WO2014002511A1 - Rear-projection display device, rear-projection display system, and control method - Google Patents

Rear-projection display device, rear-projection display system, and control method Download PDF

Info

Publication number
WO2014002511A1
WO2014002511A1 PCT/JP2013/050269 JP2013050269W WO2014002511A1 WO 2014002511 A1 WO2014002511 A1 WO 2014002511A1 JP 2013050269 W JP2013050269 W JP 2013050269W WO 2014002511 A1 WO2014002511 A1 WO 2014002511A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
rear projection
display device
scanning
projection display
Prior art date
Application number
PCT/JP2013/050269
Other languages
French (fr)
Japanese (ja)
Inventor
藤男 奥村
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2014522440A priority Critical patent/JPWO2014002511A1/en
Publication of WO2014002511A1 publication Critical patent/WO2014002511A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/10Projectors with built-in or built-on screen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/06Colour photography, other than mere exposure or projection of a colour film by additive-colour projection apparatus

Definitions

  • the present invention relates to a rear projection display device that projects light onto a screen from the back side and displays an image on the screen.
  • Projection-type display devices unlike LCD (Liquid Crystal Display) and PDP (Plasma Display Panel), do not have a screen size determined by the size of the manufacturing equipment or panel substrate, so lowering the screen size is low. And can be done easily. For this reason, for example, by using a rear projection display device that projects light from the back of the screen, a large television or a large digital signage device can be easily manufactured at low cost.
  • LCD Liquid Crystal Display
  • PDP Plasma Display Panel
  • an ultra-high pressure mercury lamp as a light source, such as a liquid crystal modulator such as a liquid crystal light valve, LCOS (Liquid Crystal on Silicon), or a DMD (Digital Micromirror Device) of TI. It has a configuration in which light from a light source is modulated and projected using a two-dimensional spatial modulator using MEMS technology.
  • a liquid crystal modulator such as a liquid crystal light valve, LCOS (Liquid Crystal on Silicon), or a DMD (Digital Micromirror Device) of TI. It has a configuration in which light from a light source is modulated and projected using a two-dimensional spatial modulator using MEMS technology.
  • Non-Patent Document 1 Mitsubishi Electric Corporation 75-LT1 (see Non-Patent Document 1), Prism Digital Signage Display Device (see Non-Patent Document 2), and Patents
  • the rear projection display device described in Document 1 has been put to practical use or proposed.
  • the 75-LT1 projects a laser beam onto a screen using a DMD
  • the digital signage display device and the rear projection display device described above use a scanning element such as a polygon mirror. It is scanned and projected onto the screen.
  • the display device for digital signage is provided with a mechanism capable of configuring a large screen by assembling a plurality of devices so that blocks are stacked.
  • the rear projection display device using a laser light source such as the 75-LT1, the digital signage display device, and the rear projection display device is configured to return the laser beam from the laser light source using a mirror or the like.
  • the depth is narrowed as much as possible, but the depth is still not enough.
  • the depth of the panel body can be about 4 cm.
  • a stand for holding the LCD or PDP is required, so that the entire apparatus has a depth of several tens of centimeters.
  • the LCD or PDP is installed on a wall or the like, it is necessary to create a gap between the wall and the panel body for heat dissipation, so that the entire apparatus has a depth of about 10 cm.
  • 75-LT1 of Mitsubishi Electric Co., Ltd. is 75 type and has a depth of 38 cm
  • the display device for digital signage of Primsm has a depth of 36 cm even if it is a small type of 29 type. Also become.
  • the rear projection type display device has a problem that the installation location is limited due to the deep depth. For this reason, LCDs and PDPs are employed in many large televisions and large digital signage instead of rear projection display devices that can be easily manufactured at low cost.
  • a casing 1001 includes a casing 1001, a light source 1002, a DMD 1003, a projection lens 1004, a free-form curved mirror 1005, a mirror 1006, and a screen 1007.
  • the rear projection type display device projects a laser beam emitted from the DMD twice using a free-form curved mirror 1005 and a mirror 1006 in order to project a laser beam from a small DMD 1003 to a large screen 1007. It is folded and projected on the screen 1007.
  • the laser beam is projected obliquely with respect to the screen 1007.
  • the incident angle of the laser beam with respect to the screen 1007 increases, and the image is distorted.
  • the rear projection display device shown in FIG. 1 uses a free-form surface mirror 1005 as a mirror for folding the light beam, thereby reducing the incident angle of the laser beam on the screen 1007 and correcting image distortion.
  • a free-form surface mirror 1005 as a mirror for folding the light beam, thereby reducing the incident angle of the laser beam on the screen 1007 and correcting image distortion.
  • the greater the image distortion the greater the number of correction optical systems for correcting the distortion, such as the free-form curved mirror 1005.
  • a free-form surface lens or an aspheric lens that is a correction optical system may be used.
  • the depth of the 70-inch size can only be reduced to about 20 cm or less.
  • the free-form surface optical system used as the correction optical system has a problem that it is difficult to design and a problem that the price becomes very high.
  • the skirt portion is configured behind the screen, so that the devices can be stacked.
  • the depth is increased, and as described above, the 29-inch compact size is achieved. Regardless of the device, the depth is as high as 36 cm.
  • the depth is narrowed by lengthening the mirror 1006, but there is a limit to this, and the mirror 1006 is applied to a free-form surface optical system.
  • An object of the present invention is to provide a rear projection display device, a rear projection display system, and a projection method capable of easily reducing the depth at low cost.
  • a rear projection display device uses a screen, a light emitting unit that emits light, a deflecting unit that changes the traveling direction of the light, and the deflecting unit to change the traveling direction of the light into a plurality of predetermined directions. And a plurality of scanning units that scan each light emitted in each predetermined direction and project the light onto a plurality of different regions on the back surface of the screen.
  • the rear projection display system includes a plurality of rear projection display devices, and the rear projection display devices are arranged in parallel.
  • the projection method according to the present invention includes a screen, a light emitting unit that emits light, a deflecting unit that emits light by changing a traveling direction of the light, and a plurality of different regions on the back surface of the screen by scanning incident light.
  • a rear projection display device having a plurality of scanning units that project light onto the rear projection type display device, wherein the deflection unit changes the traveling direction of the light, and the light emitted from the deflection units is transmitted to the plurality of scanning units.
  • a control method that makes each incident in order.
  • the depth can be easily reduced at low cost.
  • FIG. 1 It is a figure which shows the structure of the rear projection type display apparatus which is related technology. It is a figure which shows the structure of the rear projection type display apparatus of the 1st Embodiment of this invention. It is a figure which shows an example of a rear projection type display system. It is a figure for demonstrating switching of the advancing direction of light. It is a timing chart for demonstrating the operation
  • FIG. 2A is a diagram showing a configuration of a rear projection display device according to the first embodiment of the present invention. Specifically, FIG. 2A (a) is a front transparent view of the rear projection display device of the present embodiment, and FIG. 2A (b) is a longitudinal sectional view of the rear projection display device of the present embodiment. .
  • 2A includes a housing 101, a laser projector engine 102, an angle switch 103, a magnifying optical system 104, a long scanning element 105 to a long scanning element 107, a screen 108, and the like. And a control unit 109.
  • the housing 101 houses a laser projector engine 102, an angle switch 103, a magnifying optical system 104, long scanning elements 105 to 107, a screen 108, and a control unit 109. Note that the front surface of the screen 108 is exposed from the housing 101.
  • the laser projector engine 102 is a light emitting unit that emits a laser beam as light. Specifically, the laser projector engine 102 emits a linear beam whose cross-sectional shape is a linear laser beam, or a point beam whose cross-sectional shape is a point-like laser beam as a resonance mirror. It has the structure which scans with a scanning element and radiate
  • the laser projector engine 102 emits a laser beam modulated according to the input video signal. Moreover, the arrow in a figure has shown the advancing direction which a laser beam advances.
  • the angle switch 103 is a deflection unit that changes the traveling direction of the laser beam emitted from the laser projector engine 102.
  • the angle switch 103 has a mirror, and reflects the laser beam with the mirror to change the traveling direction of the laser beam.
  • the magnifying optical system 104 is an optical system for magnifying the projection area on the screen 108, and is arranged on the optical path from the laser projector engine 102 to the screen 108.
  • the expansion optical system 104 expands the cross-sectional shape of the linear beam in the width direction.
  • the magnifying optical system 104 deflects the dot beam so that the scanning amplitude of scanning by the scanning element of the laser projector engine 102 is apparently enlarged.
  • the magnifying optical system 104 an easy-to-design f ⁇ lens used for a laser printer or the like can be used, and it is not necessary to use an expensive free-form surface lens that is difficult to design.
  • the magnifying optical system 104 is disposed on the optical path from the angle switch 103 to the long scanning elements 105 to 107.
  • Each of the long scanning elements 105 to 107 is a scanning unit that displays an image on the screen 108 by scanning incident light in the first scanning direction and projecting the incident light on a plurality of different areas on the back surface of the screen 108. is there.
  • the first scanning direction is a direction that intersects the second scanning direction (or the width direction of the linear beam) in which the scanning element of the laser projector engine 102 scans the dotted beam. For this reason, the magnifying optical system 104 enlarges the length of the projection region in the direction intersecting the first scanning direction.
  • the first scanning direction is the vertical direction
  • the long scanning elements 105 to 107 are arranged in parallel in the vertical direction. Therefore, the area of the screen 108 on which the laser beam is projected by each of the long scanning elements 105 to 107 is also arranged in the vertical direction.
  • the long scanning elements 105 to 107 include, for example, a long mirror that is long in the second scanning direction (or the width direction of the linear beam), and the laser beam is emitted by swinging the long mirror. Scan.
  • the screen 108 displays an image corresponding to the laser beam projected from the long scanning elements 105 to 107, and is appropriately selected according to the laser beam or the like.
  • the screen 108 when the laser beam includes light of three primary colors of red, green, and blue, the screen 108 is a normal screen that diffuses and transmits the laser beam.
  • the screen 108 when the laser beam is light having a wavelength of about 405 nm used in an optical disk drive or the like, the screen 108 is a fluorescent light having phosphor regions that generate red, green, and blue light using the laser beam as excitation light. It becomes a screen.
  • the screen 108 may have a region that diffuses and transmits the laser beam and a phosphor region that generates red and green using the laser beam as excitation light.
  • the control unit 109 controls the entire rear projection display device.
  • control unit 109 drives the laser projector engine 102 in accordance with the input video signal input, and emits a laser beam modulated in accordance with the input video signal from the laser projector engine 102.
  • control unit 109 switches the traveling direction of the laser beam changed by the angle switch 103 according to the input video signal, and sequentially turns the light emitted from the angle switch 103 to each of the long scanning elements 105 to 107. To enter. Then, the control unit 109 drives the long scanning elements 105 to 107 in accordance with the input video signal to cause the long scanning elements 105 to 107 to scan with the laser beam.
  • the control unit 109 switches the traveling direction of the laser beam so that the laser beam is incident on all the long scanning elements 105 to 107 for each frame of the input video signal.
  • One large screen can be formed by connecting the images displayed by each of 105 to 107.
  • the position of the long scanning elements 105 to 107, the scanning amplitude of scanning by the long scanning elements 105 to 107, and the like are set in a space on the screen 108 where the laser beams are projected by the long scanning elements 105 to 107. It is desirable to design so that there is no.
  • a plurality of rear projection display devices described above may be arranged in parallel to constitute a rear projection display system.
  • FIG. 2B is a diagram illustrating an example of a rear projection display system.
  • the rear projection display system includes nine rear projection display devices 1, and the rear projection display devices 1 are arranged in a 3 ⁇ 3 matrix. Note that the number and arrangement of the rear projection display device 1 are not limited to those shown in FIG. 2B and can be changed as appropriate.
  • the control unit 109 drives the laser projector engine 102 according to the input video signal, and causes the laser projector engine 102 to emit a laser beam modulated according to the input video signal.
  • the traveling direction of the laser beam emitted from the laser projector engine 102 is changed by the angle switch 103 and is incident on one of the long scanning elements 105 to 107 via the magnifying optical system 104.
  • the long scanning elements 105 to 107 on which the laser beam is incident scan the laser beam and project it onto the screen 108.
  • control unit 109 switches the traveling direction of the laser beam, which is changed by the angle switch 103, in stages, and causes the laser beam to enter each of the long scanning elements 105 to 107 in order.
  • FIG. 3A shows an example of the angle switch 103 and the magnifying optical system 104.
  • the angle switch 103 is constituted by a mirror.
  • the magnifying optical system 104 includes a plurality of optical systems 104A to 104C corresponding to the long scanning elements 105 to 107, respectively. Each of the optical systems 104A to 104C is disposed on the optical path from the angle switch 103 to the long scanning element corresponding to the own optical system.
  • the control unit 109 adjusts the direction of the mirror of the angle switch 103 so that the laser beam 201 reflected by the mirror is sequentially incident on each of the long scanning elements 105 to 107 via the optical systems 104A to 104C. Next, the traveling direction of the laser beam is switched.
  • FIG. 3A shows a state in which the traveling direction of the laser beam 201 faces the long scanning element 105 (optical system 104A).
  • this state is referred to as state A
  • the state in which the traveling direction of the laser beam 201 faces the long scanning element 106 (optical system 104B)
  • state B the state in which the traveling direction of the laser beam 201 faces the long scanning element 106
  • state C the state facing the (optical system 104C) is defined as state C.
  • the magnifying optical system 104 is separated into optical systems 104A to 104C. It may be composed of one continuous optical system.
  • FIG. 3B is a timing chart for explaining the switching timing of the traveling direction of the laser beam. Note that the control unit 109 switches the traveling direction of the laser beam in the order of states A, B, and C within one frame of the input video signal.
  • the control unit 109 adjusts the direction of the mirror of the angle switch 103 and sets the traveling direction of the laser beam to the state A. Subsequently, in the period 203, the control unit 109 drives the long scanning element 105 while keeping the traveling direction of the laser beam in the state A, and causes the long scanning element 105 to scan the laser beam, whereby the laser beam is scanned. Is projected onto the first area on the back of the screen 108.
  • the control unit 109 adjusts the direction of the mirror of the angle switch 103 to switch the traveling direction of the laser beam from the state A to the state B. Subsequently, in the period 205, the control unit 109 drives the long scanning element 106 while keeping the traveling direction of the laser beam in the state B, and causes the long scanning element 106 to scan the laser beam, whereby the laser beam is scanned. Is projected onto the second area of the back surface of the screen 108.
  • the control unit 109 adjusts the direction of the mirror of the angle switch 103 to switch the traveling direction of the laser beam from the state B to the state C. Subsequently, in the period 207, the control unit 109 drives the long scanning element 107 while keeping the traveling direction of the laser beam in the state C, and causes the long scanning element 107 to scan the laser beam, whereby the laser beam is scanned. Is projected onto the third area on the back of the screen 108.
  • the present embodiment it is possible to divide and form a screen image using a plurality of scanning units, so that the incident angle of the laser beam with respect to the screen 108 can be reduced. . For this reason, an image without distortion can be realized by an apparatus having a small depth, and the depth can be reduced. In addition, since it is not necessary to use an expensive member that is difficult to design, such as a free-form curved mirror, the depth can be easily reduced at low cost.
  • the depth of the depth depends on the size of the projection area formed by the long scanning elements 105 to 107, but it is possible to form a screen of about 60 inches with a depth of about 10 cm.
  • the number of laser projector engines 102 is the same as that of the rear display device shown in FIG. Further, since the laser projector engine 102 can be provided at a position below the long scanning elements 105 to 107 behind the screen 108, an extra portion such as the skirt portion 1008 of the rear display device shown in FIG. There is no need to provide a region.
  • the screen can be enlarged in the direction intersecting with the scanning direction of the scanning by the long scanning elements 105 to 107.
  • FIG. 4 is a diagram showing the laser projector engine 102 and the angle switch 103 according to the present embodiment.
  • the laser projector engine 102 includes a laser light source 301, a polarizing prism 302, and a one-dimensional spatial modulation element 303.
  • the angle switch 103 includes a servo motor 304 and a mirror 305.
  • the laser light source 301 emits a linear beam.
  • the laser light source 301 requires a light source with a large output power.
  • the laser light source 301 can be composed of a laser array in which a plurality of laser elements are arranged in parallel, and a shaping optical system that optically shapes the laser beam from each laser element and emits it as a linear beam. it can.
  • the polarizing prism 302 reflects the linear beam from the laser light source 301 and guides it to the one-dimensional spatial modulation element 303, and further transmits the linear beam from the one-dimensional spatial modulation element 303.
  • the modulation drive signal for modulating the linear beam is input from the control unit 109 to the one-dimensional spatial modulation element 303.
  • the one-dimensional spatial modulation element 303 modulates and emits the linear beam from the polarizing prism 302 according to the input modulation drive signal.
  • the type of the one-dimensional spatial modulation element 303 is not particularly limited, but FIG. 4 shows a reflective one-dimensional spatial modulation element as the one-dimensional spatial modulation element 303.
  • the one-dimensional spatial modulation element 303 for example, a one-dimensional LCOS element is used.
  • a grating light valve developed by Sony Corporation or a device developed by Aloes in the United States D. Bloom, et. Al. "MEMS-Based Polarization Light Modulator Linear Array Microdisplay, IDW'09, pp.1497-1500, 2009
  • the one-dimensional spatial modulation element 303 may be a transmission type one-dimensional spatial modulation element.
  • a one-dimensional spatial modulation element for example, a one-dimensional liquid crystal element is used.
  • the control unit 109 outputs a linear beam modulated according to the input video signal to the one-dimensional spatial modulation element 303 by inputting the modulation drive signal corresponding to the input video signal to the one-dimensional spatial modulation element 303. I am letting.
  • the servo motor 304 of the angle switch 103 is connected to the mirror 305, and changes the direction of the mirror 305 by rotating the mirror 305 according to the drive signal from the control unit 109.
  • the control unit 109 uses the servo motor 304 to adjust the direction of the mirror 305 to switch the traveling direction of the linear beam emitted from the angle switch 103. Specifically, the control unit 109 sends a drive signal to the servo motor 304 so that the traveling direction of the linear beam is sequentially switched to the states A to C at the switching timing shown in FIG. 3B according to the input video signal. The direction of the mirror 305 is adjusted by inputting.
  • the servo motor 304 is illustrated as a drive unit that changes the direction of the mirror 305 of the angle switch 103.
  • a galvanometer or a DC drive type is used as the drive unit.
  • a driving device that drives the scanning mirror may be used.
  • the linear beam output from the laser light source 301 is reflected by the polarizing prism 302 and enters the one-dimensional spatial modulation element 303.
  • the linear beam incident on the one-dimensional spatial modulation element is modulated and reflected, passes through the polarizing prism 302, and enters the mirror 305 whose direction is adjusted by the servo motor 304.
  • the traveling direction of the linear beam is changed by the mirror 305 and is incident on the long scanning elements 106 to 109 via the magnifying optical system 104.
  • FIG. 5 is a diagram showing the configuration of the laser projector engine 102 and the angle switch 103 according to this embodiment.
  • the laser projector engine 102 includes laser elements 401 to 403, a mirror 404, dichroic prisms 405 and 406, and a resonant scanning element 407.
  • the angle switch 103 includes a servo motor 408 and a lens 409.
  • Laser elements 401 to 403 emit red, green, and blue dot beams, respectively. More specifically, the control unit 109 inputs a light emission control signal indicating the intensity and period of the dotted beam emitted from the laser elements 401 to 403 to the laser elements 401 to 403 in accordance with the input video signal. The laser elements 401 to 403 emit red, green, and blue dot beams corresponding to the input light emission control signal, thereby emitting dot beams modulated according to the input video signal.
  • the mirror 404 reflects the red dot beam from the laser element 401.
  • the dichroic prism 405 transmits the red dot beam reflected by the mirror 404 and reflects the green dot beam from the laser element 402.
  • the dichroic prism 406 transmits the red and green dot beams from the dichroic prism 405 and reflects the blue dot beam from the laser element 403.
  • the laser elements 401 to 403, the mirror 404, and the dichroic prisms 405 and 406 are arranged so that the optical axes of the dot beams of the respective colors emitted from the dichroic prism 406 coincide.
  • the dichroic prism 406 emits one dot beam in which the red, green, and blue dot beams are combined.
  • the resonant scanning element 407 scans and emits the point beam from the dichroic prism 406 in the second scanning direction.
  • the second scanning direction is a direction that intersects the first scanning direction of scanning by the long scanning elements 105 to 107, and is, for example, a horizontal direction.
  • the laser projector engine 102 described above has the same configuration as a general scanning projection display device.
  • a phosphor that generates red, green, and blue light for each pixel is provided on the screen 108 using a monochromatic laser beam (for example, wavelength 405 nm). It is also possible to use a blue laser beam or a phosphor provided with a phosphor that generates only red and green. In such a case, there is no need to use a plurality of laser elements that emit light of different colors, such as the laser elements 401 to 403, or a synthetic optical system such as the mirror 404 and the dichroic prisms 405 and 406. It is only necessary to provide a monochromatic laser element.
  • the servo motor 408 of the angle switch 103 is connected to the lens 409 and changes the direction of the lens 409 by rotating the lens 409 in accordance with a drive signal from the control unit 109.
  • the control unit 109 uses the servo motor 408 to adjust the direction of the lens 409 to switch the traveling direction of the point beam emitted from the angle switch 103. Specifically, the control unit 109 sends a drive signal to the servo motor 408 according to the input video signal so that the traveling direction of the dotted beam is sequentially switched to the states A to C at the switching timing shown in FIG. 3B. The direction of the lens 409 is adjusted by inputting.
  • the servo motor 408 is illustrated as a lens driving unit that changes the direction of the lens 409 of the angle switch 103.
  • a galvanometer or DC driving is used as the lens driving unit.
  • a driving device for driving a type of scanning mirror may be used.
  • the laser projector engine 102 described in the third embodiment may be combined with the angle switch 103 described in the second embodiment, the laser projector engine 102 described in the second embodiment, The angle switch 103 described in the third embodiment may be combined.
  • FIG. 6 is a diagram showing a configuration of the long scanning element 105 of the present embodiment.
  • the long scanning element 105 includes a servo motor 501 and a long mirror 502.
  • the servo motor 501 is connected to the long mirror 502, and scans the laser beam by vibrating the long mirror 502 in accordance with the scanning drive signal from the control unit 109.
  • FIG. 7 is a timing chart for explaining the control operation of the long scanning elements 105 to 107 by the control unit 109.
  • the control unit 109 switches the traveling direction of the laser beam at the timing shown in FIG. 3B.
  • the control unit 109 inputs a scanning drive signal to the long scanning element 105 and changes the angle of the long mirror 502 of the long scanning element 105, whereby the long scanning element 105. Is scanned with a laser beam.
  • the control unit 109 inputs a scanning drive signal to the long scanning element 106 and changes the angle of the long mirror 502 of the long scanning element 106, whereby the long scanning element 106 is changed. Is scanned with a laser beam.
  • the control unit 109 inputs a scanning drive signal to the long scanning element 107 and changes the angle of the long mirror 502 of the long scanning element 107, whereby the long scanning element 107. Is scanned with a laser beam.
  • the control unit 109 sets the long scan elements to the return periods 601 to 603. It is possible to ensure a sufficient time for accurately returning the angles of the scanning elements 105 to 107 to the starting angle when starting scanning.
  • the servo motor 501 is illustrated as a scanning drive unit that vibrates the long mirror 502 of the long scanning element 105, but instead of the servo motor 501, a galvanometer or the like is used as the scanning drive unit.
  • a driving device that drives a DC-driven scanning mirror may be used.
  • FIG. 8 is a diagram showing the configuration of the rear projection display device of the present embodiment, and specifically, is a longitudinal sectional view of the rear projection display device of the present embodiment.
  • FIG. 8 includes a folding mirror 701 to 704 in addition to the configuration of the rear projection display device of the first embodiment shown in FIG. 2A.
  • the folding mirrors 701 to 704 are reflection mirrors that reflect the laser beam emitted from the angle switch 103 and guide it to the long scanning elements 105 to 107.
  • the folding mirrors 701 and 702 are reflection mirrors for guiding the laser beam to the long scanning element 106. Specifically, the folding mirror 701 reflects the laser beam emitted in the first direction from the angle switch 103, and the folding mirror 702 reflects the laser beam reflected by the folding mirror 701, and is long. Incident on the scanning element 106.
  • the folding mirrors 703 and 704 are reflection mirrors for guiding the laser beam to the long scanning element 105. Specifically, the folding mirror 703 reflects the laser beam emitted in the second direction from the angle switch 103, and the folding mirror 704 reflects the laser beam reflected by the folding mirror 703, and is long. Incident on the scanning element 105.
  • the switching angle for switching the angles of the mirror 305 and the lens 409 of the angle switch 103 in order to adjust the orientation of the mirror 305 and the lens 409 of the angle switch 103. Can be reduced.
  • the vertical length of the rear display device is about 75 cm.
  • the difference in the incident angle of the laser beam with respect to the long scanning elements 105 and 107 is about 23 °.
  • the difference in the incident angle can be about 15 °. Therefore, by providing the folding mirrors 701 to 704, the switching angle can be increased 2/3 times. It is assumed that the long scanning elements 105 to 107 are arranged at equal intervals.
  • the switching angle can be reduced, the switching operation time of the angle switch 103 for switching the traveling direction of the laser beam can be shortened. Therefore, as can be seen from FIG. 3B, it is possible to lengthen the display time for displaying an image and improve the luminance of the display image.
  • one frame time is 16.7 milliseconds.
  • the image scanning periods 203, 205, and 207 in which the long scanning elements 105 to 107 display images are 4 milliseconds, respectively, and the switching operation periods 202 and 204 of the angle switch 103 are performed.
  • And 206 are each about 1.5 milliseconds.
  • the switching operation periods 202, 204, and 206 can be set to about 1 millisecond, and the image scanning periods 203, 205, and 207 can be set to 4.5 milliseconds.
  • the luminance of the display image can be improved by about 11%.
  • FIG. 9 is a diagram showing a configuration of the rear projection type display device of the present embodiment, and specifically, a cross-sectional view of the rear projection type display device as seen from above.
  • the rear projection type display device shown in FIG. 9 has a concave curved surface type case 801 instead of the case 101, as compared with the rear projection type display device of the first embodiment shown in FIG. Instead of 108, a screen 803 having a concave curved surface shape is provided.
  • the rear projection display device illustrated in FIG. 9 further includes a folding mirror 802.
  • the long scanning elements 105 to 107 are arranged in parallel in the vertical direction and scan the laser beam in the vertical direction. In the present embodiment, however, the long scanning elements 105 to 107 are These are arranged in parallel in the horizontal direction and scan the laser beam in the horizontal direction.
  • the folding mirror 802 is a reflection mirror that reflects the laser beam emitted from the angle switch 103 toward the long scanning element 105 and guides it to the long scanning element 105.
  • the rear projection type display device having the concave curved screen 803 described in the present embodiment is suitable as a monitor for a desktop PC (Personal computer), for example.
  • a desktop PC Personal computer
  • a plurality of monitors are arranged in a fan shape.
  • a single device is wide. The screen can be viewed from the front.
  • the rear projection display device of this embodiment there is no need for an extra area such as the skirt portion 1008 shown in FIG. 1, and therefore, a plurality of rear surfaces are provided as in the rear display system shown in FIG. 2B.
  • a rear display system in which projection display devices are arranged side by side can be configured. In this case, it becomes possible for a person to enter the back-side display system configured in a cylindrical shape to visually recognize the image, and to make the person feel immersive.
  • FIG. 10 is a diagram showing a configuration of the rear projection type display device of the present embodiment, specifically, a cross-sectional view of the rear projection type display device as seen from above.
  • the rear projection display device shown in FIG. 10 has a convex curved housing 901 instead of the housing 101 as compared with the rear projection display device of the first embodiment shown in FIG. Instead of 108, a screen 905 having a convex curved surface shape is provided. Further, the rear projection type display device shown in FIG. 10 further includes folding mirrors 902 to 904.
  • the long scanning elements 105 to 107 are arranged in parallel in the horizontal direction and scan the laser beam in the horizontal direction.
  • the folding mirrors 902 to 904 are reflection mirrors that reflect the laser beam emitted from the angle switch 103 and guide it to the long scanning elements 105 to 107.
  • the folding mirrors 902 and 903 are reflection mirrors for guiding the laser beam to the long scanning element 106. Specifically, the folding mirror 902 reflects the laser beam emitted in the third direction from the angle switch 103, and the folding mirror 903 reflects the laser beam reflected by the folding mirror 902, and is long. Incident on the scanning element 106.
  • the folding mirror 904 is a reflection mirror for guiding the laser beam to the long scanning element 105. Specifically, the folding mirror 904 reflects the laser beam emitted from the angle switch 103 in the fourth direction and enters the long scanning element 105.
  • FIG. 9 and 10 is an example of a rear display device having a curved screen, and a folding mirror required for directing the laser beam to the long scanning elements 105 to 107.
  • the number and the position of the display vary depending on specifications such as the shape and size of the rear display device. Further, in the rear display device having the convex curved screen 905, the switching angle of the angle switch 103 can be made extremely small as shown in FIG.
  • the rear display device of the present embodiment is suitable for a digital signage device disposed around a cylindrical column.
  • the rear projection display device of this embodiment there is no need for an extra area such as the skirt portion 1008 shown in FIG. 1, and therefore, a plurality of rear surfaces are provided as in the rear display system shown in FIG.
  • a rear display system in which projection display devices are arranged side by side can be configured. In this case, it is possible to configure a rear display system surrounding the cylinder.
  • [Appendix 1] Screen A light emitting portion for emitting light; A deflection unit that emits light by changing a traveling direction of the light; A plurality of scanning units that scan incident light and project the light onto different areas on the back surface of the screen; A rear projection type display device, comprising: a control unit that switches a traveling direction of light changed by the deflecting unit and causes light emitted from the deflecting unit to sequentially enter each of the plurality of scanning units.
  • the light emitting part is A light source that emits a linear beam whose cross-sectional shape is a linear light beam;
  • the rear projection display device according to appendix 1 or 2, further comprising: a one-dimensional spatial modulation element that modulates a linear beam emitted from the light source and emits the light as the light.
  • the light emitting part is A light source that emits a point beam whose cross-sectional shape is a point beam;
  • the rear projection display device according to appendix 1 or 2, further comprising: a scanning element that scans the point beam emitted from the light source and emits the light as the light.
  • the deflection unit is A mirror that reflects the light; A drive unit for changing the direction of the mirror, 5.
  • the rear projection display device according to claim 1, wherein the control unit adjusts a direction of the mirror using the driving unit to switch a traveling direction of the light. 6.
  • the deflection unit is A lens for deflecting the light; A lens driving unit that changes the direction of the lens, 5.
  • the rear projection display device according to claim 1, wherein the control unit adjusts a direction of the lens using the driving unit to switch a traveling direction of the light. 6.
  • the scanning unit A scanning mirror that reflects the light;
  • the rear projection display device according to any one of appendices 1 to 6, further comprising: a scanning drive unit that changes a direction of the scanning mirror.
  • Appendix 8 The rear projection display device according to any one of appendices 1 to 7, further comprising a reflection mirror that reflects light emitted from the deflection unit and guides the light to the scanning unit.
  • a screen a light emitting unit that emits light, a deflecting unit that emits light by changing the traveling direction of the light, and a plurality of scanning units that scan incident light and project the incident light onto different areas on the back surface of the screen
  • a control method for a rear projection display device comprising: A control method, wherein the traveling direction of light changed by the deflecting unit is switched, and light emitted from the deflecting unit is sequentially incident on each of the plurality of scanning units.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

