方式又は黒鉛抵抗加熱方式が好ましく、炉の高温部の材料として炭素を用いた電気炉が好ましい。 Since the firing temperature is high and the firing atmosphere is a nitrogen element-containing atmosphere, the metal resistance heating method or the graphite resistance heating method is preferable, and an electric furnace using carbon as the material of the high temperature part of the furnace is used. preferable.
 上記方法にて得られる蛍光体を、ボールミル、振動ミル、アトライター、ジェットミル等の工業的に通常用いられている粉砕装置を用いて粉砕してもよい。得られる蛍光体の結晶性を高めるために、再焼成を行ってもよい。また、結晶成長の促進や合成反応を進行させるために再焼成を行ってもよい。 The phosphor obtained by the above method may be pulverized using a pulverizer that is usually used industrially, such as a ball mill, a vibration mill, an attritor, or a jet mill. In order to improve the crystallinity of the obtained phosphor, re-firing may be performed. Further, re-baking may be performed in order to promote crystal growth or advance a synthesis reaction.
 さらに、後処理として、上述の工程後、洗浄、分散処理、乾燥、分級等を行うことができる。なかでも、酸による洗浄工程を設けることが好ましい。酸洗浄を行うには、酸性の水溶液中に蛍光体を粒子状に分散させた後、水洗する。具体的には、塩酸、硫酸、硝酸等の無機酸の1種又は2種以上があり、塩酸が好ましい。酸洗浄を行うことにより未反応物、副成物、融剤を溶解し、分別除去できる。また、得られた蛍光体を後述するように透光性樹脂中に分散させて用いる場合には、耐湿性や分散性を高めるために、必要に応じて公知の表面処理を施すこともできる。 Furthermore, as post-treatment, washing, dispersion treatment, drying, classification and the like can be performed after the above-described steps. Especially, it is preferable to provide the washing process by an acid. In order to perform acid cleaning, the phosphor is dispersed in the form of particles in an acidic aqueous solution and then washed with water. Specifically, there are one or more inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and hydrochloric acid is preferred. By performing the acid cleaning, unreacted substances, by-products and fluxes can be dissolved and separated and removed. In addition, when the obtained phosphor is used by being dispersed in a light-transmitting resin as described later, a known surface treatment can be applied as necessary in order to improve moisture resistance and dispersibility.
 本発明の蛍光体は、発光素子と組み合わせることにより発光装置とすることができる。本発明の発光装置は、本発明の蛍光体をエポキシ樹脂、ポリカーボネート、シリコンゴムなどの透光性樹脂中に分散させ、この蛍光体を分散させた樹脂を、ステム上の発光素子(化合物半導体)を取り囲むように成形することにより製造することができる。本発明の発光装置においては、白色発光を実現するために、発光素子としては青色発光窒化物半導体が好ましく、紫外から青色に発光する化合物半導体を用いることも可能である。 The phosphor of the present invention can be combined with a light emitting element to form a light emitting device. In the light emitting device of the present invention, the phosphor of the present invention is dispersed in a translucent resin such as epoxy resin, polycarbonate, silicon rubber, and the resin in which the phosphor is dispersed is used as a light emitting element on the stem (compound semiconductor). It can manufacture by shape | molding so that it may surround. In the light emitting device of the present invention, in order to realize white light emission, a blue light emitting nitride semiconductor is preferable as the light emitting element, and a compound semiconductor that emits light from ultraviolet to blue can also be used.
 具体的には、蛍光体を励起する350nmから500nmの波長の光を発する窒化物半導体からなる発光素子が好ましい。窒化物半導体は構成元素の比率により発光波長を変えることができ、例えば、Ga-N系では320nmから450nm、In-Al-Ga-N系では300nmから500nmで発光の波長のピークを制御できる。窒化物半導体からなる発光素子としては、発光層が組成式InAlGa1-x-yN(0<x、0<y、x+y<1)で表わされる化合物からなり、ヘテロ構造又はダブルヘテロ構造を有する発光素子がある。 Specifically, a light-emitting element made of a nitride semiconductor that emits light having a wavelength of 350 nm to 500 nm that excites the phosphor is preferable. The emission wavelength of a nitride semiconductor can be changed depending on the ratio of constituent elements. For example, the peak of emission wavelength can be controlled from 320 nm to 450 nm in the Ga—N system and from 300 nm to 500 nm in the In—Al—Ga—N system. In a light-emitting element made of a nitride semiconductor, the light-emitting layer is made of a compound represented by the composition formula In x Al y Ga 1-xy N (0 <x, 0 <y, x + y <1), and has a heterostructure or a double structure. There is a light-emitting element having a heterostructure.
