WO2014001666A1 - Réservoir d'air pour moteur hybride thermique-pneumatique - Google Patents

Réservoir d'air pour moteur hybride thermique-pneumatique Download PDF

Info

Publication number
WO2014001666A1
WO2014001666A1 PCT/FR2013/051134 FR2013051134W WO2014001666A1 WO 2014001666 A1 WO2014001666 A1 WO 2014001666A1 FR 2013051134 W FR2013051134 W FR 2013051134W WO 2014001666 A1 WO2014001666 A1 WO 2014001666A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
tubes
air
tank according
engine
Prior art date
Application number
PCT/FR2013/051134
Other languages
English (en)
Inventor
Christophe HACKSPILLE
Emmanuel Revol
Original Assignee
Peugeot Citroen Automobiles Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles Sa filed Critical Peugeot Citroen Automobiles Sa
Publication of WO2014001666A1 publication Critical patent/WO2014001666A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/08Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B21/00Engines characterised by air-storage chambers
    • F02B21/02Chamber shapes or constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/12Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
    • B60K2006/123Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator for driving pneumatic motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/15Pneumatic energy storages, e.g. pressure air tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/11Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a pressurized air storage tank for a hybrid thermal-pneumatic engine.
  • Another solution to assist the engine is to use a hybrid heat-pneumatic engine.
  • This type of engine consists of a heat engine to which a tank of compressed air has been added. During the deceleration phases of the vehicle, the heat engine is used as a compressor to fill a tank of air under pressure. The pressurized air is then used for the pneumatic propulsion of the vehicle.
  • This type of engine is for example described in patent applications FR 2 865 769, FR 2836181 and EP1308614.
  • the patent application FR 2 865 769 relates more particularly to a hybrid pneumatic-thermal engine with supercharging by turbocharger.
  • a quantity of compressed air is injected into the combustion chambers, during the compression phase of the usual cycle of a four-stroke engine, from a compressed air tank. Additional air sufficient to instantly get the requested motor torque.
  • the compressed air tank can be filled during the compression phase of the usual cycle of a four-stroke engine and preferably during the braking phases of the vehicle (engine brake).
  • the present invention relates to an air tank integrated in the exhaust line, the tank air being used for the pneumatic operation of a heat engine.
  • the air pressure is increased by heat exchange with the exhaust gases.
  • the invention relates to an air storage tank for a thermal-pneumatic hybrid engine, said tank being incorporated in the exhaust line of the engine, so that a heat exchange between the gases Engine exhaust and tank air may occur.
  • the tank can be incorporated in the silencer of the exhaust line, the tank shell may be formed by the silencer envelope.
  • said pipe may comprise several tubes connected to each other in parallel by one of their two ends, the other ends being closed except for one of them which constitutes the air inlet of the tank, said air intake may also constitute the air outlet of the tank.
  • said tubes may be spaced apart from each other so as to allow the passage of the exhaust gases between the tubes.
  • the tank may comprise a closure plate of said tubes, the plate connecting in parallel the tubes, the plate may have a rounded shape, for example spherical, for the distribution of air between the tubes.
  • the tank may include a relief valve to limit the maximum pressure of the air in the pipe.
  • the tank may have spacers to force the exhaust gas to circulate around the tubes.
  • the tank may comprise a first and a second spacer, the first spacer being located near the inlet of the exhaust gas into the tank and provided with openings for the passage of the exhaust gas between the tubes and the second spacer being located near the outlet of the exhaust gas tank and provided with recesses or cutouts for the passage of exhaust between the envelope and the tubes.
  • said pipe, and therefore said tubes may be made of or may be made of a material having a thermal conduction coefficient of at least 25 W / m ⁇ K, for example steel.
  • a bleed screw can be located at a low point of the pipe.
  • FIG. 1 a first embodiment of a tank according to the invention and shown schematically;
  • FIG. 2 a second embodiment of a tank according to the invention and shown schematically;
  • - Figure 3 a three-dimensional view of the tank shown schematically in Figure 2;
  • - Figure 4 a three-dimensional view of the front part of the tank (part through which the exhaust gases enter) of Figure 3, with a first spacer;
  • FIG. 6 and 7 a sectional view of the tank respectively at said first spacer and at said second spacer.
  • the purpose of the tank according to the invention is to store pressurized air generated by a heat engine, the engine exhaust gas heating the pressurized air tank to increase the pressure of the engine. 'air.
  • the pressurized air is intended to operate a heat engine in pneumatic mode.
  • FIG. 1 shows schematically a first embodiment of the invention.