In the present invention, a laser projector engine (102) emits light. An angle switcher (103) alters the direction of progress of light and emits the result. Longitudinal scanning elements (105-107) scan incoming light, causing projection to a plurality of regions each differing at the rear surface of a screen (108). A control unit (109) switches the direction of progress of light altered by the angle switcher (103), and sequentially causes the light exiting the angle switcher (103) to enter each of the longitudinal scanning elements (105-107).

Description

背面投射型表示装置、背面投射型表示システムおよび制御方法Rear projection display device, rear projection display system, and control method
 本発明は、スクリーンに対して背面から光を投射して、スクリーン上に画像を表示する背面投射型表示装置に関する。 The present invention relates to a rear projection display device that projects light onto a screen from the back side and displays an image on the screen.
 投射型表示装置は、LCD(Liquid Crystal Display)やPDP(Plasma Display Panel)などとは異なり、製造装置やパネル基板の大きさによって画面サイズが決定されることがないため、大画面化を低コストかつ容易に行うことができる。このため、例えば、スクリーンの背面から光を投射する背面投射型表示装置を用いることで、低コストかつ容易に大型のテレビや大型のデジタルサイネージ装置を製造することができる。 Projection-type display devices, unlike LCD (Liquid Crystal Display) and PDP (Plasma Display Panel), do not have a screen size determined by the size of the manufacturing equipment or panel substrate, so lowering the screen size is low. And can be done easily. For this reason, for example, by using a rear projection display device that projects light from the back of the screen, a large television or a large digital signage device can be easily manufactured at low cost.
 また、投射型表示装置の多くは、光源として超高圧水銀ランプを使用し、液晶ライトバルブやLCOS(Liquid Crystal on Silicon)などの液晶変調器や、TI社のDMD(Digital Micromirror Device)のようなMEMS技術を用いた2次元の空間変調器を用いて、光源からの光を変調して投射する構成を有していた。 Many of the projection display devices use an ultra-high pressure mercury lamp as a light source, such as a liquid crystal modulator such as a liquid crystal light valve, LCOS (Liquid Crystal on Silicon), or a DMD (Digital Micromirror Device) of TI. It has a configuration in which light from a light source is modulated and projected using a two-dimensional spatial modulator using MEMS technology.
 これに対して、近年では、光源としてレーザ光源を使用した投射型表示装置が開発されている。レーザ光源を使用した投射型表示装置は、超高圧水銀ランプを使用した投射型表示装置、LCDおよびPDPなどと比べて、電力効率や色再現性が良いため、将来性のある表示装置として注目されている。 In contrast, in recent years, a projection display device using a laser light source as a light source has been developed. Projection-type display devices that use laser light sources are attracting attention as future-proof display devices because they have better power efficiency and color reproducibility than projection-type display devices that use ultra-high pressure mercury lamps, LCDs, and PDPs. ing.
 レーザ光源を使用した背面投射型表示装置としては、例えば、三菱電機株式会社の75-LT1(非特許文献1参照)、Prysm社のデジタルサイネージ用表示装置(非特許文献2参照)、および、特許文献1に記載の背面投影型表示装置などが実用化または提案されている。 As a rear projection display device using a laser light source, for example, Mitsubishi Electric Corporation 75-LT1 (see Non-Patent Document 1), Prism Digital Signage Display Device (see Non-Patent Document 2), and Patents The rear projection display device described in Document 1 has been put to practical use or proposed.
 なお、上記の75-LT1は、DMDを用いてレーザビームをスクリーンに投射するものであり、上記のデジタルサイネージ用表示装置および背面投影型表示装置は、レーザビームをポリゴンミラーのような走査素子で走査してスクリーンに投射するものである。また、デジタルサイネージ用表示装置には、ブロックを積み上げるように複数個の装置を組み立てることで、大きな画面を構成することができる仕組みが設けられている。 The 75-LT1 projects a laser beam onto a screen using a DMD, and the digital signage display device and the rear projection display device described above use a scanning element such as a polygon mirror. It is scanned and projected onto the screen. In addition, the display device for digital signage is provided with a mechanism capable of configuring a large screen by assembling a plurality of devices so that blocks are stacked.
特開2008-033039号公報JP 2008-033039 A
 上記の75-LT1、デジタルサイネージ用表示装置および背面投影型表示装置のようなレーザ光源を使用した背面投射型表示装置は、レーザ光源からのレーザビームを、ミラーなどを用いて折り返すことで、装置の奥行きを出来る限り狭くしているが、それでも奥行きの狭さは十分ではない。 The rear projection display device using a laser light source such as the 75-LT1, the digital signage display device, and the rear projection display device is configured to return the laser beam from the laser light source using a mirror or the like. The depth is narrowed as much as possible, but the depth is still not enough.
 例えば、LCDやPDPでは、60型程度のものであれば、パネル本体の奥行きを4cm程度にすることができる。ただし、LCDやPDPをテレビ台などに載置する場合には、LCDやPDPを保持するスタンドが必要となるため、装置全体としては、奥行きは数十cmとなる。また、LCDやPDPを壁などに据え付ける場合には、放熱のために壁とパネル本体との間に間隙を作る必要があるため、装置全体としては、奥行きは10cm程度となる。 For example, in the case of an LCD or PDP of about 60 type, the depth of the panel body can be about 4 cm. However, when the LCD or PDP is placed on a TV stand or the like, a stand for holding the LCD or PDP is required, so that the entire apparatus has a depth of several tens of centimeters. In addition, when the LCD or PDP is installed on a wall or the like, it is necessary to create a gap between the wall and the panel body for heat dissipation, so that the entire apparatus has a depth of about 10 cm.
 これに対して、例えば、三菱電機株式会社の75-LT1では、75型のもので、奥行きが38cmとなり、Prysm社のデジタルサイネージ用表示装置では、29型という小型のものでも、奥行きが36cmにもなる。 On the other hand, for example, 75-LT1 of Mitsubishi Electric Co., Ltd. is 75 type and has a depth of 38 cm, and the display device for digital signage of Primsm has a depth of 36 cm even if it is a small type of 29 type. Also become.
 このように背面投射型表示装置は、奥行きが深いため、設置場所が限られてしまうという問題がある。このため、大型のテレビや大型のデジタルサイネージの多くに、低コストかつ容易に製造できる背面投射型表示装置ではなく、LCDやPDPが採用されている。 As described above, the rear projection type display device has a problem that the installation location is limited due to the deep depth. For this reason, LCDs and PDPs are employed in many large televisions and large digital signage instead of rear projection display devices that can be easily manufactured at low cost.
 以下、図10を用いて、奥行きを十分に狭くすることができないというレーザ光源を使用した背面投射型表示装置に共通の課題が発生する原因を説明する。 Hereinafter, with reference to FIG. 10, a description will be given of the cause of a common problem occurring in a rear projection display device using a laser light source that the depth cannot be sufficiently narrowed.
 図10に示す背面投射型表示装置は、筐体1001と、光源1002と、DMD1003と、投射レンズ1004と、自由曲面ミラー1005と、ミラー1006と、スクリーン1007とを有する。 10 includes a casing 1001, a light source 1002, a DMD 1003, a projection lens 1004, a free-form curved mirror 1005, a mirror 1006, and a screen 1007.
 図10に示したように、背面投射型表示装置は、小さなDMD1003から大きなスクリーン1007にレーザビームを投射するために、DMDから出射されたレーザビームを自由曲面ミラー1005およびミラー1006を用いて2回折り返して、スクリーン1007に投射している。 As shown in FIG. 10, the rear projection type display device projects a laser beam emitted from the DMD twice using a free-form curved mirror 1005 and a mirror 1006 in order to project a laser beam from a small DMD 1003 to a large screen 1007. It is folded and projected on the screen 1007.
 このとき、レーザビームはスクリーン1007に対して斜めに投射されることになるが、奥行きを狭くすると、スクリーン1007に対するレーザビームの入射角度が大きくなり、画像に歪みが生じてしまう。 At this time, the laser beam is projected obliquely with respect to the screen 1007. However, if the depth is narrowed, the incident angle of the laser beam with respect to the screen 1007 increases, and the image is distorted.
 図1に示す背面投射型表示装置は、光線を折り返すミラーとして自由曲面ミラー1005を用いることで、スクリーン1007に対するレーザビームの入射角度を小さくして、画像の歪みを補正している。なお、画像の歪みが大きいほど、自由曲面ミラー1005のような歪みを補正するための補正光学系の数も多くなる。例えば、投射レンズ1004に対して、補正光学系となる自由曲面レンズや非球面レンズなどが用いられることもある。 The rear projection display device shown in FIG. 1 uses a free-form surface mirror 1005 as a mirror for folding the light beam, thereby reducing the incident angle of the laser beam on the screen 1007 and correcting image distortion. Note that the greater the image distortion, the greater the number of correction optical systems for correcting the distortion, such as the free-form curved mirror 1005. For example, for the projection lens 1004, a free-form surface lens or an aspheric lens that is a correction optical system may be used.
 しかしながら、補正光学系を用いた歪み補正にも限度があるため、奥行きをある程度以上狭くすると、スクリーン1007に対するレーザビームの入射角度が大きくなり過ぎて、画像の歪みが解消できないことがある。このため、歪みのない画像を表示するためには、70型のサイズでは、奥行きを20cm弱程度までしか狭くすることができていない。 However, since there is a limit to distortion correction using the correction optical system, if the depth is narrowed to some extent, the incident angle of the laser beam with respect to the screen 1007 becomes too large and image distortion may not be eliminated. For this reason, in order to display an image without distortion, the depth of the 70-inch size can only be reduced to about 20 cm or less.
 なお、補正光学系として使用される自由曲面光学系などは、設計が難しいという問題や、価格が非常に高くなるという問題もある。 In addition, the free-form surface optical system used as the correction optical system has a problem that it is difficult to design and a problem that the price becomes very high.
 さらに、自由曲面光学系を用いて画像の歪みを解消させるためには、スクリーン1007の下にスカート部1008と呼ばれる余分な領域を発生させてしまうという問題もある。 Furthermore, in order to eliminate image distortion using a free-form surface optical system, there is a problem that an extra area called a skirt portion 1008 is generated under the screen 1007.
 なお、デジタルサイネージ用表示装置では、スカート部をスクリーンの後ろに構成することで、装置の積み上げを可能にしているが、そのために、奥行きが深くなってしまい、上述したように、29型という小型の装置に関わらず、奥行きが36cmにもなってしまう。 In the display device for digital signage, the skirt portion is configured behind the screen, so that the devices can be stacked. However, as a result, the depth is increased, and as described above, the 29-inch compact size is achieved. Regardless of the device, the depth is as high as 36 cm.
 また、特許文献1に記載の背面投影型表示装置は、ミラー1006を長くすることで、奥行きを狭くしているが、それにも限界があり、ミラー1006に自由曲面光学系に適用している。 In the rear projection display device described in Patent Document 1, the depth is narrowed by lengthening the mirror 1006, but there is a limit to this, and the mirror 1006 is applied to a free-form surface optical system.
 本発明の目的は、低コストかつ容易に奥行きを狭くすることが可能な背面投射型表示装置、背面投射型表示システムおよび投射方法を提供することである。 An object of the present invention is to provide a rear projection display device, a rear projection display system, and a projection method capable of easily reducing the depth at low cost.
 本発明による背面投射型表示装置は、スクリーンと、光を出射する光出射部と、前記光の進行方向を変える偏向部と、前記偏向部を用いて、前記光の進行方向を複数の所定方向のそれぞれに順次切り替える制御部と、各所定方向に出射された各光を走査して、前記スクリーンの背面のそれぞれ異なる複数の領域に投射する複数の走査部と、を有する。 A rear projection display device according to the present invention uses a screen, a light emitting unit that emits light, a deflecting unit that changes the traveling direction of the light, and the deflecting unit to change the traveling direction of the light into a plurality of predetermined directions. And a plurality of scanning units that scan each light emitted in each predetermined direction and project the light onto a plurality of different regions on the back surface of the screen.
 本発明による背面投射型表示システムは、背面投射型表示装置を複数備え、各背面投射型表示装置を並設している。 The rear projection display system according to the present invention includes a plurality of rear projection display devices, and the rear projection display devices are arranged in parallel.
 本発明による投射方法は、スクリーンと、光を出射する光出射部と、前記光の進行方向を変えて出射する偏向部と、入射光を走査して、前記スクリーンの背面のそれぞれ異なる複数の領域に投射する複数の走査部とを有する背面投射型表示装置の制御方法であって、前記偏向部が変える光の進行方向を切り替えて、前記偏向部から出射された光を前記複数の走査部のそれぞれに順番に入射させる、制御方法。 The projection method according to the present invention includes a screen, a light emitting unit that emits light, a deflecting unit that emits light by changing a traveling direction of the light, and a plurality of different regions on the back surface of the screen by scanning incident light. A rear projection display device having a plurality of scanning units that project light onto the rear projection type display device, wherein the deflection unit changes the traveling direction of the light, and the light emitted from the deflection units is transmitted to the plurality of scanning units. A control method that makes each incident in order.
 本発明によれば、低コストかつ容易に奥行きを狭くすることが可能になる。 According to the present invention, the depth can be easily reduced at low cost.
関連技術である背面投射型表示装置の構成を示す図である。It is a figure which shows the structure of the rear projection type display apparatus which is related technology. 本発明の第1の実施形態の背面投射型表示装置の構成を示す図である。It is a figure which shows the structure of the rear projection type display apparatus of the 1st Embodiment of this invention. 背面投射型表示システムの一例を示す図である。It is a figure which shows an example of a rear projection type display system. 光の進行方向の切り替えを説明するための図である。It is a figure for demonstrating switching of the advancing direction of light. 光の進行方向を切り替える動作を説明するためのタイミングチャートである。It is a timing chart for demonstrating the operation | movement which switches the advancing direction of light. 本発明の第2の実施形態のレーザプロジェクタエンジンおよび角度切替器の構成を示す図である。It is a figure which shows the structure of the laser projector engine and angle switch of the 2nd Embodiment of this invention. 本発明の第3の実施形態のレーザプロジェクタエンジンおよび角度切替器の構成を示す図である。It is a figure which shows the structure of the laser projector engine and angle switch of the 3rd Embodiment of this invention. 本発明の第4の実施形態の長尺走査素子の構成を示す図である。It is a figure which shows the structure of the elongate scanning element of the 4th Embodiment of this invention. 本発明の第4の実施形態の長尺走査素子を駆動する動作を説明するためのタイミングチャートである。It is a timing chart for demonstrating the operation | movement which drives the elongate scanning element of the 4th Embodiment of this invention. 本発明の第5の実施形態の背面投射型表示装置の構成を示す図である。It is a figure which shows the structure of the rear projection type display apparatus of the 5th Embodiment of this invention. 本発明の第6の実施形態の背面投射型表示装置の構成を示す図である。It is a figure which shows the structure of the rear projection type display apparatus of the 6th Embodiment of this invention. 本発明の第7の実施形態の背面投射型表示装置の構成を示す図である。It is a figure which shows the structure of the rear projection type display apparatus of the 7th Embodiment of this invention.