 本発明の蛍光体は単独で使用でき、さらに赤色発光の蛍光体や緑色発光の蛍光体など他の蛍光体と併用して、白色度のより高い発光装置を製造することも可能である。
 また、かかる発光装置を応用することにより、演色性の高い白色を発光する照明装置を得ることも可能である。照明装置としては電球型、蛍光灯型がある。
The phosphor of the present invention can be used alone, and it is also possible to produce a light emitting device with higher whiteness by using in combination with other phosphors such as a red light emitting phosphor and a green light emitting phosphor.
Further, by applying such a light-emitting device, it is possible to obtain a lighting device that emits white light with high color rendering properties. Illumination devices include a bulb type and a fluorescent lamp type.
 また、本発明の他の発明は、かかる発光装置を有する画像表示装置である。画像表示装置としては、テレビジョン、コンピュータ用のモニタがある。 Further, another invention of the present invention is an image display device having such a light emitting device. As the image display device, there are a television monitor and a computer monitor.
 本発明にかかる蛍光体、発光装置の実施例を、表1及び図1を参照して説明する。 Examples of phosphors and light emitting devices according to the present invention will be described with reference to Table 1 and FIG.
 実施例1の蛍光体は、表1に示すように、LuCeAlにおいて、a=1.50、b=1.50、c=5.00、d=12.75及びe=0.034のものである。 As shown in Table 1, in the phosphor of Example 1, the Lu a Ce b Al c O d N e has a = 1.50, b = 1.50, c = 5.00, d = 12.75. And e = 0.034.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1の蛍光体は、原料として、Lu(和光純薬工業株式会社製)36.78質量%、CeO(和光純薬工業株式会社製、和光特級)31.81質量%、Al(大明化学社製TM-DARグレード)31.41質量%を配合したものである。原料時のLu、Ce、Alのモル比はLu:Ce:Al=1.5:1.5:5であった。 The phosphor of Example 1 includes, as raw materials, Lu 2 O 3 (Wako Pure Chemical Industries, Ltd.) 36.78% by mass, CeO 2 (Wako Pure Chemical Industries, Ltd., Wako Special Grade) 31.81% by mass, Al 2 O 3 (TM-DAR grade manufactured by Daimei Chemical Co., Ltd.) 31.41% by mass is blended. The molar ratio of Lu, Ce, and Al at the time of the raw material was Lu: Ce: Al = 1.5: 1.5: 5.
 この原料をカワタ社のスーパーミキサーにて混合した後、目開き850μmのナイロン製篩に通して大きさを整えた。 After mixing this raw material with a Kawata super mixer, it was passed through a nylon sieve having an opening of 850 μm to adjust the size.
<焼成工程>
 大きさを整えた原料を、内寸で直径8cm×高さ8cmの蓋付きの円筒型窒化ホウ素製容器(電気化学工業社製N-1グレード)に50g充填し、内寸で100cm×50cm×高さ13cmの上蓋付き黒鉛ボックス内部に当該窒化ホウ素製容器を配置した。原料を、この黒鉛ボックスごと電気炉で0.9MPaの加圧窒素雰囲気中、15時間1700℃にされた加熱処理によって蛍光体へ焼成した。
 加熱処理後の蛍光体は、室温まで徐冷され、解砕され、目開き250μmの篩に通されて大きさが整えられた。
<Baking process>
50 g of the sized raw material is filled into a cylindrical boron nitride container (N-1 grade, manufactured by Denki Kagaku Kogyo Co., Ltd.) with a lid with an internal size of 8 cm in diameter and 8 cm in height, and the internal size is 100 cm × 50 cm × The boron nitride container was placed inside a graphite box with an upper lid having a height of 13 cm. The raw material was baked into the phosphor together with the graphite box in an electric furnace in a pressurized nitrogen atmosphere of 0.9 MPa by heat treatment at 1700 ° C. for 15 hours.
The phosphor after the heat treatment was gradually cooled to room temperature, crushed, and passed through a sieve having an opening of 250 μm to adjust the size.
