WO2014002506A1 - (meth)acrylic resin composition, method for producing same, and optical member - Google Patents

(meth)acrylic resin composition, method for producing same, and optical member Download PDF

Info

Publication number
WO2014002506A1
WO2014002506A1 PCT/JP2013/004039 JP2013004039W WO2014002506A1 WO 2014002506 A1 WO2014002506 A1 WO 2014002506A1 JP 2013004039 W JP2013004039 W JP 2013004039W WO 2014002506 A1 WO2014002506 A1 WO 2014002506A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
resin composition
acrylic resin
mass
block copolymer
Prior art date
Application number
PCT/JP2013/004039
Other languages
French (fr)
Japanese (ja)
Inventor
宙 小澤
南葉 道之
啓之 小西
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2014522438A priority Critical patent/JP6093353B2/en
Publication of WO2014002506A1 publication Critical patent/WO2014002506A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a (meth) acrylic resin composition, a method for producing the same, and an optical member. More specifically, the present invention includes a (meth) acrylic resin composition, a method for producing the same, and a (meth) acrylic resin composition that have excellent toughness, high heat resistance, and hardly generate optical defects when formed into a molded product. It is related with the optical member formed.
  • the polarizing plate usually has a polarizing film and a protective film laminated on both sides thereof.
  • the polarizing plate is incorporated in an optical device such as a liquid crystal display device.
  • a triacetyl cellulose (TAC) film is used as a protective film for a polarizing plate.
  • TAC triacetyl cellulose
  • a polarizing plate using a protective film made of triacetyl cellulose when exposed to high-temperature conditions and high-humidity heat conditions, the degree of polarization and hue change, The performance of the optical device may be degraded.
  • methacrylic resin as a protective film material as an alternative to triacetylcellulose has been studied.
  • Methacrylic resin is a material excellent in transparency and wet heat resistance, small in birefringence and excellent in optical homogeneity.
  • methacrylic resin is brittle and has a property of being easily broken by fluctuations in tension.
  • a technique for blending a modifier with the methacrylic resin is known. The following are known as such modifiers.
  • Patent Document 1 discloses a multilayer structure acrylic rubber produced by an emulsion polymerization method.
  • Patent Document 2 discloses a rubber-like substance made of a butadiene-butyl acrylate copolymer.
  • Patent Document 3 discloses a partially hydrogenated conjugated diene polymer.
  • Patent Document 4 discloses a modified block copolymer comprising a (meth) acrylic acid alkyl ester unit and an aromatic vinyl monomer unit.
  • Patent Document 5 discloses a block copolymer comprising a polymer block A mainly composed of a vinyl aromatic compound and a polymer block B mainly composed of a conjugated diene compound, and a part of the polymer block B is epoxidized. It is disclosed.
  • Patent Document 6 discloses an ethylene-vinyl acetate copolymer and the like.
  • Patent Document 7 discloses a block copolymer comprising a conjugated diene polymer component rich in vinyl bonds and an acrylic ester or methacrylic ester polymer component.
  • Patent Document 8 discloses a star block copolymer having a polymer block (a) composed of (meth) acrylic acid alkyl ester units and a polymer block (b) composed of conjugated diene
  • the conventional (meth) acrylic resin composition may contain a small amount of a resin having a high molecular weight and difficult to melt by heat, which is unexpectedly generated by the polymerization reaction in the gas phase portion of the polymerization reactor.
  • an optical defect may occur, and the performance of the optical member may be deteriorated.
  • An object of the present invention is to provide a (meth) acrylic resin composition having excellent toughness, high heat resistance, and hardly producing optical defects when formed into a molded product, and an optical member comprising the composition. It is.
  • the present invention includes the following aspects.
  • the block copolymer (B) contains a star-shaped block copolymer,
  • the star-shaped block copolymer contains an arm polymer block having at least a polymer block (a) and / or a polymer block (b), and is obtained by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the star block copolymer (B) has the chemical structural formula: (Polymer block (b) -polymer block (a)-) n X (Wherein X represents a coupling agent residue, and n represents a number exceeding 2).
  • [4] The (meth) acrylic resin composition according to any one of [1] to [3], further containing an ultraviolet absorber.
  • An optical member comprising the (meth) acrylic resin composition according to any one of [1] to [4].
  • a film comprising the (meth) acrylic resin composition according to any one of [1] to [4].
  • a polarizing plate having a polarizing film and the film according to any one of [6] and [7] bonded to at least one surface thereof.
  • a block copolymer (B) having a polymer block (a) composed of (meth) acrylic acid alkyl ester units and a polymer block (b) composed of conjugated diene compound units is prepared by using 50% by mass of methyl methacrylate.
  • the manufacturing method of the (meth) acrylic resin composition including superposing
  • the (meth) acrylic resin composition according to the present invention has excellent toughness, high heat resistance, and hardly generates optical defects when formed into a molded product.
  • an optical member such as a protective film for a polarizing plate having almost no optical defect can be obtained.
  • the production method of the present invention when the monomer mixture (a ′) containing 50% by mass or more and 100% by mass or less of methyl methacrylate with a water content in the polymerization reaction solution of 1000 ppm or less is excellent in toughness, A (meth) acrylic resin composition having high heat resistance and very few gel colonies and resin foreign matters can be easily obtained.
  • the (meth) acrylic resin composition obtained by the production method according to the present invention is excellent in toughness and hardly generates crater-like optical defects.
  • an optical member such as a protective film for a polarizing plate having almost no optical defects can be obtained.
  • the (meth) acrylic resin composition comprises a methyl methacrylate homopolymer (A), a polymer block (a) composed of (meth) acrylic acid alkyl ester units, and a conjugated diene compound unit. It contains a block copolymer (B) having a polymer block (b).
  • the amount of the methyl methacrylate homopolymer (A) is 65 to 99 parts by mass, preferably 77 to 99 parts by mass with respect to 100 parts by mass in total of the methyl methacrylate homopolymer (A) and the block copolymer (B). Part, more preferably 80 to 98 parts by weight, still more preferably 83 to 97 parts by weight.
  • the amount of the block copolymer (B) is 1 to 35 parts by mass, preferably 1 to 23 parts by mass with respect to 100 parts by mass in total of the methyl methacrylate homopolymer (A) and the block copolymer (B). More preferably, it is 2 to 20 parts by mass, and still more preferably 3 to 17 parts by mass.
  • the block copolymer (B) used in the present invention has a polymer block (a) composed of (meth) acrylic acid alkyl ester units and a polymer block (b) composed of conjugated diene compound units.
  • “(Meth) acryl” is an abbreviation of “methacryl or acrylic”.
  • the glass transition temperature of the polymer block (a) and / or the polymer block (b) is preferably 0 ° C. or lower, more preferably ⁇ 10 ° C. or lower.
  • the polymer block (a) composed of (meth) acrylic acid alkyl ester units can be formed by polymerizing (meth) acrylic acid alkyl ester.
  • alkyl (meth) acrylates include methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate; methyl acrylate, ethyl acrylate, n-butyl acrylate, i-butyl acrylate, acrylic acid 2 -Ethylhexyl and the like. These can be used alone or in combination of two or more.
  • a (meth) acrylic acid alkyl ester which gives a polymer block (a) having a glass transition temperature (Tg) of 0 ° C. or less or a combination thereof is preferable, and a polymer block (a) having a Tg of ⁇ 10 ° C. or less. More preferred are (meth) acrylic acid alkyl esters or combinations thereof. As such (meth) acrylic acid alkyl ester, n-butyl acrylate and / or 2-ethylhexyl acrylate are preferable, and n-butyl acrylate is more preferable.
  • the polymer block (b) composed of a conjugated diene compound unit can be formed by polymerizing a conjugated diene.
  • conjugated dienes include 1,3-butadiene, isoprene, pentadiene, 2,3-dimethylbutadiene and the like. These can be used alone or in combination of two or more.
  • a conjugated diene that gives a polymer block (b) having a glass transition temperature (Tg) of 0 ° C. or lower or a combination thereof is preferable
  • a conjugated diene that gives a polymer block (b) having a Tg of ⁇ 10 ° C. or lower A combination thereof is more preferred.
  • 1,3-butadiene and / or isoprene are preferable, and 1,3-butadiene is more preferable from the viewpoints of versatility, economy, and handleability.
  • the conjugated diene may be subjected to 1,4-addition polymerization or 1,2- or 3,4-addition polymerization.
  • 1,4-addition polymerization When the conjugated diene undergoes 1,4-addition polymerization, it has a carbon-carbon double bond in the molecular main chain.
  • 1,2- or 3,4-addition polymerization When the conjugated diene undergoes 1,2- or 3,4-addition polymerization, it has a vinyl group (carbon-carbon double bond) bonded as a side chain to the molecular main chain.
  • the carbon-carbon double bond in the molecular main chain and / or the carbon-carbon double bond bonded as a molecular side chain is a starting point for a graft reaction or a crosslinking reaction.
  • the ratio of carbon-carbon double bond in the molecular side chain / carbon-carbon double bond in the molecular main chain can be increased by adding a polar compound such as ethers to the polymerization
  • the polymer block (b) may be one in which all or part of the carbon-carbon double bonds in the molecular main chain and / or the carbon-carbon double bonds bonded as molecular side chains are hydrogenated.
  • the hydrogenation rate of the polymer block (b) is preferably less than 70 mol%, and more preferably less than 50 mol%.
  • the method of hydrogenation is not particularly limited, and can be achieved by, for example, the method disclosed in Japanese Patent Publication No. 5-20442.
  • the mass ratio of the polymer block (a) and the polymer block (b) is not particularly limited, but when the total of the polymer block (a) and the polymer block (b) is 100% by mass,
  • the combined block (a) is usually 45 to 75% by mass, preferably 50 to 70% by mass.
  • the polymer block (b) is usually 25 to 55% by mass, preferably 30 to 50% by mass.
  • the block copolymer (B) is not particularly limited by its refractive index, but when the (meth) acrylic resin composition of the present invention requires transparency, the refractive index of the block copolymer (B) is methacrylic. It is preferable to match the refractive index of the acid methyl homopolymer (A). Specifically, the refractive index of the block copolymer (B) is preferably 1.48 to 1.50, more preferably 1.485 to 1.495.
  • the block copolymer (B) preferably contains a star block copolymer.
  • the star-shaped block copolymer has a structure in which a plurality of arm polymer blocks are connected and spread radially.
  • the connecting part of the arm polymer block is usually constituted by a group (coupling agent residue) derived from a polyfunctional monomer, a polyfunctional coupling agent or the like.
  • the star block copolymer has, for example, a chemical structural formula: (Arm polymer block-) n X (Wherein X represents a coupling agent residue, and n represents a number exceeding 2).
  • the arm polymer block includes a polymer block (a) (hereinafter sometimes simply referred to as (a)) and a polymer block (b) (hereinafter sometimes simply referred to as (b)). It is preferable to have at least.
  • the structure of the arm polymer block is not particularly limited. For example, (a)-(b) type block copolymerized structure, (a)-(b)-(a) type block copolymerized structure, (b)-(a)-(b) type blocked Examples include a copolymerized structure, a structure (a)-(b)-(a)-(b) type block copolymerized, and a structure (a) and (b) block copolymerized in total of 5 or more. .
  • the plurality of arm polymer blocks constituting the star block copolymer (B) may all have the same block copolymerized structure, or may have different block copolymerized structures.
  • the arm polymer block preferably has the (a)-(b) type block copolymerized structure.
  • the block copolymer (B) used in the present invention has a chemical structural formula: (Polymer block (b) -polymer block (a)-) n X, or (polymer block (a) -polymer block (b)-) n X (Wherein X represents a coupling agent residue, and n represents a number exceeding 2), and preferably contains a star block copolymer represented by: Chemical structural formula: (Polymer block (b) -polymer block (a)-) n X (Wherein, X represents a coupling agent residue, and n represents a number exceeding 2), and more preferably contains a star block copolymer.
  • the star-shaped block copolymer suitable as the block copolymer (B) has a polystyrene-equivalent number average molecular weight calculated by gel permeation chromatography (GPC). [Number average molecular weight of star block copolymer] / [Number average molecular weight of arm polymer block]> 2. The ratio of [number average molecular weight of star block copolymer] / [number average molecular weight of arm polymer block] is sometimes referred to as the number of arms.
  • the number average molecular weight of the star block copolymer is more than twice the number average molecular weight of the arm polymer block, the shear of the particles of the star block copolymer (B) dispersed in the methacrylic resin As a result, the desired mechanical strength can be obtained.
  • the number average molecular weight of the star block copolymer is more than 100 times the number average molecular weight of the arm polymer block, because synthesis is difficult. Therefore, the number average of the industrially preferred star block copolymer (B) The molecular weight is more than 2 times and less than 100 times the number average molecular weight of the arm polymer block, more preferably 2.5 to 50 times, still more preferably 3 to 10 times.
  • the block copolymer (B) used in the present invention is not limited to the star block copolymer as described above, but the arm polymer block that is a constituent material of the star block copolymer is a coupling agent residue. It may be left as it is without being connected.
  • the method for producing the block copolymer (B) used in the present invention is not particularly limited, and a method according to a known method can be employed.
  • a method of obtaining a block copolymer a method of living polymerizing a monomer that is a structural unit is employed.
  • living polymerization methods include a method of polymerizing using an organic rare earth metal complex as a polymerization initiator, an alkali metal or alkaline earth metal mineral salt using an organic alkali metal compound as a polymerization initiator, and the like.
  • the method of using an organic alkali metal compound as a polymerization initiator and anionic polymerization in the presence of an organoaluminum compound can produce a block copolymer having a narrower molecular weight distribution and less residual monomer. It can be carried out under relatively mild temperature conditions, and is preferable in that the environmental load in industrial production (mainly the power consumption of the refrigerator necessary for controlling the polymerization temperature) is small.
  • organic alkali metal compound is usually used as the polymerization initiator for the anionic polymerization.
  • examples of the organic alkali metal compound include methyl lithium, ethyl lithium, n-propyl lithium, isopropyl lithium, n-butyl lithium, sec-butyl lithium, isobutyl lithium, tert-butyl lithium, n-pentyl lithium, n-hexyl lithium, tetra Alkyllithium and alkyldilithium such as methylenedilithium, pentamethylenedilithium, hexamethylenedilithium; aryllithium and aryldilithium such as phenyllithium, m-tolyllithium, p-tolyllithium, xylyllithium, lithium naphthalene; Benzyllithium, diphenylmethyllithium, trityllithium, 1,1-diphenyl-3-methylpentyllithium, ⁇
  • R 1 , R 2 and R 3 are each independently an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, or an aryl group which may have a substituent.
  • R 1 , R 2 and R 3 are each independently an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, or an aryl group which may have a substituent.
  • R 1 Represents any of the groups described above, and R 2 and R 3 together represent an aryleneoxy group which may have a substituent.
  • organoaluminum compound represented by the above general formula examples include trimethylaluminum, triethylaluminum, tri-n-butylaluminum, tris-butylaluminum, tri-t-butylaluminum, triisobutylaluminum, tri-n-hexylaluminum, Trialkylaluminum such as tri-n-octylaluminum, tri-2-ethylhexylaluminum, triphenylaluminum, dimethyl (2,6-di-tert-butyl-4-methylphenoxy) aluminum, dimethyl (2,6-di-tert-Butylphenoxy) aluminum, diethyl (2,6-di-tert-butyl-4-methylphenoxy) aluminum, diethyl (2,6-di-tert-butylphenoxy) aluminum, diisobutyl ( , 6-Di-tert-butyl-4-methylphenoxy) aluminum, diisobutyl (
  • organoaluminum compounds are preferred because it is easy to handle and allows the anionic polymerization reaction to proceed without deactivation under relatively mild temperature conditions.
  • ethers such as dimethyl ether, dimethoxyethane, diethoxyethane, 12-crown-4; triethylamine, N, N, N ′, N′-tetramethylethylenediamine, Nitrogen-containing compounds such as N, N, N ′, N ′′, N ′′ -pentamethyldiethylenetriamine, 1,1,4,7,10,10-hexamethyltriethylenetetramine, pyridine, 2,2′-dipyridyl, It can coexist for stabilization of a polymerization reaction.
  • Examples of a method for obtaining a block copolymer used in the present invention include a method in which a small amount of a polyfunctional monomer, a polyfunctional coupling agent, or the like is added to an anionic polymerization reaction system for polymerization.
  • the polyfunctional monomer is a compound having two or more ethylenically unsaturated groups, and specifically includes allyl methacrylate, ethylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, divinylbenzene, 1 , 6-hexanediol diacrylate and the like.
  • the polyfunctional coupling agent is a compound having 3 or more reactive groups, specifically, trichloromethylsilane, tetrachlorosilane, butyltrichlorosilane, bis (trichlorosilyl) ethane, tetrachlorotin, butyltrichlorotin, Examples include tetrachlorogermanium.
  • the number average molecular weight (Mn) of the entire block copolymer (B) used in the present invention is 5,000 to 1,000,000 from the viewpoint of improving the impact resistance of the resulting (meth) acrylic resin composition. It is preferably 10,000 to 800,000, more preferably 10,000 to 500,000.
  • the methyl methacrylate homopolymer (A) used in the present invention is a resin obtained by polymerizing only methyl metallate. Since methyl methacrylate homopolymer tends to cause depolymerization, methacrylic resin is usually copolymerized with methyl methacrylate and methyl acrylate. When methyl methacrylate and methyl acrylate are copolymerized, the heat resistance of the (meth) acrylic resin composition decreases, and the composition ratio of the monomer units varies, resulting in optical characteristics such as refractive index. The reproduction accuracy of is reduced.
  • the methyl methacrylate homopolymer has a weight average molecular weight of preferably 40,000 to 200,000, more preferably 50,000 to 180,000, still more preferably 60,000 to 160,000. If the weight average molecular weight is too small, the impact resistance and toughness of the molded product obtained from the (meth) acrylic resin composition tend to decrease. On the contrary, when the weight average molecular weight is too large, the fluidity of the (meth) acrylic resin composition is lowered and the moldability tends to be lowered. Further, the methyl methacrylate homopolymer has a molecular weight distribution (weight average molecular weight / number average molecular weight) of preferably 1.9 to 3.0, more preferably 2.1 to 2.8, particularly preferably 2.2 to. 2.7.
  • a weight average molecular weight and a number average molecular weight are molecular weights of standard polystyrene conversion measured by GPC (gel permeation chromatography). The molecular weight and molecular weight distribution of the methacrylic resin can be controlled by adjusting the types and amounts of the polymerization initiator and the chain transfer agent.
  • the (meth) acrylic resin composition according to the present invention is preferably such that the block copolymer (B) forms a domain in the methyl methacrylate homopolymer (A) and is dispersed.
  • the size of the domain is not particularly limited, but is preferably 0.05 to 2.0 ⁇ m, more preferably 0.1 to 1.0 ⁇ m. If the average diameter of the domain is small, the impact resistance tends to decrease, and if the average diameter of the domain is large, the rigidity tends to decrease, and the transparency tends to decrease.
  • the domain structure and average diameter can be confirmed by a transmission electron micrograph of a section cut out by an ultrathin section method.
  • the (meth) acrylic resin composition according to the present invention has a load deflection temperature of preferably 90 ° C. or higher, more preferably 92 ° C. or higher, and further preferably 94 ° C. or higher. If the temperature is too low, thermal deformation tends to occur at the normal use temperature of the molded product.
  • the load deflection temperature is a value measured under a condition in which a load of 1.82 MPa is applied to a test piece having a thickness of 4 mm.
  • defects caused by the unmelted resin are identified with an optical microscope or a laser microscope. Since the resin unmelted material is transparent without being stained with osmium tetroxide, it was determined that the unstained defect by microscopic observation was caused by the resin unmelted material.
  • Optical defects detected in a film formed by molding a resin composition include a defect caused by the resin composition itself and a defect caused by various conditions of the molding process. It is surmised that the defects due to the resin composition itself are mainly due to gel colonies contained in the resin composition and unmelted resin that is difficult to melt.
  • the (meth) acrylic resin composition of the present invention is not particularly limited by its production method.
  • a method of obtaining a resin composition by melt-kneading a methyl methacrylate homopolymer (A) and a block copolymer (B) in a single-screw or biaxial melt extruder, or a block copolymer A method in which methyl methacrylate is polymerized in the presence of (B) to obtain a resin composition in situ, or a block copolymer (B) is produced in the presence of methyl methacrylate homopolymer, and the resin composition in situ.
  • the method of obtaining a thing etc. are mentioned.
  • a method of polymerizing methyl methacrylate in the presence of the block copolymer (B) to obtain a resin composition in situ is preferable.
  • a solution polymerization method or a bulk polymerization method is preferable, and a bulk polymerization method is more preferable.
  • the method for producing a (meth) acrylic resin composition comprises a polymer block (a) comprising a (meth) acrylic acid alkyl ester unit and a polymer block (b) comprising a conjugated diene compound unit.
  • the block copolymer (B) having the following formula is dissolved in a monomer mixture (a ′) containing 50% by mass or more and 100% by mass or less of methyl methacrylate to obtain a polymerization reaction solution. This includes polymerizing the monomer mixture (a ′) by setting the water content in the polymerization reaction solution to 1000 ppm or less.
  • This production method can be used for the production of the (meth) acrylic resin composition containing the methyl methacrylate homopolymer (A) and the block copolymer (B) as described above. It can also be used for the production of a (meth) acrylic resin composition containing (A ′) and a block copolymer (B).
  • the methyl methacrylate homopolymer (A) is a resin produced by polymerization of a monomer mixture (a ′) composed of 100% by mass of methyl methacrylate, and the (meth) acrylic resin (A ′) is methyl methacrylate. It is a resin produced by polymerization of a monomer mixture (a ′) comprising less than 100% by mass.
  • methyl methacrylate is 50% by mass to 100% by mass, preferably 80% by mass to 100% by mass, more preferably 80% by mass to 96% by mass. Is included.
  • the monomer mixture (a ′) composed of 100% by mass of methyl methacrylate may contain inevitable impurities.
  • Monomers other than methyl methacrylate include alkyl acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate and 2-ethylhexyl acrylate; aryl acrylates such as phenyl acrylate; acrylic Cycloacrylates such as cyclohexyl and norbornenyl acrylate; alkyl methacrylates other than methyl methacrylate such as ethyl methacrylate and butyl methacrylate; aryl methacrylates such as phenyl methacrylate; cyclohexyl methacrylate and methacrylic acid In one molecule such as cycloalkyl methacrylate such as norbornenyl; other vinyl monomers such as acrylamide, methacrylamide, acrylonitrile, methacrylonitrile, styrene, ⁇ -methylstyrene; The non-crosslinkable vinyl monomer having a polyme
  • the amount of monomers other than methyl methacrylate is preferably 0% by mass or more and 50% by mass or less, preferably 0% by mass or more and 20% by mass or less, more preferably 4% by mass or more, based on all monomer units. It is 20 mass% or less.
  • alkyl acrylate is preferable, and methyl acrylate is more preferable.
  • the monomer mixture (a ′) used in the production method of the present invention has a dissolved oxygen content of preferably 10 ppm or less, more preferably 5 ppm or less, further preferably 4 ppm or less, and most preferably 3 ppm or less.
  • a dissolved oxygen content preferably 10 ppm or less, more preferably 5 ppm or less, further preferably 4 ppm or less, and most preferably 3 ppm or less.
  • the monomer mixture (a ′) used in the production method of the present invention preferably has a yellow index of 2 or less, more preferably 1 or less.
  • a yellow index of the monomer mixture (a ′) is small, when the resulting (meth) acrylic resin composition is molded, a molded product with little coloration is easily obtained with high production efficiency.
  • the polymerization conversion rate is not so high in the polymerization of the monomer mixture (a ′)
  • Unreacted monomer can be recovered from the polymerization reaction solution and used again for the polymerization reaction.
  • the yellow index of the recovered monomer may increase due to heat applied during recovery.
  • the recovered monomer is preferably purified by an appropriate method to reduce the yellow index.
  • the yellow index is a value measured according to JIS Z-8722 using a colorimetric color difference meter ZE-2000 manufactured by Nippon Denshoku Industries Co., Ltd.
  • the methyl methacrylate used in the production method of the present invention is preferably b * of ⁇ 1 to 2, more preferably ⁇ 0.5 to 1.5.
  • b * is a value measured according to the International Commission on Illumination (CIE) standard (1976) or JIS Z-8722.
  • the mass ratio of the block copolymer (B) to the monomer mixture (a ′) is preferably 1/99 to 35/65, more preferably 1/99 to 23/77, and even more preferably 2/98 to 20 / 80, most preferably 3/97 to 17/83.
  • the amount of the block copolymer (B) is small, the impact resistance of the (meth) acrylic resin composition tends to decrease, and conversely, when it is large, not only the elastic modulus and rigidity tend to decrease, but also phase inversion hardly occurs. It becomes difficult to uniformly disperse the block copolymer (B) in the (meth) acrylic resin (A ′) or the methyl methacrylate homopolymer (A).
  • the method for dissolving the block copolymer (B) in the monomer mixture (a ′) is not particularly limited.
  • the block copolymer (B) can be dissolved in the monomer mixture (a ′) by heating to about 30 to 60 ° C. and stirring. After dissolution, it is preferable to remove the unmelted resin from the polymerization reaction solution with a filter or the like.
  • the monomer mixture (a ′) is polymerized.
  • the amount of water in the polymerization reaction solution is 1000 ppm or less, preferably 700 ppm or less, more preferably 280 ppm or less.
  • a method of dehydrating the block copolymer (B), monomer mixture (a ′) and other polymerization auxiliary materials used as raw materials by adsorption, or introducing an inert gas into the gas phase part of the tank reactor For example, a method may be used in which a part of the monomer vapor is accompanied by an inert gas, condensed by a brine-cooled condenser, and extracted out of the system.
  • Polymerization is preferably performed while applying shear to the polymerization reaction solution.
  • the (meth) acrylic resin (A ′) or the methyl methacrylate homopolymer (A) is dispersed in the continuous phase (polymerization reaction solution) containing the block copolymer (B).
  • the phase containing the (meth) acrylic resin (A ′) or methyl methacrylate homopolymer (A) and the phase containing the block copolymer (B) are reversed, and (meth) The phase containing the block copolymer (B) is dispersed in the phase containing the acrylic resin (A ′) or the methyl methacrylate homopolymer (A).
  • the polymerization conversion rate of the monomer when this phase inversion occurs is the volume ratio of block copolymer (B) to (meth) acrylic resin (A ′) or methyl methacrylate homopolymer (A), block
  • the molecular weight of the copolymer (B), the graft ratio to the block copolymer (B), and when a solvent is added, can be adjusted according to the amount of solvent and the type of solvent.
  • the polymerization is preferably carried out by a bulk polymerization method or a solution polymerization method.
  • a bulk polymerization method or a solution polymerization method shear due to stirring is more applied to the phase containing the block copolymer (B), and phase inversion is likely to occur.
  • the apparatus for performing bulk polymerization or solution polymerization include a tank reactor with a stirrer, a tubular reactor with a stirrer, a tubular reactor having a static stirring ability, and the like. One or more of these apparatuses may be used, or two or more reactors of the same type or different types may be connected in parallel or in series.
  • the polymerization may be either batch or continuous.
  • the polymerization conversion rate of bulk polymerization or solution polymerization can be adjusted by the supply amount of the reaction raw material liquid, the withdrawal amount of the reaction product liquid, and the average residence time.
  • the polymerization conversion rate is preferably 70% by mass or more, more preferably 85% by mass or more, and 90% by mass or more from the viewpoint of increasing the toughness of a molded product such as an optical member formed by molding the resulting methacrylic resin composition. Further preferred.
  • a stirring means for stirring the liquid in the reaction tank usually, a supply unit for supplying a monomer mixture or a polymerization auxiliary material to the reaction tank, and a reaction product is extracted from the reaction tank. And an extraction part.
  • the amount supplied to the reaction vessel and the amount withdrawn from the reaction vessel are balanced so that the amount of liquid in the reaction vessel becomes substantially constant.
  • the amount of liquid in the reaction tank is preferably 1 ⁇ 4 or more, more preferably 1/4 to 3/4, and still more preferably 1/3 to 2/3 with respect to the volume of the reaction tank.
  • the size of the dispersed phase depends on factors such as the number of revolutions of stirring in the case of a reactor equipped with a stirrer; the linear velocity of the reaction liquid, the viscosity of the polymerization reaction liquid in the case of a static stirring reactor represented by a tower reactor, It can be controlled by various factors such as the graft ratio to the block copolymer (B) before phase inversion.
  • a bulk polymerization method or a solution polymerization method can be applied, but in addition to these, a suspension polymerization method can also be applied.
  • the solvent used for the solution polymerization has solubility in the monomer mixture (a ′), the (meth) acrylic resin (A ′) or the methyl methacrylate homopolymer (A), and the block copolymer (B). If it is a solvent, it will not restrict
  • aromatic hydrocarbons such as benzene, toluene and ethylbenzene can be used. These can be used alone or in combination of two or more.
  • the solvent contains: A solvent that does not have solubility in the monomer mixture (a ′), the (meth) acrylic resin (A ′) or the methyl methacrylate homopolymer (A), and the block copolymer (B) is included. Also good.
  • the solvent having no solubility examples include alcohols such as methanol, ethanol and butanol; ketones such as acetone and methyl ethyl ketone; hydrocarbons such as hexane; alicyclic hydrocarbons such as cyclohexane and the like.
  • a preferable amount of the solvent that can be used in the present invention is in the range of 0 to 90% by mass when the monomer mixture (a ′) and the solvent mixture are 100% by mass.
  • the polymerization initiator used in the production method of the present invention is not particularly limited as long as it generates a reactive radical.
  • azo compounds such as azobisisobutyronitrile and azobiscyclohexylcarbonitrile; benzoyl peroxide; t-butyl peroxybenzoate, di-t-butyl peroxide, dicumyl peroxide, 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, t-butyl peroxyisopropyl carbonate, 1 , 1-bis (t-butylperoxy) cyclohexane, di-t-butyl peroxide, and organic peroxides such as t-butylperoxybenzoate. These can be used alone or in combination of two or more.
  • the addition amount and addition method of the polymerization initiator are not particularly limited as long as they are appropriately set according to the purpose.
  • alkyl mercaptans include n-dodecyl mercaptan, t-dodecyl mercaptan, 1,4-butanedithiol, 1,6-hexanedithiol, ethylene glycol bisthiopropionate, butanediol bisthioglycolate, butanediol bisthiopropio Nate, hexanediol bisthioglycolate, hexanediol bisthiopropionate, trimethylolpropane tris- ( ⁇ -thiopropionate), pentaerythritol tetrakisthiopropionate, and the like.
  • the temperature in the polymerization of the monomer mixture (a ′) is preferably 100 to 150 ° C., more preferably 110 to 140 ° C.
  • the polymerization reaction time is preferably 0.5 to 4 hours, and more preferably 1 to 3 hours. In the case of a continuous flow reactor, the polymerization reaction time is an average residence time in the reactor. If the polymerization reaction time is too short, the required amount of polymerization initiator increases. Further, increasing the amount of the polymerization initiator makes it difficult to control the polymerization reaction, and tends to make it difficult to control the molecular weight. On the other hand, if the polymerization reaction time is too long, it takes time for the reaction to reach a steady state, and the productivity tends to decrease.
  • the polymerization is preferably performed in an inert gas atmosphere such as nitrogen gas.
  • the unreacted monomer and solvent are usually removed.
  • the removal method is not particularly limited, but heating devolatilization is preferable.
  • the devolatilization method include an equilibrium flash method and an adiabatic flash method. Of these, the adiabatic flash method is preferable.
  • the adiabatic flash type devolatilization is preferably performed at a temperature of 200 to 300 ° C., more preferably 220 to 270 ° C. If it is less than 200 ° C., it takes time for devolatilization, and if the devolatilization is insufficient, the molded product may have poor appearance such as silver. On the other hand, when the temperature exceeds 300 ° C., the (meth) acrylic resin composition may be colored due to oxidation, burn, or the like.
  • the (meth) acrylic resin composition of the present invention is a (meth) acrylic resin (by a known method), if necessary, in order to improve heat resistance, optical properties and the like within a range not impairing the effects of the present invention.
  • a ′) or methyl methacrylate homopolymer (A) may be modified.
  • the method for the modification treatment is not particularly limited.
  • a (meth) acrylic resin composition is dissolved in a solvent, and a monoalkylamine or the like is added to the solution and reacted, or the (meth) acrylic resin composition is melt-kneaded with an extruder or the like.
  • the reaction can be carried out by adding a monoalkylamine or the like to react.
  • the (meth) acrylic resin composition of the present invention may contain various additives as necessary.
  • additives include antioxidants, thermal degradation inhibitors, UV absorbers, light stabilizers, lubricants, mold release agents, polymer processing aids, antistatic agents, flame retardants, dyes and pigments, light diffusing agents, organic dyes , Matting agents, impact resistance modifiers, phosphors and the like.
  • the antioxidant alone has an effect of preventing oxidative deterioration of the resin in the presence of oxygen.
  • examples thereof include phosphorus antioxidants, hindered phenol antioxidants, and thioether antioxidants. These antioxidants can be used alone or in combination of two or more. Among these, from the viewpoint of preventing the deterioration of optical properties due to coloring, phosphorus-based antioxidants and hindered phenol-based antioxidants are preferable, and the combined use of phosphorus-based antioxidants and hindered phenol-based antioxidants is more preferable. preferable.
  • the ratio is not particularly limited, but is preferably a mass ratio of phosphorus antioxidant / hindered phenol antioxidant, preferably 1/5. ⁇ 2 / 1, more preferably 1 ⁇ 2 to 1/1.
  • phosphorus antioxidants examples include 2,2-methylenebis (4,6-di-t-butylphenyl) octyl phosphite (Asahi Denka Co., Ltd .; trade name: ADK STAB HP-10), Tris (2,4-dit -Butylphenyl) phosphite (manufactured by Ciba Specialty Chemicals; trade name: IRUGAFOS168) is preferred.
  • pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (manufactured by Ciba Specialty Chemicals; trade name IRGANOX 1010)
  • Octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (manufactured by Ciba Specialty Chemicals; trade name IRGANOX 1076) is preferred.
  • the thermal degradation inhibitor can prevent thermal degradation of the resin by scavenging polymer radicals generated when exposed to high heat in a substantially oxygen-free state.
  • the thermal degradation inhibitor include 2-t-butyl-6- (3′-t-butyl-5′-methyl-hydroxybenzyl) -4-methylphenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name Sumilizer GM), 2,4-di-t-amyl-6- (3 ′, 5′-di-t-amyl-2′-hydroxy- ⁇ -methylbenzyl) phenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name Sumitizer GS) preferable.
  • the ultraviolet absorber is a compound having an ability to absorb ultraviolet rays.
  • the ultraviolet absorber is a compound that is said to have a function of mainly converting light energy into heat energy.
  • Examples of the ultraviolet absorber include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, succinic anilides, malonic esters, formamidines, acrylonitriles, and the like. These can be used alone or in combination of two or more.
  • benzotriazoles examples include 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol (manufactured by Ciba Specialty Chemicals; trade name TINUVIN329), 2 -(2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (manufactured by Ciba Specialty Chemicals; trade name TINUVIN234), 2,2'-methylenebis [4 -(1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 6,6'-bis (2H-benzotriazol-2-yl) -4,4 '-Bis (2,4,4-trimethylpentan-2-yl) -2,2'-methylenediphenol (trade name ADEKA, manufactured by ADEKA) Tab LA31) and the like.
  • ADEKA manufactured by ADEKA
  • Triazines include 2- [4,6-di (2,4-xylyl) -1,3,5-triazin-2-yl] -5-octyloxyphenol (manufactured by Ciba Specialty Chemicals; trade name) TINUVIN 411L), 2- [4-[(2-hydroxy-3-dodecyloxypropyl) oxy] -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine / 2- [4- [(2-Hydroxy-3-tridodecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine (Ciba Specialty Chemicals) Product name: TINUVIN400), 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyloxy) phenol (Ciba Specialte) Chemicals
  • the blending amount of the ultraviolet absorber is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin composition.
  • the ultraviolet absorber is preliminarily blended in the (meth) acrylic resin composition and pelletized, and this is formed into a film by melt extrusion, directly at the time of melt extrusion molding, Examples include a method of adding an ultraviolet absorber, and any method can be used.
  • the light stabilizer is a compound that is said to have a function of capturing radicals generated mainly by oxidation by light.
  • Suitable light stabilizers include hindered amines such as compounds having a 2,2,6,6-tetraalkylpiperidine skeleton.
  • the mold release agent is a compound having a function of facilitating release of the molded product from the mold.
  • the release agent include higher alcohols such as cetyl alcohol and stearyl alcohol; glycerin higher fatty acid esters such as stearic acid monoglyceride and stearic acid diglyceride.
  • the ratio is not particularly limited, but the mass ratio of higher alcohols / glycerin fatty acid monoester is preferably 2.5 / 1 to 3.5 / 1. The preferred range is 2.8 / 1 to 3.2 / 1.
  • the polymer processing aid is a compound that exhibits an effect on thickness accuracy and thinning when a (meth) acrylic resin composition is molded.
  • the polymer processing aid is polymer particles having a particle diameter of 0.05 to 0.5 ⁇ m, which can be usually produced by an emulsion polymerization method.
  • the polymer particles may be single layer particles composed of polymers having a single composition ratio and single intrinsic viscosity, or multilayer particles composed of two or more kinds of polymers having different composition ratios or intrinsic viscosities. May be.
  • particles having a two-layer structure having a polymer layer having a low intrinsic viscosity in the inner layer and a polymer layer having a high intrinsic viscosity of 5 dl / g or more in the outer layer are preferable.
  • the polymer processing aid preferably has an intrinsic viscosity of 3 to 6 dl / g. If the intrinsic viscosity is too small, the effect of improving moldability tends to be low. If the intrinsic viscosity is too large, the melt fluidity of the (meth) acrylic resin composition tends to be lowered.
  • an impact modifier may be used.
  • the impact modifier include a core-shell type modifier containing acrylic rubber or diene rubber as a core layer component; a modifier containing a plurality of rubber particles, and the like.
  • the organic dye a compound having a function of converting ultraviolet rays that are harmful to the resin into visible light is preferably used.
  • the light diffusing agent and matting agent include glass fine particles, polysiloxane-based crosslinked fine particles, crosslinked polymer fine particles, talc, calcium carbonate, and barium sulfate.
  • the phosphor include a fluorescent pigment, a fluorescent dye, a fluorescent white dye, a fluorescent brightener, and a fluorescent bleach.
  • lubricants examples include stearic acid esters such as stearic acid, behenic acid, methyl stearate, ethyl stearate, monoglyceride stearate; metal salts such as stearamide, zinc stearate, calcium stearate, magnesium stearate, ethylene bis Examples include stearamide.
  • the blending amount of the lubricant is preferably 0.01 to 0.1 parts by mass, more preferably 0.03 to 0.07 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin composition.
  • inorganic fillers such as silicon dioxide, pigment release agents such as iron oxide, paraffinic process oil, naphthenic process oil, aromatic process oil, paraffin, organic polysiloxane, mineral oil, etc. , Flame retardants, antistatic agents, reinforcing agents such as organic fibers, glass fibers, carbon fibers, metal whiskers, colorants, fluorescent brighteners, dispersants, heat stabilizers, light stabilizers, antioxidants and other additives or You may mix
  • the (meth) acrylic resin composition of the present invention can be used by mixing with other resins such as high impact polystyrene resin and vinyl chloride resin.
  • additives may be added to the polymerization reaction liquid when polymerizing the monomer mixture (a ′), or may be added to the produced (meth) acrylic resin composition.
  • Various molded products can be obtained by molding the (meth) acrylic resin composition of the present invention by a conventionally known molding method such as injection molding, compression molding, extrusion molding, vacuum molding, cast molding, or the like.
  • the (meth) acrylic resin composition of the present invention can produce a molded product with a thin wall and a large area with little residual distortion and little coloration even when injection molding is performed at a low cylinder temperature and a high injection pressure with high production efficiency. Can be provided.
  • the (meth) acrylic resin composition of the present invention can be formed into various molded products by a known molding method.
  • Molded products include, for example, billboard parts such as advertising towers, stand signs, sleeve signs, bamboard signs, and rooftop signs; display parts such as showcases, dividers, and store displays; fluorescent lamp covers, mood lighting covers, lamp shades, Lighting parts such as optical ceilings, light walls, chandeliers; interior parts such as pendants and mirrors; building parts such as doors, domes, safety window glass, partitions, staircases, balconies, roofs of leisure buildings; aircraft windshields , Pilot visor, motorcycle, motor boat windshield, bus shading plate, automotive side visor, rear visor, head wing, headlight cover and other transportation equipment related parts; audio visual nameplate, stereo cover, TV protection mask, vending machine Electronic equipment parts such as incubators, X-ray parts, etc.
  • billboard parts such as advertising towers, stand signs, sleeve signs, bamboard signs, and rooftop signs
  • display parts such as showcases
  • Medical equipment parts such as machine covers, instrument covers, experimental devices, rulers, dials, observation windows; LCD protective plates, light guide plates, light guide films, Fresnel lenses, lenticular lenses, front plates of various displays, diffusion Optical components such as plates, polarizer protective films, polarizing plate protective films, retardation films, etc .; traffic-related components such as road signs, guide plates, curve mirrors, and sound barriers; surface materials for automobile interiors, surface materials for mobile phones, Film members such as marking films; canopy materials for washing machines, control panels, top panels for rice cookers, etc .; greenhouses, large aquariums, box aquariums, clock panels, bathtubs, sanitary, desk mats, games Examples include parts, toys, and masks for face protection during welding.
  • the (meth) acrylic resin composition of the present invention is suitable for an optical member, and among the optical members, it is suitable for a film, particularly a protective film for a polarizing plate.
  • the optical member or film of one embodiment of the present invention contains a (meth) acrylic resin composition.
  • the optical member or film can be obtained by a known molding method such as an extrusion molding method or an injection molding method. Specifically, a (meth) acrylic resin composition is melt kneaded using a melt kneader such as a single screw extruder, a twin screw extruder, a Banbury mixer, a brabender, various kneaders, and then a T die, a circular die, etc.
  • a film or the like can be obtained by molding using an extrusion molding machine or the like equipped with a mold.
  • the film of the present invention can be obtained by blow molding, injection blow molding, inflation molding, foam molding, cast molding, and the like, and further, secondary processing molding methods such as pressure molding and vacuum molding can be used.
  • the obtained film can be stretched or surface-treated depending on the application.
  • the film of one embodiment of the present invention has a haze value in a 23 ° C. environment of preferably 2% or less, more preferably 1.2% or less, and further preferably 1.0% or less.
  • the film according to an embodiment of the present invention has an absolute value of a photoelastic coefficient under a 23 ° C. environment of preferably 8.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, more preferably 6.0 ⁇ 10 ⁇ 12 Pa ⁇ 1. Hereinafter, it is more preferably 5.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less.
  • the “photoelastic coefficient” is a coefficient C R [Pa ⁇ 1 ] representing the ease with which birefringence changes due to external force, and is defined by the following equation.
  • C R ⁇ n / ⁇ R
  • ⁇ R extensional stress [Pa]
  • ⁇ n birefringence when stress is applied
  • ⁇ n is defined by the following equation.
  • ⁇ n n 1 ⁇ n 2 (Where n 1 is the refractive index in the direction parallel to the stretching direction, and n 2 is the refractive index in the direction perpendicular to the stretching direction.)
  • the optical film of one embodiment of the present invention has a thickness of preferably 100 ⁇ m or less, more preferably 10 ⁇ m or more and 90 ⁇ m or less, further preferably 20 ⁇ m or more and 80 ⁇ m or less, and particularly preferably 30 ⁇ m or more and 60 ⁇ m or less.
  • the thickness is preferably 100 ⁇ m or less from the viewpoint of bending strength.
  • the optical film of one embodiment of the present invention is not particularly limited by the values of the in-plane direction retardation (Re), the thickness direction retardation (Rth), and the Nz coefficient.
  • In-plane direction retardation (Re), thickness direction retardation (Rth) and Nz coefficient are the composition ratio of the material constituting the (meth) acrylic resin composition, film thickness, stretching temperature, stretching ratio, stretching speed. These can be controlled by appropriately setting the above.
  • the in-plane direction retardation (Re), the thickness direction retardation (Rth), and the Nz coefficient are defined by the following equations.
  • the absolute value of the thickness direction retardation (Rth) is preferably 20 nm or less, more preferably 15 nm or less, and 5 nm. More preferably, it is as follows. When the absolute value of Rth exceeds 20 nm, the displacement due to the incident angle of retardation becomes large, which may cause problems such as a decrease in contrast in the liquid crystal display device.
  • the film of one embodiment of the present invention is subjected to surface functionalization treatment such as antiglare treatment, antireflection treatment, transparent conductive treatment, electromagnetic wave shielding treatment, gas barrier treatment, hard coat treatment, antistatic treatment, and antifouling treatment. You may give suitably.
  • surface functionalization treatment such as antiglare treatment, antireflection treatment, transparent conductive treatment, electromagnetic wave shielding treatment, gas barrier treatment, hard coat treatment, antistatic treatment, and antifouling treatment. You may give suitably.
  • an antistatic function can be provided by surface treatment.
  • an antiglare layer is formed.
  • a hard coat material is preferably used for forming the antiglare layer.
  • the thickness of the antiglare layer is not particularly limited, but is preferably 2 ⁇ m or more and 30 ⁇ m or less, more preferably 3 ⁇ m or more and 20 ⁇ m or less. If the thickness of the antiglare layer is too thin, sufficient hardness cannot be obtained, and the surface tends to be easily damaged. On the other hand, if the antiglare layer is too thick, the film tends to break or the film curls due to cure shrinkage of the antiglare layer, and the productivity tends to decrease.
  • the antireflection treatment is performed by providing a layer having a refractive index lower than the refractive index of the film on the film surface or by laminating a high refractive index layer and a low refractive index layer.
  • the low refractive index layer and the high refractive index layer can be formed by coating or physical or chemical vapor deposition.
  • the polarizing plate according to the present invention has a polarizing film and a film according to the present invention bonded to at least one surface thereof.
  • the polarizing film used in the present invention is not particularly limited.
  • the polarizing film can be obtained, for example, by adding iodine, dye, or the like to polyvinyl alcohol, forming the film into a film, stretching the film, and molecularly orienting the film. If the film to be bonded to the polarizing film has a functional layer such as an antireflection layer or an antiglare layer on the surface, the film should be bonded so that the functional layer is on the surface away from the polarizing film. preferable.
  • the film of the present invention may be bonded to both surfaces of the polarizing film, the film of the present invention is bonded to one surface of the polarizing film, and the other surface of the polarizing film is bonded.
  • a film made of another resin may be bonded.
  • the method for laminating the polarizing film and the film of the present invention is not particularly limited.
  • bonding can be performed using an adhesive containing an epoxy resin, a urethane resin, a cyanoacrylate resin, an acrylamide resin, or the like.
  • one or both of the bonded surfaces may be subjected to corona discharge treatment or the like.
  • the corona discharge treatment is a treatment for activating the resin film disposed between the electrodes by discharging by applying a high voltage between the electrodes.
  • the effect of corona discharge treatment varies depending on the type of electrode, electrode spacing, voltage, humidity, type of resin film used, etc. For example, the electrode spacing is set to 1 to 5 mm and the moving speed is set to about 3 to 20 m / min. It is preferable to do this.
  • the adhesive as described above is applied to the corona discharge treated surface, and both films are bonded together.
  • the present invention will be described more specifically with reference to the following examples. In addition, this invention is not restrict
  • Moisture measurement was performed using a Karl Fischer (KMA-210) manufactured by Kyoto Electronics Industry Co., Ltd.
  • the resin composition was extruded with an optical control system company counter (model FS-5) at a cylinder and T-die temperature of 260 ° C. and a lip gap of 0.5 mm, adjusted to a film thickness of 75 ⁇ m, and defects were detected. Among the detected transparent defects, the defects that were not stained with osmium tetroxide were regarded as unmelted. The relative number of defects was evaluated according to the following criteria.
  • Number of unmelted bumps is less than 50% of the number of unmelted bumps of Example 1 (Table 2) or Example 12 (Table 3) ⁇ : Number of unmelted bumps is Example 1 (Table 2) or Example 12 (Table 3) 50% or more and less than 100% of the number of unmelted butts x: 100% or more of the number of unmelted butts of Example 1 (Table 2) or Example 12 (Table 3)
  • Measurement was performed according to JIS-K7136. Haze was measured for a film immediately after molding and a film after being left in an environment of a temperature of 85 ° C. and a relative humidity of 85% for 100 hours.
  • Block Copolymer (B-1) Production of Block Copolymer (B-1) (1) 640 ml of toluene and 0.009 ml of 1,2-dimethoxyethane were put into a 1.5 liter autoclave vessel equipped with a stirrer and purged with nitrogen for 20 minutes. Went. Thereto was added 2.86 ml of a cyclohexane solution of 1.3 mol / l sec-butyllithium, then 72.6 ml of 1,3-butadiene, and reacted at 30 ° C. for 1.5 hours. A reaction mixture containing a polymer was obtained.
  • the 1,3-butadiene polymer in the reaction mixture has a number average molecular weight (Mn) of 24,000 and a molecular weight distribution (Mw / Mn) of 1.06.
  • Mn number average molecular weight
  • Mw / Mn molecular weight distribution
  • the obtained star-shaped block copolymer (B-1) comprises a polymer block (b) comprising 1,3-butadiene units (46) by mass and a polymer block (a) 54 comprising n-butyl acrylate units.
  • the copolymer contained 56% by mass (a ratio calculated from the area ratio of GPC).
  • Table 1 shows the characteristics of the star block copolymer (B-1).
  • BA means n-butyl acrylate
  • BD means 1,3-butadiene.
  • a toluene solution of the block copolymer (B-1) from which impurities have been removed by the extraction is heated to 80 ° C., and a portion of the toluene is distilled off under reduced pressure.
  • the toluene concentration of the block copolymer (B-1) was obtained by adjusting the coalescence concentration to 30% by mass.
  • Block Copolymer (B-2) was produced in the same manner as in Synthesis Example 1, except that 1,6-hexanediol diacrylate was not added. .
  • the 1,3-butadiene polymer had a number average molecular weight (Mn) of 24,000, a molecular weight distribution (Mw / Mn) of 1.06, and a side chain vinyl bond content of 30 mol%.
  • the butadiene-n-butyl acrylate diblock copolymer had a number average molecular weight of 41,000 and a weight average molecular weight / number average molecular weight ratio (Mw / Mn) of 1.02.
  • Synthesis Example 3 Production of Block Copolymer (B-3) Same as Synthesis Example 1 except that the amount of 1,3-butadiene was changed to 71.1 ml and the amount of n-butyl acrylate was changed to 61.1 ml.
  • a star block copolymer (B-3) was produced by this method.
  • the obtained star-shaped block copolymer (B-3) comprises 45% by mass of a polymer block (b) composed of 1,3-butadiene units and a polymer block (a) 55 composed of n-butyl acrylate units.
  • the 1,3-butadiene polymer produced during the production had a number average molecular weight (Mn) of 23,000, a molecular weight distribution (Mw / Mn) of 1.06, and a side chain vinyl bond content of 30 mol%. .
  • the butadiene-n-butyl acrylate diblock copolymer produced during the production has a number average molecular weight of 41,000, and the weight average molecular weight / number average molecular weight ratio (Mw / Mn) is 1.02. there were.
  • Block Copolymer (B-4) was produced in the same manner as in Synthesis Example 3, except that 1,6-hexanediol diacrylate was not added. .
  • the 1,3-butadiene polymer had a number average molecular weight (Mn) of 23,000, a molecular weight distribution (Mw / Mn) of 1.06, and a side chain vinyl bond content of 30 mol%.
  • the butadiene-n-butyl acrylate diblock copolymer had a number average molecular weight of 41,000 and a weight average molecular weight / number average molecular weight ratio (Mw / Mn) of 1.02.
  • Table 1 shows properties of the block copolymers (B-1), (B-2), (B-3) and (B-4).
  • Example 1 In an autoclave equipped with a stirrer and a sampling tube, 60 parts by mass of methyl methacrylate, 33 parts by mass of a 30% by mass toluene solution of the star block copolymer (B-1), and 7 parts by mass of toluene were charged and mixed. Thereafter, 0.03 part by mass of 1,1-bis (t-butylperoxy) cyclohexane and 0.2 part by mass of n-dodecyl mercaptan were added and dissolved uniformly to obtain a polymerization reaction solution. Nitrogen expelled oxygen in the reaction system. A portion of this polymerization reaction solution was collected, and the water content measured by Karl Fischer was 1200 ppm. The polymerization reaction liquid was heated to 115 ° C. and solution polymerization was performed for 2.5 hours. The reaction solution was collected from the collection tube. The reaction solution had a polymerization conversion of 60% by mass as measured by gas chromatography.
  • reaction solution (d-1) 0.08 part by mass of 1,1-bis (t-butylperoxy) cyclohexane was added to the reaction solution, and solution polymerization was performed at 120 ° C. for 2 hours to obtain a reaction solution (d-1).
  • the polymerization conversion rate of the reaction liquid (d-1) measured by gas chromatography was 95% by mass.
  • the reaction solution (d-1) was vacuum-dried to remove unreacted monomers and toluene to obtain a (meth) acrylic resin composition (e-1).
  • the dried (meth) acrylic resin composition was kneaded with a lab plast mill, and a flat plate having a thickness of 4 mm was obtained by hot pressing. A predetermined test piece was cut out from the flat plate, and the load deflection temperature was measured. The evaluation results are shown in Table 2.
  • the dried (meth) acrylic resin composition was pelletized using a twin-screw extruder KZW20TW-45MG-NH-600 manufactured by Technobel Co., Ltd., and film formation was performed.
  • the evaluation results are shown in Table 2.
  • Example 2 An (meth) acrylic resin composition was obtained in the same manner as in Example 1 except that an adsorbent (Mizusawa Chemical Industry Co., Ltd .: Mizuka Sieves) was added to the polymerization reaction solution to adsorb moisture, and then the adsorbent was removed with a 2 ⁇ m filter. .
  • the water content of the polymerization reaction solution as measured by Karl Fischer was 250 ppm.
  • Film forming was performed in the same manner as in Example 1 except that the obtained (meth) acrylic resin composition was used. The evaluation results are shown in Table 2.
  • Example 3 An autoclave equipped with a stirrer and a sampling tube was charged with 66.7 parts by weight of methyl methacrylate, 11.1 parts by weight of a 30% by weight toluene solution of the star block copolymer (B-1), and 22.2 parts by weight of toluene. Mixed. Thereafter, 0.03 part by mass of 1,1-bis (t-butylperoxy) cyclohexane and 0.2 part by mass of n-dodecyl mercaptan were added and dissolved uniformly. Oxygen in the reaction system was removed with nitrogen. A portion of this polymerization reaction solution was collected, and the water content measured by Karl Fischer was 500 ppm.
  • the polymerization reaction solution was heated to 115 ° C. and subjected to solution polymerization for 2.5 hours.
  • the reaction solution was collected from the collection tube.
  • the reaction solution had a polymerization conversion of 60% by mass as measured by gas chromatography.
  • Film forming was performed in the same manner as in Example 1 except that the obtained (meth) acrylic resin composition was used.
  • Example 4 Evaluation was performed in the same manner as in Example 3 except that the block copolymer (B-1) was changed to the block copolymer (B-2).
  • Example 5 An autoclave equipped with a stirrer and a sampling tube was charged with 42.9 parts by mass of methyl methacrylate, 27.1 parts by mass of star-shaped block copolymer (B-1), and 30 parts by mass of toluene. Solution. Thereafter, 0.03 part by mass of 1,1-bis (t-butylperoxy) cyclohexane and 0.2 part by mass of n-dodecyl mercaptan were added and dissolved uniformly. Oxygen in the reaction system was removed with nitrogen. A portion of this polymerization reaction solution was collected, and the water content measured by Karl Fischer was 300 ppm. The polymerization reaction solution was heated to 115 ° C. and subjected to solution polymerization for 2.5 hours. The reaction solution was collected from the collection tube. The reaction solution had a polymerization conversion of 60% by mass as measured by gas chromatography. Thereafter, the same operation as in Example 1 was performed.
  • Example 6 In an autoclave equipped with a stirrer and a sampling tube, 61.7 parts by mass of methyl methacrylate, 5.0 parts by mass of methyl acrylate, a toluene solution of the star-shaped block copolymer (B-3) obtained in Synthesis Example 3 11.1. Part by mass and 22.2 parts by mass of toluene were charged and mixed with stirring. Thereafter, 0.03 part by mass of 1,1-bis (t-butylperoxy) cyclohexane and 0.2 part by mass of n-dodecyl mercaptan were added and dissolved uniformly. Oxygen in the reaction system was removed with nitrogen.
  • Example 1 A portion of this polymerization reaction solution was collected, and the water content measured by Karl Fischer was 400 ppm. Solution polymerization was performed at 115 ° C. for 2.5 hours. The reaction solution was collected from the collection tube. The reaction solution had a polymerization conversion of 60% by mass as measured by gas chromatography. Thereafter, the same operation as in Example 1 was performed.
  • Examples 1 to 4 in which the ratio of the methyl methacrylate homopolymer (A) and the block copolymer (B) is within the scope of the present invention have lower haze than Example 5.
  • Examples 1 to 4 using methyl methacrylate homopolymer (A) have a higher load deflection temperature, that is, heat-resistant temperature, compared to Example 6 using a copolymer of methyl methacrylate and methyl acrylate. .
  • Example 7 A polarizing film having a thickness of about 30 ⁇ m was obtained by adsorbing and orienting iodine on polyvinyl alcohol. The film produced in Example 2 was bonded to both surfaces of the polarizing film via an adhesive to obtain a polarizing plate.
  • Example 8 Production of (meth) acrylic resin composition (solution polymerization ⁇ solution polymerization)
  • 7 parts by mass of toluene were charged and mixed with stirring.
  • 0.03 part by mass of 1,1-bis (t-butylperoxy) cyclohexane and 0.2 part by mass of n-dodecyl mercaptan were added and dissolved uniformly. Nitrogen expelled oxygen in the reaction system.
  • Example 9 Using 100 parts by weight of the pellets obtained in Example 8 and 200 parts by weight of (meth) acrylic resin (C) (parapet EH-S manufactured by Kuraray Co., Ltd.) using a twin-screw extruder KZW20TW-45MG-NH-600 manufactured by Technobell Co., Ltd. And kneaded into pellets. Film formation was performed using the pellets. The evaluation results are shown in Table 3.
  • Example 10 In an autoclave equipped with a stirrer and a sampling tube, 61.7 parts by mass of methyl methacrylate, 5.0 parts by mass of methyl acrylate, a toluene solution of the star-shaped block copolymer (B-3) obtained in Synthesis Example 3 11.1. Part by mass and 22.2 parts by mass of toluene were charged and mixed with stirring. Thereafter, 0.03 part by mass of 1,1-bis (t-butylperoxy) cyclohexane and 0.2 part by mass of n-dodecyl mercaptan were added and dissolved uniformly. Nitrogen expelled oxygen in the reaction system. The polymerization reaction solution had a water content of 500 ppm as measured by Karl Fischer.
  • Solution polymerization was performed at 115 ° C. for 2.5 hours.
  • the polymerization conversion rate was 60% by mass.
  • 0.08 part by mass of 1,1-bis (t-butylperoxy) cyclohexane was added to the reaction solution, and solution polymerization was performed at 120 ° C. for 2 hours.
  • the polymerization conversion rate was 95% by mass.
  • This was vacuum dried to remove unreacted monomers and toluene, and a (meth) acrylic resin composition was obtained.
  • the dried (meth) acrylic resin composition was pelletized using a twin-screw extruder KZW20TW-45MG-NH-600 manufactured by Technobell. Film formation was performed using the pellets. The evaluation results are shown in Table 3.
  • Example 11 Example 8 except that the toluene solution of the star block copolymer (B-3) obtained in Synthesis Example 3 was changed to the toluene solution of the star block copolymer (B-4) obtained in Synthesis Example 4.
  • (Meth) acrylic resin composition pellets were obtained in the same manner. The reaction solution had a water content of 690 ppm as measured by Karl Fischer. Film formation was performed using the pellets. The evaluation results are shown in Table 3.
  • Example 12 A pellet of a (meth) acrylic resin composition was obtained in the same manner as in Example 8 except that no adsorbent was added to the polymerization reaction solution.
  • the reaction solution had a water content of 1500 ppm as measured by Karl Fischer. Film formation was performed using the pellets. The evaluation results are shown in Table 3.
  • Example 13 100 parts by mass of the pellets obtained in Example 12 and 200 parts by mass of (meth) acrylic resin (C) (parapet EH-S manufactured by Kuraray Co., Ltd.) were used using a twin-screw extruder KZW20TW-45MG-NH-600 manufactured by Technobell. And pelletized. Film formation was performed using the pellets. The evaluation results are shown in Table 3.
  • Example 14 A pellet of a (meth) acrylic resin composition was obtained in the same manner as in Example 11 except that no adsorbent was added to the polymerization reaction solution.
  • the reaction solution had a water content of 2100 ppm as measured by Karl Fischer. Film formation was performed using the pellets. The evaluation results are shown in Table 3.
  • Examples 2 to 6 and Examples 8 to 11 in which the water content when polymerizing the (meth) acrylic resin was 1000 ppm or less were the same as Example 1 and Example in which the water content was more than 1000 ppm. It can be seen that defects due to unmelted bumps are reduced as compared with 12-14.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