 以下、本発明の実施形態について図面を参照して説明する。なお、以下の説明では、同じ機能を有するものには同じ符号を付け、その説明を省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, components having the same function may be denoted by the same reference numerals and description thereof may be omitted.
 (第1の実施形態)
 図2Aは、本発明の第1の実施形態の背面投射型表示装置の構成を示す図である。具体的には、図2A(a)は、本実施形態の背面投射型表示装置の正面透過図であり、図2A(b)は、本実施形態の背面投射型表示装置の縦断面図である。
(First embodiment)
FIG. 2A is a diagram showing a configuration of a rear projection display device according to the first embodiment of the present invention. Specifically, FIG. 2A (a) is a front transparent view of the rear projection display device of the present embodiment, and FIG. 2A (b) is a longitudinal sectional view of the rear projection display device of the present embodiment. .
 図2Aに示す背面投射型表示装置は、筐体101と、レーザプロジェクタエンジン102と、角度切替器103と、拡大光学系104と、長尺走査素子105~長尺走査素子107と、スクリーン108と、制御部109とを有する。 2A includes a housing 101, a laser projector engine 102, an angle switch 103, a magnifying optical system 104, a long scanning element 105 to a long scanning element 107, a screen 108, and the like. And a control unit 109.
 筐体101は、レーザプロジェクタエンジン102、角度切替器103、拡大光学系104、長尺走査素子105~107、スクリーン108および制御部109を収容する。なお、スクリーン108の前面は筐体101から露出している。 The housing 101 houses a laser projector engine 102, an angle switch 103, a magnifying optical system 104, long scanning elements 105 to 107, a screen 108, and a control unit 109. Note that the front surface of the screen 108 is exposed from the housing 101.
 レーザプロジェクタエンジン102は、光としてレーザビームを出射する光出射部である。具体的には、レーザプロジェクタエンジン102は、断面形状が線状のレーザビームである線状ビームを出射する構成、または、断面形状が点状のレーザビームである点状ビームを共振ミラーのような走査素子で走査して出射する構成を有する。 The laser projector engine 102 is a light emitting unit that emits a laser beam as light. Specifically, the laser projector engine 102 emits a linear beam whose cross-sectional shape is a linear laser beam, or a point beam whose cross-sectional shape is a point-like laser beam as a resonance mirror. It has the structure which scans with a scanning element and radiate | emits.
 なお、後述するようにレーザプロジェクタエンジン102は、入力映像信号に応じて変調されたレーザビームが出射される。また、図中の矢印は、レーザビームが進む進行方向を示している。 As will be described later, the laser projector engine 102 emits a laser beam modulated according to the input video signal. Moreover, the arrow in a figure has shown the advancing direction which a laser beam advances.
 角度切替器103は、レーザプロジェクタエンジン102から出射されたレーザビームの進行方向を変える偏向部である。例えば、角度切替器103は、ミラーを有し、そのミラーでレーザビームを反射することで、レーザビームの進行方向を変える。 The angle switch 103 is a deflection unit that changes the traveling direction of the laser beam emitted from the laser projector engine 102. For example, the angle switch 103 has a mirror, and reflects the laser beam with the mirror to change the traveling direction of the laser beam.
 拡大光学系104は、スクリーン108上の投射領域を拡大するための光学系であり、レーザプロジェクタエンジン102からスクリーン108までの光路上に配置される。 The magnifying optical system 104 is an optical system for magnifying the projection area on the screen 108, and is arranged on the optical path from the laser projector engine 102 to the screen 108.
 具体的には、レーザビームが線状ビームの場合、拡大光学系104は、線状ビームの断面形状を幅方向に拡大する。また、レーザビームが点状ビームの場合、拡大光学系104は、レーザプロジェクタエンジン102の走査素子による走査の走査振幅が見かけ上拡大されるように、点状ビームを偏向する。 Specifically, when the laser beam is a linear beam, the expansion optical system 104 expands the cross-sectional shape of the linear beam in the width direction. When the laser beam is a dot beam, the magnifying optical system 104 deflects the dot beam so that the scanning amplitude of scanning by the scanning element of the laser projector engine 102 is apparently enlarged.
 なお、どちらの場合でも、拡大光学系104としては、レーザプリンタなどに使用される設計が容易なfθレンズなどを用いることができ、設計が困難で高価な自由曲面レンズなどを用いる必要はない。また、本実施形態では、拡大光学系104は、角度切替器103から長尺走査素子105~107までの光路上に配置されている。 In either case, as the magnifying optical system 104, an easy-to-design fθ lens used for a laser printer or the like can be used, and it is not necessary to use an expensive free-form surface lens that is difficult to design. In this embodiment, the magnifying optical system 104 is disposed on the optical path from the angle switch 103 to the long scanning elements 105 to 107.
 長尺走査素子105~107のそれぞれは、入射光を第1の走査方向に走査して、スクリーン108の背面のそれぞれ異なる複数の領域に投射することで、画像をスクリーン108に表示する走査部である。 Each of the long scanning elements 105 to 107 is a scanning unit that displays an image on the screen 108 by scanning incident light in the first scanning direction and projecting the incident light on a plurality of different areas on the back surface of the screen 108. is there.
 第1の走査方向は、レーザプロジェクタエンジン102の走査素子が点状ビームを走査する第2の走査方向(または、線状ビームの幅方向)と交差する方向である。このため、上記の拡大光学系104は、第1の走査方向と交差する方向の投射領域の長さを拡大することになる。 The first scanning direction is a direction that intersects the second scanning direction (or the width direction of the linear beam) in which the scanning element of the laser projector engine 102 scans the dotted beam. For this reason, the magnifying optical system 104 enlarges the length of the projection region in the direction intersecting the first scanning direction.
 なお、本実施形態では、第1の走査方向は、鉛直方向であるとし、長尺走査素子105~107は鉛直方向に並設されている。このため、各長尺走査素子105~107にてレーザビームが投射されるスクリーン108の領域も鉛直方向に並ぶ。 In this embodiment, the first scanning direction is the vertical direction, and the long scanning elements 105 to 107 are arranged in parallel in the vertical direction. Therefore, the area of the screen 108 on which the laser beam is projected by each of the long scanning elements 105 to 107 is also arranged in the vertical direction.
 また、長尺走査素子105~107は、例えば、第2の走査方向(または、線状ビームの幅方向)に長い長尺ミラーを備え、その長尺ミラーを揺動させることによって、レーザビームを走査する。 Further, the long scanning elements 105 to 107 include, for example, a long mirror that is long in the second scanning direction (or the width direction of the linear beam), and the laser beam is emitted by swinging the long mirror. Scan.
 スクリーン108は、長尺走査素子105~107から投射されたレーザビームに応じた画像を表示するものであり、レーザビームなどに応じて適宜選択される。 The screen 108 displays an image corresponding to the laser beam projected from the long scanning elements 105 to 107, and is appropriately selected according to the laser beam or the like.
 例えば、レーザビームが赤色、緑色および青色の3原色の光を含む場合、スクリーン108は、レーザビームを拡散透過する通常のスクリーンとなる。また、レーザビームが光ディスクドライブなどで使用されている波長405nm程度の光の場合、スクリーン108は、レーザビームを励起光として、赤色、緑色および青色の光のそれぞれを発生させる蛍光体領域を有する蛍光スクリーンとなる。また、レーザビームが青色の光の場合、スクリーン108は、レーザビームを拡散透過する領域と、レーザビームを励起光として赤色および緑色のそれぞれを発生させる蛍光体領域とを有するものでもよい。 For example, when the laser beam includes light of three primary colors of red, green, and blue, the screen 108 is a normal screen that diffuses and transmits the laser beam. In addition, when the laser beam is light having a wavelength of about 405 nm used in an optical disk drive or the like, the screen 108 is a fluorescent light having phosphor regions that generate red, green, and blue light using the laser beam as excitation light. It becomes a screen. When the laser beam is blue light, the screen 108 may have a region that diffuses and transmits the laser beam and a phosphor region that generates red and green using the laser beam as excitation light.
 制御部109は、背面投射型表示装置全体を制御する。 The control unit 109 controls the entire rear projection display device.
 例えば、制御部109は、入力された入力映像信号に応じてレーザプロジェクタエンジン102を駆動して、その入力映像信号に応じて変調されたレーザビームをレーザプロジェクタエンジン102から出射させる。 For example, the control unit 109 drives the laser projector engine 102 in accordance with the input video signal input, and emits a laser beam modulated in accordance with the input video signal from the laser projector engine 102.
 また、制御部109は、入力映像信号に応じて、角度切替器103が変えるレーザビームの進行方向を切り替えて、角度切替器103から出射された光を長尺走査素子105~107のそれぞれに順番に入射させる。そして、制御部109は、入力映像信号に応じて、長尺走査素子105~107を駆動して、長尺走査素子105~107にレーザビームを走査させる。 Further, the control unit 109 switches the traveling direction of the laser beam changed by the angle switch 103 according to the input video signal, and sequentially turns the light emitted from the angle switch 103 to each of the long scanning elements 105 to 107. To enter. Then, the control unit 109 drives the long scanning elements 105 to 107 in accordance with the input video signal to cause the long scanning elements 105 to 107 to scan with the laser beam.
 このとき、制御部109は、入力映像信号の1フレームごとに、全ての長尺走査素子105~107にレーザビームが入射されるように、レーザビームの進行方向を切り替えることで、長尺走査素子105~107のそれぞれが表示する画像を繋ぎ合せて、大きな1つの画面を形成することができる。長尺走査素子105~107の位置や、長尺走査素子105~107による走査の走査振幅などは、各長尺走査素子105~107にてレーザビームが投射されるスクリーン108上の領域に、間隙がないように設計されることが望ましい。 At this time, the control unit 109 switches the traveling direction of the laser beam so that the laser beam is incident on all the long scanning elements 105 to 107 for each frame of the input video signal. One large screen can be formed by connecting the images displayed by each of 105 to 107. The position of the long scanning elements 105 to 107, the scanning amplitude of scanning by the long scanning elements 105 to 107, and the like are set in a space on the screen 108 where the laser beams are projected by the long scanning elements 105 to 107. It is desirable to design so that there is no.
 なお、以上説明した背面投射型表示装置を複数並設して、背面投射型表示システムを構成してもよい。 Note that a plurality of rear projection display devices described above may be arranged in parallel to constitute a rear projection display system.
 図2Bは、背面投射型表示システムの一例を示す図である。図2Bにおいて、背面投射型表示システムは、9個の背面投射型表示装置1を備え、それらの背面投射型表示装置1が3×3のマトリックス状に並設されている。なお、背面投射型表示装置1の数および配置は、図2Bに示したものに限らず、適宜変更可能である。 FIG. 2B is a diagram illustrating an example of a rear projection display system. 2B, the rear projection display system includes nine rear projection display devices 1, and the rear projection display devices 1 are arranged in a 3 × 3 matrix. Note that the number and arrangement of the rear projection display device 1 are not limited to those shown in FIG. 2B and can be changed as appropriate.
 次に背面投射型表示装置の動作を説明する。 Next, the operation of the rear projection display device will be described.
 先ず、制御部109は、入力映像信号に応じてレーザプロジェクタエンジン102を駆動して、その入力映像信号に応じて変調されたレーザビームをレーザプロジェクタエンジン102から出射させる。レーザプロジェクタエンジン102から出射されたレーザビームは、角度切替器103にて進行方向が変えられて、拡大光学系104を介して長尺走査素子105~107のいずれかに入射する。そして、レーザビームが入射された長尺走査素子105~107は、そのレーザビームを走査して、スクリーン108に投射する。 First, the control unit 109 drives the laser projector engine 102 according to the input video signal, and causes the laser projector engine 102 to emit a laser beam modulated according to the input video signal. The traveling direction of the laser beam emitted from the laser projector engine 102 is changed by the angle switch 103 and is incident on one of the long scanning elements 105 to 107 via the magnifying optical system 104. The long scanning elements 105 to 107 on which the laser beam is incident scan the laser beam and project it onto the screen 108.
 ここで、制御部109は、角度切替器103にて変えられるレーザビームの進行方向を段階的に切り替えて、レーザビームを長尺走査素子105~107のそれぞれに順番に入射させる。 Here, the control unit 109 switches the traveling direction of the laser beam, which is changed by the angle switch 103, in stages, and causes the laser beam to enter each of the long scanning elements 105 to 107 in order.
 以下、図3Aおよび図3Bを用いて、進行方向を切り替える切替タイミングについてより詳細に説明する。 Hereinafter, the switching timing for switching the traveling direction will be described in more detail with reference to FIGS. 3A and 3B.
 図3Aは、角度切替器103および拡大光学系104の一例を示している。 FIG. 3A shows an example of the angle switch 103 and the magnifying optical system 104.
 図3Aにおいて、角度切替器103は、ミラーで構成される。また、拡大光学系104は、長尺走査素子105~107のそれぞれに対応する複数の光学系104A~104Cで構成される。各光学系104A~Cは、角度切替器103から自光学系に対応する長尺走査素子までの光路上に配置される。 In FIG. 3A, the angle switch 103 is constituted by a mirror. The magnifying optical system 104 includes a plurality of optical systems 104A to 104C corresponding to the long scanning elements 105 to 107, respectively. Each of the optical systems 104A to 104C is disposed on the optical path from the angle switch 103 to the long scanning element corresponding to the own optical system.
 制御部109は、角度切替器103のミラーの向きを調節して、そのミラーで反射したレーザビーム201が光学系104A~Cを介して長尺走査素子105~107のそれぞれに順番に入射するように、レーザビームの進行方向を切り替える。 The control unit 109 adjusts the direction of the mirror of the angle switch 103 so that the laser beam 201 reflected by the mirror is sequentially incident on each of the long scanning elements 105 to 107 via the optical systems 104A to 104C. Next, the traveling direction of the laser beam is switched.
 なお、図3Aでは、レーザビーム201の進行方向が長尺走査素子105(光学系104A)を向いている状態が示されている。以下、便宜上、この状態を状態Aとし、レーザビーム201の進行方向が長尺走査素子106(光学系104B)を向いている状態を状態Bとし、レーザビーム201の進行方向が長尺走査素子107(光学系104C)を向いている状態を状態Cとする。 FIG. 3A shows a state in which the traveling direction of the laser beam 201 faces the long scanning element 105 (optical system 104A). Hereinafter, for convenience, this state is referred to as state A, the state in which the traveling direction of the laser beam 201 faces the long scanning element 106 (optical system 104B) is referred to as state B, and the traveling direction of the laser beam 201 is the long scanning element 107. The state facing the (optical system 104C) is defined as state C.
 また、図3Aでは、拡大光学系104と長尺走査素子105~107との関係を分かり易くするために、拡大光学系104を光学系104A~104Cに分離しているが、拡大光学系104は、1個の連続した光学系で構成されてもよい。 In FIG. 3A, in order to make the relationship between the magnifying optical system 104 and the long scanning elements 105 to 107 easier to understand, the magnifying optical system 104 is separated into optical systems 104A to 104C. It may be composed of one continuous optical system.