 実施例1で製造された蛍光体の外部量子効率、色度X、ピーク波長、半値幅、窒素含有量、演色性指数の結果を表1に示す。 Table 1 shows the results of the external quantum efficiency, chromaticity X, peak wavelength, half-value width, nitrogen content, and color rendering index of the phosphor produced in Example 1.
 表1の外部量子効率は、分光光度計(大塚電子社製MCPD-7000)により測定した。凹型のセルに蛍光体をセル表面が平滑になるように充填し、積分球を取り付けた。この積分球に、発光光源(Xeランプ)から455nmの波長に分光した単色光を、光ファイバーを用いて導入した。この単色光を励起源として、蛍光体試料に照射し、試料の蛍光スペクトル測定を行った。発光効率は次のように求めた。
 試料部に反射率が99%の標準反射板(Labsphere社製、スペクトラロン)をセットし、波長455nmの励起光のスペクトルを測定した。その際、450nmから465nmの波長範囲のスペクトルから励起光フォトン数(Qex)を算出した。次いで、試料部にサンプルをセットし、得られたスペクトルデータから励起反射光フォトン数(Qref)及び蛍光フォトン数(Qem)を算出した。
 励起反射光フォトン数は励起光フォトン数と同じ波長範囲で、蛍光フォトン数は465nmから800nmの範囲で算出した。得られた三種類のフォトン数から外部量子効率(=Qem/Qex×100)、吸収率(=(Qex-Qref)×100)、内部量子効率(=Qem/(Qex-Qref)×100)を求めた。
 実施例として合格の外部量子効率は、40%以上である。
The external quantum efficiency in Table 1 was measured with a spectrophotometer (MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.). A concave cell was filled with phosphor so that the cell surface was smooth, and an integrating sphere was attached. Monochromatic light separated into a wavelength of 455 nm from a light emitting light source (Xe lamp) was introduced into the integrating sphere using an optical fiber. The phosphor sample was irradiated with this monochromatic light as an excitation source, and the fluorescence spectrum of the sample was measured. Luminous efficiency was determined as follows.
A standard reflector (Spectralon, manufactured by Labsphere) having a reflectance of 99% was set on the sample portion, and the spectrum of excitation light having a wavelength of 455 nm was measured. At that time, the number of excitation light photons (Qex) was calculated from the spectrum in the wavelength range of 450 nm to 465 nm. Next, a sample was set in the sample portion, and the number of excited reflected light photons (Qref) and the number of fluorescent photons (Qem) were calculated from the obtained spectrum data.
The number of excitation reflected light photons was calculated in the same wavelength range as the number of excitation light photons, and the number of fluorescent photons was calculated in the range of 465 nm to 800 nm. The external quantum efficiency (= Qem / Qex × 100), the absorptance (= (Qex−Qref) × 100), and the internal quantum efficiency (= Qem / (Qex−Qref) × 100) are obtained from the obtained three types of photons. Asked.
As an example, the acceptable external quantum efficiency is 40% or more.
 表1の色度Xは、CIE1931の値であり、分光光度計(大塚電子社製MCPD-7000)により測定した。
 実施例として合格の色度Xは、0.385以上である。
The chromaticity X in Table 1 is a CIE1931 value, and was measured with a spectrophotometer (MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.).
As an example, the acceptable chromaticity X is 0.385 or more.
 表1のピーク波長は、分光光度計(大塚電子社製MCPD-7000)により測定した。
 実施例として合格のピーク波長は544.0nm以上である。
The peak wavelengths in Table 1 were measured with a spectrophotometer (MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.).
As an example, the acceptable peak wavelength is 544.0 nm or more.
 表1の半値幅は、分光光度計(大塚電子社製MCPD-7000)により測定した。
 実施例として合格の半値幅は103.0nm以上である。
The half width in Table 1 was measured with a spectrophotometer (MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.).
As an example, the half width of the pass is 103.0 nm or more.
 表1の窒素含有量は酸素―窒素測定機(HORIBA製EMGA―920)により測定した。
 実施例として合格の窒素含有量は0.007質量%以上である。
The nitrogen content in Table 1 was measured with an oxygen-nitrogen measuring machine (EMGA-920 manufactured by HORIBA).
As an example, the acceptable nitrogen content is 0.007% by mass or more.