A (meth)acrylic resin composition is obtained by means of a method which involves: obtaining a polymerization reaction solution by dissolving a block copolymer (B), which has a polymer block (a) comprising an alkyl ester (meth)acrylate unit and a polymer block (b) comprising a conjugated diene compound unit, in a monomer mixture (a') containing 50 to 100 mass% of a methyl methacrylate; and polymerizing the monomer mixture (a') once the moisture content within the polymerization reaction solution reaches 1000 ppm or less.

Description

(メタ)アクリル樹脂組成物、その製造方法および光学部材(Meth) acrylic resin composition, method for producing the same, and optical member
 本発明は、(メタ)アクリル樹脂組成物、その製造方法および光学部材に関する。より詳細に、本発明は、靭性に優れ、耐熱性が高く、成形品とした場合に光学欠点をほとんど発生させない(メタ)アクリル樹脂組成物、その製造方法および(メタ)アクリル樹脂組成物を含有してなる光学部材に関する。 The present invention relates to a (meth) acrylic resin composition, a method for producing the same, and an optical member. More specifically, the present invention includes a (meth) acrylic resin composition, a method for producing the same, and a (meth) acrylic resin composition that have excellent toughness, high heat resistance, and hardly generate optical defects when formed into a molded product. It is related with the optical member formed.
 偏光板は、通常、偏光フィルムと、それの両面に積層されてなる保護フィルムとを有するものである。該偏光板は液晶表示装置などの光学装置に組み込まれる。
 偏光板用の保護フィルムとして、トリアセチルセルロース(TAC)フィルムが用いられている。ところが、トリアセチルセルロースは吸湿性が高いため、トリアセチルセルロース製の保護フィルムを使用した偏光板は、高温条件下および高湿熱条件下に曝されると、偏光度や色相等が変化して、光学装置の性能を低下させることがある。
The polarizing plate usually has a polarizing film and a protective film laminated on both sides thereof. The polarizing plate is incorporated in an optical device such as a liquid crystal display device.
A triacetyl cellulose (TAC) film is used as a protective film for a polarizing plate. However, since triacetyl cellulose has high hygroscopicity, a polarizing plate using a protective film made of triacetyl cellulose, when exposed to high-temperature conditions and high-humidity heat conditions, the degree of polarization and hue change, The performance of the optical device may be degraded.
 トリアセチルセルロースの代替としてメタクリル樹脂を保護フィルムの材料に使用することが検討されている。
 メタクリル樹脂は透明性および耐湿熱性に優れ、複屈折も小さく光学的均質性に優れた素材である。一方で、メタクリル樹脂は脆く、張力の変動により破断しやすいという性質もある。このようなメタクリル樹脂に靱性を付与するために、メタクリル樹脂に改質剤を配合する技術が知られている。
 そのような改質剤としては以下のようなものが知られている。例えば、特許文献1には乳化重合法によって製造した多層構造アクリルゴムが開示されている。特許文献2にはブタジエン-アクリル酸ブチル共重合体からなるゴム状物質が開示されている。特許文献3には部分水添共役ジエン重合体が開示されている。特許文献4には(メタ)アクリル酸アルキルエステル単位と芳香族ビニル単量体単位とからなる変性ブロック共重合体が開示されている。特許文献5にはビニル芳香族化合物を主体とする重合体ブロックAと共役ジエン化合物を主体とする重合体ブロックBとからなり且つ重合体ブロックBの一部をエポキシ化してなるブロック共重合体が開示されている。特許文献6には、エチレン-酢酸ビニル共重合体などが開示されている。特許文献7には、ビニル結合に富む共役ジエン重合体成分とアクリル酸エステルまたはメタクリル酸エステル重合体成分とからなるブロック共重合体が開示されている。特許文献8には、(メタ)アクリル酸アルキルエステル単位からなる重合体ブロック(a)と共役ジエン化合物単位からなる重合体ブロック(b)とを有する星型ブロック共重合体が開示されている。
The use of methacrylic resin as a protective film material as an alternative to triacetylcellulose has been studied.
Methacrylic resin is a material excellent in transparency and wet heat resistance, small in birefringence and excellent in optical homogeneity. On the other hand, methacrylic resin is brittle and has a property of being easily broken by fluctuations in tension. In order to impart toughness to such a methacrylic resin, a technique for blending a modifier with the methacrylic resin is known.
The following are known as such modifiers. For example, Patent Document 1 discloses a multilayer structure acrylic rubber produced by an emulsion polymerization method. Patent Document 2 discloses a rubber-like substance made of a butadiene-butyl acrylate copolymer. Patent Document 3 discloses a partially hydrogenated conjugated diene polymer. Patent Document 4 discloses a modified block copolymer comprising a (meth) acrylic acid alkyl ester unit and an aromatic vinyl monomer unit. Patent Document 5 discloses a block copolymer comprising a polymer block A mainly composed of a vinyl aromatic compound and a polymer block B mainly composed of a conjugated diene compound, and a part of the polymer block B is epoxidized. It is disclosed. Patent Document 6 discloses an ethylene-vinyl acetate copolymer and the like. Patent Document 7 discloses a block copolymer comprising a conjugated diene polymer component rich in vinyl bonds and an acrylic ester or methacrylic ester polymer component. Patent Document 8 discloses a star block copolymer having a polymer block (a) composed of (meth) acrylic acid alkyl ester units and a polymer block (b) composed of conjugated diene compound units.
特公昭59-36645号公報Japanese Examined Patent Publication No.59-36645 特公昭45-26111号公報Japanese Examined Patent Publication No. 45-26111 WO96/032440WO96 / 032440 特開2000-313786号公報JP 2000-313786 A 特開平7-207110号公報Japanese Unexamined Patent Publication No. 7-207110 特開平6-345933号公報JP-A-6-345933 特開昭49-45148号公報JP 49-45148 WO2008/032732WO2008 / 032732
 ところが、従来の(メタ)アクリル樹脂組成物には、重合反応器の気相部における重合反応によって図らずも生成する高分子量で且つ熱溶融困難な樹脂が僅かに含まれることがある。この熱溶融困難な樹脂を含む(メタ)アクリル樹脂組成物によってフィルムなどを成形すると光学欠点が生じ、光学部材の性能を低下させることがある。
 本発明の目的は、靭性に優れ、耐熱性が高く、かつ成形品とした場合に光学欠点をほとんど発生させない(メタ)アクリル樹脂組成物および該組成物を含有してなる光学部材を提供することである。
However, the conventional (meth) acrylic resin composition may contain a small amount of a resin having a high molecular weight and difficult to melt by heat, which is unexpectedly generated by the polymerization reaction in the gas phase portion of the polymerization reactor. When a film or the like is molded with the (meth) acrylic resin composition containing a resin that is difficult to melt by heat, an optical defect may occur, and the performance of the optical member may be deteriorated.
An object of the present invention is to provide a (meth) acrylic resin composition having excellent toughness, high heat resistance, and hardly producing optical defects when formed into a molded product, and an optical member comprising the composition. It is.
 上記目的を達成するための手段として、本発明は以下の態様を包含する。
〔1〕 メタクリル酸メチルホモポリマー(A)65~99質量部、および
 (メタ)アクリル酸アルキルエステル単位からなる重合体ブロック(a)と共役ジエン化合物単位からなる重合体ブロック(b)とを有するブロック共重合体(B)1~35質量部を、
 メタクリル酸メチルホモポリマー(A)とブロック共重合体(B)との合計で100質量部となるように含有する(メタ)アクリル樹脂組成物。
〔2〕 ブロック共重合体(B)は星型ブロック共重合体を含有するものであり、
 該星型ブロック共重合体は、重合体ブロック(a)および/または重合体ブロック(b)を少なくとも有する腕重合体ブロックを含有してなるものであり、且つゲルパーミエションクロマトグラフィ(GPC)により算出したポリスチレン換算の数平均分子量が、〔星型ブロック共重合体の数平均分子量〕/〔腕重合体ブロックの数平均分子量〕>2を満たす〔1〕に記載の(メタ)アクリル樹脂組成物。
〔3〕 星型ブロック共重合体(B)が、化学構造式:
  (重合体ブロック(b)-重合体ブロック(a)-)n
(式中、Xはカップリング剤残基、nは2を超える数を表す。)で表されるものである〔2〕に記載の(メタ)アクリル樹脂組成物。
〔4〕 紫外線吸収剤をさらに含有する〔1〕~〔3〕のいずれかひとつに記載の(メタ)アクリル樹脂組成物。
〔5〕 〔1〕~〔4〕のいずれかひとつに記載の(メタ)アクリル樹脂組成物を含有してなる光学部材。
〔6〕 〔1〕~〔4〕のいずれかひとつに記載の(メタ)アクリル樹脂組成物を含有してなるフィルム。
〔7〕 防眩処理および/または反射防止処理を施してなる〔6〕に記載のフィルム。
〔8〕 偏光フィルムと、それの少なくとも一方の面に貼り合せられた〔6〕または〔7〕のいずれかひとつに記載のフィルムとを有する偏光板。
〔9〕 (メタ)アクリル酸アルキルエステル単位からなる重合体ブロック(a)と共役ジエン化合物単位からなる重合体ブロック(b)とを有するブロック共重合体(B)を、メタクリル酸メチル50質量%以上100質量%以下を含有する単量体混合物(a’)に溶解して重合反応液を得、
 次いで、重合反応液中の水分量を1000ppm以下にして単量体混合物(a’)を重合することを含む(メタ)アクリル樹脂組成物の製造方法。
〔10〕 前記単量体混合物(a’)がメタクリル酸メチル100質量%(不可避不純物が含まれていてもよい。)からなるものである〔9〕に記載の(メタ)アクリル樹脂組成物の製造方法。
As means for achieving the above object, the present invention includes the following aspects.
[1] having 65 to 99 parts by mass of methyl methacrylate homopolymer (A), and a polymer block (a) composed of (meth) acrylic acid alkyl ester units and a polymer block (b) composed of conjugated diene compound units 1 to 35 parts by mass of the block copolymer (B)
A (meth) acrylic resin composition containing 100 parts by mass of the total of the methyl methacrylate homopolymer (A) and the block copolymer (B).
[2] The block copolymer (B) contains a star-shaped block copolymer,
The star-shaped block copolymer contains an arm polymer block having at least a polymer block (a) and / or a polymer block (b), and is obtained by gel permeation chromatography (GPC). The (meth) acrylic resin composition according to [1], wherein the calculated number average molecular weight in terms of polystyrene satisfies [number average molecular weight of star block copolymer] / [number average molecular weight of arm polymer block]> 2. .
[3] The star block copolymer (B) has the chemical structural formula:
(Polymer block (b) -polymer block (a)-) n X
(Wherein X represents a coupling agent residue, and n represents a number exceeding 2). The (meth) acrylic resin composition according to [2].
[4] The (meth) acrylic resin composition according to any one of [1] to [3], further containing an ultraviolet absorber.
[5] An optical member comprising the (meth) acrylic resin composition according to any one of [1] to [4].
[6] A film comprising the (meth) acrylic resin composition according to any one of [1] to [4].
[7] The film according to [6], which is subjected to an antiglare treatment and / or an antireflection treatment.
[8] A polarizing plate having a polarizing film and the film according to any one of [6] and [7] bonded to at least one surface thereof.
[9] A block copolymer (B) having a polymer block (a) composed of (meth) acrylic acid alkyl ester units and a polymer block (b) composed of conjugated diene compound units is prepared by using 50% by mass of methyl methacrylate. Dissolved in the monomer mixture (a ′) containing 100% by mass or less to obtain a polymerization reaction solution,
Subsequently, the manufacturing method of the (meth) acrylic resin composition including superposing | polymerizing a monomer mixture (a ') by making the moisture content in a polymerization reaction liquid into 1000 ppm or less.
[10] The (meth) acrylic resin composition according to [9], wherein the monomer mixture (a ′) comprises 100% by mass of methyl methacrylate (which may contain inevitable impurities). Production method.
 本発明に係る(メタ)アクリル樹脂組成物は、靭性に優れ、耐熱性が高く、成形品とした場合に光学欠点をほとんど発生させない。本発明に係る(メタ)アクリル樹脂組成物を成形することによって光学欠点がほとんどない偏光板用保護フィルムなどの光学部材を得ることができる。 The (meth) acrylic resin composition according to the present invention has excellent toughness, high heat resistance, and hardly generates optical defects when formed into a molded product. By molding the (meth) acrylic resin composition according to the present invention, an optical member such as a protective film for a polarizing plate having almost no optical defect can be obtained.
 本発明に係る製造方法に従って、重合反応液中の水分量を1000ppm以下にしてメタクリル酸メチル50質量%以上100質量%以下を含有する単量体混合物(a’)を重合すると、靭性に優れ、耐熱性が高く且つゲルコロニーや樹脂異物がきわめて少ない(メタ)アクリル樹脂組成物を容易に得ることができる。本発明に係る製造方法によって得られる(メタ)アクリル樹脂組成物は、靭性に優れ、クレーター状の光学欠点をほとんど発生させない。本発明に係る製造方法によって得られるメタクリル樹脂組成物を成形することによって光学欠点がほとんどない偏光板用保護フィルムなどの光学部材を得ることができる。 According to the production method of the present invention, when the monomer mixture (a ′) containing 50% by mass or more and 100% by mass or less of methyl methacrylate with a water content in the polymerization reaction solution of 1000 ppm or less is excellent in toughness, A (meth) acrylic resin composition having high heat resistance and very few gel colonies and resin foreign matters can be easily obtained. The (meth) acrylic resin composition obtained by the production method according to the present invention is excellent in toughness and hardly generates crater-like optical defects. By molding the methacrylic resin composition obtained by the production method according to the present invention, an optical member such as a protective film for a polarizing plate having almost no optical defects can be obtained.
 本発明の一実施形態に係る(メタ)アクリル樹脂組成物は、メタクリル酸メチルホモポリマー(A)、および(メタ)アクリル酸アルキルエステル単位からなる重合体ブロック(a)と共役ジエン化合物単位からなる重合体ブロック(b)とを有するブロック共重合体(B)を含有するものである。
 メタクリル酸メチルホモポリマー(A)の量は、メタクリル酸メチルホモポリマー(A)とブロック共重合体(B)との合計100質量部に対して、65~99質量部、好ましくは77~99質量部、より好ましくは80~98質量部、さらに好ましくは83~97質量部である。
 ブロック共重合体(B)の量は、メタクリル酸メチルホモポリマー(A)とブロック共重合体(B)との合計100質量部に対して、1~35質量部、好ましくは1~23質量部、より好ましくは2~20質量部、さらに好ましくは3~17質量部である。
The (meth) acrylic resin composition according to an embodiment of the present invention comprises a methyl methacrylate homopolymer (A), a polymer block (a) composed of (meth) acrylic acid alkyl ester units, and a conjugated diene compound unit. It contains a block copolymer (B) having a polymer block (b).
The amount of the methyl methacrylate homopolymer (A) is 65 to 99 parts by mass, preferably 77 to 99 parts by mass with respect to 100 parts by mass in total of the methyl methacrylate homopolymer (A) and the block copolymer (B). Part, more preferably 80 to 98 parts by weight, still more preferably 83 to 97 parts by weight.
The amount of the block copolymer (B) is 1 to 35 parts by mass, preferably 1 to 23 parts by mass with respect to 100 parts by mass in total of the methyl methacrylate homopolymer (A) and the block copolymer (B). More preferably, it is 2 to 20 parts by mass, and still more preferably 3 to 17 parts by mass.
(ブロック共重合体(B))
 本発明に用いられるブロック共重合体(B)は、(メタ)アクリル酸アルキルエステル単位からなる重合体ブロック(a)と共役ジエン化合物単位からなる重合体ブロック(b)とを有するものである。なお、「(メタ)アクリル」は「メタクリルまたはアクリル」を省略記載したものである。ブロック共重合体(B)は、重合体ブロック(a)および/または重合体ブロック(b)のガラス転移温度が、好ましくは0℃以下、より好ましくは-10℃以下である。
(Block copolymer (B))
The block copolymer (B) used in the present invention has a polymer block (a) composed of (meth) acrylic acid alkyl ester units and a polymer block (b) composed of conjugated diene compound units. “(Meth) acryl” is an abbreviation of “methacryl or acrylic”. In the block copolymer (B), the glass transition temperature of the polymer block (a) and / or the polymer block (b) is preferably 0 ° C. or lower, more preferably −10 ° C. or lower.
 (メタ)アクリル酸アルキルエステル単位からなる重合体ブロック(a)は(メタ)アクリル酸アルキルエステルを重合することで形成できる。かかる(メタ)アクリル酸アルキルエステルとしては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル;アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸2-エチルヘキシルなどが挙げられる。これらは1種単独でまたは2種以上を組み合わせて用いることができる。これらの中でも、ガラス転移温度(Tg)が0℃以下の重合体ブロック(a)を与える(メタ)アクリル酸アルキルエステルまたはそれらの組み合わせが好ましく、Tgが-10℃以下の重合体ブロック(a)を与える(メタ)アクリル酸アルキルエステルまたはそれらの組合せがより好ましい。このような(メタ)アクリル酸アルキルエステルとしては、アクリル酸n-ブチルおよび/またはアクリル酸2-エチルヘキシルが好ましく、アクリル酸n-ブチルがより好ましい。 The polymer block (a) composed of (meth) acrylic acid alkyl ester units can be formed by polymerizing (meth) acrylic acid alkyl ester. Such alkyl (meth) acrylates include methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate; methyl acrylate, ethyl acrylate, n-butyl acrylate, i-butyl acrylate, acrylic acid 2 -Ethylhexyl and the like. These can be used alone or in combination of two or more. Among these, a (meth) acrylic acid alkyl ester which gives a polymer block (a) having a glass transition temperature (Tg) of 0 ° C. or less or a combination thereof is preferable, and a polymer block (a) having a Tg of −10 ° C. or less. More preferred are (meth) acrylic acid alkyl esters or combinations thereof. As such (meth) acrylic acid alkyl ester, n-butyl acrylate and / or 2-ethylhexyl acrylate are preferable, and n-butyl acrylate is more preferable.
 共役ジエン化合物単位からなる重合体ブロック(b)は、共役ジエンを重合することで形成できる。かかる共役ジエンとしては、1,3-ブタジエン、イソプレン、ペンタジエン、2,3-ジメチルブタジエンなどが挙げられる。これらは1種単独でまたは2種以上を組み合わせて用いることができる。これらの中でも、ガラス転移温度(Tg)が0℃以下の重合体ブロック(b)を与える共役ジエンまたはそれらの組み合わせが好ましく、Tgが-10℃以下の重合体ブロック(b)を与える共役ジエンまたはそれらの組合せがより好ましい。このような共役ジエンとして、汎用性、経済性、取扱性の観点から、1,3-ブタジエンおよび/またはイソプレンが好ましく、1,3-ブタジエンがより好ましい。 The polymer block (b) composed of a conjugated diene compound unit can be formed by polymerizing a conjugated diene. Such conjugated dienes include 1,3-butadiene, isoprene, pentadiene, 2,3-dimethylbutadiene and the like. These can be used alone or in combination of two or more. Among these, a conjugated diene that gives a polymer block (b) having a glass transition temperature (Tg) of 0 ° C. or lower or a combination thereof is preferable, and a conjugated diene that gives a polymer block (b) having a Tg of −10 ° C. or lower A combination thereof is more preferred. As such a conjugated diene, 1,3-butadiene and / or isoprene are preferable, and 1,3-butadiene is more preferable from the viewpoints of versatility, economy, and handleability.
 共役ジエンは、1,4-付加重合する場合と、1,2-または3,4-付加重合する場合とがある。共役ジエンが1,4-付加重合すると分子主鎖中に炭素-炭素二重結合を有するようになる。共役ジエンが1,2-または3,4-付加重合すると分子主鎖に側鎖として結合するビニル基(炭素-炭素二重結合)を有するようになる。この分子主鎖中の炭素-炭素二重結合および/または分子側鎖として結合する炭素-炭素二重結合は、グラフト反応や架橋反応の起点となる。分子側鎖の炭素-炭素二重結合/分子主鎖中の炭素-炭素二重結合の比率は重合反応系にエーテル類などの極性化合物を加えることにより増加させることができる。 The conjugated diene may be subjected to 1,4-addition polymerization or 1,2- or 3,4-addition polymerization. When the conjugated diene undergoes 1,4-addition polymerization, it has a carbon-carbon double bond in the molecular main chain. When the conjugated diene undergoes 1,2- or 3,4-addition polymerization, it has a vinyl group (carbon-carbon double bond) bonded as a side chain to the molecular main chain. The carbon-carbon double bond in the molecular main chain and / or the carbon-carbon double bond bonded as a molecular side chain is a starting point for a graft reaction or a crosslinking reaction. The ratio of carbon-carbon double bond in the molecular side chain / carbon-carbon double bond in the molecular main chain can be increased by adding a polar compound such as ethers to the polymerization reaction system.
 重合体ブロック(b)は、分子主鎖中の炭素-炭素二重結合および/または分子側鎖として結合する炭素-炭素二重結合の全てまたは一部が水素添加されたものであってもよい。本発明の効果を維持する観点から、重合体ブロック(b)の水素添加率は70mol%未満であることが好ましく、50mol%未満であることがさらに好ましい。水素添加の方法は、特に限定されず、例えば、特公平5-20442号公報に開示された方法によって達成される。 The polymer block (b) may be one in which all or part of the carbon-carbon double bonds in the molecular main chain and / or the carbon-carbon double bonds bonded as molecular side chains are hydrogenated. . From the viewpoint of maintaining the effects of the present invention, the hydrogenation rate of the polymer block (b) is preferably less than 70 mol%, and more preferably less than 50 mol%. The method of hydrogenation is not particularly limited, and can be achieved by, for example, the method disclosed in Japanese Patent Publication No. 5-20442.
 重合体ブロック(a)と重合体ブロック(b)との質量比は、特に制限されないが、重合体ブロック(a)と重合体ブロック(b)との合計を100質量%としたときに、重合体ブロック(a)は、通常45~75質量%、好ましくは50~70質量%である。重合体ブロック(b)は、通常25~55質量%、好ましくは30~50質量%である。 The mass ratio of the polymer block (a) and the polymer block (b) is not particularly limited, but when the total of the polymer block (a) and the polymer block (b) is 100% by mass, The combined block (a) is usually 45 to 75% by mass, preferably 50 to 70% by mass. The polymer block (b) is usually 25 to 55% by mass, preferably 30 to 50% by mass.
 ブロック共重合体(B)は、その屈折率によって特に制限されないが、本発明の(メタ)アクリル樹脂組成物に透明性が要求される場合は、ブロック共重合体(B)の屈折率はメタクリル酸メチルホモポリマー(A)の屈折率と一致していることが好ましい。具体的には、ブロック共重合体(B)の屈折率は、好ましくは1.48~1.50、より好ましくは1.485~1.495である。 The block copolymer (B) is not particularly limited by its refractive index, but when the (meth) acrylic resin composition of the present invention requires transparency, the refractive index of the block copolymer (B) is methacrylic. It is preferable to match the refractive index of the acid methyl homopolymer (A). Specifically, the refractive index of the block copolymer (B) is preferably 1.48 to 1.50, more preferably 1.485 to 1.495.
 ブロック共重合体(B)は、星型ブロック共重合体を含有するものであることが好ましい。星型ブロック共重合体は、複数の腕重合体ブロックが連結されて放射状に広がった構造を有するものである。腕重合体ブロックの連結部は、通常、多官能性単量体や多官能性カップリング剤等に由来する基(カップリング剤残基)によって構成される。
 該星型ブロック共重合体は、例えば、化学構造式:
 (腕重合体ブロック-)n
(式中、Xはカップリング剤残基、nは2を超える数を表す。)で表すことができる。
The block copolymer (B) preferably contains a star block copolymer. The star-shaped block copolymer has a structure in which a plurality of arm polymer blocks are connected and spread radially. The connecting part of the arm polymer block is usually constituted by a group (coupling agent residue) derived from a polyfunctional monomer, a polyfunctional coupling agent or the like.
The star block copolymer has, for example, a chemical structural formula:
(Arm polymer block-) n X
(Wherein X represents a coupling agent residue, and n represents a number exceeding 2).
 腕重合体ブロックは、重合体ブロック(a)(以下、単に(a)と表記することがある。)と重合体ブロック(b)(以下、単に(b)と表記することがある。)とを少なくとも有することが好ましい。腕重合体ブロックの構造は特に制限されない。例えば、(a)-(b)型でブロック共重合した構造、(a)-(b)-(a)型でブロック共重合した構造、(b)-(a)-(b)型でブロック共重合した構造、(a)-(b)-(a)-(b)型でブロック共重合した構造、(a)と(b)とが合計で5以上ブロック共重合した構造などが挙げられる。星型ブロック共重合体(B)を構成する複数の腕重合体ブロックは、すべて同じブロック共重合した構造であってもよいし、相互に異なるブロック共重合した構造であってもよい。これらのうち腕重合体ブロックは(a)-(b)型でブロック共重合した構造のものが好ましい。すなわち、本発明に用いられるブロック共重合体(B)は、化学構造式:
  (重合体ブロック(b)-重合体ブロック(a)-)nX、または
  (重合体ブロック(a)-重合体ブロック(b)-)n
(式中、Xはカップリング剤残基、nは2を超える数を表す。)で表される星型ブロック共重合体を含有するものが好ましく、
 化学構造式:
  (重合体ブロック(b)-重合体ブロック(a)-)n
(式中、Xはカップリング剤残基、nは2を超える数を表す。)で表される星型ブロック共重合体を含有するものがより好ましい。
The arm polymer block includes a polymer block (a) (hereinafter sometimes simply referred to as (a)) and a polymer block (b) (hereinafter sometimes simply referred to as (b)). It is preferable to have at least. The structure of the arm polymer block is not particularly limited. For example, (a)-(b) type block copolymerized structure, (a)-(b)-(a) type block copolymerized structure, (b)-(a)-(b) type blocked Examples include a copolymerized structure, a structure (a)-(b)-(a)-(b) type block copolymerized, and a structure (a) and (b) block copolymerized in total of 5 or more. . The plurality of arm polymer blocks constituting the star block copolymer (B) may all have the same block copolymerized structure, or may have different block copolymerized structures. Of these, the arm polymer block preferably has the (a)-(b) type block copolymerized structure. That is, the block copolymer (B) used in the present invention has a chemical structural formula:
(Polymer block (b) -polymer block (a)-) n X, or (polymer block (a) -polymer block (b)-) n X
(Wherein X represents a coupling agent residue, and n represents a number exceeding 2), and preferably contains a star block copolymer represented by:
Chemical structural formula:
(Polymer block (b) -polymer block (a)-) n X
(Wherein, X represents a coupling agent residue, and n represents a number exceeding 2), and more preferably contains a star block copolymer.
 ブロック共重合体(B)として好適な星型ブロック共重合体は、ゲルパーミエーションクロマトグラフィ(GPC)により算出したポリスチレン換算の数平均分子量が、
〔星型ブロック共重合体の数平均分子量〕/〔腕重合体ブロックの数平均分子量〕>2を満たすものである。
 なお、〔星型ブロック共重合体の数平均分子量〕/〔腕重合体ブロックの数平均分子量〕の比は腕数と呼ばれることがある。
 星型ブロック共重合体の数平均分子量が、腕重合体ブロックの数平均分子量の2倍を超える範囲にすることで、メタクリル樹脂中に分散した星型ブロック共重合体(B)の粒子のせん断に対する機械的強度が高くなり、所望の耐衝撃性能を得ることができるようになる。なお、星型ブロック共重合体の数平均分子量が、腕重合体ブロックの数平均分子量の100倍より大きいものは合成が難しいので、工業的に好ましい星型ブロック共重合体(B)の数平均分子量は、腕重合体ブロックの数平均分子量の2倍より大きく且つ100倍以下であり、より好ましくは2.5~50倍であり、さらに好ましくは3~10倍である。
 なお、本発明に用いるブロック共重合体(B)は、上記のような星型ブロック共重合体以外に、当該星型ブロック共重合体の構成原料である腕重合体ブロックがカップリング剤残基で連結されずにそのままの状態で残っていてもよい。
The star-shaped block copolymer suitable as the block copolymer (B) has a polystyrene-equivalent number average molecular weight calculated by gel permeation chromatography (GPC).
[Number average molecular weight of star block copolymer] / [Number average molecular weight of arm polymer block]> 2.
The ratio of [number average molecular weight of star block copolymer] / [number average molecular weight of arm polymer block] is sometimes referred to as the number of arms.
By making the number average molecular weight of the star block copolymer more than twice the number average molecular weight of the arm polymer block, the shear of the particles of the star block copolymer (B) dispersed in the methacrylic resin As a result, the desired mechanical strength can be obtained. The number average molecular weight of the star block copolymer is more than 100 times the number average molecular weight of the arm polymer block, because synthesis is difficult. Therefore, the number average of the industrially preferred star block copolymer (B) The molecular weight is more than 2 times and less than 100 times the number average molecular weight of the arm polymer block, more preferably 2.5 to 50 times, still more preferably 3 to 10 times.
The block copolymer (B) used in the present invention is not limited to the star block copolymer as described above, but the arm polymer block that is a constituent material of the star block copolymer is a coupling agent residue. It may be left as it is without being connected.