 図3Bは、レーザビームの進行方向の切り替えタイミングを説明するためタイミングチャートである。なお、制御部109は、入力映像信号の1フレーム内に、レーザビームの進行方向を状態A、B、Cの順に切り替えるものとする。 FIG. 3B is a timing chart for explaining the switching timing of the traveling direction of the laser beam. Note that the control unit 109 switches the traveling direction of the laser beam in the order of states A, B, and C within one frame of the input video signal.
 先ず、入力映像信号の1フレームの最初の期間202において、制御部109は、角度切替器103のミラーの向きを調節して、レーザビームの進行方向を状態Aに設定する。続いて、期間203において、制御部109は、レーザビームの進行方向を状態Aにしたまま、長尺走査素子105を駆動して、長尺走査素子105にレーザビームを走査させることで、レーザビームをスクリーン108の背面の第1の領域に投射する。 First, in the first period 202 of one frame of the input video signal, the control unit 109 adjusts the direction of the mirror of the angle switch 103 and sets the traveling direction of the laser beam to the state A. Subsequently, in the period 203, the control unit 109 drives the long scanning element 105 while keeping the traveling direction of the laser beam in the state A, and causes the long scanning element 105 to scan the laser beam, whereby the laser beam is scanned. Is projected onto the first area on the back of the screen 108.
 その後、期間204において、制御部109は、角度切替器103のミラーの向きを調節して、レーザビームの進行方向を状態Aから状態Bに切り替える。続いて、期間205において、制御部109は、レーザビームの進行方向を状態Bにしたまま、長尺走査素子106を駆動して、長尺走査素子106にレーザビームを走査させることで、レーザビームをスクリーン108の背面の第2の領域に投射する。 Thereafter, in the period 204, the control unit 109 adjusts the direction of the mirror of the angle switch 103 to switch the traveling direction of the laser beam from the state A to the state B. Subsequently, in the period 205, the control unit 109 drives the long scanning element 106 while keeping the traveling direction of the laser beam in the state B, and causes the long scanning element 106 to scan the laser beam, whereby the laser beam is scanned. Is projected onto the second area of the back surface of the screen 108.
 そして、期間206において、制御部109は、角度切替器103のミラーの向きを調節して、レーザビームの進行方向を状態Bから状態Cに切り替える。続いて、期間207において、制御部109は、レーザビームの進行方向を状態Cにしたまま、長尺走査素子107を駆動して、長尺走査素子107にレーザビームを走査させることで、レーザビームをスクリーン108の背面の第3の領域に投射する。 In the period 206, the control unit 109 adjusts the direction of the mirror of the angle switch 103 to switch the traveling direction of the laser beam from the state B to the state C. Subsequently, in the period 207, the control unit 109 drives the long scanning element 107 while keeping the traveling direction of the laser beam in the state C, and causes the long scanning element 107 to scan the laser beam, whereby the laser beam is scanned. Is projected onto the third area on the back of the screen 108.
 これにより、第1の領域、第2の領域および第3の領域に亘った大きな画面を構成することができる。 Thereby, a large screen over the first area, the second area, and the third area can be formed.
 以上説明したように本実施形態によれば、複数の走査部を用いて画面像を分割して形成することが可能になるため、スクリーン108に対するレーザビームの入射角度を小さくすることが可能になる。このため、歪みのない画像を奥行きの狭い装置で実現することが可能になり、奥行きを狭くすることが可能になる。また、自由曲面ミラーなどの設計が困難で高価な部材を使用しなくてもよいため、低コストかつ容易に奥行きを狭くすることが可能になる。 As described above, according to the present embodiment, it is possible to divide and form a screen image using a plurality of scanning units, so that the incident angle of the laser beam with respect to the screen 108 can be reduced. . For this reason, an image without distortion can be realized by an apparatus having a small depth, and the depth can be reduced. In addition, since it is not necessary to use an expensive member that is difficult to design, such as a free-form curved mirror, the depth can be easily reduced at low cost.
 なお、奥行きの深さは、長尺走査素子105~107による投射領域の大きさに依存するが、奥行きが10cm程度で60型程度の画面を形成することは十分可能である。 Note that the depth of the depth depends on the size of the projection area formed by the long scanning elements 105 to 107, but it is possible to form a screen of about 60 inches with a depth of about 10 cm.
 また、レーザプロジェクタエンジン102の数は、図1に示した背面型表示装置と同じ一つだけである。また、レーザプロジェクタエンジン102は、スクリーン108の後方における、長尺走査素子105~107の下の位置に設けることができるため、図1に示した背面型表示装置のスカート部1008のような余分な領域を設けなくてもよくなる。 Also, the number of laser projector engines 102 is the same as that of the rear display device shown in FIG. Further, since the laser projector engine 102 can be provided at a position below the long scanning elements 105 to 107 behind the screen 108, an extra portion such as the skirt portion 1008 of the rear display device shown in FIG. There is no need to provide a region.
 したがって、図2Bに示したように複数の背面型表示装置を並設する際に、各背面型表示装置のスクリーン108を隙間なく並べるために、スカート部を考慮しなくてもよくなり、並べ方に係る制約を軽減することが可能になる。このため、背面型表示装置を保持する保持部材の強度に関する制約などを満たす限り、多くの背面型表示装置を並設することが可能になり、大きな画面を形成することが可能になる。このとき、スクリーン108として、各背面型表示装置に共通する大きなスクリーンを使用してもよい。この場合、各背面型表示装置が表示する画像の繋ぎ目をより目立たなくすることが可能になる。 Therefore, when arranging a plurality of rear display devices side by side as shown in FIG. 2B, it is not necessary to consider the skirt portion in order to arrange the screens 108 of the respective rear display devices without gaps. Such restrictions can be reduced. For this reason, as long as the restrictions on the strength of the holding member that holds the rear display device are satisfied, a large number of rear display devices can be arranged side by side, and a large screen can be formed. At this time, a large screen common to the respective rear display devices may be used as the screen 108. In this case, it is possible to make the joints of the images displayed by the respective rear display devices more inconspicuous.
 また、本実施形態では、拡大光学系104を有するため、長尺走査素子105~107による走査の走査方向と交差する方向にも、画面を大きくすることが可能になる。 Further, in the present embodiment, since the magnifying optical system 104 is provided, the screen can be enlarged in the direction intersecting with the scanning direction of the scanning by the long scanning elements 105 to 107.
 (第2の実施形態)
 本実施形態では、レーザプロジェクタエンジン102および角度切替器103の具体例について説明する。
(Second Embodiment)
In the present embodiment, specific examples of the laser projector engine 102 and the angle switch 103 will be described.
 図4は、本実施形態のレーザプロジェクタエンジン102および角度切替器103を示す図である。図4において、レーザプロジェクタエンジン102は、レーザ光源301と、偏光プリズム302と、1次元空間変調素子303とを有する。また、角度切替器103は、サーボモータ304と、ミラー305とを有する。 FIG. 4 is a diagram showing the laser projector engine 102 and the angle switch 103 according to the present embodiment. In FIG. 4, the laser projector engine 102 includes a laser light source 301, a polarizing prism 302, and a one-dimensional spatial modulation element 303. In addition, the angle switch 103 includes a servo motor 304 and a mirror 305.
 レーザ光源301は、線状ビームを出射する。なお、背面投射型表示装置が大画面の場合、レーザ光源301には、出力パワーの大きな光源が必要となる。この場合、レーザ光源301は、複数のレーザ素子を並設したレーザアレイと、各レーザ素子からのレーザビームを光学的に整形して、線状ビームとして出射する整形光学系とで構成することができる。 The laser light source 301 emits a linear beam. Note that when the rear projection display device has a large screen, the laser light source 301 requires a light source with a large output power. In this case, the laser light source 301 can be composed of a laser array in which a plurality of laser elements are arranged in parallel, and a shaping optical system that optically shapes the laser beam from each laser element and emits it as a linear beam. it can.
 偏光プリズム302は、レーザ光源301からの線状ビームを反射して1次元空間変調素子303に導き、さらに、1次元空間変調素子303からの線状ビームを透過する。 The polarizing prism 302 reflects the linear beam from the laser light source 301 and guides it to the one-dimensional spatial modulation element 303, and further transmits the linear beam from the one-dimensional spatial modulation element 303.
 1次元空間変調素子303には、制御部109から線状ビームを変調する変調駆動信号が入力される。1次元空間変調素子303は、入力された変調駆動信号に応じて、偏光プリズム302からの線状ビームを変調して出射する。 The modulation drive signal for modulating the linear beam is input from the control unit 109 to the one-dimensional spatial modulation element 303. The one-dimensional spatial modulation element 303 modulates and emits the linear beam from the polarizing prism 302 according to the input modulation drive signal.
 1次元空間変調素子303の種類は、特に限定されないが、図4は、1次元空間変調素子303として、反射型の1次元空間変調素子を示している。この場合、1次元空間変調素子303としては、例えば、1次元のLCOS素子が用いられる。また、1次元空間変調素子303として、光学的な特性が複雑であるが、ソニー株式会社などによって開発されたグレーティングライトバルブや、米国のAloes社が開発したデバイス(D. Bloom, et. al. "MEMS-Based Polarization Light Modulator Linear Array Microdisplay, IDW'09, pp.1497-1500, 2009)などが用いられてもよい。さらに、1次元空間変調素子303は、透過型の1次元空間変調素子でもよい。この場合、1次元空間変調素子303としては、例えば、1次元の液晶素子が用いられる。 The type of the one-dimensional spatial modulation element 303 is not particularly limited, but FIG. 4 shows a reflective one-dimensional spatial modulation element as the one-dimensional spatial modulation element 303. In this case, as the one-dimensional spatial modulation element 303, for example, a one-dimensional LCOS element is used. Although the optical characteristics of the one-dimensional spatial modulation element 303 are complicated, a grating light valve developed by Sony Corporation or a device developed by Aloes in the United States (D. Bloom, et. Al. "MEMS-Based Polarization Light Modulator Linear Array Microdisplay, IDW'09, pp.1497-1500, 2009) may be used. Further, the one-dimensional spatial modulation element 303 may be a transmission type one-dimensional spatial modulation element. In this case, as the one-dimensional spatial modulation element 303, for example, a one-dimensional liquid crystal element is used.
 なお、制御部109は、入力映像信号に応じた変調駆動信号を1次元空間変調素子303に入力することで、1次元空間変調素子303に入力映像信号に応じて変調された線状ビームを出力させている。 The control unit 109 outputs a linear beam modulated according to the input video signal to the one-dimensional spatial modulation element 303 by inputting the modulation drive signal corresponding to the input video signal to the one-dimensional spatial modulation element 303. I am letting.
 角度切替器103のサーボモータ304は、ミラー305と接続され、制御部109からの駆動信号に応じてミラー305を回転させることで、ミラー305の向きを変える。 The servo motor 304 of the angle switch 103 is connected to the mirror 305, and changes the direction of the mirror 305 by rotating the mirror 305 according to the drive signal from the control unit 109.
 図4の例では、制御部109は、サーボモータ304を用いて、ミラー305の向きを調節して、角度切替器103から出射される線状ビームの進行方向を切り替える。具体的には、制御部109は、入力映像信号に応じて、図3Bに示した切替タイミングで線状ビームの進行方向が状態A~Cに順番に切り替わるように、駆動信号をサーボモータ304に入力して、ミラー305の向きを調節する。 In the example of FIG. 4, the control unit 109 uses the servo motor 304 to adjust the direction of the mirror 305 to switch the traveling direction of the linear beam emitted from the angle switch 103. Specifically, the control unit 109 sends a drive signal to the servo motor 304 so that the traveling direction of the linear beam is sequentially switched to the states A to C at the switching timing shown in FIG. 3B according to the input video signal. The direction of the mirror 305 is adjusted by inputting.
 なお、図4の例では、角度切替器103のミラー305の向きを変える駆動部として、サーボモータ304を例示しているが、駆動部として、サーボモータ304の代わりに、ガルバノメータやDC駆動型の走査ミラーを駆動する駆動装置が用いられてもよい。 In the example of FIG. 4, the servo motor 304 is illustrated as a drive unit that changes the direction of the mirror 305 of the angle switch 103. However, instead of the servo motor 304, a galvanometer or a DC drive type is used as the drive unit. A driving device that drives the scanning mirror may be used.
 以上のような構成されたレーザプロジェクタエンジン102および角度切替器103では、レーザ光源301から出力された線状ビームは、偏光プリズム302で反射して、1次元空間変調素子303に入射する。1次元空間変調素子に入射した線状ビームは、変調および反射されて偏光プリズム302を透過して、サーボモータ304によって向きが調節されたミラー305に入射する。そして、線状ビームは、ミラー305で進行方向が変えられて、拡大光学系104を介して長尺走査素子106~109に入射される。 In the laser projector engine 102 and the angle switch 103 configured as described above, the linear beam output from the laser light source 301 is reflected by the polarizing prism 302 and enters the one-dimensional spatial modulation element 303. The linear beam incident on the one-dimensional spatial modulation element is modulated and reflected, passes through the polarizing prism 302, and enters the mirror 305 whose direction is adjusted by the servo motor 304. The traveling direction of the linear beam is changed by the mirror 305 and is incident on the long scanning elements 106 to 109 via the magnifying optical system 104.
 (第3の実施形態)
 本実施形態では、レーザプロジェクタエンジン102および角度切替器103の別の具体例について説明する。
(Third embodiment)
In the present embodiment, another specific example of the laser projector engine 102 and the angle switch 103 will be described.
 図5は、本実施形態のレーザプロジェクタエンジン102および角度切替器103の構成を示す図である。図5において、レーザプロジェクタエンジン102は、レーザ素子401~403と、ミラー404と、ダイクロイックプリズム405および406と、共振型走査素子407とを含む。また、角度切替器103は、サーボモータ408と、レンズ409とを有する。 FIG. 5 is a diagram showing the configuration of the laser projector engine 102 and the angle switch 103 according to this embodiment. In FIG. 5, the laser projector engine 102 includes laser elements 401 to 403, a mirror 404, dichroic prisms 405 and 406, and a resonant scanning element 407. Further, the angle switch 103 includes a servo motor 408 and a lens 409.
 レーザ素子401~403は、それぞれ赤色、緑色および青色の点状ビームを出射する。より具体的には、制御部109は、入力映像信号に応じて、レーザ素子401~403から出射される点状ビームの強度および期間などを示す発光制御信号をレーザ素子401~403に入力する。レーザ素子401~403は、入力された発光制御信号に応じた赤色、緑色および青色の点状ビームを出射することで、入力映像信号に応じて変調された点状ビームを出射する。 Laser elements 401 to 403 emit red, green, and blue dot beams, respectively. More specifically, the control unit 109 inputs a light emission control signal indicating the intensity and period of the dotted beam emitted from the laser elements 401 to 403 to the laser elements 401 to 403 in accordance with the input video signal. The laser elements 401 to 403 emit red, green, and blue dot beams corresponding to the input light emission control signal, thereby emitting dot beams modulated according to the input video signal.