 表1の演色性指数は、次の方法で測定した平均演色評価数(Ra)で評価した。
 蛍光体10gを水100gにエポキシシランカップリング剤(信越シリコーン株式会社製KBE402)1.0gと共に加え、撹拌しながら一晩放置した。その後、ろ過乾燥したシランカップリング剤で処理された蛍光体の適量をエポキシ樹脂(サンユレック株式会社製NLD-SL-2101)10gに混練し、発光波長460nmの青色LED素子の上にポッティングし、真空脱気し、110℃で前記樹脂を加熱硬化し、表面実装型LEDを作製した。これに10mAの電流を流して発生する光を測定し、平均演色評価数(Ra)を測定した。実施例として合格の演色性指数(Ra)は70.0以上である。
The color rendering index in Table 1 was evaluated by the average color rendering index (Ra) measured by the following method.
10 g of the phosphor was added to 100 g of water together with 1.0 g of an epoxy silane coupling agent (KBE402 manufactured by Shin-Etsu Silicone Co., Ltd.) and left overnight with stirring. Thereafter, an appropriate amount of a phosphor treated with a filtered and dried silane coupling agent is kneaded with 10 g of an epoxy resin (NLD-SL-2101 manufactured by Sanyu Rec Co., Ltd.), potted on a blue LED element having an emission wavelength of 460 nm, and vacuumed. After deaeration, the resin was heated and cured at 110 ° C. to produce a surface-mounted LED. The light generated by passing a current of 10 mA was measured, and the average color rendering index (Ra) was measured. As an example, a color rendering index (Ra) that is acceptable is 70.0 or more.
 表1に示すように、実施例1の外部量子効率、色度X、ピーク波長、半値幅、窒素含有量、演色性指数(Ra)はいずれも優秀な値を示した。 As shown in Table 1, the external quantum efficiency, chromaticity X, peak wavelength, half width, nitrogen content, and color rendering index (Ra) of Example 1 all showed excellent values.
 実施例2の蛍光体は、表1に示すように、LuCeAlにおいて、a=2.40、b=0.60、c=5.00、d=12.30及びe=0.020のものである。実施例2の蛍光体は、表1に示す原料組成である以外は、実施例1と同様に製造したものである。 As shown in Table 1, in the phosphor of Example 2, the Lu a Ce b Al c O d N e has a = 2.40, b = 0.60, c = 5.00, d = 12.30. And e = 0.020. The phosphor of Example 2 was manufactured in the same manner as Example 1 except for the raw material composition shown in Table 1.
 実施例3の蛍光体は、表1に示すように、LuCeAlにおいて、a=2.82、b=0.18、c=5.00、d=12.09及びe=0.006のものである。実施例3の蛍光体は、表1に示す原料組成である以外は、実施例1と同様に製造したものである。 As shown in Table 1, in the phosphor of Example 3, the Lu a Ce b Al c O d N e has a = 2.82, b = 0.18, c = 0.000, d = 12.09. And e = 0.006. The phosphor of Example 3 was manufactured in the same manner as Example 1 except for the raw material composition shown in Table 1.
 実施例4の蛍光体は、表1に示すように、LuCeAlにおいて、a=2.82、b=0.18、c=4.50、d=11.34及びe=0.004のものである。実施例4の蛍光体は、表1に示す原料組成である以外は、実施例1と同様に製造したものである。 As shown in Table 1, in the phosphor of Example 4, the Lu a Ce b Al c O d N e is a = 2.82, b = 0.18, c = 0.50, d = 11.34. And e = 0.004. The phosphor of Example 4 was manufactured in the same manner as Example 1 except for the raw material composition shown in Table 1.
 実施例5の蛍光体は、表1に示すように、LuCeAlにおいて、a=2.82、b=0.18、c=7.00、d=15.09及びe=0.008のものである。実施例5の蛍光体は、表1に示す原料組成である以外は、実施例1と同様に製造したものである。 Phosphor of Example 5, as shown in Table 1, in Lu a Ce b Al c O d N e, a = 2.82, b = 0.18, c = 7.00, d = 15.09 And e = 0.008. The phosphor of Example 5 was manufactured in the same manner as Example 1 except for the raw material composition shown in Table 1.
 実施例6の蛍光体は、表1に示すように、LuCeAlにおいて、a=2.82、b=0.70、c=5.00、d=13.13及びe=0.025のものである。実施例6の蛍光体は、表1に示す原料組成である以外は、実施例1と同様に製造したものである。 Phosphor of Example 6, as shown in Table 1, in Lu a Ce b Al c O d N e, a = 2.82, b = 0.70, c = 5.00, d = 13.13 And e = 0.025. The phosphor of Example 6 was manufactured in the same manner as Example 1 except for the raw material composition shown in Table 1.