 本発明に使用するブロック共重合体(B)の製造方法は、特に限定されず、公知の手法に準じた方法を採用することができる。一般に、ブロック共重合体を得る方法としては、構成単位である単量体をリビング重合する方法が採用される。このようなリビング重合の手法としては、例えば、有機希土類金属錯体を重合開始剤として用いて重合する方法、有機アルカリ金属化合物を重合開始剤として用い、アルカリ金属またはアルカリ土類金属の鉱酸塩等の存在下でアニオン重合する方法、有機アルカリ金属化合物を重合開始剤として用い、有機アルミニウム化合物の存在下でアニオン重合する方法、原子移動ラジカル重合(ATRP)法等が挙げられる。 The method for producing the block copolymer (B) used in the present invention is not particularly limited, and a method according to a known method can be employed. In general, as a method of obtaining a block copolymer, a method of living polymerizing a monomer that is a structural unit is employed. Examples of such living polymerization methods include a method of polymerizing using an organic rare earth metal complex as a polymerization initiator, an alkali metal or alkaline earth metal mineral salt using an organic alkali metal compound as a polymerization initiator, and the like. And a method of anionic polymerization in the presence of an organic alkali metal compound as a polymerization initiator, an anion polymerization in the presence of an organoaluminum compound, an atom transfer radical polymerization (ATRP) method, and the like.
 上記の製造方法のうち、有機アルカリ金属化合物を重合開始剤として用い、有機アルミニウム化合物の存在下でアニオン重合する方法は、より分子量分布の狭いブロック共重合体を製造でき、残存単量体が少なく、比較的緩和な温度条件下で実施可能であり、工業的生産における環境負荷(主に重合温度を制御するために必要な冷凍機の消費電力)が少ないという点で好ましい。 Among the above production methods, the method of using an organic alkali metal compound as a polymerization initiator and anionic polymerization in the presence of an organoaluminum compound can produce a block copolymer having a narrower molecular weight distribution and less residual monomer. It can be carried out under relatively mild temperature conditions, and is preferable in that the environmental load in industrial production (mainly the power consumption of the refrigerator necessary for controlling the polymerization temperature) is small.
 上記のアニオン重合用の重合開始剤としては有機アルカリ金属化合物が通常用いられる。有機アルカリ金属化合物としては、メチルリチウム、エチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、イソブチルリチウム、tert-ブチルリチウム、n-ペンチルリチウム、n-ヘキシルリチウム、テトラメチレンジリチウム、ペンタメチレンジリチウム、ヘキサメチレンジリチウム等のアルキルリチウムおよびアルキルジリチウム;フェニルリチウム、m-トリルリチウム、p-トリルリチウム、キシリルリチウム、リチウムナフタレン等のアリールリチウムおよびアリールジリチウム;ベンジルリチウム、ジフェニルメチルリチウム、トリチルリチウム、1,1-ジフェニル-3-メチルペンチルリチウム、α-メチルスチリルリチウム、ジイソプロペニルベンゼンとブチルリチウムの反応により生成するジリチウム等のアラルキルリチウムおよびアラルキルジリチウム;リチウムジメチルアミド、リチウムジエチルアミド、リチウムジイソプロピルアミド等のリチウムアミド;メトキシリチウム、エトキシリチウム、n-プロポキシリチウム、イソプロポキシリチウム、n-ブトキシリチウム、sec-ブトキシリチウム、tert-ブトキシリチウム、ペンチルオキシリチウム、ヘキシルオキシリチウム、ヘプチルオキシリチウム、オクチルオキシリチウム、フェノキシリチウム、4-メチルフェノキシリチウム、ベンジルオキシリチウム、4-メチルベンジルオキシリチウム等のリチウムアルコキシドといった有機リチウム化合物が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。 An organic alkali metal compound is usually used as the polymerization initiator for the anionic polymerization. Examples of the organic alkali metal compound include methyl lithium, ethyl lithium, n-propyl lithium, isopropyl lithium, n-butyl lithium, sec-butyl lithium, isobutyl lithium, tert-butyl lithium, n-pentyl lithium, n-hexyl lithium, tetra Alkyllithium and alkyldilithium such as methylenedilithium, pentamethylenedilithium, hexamethylenedilithium; aryllithium and aryldilithium such as phenyllithium, m-tolyllithium, p-tolyllithium, xylyllithium, lithium naphthalene; Benzyllithium, diphenylmethyllithium, trityllithium, 1,1-diphenyl-3-methylpentyllithium, α-methylstyryllithium, diisopropenylbenzene Aralkyllithium and aralkyldilithium such as dilithium produced by the reaction of butyllithium; lithium amides such as lithium dimethylamide, lithium diethylamide and lithium diisopropylamide; methoxylithium, ethoxylithium, n-propoxylithium, isopropoxylithium, n-butoxy Lithium, sec-butoxylithium, tert-butoxylithium, pentyloxylithium, hexyloxylithium, heptyloxylithium, octyloxylithium, phenoxylithium, 4-methylphenoxylithium, benzyloxylithium, 4-methylbenzyloxylithium, etc. Organic lithium compounds such as alkoxides can be mentioned. These can be used alone or in combination of two or more.
 上記のアニオン重合において用いられる有機アルミニウム化合物としては、例えば、
  一般式:AlR123
(式中、R1、R2およびR3はそれぞれ独立して置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシル基、置換基を有してもよいアリールオキシ基またはN,N-二置換アミノ基を表すか、またはR1が前記したいずれかの基を表し、R2およびR3は一緒になって置換基を有してもよいアリーレンジオキシ基を表す。)で表されるものが挙げられる。
As an organoaluminum compound used in the above anionic polymerization, for example,
General formula: AlR 1 R 2 R 3
Wherein R 1 , R 2 and R 3 are each independently an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, or an aryl group which may have a substituent. Represents an aralkyl group which may have a substituent, an alkoxyl group which may have a substituent, an aryloxy group which may have a substituent or an N, N-disubstituted amino group, or R 1 Represents any of the groups described above, and R 2 and R 3 together represent an aryleneoxy group which may have a substituent.
 上記一般式で表される有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリn-ブチルアルミニウム、トリs-ブチルアルミニウム、トリt-ブチルアルミニウム、トリイソブチルアルミニウム、トリn-ヘキシルアルミニウム、トリn-オクチルアルミニウム、トリ2-エチルヘキシルアルミニウム、トリフェニルアルミニウム等のトリアルキルアルミニウム、ジメチル(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、ジメチル(2,6-ジ-tert-ブチルフェノキシ)アルミニウム、ジエチル(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、ジエチル(2,6-ジ-tert-ブチルフェノキシ)アルミニウム、ジイソブチル(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、ジイソブチル(2,6-ジ-tert-ブチルフェノキシ)アルミニウム、ジ-n-オクチル(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、ジ-n-オクチル(2,6-ジ-tert-ブチルフェノキシ)アルミニウム等のジアルキルフェノキシアルミニウム、メチルビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、メチルビス(2,6-ジ-tert-ブチルフェノキシ)アルミニウム、エチル〔2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノキシ)〕アルミニウム、エチルビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、エチルビス(2,6-ジ-tert-ブチルフェノキシ)アルミニウム、エチル〔2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノキシ)〕アルミニウム、 Specific examples of the organoaluminum compound represented by the above general formula include trimethylaluminum, triethylaluminum, tri-n-butylaluminum, tris-butylaluminum, tri-t-butylaluminum, triisobutylaluminum, tri-n-hexylaluminum, Trialkylaluminum such as tri-n-octylaluminum, tri-2-ethylhexylaluminum, triphenylaluminum, dimethyl (2,6-di-tert-butyl-4-methylphenoxy) aluminum, dimethyl (2,6-di-tert- Butylphenoxy) aluminum, diethyl (2,6-di-tert-butyl-4-methylphenoxy) aluminum, diethyl (2,6-di-tert-butylphenoxy) aluminum, diisobutyl ( , 6-Di-tert-butyl-4-methylphenoxy) aluminum, diisobutyl (2,6-di-tert-butylphenoxy) aluminum, di-n-octyl (2,6-di-tert-butyl-4-methyl) Phenoxy) aluminum, dialkylphenoxyaluminum such as di-n-octyl (2,6-di-tert-butylphenoxy) aluminum, methylbis (2,6-di-tert-butyl-4-methylphenoxy) aluminum, methylbis (2 , 6-Di-tert-butylphenoxy) aluminum, ethyl [2,2'-methylenebis (4-methyl-6-tert-butylphenoxy)] aluminum, ethylbis (2,6-di-tert-butyl-4-methyl) Phenoxy) aluminum, ethyl bis (2,6-di-t rt- butyl phenoxy) aluminum, ethyl [2,2'-methylenebis (4-methyl -6-tert-butyl phenoxy)] aluminum,
 イソブチルビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、イソブチルビス(2,6-ジ-tert-ブチルフェノキシ)アルミニウム、イソブチル〔2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノキシ)〕アルミニウム、n-オクチルビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、n-オクチルビス(2,6-ジ-tert-ブチルフェノキシ)アルミニウム、n-オクチル〔2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノキシ)〕アルミニウム等のアルキルジフェノキシアルミニウム、メトキシビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、メトキシビス(2,6-ジ-tert-ブチルフェノキシ)アルミニウム、メトキシ〔2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノキシ)〕アルミニウム、エトキシビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、エトキシビス(2,6-ジ-tert-ブチルフェノキシ)アルミニウム、エトキシ〔2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノキシ)〕アルミニウム、イソプロポキシビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、イソプロポキシビス(2,6-ジ-tert-ブチルフェノキシ)アルミニウム、イソプロポキシ〔2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノキシ)〕アルミニウム、tert-ブトキシビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、tert-ブトキシビス(2,6-ジ-tert-ブチルフェノキシ)アルミニウム、tert-ブトキシ〔2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノキシ)〕アルミニウム等のアルコキシジフェノキシアルミニウム、トリス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、トリス(2,6-ジフェニルフェノキシ)アルミニウム等のトリフェノキシアルミニウム等を挙げることができる。 Isobutylbis (2,6-di-tert-butyl-4-methylphenoxy) aluminum, isobutylbis (2,6-di-tert-butylphenoxy) aluminum, isobutyl [2,2′-methylenebis (4-methyl-6) -Tert-butylphenoxy)] aluminum, n-octylbis (2,6-di-tert-butyl-4-methylphenoxy) aluminum, n-octylbis (2,6-di-tert-butylphenoxy) aluminum, n-octyl [2,2′-methylenebis (4-methyl-6-tert-butylphenoxy)] alkyldiphenoxyaluminum such as aluminum, methoxybis (2,6-di-tert-butyl-4-methylphenoxy) aluminum, methoxybis (2 , 6-Di-tert-butylfe Xy) aluminum, methoxy [2,2′-methylenebis (4-methyl-6-tert-butylphenoxy)] aluminum, ethoxybis (2,6-di-tert-butyl-4-methylphenoxy) aluminum, ethoxybis (2, 6-di-tert-butylphenoxy) aluminum, ethoxy [2,2′-methylenebis (4-methyl-6-tert-butylphenoxy)] aluminum, isopropoxybis (2,6-di-tert-butyl-4-) Methylphenoxy) aluminum, isopropoxybis (2,6-di-tert-butylphenoxy) aluminum, isopropoxy [2,2′-methylenebis (4-methyl-6-tert-butylphenoxy)] aluminum, tert-butoxybis ( 2,6-di-tert-bu Ru-4-methylphenoxy) aluminum, tert-butoxybis (2,6-di-tert-butylphenoxy) aluminum, tert-butoxy [2,2'-methylenebis (4-methyl-6-tert-butylphenoxy)] aluminum And triphenoxyaluminum such as tris (2,6-di-tert-butyl-4-methylphenoxy) aluminum and tris (2,6-diphenylphenoxy) aluminum.
 これらは1種単独でまたは2種以上を組み合わせて用いることができる。これらの有機アルミニウム化合物の中でも、イソブチルビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、イソブチルビス(2,6-ジ-tert-ブチルフェノキシ)アルミニウム、イソブチル〔2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノキシ)〕アルミニウムは、取り扱いが容易であり、比較的緩和な温度条件下で失活することなくアニオン重合反応を進行させることができる点で好ましい。 These can be used alone or in combination of two or more. Among these organoaluminum compounds, isobutylbis (2,6-di-tert-butyl-4-methylphenoxy) aluminum, isobutylbis (2,6-di-tert-butylphenoxy) aluminum, isobutyl [2,2 ′ -Methylenebis (4-methyl-6-tert-butylphenoxy)] aluminum is preferred because it is easy to handle and allows the anionic polymerization reaction to proceed without deactivation under relatively mild temperature conditions.
 上記アニオン重合の反応系内には、必要に応じて、ジメチルエーテル、ジメトキシエタン、ジエトキシエタン、12-クラウン-4等のエーテル類;トリエチルアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N”,N”-ペンタメチルジエチレントリアミン、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン、ピリジン、2,2’-ジピリジル等の含窒素化合物を、重合反応の安定のために、共存させることができる。 In the anionic polymerization reaction system, if necessary, ethers such as dimethyl ether, dimethoxyethane, diethoxyethane, 12-crown-4; triethylamine, N, N, N ′, N′-tetramethylethylenediamine, Nitrogen-containing compounds such as N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine, 1,1,4,7,10,10-hexamethyltriethylenetetramine, pyridine, 2,2′-dipyridyl, It can coexist for stabilization of a polymerization reaction.
 本発明に使用するブロック共重合体を得る方法としては、アニオン重合反応系内に多官能性単量体や多官能性カップリング剤などを少量添加して重合する方法が挙げられる。多官能性単量体は、エチレン性不飽和基を2以上有する化合物であり、具体的には、メタクリル酸アリル、ジメタクリル酸エチレングリコール、ジメタクリル酸1,3-ブチレングリコール、ジビニルベンゼン、1,6-ヘキサンジオールジアクリレートなどが挙げられる。 Examples of a method for obtaining a block copolymer used in the present invention include a method in which a small amount of a polyfunctional monomer, a polyfunctional coupling agent, or the like is added to an anionic polymerization reaction system for polymerization. The polyfunctional monomer is a compound having two or more ethylenically unsaturated groups, and specifically includes allyl methacrylate, ethylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, divinylbenzene, 1 , 6-hexanediol diacrylate and the like.
 多官能性カップリング剤は、反応性基を3以上有する化合物であり、具体的には、トリクロロメチルシラン、テトラクロロシラン、ブチルトリクロロシラン、ビス(トリクロロシリル)エタン、テトラクロロスズ、ブチルトリクロロスズ、テトラクロロゲルマニウムなどが挙げられる。 The polyfunctional coupling agent is a compound having 3 or more reactive groups, specifically, trichloromethylsilane, tetrachlorosilane, butyltrichlorosilane, bis (trichlorosilyl) ethane, tetrachlorotin, butyltrichlorotin, Examples include tetrachlorogermanium.
 本発明に用いるブロック共重合体(B)全体の数平均分子量(Mn)は、得られる(メタ)アクリル樹脂組成物の耐衝撃性を向上させる観点から、5,000~1,000,000であることが好ましく、10,000~800,000であることがより好ましく、10,000~500,000であることがさらに好ましい。 The number average molecular weight (Mn) of the entire block copolymer (B) used in the present invention is 5,000 to 1,000,000 from the viewpoint of improving the impact resistance of the resulting (meth) acrylic resin composition. It is preferably 10,000 to 800,000, more preferably 10,000 to 500,000.
(メタクリル酸メチルホモポリマー(A))
 本発明に用いられるメタクリル酸メチルホモポリマー(A)は、メタルリル酸メチルのみを重合してなる樹脂である。メタクリル酸メチルホモポリマーは解重合を起こしやすいので、通常、メタクリル樹脂は、メタクリル酸メチルとアクリル酸メチルとを共重合させている。メタクリル酸メチルとアクリル酸メチルとを共重合した場合には、(メタ)アクリル樹脂組成物の耐熱性が低下し、また、単量体単位の組成比にばらつきが生じて屈折率などの光学特性の再現精度が低下する。
(Methyl methacrylate homopolymer (A))
The methyl methacrylate homopolymer (A) used in the present invention is a resin obtained by polymerizing only methyl metallate. Since methyl methacrylate homopolymer tends to cause depolymerization, methacrylic resin is usually copolymerized with methyl methacrylate and methyl acrylate. When methyl methacrylate and methyl acrylate are copolymerized, the heat resistance of the (meth) acrylic resin composition decreases, and the composition ratio of the monomer units varies, resulting in optical characteristics such as refractive index. The reproduction accuracy of is reduced.
 メタクリル酸メチルホモポリマーは、重量平均分子量が、好ましくは40,000~200,000、より好ましくは50,000~180,000、さらに好ましくは60,000~160,000である。重量平均分子量が小さすぎると(メタ)アクリル系樹脂組成物から得られる成形品の耐衝撃性や靭性が低下傾向になる。逆に、重量平均分子量が大きすぎると(メタ)アクリル系樹脂組成物の流動性が低下し成形加工性が低下傾向になる。
 さらに、メタクリル酸メチルホモポリマーは、分子量分布(重量平均分子量/数平均分子量)が、好ましくは1.9~3.0、より好ましくは2.1~2.8、特に好ましくは2.2~2.7である。分子量分布が小さすぎると(メタ)アクリル系樹脂組成物の成形加工性が低下傾向になる。逆に分子量分布が大きすぎると(メタ)アクリル系樹脂組成物から得られる成形品の耐衝撃性が低下傾向になる。
 なお、重量平均分子量および数平均分子量は、GPC(ゲルパーミエーションクロマトグラフィ)で測定した標準ポリスチレン換算の分子量である。メタクリル系樹脂の分子量や分子量分布は、重合開始剤および連鎖移動剤の種類や量などを調整することによって制御できる。
The methyl methacrylate homopolymer has a weight average molecular weight of preferably 40,000 to 200,000, more preferably 50,000 to 180,000, still more preferably 60,000 to 160,000. If the weight average molecular weight is too small, the impact resistance and toughness of the molded product obtained from the (meth) acrylic resin composition tend to decrease. On the contrary, when the weight average molecular weight is too large, the fluidity of the (meth) acrylic resin composition is lowered and the moldability tends to be lowered.
Further, the methyl methacrylate homopolymer has a molecular weight distribution (weight average molecular weight / number average molecular weight) of preferably 1.9 to 3.0, more preferably 2.1 to 2.8, particularly preferably 2.2 to. 2.7. If the molecular weight distribution is too small, the moldability of the (meth) acrylic resin composition tends to decrease. Conversely, if the molecular weight distribution is too large, the impact resistance of the molded product obtained from the (meth) acrylic resin composition tends to be reduced.
In addition, a weight average molecular weight and a number average molecular weight are molecular weights of standard polystyrene conversion measured by GPC (gel permeation chromatography). The molecular weight and molecular weight distribution of the methacrylic resin can be controlled by adjusting the types and amounts of the polymerization initiator and the chain transfer agent.
 本発明に係る(メタ)アクリル樹脂組成物は、ブロック共重合体(B)がメタクリル酸メチルホモポリマー(A)中にドメインを形成して分散しているものであることが好ましい。
 ドメインの大きさ(ドメインの平均径)は特に限定されないが、好ましくは0.05~2.0μm、より好ましくは0.1~1.0μmである。ドメインの平均径が小さいと耐衝撃性が低下傾向になり、ドメインの平均径が大きいと剛性が低下傾向になり、又透明性が低下傾向になる。なお、ドメインの構造および平均径は、超薄切片法により切り出した切片の透過型電子顕微鏡写真によって確認することができる。
The (meth) acrylic resin composition according to the present invention is preferably such that the block copolymer (B) forms a domain in the methyl methacrylate homopolymer (A) and is dispersed.
The size of the domain (domain average diameter) is not particularly limited, but is preferably 0.05 to 2.0 μm, more preferably 0.1 to 1.0 μm. If the average diameter of the domain is small, the impact resistance tends to decrease, and if the average diameter of the domain is large, the rigidity tends to decrease, and the transparency tends to decrease. The domain structure and average diameter can be confirmed by a transmission electron micrograph of a section cut out by an ultrathin section method.
 本発明に係る(メタ)アクリル樹脂組成物は、荷重撓み温度が、好ましくは90℃以上、より好ましくは92℃以上、さらに好ましくは94℃以上である。該温度が低すぎる場合は、成形品の通常使用温度下で熱変形が生じやすくなる。なお、荷重撓み温度は、厚さ4mmの試験片に1.82MPaの荷重を掛けた条件において測定した値である。 The (meth) acrylic resin composition according to the present invention has a load deflection temperature of preferably 90 ° C. or higher, more preferably 92 ° C. or higher, and further preferably 94 ° C. or higher. If the temperature is too low, thermal deformation tends to occur at the normal use temperature of the molded product. The load deflection temperature is a value measured under a condition in which a load of 1.82 MPa is applied to a test piece having a thickness of 4 mm.
 本発明に係る(メタ)アクリル樹脂組成物からなるフィルムにおいて、樹脂未溶融物に起因する欠点は、光学顕微鏡またはレーザー顕微鏡にて、識別する。樹脂未溶融物は四酸化オスミウム酸に染色されず透明であるので、顕微鏡観察で未染色となっている欠点を樹脂未溶融物に起因する欠点と判断した。樹脂組成物を成形してなるフィルムにおいて検出される光学欠点には、樹脂組成物そのものに起因する欠点と、成形工程の諸条件に起因する欠点とがある。樹脂組成物そのものに起因する欠点は主に樹脂組成物に含まれていたゲルコロニーや熱溶融困難な樹脂未溶融物に起因する欠点であると推測される。 In the film made of the (meth) acrylic resin composition according to the present invention, defects caused by the unmelted resin are identified with an optical microscope or a laser microscope. Since the resin unmelted material is transparent without being stained with osmium tetroxide, it was determined that the unstained defect by microscopic observation was caused by the resin unmelted material. Optical defects detected in a film formed by molding a resin composition include a defect caused by the resin composition itself and a defect caused by various conditions of the molding process. It is surmised that the defects due to the resin composition itself are mainly due to gel colonies contained in the resin composition and unmelted resin that is difficult to melt.
 本発明の(メタ)アクリル樹脂組成物は、その製法によって特に限定されない。例えば、メタクリル酸メチルホモポリマー(A)とブロック共重合体(B)とを、単軸あるいは2軸の溶融押出機等において溶融混錬することによって樹脂組成物を得る方法や、ブロック共重合体(B)の存在下にメタクリル酸メチルを重合して、インサイチュで樹脂組成物を得る方法や、メタクリル酸メチルホモポリマーの存在下にブロック共重合体(B)を製造して、インサイチュで樹脂組成物を得る方法などが挙げられる。これらのうち、ブロック共重合体(B)の存在下にメタクリル酸メチルを重合して、インサイチュで樹脂組成物を得る方法が好ましい。重合法としては溶液重合法または塊状重合法が好ましく、塊状重合法がより好ましい。 The (meth) acrylic resin composition of the present invention is not particularly limited by its production method. For example, a method of obtaining a resin composition by melt-kneading a methyl methacrylate homopolymer (A) and a block copolymer (B) in a single-screw or biaxial melt extruder, or a block copolymer A method in which methyl methacrylate is polymerized in the presence of (B) to obtain a resin composition in situ, or a block copolymer (B) is produced in the presence of methyl methacrylate homopolymer, and the resin composition in situ. The method of obtaining a thing etc. are mentioned. Among these, a method of polymerizing methyl methacrylate in the presence of the block copolymer (B) to obtain a resin composition in situ is preferable. As the polymerization method, a solution polymerization method or a bulk polymerization method is preferable, and a bulk polymerization method is more preferable.
 本発明の一実施形態に係る(メタ)アクリル樹脂組成物の製造方法は、(メタ)アクリル酸アルキルエステル単位からなる重合体ブロック(a)と共役ジエン化合物単位からなる重合体ブロック(b)とを有するブロック共重合体(B)を、メタクリル酸メチル50質量%以上100質量%以下を含有する単量体混合物(a’)に溶解して重合反応液を得、
 該重合反応液中の水分量を1000ppm以下にして単量体混合物(a’)を重合することを含むものである。この製造方法は、前述した、メタクリル酸メチルホモポリマー(A)およびブロック共重合体(B)を含有する(メタ)アクリル樹脂組成物の製造に使用することができ、さらに、(メタ)アクリル樹脂(A’)およびブロック共重合体(B)を含有する(メタ)アクリル樹脂組成物の製造にも使用することができる。なお、メタクリル酸メチルホモポリマー(A)は、メタクリル酸メチル100質量%からなる単量体混合物(a’)の重合によって生成する樹脂であり、(メタ)アクリル樹脂(A’)はメタクリル酸メチル100質量%未満からなる単量体混合物(a’)の重合によって生成する樹脂である。
The method for producing a (meth) acrylic resin composition according to an embodiment of the present invention comprises a polymer block (a) comprising a (meth) acrylic acid alkyl ester unit and a polymer block (b) comprising a conjugated diene compound unit. The block copolymer (B) having the following formula is dissolved in a monomer mixture (a ′) containing 50% by mass or more and 100% by mass or less of methyl methacrylate to obtain a polymerization reaction solution.
This includes polymerizing the monomer mixture (a ′) by setting the water content in the polymerization reaction solution to 1000 ppm or less. This production method can be used for the production of the (meth) acrylic resin composition containing the methyl methacrylate homopolymer (A) and the block copolymer (B) as described above. It can also be used for the production of a (meth) acrylic resin composition containing (A ′) and a block copolymer (B). The methyl methacrylate homopolymer (A) is a resin produced by polymerization of a monomer mixture (a ′) composed of 100% by mass of methyl methacrylate, and the (meth) acrylic resin (A ′) is methyl methacrylate. It is a resin produced by polymerization of a monomer mixture (a ′) comprising less than 100% by mass.
(単量体混合物(a’))
 本発明に用いられる単量体混合物(a’)は、メタクリル酸メチルを50質量%以上100質量%以下、好ましくは80質量%以上100質量%以下、より好ましくは80質量%以上96質量%以下を含むものである。なお、メタクリル酸メチル100質量%からなる単量体混合物(a’)には、不可避不純物が含まれていてもよい。
(Monomer mixture (a ′))
In the monomer mixture (a ′) used in the present invention, methyl methacrylate is 50% by mass to 100% by mass, preferably 80% by mass to 100% by mass, more preferably 80% by mass to 96% by mass. Is included. The monomer mixture (a ′) composed of 100% by mass of methyl methacrylate may contain inevitable impurities.
 メタクリル酸メチル以外の単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2-エチルへキシルなどのアクリル酸アルキル;アクリル酸フェニルなどのアクリル酸アリール;アクリル酸シクロへキシル、アクリル酸ノルボルネニルなどのアクリル酸シクロアルキル;メタクリル酸エチル、メタクリル酸ブチルなどのメタクリル酸メチル以外のメタクリル酸アルキル;メタクリル酸フェニルなどのメタクリル酸アリール;メタクリル酸シクロへキシル、メタクリル酸ノルボルネニルなどのメタクリル酸シクロアルキル;アクリルアミド、メタクリルアミド、アクリロニトリル、メタクリロニトリル、スチレン、α-メチルスチレンなどその他のビニル系単量体;などの一分子中に重合性アルケニル基を一つだけ有する非架橋性ビニル系単量体が挙げられる。メタクリル酸メチル以外の単量体の量は、全単量体単位のうちに、好ましくは0質量%以上50質量%以下、好ましくは0質量%以上20質量%以下、より好ましくは4質量%以上20質量%以下である。メタクリル酸メチル以外の単量体のうちアクリル酸アルキルが好ましく、アクリル酸メチルがより好ましい。 Monomers other than methyl methacrylate include alkyl acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate and 2-ethylhexyl acrylate; aryl acrylates such as phenyl acrylate; acrylic Cycloacrylates such as cyclohexyl and norbornenyl acrylate; alkyl methacrylates other than methyl methacrylate such as ethyl methacrylate and butyl methacrylate; aryl methacrylates such as phenyl methacrylate; cyclohexyl methacrylate and methacrylic acid In one molecule such as cycloalkyl methacrylate such as norbornenyl; other vinyl monomers such as acrylamide, methacrylamide, acrylonitrile, methacrylonitrile, styrene, α-methylstyrene; The non-crosslinkable vinyl monomer having a polymerizable alkenyl group only one can be cited. The amount of monomers other than methyl methacrylate is preferably 0% by mass or more and 50% by mass or less, preferably 0% by mass or more and 20% by mass or less, more preferably 4% by mass or more, based on all monomer units. It is 20 mass% or less. Of the monomers other than methyl methacrylate, alkyl acrylate is preferable, and methyl acrylate is more preferable.
 本発明の製造方法に用いられる単量体混合物(a’)は、溶存酸素量が、好ましくは10ppm以下、より好ましくは5ppm以下、さらに好ましくは4ppm以下、最も好ましくは3ppm以下である。このような範囲の溶存酸素量にすると重合反応がスムーズに進行し、シルバーや着色の無い成形品が得られやすくなる。 The monomer mixture (a ′) used in the production method of the present invention has a dissolved oxygen content of preferably 10 ppm or less, more preferably 5 ppm or less, further preferably 4 ppm or less, and most preferably 3 ppm or less. When the amount of dissolved oxygen is in such a range, the polymerization reaction proceeds smoothly, and it becomes easy to obtain a molded product without silver or coloring.
 本発明の製造方法に用いられる単量体混合物(a’)は、イエロインデックスが2以下であることが好ましく、1以下であることがより好ましい。単量体混合物(a’)のイエロインデックスが小さいと、得られる(メタ)アクリル樹脂組成物を成形した場合に、着色が殆んどない成形品が高い生産効率で得られやすい。後述するように単量体混合物(a’)の重合において重合転化率をあまり高くしない場合、未反応の単量体が重合反応液中に残る。未反応単量体は重合反応液から回収して再び重合反応に使用することができる。回収された単量体のイエロインデックスは回収時などに加えられる熱によって高くなることがある。回収された単量体は、適切な方法で精製して、イエロインデックスを小さくすることが好ましい。なお、イエロインデックスは、日本電色工業株式会社製の測色色差計ZE-2000を用い、JIS Z-8722に準拠して測定した値である。 The monomer mixture (a ′) used in the production method of the present invention preferably has a yellow index of 2 or less, more preferably 1 or less. When the yellow index of the monomer mixture (a ′) is small, when the resulting (meth) acrylic resin composition is molded, a molded product with little coloration is easily obtained with high production efficiency. As will be described later, when the polymerization conversion rate is not so high in the polymerization of the monomer mixture (a ′), unreacted monomers remain in the polymerization reaction solution. Unreacted monomer can be recovered from the polymerization reaction solution and used again for the polymerization reaction. The yellow index of the recovered monomer may increase due to heat applied during recovery. The recovered monomer is preferably purified by an appropriate method to reduce the yellow index. The yellow index is a value measured according to JIS Z-8722 using a colorimetric color difference meter ZE-2000 manufactured by Nippon Denshoku Industries Co., Ltd.