  • the reservoir 10 comprises a casing 1 1, of cylindrical shape, traversed by an exhaust line 12 of a heat engine (not shown).
  • the tank is integrated in the exhaust line 12.
  • the exhaust gas flows in the line 12 in the direction of the arrow 13, but could flow in the opposite direction.
  • the reservoir comprises an inlet 14 receiving air, for example generated by the heat engine.
  • the envelope January 1 is closed at its two ends by plates 17 and 18 of rounded shape, spherical for example, so as to promote the circulation of air around the line 12.
  • the inlet 14 of the tank is also the air outlet when the engine is operating in pneumatic mode.
  • the heat exchange between the exhaust gas and the air of the tank is effected by the surface of the line 12.
  • the casing 1 1 can be enclosed in the muffler of the exhaust line, the casing 1 1 can then be constituted by the enclosure of the muffler.
  • Figures 2 to 7 show a second embodiment of the invention.
  • the reservoir 20 comprises an envelope 21 provided with an inlet 22 receiving the exhaust gas from an exhaust line of a heat engine and an outlet 23 for said gases.
  • the tank is therefore integrated into the exhaust line.
  • Inside the envelope is a pipe 24 composed of several tubes, three of which 25, 26 and 27 are visible in Figure 2, the other tubes 34, 35, 36 being visible in Figures 3-7.
  • the tubes are connected in parallel at one of their two ends by means of a closing plate 28, the other ends (29 and 30 in FIG.
  • the plate 28 is of rounded shape, for example spherical, so as to promote the circulation of air between the tubes.
  • the inlet 32 is provided with a relief valve 33 to limit the pressure of the air in the pipe 24 to a predetermined pressure.
  • the discharge valve 33 could be integrated in the envelope 21 to limit projections and noise.
  • the air inlet 32 also serves as an outlet when the heat engine is operating in pneumatic mode.
  • the tubes are seven in number, referenced 25, 26, 27, 34, 35 and 36 (but of course, a tank according to the invention may comprise less, or more, of seven tubes).
  • the tubes are spaced apart so as to promote the circulation of exhaust gases around the tubes.
  • a first spacer 37 located near the inlet 22 of the exhaust gas serves, on the one hand, to support the tubes inside the casing 21 and, on the other hand, to force the exhaust gases to circulate around the tubes.
  • the spacer 37 closes the passage of the exhaust gases between the tubes and the envelope 21.
  • the spacer 38 has recesses or cuts 39, 40, 41 and 42 (see FIGS. 5 and 7) practiced at the periphery of the spacer and forcing the gases to evacuate on the sides before reaching the exit 23.
  • the flow of gases in the envelope 21 is illustrated by the arrows 43, 44, 45, 46 and 47.
  • the exhaust gases circulate in the casing 21, the first spacer 37 directing the gases towards the tubes.
  • the gases heat exchange with the tubes, which provide calories to the air in the tubes, thus increasing the air pressure in the tubes.
  • the exhaust gases continue their way along the tubes, then meet the second spacer 38 which evacuate them on the sides through the cutouts or recesses 39 to 42.
  • a bleed screw 48 is fixed at a low point of the pipe 24 to be able to reduce the pressure in the pipe, for example for the maintenance of the tank and / or to periodically evacuate the condensate.
  • the tubes of the pipe are preferably made of a material having a good thermal conductivity, for example a coefficient of thermal conduction at least equal to 25 Watt per meter per Kelvin (W / mK).
  • the pipe may be made of steel whose heat conduction coefficient varies between 26 W / mK for stainless steel and about 47 W / mK for mild steel, or copper whose thermal conductivity coefficient is about 372 W / mK or aluminum whose thermal conductivity coefficient is about 209 W / mK
  • steel is preferred.
  • the tubes could have the following characteristics: average diameter of about 40 mm, thickness of 1 to 2 mm, length of 1 to 1, 10 m, withstand at the pressure of 1 to 20 bar and volume of air in the pipeline about 15 liters.
  • the envelope 21 may be entirely contained within the silencer of the exhaust line.
  • the envelope can then be constituted by the envelope of the silencer.
  • the latter can also be thermally insulated to protect the surrounding parts, but also to prevent the cooling of the exhausts which allows a greater recovery of the thermal energy of the exhaust gases, so a faster rise in pressure in the reservoir (which is interesting for small trips, urban for example).
  • Sound-absorbing materials may be placed inside the casing 21, for example between the tubes, so as to obtain an acoustic treatment of the exhaust line. Additional spacers may also be used to dampen the exhaust gas pressure waves.
  • the tubes are arranged inside the envelope 21, which can be adapted to the environment.
  • the casing 21 has a trapezoidal shape so as to adapt to an implementation under the vehicle body.
  • This form can of course be different, for example cylindrical or parallelepipedic.
  • the present invention therefore makes it possible to recover the thermal energy of the exhaust gases, thus avoiding having to heat the air of the pneumatic operating reservoir of the engine subsequently by energy consuming systems such as electrical systems. .