 実施例7の蛍光体は、表1に示すように、LuCeAlにおいて、a=2.50、b=0.18、c=5.00、d=11.61及びe=0.012のものである。実施例7の蛍光体は、表1に示す原料組成である以外は、実施例1と同様に製造したものである。 As shown in Table 1, in the phosphor of Example 7, in Lu a Ce b Al c O d N e , a = 2.50, b = 0.18, c = 0.000, d = 11.61 And e = 0.012. The phosphor of Example 7 was manufactured in the same manner as Example 1 except for the raw material composition shown in Table 1.
 実施例8の蛍光体は、表1に示すように、LuCeAlにおいて、a=1.50、b=1.50、c=6.00、d=14.25及びe=0.036のものである。実施例8の蛍光体は、表1に示す原料組成である以外は、実施例1と同様に製造したものである。 As shown in Table 1, in the phosphor of Example 8, in Lu a Ce b Al c O d N e , a = 1.50, b = 1.50, c = 6.00, d = 14.25. And e = 0.036. The phosphor of Example 8 was manufactured in the same manner as Example 1 except for the raw material composition shown in Table 1.
 実施例9の蛍光体は、表1に示すように、LuCeAlにおいて、a=1.50、b=1.50、c=7.00、d=15.75及びe=0.043のものである。実施例9の蛍光体は、表1に示す原料組成である以外は、実施例1と同様に製造したものである。
<比較例1>
Phosphor of Example 9, as shown in Table 1, in Lu a Ce b Al c O d N e, a = 1.50, b = 1.50, c = 7.00, d = 15.75 And e = 0.043. The phosphor of Example 9 was manufactured in the same manner as Example 1 except for the raw material composition shown in Table 1.
<Comparative Example 1>
 比較例1の蛍光体は、表1に示すように、LuCeAlにおいて、a=2.96、b=0.04、c=5.00、d=12.02及びe=0.004のものである。比較例1の蛍光体は、表1に示す原料組成である以外は、実施例1と同様に製造したものである。原料の仕込みのLu、Ce、Alのモル比はLu:Ce:Al=2.96:0.04:5であった。
<比較例2>
As shown in Table 1, in the phosphor of Comparative Example 1, in Lu a Ce b Al c O d N e , a = 2.96, b = 0.04, c = 5.00, d = 12.02. And e = 0.004. The phosphor of Comparative Example 1 was manufactured in the same manner as in Example 1 except that the raw material composition shown in Table 1 was used. The molar ratio of Lu, Ce, and Al charged in the raw materials was Lu: Ce: Al = 2.96: 0.04: 5.
<Comparative Example 2>
 比較例2の蛍光体は、表1に示すように、LuCeAlにおいて、a=1.00、b=2.00、c=5.00、d=13.00及びe=0.047のものである。比較例2の蛍光体は、表1に示す原料組成である以外は、実施例1と同様に製造したものである。
<比較例3>
As shown in Table 1, the phosphor of Comparative Example 2 has a = 1.00, b = 2.00, c = 5.00, d = 13.00 in Lu a Ce b Al c O d N e . And e = 0.047. The phosphor of Comparative Example 2 was produced in the same manner as in Example 1 except that the raw material composition shown in Table 1 was used.
<Comparative Example 3>
 比較例3の蛍光体は、表1に示すように、LuCeAlにおいて、a=2.82、b=0.18、c=3.00、d=9.09及びe=0.007のものである。比較例3の蛍光体は、表1に示す原料組成である以外は、実施例1と同様に製造したものである。
<比較例4>
As shown in Table 1, the phosphor of Comparative Example 3 has Lu a Ce b Al c O d N e with a = 2.82, b = 0.18, c = 0.80, d = 9.09. And e = 0.007. The phosphor of Comparative Example 3 was manufactured in the same manner as in Example 1 except that the raw material composition shown in Table 1 was used.
<Comparative example 4>
 比較例4の蛍光体は、表1に示すように、LuCeAlにおいて、a=2.82、b=0.18、c=9.00、d=18.09及びe=0.020のものである。比較例4の蛍光体は、表1に示す原料組成である以外は、実施例1と同様に製造したものである。
<比較例5>
Phosphor of Comparative Example 4, as shown in Table 1, in Lu a Ce b Al c O d N e, a = 2.82, b = 0.18, c = 9.00, d = 18.09 And e = 0.020. The phosphor of Comparative Example 4 was produced in the same manner as in Example 1 except that the raw material composition shown in Table 1 was used.
<Comparative Example 5>
 比較例5の蛍光体は、表1に示すように、LuCeAlにおいて、a=2.82、b=0.18、c=5.00、d=12.09及びe=0.001のものである。比較例5の蛍光体は、表1に示す原料組成であること、焼成工程での雰囲気を絶対圧力で5.0Paの真空雰囲気にした以外は、実施例1と同様に製造したものである。 As shown in Table 1, the phosphor of Comparative Example 5 has Lu a Ce b Al c O d N e with a = 2.82, b = 0.18, c = 0.000, d = 12.09. And e = 0.001. The phosphor of Comparative Example 5 was manufactured in the same manner as in Example 1 except that the raw material composition shown in Table 1 was used and the atmosphere in the firing step was changed to a vacuum atmosphere of 5.0 Pa in absolute pressure.