 また、本発明の製造方法に用いるメタクリル酸メチルはb*が好ましくは-1~2、より好ましくは-0.5~1.5である。単量体のb*がこの範囲にあると、得られる(メタ)アクリル樹脂組成物を成形した場合に、着色が殆んどない成形品が高い生産効率で得られやすい。なお、b*は国際照明委員会(CIE)規格(1976年)またはJIS Z-8722に準拠して測定した値である。 Further, the methyl methacrylate used in the production method of the present invention is preferably b * of −1 to 2, more preferably −0.5 to 1.5. When the monomer b * is within this range, when the resulting (meth) acrylic resin composition is molded, a molded product with little coloration is easily obtained with high production efficiency. Note that b * is a value measured according to the International Commission on Illumination (CIE) standard (1976) or JIS Z-8722.
 単量体混合物(a’)に対するブロック共重合体(B)の質量比は、好ましくは1/99~35/65、より好ましくは1/99~23/77、さらに好ましくは2/98~20/80、もっとも好ましくは3/97~17/83である。ブロック共重合体(B)が少ないと(メタ)アクリル樹脂組成物の耐衝撃性が低下傾向になり、逆に多いと弾性率、剛性が低下傾向になるばかりでなく、相反転が生じにくくなりブロック共重合体(B)が(メタ)アクリル樹脂(A’)またはメタクリル酸メチルホモポリマー(A)に均一に分散し難くなる。 The mass ratio of the block copolymer (B) to the monomer mixture (a ′) is preferably 1/99 to 35/65, more preferably 1/99 to 23/77, and even more preferably 2/98 to 20 / 80, most preferably 3/97 to 17/83. When the amount of the block copolymer (B) is small, the impact resistance of the (meth) acrylic resin composition tends to decrease, and conversely, when it is large, not only the elastic modulus and rigidity tend to decrease, but also phase inversion hardly occurs. It becomes difficult to uniformly disperse the block copolymer (B) in the (meth) acrylic resin (A ′) or the methyl methacrylate homopolymer (A).
 ブロック共重合体(B)の単量体混合物(a’)への溶解方法は特に制限されない。例えば、30~60℃程度に加熱し、攪拌することによってブロック共重合体(B)を単量体混合物(a’)に溶解させることができる。溶解させた後、フィルター等で重合反応液から未溶融樹脂を取り除くことが好ましい。 The method for dissolving the block copolymer (B) in the monomer mixture (a ′) is not particularly limited. For example, the block copolymer (B) can be dissolved in the monomer mixture (a ′) by heating to about 30 to 60 ° C. and stirring. After dissolution, it is preferable to remove the unmelted resin from the polymerization reaction solution with a filter or the like.
 単量体混合物(a’)にブロック共重合体(B)を溶解させた後、単量体混合物(a’)を重合する。この重合においては、重合反応液中の水分量を、1000ppm以下、好ましくは700ppm以下、より好ましくは280ppm以下にする。重合系内の水分量を減らすことにより、重合反応中に生成する数μm~数十μmの樹脂異物の生成を抑制でき、これにより、フィルム、シートなどに成形したときに、この樹脂異物を核とする数十μmの欠点の発生を大幅に低減することができ、高い光学的均質性をもった光学部材を得ることができる。重合反応液中の水分量を調節する方法は、特に制限されない。例えば、原材料として使用するブロック共重合体(B)、単量体混合物(a’)およびその他の重合副資材を吸着などによって脱水する方法、槽型反応器の気相部に不活性ガスを導入し、モノマー蒸気の一部を不活性ガスに同伴させてブライン冷却の凝縮器によって凝縮させて系外に抜き出す方法等が挙げられる。 After the block copolymer (B) is dissolved in the monomer mixture (a ′), the monomer mixture (a ′) is polymerized. In this polymerization, the amount of water in the polymerization reaction solution is 1000 ppm or less, preferably 700 ppm or less, more preferably 280 ppm or less. By reducing the amount of water in the polymerization system, it is possible to suppress the formation of resin foreign matter of several μm to several tens of μm generated during the polymerization reaction. The occurrence of defects of several tens of μm can be greatly reduced, and an optical member having high optical homogeneity can be obtained. The method for adjusting the amount of water in the polymerization reaction solution is not particularly limited. For example, a method of dehydrating the block copolymer (B), monomer mixture (a ′) and other polymerization auxiliary materials used as raw materials by adsorption, or introducing an inert gas into the gas phase part of the tank reactor For example, a method may be used in which a part of the monomer vapor is accompanied by an inert gas, condensed by a brine-cooled condenser, and extracted out of the system.
 重合は重合反応液にせん断を加えながら行うことが好ましい。重合反応初期においては(メタ)アクリル樹脂(A’)またはメタクリル酸メチルホモポリマー(A)がブロック共重合体(B)を含む連続相(重合反応液)に分散した状態であるが、せん断を加えながら重合反応を進行させていくと(メタ)アクリル樹脂(A’)またはメタクリル酸メチルホモポリマー(A)を含む相とブロック共重合体(B)を含む相とが反転し、(メタ)アクリル樹脂(A’)またはメタクリル酸メチルホモポリマー(A)を含む相にブロック共重合体(B)を含む相が分散した状態になる。なお、この相反転が生じるときの単量体の重合転化率は、ブロック共重合体(B)と(メタ)アクリル樹脂(A’)またはメタクリル酸メチルホモポリマー(A)との体積比、ブロック共重合体(B)の分子量、ブロック共重合体(B)へのグラフト率、さらに、溶剤を加えた場合には、溶剤量や溶剤種によって調整することができる。 Polymerization is preferably performed while applying shear to the polymerization reaction solution. In the initial stage of the polymerization reaction, the (meth) acrylic resin (A ′) or the methyl methacrylate homopolymer (A) is dispersed in the continuous phase (polymerization reaction solution) containing the block copolymer (B). When the polymerization reaction proceeds while adding, the phase containing the (meth) acrylic resin (A ′) or methyl methacrylate homopolymer (A) and the phase containing the block copolymer (B) are reversed, and (meth) The phase containing the block copolymer (B) is dispersed in the phase containing the acrylic resin (A ′) or the methyl methacrylate homopolymer (A). The polymerization conversion rate of the monomer when this phase inversion occurs is the volume ratio of block copolymer (B) to (meth) acrylic resin (A ′) or methyl methacrylate homopolymer (A), block The molecular weight of the copolymer (B), the graft ratio to the block copolymer (B), and when a solvent is added, can be adjusted according to the amount of solvent and the type of solvent.
 重合初期から相反転が生じるまでの期間では、塊状重合法または溶液重合法で重合を行うのが好ましい。該期間における重合を塊状重合法または溶液重合法で行うと、撹拌によるせん断がブロック共重合体(B)を含有する相により多く加わり、相反転が起きやすい。
 塊状重合または溶液重合を行うための装置としては、攪拌機付きの槽型反応器、攪拌機付きの管型反応器、静的攪拌能力を有する管型反応器等が挙げられる。これら装置は、1基以上であってもよく、また、同種のまたは異種の反応器2基以上を並列または直列に繋いでなるものでもよい。また、重合は回分式または連続式のどちらであってもよい。塊状重合または溶液重合の重合転化率は、反応原料液の供給量、反応生成液の抜出量、平均滞留時間によって調整できる。かかる重合転化率は、70質量%以上が好ましく、得られるメタクリル樹脂組成物を成形してなる光学部材等の成形品の靭性を高める観点から、85質量%以上がより好ましく、90質量%以上がさらに好ましい。槽型反応器には、通常、反応槽内の液を撹拌するための撹拌手段、単量体混合物や重合副資材などを反応槽に供給するための供給部、反応槽から反応生成物を抜き出すための抜出部とを有する。連続流通式の反応では、反応槽に供給する量と反応槽から抜き出す量とをバランスさせて、反応槽内の液量がほぼ一定になるようにする。反応槽内の液量は、反応槽の容積に対して、好ましくは1/4以上、より好ましくは1/4~3/4、さらに好ましくは1/3~2/3である。
In the period from the initial stage of polymerization until the phase inversion occurs, the polymerization is preferably carried out by a bulk polymerization method or a solution polymerization method. When the polymerization in the period is performed by a bulk polymerization method or a solution polymerization method, shear due to stirring is more applied to the phase containing the block copolymer (B), and phase inversion is likely to occur.
Examples of the apparatus for performing bulk polymerization or solution polymerization include a tank reactor with a stirrer, a tubular reactor with a stirrer, a tubular reactor having a static stirring ability, and the like. One or more of these apparatuses may be used, or two or more reactors of the same type or different types may be connected in parallel or in series. The polymerization may be either batch or continuous. The polymerization conversion rate of bulk polymerization or solution polymerization can be adjusted by the supply amount of the reaction raw material liquid, the withdrawal amount of the reaction product liquid, and the average residence time. The polymerization conversion rate is preferably 70% by mass or more, more preferably 85% by mass or more, and 90% by mass or more from the viewpoint of increasing the toughness of a molded product such as an optical member formed by molding the resulting methacrylic resin composition. Further preferred. In a tank reactor, usually, a stirring means for stirring the liquid in the reaction tank, a supply unit for supplying a monomer mixture or a polymerization auxiliary material to the reaction tank, and a reaction product is extracted from the reaction tank. And an extraction part. In the continuous flow reaction, the amount supplied to the reaction vessel and the amount withdrawn from the reaction vessel are balanced so that the amount of liquid in the reaction vessel becomes substantially constant. The amount of liquid in the reaction tank is preferably ¼ or more, more preferably 1/4 to 3/4, and still more preferably 1/3 to 2/3 with respect to the volume of the reaction tank.
 分散相の大きさは、攪拌機付反応器であれば攪拌回転数などの因子によって;塔型反応器に代表される静的攪拌反応器であれば反応液の線速度、重合反応液の粘度、相反転前までのブロック共重合体(B)へのグラフト率など種々の因子によって制御可能である。なお、相反転が生じた後は、塊状重合法または溶液重合法が適用できるが、これら以外に懸濁重合法も適用できる。 The size of the dispersed phase depends on factors such as the number of revolutions of stirring in the case of a reactor equipped with a stirrer; the linear velocity of the reaction liquid, the viscosity of the polymerization reaction liquid in the case of a static stirring reactor represented by a tower reactor, It can be controlled by various factors such as the graft ratio to the block copolymer (B) before phase inversion. In addition, after the phase inversion has occurred, a bulk polymerization method or a solution polymerization method can be applied, but in addition to these, a suspension polymerization method can also be applied.
 溶液重合に用いる溶剤は、単量体混合物(a’)、(メタ)アクリル樹脂(A’)またはメタクリル酸メチルホモポリマー(A)、およびブロック共重合体(B)に対して溶解能を有する溶剤であれば特に制限されない。例えば、ベンゼン、トルエン、エチルベンゼン等の芳香族炭化水素等を挙げられる。これらは1種単独でまたは2種以上を組み合わせて用いることができる。単量体混合物(a’)、(メタ)アクリル樹脂(A’)またはメタクリル酸メチルホモポリマー(A)、およびブロック共重合体(B)に対して溶解能を有する限りにおいて該溶剤には、単量体混合物(a’)、(メタ)アクリル樹脂(A’)またはメタクリル酸メチルホモポリマー(A)、およびブロック共重合体(B)に対して溶解能を有しない溶剤が含まれていてもよい。溶解能を有しない溶剤としては、例えば、メタノール、エタノール、ブタノール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;ヘキサン等の炭化水素;シクロヘキサン等の脂環式炭化水素等が挙げられる。本発明で用いることができる好ましい溶剤の量は、単量体混合物(a’)および溶剤の混合物を100質量%とした場合、0~90質量%の範囲である。 The solvent used for the solution polymerization has solubility in the monomer mixture (a ′), the (meth) acrylic resin (A ′) or the methyl methacrylate homopolymer (A), and the block copolymer (B). If it is a solvent, it will not restrict | limit in particular. For example, aromatic hydrocarbons such as benzene, toluene and ethylbenzene can be used. These can be used alone or in combination of two or more. As long as it has a solubility in the monomer mixture (a ′), the (meth) acrylic resin (A ′) or the methyl methacrylate homopolymer (A), and the block copolymer (B), the solvent contains: A solvent that does not have solubility in the monomer mixture (a ′), the (meth) acrylic resin (A ′) or the methyl methacrylate homopolymer (A), and the block copolymer (B) is included. Also good. Examples of the solvent having no solubility include alcohols such as methanol, ethanol and butanol; ketones such as acetone and methyl ethyl ketone; hydrocarbons such as hexane; alicyclic hydrocarbons such as cyclohexane and the like. A preferable amount of the solvent that can be used in the present invention is in the range of 0 to 90% by mass when the monomer mixture (a ′) and the solvent mixture are 100% by mass.
 本発明の製造方法に用いられる重合開始剤は、反応ラジカルを発生するものであれば特に限定されず、例えば、アゾビスイソブチロニトリル、アゾビスシクロヘキシルカルボニトリル等のアゾ化合物;ベンゾイルパーオキサイド、t-ブチルパーオキシベンゾエート、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、t-ブチルパーオキシイソプロピルカーボネート、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシベンゾエート等の有機過酸化物などを挙げることができる。これらは1種単独でまたは2種類以上を組み合わせて用いることができる。また、重合開始剤の添加量や添加方法等は、目的に応じて適宜設定すればよく特に限定されるものでない。 The polymerization initiator used in the production method of the present invention is not particularly limited as long as it generates a reactive radical. For example, azo compounds such as azobisisobutyronitrile and azobiscyclohexylcarbonitrile; benzoyl peroxide; t-butyl peroxybenzoate, di-t-butyl peroxide, dicumyl peroxide, 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, t-butyl peroxyisopropyl carbonate, 1 , 1-bis (t-butylperoxy) cyclohexane, di-t-butyl peroxide, and organic peroxides such as t-butylperoxybenzoate. These can be used alone or in combination of two or more. The addition amount and addition method of the polymerization initiator are not particularly limited as long as they are appropriately set according to the purpose.
 単量体混合物(a’)を重合する際には、必要に応じて重合反応液にアルキルメルカプタン等に代表される連鎖移動剤を添加してもよい。アルキルメルカプタンとしては、n-ドデシルメルカプタン、t-ドデシルメルカプタン、1,4-ブタンジチオール、1,6-ヘキサンジチオール、エチレングリコールビスチオプロピオネート、ブタンジオールビスチオグリコレート、ブタンジオールビスチオプロピオネート、ヘキサンジオールビスチオグリコレート、ヘキサンジオールビスチオプロピオネート、トリメチロールプロパントリス-(β-チオプロピオネート)、ペンタエリスリトールテトラキスチオプロピオネート等を挙げることができる。 When the monomer mixture (a ′) is polymerized, a chain transfer agent typified by alkyl mercaptan may be added to the polymerization reaction solution as necessary. Alkyl mercaptans include n-dodecyl mercaptan, t-dodecyl mercaptan, 1,4-butanedithiol, 1,6-hexanedithiol, ethylene glycol bisthiopropionate, butanediol bisthioglycolate, butanediol bisthiopropio Nate, hexanediol bisthioglycolate, hexanediol bisthiopropionate, trimethylolpropane tris- (β-thiopropionate), pentaerythritol tetrakisthiopropionate, and the like.
 単量体混合物(a’)の重合における温度は、好ましくは100~150℃、より好ましくは110~140℃である。重合反応の時間は、0.5~4時間が好ましく、1~3時間がより好ましい。なお、連続流通式反応器の場合、重合反応時間は反応器における平均滞留時間である。重合反応時間が短すぎると重合開始剤の必要量が増える。また重合開始剤の増量により重合反応の制御が難しくなるとともに、分子量の制御が困難になる傾向がある。一方、重合反応時間が長すぎると反応が定常状態になるまでに時間を要し、生産性が低下する傾向がある。また、重合は窒素ガスなどの不活性ガス雰囲気で行うことが好ましい。 The temperature in the polymerization of the monomer mixture (a ′) is preferably 100 to 150 ° C., more preferably 110 to 140 ° C. The polymerization reaction time is preferably 0.5 to 4 hours, and more preferably 1 to 3 hours. In the case of a continuous flow reactor, the polymerization reaction time is an average residence time in the reactor. If the polymerization reaction time is too short, the required amount of polymerization initiator increases. Further, increasing the amount of the polymerization initiator makes it difficult to control the polymerization reaction, and tends to make it difficult to control the molecular weight. On the other hand, if the polymerization reaction time is too long, it takes time for the reaction to reach a steady state, and the productivity tends to decrease. The polymerization is preferably performed in an inert gas atmosphere such as nitrogen gas.
 重合終了後、通常、未反応の単量体および溶剤を除去する。除去方法は特に制限されないが、加熱脱揮が好ましい。脱揮法としては、平衡フラッシュ方式や断熱フラッシュ方式が挙げられる。これらのうち断熱フラッシュ方式が好ましい。断熱フラッシュ方式の脱揮は、好ましくは200~300℃、より好ましくは220~270℃の温度で行う。200℃未満では脱揮に時間を要し、脱揮不十分なときには成形体にシルバー等の外観不良を起こすことがある。逆に300℃を超えると酸化、やけなどによって(メタ)アクリル樹脂組成物に色が着くことがある。 After the polymerization is completed, the unreacted monomer and solvent are usually removed. The removal method is not particularly limited, but heating devolatilization is preferable. Examples of the devolatilization method include an equilibrium flash method and an adiabatic flash method. Of these, the adiabatic flash method is preferable. The adiabatic flash type devolatilization is preferably performed at a temperature of 200 to 300 ° C., more preferably 220 to 270 ° C. If it is less than 200 ° C., it takes time for devolatilization, and if the devolatilization is insufficient, the molded product may have poor appearance such as silver. On the other hand, when the temperature exceeds 300 ° C., the (meth) acrylic resin composition may be colored due to oxidation, burn, or the like.
 尚、本発明の(メタ)アクリル樹脂組成物は、本発明の効果を損なわない範囲で、耐熱性や光学特性などを向上させるために、必要に応じ、公知の手法により(メタ)アクリル樹脂(A’)またはメタクリル酸メチルホモポリマー(A)に変性処理を行ってもよい。変性処理の方法は特に制限されない。例えば、イミド化変性は、(メタ)アクリル樹脂組成物を溶剤に溶解させ、この溶液にモノアルキルアミン等を添加し反応させることによって、または(メタ)アクリル樹脂組成物を押出機等で溶融混練している際にモノアルキルアミン等を添加し反応させることによって行うことができる。 In addition, the (meth) acrylic resin composition of the present invention is a (meth) acrylic resin (by a known method), if necessary, in order to improve heat resistance, optical properties and the like within a range not impairing the effects of the present invention. A ′) or methyl methacrylate homopolymer (A) may be modified. The method for the modification treatment is not particularly limited. For example, in imidization modification, a (meth) acrylic resin composition is dissolved in a solvent, and a monoalkylamine or the like is added to the solution and reacted, or the (meth) acrylic resin composition is melt-kneaded with an extruder or the like. In this case, the reaction can be carried out by adding a monoalkylamine or the like to react.
 本発明の(メタ)アクリル樹脂組成物は、その他必要に応じて各種の添加剤を含有してもよい。なお、添加剤の含有量が多すぎると、成形品にシルバーなどの外観不良を起こすことがある。
 添加剤としては、酸化防止剤、熱劣化防止剤、紫外線吸収剤、光安定剤、滑剤、離型剤、高分子加工助剤、帯電防止剤、難燃剤、染顔料、光拡散剤、有機色素、艶消し剤、耐衝撃性改質剤、蛍光体などが挙げられる。
The (meth) acrylic resin composition of the present invention may contain various additives as necessary. In addition, when there is too much content of an additive, external appearance defects, such as silver, may be produced in a molded article.
Additives include antioxidants, thermal degradation inhibitors, UV absorbers, light stabilizers, lubricants, mold release agents, polymer processing aids, antistatic agents, flame retardants, dyes and pigments, light diffusing agents, organic dyes , Matting agents, impact resistance modifiers, phosphors and the like.
 酸化防止剤は、酸素存在下においてそれ単体で樹脂の酸化劣化防止に効果を有するものである。例えば、リン系酸化防止剤、ヒンダードフェノール系酸化防止剤、チオエーテル系酸化防止剤などが挙げられる。これらの酸化防止剤は1種単独でまたは2種以上を組み合わせて用いることができる。これらの中、着色による光学特性の劣化防止効果の観点から、リン系酸化防止剤やヒンダードフェノール系酸化防止剤が好ましく、リン系酸化防止剤とヒンダードフェノール系酸化防止剤との併用がより好ましい。
 リン系酸化防止剤とヒンダードフェノール系酸化防止剤とを併用する場合、その割合は特に制限されないが、リン系酸化防止剤/ヒンダードフェノール系酸化防止剤の質量比で、好ましくは1/5~2/1、より好ましくは1/2~1/1である。
The antioxidant alone has an effect of preventing oxidative deterioration of the resin in the presence of oxygen. Examples thereof include phosphorus antioxidants, hindered phenol antioxidants, and thioether antioxidants. These antioxidants can be used alone or in combination of two or more. Among these, from the viewpoint of preventing the deterioration of optical properties due to coloring, phosphorus-based antioxidants and hindered phenol-based antioxidants are preferable, and the combined use of phosphorus-based antioxidants and hindered phenol-based antioxidants is more preferable. preferable.
In the case where a phosphorus antioxidant and a hindered phenol antioxidant are used in combination, the ratio is not particularly limited, but is preferably a mass ratio of phosphorus antioxidant / hindered phenol antioxidant, preferably 1/5. ˜2 / 1, more preferably ½ to 1/1.
 リン系酸化防止剤としては、2,2-メチレンビス(4,6-ジt-ブチルフェニル)オクチルホスファイト(旭電化社製;商品名:アデカスタブHP-10)、トリス(2,4-ジt-ブチルフェニル)ホスファイト(チバ・スペシャルティ・ケミカルズ社製;商品名:IRUGAFOS168)などが好ましい。 Examples of phosphorus antioxidants include 2,2-methylenebis (4,6-di-t-butylphenyl) octyl phosphite (Asahi Denka Co., Ltd .; trade name: ADK STAB HP-10), Tris (2,4-dit -Butylphenyl) phosphite (manufactured by Ciba Specialty Chemicals; trade name: IRUGAFOS168) is preferred.
 ヒンダードフェノール系酸化防止剤としては、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕(チバ・スペシャルティ・ケミカルズ社製;商品名IRGANOX1010)、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(チバ・スペシャルティ・ケミカルズ社製;商品名IRGANOX1076)などが好ましい。 As the hindered phenol-based antioxidant, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (manufactured by Ciba Specialty Chemicals; trade name IRGANOX 1010), Octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (manufactured by Ciba Specialty Chemicals; trade name IRGANOX 1076) is preferred.
 熱劣化防止剤は、実質上無酸素の状態下で高熱にさらされたときに生じるポリマーラジカルを捕捉することによって樹脂の熱劣化を防止できるものである。
 該熱劣化防止剤としては、2-t-ブチル-6-(3’-t-ブチル-5’-メチル-ヒドロキシベンジル)-4-メチルフェニルアクリレート(住友化学社製;商品名スミライザーGM)、2,4-ジ-t-アミル-6-(3’,5’-ジ-t-アミル-2’-ヒドロキシ-α-メチルベンジル)フェニルアクリレート(住友化学社製;商品名スミライザーGS)などが好ましい。
The thermal degradation inhibitor can prevent thermal degradation of the resin by scavenging polymer radicals generated when exposed to high heat in a substantially oxygen-free state.
Examples of the thermal degradation inhibitor include 2-t-butyl-6- (3′-t-butyl-5′-methyl-hydroxybenzyl) -4-methylphenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name Sumilizer GM), 2,4-di-t-amyl-6- (3 ′, 5′-di-t-amyl-2′-hydroxy-α-methylbenzyl) phenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name Sumitizer GS) preferable.
 紫外線吸収剤は、紫外線を吸収する能力を有する化合物である。紫外線吸収剤は、主に光エネルギーを熱エネルギーに変換する機能を有すると言われる化合物である。
 紫外線吸収剤としては、ベンゾフェノン類、ベンゾトリアゾール類、トリアジン類、ベンゾエート類、サリシレート類、シアノアクリレート類、蓚酸アニリド類、マロン酸エステル類、ホルムアミジン類、アクリロニトリル類などが挙げられる。これらは1種単独でまたは2種以上を組み合わせて用いることができる。
The ultraviolet absorber is a compound having an ability to absorb ultraviolet rays. The ultraviolet absorber is a compound that is said to have a function of mainly converting light energy into heat energy.
Examples of the ultraviolet absorber include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, succinic anilides, malonic esters, formamidines, acrylonitriles, and the like. These can be used alone or in combination of two or more.
 ベンゾトリアゾール類としては、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール(チバ・スペシャルティ・ケミカルズ社製;商品名TINUVIN329)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(チバ・スペシャルティ・ケミカルズ社製;商品名TINUVIN234)、2,2’-メチレンビス〔4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール〕、6,6’-ビス(2H-ベンゾトリアゾール-2-イル)-4,4’-ビス(2,4,4-トリメチルペンタン-2-イル)-2,2’-メチレンジフェノール(ADEKA社製;商品名アデカスタブLA31)などが挙げられる。 Examples of benzotriazoles include 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol (manufactured by Ciba Specialty Chemicals; trade name TINUVIN329), 2 -(2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (manufactured by Ciba Specialty Chemicals; trade name TINUVIN234), 2,2'-methylenebis [4 -(1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 6,6'-bis (2H-benzotriazol-2-yl) -4,4 '-Bis (2,4,4-trimethylpentan-2-yl) -2,2'-methylenediphenol (trade name ADEKA, manufactured by ADEKA) Tab LA31) and the like.
 トリアジン類としては、2-[4,6-ジ(2,4-キシリル)-1,3,5-トリアジン-2-イル]-5-オクチルオキシフェノール(チバ・スペシャルティ・ケミカルズ社製;商品名TINUVIN411L)、2-[4-[(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン/2-[4-[(2-ヒドロキシ-3-トリドデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン(チバ・スペシャルティ・ケミカルズ社製;商品名TINUVIN400)、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-(ヘキシルオキシ)フェノール(チバ・スペシャルティ・ケミカルズ社製;商品名TINUVIN1577)などが挙げられる。
 これら紫外線吸収剤は1種単独でまたは2種以上を組み合わせて用いることができる。
Triazines include 2- [4,6-di (2,4-xylyl) -1,3,5-triazin-2-yl] -5-octyloxyphenol (manufactured by Ciba Specialty Chemicals; trade name) TINUVIN 411L), 2- [4-[(2-hydroxy-3-dodecyloxypropyl) oxy] -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine / 2- [4- [(2-Hydroxy-3-tridodecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine (Ciba Specialty Chemicals) Product name: TINUVIN400), 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyloxy) phenol (Ciba Specialte) Chemicals, Inc .; trade name TINUVIN 1577).
These ultraviolet absorbers can be used alone or in combination of two or more.
 紫外線吸収剤の配合量は、(メタ)アクリル樹脂組成物100質量部に対して、好ましくは0.1~5質量部、より好ましくは0.5~3質量部である。紫外線吸収剤を含有させる方法としては、紫外線吸収剤を予め(メタ)アクリル樹脂組成物中に配合してペレット化しておき、これを溶融押出などによってフィルムに成形する方法、溶融押出成形時に直接、紫外線吸収剤を添加する方法などが挙げられ、いずれの方法も使用できる。 The blending amount of the ultraviolet absorber is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin composition. As a method of containing the ultraviolet absorber, the ultraviolet absorber is preliminarily blended in the (meth) acrylic resin composition and pelletized, and this is formed into a film by melt extrusion, directly at the time of melt extrusion molding, Examples include a method of adding an ultraviolet absorber, and any method can be used.
 光安定剤は、主に光による酸化で生成するラジカルを捕捉する機能を有すると言われる化合物である。好適な光安定剤としては、2,2,6,6-テトラアルキルピペリジン骨格を持つ化合物などのヒンダードアミン類が挙げられる。 The light stabilizer is a compound that is said to have a function of capturing radicals generated mainly by oxidation by light. Suitable light stabilizers include hindered amines such as compounds having a 2,2,6,6-tetraalkylpiperidine skeleton.