Abstract

L'invention concerne un réservoir de stockage d'air (20) pour un moteur hybride thermique-pneumatique. Selon l'invention, le réservoir est incorporé à la ligne d'échappement du moteur, de sorte qu'un échange thermique entre les gaz d'échappement du moteur et l'air du réservoir puisse se produire. Le réservoir peut comporter plusieurs tubes (25, 26, 27) connectés entre eux en parallèle par l'une de leurs deux extrémités, les autres extrémités (29, 30) étant fermées à l'exception de l'une (31) d'entre elles qui est reliée à l'arrivée d'air (32) du réservoir. Les tubes sont espacés les uns des autres de façon à permettre le passage des gaz d'échappement entre les tubes. Le réservoir peut être incorporé au silencieux de la ligne d'échappement.

Description

RESERVOIR D'AIR POUR MOTEUR HYBRIDE THERMIQUE- PNEUMATIQUE [0001 ] La présente invention concerne un réservoir de stockage d'air sous pression pour moteur hybride thermique-pneumatique.
[0002] La lutte contre la pollution des moteurs thermiques est une préoccupation majeure des constructeurs automobiles qui se sont tournés de plus en plus vers les moteurs hybrides. Les plus connus sont les moteurs hybrides du type électrique-thermique qui comprennent chacun un moteur électrique associé à un moteur thermique. Ces moteurs hybrides nécessitent une ou plusieurs batterie(s) pour le stockage de l'énergie électrique. Cependant, ces batteries sont onéreuses, lourdes et difficiles à recycler.
[0003] Une autre solution pour assister le moteur thermique consiste à utiliser un moteur hybride pneumatique-thermique. Ce type de moteur se compose d'un moteur thermique auquel un réservoir d'air comprimé a été ajouté. Pendant les phases de décélération du véhicule, le moteur thermique est utilisé comme compresseur afin de remplir un réservoir d'air sous pression. L'air sous pression est ensuite utilisé pour la propulsion pneumatique du véhicule. Ce type de moteur est par exemple décrit dans les demandes de brevet FR 2 865 769, FR 2836181 et EP1308614.
[0004] La demande de brevet FR 2 865 769 concerne plus particulièrement un moteur hybride pneumatique-thermique à suralimentation par turbocompresseur. Afin d'accroître le couple fournit par le moteur, on injecte dans les chambres de combustion, lors de la phase de compression du cycle habituel d'un moteur thermique à quatre temps, à partir d'un réservoir d'air comprimé, une quantité supplémentaire d'air suffisante pour obtenir instantanément le couple moteur demandé. Le réservoir d'air comprimé peut être rempli lors de la phase de compression du cycle habituel d'un moteur quatre temps et préférentiellement pendant les phases de freinage du véhicule (frein moteur). De ce fait, l'efficacité énergétique du procédé est très performante pour les utilisations en ville (nombreuses phases de freinage permettant de récupérer de l'énergie dans le réservoir) mais moins performante sur circuit autoroutier (pour des raisons opposées).
[0005] D'autre part, il est connu par la demande de brevet FR2945960 de connecter une citerne d'air comprimé à une ligne d'échappement. Cependant ladite citerne est utilisée pour le nettoyage du filtre à particules présent dans les lignes d'échappement des moteurs thermiques mais pas, comme dans la présente invention, pour le fonctionnement d'un moteur hybride pneumatique. De plus, ladite citerne est simplement connectée à la ligne d'échappement mais ne lui est pas intégrée.
[0006] La présente invention concerne un réservoir d'air intégré à la ligne d'échappement, l'air du réservoir étant utilisé pour le fonctionnement pneumatique d'un moteur thermique. La pression de l'air est augmentée par échange thermique avec les gaz d'échappement.