 ミラー404は、レーザ素子401からの赤色の点状ビームを反射する。ダイクロイックプリズム405は、ミラー404で反射された赤色の点状ビームを透過し、レーザ素子402からの緑色の点状ビームを反射する。ダイクロイックプリズム406は、ダイクロイックプリズム405からの赤色および緑色の点状ビームを透過し、レーザ素子403からの青色の点状ビームを反射する。 The mirror 404 reflects the red dot beam from the laser element 401. The dichroic prism 405 transmits the red dot beam reflected by the mirror 404 and reflects the green dot beam from the laser element 402. The dichroic prism 406 transmits the red and green dot beams from the dichroic prism 405 and reflects the blue dot beam from the laser element 403.
 なお、レーザ素子401~403、ミラー404と、ダイクロイックプリズム405および406は、ダイクロイックプリズム406から出射される各色の点状ビームの光軸が一致するように配置される。これにより、ダイクロイックプリズム406から、赤色、緑色および青色の点状ビームが合成された1本の点状ビームが出射されることになる。 Note that the laser elements 401 to 403, the mirror 404, and the dichroic prisms 405 and 406 are arranged so that the optical axes of the dot beams of the respective colors emitted from the dichroic prism 406 coincide. As a result, the dichroic prism 406 emits one dot beam in which the red, green, and blue dot beams are combined.
 共振型走査素子407は、ダイクロイックプリズム406からの点状ビームを第2の走査方向に走査して出射する。なお、第2の走査方向は、上述したように、長尺走査素子105~107による走査の第1の走査方向とは交差する方向であり、例えば、水平方向である。 The resonant scanning element 407 scans and emits the point beam from the dichroic prism 406 in the second scanning direction. Note that, as described above, the second scanning direction is a direction that intersects the first scanning direction of scanning by the long scanning elements 105 to 107, and is, for example, a horizontal direction.
 なお、以上説明したレーザプロジェクタエンジン102は、一般的な走査方式の投射型表示装置と同様な構成である。 The laser projector engine 102 described above has the same configuration as a general scanning projection display device.
 また、第1の実施形態で説明したように、単色のレーザビーム(例えば、波長405nm)を用いて、スクリーン108には、画素ごとに赤色、緑色および青色の光の発生させる蛍光体を設けたものを用いたり、青色のレーザビームを用い、赤色と緑色のみを発生させる蛍光体を設けたものを用いたりすることもできる。このような場合には、レーザ素子401~403のように、色がそれぞれ異なる光を出射する複数のレーザ素子や、ミラー404、ダイクロイックプリズム405および406のような合成光学系を用いる必要はなく、単色のレーザ素子を設けるだけでよい。 Further, as described in the first embodiment, a phosphor that generates red, green, and blue light for each pixel is provided on the screen 108 using a monochromatic laser beam (for example, wavelength 405 nm). It is also possible to use a blue laser beam or a phosphor provided with a phosphor that generates only red and green. In such a case, there is no need to use a plurality of laser elements that emit light of different colors, such as the laser elements 401 to 403, or a synthetic optical system such as the mirror 404 and the dichroic prisms 405 and 406. It is only necessary to provide a monochromatic laser element.
 角度切替器103のサーボモータ408は、レンズ409と接続され、制御部109からの駆動信号に応じてレンズ409を回転させることで、レンズ409の向きを変える。 The servo motor 408 of the angle switch 103 is connected to the lens 409 and changes the direction of the lens 409 by rotating the lens 409 in accordance with a drive signal from the control unit 109.
 図5の例では、制御部109は、サーボモータ408を用いて、レンズ409の向きを調節して、角度切替器103から出射される点状ビームの進行方向を切り替える。具体的には、制御部109は、図3Bに示した切替タイミングで点状ビームの進行方向が状態A~Cに順番に切り替わるように、入力映像信号に応じて、駆動信号をサーボモータ408に入力して、レンズ409の向きを調節する。 In the example of FIG. 5, the control unit 109 uses the servo motor 408 to adjust the direction of the lens 409 to switch the traveling direction of the point beam emitted from the angle switch 103. Specifically, the control unit 109 sends a drive signal to the servo motor 408 according to the input video signal so that the traveling direction of the dotted beam is sequentially switched to the states A to C at the switching timing shown in FIG. 3B. The direction of the lens 409 is adjusted by inputting.
 なお、図5の例では、角度切替器103のレンズ409の向きを変えるレンズ駆動部として、サーボモータ408を例示しているが、レンズ駆動部として、サーボモータ408の代わりに、ガルバノメータやDC駆動型の走査ミラーを駆動する駆動装置が用いられてもよい。 In the example of FIG. 5, the servo motor 408 is illustrated as a lens driving unit that changes the direction of the lens 409 of the angle switch 103. However, instead of the servo motor 408, a galvanometer or DC driving is used as the lens driving unit. A driving device for driving a type of scanning mirror may be used.
 また、第3の実施形態で説明したレーザプロジェクタエンジン102と、第2の実施形態で説明した角度切替器103を組み合わせてもよいし、第2の実施形態で説明したレーザプロジェクタエンジン102と、第3の実施形態で説明した角度切替器103を組み合わせてもよい。 Further, the laser projector engine 102 described in the third embodiment may be combined with the angle switch 103 described in the second embodiment, the laser projector engine 102 described in the second embodiment, The angle switch 103 described in the third embodiment may be combined.
 (第4の実施形態)
 本実施形態では、長尺走査素子105~107の構成の一例を説明する。なお、長尺走査素子105~107は、全て同じ構成とすることができるため、ここでは、長尺走査素子105の構成を例示する。
(Fourth embodiment)
In the present embodiment, an example of the configuration of the long scanning elements 105 to 107 will be described. Since the long scanning elements 105 to 107 can all have the same configuration, the configuration of the long scanning element 105 is illustrated here.
 図6は、本実施形態の長尺走査素子105の構成を示す図である。図6において、長尺走査素子105は、サーボモータ501と、長尺ミラー502とを有する。 FIG. 6 is a diagram showing a configuration of the long scanning element 105 of the present embodiment. In FIG. 6, the long scanning element 105 includes a servo motor 501 and a long mirror 502.
 サーボモータ501は、長尺ミラー502と接続され、制御部109からの走査駆動信号に応じて長尺ミラー502を振動させることで、レーザビームを走査する。 The servo motor 501 is connected to the long mirror 502, and scans the laser beam by vibrating the long mirror 502 in accordance with the scanning drive signal from the control unit 109.
 図7は、制御部109による長尺走査素子105~107の制御動作を説明するためのタイミングチャートである。なお、図7では、制御部109は、図3Bで示したタイミングでレーザビームの進行方向を切り替えているものとする。 FIG. 7 is a timing chart for explaining the control operation of the long scanning elements 105 to 107 by the control unit 109. In FIG. 7, it is assumed that the control unit 109 switches the traveling direction of the laser beam at the timing shown in FIG. 3B.
 先ず、制御部109は、期間203において、走査駆動信号を長尺走査素子105に入力して、長尺走査素子105の長尺ミラー502の角度を変化させていくことで、長尺走査素子105にレーザビームを走査させる。 First, in the period 203, the control unit 109 inputs a scanning drive signal to the long scanning element 105 and changes the angle of the long mirror 502 of the long scanning element 105, whereby the long scanning element 105. Is scanned with a laser beam.
 その後、制御部109は、期間205において、走査駆動信号を長尺走査素子106に入力して、長尺走査素子106の長尺ミラー502の角度を変化させていくことで、長尺走査素子106にレーザビームを走査させる。 Thereafter, in the period 205, the control unit 109 inputs a scanning drive signal to the long scanning element 106 and changes the angle of the long mirror 502 of the long scanning element 106, whereby the long scanning element 106 is changed. Is scanned with a laser beam.
 そして、制御部109は、期間206において、走査駆動信号を長尺走査素子107に入力して、長尺走査素子107の長尺ミラー502の角度を変化させていくことで、長尺走査素子107にレーザビームを走査させる。 Then, in the period 206, the control unit 109 inputs a scanning drive signal to the long scanning element 107 and changes the angle of the long mirror 502 of the long scanning element 107, whereby the long scanning element 107. Is scanned with a laser beam.
 以上説明した動作では、長尺走査素子105~107のそれぞれについて、レーザビームを走査した後、次にレーザビームを走査するまでに、走査を行わない復帰期間601~603がある。本実施形態では、長尺走査素子は3つあるので、復帰期間601~603は、走査を行う走査期間のほぼ倍の長さとなるため、制御部109が、復帰期間601~603に、長尺走査素子105~107の角度を、走査を開始するときの開始角度に正確に戻すだけの十分な時間を確保することが可能になる。 In the operation described above, there is a return period 601 to 603 in which scanning is not performed after scanning the laser beam for each of the long scanning elements 105 to 107 until the next scanning with the laser beam. In the present embodiment, since there are three long scanning elements, the return periods 601 to 603 are almost twice as long as the scanning period in which scanning is performed, so the control unit 109 sets the long scan elements to the return periods 601 to 603. It is possible to ensure a sufficient time for accurately returning the angles of the scanning elements 105 to 107 to the starting angle when starting scanning.
 なお、図6の例では、長尺走査素子105の長尺ミラー502を振動させる走査駆動部として、サーボモータ501を例示しているが、走査駆動部として、サーボモータ501の代わりに、ガルバノメータやDC駆動型の走査ミラーを駆動する駆動装置が用いられてもよい。 In the example of FIG. 6, the servo motor 501 is illustrated as a scanning drive unit that vibrates the long mirror 502 of the long scanning element 105, but instead of the servo motor 501, a galvanometer or the like is used as the scanning drive unit. A driving device that drives a DC-driven scanning mirror may be used.
 (第5の実施形態)
 図8は、本実施形態の背面投射型表示装置の構成を示す図であり、具体的には、本実施形態の背面投射型表示装置の縦断面図である。
(Fifth embodiment)
FIG. 8 is a diagram showing the configuration of the rear projection display device of the present embodiment, and specifically, is a longitudinal sectional view of the rear projection display device of the present embodiment.
 図8に示す本実施形態の背面投射型表示装置は、図2Aで示した第1の実施形態の背面投射型表示装置の構成に加えて、折り返しミラー701~704を有する。 8 includes a folding mirror 701 to 704 in addition to the configuration of the rear projection display device of the first embodiment shown in FIG. 2A.
 折り返しミラー701~704は、角度切替器103から出射されたレーザビームを反射して長尺走査素子105~107まで導く反射ミラーである。 The folding mirrors 701 to 704 are reflection mirrors that reflect the laser beam emitted from the angle switch 103 and guide it to the long scanning elements 105 to 107.
 折り返しミラー701および702は、長尺走査素子106にレーザビームを導くための反射ミラーである。具体的には、折り返しミラー701は、角度切替器103から第1の方向に出射されたレーザビームを反射し、折り返しミラー702は、折り返しミラー701で反射されたレーザビームを反射して、長尺走査素子106に入射する。 The folding mirrors 701 and 702 are reflection mirrors for guiding the laser beam to the long scanning element 106. Specifically, the folding mirror 701 reflects the laser beam emitted in the first direction from the angle switch 103, and the folding mirror 702 reflects the laser beam reflected by the folding mirror 701, and is long. Incident on the scanning element 106.
 折り返しミラー703および704は、長尺走査素子105にレーザビームを導くための反射ミラーである。具体的には、折り返しミラー703は、角度切替器103から第2の方向に出射されたレーザビームを反射し、折り返しミラー704は、折り返しミラー703で反射されたレーザビームを反射して、長尺走査素子105に入射する。 The folding mirrors 703 and 704 are reflection mirrors for guiding the laser beam to the long scanning element 105. Specifically, the folding mirror 703 reflects the laser beam emitted in the second direction from the angle switch 103, and the folding mirror 704 reflects the laser beam reflected by the folding mirror 703, and is long. Incident on the scanning element 105.
 本実施形態によれば、折り返しミラー701~704を備えるため、角度切替器103のミラー305やレンズ409の向きを調節するために、角度切替器103のミラー305やレンズ409の角度を切り替える切替角度を小さくすることが可能になる。 According to this embodiment, since the folding mirrors 701 to 704 are provided, the switching angle for switching the angles of the mirror 305 and the lens 409 of the angle switch 103 in order to adjust the orientation of the mirror 305 and the lens 409 of the angle switch 103. Can be reduced.
 例えば、本実施形態の背面型表示装置を、現在のテレビで一般的なアスペクト比が16:9の60型の表示装置に適用した場合、背面型表示装置の縦方向の長さは約75cmとなる。このとき、背面型表示装置の奥行きを10cmとすると、折り返しミラー701~704がない場合、長尺走査素子105および107に対するレーザビームの入射角度の差は、約23°となる。一方、折り返しミラー701~704がある場合、この入射角度の差を約15°とすることができる。このため、折り返しミラー701~704を設けることで、切替角度を2/3倍にすることが可能になる。なお、長尺走査素子105~107が等間隔に並んでいるものとしている。 For example, when the rear display device of the present embodiment is applied to a 60-inch display device having an aspect ratio of 16: 9, which is common in current televisions, the vertical length of the rear display device is about 75 cm. Become. At this time, assuming that the depth of the rear display device is 10 cm, when there are no folding mirrors 701 to 704, the difference in the incident angle of the laser beam with respect to the long scanning elements 105 and 107 is about 23 °. On the other hand, when there are the folding mirrors 701 to 704, the difference in the incident angle can be about 15 °. Therefore, by providing the folding mirrors 701 to 704, the switching angle can be increased 2/3 times. It is assumed that the long scanning elements 105 to 107 are arranged at equal intervals.
 また、切替角度を小さくすることが可能になるため、レーザビームの進行方向を切り替えるための角度切替器103の切替動作時間を短くすることが可能になる。したがって、図3Bから分かるように、画像を表示する表示時間を長くすることが可能になり、表示画像の輝度を向上させることが可能になる。 Also, since the switching angle can be reduced, the switching operation time of the angle switch 103 for switching the traveling direction of the laser beam can be shortened. Therefore, as can be seen from FIG. 3B, it is possible to lengthen the display time for displaying an image and improve the luminance of the display image.
 例えば、60Hzで画面をリフレッシュする一般的な表示装置では、1フレーム時間は16.7ミリ秒である。折り返しミラー701~704がない場合に、各長尺走査素子105~107が画像を表示する画像走査期間203、205および207をそれぞれ4ミリ秒であり、角度切替器103の切替動作期間202、204および206をそれぞれ約1.5ミリ秒であったとする。この場合、折り返しミラー701~704を設けることで、切替動作期間202、204および206をそれぞれ約1ミリ秒、画像走査期間203、205および207を4.5ミリ秒にすることが可能になる。この場合、表示画像の輝度を約11%向上させることができる。 For example, in a general display device that refreshes the screen at 60 Hz, one frame time is 16.7 milliseconds. In the absence of the folding mirrors 701 to 704, the image scanning periods 203, 205, and 207 in which the long scanning elements 105 to 107 display images are 4 milliseconds, respectively, and the switching operation periods 202 and 204 of the angle switch 103 are performed. And 206 are each about 1.5 milliseconds. In this case, by providing the folding mirrors 701 to 704, the switching operation periods 202, 204, and 206 can be set to about 1 millisecond, and the image scanning periods 203, 205, and 207 can be set to 4.5 milliseconds. In this case, the luminance of the display image can be improved by about 11%.
 (第6の実施形態)
 本実施形態では、背面投射型表示装置の別の構成を説明する。
(Sixth embodiment)
In the present embodiment, another configuration of the rear projection display device will be described.
 図9は、本実施形態の背面投射型表示装置の構成を示す図であり、具体的には、背面投射型表示装置を上面から見た横断面図である。 FIG. 9 is a diagram showing a configuration of the rear projection type display device of the present embodiment, and specifically, a cross-sectional view of the rear projection type display device as seen from above.