 表1の実施例1乃至実施例3及び比較例1を対比すると、酸化セリウムを増量させることで窒素含有量が増え、色度Xが高くなり、ピーク波長、半値幅が大きくなり、赤色成分の強度が増大すること、並びに、半値幅の増加に伴って緑色成分の強度も増加することが確認できる。 When comparing Example 1 to Example 3 and Comparative Example 1 in Table 1, increasing the amount of cerium oxide increases the nitrogen content, increases the chromaticity X, increases the peak wavelength, the half-value width, and increases the red component. It can be confirmed that the intensity increases, and that the intensity of the green component increases as the half-value width increases.
 表1の実施例1乃至実施例3及び比較例2を対比すると、酸化セリウムが多過ぎると外部量子効率が低下することが確認できる。 Comparing Example 1 to Example 3 and Comparative Example 2 in Table 1, it can be confirmed that the external quantum efficiency is lowered when there is too much cerium oxide.
 表1の実施例3乃至実施例5及び比較例3、比較例4を対比するとAl、Oが少なすぎると比較例3のように外部量子効率の顕著な低下と色度Xが低下し、赤色成分の減少が起こり、逆にAl、Oが多過ぎても比較例4のように色度Xが低下することが確認できる。 When Example 3 to Example 5 and Comparative Example 3 and Comparative Example 4 in Table 1 are compared, if Al and O are too small, the external quantum efficiency is significantly reduced and the chromaticity X is reduced as in Comparative Example 3, and the red color is reduced. It can be confirmed that the chromaticity X is lowered as in Comparative Example 4 even if the component is reduced and the amount of Al and O is excessive.
 表1の実施例3及び比較例5を対比すると、窒素雰囲気で焼成することで窒素が含有され、色度Xが高くなり、ピーク波長、半値幅が大きくなり、赤色成分の強度が増大するが、真空雰囲気で焼成するとこれらの値がいずれも低下することが確認できる。 When Example 3 and Comparative Example 5 in Table 1 are compared, nitrogen is contained by firing in a nitrogen atmosphere, chromaticity X is increased, peak wavelength and half-value width are increased, and the intensity of the red component is increased. When firing in a vacuum atmosphere, it can be confirmed that both of these values decrease.
 実施例10の発明は、発光装置であり、図1に示すように、上述の蛍光体と、発光素子とを有するものである。実施例10の発光装置の構造を図1に示す。この発光装置は、白色を発光するものであり、青色LEDチップ1を導電性端子6に接続させて容器5の底部に設置し、青色LEDチップ1をワイヤー3で他の導電性端子7に接続した後、蛍光体2と封止樹脂4としてのエポキシ樹脂を加熱硬化して構成したものである。
 この表面実装型LEDに10mAの電流を流して発生する光の発光スペクトルを測定したところ、蛍光体として実施例1乃至9を用いた場合に、表1に示すような良好な演色性を発揮した。
The invention of Example 10 is a light emitting device, and includes the above-described phosphor and a light emitting element as shown in FIG. The structure of the light-emitting device of Example 10 is shown in FIG. This light emitting device emits white light, and the blue LED chip 1 is connected to the conductive terminal 6 and installed at the bottom of the container 5, and the blue LED chip 1 is connected to the other conductive terminal 7 with the wire 3. After that, the phosphor 2 and the epoxy resin as the sealing resin 4 are heated and cured.
When an emission spectrum of light generated by applying a current of 10 mA to this surface-mounted LED was measured, when Examples 1 to 9 were used as phosphors, good color rendering properties as shown in Table 1 were exhibited. .
 実施例11の発明は、照明装置であり、図示は省略したが、実施例10の発光装置を有する電球型の照明装置である。この照明装置は、蛍光体として実施例1乃至9を用いると、表1に示すような良好な演色性を発揮した。 The invention of Example 11 is a lighting device, and although not shown, is a light bulb type lighting device having the light emitting device of Example 10. This lighting device exhibited good color rendering properties as shown in Table 1 when Examples 1 to 9 were used as phosphors.
 1 青色LEDチップ
 2 蛍光体
 3 ワイヤー
 4 封止樹脂
 5 容器
 6 導電性端子
 7 他の導電性端子
DESCRIPTION OF SYMBOLS 1 Blue LED chip 2 Phosphor 3 Wire 4 Sealing resin 5 Container 6 Conductive terminal 7 Other conductive terminals