[0007] De façon plus précise, l'invention concerne un réservoir de stockage d'air pour un moteur hybride thermique-pneumatique, ledit réservoir étant incorporé à la ligne d'échappement du moteur, de sorte qu'un échange thermique entre les gaz d'échappement du moteur et l'air du réservoir puisse se produire.
[0008] Un réservoir conforme à l'invention peut comporter une ou plusieurs des caractéristiques suivantes:
- le réservoir peut comporter une enveloppe munie d'une entrée et d'une sortie pour la circulation des gaz d'échappement dans l'enveloppe et une canalisation pour le stockage d'air sous pression, ladite canalisation étant située dans l'enveloppe et en contact avec les gaz d'échappement circulant dans l'enveloppe.
- le réservoir peut être incorporé dans le silencieux de la ligne d'échappement, l'enveloppe du réservoir pouvant être constituée par l'enveloppe du silencieux.
- ladite canalisation peut comporter plusieurs tubes connectés entre eux en parallèle par l'une de leurs deux extrémités, les autres extrémités étant fermées à l'exception de l'une d'entre elles qui constitue l'arrivée d'air du réservoir, ladite arrivée d'air pouvant constituer également la sortie d'air du réservoir.
- lesdits tubes peuvent être espacés les uns des autres de façon à permettre le passage des gaz d'échappement entre les tubes.
- le réservoir peut comporter une plaque de fermeture desdits tubes, la plaque connectant en parallèle les tubes, la plaque pouvant avoir une forme arrondie, sphérique par exemple, pour la distribution de l'air entre les tubes.
- le réservoir peut comporter une soupape de décharge permettant de limiter la pression maximale de l'air contenu dans la canalisation.
- le réservoir peut comporter des entretoises pour forcer les gaz d'échappement à circuler autour des tubes. Par exemple, le réservoir peut comporter une première et une deuxième entretoises, la première entretoise étant située à proximité de l'entrée des gaz d'échappement dans le réservoir et munie d'ouvertures pour le passage des gaz d'échappement entre les tubes et la deuxième entretoise étant située à proximité de la sortie des gaz d'échappement du réservoir et munie d'évidements ou de découpes pour le passage des gaz d'échappement entre l'enveloppe et les tubes.
- ladite canalisation, et donc lesdits tubes, peut être réalisée ou peuvent être réalisés en un matériau ayant un coefficient de conduction thermique au moins égale à 25 W/m.K, par exemple en acier.
- une vis de purge peut être située en un point bas de la canalisation.
[0009] D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description qui suit de modes de réalisation de l'invention, donnés à titre d'exemples non limitatifs et en référence aux dessins annexés qui montrent:
- la figure 1 , un premier mode de réalisation d'un réservoir conforme à l'invention et représenté schématiquement;
- la figure 2, un deuxième mode de réalisation d'un réservoir conforme à l'invention et représenté schématiquement; - la figure 3, une vue en trois dimensions du réservoir représenté schématiquement sur la figure 2; - la figure 4, une vue en trois dimensions de la partie avant du réservoir (partie par laquelle rentrent les gaz d'échappement) de la figure 3, avec une première entretoise;
- la figure 5, une vue en trois dimensions de la partie arrière du réservoir (partie par laquelle sortent les gaz) de la figure 3, avec une deuxième entretoise; et