 離型剤は、成形品の金型からの離型を容易にする機能を有する化合物である。離型剤としては、セチルアルコール、ステアリルアルコールなどの高級アルコール類;ステアリン酸モノグリセライド、ステアリン酸ジグリセライドなどのグリセリン高級脂肪酸エステルなどが挙げられる。本発明においては、離型剤として、高級アルコール類とグリセリン脂肪酸モノエステルとを併用することが好ましい。高級アルコール類とグリセリン脂肪酸モノエステルとを併用する場合、その割合は特に制限されないが、高級アルコール類/グリセリン脂肪酸モノエステルの質量比が、好ましくは2.5/1~3.5/1、より好ましくは2.8/1~3.2/1である。 The mold release agent is a compound having a function of facilitating release of the molded product from the mold. Examples of the release agent include higher alcohols such as cetyl alcohol and stearyl alcohol; glycerin higher fatty acid esters such as stearic acid monoglyceride and stearic acid diglyceride. In the present invention, it is preferable to use a higher alcohol and a glycerin fatty acid monoester in combination as a release agent. When higher alcohols and glycerin fatty acid monoester are used in combination, the ratio is not particularly limited, but the mass ratio of higher alcohols / glycerin fatty acid monoester is preferably 2.5 / 1 to 3.5 / 1. The preferred range is 2.8 / 1 to 3.2 / 1.
 高分子加工助剤は、(メタ)アクリル樹脂組成物を成形する際、厚さ精度および薄膜化に効果を発揮する化合物である。高分子加工助剤は、通常、乳化重合法によって製造することができる、0.05~0.5μmの粒子径を有する重合体粒子である。
 該重合体粒子は、単一組成比および単一極限粘度の重合体からなる単層粒子であってもよいし、また組成比または極限粘度の異なる2種以上の重合体からなる多層粒子であってもよい。この中でも、内層に低い極限粘度を有する重合体層を有し、外層に5dl/g以上の高い極限粘度を有する重合体層を有する2層構造の粒子が好ましいものとして挙げられる。
The polymer processing aid is a compound that exhibits an effect on thickness accuracy and thinning when a (meth) acrylic resin composition is molded. The polymer processing aid is polymer particles having a particle diameter of 0.05 to 0.5 μm, which can be usually produced by an emulsion polymerization method.
The polymer particles may be single layer particles composed of polymers having a single composition ratio and single intrinsic viscosity, or multilayer particles composed of two or more kinds of polymers having different composition ratios or intrinsic viscosities. May be. Among these, particles having a two-layer structure having a polymer layer having a low intrinsic viscosity in the inner layer and a polymer layer having a high intrinsic viscosity of 5 dl / g or more in the outer layer are preferable.
 高分子加工助剤は、極限粘度が3~6dl/gであることが好ましい。極限粘度が小さすぎると成形性の改善効果が低い傾向がある。極限粘度が大きすぎると(メタ)アクリル樹脂組成物の溶融流動性の低下を招く傾向がある。 The polymer processing aid preferably has an intrinsic viscosity of 3 to 6 dl / g. If the intrinsic viscosity is too small, the effect of improving moldability tends to be low. If the intrinsic viscosity is too large, the melt fluidity of the (meth) acrylic resin composition tends to be lowered.
 本発明の(メタ)アクリル樹脂組成物には、耐衝撃性改質剤を用いてもよい。耐衝撃性改質剤としては、アクリル系ゴムもしくはジエン系ゴムをコア層成分として含むコアシェル型改質剤;ゴム粒子を複数包含した改質剤などが挙げられる。 In the (meth) acrylic resin composition of the present invention, an impact modifier may be used. Examples of the impact modifier include a core-shell type modifier containing acrylic rubber or diene rubber as a core layer component; a modifier containing a plurality of rubber particles, and the like.
 有機色素としては、樹脂に対しては有害とされている紫外線を可視光線に変換する機能を有する化合物が好ましく用いられる。
 光拡散剤や艶消し剤としては、ガラス微粒子、ポリシロキサン系架橋微粒子、架橋ポリマー微粒子、タルク、炭酸カルシウム、硫酸バリウムなどが挙げられる。
 蛍光体として、蛍光顔料、蛍光染料、蛍光白色染料、蛍光増白剤、蛍光漂白剤などが挙げられる。
As the organic dye, a compound having a function of converting ultraviolet rays that are harmful to the resin into visible light is preferably used.
Examples of the light diffusing agent and matting agent include glass fine particles, polysiloxane-based crosslinked fine particles, crosslinked polymer fine particles, talc, calcium carbonate, and barium sulfate.
Examples of the phosphor include a fluorescent pigment, a fluorescent dye, a fluorescent white dye, a fluorescent brightener, and a fluorescent bleach.
 滑剤の例として、ステアリン酸、ベヘニン酸、ステアリン酸メチル、ステアリン酸エチル、ステアリン酸モノグリセライドのようなステアリン酸エステル;ステアリン酸アミド、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム等の金属塩、エチレンビスステアロアミド等が挙げられる。滑剤の配合量は、(メタ)アクリル樹脂組成物100質量部に対して、好ましくは0.01~0.1質量部、より好ましくは0.03~0.07質量部である。 Examples of lubricants include stearic acid esters such as stearic acid, behenic acid, methyl stearate, ethyl stearate, monoglyceride stearate; metal salts such as stearamide, zinc stearate, calcium stearate, magnesium stearate, ethylene bis Examples include stearamide. The blending amount of the lubricant is preferably 0.01 to 0.1 parts by mass, more preferably 0.03 to 0.07 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin composition.
 その他、二酸化珪素等の無機充填剤、酸化鉄等の顔料離型剤、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル、パラフィン、有機ポリシロキサン、ミネラルオイル等の軟化剤・可塑剤、難燃剤、帯電防止剤、有機繊維、ガラス繊維、炭素繊維、金属ウィスカ等の補強剤、着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、酸化防止剤その他添加剤或いはこれらの混合物等を配合してもよい。
 さらに、本発明の(メタ)アクリル樹脂組成物は、ハイインパクトポリスチレン樹脂、塩化ビニル樹脂等の他の樹脂と混合して使用することができる。
Other inorganic fillers such as silicon dioxide, pigment release agents such as iron oxide, paraffinic process oil, naphthenic process oil, aromatic process oil, paraffin, organic polysiloxane, mineral oil, etc. , Flame retardants, antistatic agents, reinforcing agents such as organic fibers, glass fibers, carbon fibers, metal whiskers, colorants, fluorescent brighteners, dispersants, heat stabilizers, light stabilizers, antioxidants and other additives or You may mix | blend these etc.
Furthermore, the (meth) acrylic resin composition of the present invention can be used by mixing with other resins such as high impact polystyrene resin and vinyl chloride resin.
 これらの添加剤は、単量体混合物(a’)を重合する際の重合反応液に添加してもよいし、製造された(メタ)アクリル樹脂組成物に添加してもよい。 These additives may be added to the polymerization reaction liquid when polymerizing the monomer mixture (a ′), or may be added to the produced (meth) acrylic resin composition.
 このような本発明の(メタ)アクリル樹脂組成物を、射出成形、圧縮成形、押出成形、真空成形、キャスト成形などの従来より知られる成形方法で成形することによって各種成形品を得ることができる。特に本発明の(メタ)アクリル樹脂組成物は、低いシリンダ温度において高い射出圧力で射出成形した場合でも、残留歪みが少なく且つ着色が殆んどない薄肉且つ広面積の成形品を高い生産効率で提供することができる。 Various molded products can be obtained by molding the (meth) acrylic resin composition of the present invention by a conventionally known molding method such as injection molding, compression molding, extrusion molding, vacuum molding, cast molding, or the like. . In particular, the (meth) acrylic resin composition of the present invention can produce a molded product with a thin wall and a large area with little residual distortion and little coloration even when injection molding is performed at a low cylinder temperature and a high injection pressure with high production efficiency. Can be provided.
 本発明の(メタ)アクリル樹脂組成物は公知の成形方法によって各種成形品にすることができる。成形品としては、例えば、広告塔、スタンド看板、袖看板、欄間看板、屋上看板などの看板部品;ショーケース、仕切板、店舗ディスプレイなどのディスプレイ部品;蛍光灯カバー、ムード照明カバー、ランプシェード、光天井、光壁、シャンデリアなどの照明部品;ペンダント、ミラーなどのインテリア部品;ドア、ドーム、安全窓ガラス、間仕切り、階段腰板、バルコニー腰板、レジャー用建築物の屋根などの建築用部品;航空機風防、パイロット用バイザー、オートバイ、モーターボート風防、バス用遮光板、自動車用サイドバイザー、リアバイザー、ヘッドウィング、ヘッドライトカバーなどの輸送機関係部品;音響映像用銘板、ステレオカバー、テレビ保護マスク、自動販売機などの電子機器部品;保育器、レントゲン部品などの医療機器部品;機械カバー、計器カバー、実験装置、定規、文字盤、観察窓などの機器関係部品;液晶保護板、導光板、導光フィルム、フレネルレンズ、レンチキュラーレンズ、各種ディスプレイの前面板、拡散板、偏光子保護フィルム、偏光板保護フィルム、位相差フィルムなどの光学関係部品;道路標識、案内板、カーブミラー、防音壁などの交通関係部品;自動車内装用表面材、携帯電話の表面材、マーキングフィルムなどのフィルム部材;洗濯機の天蓋材やコントロールパネル、炊飯ジャーの天面パネルなどの家電製品用部材;その他、温室、大型水槽、箱水槽、時計パネル、バスタブ、サニタリー、デスクマット、遊技部品、玩具、熔接時の顔面保護用マスクなどが挙げられる。これらのうち、本発明の(メタ)アクリル樹脂組成物は光学部材に好適であり、光学部材のなかでも、フィルム、特に偏光板用の保護フィルムに好適である。 The (meth) acrylic resin composition of the present invention can be formed into various molded products by a known molding method. Molded products include, for example, billboard parts such as advertising towers, stand signs, sleeve signs, bamboard signs, and rooftop signs; display parts such as showcases, dividers, and store displays; fluorescent lamp covers, mood lighting covers, lamp shades, Lighting parts such as optical ceilings, light walls, chandeliers; interior parts such as pendants and mirrors; building parts such as doors, domes, safety window glass, partitions, staircases, balconies, roofs of leisure buildings; aircraft windshields , Pilot visor, motorcycle, motor boat windshield, bus shading plate, automotive side visor, rear visor, head wing, headlight cover and other transportation equipment related parts; audio visual nameplate, stereo cover, TV protection mask, vending machine Electronic equipment parts such as incubators, X-ray parts, etc. Medical equipment parts; machine-related parts such as machine covers, instrument covers, experimental devices, rulers, dials, observation windows; LCD protective plates, light guide plates, light guide films, Fresnel lenses, lenticular lenses, front plates of various displays, diffusion Optical components such as plates, polarizer protective films, polarizing plate protective films, retardation films, etc .; traffic-related components such as road signs, guide plates, curve mirrors, and sound barriers; surface materials for automobile interiors, surface materials for mobile phones, Film members such as marking films; canopy materials for washing machines, control panels, top panels for rice cookers, etc .; greenhouses, large aquariums, box aquariums, clock panels, bathtubs, sanitary, desk mats, games Examples include parts, toys, and masks for face protection during welding. Among these, the (meth) acrylic resin composition of the present invention is suitable for an optical member, and among the optical members, it is suitable for a film, particularly a protective film for a polarizing plate.
[光学部材、フィルム]
 本発明の一実施形態の光学部材またはフィルムは、(メタ)アクリル樹脂組成物を含有してなるものである。光学部材またはフィルムは、公知の成形法、例えば、押出成形法、射出成形法などによって得ることができる。具体的には、単軸押出機、二軸押出機、バンバリーミキサー、ブラベンダー、各種ニーダー等の溶融混練機を用いて(メタ)アクリル樹脂組成物を溶融混練し、次いでTダイ、円形ダイ等の型が装着された押出成形機等を用いて成形することによってフィルムなどを得ることができる。また、本発明のフィルムは、ブロー成形、インジェクションブロー成形、インフレーション成形、発泡成形、キャスト成形等で得ることもでき、さらに圧空成形、真空成形等の二次加工成形法を用いることもできる。得られたフィルムは用途に応じて延伸処理したり、表面処理したりすることができる。
[Optical members, films]
The optical member or film of one embodiment of the present invention contains a (meth) acrylic resin composition. The optical member or film can be obtained by a known molding method such as an extrusion molding method or an injection molding method. Specifically, a (meth) acrylic resin composition is melt kneaded using a melt kneader such as a single screw extruder, a twin screw extruder, a Banbury mixer, a brabender, various kneaders, and then a T die, a circular die, etc. A film or the like can be obtained by molding using an extrusion molding machine or the like equipped with a mold. In addition, the film of the present invention can be obtained by blow molding, injection blow molding, inflation molding, foam molding, cast molding, and the like, and further, secondary processing molding methods such as pressure molding and vacuum molding can be used. The obtained film can be stretched or surface-treated depending on the application.
 本発明の一実施形態のフィルムは、23℃環境下のヘイズ値が、好ましくは2%以下、より好ましくは1.2%以下、さらに好ましくは1.0%以下である。23℃環境下のヘイズ値が小さいとフィルムに高度な透明性が付与され光学用に好適である。
 本発明の一実施形態のフィルムは、23℃環境下の光弾性係数の絶対値が、好ましくは8.0×10-12Pa-1以下、より好ましくは6.0×10-12Pa-1以下、さらに好ましくは5.0×10-12Pa-1以下である。光弾性係数が上記範囲内であると、応力による複屈折の変化が少ないため、液晶表示装置等に使用した場合にコントラストや画面の均一性に優れる傾向がある。
The film of one embodiment of the present invention has a haze value in a 23 ° C. environment of preferably 2% or less, more preferably 1.2% or less, and further preferably 1.0% or less. When the haze value in a 23 ° C. environment is small, the film is highly transparent and suitable for optics.
The film according to an embodiment of the present invention has an absolute value of a photoelastic coefficient under a 23 ° C. environment of preferably 8.0 × 10 −12 Pa −1 or less, more preferably 6.0 × 10 −12 Pa −1. Hereinafter, it is more preferably 5.0 × 10 −12 Pa −1 or less. When the photoelastic coefficient is within the above range, the change in birefringence due to stress is small, and therefore, when used in a liquid crystal display device or the like, there is a tendency that contrast and screen uniformity are excellent.
 なお、「光弾性係数」とは、外力による複屈折の変化の生じやすさを表す係数CR[Pa-1]であり、下式により定義される。
  CR=Δn/σR
 ここで、σRは伸張応力[Pa]、Δnは応力付加時の複屈折であり、Δnは下式により定義される。
  Δn=n1-n2
(式中、n1は伸張方向と平行な方向の屈折率、n2は伸張方向と垂直な方向の屈折率である。)
Note that the “photoelastic coefficient” is a coefficient C R [Pa −1 ] representing the ease with which birefringence changes due to external force, and is defined by the following equation.
C R = Δn / σ R
Here, σ R is extensional stress [Pa], Δn is birefringence when stress is applied, and Δn is defined by the following equation.
Δn = n 1 −n 2
(Where n 1 is the refractive index in the direction parallel to the stretching direction, and n 2 is the refractive index in the direction perpendicular to the stretching direction.)
 本発明の一実施形態の光学フィルムは、厚さが、好ましくは100μm以下、より好ましくは10μm以上90μm以下、さらに好ましくは20μm以上80μm以下、特に好ましくは30μm以上60μm以下である。特に、液晶ディスプレイ周辺に用いられる光学フィルムとする場合には、耐折強度の観点から100μm以下の厚さであることが好ましい。 The optical film of one embodiment of the present invention has a thickness of preferably 100 μm or less, more preferably 10 μm or more and 90 μm or less, further preferably 20 μm or more and 80 μm or less, and particularly preferably 30 μm or more and 60 μm or less. In particular, when an optical film used around a liquid crystal display is used, the thickness is preferably 100 μm or less from the viewpoint of bending strength.
 本発明の一実施形態の光学フィルムは、面内方向レターデーション(Re)と厚さ方向レターデーション(Rth)およびNz係数の値によって特に制限されない。面内方向レターデーション(Re)と厚さ方向レターデーション(Rth)およびNz係数は、(メタ)アクリル樹脂組成物を構成する材料の組成比、フィルムの厚さ、延伸温度、延伸倍率、延伸速度などを適宜設定することにより制御することができる。
 ここで、面内方向レターデーション(Re)と厚さ方向レターデーション(Rth)およびNz係数は下式により定義される。
   Re =(nx-ny)×d
   Rth=((nx+ny)/2)-nz)×d
   Nz =(nx-nz)/|(nx-ny)|
(式中、nx:フィルム面内において屈折率が最大となる方向をxとした場合のx方向の屈折率、ny:フィルム面内においてx方向に垂直な方向をyとした場合のy方向の屈折率、nz:フィルム厚さ方向の屈折率、d:フィルムの厚さ(nm)である。)
The optical film of one embodiment of the present invention is not particularly limited by the values of the in-plane direction retardation (Re), the thickness direction retardation (Rth), and the Nz coefficient. In-plane direction retardation (Re), thickness direction retardation (Rth) and Nz coefficient are the composition ratio of the material constituting the (meth) acrylic resin composition, film thickness, stretching temperature, stretching ratio, stretching speed. These can be controlled by appropriately setting the above.
Here, the in-plane direction retardation (Re), the thickness direction retardation (Rth), and the Nz coefficient are defined by the following equations.
Re = (n x -n y) × d
Rth = ((n x + n y ) / 2) −n z ) × d
Nz = (n x −n z ) / | (n x −n y ) |
(Wherein, n x: x-direction of the refractive index in the case where the direction in which the refractive index in the film plane is maximized and the x, n y: y when a direction perpendicular to the x direction in the film plane is y Refractive index in the direction, nz : refractive index in the film thickness direction, d: film thickness (nm).)
 本発明の一実施形態のフィルムを偏光板用保護フィルムとして用いる場合は、厚さ方向レターデーション(Rth)の絶対値は、20nm以下であることが好ましく、15nm以下であることがより好ましく、5nm以下であることがさらに好ましい。Rthの絶対値が20nmを超えると、レターデーションの入射角度による変位が大きくなり、液晶表示装置においてコントラスト低下などの問題を生じる場合がある。 When the film of one embodiment of the present invention is used as a protective film for a polarizing plate, the absolute value of the thickness direction retardation (Rth) is preferably 20 nm or less, more preferably 15 nm or less, and 5 nm. More preferably, it is as follows. When the absolute value of Rth exceeds 20 nm, the displacement due to the incident angle of retardation becomes large, which may cause problems such as a decrease in contrast in the liquid crystal display device.
 本発明の一実施形態のフィルムには、例えば、防眩処理、反射防止処理、透明導電処理、電磁波遮蔽処理、ガスバリア処理、ハードコート処理、帯電防止処理、防汚処理等の表面機能化処理を適宜施してもよい。
 本発明の一実施形態のフィルムを偏光板用保護フィルムとして用いる場合は、帯電防止機能を表面処理によって付与することができる。また、光学フィルムに必要に応じて組み込まれる粘着剤層などの他の部材に帯電防止機能を付与してもよい。
The film of one embodiment of the present invention is subjected to surface functionalization treatment such as antiglare treatment, antireflection treatment, transparent conductive treatment, electromagnetic wave shielding treatment, gas barrier treatment, hard coat treatment, antistatic treatment, and antifouling treatment. You may give suitably.
When using the film of one Embodiment of this invention as a protective film for polarizing plates, an antistatic function can be provided by surface treatment. Moreover, you may provide an antistatic function to other members, such as an adhesive layer incorporated in an optical film as needed.
 フィルムに防眩処理を行うと、視認性向上、外光の映り込み防止、光干渉によるモアレの低減などの効果を奏する。防眩処理によってフィルム表面に微細な凹凸形状を有する層、すなわち、防眩層が形成される。防眩層の形成にはハードコート材料を用いることが好ましい。防眩層の厚さは特に限定されないが、好ましくは2μm以上30μm以下、より好ましくは3μm以上20μm以下である。防眩層の厚さが薄すぎると、十分な硬度が得られず、表面が傷付きやすくなる傾向がある。また、防眩層の厚さが厚すぎると、割れやすくなったり、防眩層の硬化収縮によりフィルムがカールして生産性が低下したりする傾向がある。 When anti-glare treatment is applied to the film, the effects of improving visibility, preventing reflection of external light, and reducing moire due to light interference are exhibited. By the antiglare treatment, a layer having a fine uneven shape on the film surface, that is, an antiglare layer is formed. A hard coat material is preferably used for forming the antiglare layer. The thickness of the antiglare layer is not particularly limited, but is preferably 2 μm or more and 30 μm or less, more preferably 3 μm or more and 20 μm or less. If the thickness of the antiglare layer is too thin, sufficient hardness cannot be obtained, and the surface tends to be easily damaged. On the other hand, if the antiglare layer is too thick, the film tends to break or the film curls due to cure shrinkage of the antiglare layer, and the productivity tends to decrease.
 反射防止処理は、フィルム表面にフィルムの屈折率よりも低い屈折率の層を設けることによって、または高屈折率の層と低屈折率の層とを積層させることによって行われる。低屈折率層や高屈折率層は、塗工によって、または物理的または化学的蒸着によって形成することができる。 The antireflection treatment is performed by providing a layer having a refractive index lower than the refractive index of the film on the film surface or by laminating a high refractive index layer and a low refractive index layer. The low refractive index layer and the high refractive index layer can be formed by coating or physical or chemical vapor deposition.
[偏光板]
 本発明に係る偏光板は、偏光フィルムと、それの少なくとも一方の面に貼り合せられた本発明に係るフィルムとを有するものである。
 本発明に用いられる偏光フィルムは、特に制限されない。偏光フィルムは、例えば、ポリビニルアルコールにヨウ素や染料などを添加し、それを成形してフィルムにし、該フィルムを延伸して分子配向させることによって得ることができる。
 偏光フィルムに貼り合わせられるフィルムが表面に反射防止層や防眩層などの機能層を有する場合には、機能層などが偏光フィルムから離れた側の面になるように当該フィルムを貼り合わせるのが好ましい。
 偏光板に求められる特性などに応じて、偏光フィルムの両面に本発明のフィルムを貼り合わせてもよいし、偏光フィルムの一方の面に本発明のフィルムを貼り合わせ且つ偏光フィルムの他方の面に他の樹脂からなるフィルムを貼り合わせてもよい。
[Polarizer]
The polarizing plate according to the present invention has a polarizing film and a film according to the present invention bonded to at least one surface thereof.
The polarizing film used in the present invention is not particularly limited. The polarizing film can be obtained, for example, by adding iodine, dye, or the like to polyvinyl alcohol, forming the film into a film, stretching the film, and molecularly orienting the film.
If the film to be bonded to the polarizing film has a functional layer such as an antireflection layer or an antiglare layer on the surface, the film should be bonded so that the functional layer is on the surface away from the polarizing film. preferable.
Depending on the characteristics required for the polarizing plate, the film of the present invention may be bonded to both surfaces of the polarizing film, the film of the present invention is bonded to one surface of the polarizing film, and the other surface of the polarizing film is bonded. A film made of another resin may be bonded.
 偏光フィルムと本発明のフィルムとの貼合方法は、特に制限されない。例えば、エポキシ系樹脂、ウレタン系樹脂、シアノアクリレート系樹脂、アクリルアミド系樹脂などを含有する接着剤を用いて貼り合わせることができる。 The method for laminating the polarizing film and the film of the present invention is not particularly limited. For example, bonding can be performed using an adhesive containing an epoxy resin, a urethane resin, a cyanoacrylate resin, an acrylamide resin, or the like.
 偏光フィルムと本発明のフィルムとを貼り合せる前に、当該貼り合わせ面の一方または両方をコロナ放電処理などしてもよい。コロナ放電処理を施すことにより、本発明のフィルムと偏光フィルムとの間の接着力を高めることができる。コロナ放電処理とは、電極間に高電圧をかけて放電し、電極間に配置された樹脂フィルムを活性化する処理である。コロナ放電処理の効果は、電極の種類、電極間隔、電圧、湿度、使用する樹脂フィルムの種類などによっても異なるが、例えば、電極間隔を1~5mm、移動速度を3~20m/分程度に設定するのが好ましい。次いで、コロナ放電処理面に上記のような接着剤を塗布して両フィルムを貼り合わせる。 Prior to bonding the polarizing film and the film of the present invention, one or both of the bonded surfaces may be subjected to corona discharge treatment or the like. By performing the corona discharge treatment, the adhesive force between the film of the present invention and the polarizing film can be increased. The corona discharge treatment is a treatment for activating the resin film disposed between the electrodes by discharging by applying a high voltage between the electrodes. The effect of corona discharge treatment varies depending on the type of electrode, electrode spacing, voltage, humidity, type of resin film used, etc. For example, the electrode spacing is set to 1 to 5 mm and the moving speed is set to about 3 to 20 m / min. It is preferable to do this. Next, the adhesive as described above is applied to the corona discharge treated surface, and both films are bonded together.
 以下に実施例を示して本発明をより具体的に説明する。なお、本発明は以下の実施例によって制限されるものではない。また、本発明は、以上までに述べた、特性値、形態、製法、用途などの技術的特徴を表す事項を、任意に組み合わせて成るすべての態様を包含している。
 実施例における物性値の測定等は以下の方法によって実施した。
The present invention will be described more specifically with reference to the following examples. In addition, this invention is not restrict | limited by a following example. In addition, the present invention includes all aspects that are obtained by arbitrarily combining the above-described items representing technical characteristics such as characteristic values, forms, manufacturing methods, and uses.
The measurement of the physical property values in the examples was carried out by the following method.
<水分測定>
 京都電子工業株式会社製カールフィッシャー(KMA-210)を使用して水分測定を行った。
<Moisture measurement>
Moisture measurement was performed using a Karl Fischer (KMA-210) manufactured by Kyoto Electronics Industry Co., Ltd.
<重合転化率>
 島津製作所社製ガスクロマトグラフ GC-14Aに、カラムとしてGL Sciences Inc.製 INERT CAP 1(df=0.4μm、0.25mmI.D.×60m)を繋ぎ、injection温度を180℃に、detector温度を180℃に、カラム温度を60℃(5分間保持)→昇温速度10℃/分→200℃(10分間保持)に設定して、分析を行い、それに基づいて算出した。
<Polymerization conversion>
Shimadzu Gas Chromatograph GC-14A is connected to GL Sciences Inc. INERT CAP 1 (df = 0.4 μm, 0.25 mm ID × 60 m) as a column, the injection temperature is set to 180 ° C., and the detector temperature is set. The column temperature was set to 180 ° C., 60 ° C. (holding for 5 minutes) → temperature increase rate 10 ° C./min→200° C. (holding for 10 minutes).
<荷重撓み温度の測定>
 JIS-K7191に準じて測定した。
<Measurement of load deflection temperature>
Measurement was performed according to JIS-K7191.
<フィルム外観>
 樹脂組成物をOptical Control System社製ブツカウンター(型式FS-5)にて、シリンダおよびTダイ温度260℃、リップ間隙0.5mmで押出し、フィルム厚さ75μmに調整し、欠点を検出した。検出された透明な欠点の内、四酸化オスミウムで染色されない欠点を未溶融ブツとした。相対的な欠点数を以下の基準で評価した。
 ○:未溶融ブツ数が例1(表2)または例12(表3)の未溶融ブツ数の50個%未満
 △:未溶融ブツ数が例1(表2)または例12(表3)の未溶融ブツ数の50個%以上100個%未満
 ×:未溶融ブツ数が例1(表2)または例12(表3)の未溶融ブツ数の100個%以上
<Film appearance>
The resin composition was extruded with an optical control system company counter (model FS-5) at a cylinder and T-die temperature of 260 ° C. and a lip gap of 0.5 mm, adjusted to a film thickness of 75 μm, and defects were detected. Among the detected transparent defects, the defects that were not stained with osmium tetroxide were regarded as unmelted. The relative number of defects was evaluated according to the following criteria.
◯: Number of unmelted bumps is less than 50% of the number of unmelted bumps of Example 1 (Table 2) or Example 12 (Table 3) Δ: Number of unmelted bumps is Example 1 (Table 2) or Example 12 (Table 3) 50% or more and less than 100% of the number of unmelted butts x: 100% or more of the number of unmelted butts of Example 1 (Table 2) or Example 12 (Table 3)
<フィルム膜厚の測定>
 各フィルムの中央部の厚さをマイクロメーター(ミツトヨ株式会社製)を用いて測定した。
<Measurement of film thickness>
The thickness of the central part of each film was measured using a micrometer (manufactured by Mitutoyo Corporation).
<ヘイズの測定>
 JIS-K7136に準じて測定した。ヘイズは成形直後のフィルムと、温度85℃、相対湿度85%の環境に100時間放置した後のフィルムとについて測定した。
<Measurement of haze>
Measurement was performed according to JIS-K7136. Haze was measured for a film immediately after molding and a film after being left in an environment of a temperature of 85 ° C. and a relative humidity of 85% for 100 hours.
<トラウザー引き裂き試験>
 JIS-K7128に準じて測定した。