Claims (3)

  1.  LuCeAlの組成でガーネット構造を有し、a、b、c、d及びeが次の条件を満足する蛍光体。
    1.50≦a≦2.85
    0.15≦b≦1.50
    2≦a+b≦4
    4.0≦c≦7.0
    7.0≦d≦16.0
    0.005≦e≦5.0
    8≦d+e≦16
    A phosphor having a garnet structure with a composition of Lu a Ce b Al c O d N e , wherein a, b, c, d and e satisfy the following conditions.
    1.50 ≦ a ≦ 2.85
    0.15 ≦ b ≦ 1.50
    2 ≦ a + b ≦ 4
    4.0 ≦ c ≦ 7.0
    7.0 ≦ d ≦ 16.0
    0.005 ≦ e ≦ 5.0
    8 ≦ d + e ≦ 16
  2.  発光素子と、請求項1に記載の蛍光体とを有する発光装置。 A light-emitting device having a light-emitting element and the phosphor according to claim 1.
  3.  請求項2記載の発光装置を有する照明装置。 An illumination device having the light emitting device according to claim 2.
PCT/JP2013/065660 2012-06-26 2013-06-06 Fluorescent material, light-emitting device, and lighting device WO2014002722A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014522511A JPWO2014002722A1 (en) 2012-06-26 2013-06-06 Phosphor, light emitting device and lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-143546 2012-06-26
JP2012143546 2012-06-26