 図9に示す背面投射型表示装置は、図2Aに示した第1の実施形態の背面投射型表示装置と比べて、筐体101の代わりに、凹曲面型の筐体801を有し、スクリーン108の代わりに、凹曲面形状のスクリーン803を有する。また、図9に示す背面投射型表示装置は、折り返しミラー802をさらに有する。 The rear projection type display device shown in FIG. 9 has a concave curved surface type case 801 instead of the case 101, as compared with the rear projection type display device of the first embodiment shown in FIG. Instead of 108, a screen 803 having a concave curved surface shape is provided. In addition, the rear projection display device illustrated in FIG. 9 further includes a folding mirror 802.
 なお、第1の実施形態では、長尺走査素子105~107は、鉛直方向に並設され、レーザビームを鉛直方向に走査していたが、本実施形態では、長尺走査素子105~107は、水平方向に並設され、レーザビームを水平方向に走査するものである。 In the first embodiment, the long scanning elements 105 to 107 are arranged in parallel in the vertical direction and scan the laser beam in the vertical direction. In the present embodiment, however, the long scanning elements 105 to 107 are These are arranged in parallel in the horizontal direction and scan the laser beam in the horizontal direction.
 折り返しミラー802は、角度切替器103から長尺走査素子105に向けて出射されたレーザビームを反射して、長尺走査素子105に導く反射ミラーである。 The folding mirror 802 is a reflection mirror that reflects the laser beam emitted from the angle switch 103 toward the long scanning element 105 and guides it to the long scanning element 105.
 本実施形態で説明した凹曲面形状のスクリーン803を有する背面投射型表示装置は、例えば、デスクトップPC(Personal computer)用のモニタとして好適である。例えば、使用者が、広い画面の各位置をできるだけ正面から見たい場合などでは、複数のモニタを扇状に並べて使用していがた、本実施形態の背面投射型表示装置では、一つの装置で広い画面を正面から見ることが可能になる。 The rear projection type display device having the concave curved screen 803 described in the present embodiment is suitable as a monitor for a desktop PC (Personal computer), for example. For example, when the user wants to view each position of a wide screen from the front as much as possible, a plurality of monitors are arranged in a fan shape. In the rear projection display device of this embodiment, a single device is wide. The screen can be viewed from the front.
 なお、本実施形態の背面投射型表示装置でも、図1で示したスカート部1008のような余分な領域がなくてもよいので、図2Bに示した背面型表示システムと同様に、複数の背面投射型表示装置を並設した背面型表示システムを構成することができる。この場合、円筒形状に構成された背面型表示システムの中に人が入って画像を視認することが可能になり、その人に没入感を覚えさせることが可能になる。 In the rear projection display device of this embodiment, there is no need for an extra area such as the skirt portion 1008 shown in FIG. 1, and therefore, a plurality of rear surfaces are provided as in the rear display system shown in FIG. 2B. A rear display system in which projection display devices are arranged side by side can be configured. In this case, it becomes possible for a person to enter the back-side display system configured in a cylindrical shape to visually recognize the image, and to make the person feel immersive.
 (第7の実施形態)
 本実施形態では、背面投射型表示装置の別の構成を説明する。
(Seventh embodiment)
In the present embodiment, another configuration of the rear projection display device will be described.
 図10は、本実施形態の背面投射型表示装置の構成を示す図であり、具体的には、背面投射型表示装置を上面から見た横断面図である。 FIG. 10 is a diagram showing a configuration of the rear projection type display device of the present embodiment, specifically, a cross-sectional view of the rear projection type display device as seen from above.
 図10に示す背面投射型表示装置は、図2Aに示した第1の実施形態の背面投射型表示装置と比べて、筐体101の代わりに、凸曲面型の筐体901を有し、スクリーン108の代わりに、凸曲面形状のスクリーン905を有する。また、図10に示す背面投射型表示装置は、折り返しミラー902~904をさらに有する。 The rear projection display device shown in FIG. 10 has a convex curved housing 901 instead of the housing 101 as compared with the rear projection display device of the first embodiment shown in FIG. Instead of 108, a screen 905 having a convex curved surface shape is provided. Further, the rear projection type display device shown in FIG. 10 further includes folding mirrors 902 to 904.
 なお、本実施形態では、第6の実施形態と同様に、長尺走査素子105~107は、水平方向に並設され、レーザビームを水平方向に走査するものである。 In the present embodiment, as in the sixth embodiment, the long scanning elements 105 to 107 are arranged in parallel in the horizontal direction and scan the laser beam in the horizontal direction.
 折り返しミラー902~904は、角度切替器103から出射されたレーザビームを反射して長尺走査素子105~107まで導く反射ミラーである。 The folding mirrors 902 to 904 are reflection mirrors that reflect the laser beam emitted from the angle switch 103 and guide it to the long scanning elements 105 to 107.
 折り返しミラー902および903は、長尺走査素子106にレーザビームを導くための反射ミラーである。具体的には、折り返しミラー902は、角度切替器103から第3の方向に出射されたレーザビームを反射し、折り返しミラー903は、折り返しミラー902で反射されたレーザビームを反射して、長尺走査素子106に入射する。 The folding mirrors 902 and 903 are reflection mirrors for guiding the laser beam to the long scanning element 106. Specifically, the folding mirror 902 reflects the laser beam emitted in the third direction from the angle switch 103, and the folding mirror 903 reflects the laser beam reflected by the folding mirror 902, and is long. Incident on the scanning element 106.
 折り返しミラー904は、長尺走査素子105にレーザビームを導くための反射ミラーである。具体的には、折り返しミラー904は、角度切替器103から第4の方向に出射されたレーザビームを反射して、長尺走査素子105に入射する。 The folding mirror 904 is a reflection mirror for guiding the laser beam to the long scanning element 105. Specifically, the folding mirror 904 reflects the laser beam emitted from the angle switch 103 in the fourth direction and enters the long scanning element 105.
 なお、図9および図10で示した背面型表示装置は、曲面形状のスクリーンを有する背面型表示装置の例であり、長尺走査素子105~107にレーザビームを導くために必要となる折り返しミラーの数や位置は、背面型表示装置の形状や大きさなどの仕様に応じて異なる。また、凸曲面形状のスクリーン905を有する背面型表示装置では、図10に示されたように、角度切替器103の切替角度を非常に小さくすることが可能になる。 9 and 10 is an example of a rear display device having a curved screen, and a folding mirror required for directing the laser beam to the long scanning elements 105 to 107. The number and the position of the display vary depending on specifications such as the shape and size of the rear display device. Further, in the rear display device having the convex curved screen 905, the switching angle of the angle switch 103 can be made extremely small as shown in FIG.
 本実施形態の背面型表示装置は、円柱状の柱の周囲に配置するデジタルサイネージ装置に好適である。なお、本実施形態の背面投射型表示装置でも、図1で示したスカート部1008のような余分な領域がなくてもよいので、図2Bに示した背面型表示システムと同様に、複数の背面投射型表示装置を並設した背面型表示システムを構成することができる。この場合、円柱を囲むような背面型表示システムを構成することが可能になる。 The rear display device of the present embodiment is suitable for a digital signage device disposed around a cylindrical column. In the rear projection display device of this embodiment, there is no need for an extra area such as the skirt portion 1008 shown in FIG. 1, and therefore, a plurality of rear surfaces are provided as in the rear display system shown in FIG. A rear display system in which projection display devices are arranged side by side can be configured. In this case, it is possible to configure a rear display system surrounding the cylinder.
 以上説明した各実施形態において、図示した構成は単なる一例であって、本発明はその構成に限定されるものではない。 In each of the embodiments described above, the illustrated configuration is merely an example, and the present invention is not limited to the configuration.
 また、上記の各実施形態の一部又は全部は、以下の付記のように記載することが可能であるが、以下には限定されない。 In addition, a part or all of each of the above embodiments can be described as in the following supplementary notes, but is not limited to the following.
 [付記1]
スクリーンと、
光を出射する光出射部と、
前記光の進行方向を変えて出射する偏向部と、
入射光を走査して、前記スクリーンの背面のそれぞれ異なる複数の領域に投射する複数の走査部と、
前記偏向部が変える光の進行方向を切り替えて、前記偏向部から出射された光を前記複数の走査部のそれぞれに順番に入射させる制御部と、を有する背面投射型表示装置。
[Appendix 1]
Screen,
A light emitting portion for emitting light;
A deflection unit that emits light by changing a traveling direction of the light;
A plurality of scanning units that scan incident light and project the light onto different areas on the back surface of the screen;
A rear projection type display device, comprising: a control unit that switches a traveling direction of light changed by the deflecting unit and causes light emitted from the deflecting unit to sequentially enter each of the plurality of scanning units.
 [付記2]
前記光出射部から前記スクリーンまでの光路上に配置され、前記走査部による走査の走査方向と交差する方向の各領域の長さを拡大する拡大光学系をさらに有する付記1に記載の背面投射型表示装置。
[Appendix 2]
The rear projection type according to claim 1, further comprising a magnifying optical system that is disposed on an optical path from the light emitting unit to the screen and that expands the length of each region in a direction intersecting a scanning direction of scanning by the scanning unit. Display device.
 [付記3]
前記光出射部は、
断面形状が線状の光ビームである線状ビームを出射する光源と、
前記光源から出射された線状ビームを変調して前記光として出射する1次元空間変調素子と、を有する、付記1または2に記載の背面投射型表示装置。
[Appendix 3]
The light emitting part is
A light source that emits a linear beam whose cross-sectional shape is a linear light beam;
The rear projection display device according to appendix 1 or 2, further comprising: a one-dimensional spatial modulation element that modulates a linear beam emitted from the light source and emits the light as the light.
 [付記4]
前記光出射部は、
断面形状が点状の光ビームである点状ビームを出射する光源と、
前記光源から出射された点状ビームを走査して、前記光として出射する走査素子と、を有する付記1または2に記載の背面投射型表示装置。
[Appendix 4]
The light emitting part is
A light source that emits a point beam whose cross-sectional shape is a point beam;
The rear projection display device according to appendix 1 or 2, further comprising: a scanning element that scans the point beam emitted from the light source and emits the light as the light.
 [付記5]
前記偏向部は、
前記光を反射するミラーと、
前記ミラーの向きを変える駆動部と、を有し、
前記制御部は、前記駆動部を用いて前記ミラーの向きを調節して、前記光の進行方向を切り替える、付記1ないし4のいずれか1項に記載の背面投射型表示装置。
[Appendix 5]
The deflection unit is
A mirror that reflects the light;
A drive unit for changing the direction of the mirror,
5. The rear projection display device according to claim 1, wherein the control unit adjusts a direction of the mirror using the driving unit to switch a traveling direction of the light. 6.
 [付記6]
前記偏向部は、
前記光を偏向するレンズと、
前記レンズの向きを変えるレンズ駆動部と、を有し、
前記制御部は、前記駆動部を用いて前記レンズの向きを調節して、前記光の進行方向を切り替える、付記1ないし4のいずれか1項に記載の背面投射型表示装置。
[Appendix 6]
The deflection unit is
A lens for deflecting the light;
A lens driving unit that changes the direction of the lens,
5. The rear projection display device according to claim 1, wherein the control unit adjusts a direction of the lens using the driving unit to switch a traveling direction of the light. 6.
 [付記7]
前記走査部は、
前記光を反射する走査ミラーと、
前記走査ミラーの向きを変える走査駆動部と、を有する、付記1ないし6のいずれか1項に記載の背面投射型表示装置。
[Appendix 7]
The scanning unit
A scanning mirror that reflects the light;
The rear projection display device according to any one of appendices 1 to 6, further comprising: a scanning drive unit that changes a direction of the scanning mirror.
 [付記8]
前記偏向部から出射された光を反射して前記走査部まで導く反射ミラーをさらに有する、付記1ないし7のいずれか1項に記載の背面投射型表示装置。
[Appendix 8]
The rear projection display device according to any one of appendices 1 to 7, further comprising a reflection mirror that reflects light emitted from the deflection unit and guides the light to the scanning unit.
 [付記9]
前記スクリーンは、凹曲面形状または凸曲面形状である、付記1ないし8のいずれか1項に記載の背面投射型表示装置。
 [付記10]
付記1ないし9のいずれか1項に記載の背面投射型表示装置を複数備え、各背面投射型表示装置を並設した背面投射型表示システム。
[Appendix 9]
The rear projection display device according to any one of appendices 1 to 8, wherein the screen has a concave curved surface shape or a convex curved surface shape.
[Appendix 10]
A rear projection display system comprising a plurality of the rear projection display devices according to any one of appendices 1 to 9, wherein the rear projection display devices are arranged side by side.
 [付記11]
スクリーンと、光を出射する光出射部と、前記光の進行方向を変えて出射する偏向部と、入射光を走査して、前記スクリーンの背面のそれぞれ異なる複数の領域に投射する複数の走査部とを有する背面投射型表示装置の制御方法であって、
前記偏向部が変える光の進行方向を切り替えて、前記偏向部から出射された光を前記複数の走査部のそれぞれに順番に入射させる、制御方法。
[Appendix 11]
A screen, a light emitting unit that emits light, a deflecting unit that emits light by changing the traveling direction of the light, and a plurality of scanning units that scan incident light and project the incident light onto different areas on the back surface of the screen A control method for a rear projection display device comprising:
A control method, wherein the traveling direction of light changed by the deflecting unit is switched, and light emitted from the deflecting unit is sequentially incident on each of the plurality of scanning units.
 この出願は、2012年6月25日に出願された日本出願特願2012-141810号公報を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-141810 filed on June 25, 2012, the entire disclosure of which is incorporated herein.
101             筐体
102             レーザプロジェクタエンジン
103             角度切替器
104             拡大光学系
105、106、107     長尺走査素子
108             スクリーン
301             線状ビームレーザ光源
302             偏光プリズム
303             1次元空間変調素子
304             サーボモータ
305             ミラー
401、402、403     レーザ素子
404             ミラー
405、406         ダイクロイックプリズム
407             共振型走査素子
408             サーボモータ
409             レンズ
501             サーボモータ
502             長尺ミラー
701、702、703、704 折り返しミラー
801             凹曲面型の筐体
802             折り返しミラー
803             凹曲面形状のスクリーン
901             凸曲面型の筐体
902、903、904     折り返しミラー
905             凸曲面形状のスクリーン
DESCRIPTION OF SYMBOLS 101 Case 102 Laser projector engine 103 Angle switch 104 Magnification optical system 105,106,107 Long scanning element 108 Screen 301 Linear beam laser light source 302 Polarizing prism 303 One-dimensional spatial modulation element 304 Servo motor 305 Mirror 401, 402, 403 Laser element 404 Mirror 405, 406 Dichroic prism 407 Resonant scanning element 408 Servo motor 409 Lens 501 Servo motor 502 Long mirrors 701, 702, 703, 704 Folding mirror 801 Concave surface type casing 802 Folding mirror 803 Concave surface shape of Clean 901 Screen convex surface type housing 902, 903, 904 folding mirror 905 convex curved surface