- les figures 6 et 7, une vue en coupe du réservoir respectivement au niveau de ladite première entretoise et au niveau de ladite deuxième entretoise. [00010] Le but du réservoir selon l'invention est de stocker de l'air sous pression générés par un moteur thermique, les gaz d'échappement du moteur thermique chauffant l'air sous pression du réservoir de façon à augmenter la pression de l'air. L'air sous pression est destiné à faire fonctionner un moteur thermique en mode pneumatique.
[0001 1 ] La figure 1 représente schématiquement un premier mode de réalisation de l'invention. Le réservoir 10 comporte une enveloppe 1 1 , de forme cylindrique, traversée par une ligne d'échappement 12 d'un moteur thermique (non représenté). Le réservoir est intégré à la ligne d'échappement 12. Les gaz d'échappement circulent dans la ligne 12 selon le sens de la flèche 13, mais pourraient circuler dans le sens inverse. Le réservoir comprend une entrée 14 recevant de l'air, par exemple généré par le moteur thermique. L'enveloppe 1 1 est fermée à ses deux extrémités par des plaques 17 et 18 de forme arrondie, sphérique par exemple, de façon à favoriser la circulation de l'air autour de la ligne 12. L'entrée 14 du réservoir est également la sortie de l'air lorsque le moteur thermique fonctionne en mode pneumatique. L'échange thermique entre les gaz d'échappement et l'air du réservoir s'effectue par la surface de la ligne 12.
[00012] Selon une forme de réalisation avantageuse, l'enveloppe 1 1 peut être enfermée dans le silencieux de la ligne d'échappement, l'enveloppe 1 1 pouvant alors être constituée par l'enceinte du silencieux. [00013] Les figures 2 à 7 représentent un deuxième mode de réalisation de l'invention. Le réservoir 20 comporte une enveloppe 21 munie d'une entrée 22 recevant les gaz d'échappement d'une ligne d'échappement d'un moteur thermique et une sortie 23 pour lesdits gaz. Le réservoir est donc intégré à la ligne d'échappement. A l'intérieur de l'enveloppe se trouve une canalisation 24 composée de plusieurs tubes, dont trois 25, 26 et 27 sont visibles sur la figure 2, les autres tubes 34, 35, 36 étant visibles sur les figures 3-7. Les tubes sont connectés en parallèle à l'une de leurs deux extrémités à l'aide d'une plaque de fermeture 28, les autres extrémités (29 et 30 sur la figure 2) étant fermées, à l'exception de l'extrémité 31 qui est connectée à l'entrée 32 de l'air dans la canalisation 24. La plaque 28 est de forme arrondie, par exemple sphérique, de façon à favoriser la circulation de l'air entre les tubes. L'entrée 32 est munie d'une soupape de décharge 33 afin de limiter la pression de l'air dans la canalisation 24 à une pression prédéterminée. Alternativement, la soupape de décharge 33 pourrait être intégrée dans l'enveloppe 21 afin de limiter les projections et le bruit. Comme pour le premier mode de réalisation représenté sur la figure 1 , l'entrée d'air 32 sert aussi de sortie lorsque le moteur thermique fonctionne en mode pneumatique.
[00014] Sur les figures 3, 4, 6 et 7 on remarque que les tubes sont au nombre de sept, référencés 25, 26, 27, 34, 35 et 36 (mais bien entendu, un réservoir conforme à l'invention peut comporter moins, ou plus, de sept tubes). Les tubes sont espacés entre eux de façon à favoriser la circulation des gaz d'échappement autour des tubes.
[00015] Une première entretoise 37, située à proximité de l'entrée 22 des gaz d'échappement, sert, d'une part, de support aux tubes à l'intérieur de l'enveloppe 21 et, d'autre part, à forcer les gaz d'échappement à circuler autour des tubes. A cette fin, l'entretoise 37 ferme le passage des gaz d'échappement entre les tubes et l'enveloppe 21 . Une deuxième entretoise 38, située à proximité de la sortie 23, supporte les tubes dans l'enveloppe 21 et bloque le passage des gaz entre les tubes. L'entretoise 38 comporte des évidements ou découpes 39, 40, 41 et 42 (voir figures 5 et 7) pratiqués à la périphérie de l'entretoise et forçant les gaz à s'évacuer sur les cotés avant de rejoindre la sortie 23. La circulation des gaz dans l'enveloppe 21 est illustrée par les flèches 43, 44, 45, 46 et 47.