<Trouser tear test>
The measurement was performed according to JIS-K7128.
《合成例1》 ブロック共重合体(B-1)の製造
(1)攪拌機付1.5リットルのオートクレーブ容器に、トルエン640mlおよび1,2-ジメトキシエタン0.009mlを投入し、20分間窒素パージを行った。そこに濃度1.3mol/lのsec-ブチルリチウムのシクロヘキサン溶液2.86mlを加え、次いで1,3-ブタジエン72.6mlを加えて、30℃で1.5時間反応させ、1,3-ブタジエン重合体を含む反応混合物を得た。得られた反応混合物の一部をサンプリング分析した結果、該反応混合物中の1,3-ブタジエン重合体は、数平均分子量(Mn)が24,000、分子量分布(Mw/Mn)が1.06、側鎖ビニル結合量が30mol%であった。
Synthesis Example 1 Production of Block Copolymer (B-1) (1) 640 ml of toluene and 0.009 ml of 1,2-dimethoxyethane were put into a 1.5 liter autoclave vessel equipped with a stirrer and purged with nitrogen for 20 minutes. Went. Thereto was added 2.86 ml of a cyclohexane solution of 1.3 mol / l sec-butyllithium, then 72.6 ml of 1,3-butadiene, and reacted at 30 ° C. for 1.5 hours. A reaction mixture containing a polymer was obtained. As a result of sampling analysis of a part of the obtained reaction mixture, the 1,3-butadiene polymer in the reaction mixture has a number average molecular weight (Mn) of 24,000 and a molecular weight distribution (Mw / Mn) of 1.06. The amount of side chain vinyl bonds was 30 mol%.
(2)上記(1)で得られた反応混合物を-30℃に冷却し、0.45mol/lのイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムを含有するトルエン溶液27.5mlおよび1,2-ジメトキシエタン6.5mlを添加し、10分間撹拌して均一な溶液とした。 (2) The reaction mixture obtained in (1) above is cooled to −30 ° C., and toluene containing 0.45 mol / l isobutylbis (2,6-di-t-butyl-4-methylphenoxy) aluminum 27.5 ml of the solution and 6.5 ml of 1,2-dimethoxyethane were added and stirred for 10 minutes to obtain a homogeneous solution.
(3)次いで、上記(2)で得られた溶液を激しく撹拌しながら、アクリル酸n-ブチル60.0mlを添加し、-30℃で1時間重合させた。得られた反応混合物の一部をサンプリングし、GPC(ポリスチレン換算)により分子量を分析した結果、反応混合物中のブタジエン-アクリル酸n-ブチルジブロック共重合体(腕重合体ブロック)は数平均分子量が41,000であり、その重量平均分子量/数平均分子量の比(Mw/Mn)が1.02であった。 (3) Next, while vigorously stirring the solution obtained in the above (2), 60.0 ml of n-butyl acrylate was added and polymerized at −30 ° C. for 1 hour. A part of the obtained reaction mixture was sampled and analyzed for molecular weight by GPC (polystyrene conversion). As a result, the butadiene-n-butyl diblock copolymer (arm polymer block) in the reaction mixture had a number average molecular weight. The weight average molecular weight / number average molecular weight ratio (Mw / Mn) was 1.02.
(4)上記(3)で得られた反応混合物を-30℃で保持し、激しく攪拌したまま、1,6-ヘキサンジオールジアクリレート3.2mlを加え0.5時間重合した。次いでメタノール約1mlを添加して重合を停止させた。 (4) The reaction mixture obtained in the above (3) was kept at −30 ° C., and with vigorous stirring, 3.2 ml of 1,6-hexanediol diacrylate was added and polymerized for 0.5 hour. Then about 1 ml of methanol was added to stop the polymerization.
(5)上記(4)で得られた反応混合物の一部を抜き取り、メタノールで沈殿させた。得られた星型ブロック共重合体(B-1)は、1,3-ブタジエン単位からなる重合体ブロック(b)46質量%と、アクリル酸n-ブチル単位からなる重合体ブロック(a)54質量%とからなるジブロック共重合体を腕重合体ブロックとして含み、数平均分子量(Mn)が210,000(腕数=5.1)で且つMw/Mnが1.16である星型ブロック共重合体を56質量%(GPCの面積比より算出される割合)含むものであった。表1に星型ブロック共重合体(B-1)の特性を示した。なお、表中のBAはアクリル酸n-ブチル、BDは1,3-ブタジエンを意味する。 (5) A part of the reaction mixture obtained in the above (4) was extracted and precipitated with methanol. The obtained star-shaped block copolymer (B-1) comprises a polymer block (b) comprising 1,3-butadiene units (46) by mass and a polymer block (a) 54 comprising n-butyl acrylate units. A star-shaped block comprising a diblock copolymer consisting of mass% as an arm polymer block, having a number average molecular weight (Mn) of 210,000 (number of arms = 5.1) and Mw / Mn of 1.16 The copolymer contained 56% by mass (a ratio calculated from the area ratio of GPC). Table 1 shows the characteristics of the star block copolymer (B-1). In the table, BA means n-butyl acrylate, and BD means 1,3-butadiene.
(6)上記(4)で得られた反応混合物に水1000gを加え、振とうすることにより反応混合物中に含まれる不純物を水で抽出した。振とう後、静置し、ブロック共重合体(B-1)のトルエン溶液と水相とに分離し、水相を除去した。この操作を4回繰り返した。 (6) To the reaction mixture obtained in (4) above, 1000 g of water was added and shaken to extract impurities contained in the reaction mixture with water. After shaking, the mixture was allowed to stand and separated into a toluene solution of the block copolymer (B-1) and an aqueous phase, and the aqueous phase was removed. This operation was repeated 4 times.
(7)前記抽出により不純物が除去されたブロック共重合体(B-1)のトルエン溶液を、80℃に加熱し、減圧下でトルエンの一部を留去し、トルエン溶液中のブロック共重合体の濃度が30質量%となる様に調整し、ブロック共重合体(B-1)のトルエン溶液を得た。 (7) A toluene solution of the block copolymer (B-1) from which impurities have been removed by the extraction is heated to 80 ° C., and a portion of the toluene is distilled off under reduced pressure. The toluene concentration of the block copolymer (B-1) was obtained by adjusting the coalescence concentration to 30% by mass.
《合成例2》ブロック共重合体(B-2)の製造
 1,6-ヘキサンジオールジアクリレートを加えなかったこと以外は合成例1と同じ手法でブロック共重合体(B-2)を製造した。1,3-ブタジエン重合体は、数平均分子量(Mn)が24,000、分子量分布(Mw/Mn)が1.06、側鎖ビニル結合量が30mol%であった。また、ブタジエン-アクリル酸n-ブチルジブロック共重合体は数平均分子量が41,000、重量平均分子量/数平均分子量の比(Mw/Mn)が1.02であった。
<< Synthesis Example 2 >> Production of Block Copolymer (B-2) A block copolymer (B-2) was produced in the same manner as in Synthesis Example 1, except that 1,6-hexanediol diacrylate was not added. . The 1,3-butadiene polymer had a number average molecular weight (Mn) of 24,000, a molecular weight distribution (Mw / Mn) of 1.06, and a side chain vinyl bond content of 30 mol%. The butadiene-n-butyl acrylate diblock copolymer had a number average molecular weight of 41,000 and a weight average molecular weight / number average molecular weight ratio (Mw / Mn) of 1.02.
《合成例3》ブロック共重合体(B-3)の製造
 1,3-ブタジエンの量を71.1ml、アクリル酸n-ブチルの量を61.1mlにそれぞれ変更した以外は合成例1と同じ手法で星型ブロック共重合体(B-3)を製造した。得られた星型ブロック共重合体(B-3)は、1,3-ブタジエン単位からなる重合体ブロック(b)45質量%と、アクリル酸n-ブチル単位からなる重合体ブロック(a)55質量%とからなるジブロック共重合体を腕重合体ブロックとして含み、数平均分子量(Mn)が210,000(腕数=5.1)、Mw/Mnが1.16である星型ブロック共重合体を56質量%(GPCの面積比より算出される割合)含むものであった。
 なお、製造途中に生成する1,3-ブタジエン重合体は、数平均分子量(Mn)が23,000、分子量分布(Mw/Mn)が1.06、側鎖ビニル結合量が30mol%であった。また、製造途中に生成するブタジエン-アクリル酸n-ブチルジブロック共重合体は数平均分子量が41,000であり、その重量平均分子量/数平均分子量の比(Mw/Mn)が1.02であった。
Synthesis Example 3 Production of Block Copolymer (B-3) Same as Synthesis Example 1 except that the amount of 1,3-butadiene was changed to 71.1 ml and the amount of n-butyl acrylate was changed to 61.1 ml. A star block copolymer (B-3) was produced by this method. The obtained star-shaped block copolymer (B-3) comprises 45% by mass of a polymer block (b) composed of 1,3-butadiene units and a polymer block (a) 55 composed of n-butyl acrylate units. A star block copolymer comprising a diblock copolymer consisting of mass% as an arm polymer block, having a number average molecular weight (Mn) of 210,000 (number of arms = 5.1) and Mw / Mn of 1.16. It contained 56% by mass of the polymer (a ratio calculated from the area ratio of GPC).
The 1,3-butadiene polymer produced during the production had a number average molecular weight (Mn) of 23,000, a molecular weight distribution (Mw / Mn) of 1.06, and a side chain vinyl bond content of 30 mol%. . The butadiene-n-butyl acrylate diblock copolymer produced during the production has a number average molecular weight of 41,000, and the weight average molecular weight / number average molecular weight ratio (Mw / Mn) is 1.02. there were.
《合成例4》ブロック共重合体(B-4)の製造
 1,6-ヘキサンジオールジアクリレートを加えなかったこと以外は合成例3と同じ手法でブロック共重合体(B-4)を製造した。1,3-ブタジエン重合体は、数平均分子量(Mn)が23,000、分子量分布(Mw/Mn)が1.06、側鎖ビニル結合量が30mol%であった。また、ブタジエン-アクリル酸n-ブチルジブロック共重合体は数平均分子量が41,000であり、その重量平均分子量/数平均分子量の比(Mw/Mn)が1.02であった。
 ブロック共重合体(B-1)、(B-2)、(B-3)および(B-4)の諸特性を表1に示す。
<< Synthesis Example 4 >> Production of Block Copolymer (B-4) A block copolymer (B-4) was produced in the same manner as in Synthesis Example 3, except that 1,6-hexanediol diacrylate was not added. . The 1,3-butadiene polymer had a number average molecular weight (Mn) of 23,000, a molecular weight distribution (Mw / Mn) of 1.06, and a side chain vinyl bond content of 30 mol%. The butadiene-n-butyl acrylate diblock copolymer had a number average molecular weight of 41,000 and a weight average molecular weight / number average molecular weight ratio (Mw / Mn) of 1.02.
Table 1 shows properties of the block copolymers (B-1), (B-2), (B-3) and (B-4).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (例1)
 攪拌機および採取管付オートクレーブに、メタクリル酸メチル60質量部、星型ブロック共重合体(B-1)の30質量%トルエン溶液33質量部、およびトルエン7質量部を仕込み攪拌混合した。その後、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン0.03質量部、およびn-ドデシルメルカプタン0.2質量部を加え、均一に溶解させて重合反応液を得た。窒素により反応系内の酸素を追い出した。この重合反応液の一部を採取し、カールフィッシャーよって測定した水分は1200ppmであった。
 重合反応液を115℃に加温し2.5時間溶液重合させた。採取管より反応液を分取した。ガスクロマトグラフィーによる測定で該反応液は重合転化率が60質量%であった。
(Example 1)
In an autoclave equipped with a stirrer and a sampling tube, 60 parts by mass of methyl methacrylate, 33 parts by mass of a 30% by mass toluene solution of the star block copolymer (B-1), and 7 parts by mass of toluene were charged and mixed. Thereafter, 0.03 part by mass of 1,1-bis (t-butylperoxy) cyclohexane and 0.2 part by mass of n-dodecyl mercaptan were added and dissolved uniformly to obtain a polymerization reaction solution. Nitrogen expelled oxygen in the reaction system. A portion of this polymerization reaction solution was collected, and the water content measured by Karl Fischer was 1200 ppm.
The polymerization reaction liquid was heated to 115 ° C. and solution polymerization was performed for 2.5 hours. The reaction solution was collected from the collection tube. The reaction solution had a polymerization conversion of 60% by mass as measured by gas chromatography.
 次いで、反応液に1,1-ビス(t-ブチルパーオキシ)シクロヘキサン0.08質量部を加え、120℃で2時間溶液重合させて反応液(d-1)を得た。反応液(d-1)のガスクロマトグラフィー測定による重合転化率は95質量%であった。反応液(d-1)を真空乾燥して未反応単量体およびトルエンを除去し、(メタ)アクリル樹脂組成物(e-1)を得た。 Next, 0.08 part by mass of 1,1-bis (t-butylperoxy) cyclohexane was added to the reaction solution, and solution polymerization was performed at 120 ° C. for 2 hours to obtain a reaction solution (d-1). The polymerization conversion rate of the reaction liquid (d-1) measured by gas chromatography was 95% by mass. The reaction solution (d-1) was vacuum-dried to remove unreacted monomers and toluene to obtain a (meth) acrylic resin composition (e-1).
 乾燥させた(メタ)アクリル樹脂組成物をラボプラストミルにより混錬し、熱プレスにて厚さ4mmの平板を得た。該平板から所定の試験片を切り出して荷重撓み温度を測定した。評価結果を表2に示す。 The dried (meth) acrylic resin composition was kneaded with a lab plast mill, and a flat plate having a thickness of 4 mm was obtained by hot pressing. A predetermined test piece was cut out from the flat plate, and the load deflection temperature was measured. The evaluation results are shown in Table 2.
 乾燥させた(メタ)アクリル樹脂組成物を株式会社テクノベル社製2軸押出機KZW20TW-45MG-NH-600を用いてペレット化し、フィルム成形を行った。評価結果を表2に示す。 The dried (meth) acrylic resin composition was pelletized using a twin-screw extruder KZW20TW-45MG-NH-600 manufactured by Technobel Co., Ltd., and film formation was performed. The evaluation results are shown in Table 2.
 (例2)
 重合反応液に吸着剤(水澤化学工業社製:ミズカシーブス)を加え水分を吸着させ、その後、2μmフィルターで吸着剤を取り除いた以外は例1と同じ操作で(メタ)アクリル樹脂組成物を得た。重合反応液のカールフィッシャー測定による水分量は250ppmであった。得られた(メタ)アクリル樹脂組成物を用いた以外は例1と同じ方法でフィルム成形を行った。評価結果を表2に示す。
(Example 2)
An (meth) acrylic resin composition was obtained in the same manner as in Example 1 except that an adsorbent (Mizusawa Chemical Industry Co., Ltd .: Mizuka Sieves) was added to the polymerization reaction solution to adsorb moisture, and then the adsorbent was removed with a 2 μm filter. . The water content of the polymerization reaction solution as measured by Karl Fischer was 250 ppm. Film forming was performed in the same manner as in Example 1 except that the obtained (meth) acrylic resin composition was used. The evaluation results are shown in Table 2.
 (例3)
 攪拌機および採取管付オートクレーブに、メタクリル酸メチル66.7質量部、星型ブロック共重合体(B-1)の30質量%トルエン溶液11.1質量部、およびトルエン22.2質量部を仕込み攪拌混合した。その後、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン0.03質量部、およびn-ドデシルメルカプタン0.2質量部を加え、均一に溶解させた。窒素により反応系内の酸素を除去した。この重合反応液の一部を採取し、カールフィッシャーよって測定した水分は500ppmであった。重合反応液を115℃に加温して2.5時間溶液重合させた。採取管より反応液を分取した。ガスクロマトグラフィーによる測定で該反応液は重合転化率が60質量%であった。得られた(メタ)アクリル樹脂組成物を用いた以外は例1と同じ方法でフィルム成形を行った。
(Example 3)
An autoclave equipped with a stirrer and a sampling tube was charged with 66.7 parts by weight of methyl methacrylate, 11.1 parts by weight of a 30% by weight toluene solution of the star block copolymer (B-1), and 22.2 parts by weight of toluene. Mixed. Thereafter, 0.03 part by mass of 1,1-bis (t-butylperoxy) cyclohexane and 0.2 part by mass of n-dodecyl mercaptan were added and dissolved uniformly. Oxygen in the reaction system was removed with nitrogen. A portion of this polymerization reaction solution was collected, and the water content measured by Karl Fischer was 500 ppm. The polymerization reaction solution was heated to 115 ° C. and subjected to solution polymerization for 2.5 hours. The reaction solution was collected from the collection tube. The reaction solution had a polymerization conversion of 60% by mass as measured by gas chromatography. Film forming was performed in the same manner as in Example 1 except that the obtained (meth) acrylic resin composition was used.
 (例4)
 ブロック共重合体(B-1)をブロック共重合体(B-2)に変更した以外は、例3と同様にして評価を行った。
(Example 4)
Evaluation was performed in the same manner as in Example 3 except that the block copolymer (B-1) was changed to the block copolymer (B-2).
 (例5)
 攪拌機および採取管付オートクレーブに、メタクリル酸メチル42.9質量部、星型ブロック共重合体(B-1)27.1質量部、およびトルエン30質量部を仕込み、60℃で攪拌混合し、均一な溶液とした。その後、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン0.03質量部、およびn-ドデシルメルカプタン0.2質量部を加え、均一に溶解させた。窒素により反応系内の酸素を除去した。この重合反応液の一部を採取し、カールフィッシャーよって測定した水分は300ppmであった。重合反応液を115℃に加温して2.5時間溶液重合させた。採取管より反応液を分取した。ガスクロマトグラフィーによる測定で該反応液は重合転化率が60質量%であった。その後は例1と同様の操作を実施した。
(Example 5)
An autoclave equipped with a stirrer and a sampling tube was charged with 42.9 parts by mass of methyl methacrylate, 27.1 parts by mass of star-shaped block copolymer (B-1), and 30 parts by mass of toluene. Solution. Thereafter, 0.03 part by mass of 1,1-bis (t-butylperoxy) cyclohexane and 0.2 part by mass of n-dodecyl mercaptan were added and dissolved uniformly. Oxygen in the reaction system was removed with nitrogen. A portion of this polymerization reaction solution was collected, and the water content measured by Karl Fischer was 300 ppm. The polymerization reaction solution was heated to 115 ° C. and subjected to solution polymerization for 2.5 hours. The reaction solution was collected from the collection tube. The reaction solution had a polymerization conversion of 60% by mass as measured by gas chromatography. Thereafter, the same operation as in Example 1 was performed.
 (例6)
 攪拌機および採取管付オートクレーブに、メタクリル酸メチル61.7質量部、アクリル酸メチル5.0質量部、合成例3で得られた星型ブロック共重合体(B-3)のトルエン溶液11.1質量部、およびトルエン22.2質量部を仕込み攪拌混合した。その後、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン0.03質量部、およびn-ドデシルメルカプタン0.2質量部を加え、均一に溶解させた。窒素により反応系内の酸素を除去した。この重合反応液の一部を採取し、カールフィッシャーよって測定した水分は400ppmであった。115℃で2.5時間溶液重合させた。採取管より反応液を分取した。ガスクロマトグラフィーによる測定で該反応液は重合転化率が60質量%であった。その後は例1と同様の操作を実施した。
(Example 6)
In an autoclave equipped with a stirrer and a sampling tube, 61.7 parts by mass of methyl methacrylate, 5.0 parts by mass of methyl acrylate, a toluene solution of the star-shaped block copolymer (B-3) obtained in Synthesis Example 3 11.1. Part by mass and 22.2 parts by mass of toluene were charged and mixed with stirring. Thereafter, 0.03 part by mass of 1,1-bis (t-butylperoxy) cyclohexane and 0.2 part by mass of n-dodecyl mercaptan were added and dissolved uniformly. Oxygen in the reaction system was removed with nitrogen. A portion of this polymerization reaction solution was collected, and the water content measured by Karl Fischer was 400 ppm. Solution polymerization was performed at 115 ° C. for 2.5 hours. The reaction solution was collected from the collection tube. The reaction solution had a polymerization conversion of 60% by mass as measured by gas chromatography. Thereafter, the same operation as in Example 1 was performed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すとおり、メタクリル酸メチルホモポリマー(A)とブロック共重合体(B)の割合を本発明の範囲内とした例1~例4は、例5に比べてヘイズが低い。
 また、メタクリル酸メチルホモポリマー(A)を用いた例1~例4は、メタクリル酸メチルとアクリル酸メチルとの共重合体を用いた例6に比較して、荷重撓み温度すなわち耐熱温度が高い。
As shown in Table 2, Examples 1 to 4 in which the ratio of the methyl methacrylate homopolymer (A) and the block copolymer (B) is within the scope of the present invention have lower haze than Example 5.
In addition, Examples 1 to 4 using methyl methacrylate homopolymer (A) have a higher load deflection temperature, that is, heat-resistant temperature, compared to Example 6 using a copolymer of methyl methacrylate and methyl acrylate. .
 (例7)
 ポリビニルアルコールにヨウ素を吸着配向させて厚さ約30μmの偏光フィルムを得た。例2で作製したフィルムを偏光フィルムの両面に接着剤を介して貼合して偏光板を得た。
(Example 7)
A polarizing film having a thickness of about 30 μm was obtained by adsorbing and orienting iodine on polyvinyl alcohol. The film produced in Example 2 was bonded to both surfaces of the polarizing film via an adhesive to obtain a polarizing plate.
 (例8)  (メタ)アクリル樹脂組成物の製造(溶液重合→溶液重合)
 攪拌機および採取管付オートクレーブに、メタクリル酸メチル55.5質量部、アクリル酸メチル5.0質量部、合成例3で得られた星型ブロック共重合体(B-3)のトルエン溶液33質量部、およびトルエン7質量部を仕込み攪拌混合した。その後、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン0.03質量部、およびn-ドデシルメルカプタン0.2質量部を加え、均一に溶解させた。窒素により反応系内の酸素を追い出した。この重合反応液に吸着剤(水澤化学工業社製:ミズカシーブス)を加え水分を吸着させた。その後2μmのフィルターで吸着剤を取り除いた。この重合反応液はカールフィッシャー測定による水分量が250ppmであった。
 この重合反応液を115℃に加温して2.5時間溶液重合させた。重合転化率は60質量%であった。
(Example 8) Production of (meth) acrylic resin composition (solution polymerization → solution polymerization)
In an autoclave equipped with a stirrer and a sampling tube, 55.5 parts by mass of methyl methacrylate, 5.0 parts by mass of methyl acrylate, 33 parts by mass of a toluene solution of the star-shaped block copolymer (B-3) obtained in Synthesis Example 3 And 7 parts by mass of toluene were charged and mixed with stirring. Thereafter, 0.03 part by mass of 1,1-bis (t-butylperoxy) cyclohexane and 0.2 part by mass of n-dodecyl mercaptan were added and dissolved uniformly. Nitrogen expelled oxygen in the reaction system. An adsorbent (Mizusawa Chemical Industry Co., Ltd .: Mizuka Sieves) was added to this polymerization reaction solution to adsorb moisture. Thereafter, the adsorbent was removed with a 2 μm filter. This polymerization reaction liquid had a water content of 250 ppm as measured by Karl Fischer.
The polymerization reaction solution was heated to 115 ° C. and solution polymerization was performed for 2.5 hours. The polymerization conversion rate was 60% by mass.
 次いで、反応液に1,1-ビス(t-ブチルパーオキシ)シクロヘキサン0.08質量部を加え、120℃で2時間溶液重合させた。重合転化率は95質量%であった。
 これを真空乾燥して未反応単量体およびトルエンを除去し、(メタ)アクリル樹脂組成物を得た。乾燥させた(メタ)アクリル樹脂組成物を株式会社テクノベル社製2軸押出機KZW20TW-45MG-NH-600を用いてペレット化した。
 該ペレットを用いてフィルム成形を行った。評価結果を表3に示す。
Next, 0.08 part by mass of 1,1-bis (t-butylperoxy) cyclohexane was added to the reaction solution, and solution polymerization was performed at 120 ° C. for 2 hours. The polymerization conversion rate was 95% by mass.
This was vacuum dried to remove unreacted monomers and toluene, and a (meth) acrylic resin composition was obtained. The dried (meth) acrylic resin composition was pelletized using a twin-screw extruder KZW20TW-45MG-NH-600 manufactured by Technobell.
Film formation was performed using the pellets. The evaluation results are shown in Table 3.
 (例9)
 例8で得られたペレット100質量部と(メタ)アクリル樹脂(C)(クラレ社製パラペットEH-S)200質量部を株式会社テクノベル社製2軸押出機KZW20TW-45MG-NH-600を用いて混練しペレット化した。
 該ペレットを用いてフィルム成形を行った。評価結果を表3に示す。
(Example 9)
Using 100 parts by weight of the pellets obtained in Example 8 and 200 parts by weight of (meth) acrylic resin (C) (parapet EH-S manufactured by Kuraray Co., Ltd.) using a twin-screw extruder KZW20TW-45MG-NH-600 manufactured by Technobell Co., Ltd. And kneaded into pellets.
Film formation was performed using the pellets. The evaluation results are shown in Table 3.
 (例10)
 攪拌機および採取管付オートクレーブに、メタクリル酸メチル61.7質量部、アクリル酸メチル5.0質量部、合成例3で得られた星型ブロック共重合体(B-3)のトルエン溶液11.1質量部、およびトルエン22.2質量部を仕込み攪拌混合した。その後、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン0.03質量部、およびn-ドデシルメルカプタン0.2質量部を加え、均一に溶解させた。窒素により反応系内の酸素を追い出した。重合反応液はカールフィッシャー測定による水分量が500ppmであった。115℃で2.5時間溶液重合させた。重合転化率は60質量%であった。
 次いで、反応液に1,1-ビス(t-ブチルパーオキシ)シクロヘキサン0.08質量部を加え、120℃で2時間溶液重合させた。重合転化率は95質量%であった。
 これを真空乾燥して未反応単量体およびトルエンを除去し、(メタ)アクリル樹脂組成物を得た。乾燥させた(メタ)アクリル樹脂組成物を株式会社テクノベル社製2軸押出機KZW20TW-45MG-NH-600を用いてペレット化した。
 該ペレットを用いてフィルム成形を行った。評価結果を表3に示す。
(Example 10)
In an autoclave equipped with a stirrer and a sampling tube, 61.7 parts by mass of methyl methacrylate, 5.0 parts by mass of methyl acrylate, a toluene solution of the star-shaped block copolymer (B-3) obtained in Synthesis Example 3 11.1. Part by mass and 22.2 parts by mass of toluene were charged and mixed with stirring. Thereafter, 0.03 part by mass of 1,1-bis (t-butylperoxy) cyclohexane and 0.2 part by mass of n-dodecyl mercaptan were added and dissolved uniformly. Nitrogen expelled oxygen in the reaction system. The polymerization reaction solution had a water content of 500 ppm as measured by Karl Fischer. Solution polymerization was performed at 115 ° C. for 2.5 hours. The polymerization conversion rate was 60% by mass.
Next, 0.08 part by mass of 1,1-bis (t-butylperoxy) cyclohexane was added to the reaction solution, and solution polymerization was performed at 120 ° C. for 2 hours. The polymerization conversion rate was 95% by mass.
This was vacuum dried to remove unreacted monomers and toluene, and a (meth) acrylic resin composition was obtained. The dried (meth) acrylic resin composition was pelletized using a twin-screw extruder KZW20TW-45MG-NH-600 manufactured by Technobell.
Film formation was performed using the pellets. The evaluation results are shown in Table 3.
 (例11)
 合成例3で得られた星型ブロック共重合体(B-3)のトルエン溶液を合成例4で得られた星型ブロック共重合体(B-4)のトルエン溶液に変更した以外は例8と同じ手法で(メタ)アクリル樹脂組成物のペレットを得た。反応液はカールフィッシャー測定による水分量が690ppmであった。該ペレットを用いてフィルム成形を行った。評価結果を表3に示す。
(Example 11)
Example 8 except that the toluene solution of the star block copolymer (B-3) obtained in Synthesis Example 3 was changed to the toluene solution of the star block copolymer (B-4) obtained in Synthesis Example 4. (Meth) acrylic resin composition pellets were obtained in the same manner. The reaction solution had a water content of 690 ppm as measured by Karl Fischer. Film formation was performed using the pellets. The evaluation results are shown in Table 3.
 (例12)
 重合反応液に吸着剤を加えなかったこと以外は例8と同じ手法で(メタ)アクリル樹脂組成物のペレットを得た。反応液はカールフィッシャー測定による水分量が1500ppmであった。該ペレットを用いてフィルム成形を行った。評価結果を表3に示す。
(Example 12)
A pellet of a (meth) acrylic resin composition was obtained in the same manner as in Example 8 except that no adsorbent was added to the polymerization reaction solution. The reaction solution had a water content of 1500 ppm as measured by Karl Fischer. Film formation was performed using the pellets. The evaluation results are shown in Table 3.
 (例13)
 例12で得られたペレット100質量部と(メタ)アクリル樹脂(C)(クラレ社製パラペットEH-S)200質量部を株式会社テクノベル社製2軸押出機KZW20TW-45MG-NH-600を用いてペレット化した。該ペレットを用いてフィルム成形を行った。評価結果を表3に示す。
(Example 13)
100 parts by mass of the pellets obtained in Example 12 and 200 parts by mass of (meth) acrylic resin (C) (parapet EH-S manufactured by Kuraray Co., Ltd.) were used using a twin-screw extruder KZW20TW-45MG-NH-600 manufactured by Technobell. And pelletized. Film formation was performed using the pellets. The evaluation results are shown in Table 3.
 (例14)
 重合反応液に吸着剤を加えなかったこと以外は例11と同じ手法で(メタ)アクリル樹脂組成物のペレットを得た。反応液はカールフィッシャー測定による水分量が2100ppmであった。該ペレットを用いてフィルム成形を行った。評価結果を表3に示す。
(Example 14)
A pellet of a (meth) acrylic resin composition was obtained in the same manner as in Example 11 except that no adsorbent was added to the polymerization reaction solution. The reaction solution had a water content of 2100 ppm as measured by Karl Fischer. Film formation was performed using the pellets. The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2および表3に示すとおり、(メタ)アクリル樹脂を重合する際の水分量を1000ppm以下にした例2~例6および例8~例11は、水分量を1000ppm超にした例1および例12~14に比べて、未溶融ブツによる欠陥が減少することがわかる。 As shown in Table 2 and Table 3, Examples 2 to 6 and Examples 8 to 11 in which the water content when polymerizing the (meth) acrylic resin was 1000 ppm or less were the same as Example 1 and Example in which the water content was more than 1000 ppm. It can be seen that defects due to unmelted bumps are reduced as compared with 12-14.