Claims (10)

  1.  スクリーンと、
     光を出射する光出射部と、
     前記光の進行方向を変えて出射する偏向部と、
     入射光を走査して、前記スクリーンの背面のそれぞれ異なる複数の領域に投射する複数の走査部と、
     前記偏向部が変える光の進行方向を切り替えて、前記偏向部から出射された光を前記複数の走査部のそれぞれに順番に入射させる制御部と、を有する背面投射型表示装置。
    Screen,
    A light emitting portion for emitting light;
    A deflection unit that emits light by changing a traveling direction of the light;
    A plurality of scanning units that scan incident light and project the light onto different areas on the back surface of the screen;
    A rear projection type display device, comprising: a control unit that switches a traveling direction of light changed by the deflecting unit and causes light emitted from the deflecting unit to sequentially enter each of the plurality of scanning units.
  2.  前記光出射部から前記スクリーンまでの光路上に配置され、前記走査部による走査の走査方向と交差する方向の各領域の長さを拡大する拡大光学系をさらに有する請求項1に記載の背面投射型表示装置。 2. The rear projection according to claim 1, further comprising a magnifying optical system that is disposed on an optical path from the light emitting unit to the screen and that enlarges the length of each region in a direction intersecting a scanning direction of scanning by the scanning unit. Type display device.
  3.  前記光出射部は、
     断面形状が線状の光ビームである線状ビームを出射する光源と、
     前記光源から出射された線状ビームを変調して前記光として出射する1次元空間変調素子と、を有する、請求項1または2に記載の背面投射型表示装置。
    The light emitting part is
    A light source that emits a linear beam whose cross-sectional shape is a linear light beam;
    The rear projection display device according to claim 1, further comprising: a one-dimensional spatial modulation element that modulates a linear beam emitted from the light source and emits the light as the light.
  4.  前記光出射部は、
     断面形状が点状の光ビームである点状ビームを出射する光源と、
     前記光源から出射された点状ビームを走査して、前記光として出射する走査素子と、を有する請求項1または2に記載の背面投射型表示装置。
    The light emitting part is
    A light source that emits a point beam whose cross-sectional shape is a point beam;
    The rear projection display device according to claim 1, further comprising: a scanning element that scans the point beam emitted from the light source and emits the light as the light.
  5.  前記偏向部は、
     前記光を反射するミラーと、
     前記ミラーの向きを変える駆動部と、を有し、
     前記制御部は、前記駆動部を用いて前記ミラーの向きを調節して、前記光の進行方向を切り替える、請求項1ないし4のいずれか1項に記載の背面投射型表示装置。
    The deflection unit is
    A mirror that reflects the light;
    A drive unit for changing the direction of the mirror,
    5. The rear projection display device according to claim 1, wherein the control unit switches a traveling direction of the light by adjusting a direction of the mirror using the driving unit. 6.
  6.  前記偏向部は、
     前記光を偏向するレンズと、
     前記レンズの向きを変えるレンズ駆動部と、を有し、
     前記制御部は、前記駆動部を用いて前記レンズの向きを調節して、前記光の進行方向を切り替える、請求項1ないし4のいずれか1項に記載の背面投射型表示装置。
    The deflection unit is
    A lens for deflecting the light;
    A lens driving unit that changes the direction of the lens,
    5. The rear projection display device according to claim 1, wherein the control unit adjusts a direction of the lens using the driving unit to switch a traveling direction of the light. 6.
  7.  前記偏向部から出射された光を反射して前記走査部まで導く反射ミラーをさらに有する、請求項1ないし6のいずれか1項に記載の背面投射型表示装置。 The rear projection display device according to any one of claims 1 to 6, further comprising a reflection mirror that reflects light emitted from the deflecting unit and guides the light to the scanning unit.
  8.  前記スクリーンは、凹曲面形状または凸曲面形状である、請求項1ないし7のいずれか1項に記載の背面投射型表示装置。 The rear projection display device according to any one of claims 1 to 7, wherein the screen has a concave curved surface shape or a convex curved surface shape.
  9.  請求項1ないし8のいずれか1項に記載の背面投射型表示装置を複数備え、各背面投射型表示装置を並設した背面投射型表示システム。 A rear projection display system comprising a plurality of rear projection display devices according to any one of claims 1 to 8, wherein the rear projection display devices are arranged side by side.
  10.  スクリーンと、光を出射する光出射部と、前記光の進行方向を変えて出射する偏向部と、入射光を走査して、前記スクリーンの背面のそれぞれ異なる複数の領域に投射する複数の走査部とを有する背面投射型表示装置の制御方法であって、
     前記偏向部が変える光の進行方向を切り替えて、前記偏向部から出射された光を前記複数の走査部のそれぞれに順番に入射させる、制御方法。
    A screen, a light emitting unit that emits light, a deflecting unit that emits light by changing the traveling direction of the light, and a plurality of scanning units that scan incident light and project the incident light onto different areas on the back surface of the screen A control method for a rear projection display device comprising:
    A control method, wherein the traveling direction of light changed by the deflecting unit is switched, and light emitted from the deflecting unit is sequentially incident on each of the plurality of scanning units.
PCT/JP2013/050269 2012-06-25 2013-01-10 Rear-projection display device, rear-projection display system, and control method WO2014002511A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014522440A JPWO2014002511A1 (en) 2012-06-25 2013-01-10 Rear projection display device, rear projection display system, and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-141810 2012-06-25
JP2012141810 2012-06-25