[00016] D'un point de vue fonctionnel, les gaz d'échappement circulent dans l'enveloppe 21 , la première entretoise 37 orientant les gaz vers les tubes. Les gaz échangent thermiquement avec les tubes, lesquels apportent des calories à l'air contenu dans les tubes, élevant ainsi la pression de l'air dans les tubes. Les gaz d'échappement poursuivent leur chemin le long des tubes, puis rencontrent la deuxième entretoise 38 qui les évacuent sur les cotés en passant par les découpes ou évidements 39 à 42.
[00017] Une vis de purge 48 est fixée en un point bas de la canalisation 24 afin de pouvoir faire chuter la pression dans la canalisation, par exemple pour la maintenance du réservoir et/ou pour évacuer périodiquement les condensats.
[00018] Afin de favoriser les échanges thermiques entre les gaz d'échappement et la canalisation contenant l'air comprimé, la canalisation est réalisée, et donc les tubes composant la canalisation sont de préférence réalisés, en un matériau ayant une bonne conductivité thermique, par exemple un coefficient de conduction thermique au moins égale à 25 Watt par mètre par Kelvin (W/m.K). Par exemple, la canalisation peut être réalisée en acier dont le coefficient de conduction thermique varie entre 26 W/m.K pour l'acier inoxydable et environ 47 W/m.K pour l'acier doux, ou en cuivre dont le coefficient de conduction thermique est environ 372 W/m.K ou encore en aluminium dont le coefficient de conduction thermique est environ 209 W/m.K. Pour des raisons de coûts, de fatigue du matériau et de tenue à la pression, l'acier est préféré.
[00019] A titre d'exemple, les tubes pourraient avoir les caractéristiques suivantes: diamètre moyen d'environ 40 mm, épaisseur de 1 à 2 mm, longueur de 1 à 1 ,10 m, tenue à la pression de 1 à 20 bars et volume d'air dans la canalisation environ 15 litres.
[00020] Comme pour le premier mode de réalisation représenté à la figure 1 , l'enveloppe 21 peut être entièrement contenue à l'intérieur du silencieux de la ligne d'échappement. L'enveloppe peut alors être constituée par l'enveloppe du silencieux. Cette dernière peut aussi être isolée thermiquement afin de protéger les pièces environnantes, mais aussi pour éviter le refroidissement des échappements ce qui permet une récupération plus importante de l'énergie thermique des gaz d'échappement, donc une montée plus rapide de la pression dans le réservoir (ce qui est intéressant pour les petits trajets, urbains par exemple).
[00021 ] Des matériaux absorbants les sons peuvent être placés à l'intérieur de l'enveloppe 21 , par exemple entre les tubes, de façon à obtenir un traitement acoustique de la ligne d'échappement. Des entretoises supplémentaires peuvent aussi être utilisées pour amortir les ondes de pression des gaz d'échappement.
[00022] Les tubes sont disposés à l'intérieur de l'enveloppe 21 , laquelle peut être adaptée à l'environnement. Par exemple et comme représenté sur les figures 3 à 7, l'enveloppe 21 a une forme trapézoïdale de façon à s'adapter à une implantation sous la caisse du véhicule. Cette forme peut bien entendu être différente, par exemple cylindrique ou parallélépipédique.
[00023] La présente invention permet donc de récupérer l'énergie thermique des gaz d'échappement, évitant ainsi d'avoir à réchauffer ultérieurement l'air du réservoir de fonctionnement pneumatique du moteur par des systèmes consommateurs d'énergie tels que des systèmes électriques.