Claims (10)

  1.  メタクリル酸メチルホモポリマー(A)65~99質量部、および
     (メタ)アクリル酸アルキルエステル単位からなる重合体ブロック(a)と共役ジエン化合物単位からなる重合体ブロック(b)とを有するブロック共重合体(B)1~35質量部を、
     メタクリル酸メチルホモポリマー(A)とブロック共重合体(B)との合計で100質量部となるように含有する(メタ)アクリル樹脂組成物。
    65-99 parts by mass of a methyl methacrylate homopolymer (A), and a block copolymer having a polymer block (a) comprising (meth) acrylic acid alkyl ester units and a polymer block (b) comprising conjugated diene compound units 1 to 35 parts by mass of the combined (B)
    A (meth) acrylic resin composition containing 100 parts by mass of the total of the methyl methacrylate homopolymer (A) and the block copolymer (B).
  2.  ブロック共重合体(B)は星型ブロック共重合体を含有するものであり、
     該星型ブロック共重合体は、重合体ブロック(a)および/または重合体ブロック(b)を少なくとも有する腕重合体ブロックを含有してなるものであり、且つゲルパーミエーションクロマトグラフィ(GPC)により算出したポリスチレン換算の数平均分子量が、
    〔星型ブロック共重合体の数平均分子量〕/〔腕重合体ブロックの数平均分子量〕>2を満たす請求項1に記載の(メタ)アクリル樹脂組成物。
    The block copolymer (B) contains a star-shaped block copolymer,
    The star block copolymer contains an arm polymer block having at least a polymer block (a) and / or a polymer block (b), and is calculated by gel permeation chromatography (GPC). The number average molecular weight in terms of polystyrene
    The (meth) acrylic resin composition according to claim 1, which satisfies [number average molecular weight of star block copolymer] / [number average molecular weight of arm polymer block]> 2.
  3.  星型ブロック共重合体(B)が、化学構造式:
      (重合体ブロック(b)-重合体ブロック(a)-)n
    (式中、Xはカップリング剤残基、nは2を超える数を表す。)で表されるものである請求項2に記載の(メタ)アクリル樹脂組成物。
    The star block copolymer (B) has the chemical structural formula:
    (Polymer block (b) -polymer block (a)-) n X
    The (meth) acrylic resin composition according to claim 2, wherein X is a coupling agent residue, and n is a number exceeding 2.
  4.  紫外線吸収剤をさらに含有する請求項1~3のいずれかひとつに記載の(メタ)アクリル樹脂組成物。 The (meth) acrylic resin composition according to any one of claims 1 to 3, further comprising an ultraviolet absorber.
  5.  請求項1~4のいずれかひとつに記載の(メタ)アクリル樹脂組成物を含有してなる光学部材。 An optical member comprising the (meth) acrylic resin composition according to any one of claims 1 to 4.
  6.  請求項1~4のいずれかひとつに記載の(メタ)アクリル樹脂組成物を含有してなるフィルム。 A film comprising the (meth) acrylic resin composition according to any one of claims 1 to 4.
  7.  防眩処理および/または反射防止処理を施してなる請求項6に記載のフィルム。 The film according to claim 6, which is subjected to an antiglare treatment and / or an antireflection treatment.
  8.  偏光フィルムと、それの少なくとも一方の面に貼り合せられた請求項6または請求項7に記載のフィルムとを有する偏光板。 A polarizing plate having a polarizing film and the film according to claim 6 bonded to at least one surface thereof.
  9.  (メタ)アクリル酸アルキルエステル単位からなる重合体ブロック(a)と共役ジエン化合物単位からなる重合体ブロック(b)とを有するブロック共重合体(B)を、メタクリル酸メチル50質量%以上100質量%以下を含有する単量体混合物(a’)に溶解して重合反応液を得、
     次いで、重合反応液中の水分量を1000ppm以下にして単量体混合物(a’)を重合することを含む(メタ)アクリル樹脂組成物の製造方法。
    A block copolymer (B) having a polymer block (a) composed of a (meth) acrylic acid alkyl ester unit and a polymer block (b) composed of a conjugated diene compound unit is used in an amount of 50% by mass or more and 100% by mass of methyl methacrylate. % To obtain a polymerization reaction solution by dissolving in a monomer mixture (a ′) containing at most
    Subsequently, the manufacturing method of the (meth) acrylic resin composition including superposing | polymerizing a monomer mixture (a ') by making the moisture content in a polymerization reaction liquid into 1000 ppm or less.
  10.  前記単量体混合物(a’)がメタクリル酸メチル100%(不可避不純物を含有するものを含む)である請求項9に記載の(メタ)アクリル樹脂組成物の製造方法。 The method for producing a (meth) acrylic resin composition according to claim 9, wherein the monomer mixture (a ') is 100% methyl methacrylate (including those containing inevitable impurities).
PCT/JP2013/004039 2012-06-29 2013-06-28 (meth)acrylic resin composition, method for producing same, and optical member WO2014002506A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014522438A JP6093353B2 (en) 2012-06-29 2013-06-28 (Meth) acrylic resin composition, method for producing the same, and optical member