Publications (1)

Publication Number Publication Date
WO2014002722A1 true WO2014002722A1 (en) 2014-01-03

Family

ID=49782888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065660 WO2014002722A1 (en) 2012-06-26 2013-06-06 Fluorescent material, light-emitting device, and lighting device

Country Status (3)

Country Link
JP (1) JPWO2014002722A1 (en)
TW (1) TW201408757A (en)
WO (1) WO2014002722A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170262968A1 (en) * 2014-09-15 2017-09-14 Carl Zeiss Microscopy Gmbh Method for Generating a Result Image and Optical Device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008844A (en) * 2003-02-26 2005-01-13 Nichia Chem Ind Ltd Phosphor, and light emitter using the same
JP2008533233A (en) * 2005-03-08 2008-08-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Illumination system including a radiation source and a luminescent material
WO2012046642A1 (en) * 2010-10-05 2012-04-12 株式会社ネモト・ルミマテリアル Green light-emitting phosphor and light-emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008844A (en) * 2003-02-26 2005-01-13 Nichia Chem Ind Ltd Phosphor, and light emitter using the same
JP2008533233A (en) * 2005-03-08 2008-08-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Illumination system including a radiation source and a luminescent material
WO2012046642A1 (en) * 2010-10-05 2012-04-12 株式会社ネモト・ルミマテリアル Green light-emitting phosphor and light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170262968A1 (en) * 2014-09-15 2017-09-14 Carl Zeiss Microscopy Gmbh Method for Generating a Result Image and Optical Device

Also Published As

Publication number Publication date
JPWO2014002722A1 (en) 2016-05-30
TW201408757A (en) 2014-03-01

Similar Documents

Publication Publication Date Title
JP5485218B2 (en) Light emitting device and image display device
JP4733535B2 (en) Oxynitride phosphor, method for manufacturing oxynitride phosphor, semiconductor light emitting device, light emitting device, light source, illumination device, and image display device
JP2011140664A5 (en)
US10927298B2 (en) Nitride fluorescent material, method for producing the same, and light emitting device
JP6102763B2 (en) Phosphor, light emitting device using the same, and method for producing phosphor
JP5791034B2 (en) Light emitting device
WO2011002087A1 (en) Light-emitting device
JP6223988B2 (en) Phosphor, light emitting device and lighting device
JP2018109080A (en) Green phosphor, light emitting element and light emitting device
JP4899433B2 (en) Phosphor, and light emitting device, image display device, and illumination device using the same
JP2010196049A (en) Phosphor and method for producing the same, phosphor-containing composition, and light-emitting device, image display device and lighting device using the phosphor
JP5111181B2 (en) Phosphor and light emitting device
WO2014002722A1 (en) Fluorescent material, light-emitting device, and lighting device
JP5471021B2 (en) Phosphor and phosphor manufacturing method, phosphor-containing composition, light emitting device, illumination device, and image display device
JP6028858B2 (en) Oxynitride phosphor powder
JP2006348070A (en) Oxynitride-based phosphor and method for producing the same
JP6435514B2 (en) Phosphor
JP2017222834A (en) Aluminate phosphor and method for producing light-emitting device and aluminate phosphor
CN116018388A (en) Europium-activated beta-sialon phosphor and light-emitting device
WO2014002723A1 (en) Fluorescent material, light-emitting device, and lighting device
JP7010476B2 (en) A method for manufacturing a wavelength conversion member, a light emitting device, and a wavelength conversion member.
JP6357107B2 (en) Phosphor, light emitting device and lighting device
JP2019116615A (en) Oxynitride phosphor, light emitting device and method for producing oxynitride phosphor
KR20170096742A (en) Oxy-nitride phosphor emitting red light and light emitting device package using same
JP2018109077A (en) Green phosphor, light emitting element and light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810551

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522511

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13810551

Country of ref document: EP

Kind code of ref document: A1