Publications (1)

Publication Number Publication Date
WO2014002511A1 true WO2014002511A1 (en) 2014-01-03

Family

ID=49782696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050269 WO2014002511A1 (en) 2012-06-25 2013-01-10 Rear-projection display device, rear-projection display system, and control method

Country Status (2)

Country Link
JP (1) JPWO2014002511A1 (en)
WO (1) WO2014002511A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114706266A (en) * 2022-04-02 2022-07-05 蔚来汽车科技(安徽)有限公司 Projector with a light source

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258799A (en) * 1985-05-13 1986-11-17 株式会社ニコン Automatic plotter
JPH03284078A (en) * 1990-03-30 1991-12-13 Hoya Corp Projection television receiver
JP2009139430A (en) * 2007-12-03 2009-06-25 Seiko Epson Corp Scanning image display system and scanning image display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258799A (en) * 1985-05-13 1986-11-17 株式会社ニコン Automatic plotter
JPH03284078A (en) * 1990-03-30 1991-12-13 Hoya Corp Projection television receiver
JP2009139430A (en) * 2007-12-03 2009-06-25 Seiko Epson Corp Scanning image display system and scanning image display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114706266A (en) * 2022-04-02 2022-07-05 蔚来汽车科技(安徽)有限公司 Projector with a light source
CN114706266B (en) * 2022-04-02 2024-06-11 蔚来汽车科技(安徽)有限公司 Projector with a light source for projecting light

Also Published As

Publication number Publication date
JPWO2014002511A1 (en) 2016-05-30

Similar Documents

Publication Publication Date Title
JP4605032B2 (en) Screen and image projection apparatus
US8643928B2 (en) Illumination systems for visual displays
KR100765765B1 (en) Projector type/Projection type switchable display apparatus
EP2187259B1 (en) Projector
JP4731938B2 (en) Image display device / projection optical system
KR100803222B1 (en) Speckle reduction laser and laser display apparatus employing the same
US7255448B2 (en) Pixelated color management display
JP4031481B2 (en) Projection display
WO2012111698A1 (en) Scanning image display device, and image display method for same
JP2006330720A (en) Optical modulator and mobile terminal equipped with projector using the optical modulator
JP2006323354A (en) Optical scanning device and image display device
JP2007047245A (en) Light source apparatus, optical scanner and image display apparatus
JP2013530418A (en) Microprojection device with anti-speckle imaging mode
WO2005020004A2 (en) Method and apparatus for light emitting devices based display
JP4655968B2 (en) Scintillation removal apparatus and projector
US7810933B2 (en) Image projection apparatus
JP2017227803A (en) Image projection device and image position adjustment device
WO2014002511A1 (en) Rear-projection display device, rear-projection display system, and control method
US20100118274A1 (en) Projection display having dual mode function
JP2015060080A (en) Projection type video display device and display system
JP6035516B2 (en) Projection display device
JP2010085621A (en) Image display device
JP2007079087A (en) Image display apparatus and its control method
JP2008191466A (en) Projection display
Svilainis LEDs for projectors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522440

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13810547

Country of ref document: EP

Kind code of ref document: A1