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-147999 2012-06-29
JP2012148000 2012-06-29
JP2012-148000 2012-06-29
JP2012147999 2012-06-29

Publications (1)

Publication Number Publication Date
WO2014002506A1 true WO2014002506A1 (en) 2014-01-03

Family

ID=49782693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004039 WO2014002506A1 (en) 2012-06-29 2013-06-28 (meth)acrylic resin composition, method for producing same, and optical member

Country Status (3)

Country Link
JP (1) JP6093353B2 (en)
TW (1) TWI609912B (en)
WO (1) WO2014002506A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014028944A (en) * 2012-06-29 2014-02-13 Kuraray Co Ltd Production method of (meth)acrylic resin composition
JP2016147949A (en) * 2015-02-12 2016-08-18 株式会社日本触媒 Thermoplastic resin composition and optical film using the same
WO2016139950A1 (en) * 2015-03-05 2016-09-09 株式会社クラレ Resin composition, film, and methods for producing same, molded article, and article
US10385201B2 (en) 2015-04-03 2019-08-20 Kuraray Co., Ltd. Resin composite, method of producing the resin, molded product, film, and article
JP2020147697A (en) * 2019-03-14 2020-09-17 株式会社クラレ Acrylic resin film and method for producing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6694380B2 (en) * 2014-03-31 2020-05-13 リンテック株式会社 Gas barrier laminate, electronic device member, and electronic device
JP2016021034A (en) * 2014-04-08 2016-02-04 株式会社巴川製紙所 Protective film, film laminate, and polarizing plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945148A (en) * 1972-09-07 1974-04-30
JPH06206952A (en) * 1992-11-27 1994-07-26 Elf Atochem Sa Production of conjugated diene/methyl methacrylate thermoplastic elastic block copolymer of excellent heat resistance
JP2000169665A (en) * 1998-12-08 2000-06-20 Kanegafuchi Chem Ind Co Ltd Thermoplastic resin composition
WO2008032732A1 (en) * 2006-09-15 2008-03-20 Kuraray Co., Ltd. Methacrylic resin composition, resin modifier, and molded body
JP2009228000A (en) * 2008-02-28 2009-10-08 Kuraray Co Ltd Methacrylic resin film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172307A (en) * 1986-01-27 1987-07-29 Mitsubishi Rayon Co Ltd Optically transmittable plastic fiber
JP3680430B2 (en) * 1996-07-24 2005-08-10 住友化学株式会社 Method for producing (meth) acrylic acid ester polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945148A (en) * 1972-09-07 1974-04-30
JPH06206952A (en) * 1992-11-27 1994-07-26 Elf Atochem Sa Production of conjugated diene/methyl methacrylate thermoplastic elastic block copolymer of excellent heat resistance
JP2000169665A (en) * 1998-12-08 2000-06-20 Kanegafuchi Chem Ind Co Ltd Thermoplastic resin composition
WO2008032732A1 (en) * 2006-09-15 2008-03-20 Kuraray Co., Ltd. Methacrylic resin composition, resin modifier, and molded body
JP2009228000A (en) * 2008-02-28 2009-10-08 Kuraray Co Ltd Methacrylic resin film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014028944A (en) * 2012-06-29 2014-02-13 Kuraray Co Ltd Production method of (meth)acrylic resin composition
JP2016147949A (en) * 2015-02-12 2016-08-18 株式会社日本触媒 Thermoplastic resin composition and optical film using the same
WO2016139950A1 (en) * 2015-03-05 2016-09-09 株式会社クラレ Resin composition, film, and methods for producing same, molded article, and article
JPWO2016139950A1 (en) * 2015-03-05 2017-12-14 株式会社クラレ RESIN COMPOSITION, FILM AND METHOD FOR PRODUCING THEM, MOLDED ARTICLE, AND ARTICLE
US10329394B2 (en) 2015-03-05 2019-06-25 Kuraray Co., Ltd. Resin composite, film, methods of producing the resin composite and the film, molded product, and article
US10385201B2 (en) 2015-04-03 2019-08-20 Kuraray Co., Ltd. Resin composite, method of producing the resin, molded product, film, and article
JP2020147697A (en) * 2019-03-14 2020-09-17 株式会社クラレ Acrylic resin film and method for producing the same
JP7278810B2 (en) 2019-03-14 2023-05-22 株式会社クラレ Acrylic resin film and its manufacturing method

Also Published As

Publication number Publication date
TWI609912B (en) 2018-01-01
JPWO2014002506A1 (en) 2016-05-30
JP6093353B2 (en) 2017-03-08
TW201410772A (en) 2014-03-16

Similar Documents

Publication Publication Date Title
JP6093353B2 (en) (Meth) acrylic resin composition, method for producing the same, and optical member
EP2918636B1 (en) Methacrylic resin composition
TWI691516B (en) Copolymer and formed product
WO2021193922A1 (en) Acrylic composition and molded article
WO2018074550A1 (en) Methacrylic resin composition
JP6258195B2 (en) Method for producing (meth) acrylic resin composition
CN110325587B (en) Methacrylic resin composition and use thereof
JP5844262B2 (en) POLYMER COMPOSITION AND MOLDED ARTICLE
JP6230532B2 (en) METHACRYLIC RESIN COMPOSITION, MOLDED ARTICLE AND METHOD FOR PRODUCING THE SAME
WO2014125555A1 (en) Copolymer and molded body
TWI573832B (en) Methacrylic resin composition
JP6186189B2 (en) Method for producing (meth) acrylic resin composition
JP6046707B2 (en) Methacrylic resin composition
JP7184793B2 (en) Methacrylic resin, methacrylic resin composition and molded article
JP7187482B2 (en) METHACRYLIC RESIN COMPOSITION, MOLDED PRODUCT AND FILM
JP2022072382A (en) Methacrylic based copolymer, composition, molding, film, method for manufacturing sheet, and laminate
JPWO2019093385A1 (en) Methacrylic copolymer and its molded product
WO2020241822A1 (en) Methacrylic copolymer and molded article
JP2013231128A (en) (meth)acrylic resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809153

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522438

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13809153

Country of ref document: EP

Kind code of ref document: A1