Claims

REVENDICATIONS
1. Réservoir de stockage d'air (10, 20) pour un moteur hybride thermique- pneumatique, caractérisé en ce qu'il est incorporé à la ligne d'échappement dudit moteur, de sorte qu'un échange thermique entre les gaz d'échappement du moteur et l'air du réservoir puisse se produire.
2. Réservoir selon la revendication 1 , caractérisé en que, ladite ligne d'échappement comprenant un silencieux, ledit réservoir est incorporé dans ledit silencieux.
3. Réservoir selon l'une des revendications précédentes, caractérisé en ce qu'il comporte une enveloppe (1 1 , 21 ) munie d'une entrée (22) et d'une sortie (23) pour la circulation des gaz d'échappement dans ladite enveloppe et une canalisation (12, 24) pour le stockage d'air sous pression, ladite canalisation étant située dans ladite enveloppe et en contact avec lesdits gaz d'échappement circulant dans ladite enveloppe.
4. Réservoir selon la revendication 3, caractérisé en ce que ladite canalisation (24) comporte plusieurs tubes (25, 26, 27) connectés entre eux en parallèle par l'une de leurs deux extrémités, les autres extrémités (29, 30) étant fermées à l'exception de l'une (31 ) d'entre elles qui est reliée à l'arrivée d'air (32) dudit réservoir.
5. Réservoir selon la revendication 4, caractérisé en ce que lesdits tubes sont espacés les uns des autres de façon à permettre le passage des gaz d'échappement entre les tubes.
6. Réservoir selon la revendication 4, caractérisé en ce que ladite arrivée d'air (32) constitue également la sortie d'air du réservoir.
7. Réservoir selon l'une des revendications 4 à 6, caractérisé en ce qu'il comporte une plaque de fermeture (28) desdits tubes, ladite plaque connectant en parallèle lesdits tubes.
8. Réservoir selon la revendication 7, caractérisé en ce que ladite plaque (28) a une forme arrondie pour la distribution de l'air entre lesdits tubes.
9. Réservoir selon la revendication 8, caractérisé en ce que ladite plaque (28) à une forme sphérique.
10. Réservoir selon l'une des revendications 3 à 9, caractérisé en ce qu'il comporte une soupape de décharge (33) permettant de limiter la pression maximale de l'air contenu dans ladite canalisation.
11. Réservoir selon l'une des revendications 3 à 10, caractérisé en ce qu'il comporte des entretoises (37, 38) pour forcer les gaz d'échappement à circuler autour desdits tubes.
12. Réservoir selon la revendication 1 1 , caractérisé en ce qu'il comporte au moins une première (37) et une deuxième (38) entretoises, ladite première entretoise (37) étant située à proximité de l'entrée (22) des gaz d'échappement dans le réservoir et étant munie d'ouvertures pour le passage des gaz d'échappement entre lesdits tubes et ladite deuxième entretoise (38) étant située à proximité de la sortie (23) des gaz d'échappement du réservoir et étant munie d'évidements (39-42) pour le passage des gaz d'échappement entre ladite enveloppe et lesdits tubes.
13. Réservoir selon les revendications 2 et 3, caractérisé en ce que ladite enveloppe (1 1 , 21 ) est constituée par l'enveloppe dudit silencieux de la ligne d'échappement.
PCT/FR2013/051134 2012-06-27 2013-05-23 Réservoir d'air pour moteur hybride thermique-pneumatique WO2014001666A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1256085A FR2992682B1 (fr) 2012-06-27 2012-06-27 Reservoir d'air pour moteur hybride thermique-pneumatique
FR1256085 2012-06-27

Publications (1)

Publication Number Publication Date
WO2014001666A1 true WO2014001666A1 (fr) 2014-01-03

Family

ID=48614055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/051134 WO2014001666A1 (fr) 2012-06-27 2013-05-23 Réservoir d'air pour moteur hybride thermique-pneumatique

Country Status (2)

Country Link
FR (1) FR2992682B1 (fr)
WO (1) WO2014001666A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044820A (en) * 1976-05-24 1977-08-30 Econo-Therm Energy Systems Corporation Method and apparatus for preheating combustion air while cooling a hot process gas
SU732624A1 (ru) * 1978-09-12 1980-05-05 Пензенский Политехнический Институт Рекуператор
EP1308614A1 (fr) 2001-10-31 2003-05-07 Peugeot Citroen Automobiles SA Système de motorisation pour véhicule
FR2836181A1 (fr) 2002-02-15 2003-08-22 Peugeot Citroen Automobiles Sa Systeme de motorisation de vehicule automobile
FR2865769A1 (fr) 2004-01-30 2005-08-05 Univ Orleans Procede de fonctionnement d'un moteur hybride pneumatique-thermique a suralimentation par turbocompresseur
WO2009036992A1 (fr) * 2007-09-22 2009-03-26 Eth Zurich Moteur à combustion interne hybride à air comprimé sur la base d'arbres à cames fixes
CN101608573A (zh) * 2008-06-18 2009-12-23 郭人铭 发动机热机增压装置
FR2945960A1 (fr) 2009-06-02 2010-12-03 Faurecia Sys Echappement Procede et installation de nettoyage d'un filtre a particules d'une ligne d'echappement d'un moteur thermique

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044820A (en) * 1976-05-24 1977-08-30 Econo-Therm Energy Systems Corporation Method and apparatus for preheating combustion air while cooling a hot process gas
SU732624A1 (ru) * 1978-09-12 1980-05-05 Пензенский Политехнический Институт Рекуператор
EP1308614A1 (fr) 2001-10-31 2003-05-07 Peugeot Citroen Automobiles SA Système de motorisation pour véhicule
FR2836181A1 (fr) 2002-02-15 2003-08-22 Peugeot Citroen Automobiles Sa Systeme de motorisation de vehicule automobile
FR2865769A1 (fr) 2004-01-30 2005-08-05 Univ Orleans Procede de fonctionnement d'un moteur hybride pneumatique-thermique a suralimentation par turbocompresseur
WO2009036992A1 (fr) * 2007-09-22 2009-03-26 Eth Zurich Moteur à combustion interne hybride à air comprimé sur la base d'arbres à cames fixes
CN101608573A (zh) * 2008-06-18 2009-12-23 郭人铭 发动机热机增压装置
FR2945960A1 (fr) 2009-06-02 2010-12-03 Faurecia Sys Echappement Procede et installation de nettoyage d'un filtre a particules d'une ligne d'echappement d'un moteur thermique

Also Published As

Publication number Publication date
FR2992682A1 (fr) 2014-01-03
FR2992682B1 (fr) 2014-08-08

Similar Documents

Publication Publication Date Title
FR2995732B1 (fr) Dispositif de refroidissement de modules de batterie
FR2975230A1 (fr) Pack batterie avec dispositif de regulation thermique associe
EP2370280A1 (fr) Dispositif pour refroidir les batteries d'un vehicule notamment electrique et vehicule equipe d'un tel dispositif
WO2010108786A1 (fr) Echangeur de stockage pourvu d'un matériau stockeur et boucle de climatisation ou circuit de refroidissement comprenant un tel échangeur.
FR2989323A1 (fr) Module de batteries comportant un dispositif de refroidissement comprenant un materiau de fusion
WO2018055297A2 (fr) Dispositif de regulation thermique
EP3008772B1 (fr) Bloc batterie pour véhicule automobile
EP3271677A1 (fr) Batterie thermique, notamment pour véhicule automobile, et utilisation correspondante
FR2935475A1 (fr) Echangeur de chaleur pour le refroidissement d'un fluide, en particulier des gaz d'echappement recircules d'un moteur thermique
WO2014001666A1 (fr) Réservoir d'air pour moteur hybride thermique-pneumatique
FR2963486A1 (fr) Systeme de refroidissement de batterie electrique
EP3479046B1 (fr) Batterie thermique à matériau à changement de phase
FR3054650A1 (fr) Echangeur de chaleur, notamment pour la regulation thermique d'une unite de reserve d'energie, et ensemble forme dudit echangeur et de ladite unite.
EP3753065B1 (fr) Système de refroidissement de cellules de batterie de véhicule automobile
WO2014064079A1 (fr) Boite collectrice pour échangeur de chaleur, notamment refroidisseur d'air de suralimentation de moteur de véhicule automobile
FR3056729B1 (fr) Boite collectrice pour echangeur de chaleur avec saillies
FR2938321A1 (fr) Echangeur thermique comportant des conduites paralleles
FR3007513A1 (fr) Echangeur de chaleur equipant une ligne d'arrivee d'air d'un moteur a combustion interne
EP2478205A1 (fr) Échangeur de chaleur pour gaz, particulièrement pour les gaz d'échappement d'un moteur
FR2819344A1 (fr) Vehicule comportant une batterie d'accumulateurs refroidie par un dispositif de climatisation
FR3059833A1 (fr) Dispositif de gestion thermique de pile a combustible et procede de gestion associe
EP4188729A1 (fr) Module de refroidissement pour véhicule automobile électrique ou hybride
FR2989639A1 (fr) Circuit d'air comprime pour un vehicule comprenant un materiau a changement de phase
EP3732379A1 (fr) Dispositif de ventilation pour vehicule automobile
FR3137130A1 (fr) DISPOSITIF DE REFROIDISSEMENT DU MOTEUR DES vÉhicules automobiles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13728478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13728478

Country of ref document: EP

Kind code of ref document: A1